

Calhoun: The NPS Institutional Archive

Methods for Computing the Greatest Common Divisor and Applications in Mathematical Programming.

MacGregor, Harry Gregor, Jr.
Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/12659

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

METHODS FOR COMPUTING THE GREATEST COMMON DIVISOR

 AND APPLICATIONS IN MATHEMATICAL PROGRAMMINGby
Harry Gregor MacGregor, Jr. Major, United States Army B.S.C.E., Virginia Milftary Institute, 1959
and
Kent Allen Modine Captain, United States Army B.S.C.E., Virginia Military Institute, 1961

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
June 1968

NOS ARCHIVE 1968 Macgregor, H

ABSTRACT

Several methods are presented for determining the greatest common divisor of a set of positive integers by solving the integer program: find the integers x_{i} that minimize $Z=\sum_{i=1} a_{i} x_{i}$ subject to $Z \geq 1$. The methods are programmed for use on a computer and compared with the Euclidean algorithm. Computational results and applications are given.
Section Page

1. Introduction 7
2. Solution to the Integer Program 10
3. Computer Programming of Algorithms 15
4. Computational Results 16
5. Applications of the Greatest Common Divisor 21
Bibliography 24Appendix
I FORTRAN IV Program of the Blankinship Method 25
II FORTRAN IV Program of the Blankinship Method 27 without X_{i}
III FORTRAN IV Program of the Algorithm 1 Method 29
IV FORTRAN IV Program of the Algorithm 2 Method 32
V FORTRAN IV Program of the Algorithm 2 Method 36without X_{i}
VI FORTRAN IV Program of the Combination Method 38
VII FORTRAN IV Program of the Combination Method 43 without X_{i}

LIST OF TABLES

Table Page

1. Test Conditions 16
2. Comparison of Execution Time 18
3. Introduction

The Euclidean algorithm provides a method for computing the greatest common divisor (GCD) of a set of positive integers $a_{1}, a_{2}, \ldots, a_{n}$. The problem can also be solved as an integer program: find integers $x_{1}, x_{2}, \ldots, x_{n}$ that minimize

$$
\begin{equation*}
z=\sum_{i=1}^{n} a_{i} x_{i} \tag{1}
\end{equation*}
$$

where

$$
z \geq 1 .
$$

Proof that the optimal value of z is the $G C D$ of the a_{i} is contained in the following theorems.

Theorem 1. The minimum positive integer in the set $L=\sum_{i=1}^{n} a_{i} x_{i}$, where the a_{i} are given positive integers and the x_{i} are all possible integers, is the GCD of the set.

There is a finite number of integers between zero and any positive integer. The set L contains at least one positive integer, therefore the set has a minimum positive integer. Denote the minimum positive integer by

$$
\begin{equation*}
M=\sum_{i=1}^{n} a_{i} x_{i}^{\prime} \tag{2}
\end{equation*}
$$

By Euclid's theorem [7] for any integer S there exist integers p and q such that

$$
\begin{equation*}
S=p M+q, \quad 0 \leq q<M \tag{3}
\end{equation*}
$$

For S in L we also have

$$
\begin{equation*}
s=\sum_{i=1}^{n} a_{i} x_{i}^{\prime \prime} . \tag{4}
\end{equation*}
$$

From equations (2), (3), and (4) we obtain:

$$
\sum_{i=1}^{n} a_{i} x_{i}^{\prime \prime}=p \sum_{i=1}^{n} a_{i} x_{i}^{\prime}+q
$$

or

$$
\sum_{i=1}^{n} a_{i}\left(x_{i}^{\prime \prime}-p x_{i}^{\prime}\right)=q .
$$

Since ($x_{i}{ }^{\prime \prime}-p x_{i}{ }^{\prime}$), for all i, are integers, q is an integer contained in L. Since q is less than M and M is the minimum positive integer in L, q must equal zero. From equation (3) we see that M divides S and thus it divides every member of L and is a common divisor of L. Since M is in L, no integer greater than M is a common divisor of L. Therefore M is the GCD of L.

Theorem 2. The GCD of the a_{i} is the minimum positive integer in the set $L=\sum_{i=1}^{n} a_{i} x_{i}$.

Each integer a_{i} is in L and may be detemined when $x_{i} \equiv 1$ and $x_{k}=0$ for $k \neq i$. Therefore, from theorem 1 , M is a common divisor of all a_{i}. Since $M=\sum_{i=1}^{n} a_{i} x_{i}^{\prime}$ any common divisor of the a_{i} divides M. Therefore the GCD cannot exceed M and thus M is the GCD of the a_{i}.

Theorem 3. The GCD of the set $L=\sum_{i=1}^{n} a_{i} x_{i}$ is unique.
Let M_{1} and M_{2} be greatest common divisors of L . Since M_{1} and M_{2} are in L, M_{1} must divide M_{2} and M_{2} must divide M_{1} 。 Consequently, $M_{1} \leq M_{2}$ and $M_{2} \leq M_{1}$. Therefore $M_{1}=M_{2}$ 。

In many applications it is desirable to find the elements x_{i}; the Euclidean algorithm does this in a somewhat tedious fashion. Blankinship [2] provides a matrix method that duplicates the Euclidean algorithm and produces the x_{i}. But his procedure requires the storage of an n by $n+1$ matrix and if n is large the method runs into storage problems.

We will present an algorithm for the solution of the integer program (1) that does not have the stor age problem of [2] and also achieves computer solutions more rapidly. In addition, non-unique solutions can be produced easily, which the Euclidean algorithm and [2] can not readily achieve.
2. Solution of the Integer Program

The program (1) is equivalent to the problem: find integers $x_{1}, x_{2}, \ldots, x_{n}$ that

$$
\begin{align*}
& \operatorname{minimize} x_{n+1} \\
& \text { subject to } \sum_{i=1}^{n} a_{i} x_{i}-x_{n+1}=1 \tag{5}
\end{align*}
$$

and $x_{n+1} \geq 0$. The solution to (1) is then $2=1+x_{n+1}$ for optimal x_{n+1}. The result lasy be obtained by using (5) directly until the integer program is solved $b y$ inspection. This procedure is contained in algorithm 1 as follows:

1. Set $m=1$ and define $a_{1 i}=a_{i}$ for alli. Go to ?.
2. (a) Find $a_{m r}=\min a_{m i}>0$. Set $R(m)=r$ and $D_{m}=$ GCD $\left(a_{m r}, D_{m-1}\right)$ for $m \neq 1$ or $D_{m}=a_{m r}$ for $m=1$. If $D_{m}=1$ go to 3. Otherwise go to $2(b)$.
(b) Calculate $a_{m+1, i}=a_{m i}\left(\bmod D_{m}\right)$. If all $a_{m+1, i}=0$ go to 3. Otherwise set $m=m+1$ and go to $2(a)$.
3. The problem is solved; $x_{n+1}=-1+D_{m}$ with $2=D_{m}$. To find the x_{i} set $M=m$ and go to 4 .
4. (a) If $m=1$ go to $4(c)$. Otherwise go to $4(b)$.
(b) Set $i=R(m)$. If $M=m$, calculate x_{i} from $a_{m i} x_{i}=$
$z\left(\bmod D_{m-1}\right)$. Otherwise calculate x_{i} from $a_{m i} x_{i}=$

$$
\begin{aligned}
& 2-\sum_{j=m+1}^{M} a_{m k} x_{k}\left(\bmod D_{m-1}\right) \text {, where } k=R(j) \text {. In either } \\
& \text { case set } m=m-1 \text { and go to } 4(a) \text {. }
\end{aligned}
$$

(c) Set $i=R(1)$. If $M=1$, calculate $x_{i} \underset{M}{\text { from }} a_{1 i} x_{i}=z$. Otherwise calculate x_{i} from $a_{1 i} x_{i}=z-\sum_{j=2} a_{1 k} x_{k}$, where $k=R(j)$. Stop.

This completes the algorithm. As an example we take the problem in [2]; $a_{1}=99, a_{2}=77, a_{3}=63$. We list successively

99	77	63	$:$	$D_{1}=63$,	$R(1)=3$
36	14	0	$:$	$D_{2}=7$,	$R(2)=2$
1	0	0	$:$	$D_{3}=1$,	$R(3)=1$

Thus $z=1$. Backtracking we have $x_{1}=1(\bmod 7)$. Using $x_{1}=1$, we have $14 x_{2}=-35(\bmod 63)$; using $x_{2}=2$, we have $63 x_{3}=-252$, which results in $x_{3}=-4$. Other x_{i} may be found readily from the multiple solutions, to the congruences. All possible solutions are given by the solutions to the set of equations $x_{1}=1(\bmod 7)$, $x_{2}=2(\bmod 9), x_{3}=7(\bmod 11)$, and $99 x_{1}+77 x_{2}+63 x_{3}=1 . A$ justification of the algorithm follows:

1) Since all the x_{i} are integer we can obtain the congruence

$$
\begin{equation*}
\sum_{i \neq r} a_{2 i} x_{i}-x_{n+1}=1\left(\bmod D_{1}\right) \text { from }(5) \tag{6}
\end{equation*}
$$

2) We next consider the program min x_{n+1} subject to (6). We need not consider (5) as a constraint since x_{r} is not sign restricted. We maintain (5) to calculate x_{r}.
3) At any stage in the algorithm we develop a congruence

$$
\begin{equation*}
\Sigma a_{m i} x_{i}-x_{n+1}=1\left(\bmod D_{m-1}\right) \tag{7}
\end{equation*}
$$

4) We then consider the program min x_{n+1} subject to (7). We need not consider any previous congruence since the $x_{i}, i=1, \ldots, n$ are not sign restricted.
5) We calculate $D_{m}=G C D\left(a_{m r}, D_{m-1}\right)$; if $D_{m}=1$, we can solve (7), with $x_{n+1}=0, x_{i}=0(i \neq r)$ and x_{r} given by $a_{m r} x_{r}=1\left(\bmod D_{m-1}\right)$. Thus we have $z=1$. If $D_{m} \neq 1$, then D_{m} must divide $1+x_{n+1}-\sum a_{m i} x_{i}$. We then produce another congruence with m replaced by $m+1$ in (7).
6) If all $a_{m+1, i}=0$ then $-x_{n+1}=1\left(\bmod D_{m}\right)$, which results in $z=D_{m}$.
In Algorithm 1 we require the GCD of pairs of numbers. We can use either the usual Euclidean algorithm or a variant of Algorithm 1 by maintaining the $a_{m, r}$ value for $a_{m+1, r}$ (instead of being zero). In this way D_{m} will be listed.

As seen in the example the congruences simplify; e.g., in (7), D_{m} divides D_{m-1} as well as the numbers in the congruence. In computer calculation we have obtained the solution to the reduced congruence by enumeration.

The storage required for Algorithm 1 is essentially the product of n and the number of times required to perform step 2 of the algorithm. The storage problem may be reduced further by stopping the algorithm after completing step 2 and solving the program: minimize x_{n+1} subject to (7). Taking $D=D_{m-1}$ and $b_{i}=a_{m i}>0$, we define

$$
\begin{equation*}
F(x)=\min \left(x_{n+1} \mid \Sigma b_{i} x_{i}-x_{n+1}=x(\bmod D)\right) \tag{8}
\end{equation*}
$$

which is equivalent to the dynamic programing recursion

$$
\begin{align*}
& F(x)=\min \left(1+F(x+1), \min \left(F\left(x-b_{i}\right), F\left(x+b_{i}\right)\right)\right) \tag{9}\\
& F(0)=0 .
\end{align*}
$$

The arguments of F are taken modulo D. For a similar recursion, see [3]. The recursion in (9) is solved in a manner similar to that given in [4] by

Algorithm 2:

1. Set $F(x)=k \geq D$ for $x=1,2, \ldots, D-1$. Go to 2 .
2. (a) Set $x=1$ and $t=0$. Go to $2(b)$.
(b) Calculate
$G(x)=\min \left(1+F(x+1), \min \left(F\left(x-b_{i}\right), F\left(x+b_{i}\right)\right)\right)$
Set $R(x)=n+1$ if the minimum occurs for the $1+F(x+1)$ term.
Set $R(x)=i$ if the minimum occurs for $F\left(x-b_{i}\right)$.
Set $R(x)=-i$ if the minimum occurs for $F\left(x+b_{i}\right)$.
(c) If $G(x)=F(x)$ go to 3 . Otherwise set $F(x)=G(x)$

$$
\text { and } t=1 \text { and go to } 3
$$

3. Several cases are possible:
(a) if $\mathrm{x}=\mathrm{D}-1$ and $\mathrm{t}=0$, go to 4 .
(b) if $\mathrm{x}=\mathrm{D}-1$ and $\mathrm{t}=1$, go to $2(\mathrm{a})$.
(c) if $x<D-1$, set $x=x+1$ and go to $2(b)$.
4. Solution is achieved with $z=1+F(1)$. The values of the x_{i} are found as follows:
(a) Set all $x_{i}=0$. Set $x=1$ and go to $4(b)$.
(b) If $R(x)=i>0$ for $i \neq n+1$ set $x_{i}=x_{i}+1$,
$s=-a_{i}$ and go to $4(c)$. If $R(x)=n+1$ set $s=1$ and go to $4(\mathrm{c})$. Otherwise $\mathrm{R}(\mathrm{x})=\mathrm{i}<0$; set $\mathrm{x}_{\mathrm{i}}=$ $x_{i}-1, s=a_{i}$ and go to $4(c)$.
(c) Set $x=x+s(\bmod D)$. If $x=0$ go to 5. Otherwise go to 4(b).
5. The final x_{i} values are the desired ones. Stop.

This completes the algorithm. Alternate values of the x_{i} may be obtained by taking ties into account in the recursion. Algorithm 2 completes the recursion in (9) in a rapid manner due to the profusion of zeroes that arise for the various $F(x)$. The recursion is completed in a finite number of steps as shown in [4].
3. Computer Programming of Algorithms

To determine the best algorithm for computer use, we programmed the Blankinship method [2] and several variations of the algorithms described in section 2. The four methods programmed are as follows;
(i) Blankinship method. The algorithm was programmed as outlined in [2] to calculate the GCD and the x_{i} as given in Appendix I. We also programmed a modified version of this algorithm which calculates only the GCD. This program is given in Appendix II.
(ii) Algorithm 1 method. Algorithm 1 was programmed as given in Appendix III.
(iii) Algorithm 2 method. Algorithm 2 was programmed as given in Appendix IV. A modified version of this algorithm was programmed to calculate only the GCD and is given in Appendix V .
(iv) Combination method. This method combines algorithms 1 and 2. If D is less than or equal to k (determination of k to be discussed in section 4) then we use algorithm 2 . If D is greater than k use algorithm 1 until D is less than or equal to k then use algorithm 2. After completion of algorithm 2, the final x_{i} values are calculated using step 4 c of algorithm 1. The program for this method is given in Appendix VI. This method was also programmed to calculate only the GCD as given in Appendix VII.
4. Computational Results

We have programmed the seven methods in Fortran IV and have measured their execution times on a series of test problems run on an IBM $360 / 67$ computer. The test problems were designed to calculate the GCD of a given number of integers, N, over a specified range, R, and a controlled GCD. Since a group of random numbers usually have a GCD of one, we controlled the GCD by generating numbers as multiples of the desired GCD. The ten combinations of R and N for each of three greatest common divisors as shown in Table 1 give 30 test conditions. Three sets of integers were used for each of the test conditions which resulted in 90 test problems. The 90 problems were used to test each of the seven methods.

TABIE I. Test Conditions

$\mathrm{R} N$	10	50	100	250
$1-1000$	x	x	x	x
$1-500$	x	x	x	
$500-1000$	x	x	x	

An x indicates the combination was used. Each was used with GCD of 1,2 , and 3 .

We used as a basis of comparison of the efficiency of these methods, the computer storage requirement and execution time of the problem. Computer storage requirement was not a significant factor except for the Blankinship method. The requirement for more than N^{2} words of storage is a serious limitation of the Blankinship method for large N.

The average execution times for the test conditions are given in Table II. Examination of these results indicates that the Algorithm I method is the superior method. It may be noted that the Blankinship method is competative with a small number of integers and a GCD of one. The Combination method is competative when all the integers are large. Therefore it may be the preferred method when computing the GCD of large numbers or when computer storage is critical. Our computational experience indicates that the best results are obtained from the Combination method when k is approximately equal to $1.5(\mathrm{~N})^{\frac{1}{2}}$.

spuoวastilt

x znoч7т．
dт̣чsuṭquetg
uoṭ ¥euṭquoう

N
$Z=$ ØOう

L乙	サI	9	LL	S	ε
7878	9くもワ	00LI	くサ	$\varepsilon \varsigma$	¢ZI
LSZ	$7 L$	ς	LSZ	OL	\bigcirc
$7 ¢$	¢Z	ZI	$\dagger \zeta$	エワ	7
0ヤL6	サと67	ITZI	6 S	Z9	6\＆T
0Z	サL	8	ZL	8	ε
267	0ヵL	6	サくカ	$\varepsilon \in \tau$	6
O0I	OS	OL	001	OS	OL
000L－00S			OOS－T		

TABLE 2．（Continued）

ZI	8ε	ζ	7 ¢	9	Z	カ®I	乙¢	ZS	$乙$	UoŢ7euṭquo
90\＆\＆I	8くて9	967T	6SI	L	Z6	6 LI	7ζ	Z6I	$\varepsilon 6$	x 7noultM
9 ¢て	$7 L$	S	†ちて	69	S	LOSI	LSて	てL	7	x 7noч7TM dṬบsuṬหuetg
$0 乙$	サワ	7	691	0乙	ε	LOZ	Z9	6S	ε	บoт7eutquoo
$\varepsilon L \varepsilon ゅ \sim$	0269	079 I	98I	LZ	701	らてて	$\angle 9$	8Lて	70 I	乙 سप7！x08tV
OZ	ZI	ς	ST	S	ε	$7 \mathcal{L}$	てI	8	乙	L แบว！x08TV
587	てワI	OT	$6 \angle 7$	8てI	8	$\varepsilon ¢ 8 乙$	Iくわ	サモL	8	d！̧̣suţ̣uetg
001	OS	OT	00I	OS	OI	OSZ	00I	OS	0 L	N
000L－00S			00S－I			000I－I				y
										$\varepsilon=$ ¢วЭ

5. Applications of the Greatest Common Divisor

The solution of many problems require the associated x_{i} values (e.g., GCD $=\sum_{i=1}^{n} a_{i} x_{i}$) as well as the GCD. Some examples of these applications, such as the Problem of Chinese Remainders, are discussed in [1].

Use of the GCD computation in mathematical programming is demonstrated in solving integer programming problems. Many integer programming problems may be solved using the following algorithm.

Once the linear programming solution is obtained by the simplex method the problem may be written in the form

$$
\begin{gather*}
\text { minimize } Z^{\prime}+\sum_{j \in \bar{B}} c_{j} x_{j} \\
\text { subject to } x_{i}+\sum_{j \in \bar{B}} \alpha_{j} x_{j}=h_{i}, i \in B \tag{10}\\
x_{j} \geq 0 \text { and integer for all } j
\end{gather*}
$$

where $h_{i} \geq 0, c_{j} \geq 0, B$ is the set of basic variables and \bar{B} is the set of non basic variables. If h_{i} for all i are integer then $x_{i}=h_{i}$ for all i $\in B$, is the optimal integer solution. If any of the h_{i} are fractional then the problem (10) may be further reduced to the form

$$
\begin{gather*}
\text { minimize } \sum_{j \in \bar{B}} c^{\prime}{ }_{j} x_{j} \\
\text { subject to } \sum_{j \in \bar{B}} a_{j} x_{j} \equiv b(\bmod D) \tag{11}\\
x_{j} \geq 0 \text { and integer, for all } j
\end{gather*}
$$

where $c^{\prime}{ }_{j}=D c_{j}$.

The constraint of this problem (11) may be determined by the following procedure:

1. Express all elements of the tableau as a fraction where the numerator is an integer and the denominator is D, the product of the pivot elements. Go to 2 .
2. For each row of the tableau compute the GCD of the non zero numerators and D. Go to 3 .
3. Select the row, R, with the minimum GCD. If the minimum GCD is unity go to 5. Otherwise go to 4.
4. Compute G, the GCD of the greatest common divisors of the rows. If G is greater than 1 reduce D to D / G. Go to 5 .
5. Generate the constraint congruence of (11) by taking row R modulo D. Stop.

Many algorithms [3], [4], and [5] have been developed to solve integer programs once they are in the form of (11).

We use, as an example to illustrate this procedure, problem 3 of the IBM test problems given in [6].

Minimize $Z=13 x_{1}+15 x_{2}+14 x_{3}+11 x_{4}$
Subject to $4 x_{1}+5 x_{2}+3 x_{3}+6 x_{4} \geq 96$

$$
\begin{aligned}
& 20 x_{1}+21 x_{2}+17 x_{3}+12 x_{4} \geq 200 \\
& 11 x_{1}+12 x_{2}+12 x_{3}+7 x_{4} \geq 101 \\
& x_{i} \geq 0 \text { and integer for all i. }
\end{aligned}
$$

The non integer solution from the simplex tableau is:
minimize $\frac{12944}{72}+\frac{46}{72} x_{2}+\frac{238}{72} x_{3}+\frac{64}{72} x_{5}+\frac{34}{72} x_{6}$
subject to $x_{7}-\frac{26}{72} x_{2}-\frac{194}{72} x_{3}-\frac{8}{72} x_{5}-\frac{38}{72} x_{6}=\frac{1096}{72}$

$$
\begin{aligned}
& x_{1}+\frac{66}{72} x_{2}+\frac{66}{72} x_{3}+\frac{12}{72} x_{5}-\frac{6}{72} x_{6}=\frac{48}{72} \\
& x_{4}+\frac{16}{72} x_{2}-\frac{8}{72} x_{3}-\frac{30}{72} x_{5}+\frac{4}{72} x_{6}=\frac{1120}{72}
\end{aligned}
$$

and $D=72$.

The greatest common divisors of the x ows of the tableau are $2,2,6$, and 4. We may arbitrarily choose between row 1 and row 2. In this problem let $R=2$.

$$
\text { Compute } G=\operatorname{GCD}(2,2,6,4)=2 \text {. }
$$

The reduced $D=\frac{72}{2}=36$. The congruence generated by row 2 is:
$23 x_{2}+11 x_{3}+32 x_{5}+17 x_{6} \equiv 8(\bmod 36)$.
Therefore the problem reduced to the form of (11) is:

$$
\begin{aligned}
& \operatorname{minimize} 23 x_{2}+119 x_{3}+32 x_{5}+17 x_{6} \\
& \text { subject to } 23 x_{2}+11 x_{3}+32 x_{5}+17 x_{6} \equiv 8(\bmod 36)
\end{aligned}
$$

which may be solved by the algorithm outlined in [3] to produce the following solution:

$$
Z_{o}=187, X_{o}=(0,0,0,17,6,4,18)
$$

BIBLIOGRAPHY

1. Dickson, L. E., History of the Theory of Numbers. 3 vols. G. E. Stechert and Company, New York, 1934, vol. II, pp 41-99.
2. Blankinship, W. A., "A New Version of the Euclidean Algorithm, " American Mathematical Monthly, 70: 742-45, 1963.
3. Greenberg, H., "An Integer Programming Algorithm Using Dynamic Programming," submitted for publication.
4. Gomery, R. E., "On the Relation Between Integer and Non Integer Solutions to Linear Programs," Proceedings National Academy of Science, 53: 260-65, 1965.
5. Shapiro, J. F., "Dynamic Programming Algorithms for the Integer Programming Problem--I: The Integer Programming Problem Viewed as a Knapsack Type Problem," Operations Research, 16: 103-21, 1968.
6. Haldi, J., "25 Integer Programming Test Problems," Working Paper No. 43, Stanford University, Palo Alto, California, Dec. 1964, pp. 12-13.
7. Griffin, H., Elementary Theory of Numbers, McGraw-Hill Book Company, Inc., New York, 1954, pp 9-10.

DIMENSION NR(251), NRS(251), NX(251,251)
C IN' IS THE NUMRER DF INTEGERS
C INRIII' IS THF ARRAY OF INTEGERS - WILL BE
C ALTERED BY PROT,RAM

$$
\text { DO } 600 \text { IJK }=1,30 \text {, MULT, IAD, IFUD, IX,IRI, IR2 }
$$

1 FORMAT(4I5,3I10)
$750 \mathrm{KNT}=\mathrm{KNT}+1$
$K M A=I X$
C GENERATION OF RANDOM NUMBERS USING RANDU ROUTINE
C 'NRS(I): IS THE ARRAY DF INTEGERS - WILL NOT BE ALTERED
CALL 50 RANDU ${ }^{1}$ (IX, IY, YFL)
$I X=I Y$
MUM $=Y F L * * M U L T$
$\operatorname{NR}(I)=(M M M+I A D) * I F U D$
NRSI) = $=(M M M+I A D) * I F U D$
59 CONTINIJF
r. EXECUTION TIMED FROM THIS POINT

ESTARLISHING AN IDENTITY MATRIX
DO $200 \mathrm{I}=1 \cdot N$
OD $200 \mathrm{~J}=1 \mathrm{~N}$
IF (I.EQ.J) GO TO 201
C 'NX(I,J)' IS TH MATRIX OF 'X' VALUES
NX(I,J) $=0$
201 NX(I J) 200 CONTINUE $=1$
c. 'KONTI IS $\triangle N$ ITERATION COUNTER

C 'Ji IS THE INDEX OF THE OPERATOR
MIN' IS THE MINUMIJM OF THE ROW LEADERS

$$
\begin{aligned}
& \text { KONT }=0 \\
& \mathrm{~J}=1 .
\end{aligned}
$$

C DETERMINING THE MINIMUM ROW LEADER (OPERATOR)

20 CONTINUE
$I F(M I N \cdot E Q \cdot 1)$ GO TO 50
KONT $=$ KONT +1
C DETERMINING A NDNZERO ROW LEADER (OPERAND)

C NOTE BELOW USF OF 5000 TO DENOTE ZERO

```
        IF (J.EQ. I ) GO TO 30
    C 'JJ' IS THE INDEX DF THE OPERAND
        30 CONTONNO
    C NOTE NATURAL EXIT OF THIS DO LOOP INDICATES
    C COMPLETION DF PRDCEDURE
        GO TO 50
    C COMPUTATION DF REMAINDER AND NEW ROW LEADER
        4C z IO =NR(JJ) / MIN
C 'IO' IS THE GREATEST INTEGER
    NR(JJ)=NR(JJ)-IQ * MIN
    IF( NR(JJ).NE. O) GOTO202
C FOR PROGRAMMING LOGIC A ROW LEADER WITH ZERO VALIJE
C IS SET AT 5000
    NR(JJ)=5000
C PERFORM NEXT ITFRATION - ROW LEADER IS IERO
    GO TO 15
C COMPUTATION OF NEW ROW
```



```
    203 CONT INUE
C PERFORM NEXT ITERATION
    50 GONTONI5
C END OF EXECUTION TIMING
    WRITE(6,100)
100 FORMATIIHI,45X, 'THE GREATEST COMMON DIVISOR OF:'
    1//)
    WRITE (6, 101) (NRSII), I= = 1,N)
101 FORMAT (20X; IOIE
102 FORMAT(/1/1/1, 55x, 'IS ', I4)
103 FORMATY/I\ell,50X,I5,' ITERATIONS IISED'I
    WRITE (6,205) (NX(J,I),I = 1,N)
205 FORMAT(//l,1OX, 10IIO)
    WRITE (6;502) N; IFUD,GIRI, IR2, NULTIPLES OF',I3,
    1: OVER THE RANGE', I4,:-1,I51
        IX = KMA/ 3 ' GO TO }75
    600 CONTINUE
```

FORTRAN IV Program of the Blankinship Method without X_{i}

CIMENSION NR(1000), NRS(1000)
C 'N' IS THE NUMBER OF INTEGERS
C NRIII' IS THE ARRAY OF INTEGERS - WILL BE
C ALTERED, BY THE PROGRAM OF INTEGERS - WILL NOT BE ALTERED DO 600 IJK = $\frac{1}{N}$, MOUL, IAD, IFUD, IX,IR1, IR2
1 FORMAT(4I5,3I10)
750
$K N T=0$
$K N T=K N T+1$
$K M A=1 X$
C GENERATION OF RANDOM NUMBERS USING RANDU ROUTINE
COLL 59 I $=1$ I ${ }^{N}$ IX, IY, YFL) IX = IY
MMM $=$ YFL ${ }^{*}$ MULT
NR (I) $=$ (MMM $+I A D) * I F U D$
59 CONTINUE
C EXECUTION TIMED FROM THIS POINT
$\underset{\mathrm{JONT}}{=1}=0$
C DETERMINING THE MINIMUM ROW LEADER (OPERATORI
C 'MIN' IS THE MINUMUM OF THE ROW LEADERS
MIN $=N R(1), ~$
$00201, ~$

C 'J' IS THE INDEX OF THE OPERATOR
20 CONTINUE IF (MIN.EQ. 11 GO TO 50
C 'KONT' IS AN ITERATION COUNTER
KONT $=$ KONT +1
C DETERMINING A NONZERO ROW LEADER (OPERAND)

C NOTE BELOW USE OF 5000 TO DENOTE ZERO
IF (J.EQ. I) GO TO 30
C 'JJ' IS THE INDEX OF THE OPERAND
JJ TO ${ }^{\text {I }} 40$
C NOTE NATURAL EXIT OF THIS DO LOOP INDICATES
C COMPLETION OF PROCEDURE

30 CONTINUE
C COMPUTATION OF REMAINDER AND NEW ROW LEADER

$$
40 \mathrm{Z}=\mathrm{I}=\mathrm{NR}(\mathrm{JJ}) / \mathrm{MIN}
$$

C 'IQ' IS THE GREATEST INTEGER

C FOR PROGRAMMING LOGIC A ROW LEADER WITH ZERO VALUE
NR(JJ) $=5000$
C PERFORM NEXT ITERATION
GO TO 15
C END OF EXECUTION TIMING
50 CONTINUE
100 WRITE(6, FOMATIIH1,45X, THE GREATEST COMMON OIVISOR OF:'
WRITE (6, 101$)($ NRSII), I $=1, N$)
FORMAT $(20 x, 10 I 8, ~ I I), ~$
101 FORMAT (20x, 1018 , 11$)$

103 FORMAT ($1 / 1,50 X_{1}$ I5, ITERATIONS USED')
502 FORMAT YY, $32 X$, IS, IFUDM IRE: IR2
IX = KMA , RANGE, I4, 1-1,151
IF(KNT.NE.3) GO TO 750
600 CONTINUE
END

FORTRAN IV Program of the Algorithm 1 Method

DIMENSION IR(100), NR(100,255), ID(100),IX(255)
C :N' IS THE NUMBER OF INTEGERS
C NR(1,I) IS THE ARRAY OF INTEGERS
C GENERATION OF RANDOM NIJMBERS USING RANDU ROUTINE
DO 600 IJK $=1$, MJL 30 , IAD, IFUD, LX, IR1, IR2
1 FORMAT(4I5,3110)
$\begin{aligned} 750 \text { KNT } & =K N T+1 \\ \text { KMA } & =L X\end{aligned}$
C GENERATION DF RANDOM NUMBERS USING RANDU ROUTINE

LX $_{\text {MMM }}=I Y Y F L *$ MILTT
$\operatorname{NR}(1, I)=(M M M+I A D) * I F U D$
59
DO2 I = $1, N$
IX(I) = ${ }^{0}$
2 CONTINIJE
C EXECUTION TIMED FPOM THIS POINT
M
$\operatorname{R}(1)^{1}=1$
C DETERMINATION OF MINIMUM VALUED INTEGER
C 'MIN' IS THE MINIMUM VALUED INTEGER
MIN $=N R(1,1)$
DO $10 \mathrm{I}=2$, N
IF(MIN.LE:NR(I,I)) GO TO 10
MIN = NR(1,I)
C ' IR ' IS THE INDEX OF THE MINIMUM VALUED INTEGER
IR(1) =I
10 CONTINIE
ID(1) = MIN
IF(MIN.EQ.1) GO TO 12
$\mathrm{DO}_{\mathrm{IG}}=\frac{\mathrm{I}}{=} \mathrm{NR}(1, \mathrm{I})^{\mathrm{N}}$, MIN
IREM = NR (I, I) - IG ** MIN
GO TO 11
3 CONTINUE
11 NMIN $=10(\mathrm{M})$
C THIS LOOP CALCULATES THE NR(M,I) MODULO D AND SELECTS C THE MINIMUM OF THE NEW ROW (NMIN)

DOM
N
$=N R(M, 1)$

$I G=$ NUM 1 ID(M)


```
NR(M+1,I) = IREM
I IFTOP (NMIN IN LE. IREM) GO TO 15
NMIN = IREM
IR(M +1) = = I
14NR(M+1,I)=0
5 CONTINUE
C DETERMINATION OF THE GCD OF THE NEW MIN AND D
17 IG = IDM/NMIN
```



```
IDM = NMIN
NMIN = IREM
GO TO 17
16
ID \((M)=\) NMIN
C 'ISTOP' EQUAL TO ZERO INDICATES GCD IS DETERMINED
IF \(_{\mathrm{M}}^{\mathrm{=}}=\mathrm{IS}_{\mathrm{M}} \mathrm{TOP}\) : NE.O) GO TO 11
C 'IGCD' IS THE GREATEST COMMON DIVISOR
\(I G C D=I D(M)\)
C DETERMINATION OF \(X\) VALUES
\(\begin{array}{ll}M M & =M \\ J & M\end{array}\)
CALL GETX(IGCD, NR(M,J),ID(M-I),IX(J))
MM2 \(=M M-2\)
IF(M.EO. 2 ) GO TO 20
ISUM \(=1=1\),MM2
ISUM \(=\) ?
\(M=M M-1\)
\(J=I R(M)\)
\(M 1=M+1\)
DO 25 II \(=M 1\), \(M M\)
ISUM \(=\) ISUM \(+N R(M, K) * I X(K)\)
25 CONTINUE
\(12=1 G C D-I S U M\)
26
\(I F(I Z) 2^{26}+27(M-28\)
GO TO 29
27 IX(J) \(=C\)
CALL GETX (IZ, NR(M,J),ID(M-1), IX(J))
CONTINUE
\(M=M-1\)
\(J=M R(M)\)
ISUM \(=0\)
\(K=I R(I)=2, M M\)
ISUM \(=I \operatorname{SUM}+N R(M, K) * I X(K)\)
30
IX(J) \(=(I G C D-I S U M) / N R(M, J)\)
12 I = IR(1)
IX(I) \(=1\)
C END OF EXECUTION TIMING
31 CONTINUE
WRITE 6,100 )
```

```
100 FORMAT(1H1,45X,'THE GREATEST COMMON NIVISOR OF ;'
    1//1
    WRITE (6,101) (NR(1,I),I = 1,N)
101 FORMAT (20x,10I8,1/
    WRITE (6,102) IGCD
    102 FORMAT(/|l/l,55x,1IS !. I4)
    110 FORMATijl,10x, ICIIOO)
502 FORMATM,
    LX OVERMTHE RANGE',I4, (-1,I5)
    IF(KNT.NE.3) GO TO 750
6 0 0
    CONTINUE
    SUBROUTINE GETX(MIN,IB,NRI,IXI)
C SOLVES CONGRUENCES OF THE FORM IB*IX = MIN(MOD NRII
    IF(MIN.EO.IB) GO TO 2
    IB1 = IB
    JFM =
    DO 5 I = 1,NR1
    JFM = JFM +1
    IBI =IBI +IB
6
```



```
6 IB1 = IB1 - NRI
7 IF(MIN.EQ.IB1) GO Tn 8
CONTINUE
IXJ=JFM
IXJ=?
9 IXETURN1
    END
```

FORTRAN IV Program of the Algorithm 2 Method

DIMENSION NR(1000), IB(2000), JF(1000), ID(1000)
IIDX(2000), IS(2000), IX(1001),
C 'N' IS THE NUMBER OF INTEGERS
C 'NRIII' IS THE ARRAY OF INTEGERS
DO 600 I JK = ${ }^{1}$, 30 MULT, IAD, IFUD, LX,IRI, IR2
1 FORMAT (415,3110)
$\begin{aligned} 750 \mathrm{KNT} & =K N T+1 \\ \mathrm{KMA} & =L X\end{aligned}$
C GENERATION OF RANDOM NUMBERS USING RANDU ROUTINE

> CALL RANDU ${ }^{1}$ (LX, IY, YFL)
> LX $=$ IY
> MMM $=$ YFL $*$ MULT
> NR $(I)=(M M M+I A D) * I F U D$

59 CONTINUE
C EXECUTION TIMED FROM THIS POINT
C INTIALIZING THE VALUES OF PROGRAM VARIABLES

$$
\begin{aligned}
& \mathrm{KONT}=0 \\
& L L=0 \\
& \mathrm{LI}=0 \\
& \mathrm{NI}=\mathrm{N}+{ }^{+} 1, \mathrm{NI} \\
& \mathrm{DO} 35^{2}=1, \mathrm{NI}
\end{aligned}
$$

C 'IX(I)' ARE THE ACTUAL X VALUES - THEY ARE
C INITIALIZED TO ZERO HERE
35 IXCIINUE ${ }^{\text {CONTINUE }}$
C 'MIN' IS THE MINUMUM VALUED INTEGER
C 'IHOLD' IS THE INDEX OF THE MINIMUM VALUED INTEGER

$$
\begin{aligned}
& \text { MIN }=\operatorname{NR}(1) \\
& \text { IHOLD }=1
\end{aligned}
$$

C DETERMINING THE MINIMUM

$$
\begin{aligned}
& \text { MIN = NR(I) } \\
& \text { IHOLD = I } \\
& 10 \text { CONTINUE } \\
& \text { C DETERMINATION OF 'B' ARRAY } \\
& \text { C DETERMINATION OF MOD VALUES }
\end{aligned}
$$

$A=N R$
$B=M I N$
$C=A / B$
C 'IG' IS THE GREATEST INTEGER

$$
I G=C
$$

```
IF(C-IG) 11, 16,12
```

C 'L' IS THE COUNTER OF INTEGERS NOT EVENLY C DIVISIBLE BY THE MINIMUM

$$
12 \frac{L}{M I N I} \overline{\bar{N}} \mathrm{G} \stackrel{+1}{=} \text { MIN * IG }
$$

C 'IB(I)' IS AN ARRAY DF B VALUES

C 'LL' IS THE COUNTER OF INTEGERS EVENLY
C DIVISIBLE BY THE MINIMIJM
C ARE EVENLY AN ARRAY OF INDICES OF INTEGERS WHICH

C 'M' IS THE SIZE OF THE 'B' ARRAY

IGCO = MIN
IX $X(I H C L D)=1$
X $(N I)=I G C D-1$
$17 \mathrm{IB}(\mathrm{M}) \stackrel{50}{=}$ MIN - 1
C IJF(I) IS THE ARRAY OF F VALUES
$18 \mathrm{JF}(1)=0$
C NOTE PROGRAM LOGIC REQUIRES 'F'ARRAY
C INDICES TO BE INCREASED BY + 1
C INITAIALIZING 'F' ARRAY TO MIN PLUS 1

C IISTOP' RECORDS NUMBER OF CHANGES OF F VALUES
C IN THE PRESENT ITTERATION
C KONT: IS AN ITERATION COUNTER

$$
29 \text { ISTOP }=\text { KONT }+1
$$

C DETERMINATION DF NEW F VAUES


```
DO \(15 \mathrm{~J}=1\), K
IF (I - 1 - [B(J)) 21, 22, 23
```

C 'JJ' IS THE INDEX OF F

```
21 JJ TOI \(2 \bar{L}_{\text {GO }}\) IB(J) + MIN
22 JJ =1
\(23 \mathrm{JJ}=\mathrm{TO} 24 \mathrm{IB}(\mathrm{J})\)
23 JJ = IF 24 IB(J). JF(I) •LE. JF(JJ)) GO TO 15
```

C DETERMINATION OF MINIMUM VALUES WHICH ARE NEW F VALUES

```
JF (I) = JF(JJ)
```

C IOIII' IS AN ARRAY OF INDICES OF B VALUES
C ASSOCIATED WITH THE MINIMUM

```
    IDII \(=J\)
ISTOP \(=\) ISTOP +1
    CONTINUE
IF (I-I-IB(M)) \(25,26,27\)
        GO \(\bar{T} I^{-1} I B(M)+M I N\)
        GO TO 28
        GJ \(=128\)
\(27 \mathrm{JJ}=\mathrm{I}-I B(M)\)
28 IF(JF(I) \(\dot{\text { JF }} \mathrm{L}(\mathrm{J}) \mathrm{JF}(J J)+1)\) GO TO 14
    \(J F(I)=J F(J J)+1\)
    ID(I) \(=M\)
    ISTOP \(=\) ISTOP +1
14
    CONTINUE
IF(ISTOP .GT. O) GO TO 20
```

C NO CHANGED F VALUES INDICATES PROCEDURE COMPLETE
C IGCD: IS THE GREATEST COMMON DIVISOR
-IDX(I): ARE THE X: VALUES ASSOCIATED WITH THE B VALUES
IGCD $=\mathrm{JF}(2)+1$
36 CONT INUE
$42 \mathrm{NN}=1 \quad 1 \mathrm{I}(N \mathrm{~N}+1)$
C Calculation of X ' values
$I D X(M M)=I D X(M M)+1$
$N N=N N-I B(M M)$
40 IF NN $=N N^{2}+M I N 1,42$
$41 \begin{aligned} & \text { GO TO } 42 \\ & \text { II = }=1\end{aligned}$

C 'IDUM', 'LDUM' AND 'II' ARE DUMMY VARIABLES
C USED FOR INCREMENTING THE INDICES
VALUES

```
    DO \(43, ~ J=\)
IF IS
l. LL
IDUM
    LDUM \(=\) ISIJ) -I
```



```
    45 CONT INUE
    IDUM \(=\) LDUM +1
    \(44 \begin{aligned} & \text { IX (IDUM) }=0 \\ & \text { IDUM }=\text { IDUM }+1\end{aligned}\)
    43 CONTINUE
    IF (IDUM - I.EQ.N) GO TO 48
    DO \(46 I=\) IDUM \(N\) NO 104
    IXII \(=I D X(I I)-I D X I I I+I)\)
    46 CONTINUE
    \(48 \begin{aligned} & \text { IX(N+1) }=I D X(I I) \\ & \\ & \text { ISUM }=0\end{aligned}\)
```

 C ALGEBRAIC COMPUTATION DF REMAINING \(x\) VALUE
 DO 47 I \(=1, N\)
    ```
    47 ISUNTINUE. ISUM + NR(I) * IX(I)
    IX(IHOLD) = (1 + IX(N+1) - ISUM) / MIN
C END OF EXECUTION TIMING
    50 CONTINUE
    WRITE (6,100)
100 FORMATIIH1,45x, THE GREATEST COMMON DIVISOR OF ;'
    1//1
WRITE (6,101) (NR(I) , I = l,N)
WRITE (6,1O2) IGCD
102 FORMATI/1/1/,55X,'IS K'N'T
103 FORMAT(/I, 32X, THE F MATRIX IS ',I5,' BY ',I5,'.',
    15X,I4,! ITERATIONS USED'S
110 WRITE(6, 110) (IX(I), I, = 1, N1)
111 FORMAT (%/1/l) IOX,M 2I10)
502 FORMAT(1%,32X,I5,IFUUMBERS, MULTIPLES OF',I3,
    1' OVER THE RANGE',I4, (-1,I5)
        LX = KMA .'3) GO TO }75
600 CONT INUE
```

```
Appendix V
FORTRANIIV Program of the Algorithm 2 Method without X }\mp@subsup{}{i}{
```

DIMENSION NR(1000), IB(1000), JF(1000)
C 'N: IS THE NUMBER OF INTEGERS
C 'NRIII: IS THE ARRAY OF INTEGERS

1 FORMAT(4I5,3IIO)
$750 \mathrm{KNT}=\mathbf{K N T}+1$
C GENERATION OF RANDOM NUMBERS IJSING RANDU ROUTINE

$$
\begin{aligned}
& \text { IX }=I Y \\
& \text { MMM }=\text { YFL * MULT } \\
& 59 \text { CONTINUE }
\end{aligned}
$$

C EXECUTION TIMED FROM THIS POINT
C MIN: IS THE MINUMUM VALUED INTEGER
C DETERMINING THE MINIMUM
KONT $=0$
MIN = NR(1)
DO $10 I=2, N$
IF(MIN.LE,NR(I)) GOTO 10
10
MIN = NR(I)
$\mathrm{L}=0$
C DETERMINATION OF MOD VALUES AND 'B' ARRAY
$D O 11 I=1, N$
$A=N R(I)$
$B=M I N$
$C=A / B$
C 'IG' IS THE GREATEST INTEGER
C DIVISIBLE BY THE MINIMUM

$$
\begin{aligned}
& \begin{array}{l}
I G=C \\
I F(C-I G) \\
I=L 1,11,12
\end{array} \\
& 12 \\
& \text { MINIG }=1 \text { MIN*IG }
\end{aligned}
$$

C.IB(I)' IS AN ARRAY OF B VALUES
$I B(L)=N R(I)-M I N I G$
IB(LI = MIN + MINIG - NR(I)
$K=L$
$M=K$
IF(L.NEOO) GO TO 16
$G G C D=$
$G O T O$
$16 I B(M)=M I N-1$
C IJF(I) IS THE ARRAY OF F VALUES

C NOTE PROGRAM LOGIC REQUIRES 'F'ARRAY
C INDICES INCREASED BY +
C INITAIALIZING TFI ARRAY TO MIN PLUS 1

13 CONTINUE
C ISTOP' RECORDS NUMBER OF CHANGES OF F VALUES
C IN THE PRESENT ARRAY
C DEONTMINATION OF NEW F VAUES

```
29 ISTOP = O
    KONT = KONT + M I N
    MOI4,I=2, MIN GO TO 14
    21 GJ = IOI, -IBIJI +MINL, 22, 23
    22 JJ =12 \0, 24
    23 JJ = I - [B(J)
```

C DETERMINATION OF MINIMUM VALUES WHICH ARE NEW F VALUES
24 IF (IJF(I) JFiLE, JF(JJ)I GO TO 15
JF (II = JFiJJj
ISTOP $=$ ISTOP +1
15 CONTINUE
$C N(I N E I B(M)) 25,26,27$
$I J=I-I B(M)+M I N$

26 JJ = ${ }^{1}{ }^{1} 28$
27 IJ $=1$ IFII IR(M) JF(JJ) 28 GOTO 14

14 CONTINUE
IFIISTOP .GT. O) GO TO 29
C NO CHANGED F VALUES INDICATES PROCEDURE COMPLETE
C IGCD IS THE GREATEST COMMON DIVISOR
$I G C D=J F(2)+1$
C END OF EXECUTION TIMING
50 CONTINUE
100 FORMAT ' $1 \mathrm{H} 1,45 \mathrm{X}$, ' THE GREATEST COMMON DIVISOR OF :
1//1
WRITE(6.103) MIN,M, KONT
103 FORMATI/I 32X, 'THE F MATRIX IS 1, I5,' BY $, 15,1.1$,
$15 X I 4,1$
WRITE 16,502$)$ NATIONS USED' 1 IFUD, IR1, IR2
502 FORMAT I/L $32 \times$, I5: NUMBERS', MULITIPLES OF', 13,
1: OVER THE RANGE: I4, 1, -1: I51

600 CONTINUE

FORTRAN IV Program of the Combination Method

DIMENSION JF (1000) , $10(1000)$ \& $10 \times(2000)$
COMMON NR(1000), 1B(2000), ts(2000). L, LL, N, IJ, 1IHOLD, IX(1001)
C 'N' IS THE NUMBER OF INTEGERS
C NRIII' IS THE ARRAY OF INTEGERS
00600 I JK $=1,30$
1 FORMAT(4I5,3IIO)
$750 \mathrm{KNT}=0 \mathrm{KNT}+1$
$K M A=L X$
C GENERATION OF RANDOM NUMBERS USING RANDU ROUTINE
${ }_{\text {CALL }}{ }^{59}$ RANOUU ${ }^{1}$ (LX, IY, YFL)
LX $=1 Y$
MRM $=$ YFLI ${ }^{*}{ }^{*}$ MULT ${ }^{\text {M }}$ IAD) * IFUD
59 CONTINUE
C EXECUTION timed from this point
KONT $=0$
ND $=0$
N1 $=0$
NI $=0{ }^{2}{ }^{+}{ }^{+1}=1, N 1$
c in ilid are the actual X values - they
C ARE INITIALIzED TO ZERO HERE
35 CONTINUE
C MIN. IS THE MINUMUM VALUED INTEGER
C ITHOLD IS THE INDEX OF THE MINIMUM VALUED INTEGER
C DETERMING THE MINIMUM
MIN $=$ NR(1)
IHOLD $\overline{=}=1, N$
IF(MIN.LE,NR(I)) GO TO 10
MIN = NR(I)
IHOLD $=1$
CONTINUE
AN =
KUTOFF = (SQRT(AN)) * 1.5
IF(MIN.LE.KUTOFF) GO TO 699

IF (NRII). EQQ.MIN) GO TO 700
IJ $\mathrm{E}^{1} 701$
700
710

```
CONTINUE
NUM = NRIIJ!
IREM = NUM - IG * MIN
IFIIREM, EQ.OI GO TO 699
NUM \(=\) MIN
MIN
\(=\) IREM
```

```
    699 CONTINUE
    CALL BARRAY(MIN)
C 'M' IS THE SIZE OF THE 'b' ARRAY
    M= =K + + l N GO TO 1T
    IF(N2.NE:O) GO TO 19
    IX(IHOLD)=1
    GO TO 5O GCD - 1
    19 IX(NI) = IGCD - 1
    A = NR(IJ)
    B = NR(IHOLD)
    C}=A/
    IB(1)=NR(IJ)- IG * NR(IHOLD)
    IF(MIN.LT.IB(I)) GO TO 51
    IX(IJ)= MIN/IB(I)
    GO TO 54
    51 CALL GETX (MIN)
    17 IB(M) = MIN - 1
    18 JF(1)=0
C JJFII! IS THE ARRAY OF F VALUES 
C INDICES INCREASED BY +1
INITAIALIZING PF: ARRAY TO MIN PLUS I
13
```



```
C 'ISTOP' RECORDS NUMBER OF CHANGES OF F VALUES
C IN THE PRESENT ITERATION
C 'KONT' IS AN ITERATION COUNTER
    29 ISTOP = O
    KONT = KONT + 1
C DETERMINATION OF NEW F VAUES
    DO(14,II= 2, MINNG TO 14
    DO 15 J = I,MK(J)) 21, 22, 23
C 'JJ' IS THE INDEX OF F
```



```
C DETERMINATION DF MINIMUM VALUES WHICH ARE NEW F VALUES
    JF (I) = JF(JJ)
C IID(I)' IS AN ARRAY OF INOICES OF B VALUES
    IDII' = JSTOP + 
```

```
    25IF(I-I-IB(M)) 25, 25N, 27
    26 JJ = =128
    27 JJ = IFIIMIB(M)JF(JJ) + 1) GOTO 14
    JF(I)=JF(Jj) +
    ID(I) = M
    ISTOP = ISTOP + 1
    1 4
    IF(ISTOP .GT. O) GO TO 29
C NO CHANGED F VALUES INOICATES PROCEDURE COMPLETE
C 'IGCD' IS THE GREATEST COMMON DIVISOR
C 'DX(I)' ARE THE X' VALUES ASSOCIATED WITH THE B ValUES
    IGCD = JF(2) + 1
    36 CONTINUE
    42 MM = = ID (NN+1)
C CALCULATION OF X' VALUES
    IDX(MM) =IDX(MM) +1
    NN =NN - IB(MM)
40 NN =NN+MIN
    GO TO 42
41 III= = 1
C 'IDUM','LOUM', AND 'II' ARE DUMMYY VARIABLES
C USED FOR INCREMENTING THE INDICES
VALUES
    IF(IS(J) EO:LDUM) GO TO 44
    LDUM =ISIJ) -1/ LDUM
    IX\I) = IDX(II) LOUMN(III+1)
    II = Il + 2
45 CONTINUE
    IDUM = LDUM + 1
    44 IX(IDUM) = 0
    IDUM =IDUM + 1
4 3
    IF(IDUM = IOEQ.N) GO TO 48
    O046 I = IDUMM N NOXIII + 11
    II=II + 2
    4 6 \text { CONTINUE}
    48IX(N+1)=10X(II)
    IF(N2.EO:O) GO TO }5
    54 ISUM = O
C ALGEBRAIC COMPUTATION OF REMAINING \(x\) VALUE
```



```
47 ISUM = ISUM + NR(I) * IX(I)
    IX(IHOLD) = (I+IX(N+1) - ISUM) / NR(IHOLD)
C ENO OF EXECUTION TIMING
5 0 ~ C O N T I N U E
    WRITE (6, 100)
```

100 FORMAT(1H1,45X, THE GREATEST COMMON DIVISOR OF ;' $1 / 11$
101 FORMAT(20X, 1018 II)
102 WRIETG;111,55
102 FORMAT (/1/1/,55X, IS K'̇NT
103 FORMATI//, 32X, 'THE F MATRIX IS ', I5,' BY ', I5,'.', 15 X I4 ${ }^{\prime}$ ITERATIONS USED'
110 FORMAT , 10, 10x 10110) $=1$, N1)
111 FORMAT ($1 / 1 / 11)$ II, M 2110)
502 FORMAT 1 , $32 \times$, I5, IFUD NUMBERS: MULTIPLES OFI, I 3 , 1: OVER THE RANGE, 14, 1, -1: I5)
LX K KMA $/ 3$
IF(KNT. NE.3) GO TO 750
600 CONT

SUBROUTINE BARRAY(MIN)
$C O M M O N N R(1000), I B(2000), I S(2000), L, L L, N$
$L L=0$
C DETERMINATION OF 'B' ARRAY
C DETERMINIATION OF MOD VALUES
$D O 11 I=1, N$
$A=N R(I)$
$B=M I N$
$C=A / B$
C 'IG' IS THE GREATEST INTEGER

$$
\begin{array}{ll}
\operatorname{IG}=\bar{C} \\
\operatorname{IF}(\mathrm{IG}) & 11,16,12
\end{array}
$$

C 'L' IS THE COUNTER OF INTEGERS NOT EVENLY
C DIVISIBLE BY THE MINIMUM

$$
12
$$

C.IB1

MINIG $=$ MIN * IG
I) IS AN ARRAY OF 8 VALUES
$I B(L)=N R(I)-M I N I G$
$\frac{L}{L B}(L)+\frac{1}{=} I N+M I N I G-N R(I)$
$16 L L=L L^{11}+1$
C 'LL' IS THE COUNTER OF INTEGERS EVENLY
C DIVISIBLE BY THE MINIMUM
C IISCLLI IS AN ARRAY OF INDICES OF INTEGERS
EVENLY DIVISIBLE BY THE MINIMUM
11 ISONTINUE RETURN END

SUBROUTINE GETBS (IGCD)
C DETERMINES COEFFICIENTS OF THE REDUCED EQUATION COMMON NR(1000), I8(2000), IS(2000), L, LL, N, IJ,

IIHOLD. IX(1001)
DO $11=1, N$
$A=N R(I)$
$B=N R(I H O L D)$
$C=A / B$
12
IFIC-I
IB(I)
GO TO 11
IB(I)
~ロ
ISUM $=0$
ISUM $=1$ ISUM $^{1}+N$ I8(I) * IX(I)
47
ISUM $=$ IGCD - ISUM
IF (ISUM) 1,2,3
ISUM =
$\operatorname{IXP}^{(I J)}=0$
GO TO 5
IB(1) $=I B(I J)$
CALL GETX (ISUM)
RETURN

SUBROUTINE GETX(MIN)
C SOLVES CONGRUENCES OF THE FORM IB*IX = MIN(MOD NRI)
COMMON NR(1000), IB(2000), IS(2000), L.LL, N, IJ.
IIHOLD, IX(1001)
NRI I NR (IHOLD)
IF (MIN EO. IBII) GOTO 2
IBI = I8(1)
DO $51=1$, NR1
$J F M=J F M+1$

IBI =IBI NRI
NRI
IF (MIN.EQ. IBI) GO TO 8
CONTINUE
$I X(I J)=J F M$
GO TO 9
$2[X(I J)=1$
END

FORTRAN IV Program of the Combination Method without X_{i}

DIMENSION NR(1000), IB(1000), JF(1000)
C 'N' IS THE NUMBER OF INTEGERS
C NRIII IS THE ARRAY OF INTEGERS

$$
\operatorname{DO}_{\text {READ }} 600 \text { I JK }=1,301 \text {, MU }
$$

KNT $=0$
KNT $=$
$750 \mathrm{KNT}=\mathrm{KNT}+1$
KMA $=I X$
C GENERATION OF RANDOM NUMBERS USING RANDU ROUTINE
COLL 5 RANDU ${ }^{1}$ (${ }^{N} \mathrm{I} X$, IY, YFL)
IX
MMM
I
IYFL M MULT
NR (I) $=(M M M+I A D)$ *IFUD
59 CONTINUE
C EXECUTION TIMED FROM THIS POINT
C MIN IS THE MINUMUM VALUED INTEGER
C DETERMINING THE MINIMUM
KONT $=0$
$\operatorname{MIN}=\operatorname{NR}(1)$
IF(MINLEDNR(I)) GO TO 10
MIN = NR(I)
10 CONTINUE
KUTOFF = (SQRT N) * 1.5
IF (MIN.LE.KUTOFF) GO TÖ 699
DO $700 \mathrm{I}=1$, N
IF(NR(I).ĖQ.MIN) GO TO 700
IJ =1
GOTOTOL
700 CONTINUE
710 IG $=$ NUM) NIMIN
IREM $=$ NUM
IF IIREM. IGQ.OI GO TO
TO
NUM $=$ MIN
MIN = IREM
699 CONTINUE
C DETERMINATION OF 'B' ARRAY
C DETERMINIATION OF MOD VALUES

$$
\begin{aligned}
& D O I 1 I I=1, N \\
& A=N R(I) \\
& B=M I N \\
& C=A / B
\end{aligned}
$$

C 'IG' IS THE GREATEST INTEGER

$$
\begin{array}{lll}
\operatorname{IG}=C \\
\operatorname{IF}(C-I G) & 11,11,12
\end{array}
$$

C 'L' IS THE COUNTER OF INTEGERS NOT EVENLY DIVISIBLE BY

```
    12 MINIG \(\stackrel{\text { L }}{=}\) MIN * IG
```

C IIBIII' IS AN ARRAY OF B VALUES
IB(L) $=$ NRII) - MINIG
IBIL $=1$
IB(L) $=$ MIN + MINIG - NRII)
11 CONTINUE
C 'M' IS THE SILE OF THE 'B' ARRAY
$M=K+1$
IF $(L . N E O)$ GO TO 16
IGCD $=$ MIN
GO TO 50
$I B(M)=$ MIN -
C JFIII IS THE ARRAY OF F VALUES
C NOTE PROGRAM LOGIC REQUIRES YFIARRAY INDICES
C INCREASED BY ${ }^{+1}{ }^{+1}$ IN ARRAY TO MIN PLUS 1
JF(1) $=0$
DOOIS I
JFII $=$ MIN
13 CONTINUE
C 'I STOP' RECORDS NUMBER OF CHANGES OF F VALUES
C IN THE PRESENT ITERATION
'KONT' IS AN ITERATION COUNTER
$29 \begin{aligned} & \text { I STOP }=0 \\ & \text { KONT }=\text { KONT }+1\end{aligned}$
C DETERMINATION OF NEW F VAUES

C 'JJ' IS THE INDEX OF F
21 JJ =I -IB(J) + MIN
22 GJ TO 24
23 GO TO 24
JJ $=1{ }^{2}$ - IB(J)
C DETERMINATION OF MINIMUM VALUES WHICH ARE NEW F VALUES
24 IF (JF(I) ilE; JF (JJ)) GO TO 15
IFTOP $=1$ ISTOP +1
15 CONTINUE
25 IFJI-I-IB(M) 25 ${ }^{26}$ 26,2726 GJ =10 128
27 JJ = 28 IB(M)

JFII) $=$ JF(JJ) +1
ISTOP $=I S T O P ~$
14 CONTINUE
IFIISTOP .GT. O) GO TO 29

```
C NO CHANGED F VALUES INDICATES PROCEDURE COMPLETE
    IGCD = JF(2) + 1
C ENO OF EXECUTION TIMING
50 CONTINUE
100 FORMATIIH1,45X, THE GREATEST COMMON DIVISOR DF:"
    WRITE (6,101) (NR(I), I = 1,N)
    101 FORMAT(20x,1OI&,//I
    WRITE (6,102) IGCD
    102 FORMAT(//|/l,55x, IS I, I4)
    WRITE(6,103) MIN,M, KONT
    103 FORMAT!// S2X,'THE F MATRIX IS 1, I5,' BY .,I5,'.'.
    15X I4,' ITERATIONS USED'!
    HRITE (6,502) N; IFUD, IR1, IR2
    502 FORMATT/IMSX,I5, NUMBERS, MULTIPLES OF',I 3,
        X = KMA / 3
        IF(KNT.NE.3) GO TO }75
    600 CONTINUE
        END
```

1. Defense Docmentation Center

Cameron Station
Alexandría, Virginia 22314
2. Ji.brary

2
Naval Postg-aduate School
Monterey, California 93940
3. Director, Systeins Analysis Division (OP 96)

1
Office of the Chief of Naval Operations
Washington, D. C. 20350
4. Department of the Army

2
Civil Schools Branch, OPO, OPD
Washington, D. C. 20315
5. Professor Hazold Greenberg

1
Department of Operations Analys is
Naval Postgraduate School
Monterey, California 93940
6. Ma jor Harry G. MacGregor

1
702 Fourth Avenue
Fort Ord, California 93941
7. Captain Kent A. Modine

1
311 Hayes Circile
Fort Ord, California 93941
8. Department of Operations Analysis 1

Naval Postgradiate School
Monterey, Californis 93940

ORIGINATING ACTIVITY (Corporate author)
Naval Postgraduate School
Monterey, California 93940

REPORT TITLE
Methods for Computing the Greatest Common Divisor and Applications in Mathematical Programming
4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Thesis
5. AUTHOR(S) (First name, middle initial, last name)

Harry G. MacGregor, Jr.
Kent A. Modine

10. DISTRIBUTION STATEMENT

12. SPONSORING MILITARY ACTIVITY Naval Postgraduate School Monterey, California 93940

ABSTRACT
Several methods are presented for determining the greatest common divisor of a set of positive integers by solving the integer program: find the integers x_{i} that minimize $Z=\sum_{i=1}^{n} a_{i} x_{i}$ subject to $Z \geq 1$. The methods are programmed for use on a computer and compared with the Euclidean algorithm. Computational results and applications are given.

