

Calhoun: The NPS Institutional Archive

The ionization produced in nuclear emulsion by very relativistic particles

Hanson, Harlan D.

Monterey, California: U.S. Naval Postgraduate School
http://hdl.handle.net/10945/12514

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NPS ARCHIVE 1964
HANSON, H .

THE IONIZATION PRODUCED IN NUCLEAR EMUL.SION BY VERY, RELATIVISTIC PARTICLES

HARLAN D. HANSON WILLIAM R. SENG
RUSSELL H. WEIDMAN

Library Postgraduate School
U. S. Naval Postomia

Monterey, California

THE IONIZATIOX PRODUCED IN NUCLEAR EMULSION BY VERY RELATIVISTIC PARNICLES

By
Farlan D. Fanson
Lieutenant, United States Coast Cuard
William R. Seng
Lieutenant, United Staces Navy and
Russell E. Weidman
Lieutenant, Ynited States Nayy

Submitted in partial fulfillment of the requirement for the degree of MASTER OE SCIENCE

IN
PHYSTCS

United States Naval Postgraduate School
Monterey, California
1964

Library

U. S. Naval Poutsraduate Scheol

Monteres, California

```
THE IONIZATION PRODUCED TX NOCLEAR ENTLSTOS
    BY VERY RETMATVISNOC PARTLCTES
        新 % **
        Harlan D. Samson
        William R. Seng
        and
        Russe11 H. Weidmam
```

```
THE IONIZATION PRODUCED IV WUCLEAR ENULSION
    BY VERY RELATMVISTIC RARETGZES
                    By
                    Harlan D. Hancon
                William R.Seng
                and
                    Russell W.Weidmat
            This work is accepted as fulfilling
    the thesis requirements for the degwee of
    MASMER OE SCIENCE
        IN
        PETSICS
        from the
United States Naval Postgradwate Schowi
```


ABSTRACT

In order to determine the shape of the ioniaation curve in nuclear emulsions at values of $\gamma>100$, we have measured the blob density of relativistic electron tracks. The py of the pair pro. duced electrons used was determined by multiple scattering. A total of 84.45 centimeters of electron track was bldb counted and scattered. From $\gamma=100$ to $\gamma=5400$ the data were combined into 14 points each with a statistical wncertainty an blob density of less than 1\%. These points indicate a level "platear" and show no deviation from this plateau within our statistical accuracy. Pions were used to estimate the minimum of the ionization curve, and ratio of blob density plateau to blob censity minimum is estimated to be $1.140 \pm .020$.

TABLE OF CONTENTS

Subhead Title Page

1. Introduction 1
2. Formulation of the Experiment 6
3. Measurement of Particle Velocities 10
4. Measurement of Ionization 15
5. Results 18
6. Comparison with Theory and Other Experiments 31
7. Critique 32
Appendix
I. Scattering Program 33
II. Program SCAT Flow Chart 38
III. Program Listing 46
Acknowledgments 51
Bib1iography 52

LIST OF ILLUSTRATIONS

Figure Page

1. Useability Criteria 13
2. Oierlap Form Factors 13
3. Signal Amplitude vs. Particle Energy for various cell lengths 14
4. Blob count calibration curves 17
5. Normalized Blob Count vs. γ, all plates combined 21
6. Blob count vs. Υ, Plate $\cap-132$ 22
7. Blob Count vs. γ, Plate $\boldsymbol{A}-133$ 23
8. Blob Count vs. γ, Plate $\cap-134$ 24
9. Blob Count Normalized to 16 Bev vs. Υ, Plate S-132 25
10. Blob count normalized to 16 Bev vs. γ, Plate $\$ 1$-133 26
11. Blob Count Normalized to 16 Bev vs. γ, Plate 5! -134 27
12. Normalized B1ob Count vs. γ. Plate $\mathbb{N}-132$ 28
13. Normalized Blob Count vs. γ, Plate §-133 29
14. Normalized Blob Count ve. γ, Elate $\$ 134$ 30

15. Introduction

The classical theory of the energy loss of a charged particle passing through matter was developed by Bohr /1/ and later extended quantum mechanically by Bethe /2/ and Bloch /3/. These theories predicted that the energy loss by ionization per unit path length was a function of velocity and charge. In particular the energy loss was to decrease approximately as $1 / v^{2}$ to a minimum at $v / c \simeq 0.96$. After this minimum the energy loss should logarithimically increase indefinitely due to relativistic effects on the electric field of the charged particle. Swann/4/ predicted, however, that the increase in energy loss would be limited, in condensed substances, by the polarization of the medium. Quantitative calculations by Eermi $/ 5 /$, treating the electrons in the medium as classic oscillators of one frequency, showed that the most probable energy-loss per unit path length should ircrease to and remain at some maximum value which depende on the density of the medium. This maximum value was therefore called the "Fermi Plateau", and the polarization effect the "density effect." Fermi's theory has been extended and elaborated upon, using multi-frequency theory, by Wick /6/, Halpera and Hall /7/, Sch Bnberg /8/, and Sternheimer /9/; but these extecsions show no significant difference at $v \simeq c$ and also predict a "plateav." Although emulsion groups were eager to measure the relativistic and density effects in solid media, it was not until 1948 that

Berriman introduced photographic emulsions that were sensitive to singly charged particles of minimum ionization.

The first attempts to measure the relativistic zise met with negative results. These early experiments are discussed by Price /10/. However, in 1950 Pickup and Voyvodic /11/ reporced the first experimental indications of a relativistic rise. Corson and Keck /12/, McDiarmid /13/, and Morrish /14/ eppozted the existence of an ionization platean; but none of these experiments carried their measurements down to the ionization minimm. Two more experiments published in 1952 showed a relacivistic increase in grain density from minimum to plateau, but differed in the magnitude. Daniels et al /15/ reported a rise of about 8%, while Shapiro and Stiller /16/ obtained an experimertal vatio of $+0.04$ 1.12-0.03. Stiller and Shapiro /17/duplicated their experiment the following year using blob count instead of grain count as a measure of ionization and found virtwally the same resultson a saturation of the curve at $\gamma>100$, and a rise above minimum of about 14%. Michaelis and Violet $/ 18 /$ and Fleming and Lord /19/ also attempted to measure the ratio of ionization at plactav to ionization at minimum. In both experiments twi points wexe plotted: one near minimum and one near plateau. These experiments have, underlying their design, the implicit assumption of a constant Fermi plateau. Experimenters were now trying to measure two parameters: at what value of γ the "plateau"
begins, and how far above the ionization minimum the "plateau" lies. The results of Alexander and Johnston /20/ are quoted as a vaiue of grain density plateau/grain density minimum of $1.133 \pm .008$, and Jongejans $/ 21 /$ has stated in 1960:

It seems that a remarkable agreement exists about the ratio plateau to minimum; we find

$$
\frac{g_{p}}{g_{m}}=1.129 \pm .010
$$

This value compared with 1.133 ± 0.008 of Alesander and 1.14 ± 0.03 of Stillet.

Recently an extensive study of the relativistic rise of grain density was carried out by Patrick and Bawkas $/ 22 /$, but their main attention was focused on the rise from minimum and transition to plateau.

Theoretical studies /23-26/ weze continuing, but the major effore was devoted to finding the exact shape of the curve in the interval during the relativistic rise and transition to platean. If the ionization curve could be plotted accurately in this range of γ, the identification of particles with velocities in this range could be made. The rate of energy loss per unit path could be measured; and together with a measurement of velocity, wurld give the particle identity even on tracks which passed from the emulsions. It is not surprising that the plateau region was given relatively little attention. Price /10/ perhaps best sums up the prevailing feeling when he says:

This is a field of work in which the theory was laugely established well before any experimental verification was possible, and in which spectacular discoveries were neither expectec nor obrained.

In 1962, however, Alekseyeva et al $/ 27 /$ reported such a discovery. They announced that their theory predices instead of a flat plateau, a decrease of the ionization lose at very high velocities. Furthermore, they stated that their experimental work was in agreement with their theory. Their data show a drop of several per ceat in the blob density of electrons in the region between $\gamma \simeq 200$ and $\gamma \simeq 600\left(\gamma=1 / \sqrt{1-v^{2} / c^{2}}\right)$. In work done at the same time, the data of Stiller $/ 28 /$ show a slight terdency to "peak" at $\gamma \simeq 750$. Since previons data above $\gamma \simeq 200$ had a statistical accuracy no better than 2\%, earlier experiments were able neither to confirm nor to refute the Russian theory. With these facts in mind, we decided to attempt the task of gachering sufficient data to provide a statistical accuracy of 1% at high values of γ. Since the area of high γ had previously been neglected, we decided to concentrate our efforts in this area and to take oniy enough data below $\gamma=100$ to establish the fact that onr measurements were seasitive enough to detect any variation in the curve. The precias details of the formulation of the experiment are given in the next section. We have multiple scattered a total electron track length of 84.45 centimeters and counced 191.295 electron blobs. We find

no significant evidence for a departure from a flat "plateau" ian the region $\gamma>100$.

2. Formulation of the Experiment

After the purpose of this experiment had been decided, it was necessary to formulate our exact procedures. Since we wanted to measure particles with γ as high as possible, we chose to work with electrons. One source of these high γ electrons is pair production, using the gamma rays from the decay of newtral pions for initiation of the pair production.

$$
\pi^{0} \underline{10^{-17} \sec } \gamma+\gamma
$$

The neutral pions are obtained from interactions cf high energy primary beam parcicles with nuclei in the emalsion. K. I. Alekseyeva et al /27/ used this sma procedure, using 19.6 Rev. protons as the primary beam particles.

The choice of primary beam particles was made with two
criteria in mind. First, the beam energy showld be as high as possible, since the number of neutral pions formed in the primary star (and hence the number of pair produced electrons) is a function of the beam energy. Second, Shapiro /29/ indicates that the particles used for normalization should have $\psi^{\gamma}>100$. To satisfy these two conditions, pellicles were used that had an incoming π^{-}beam of 16.2 ± 0.6 Bev. This corresponds to $\gamma^{\circ} 115$ and enabled us to use the primary beam particies as our normalization particies. Because of the source of electrons, ant area one centimeter square located seven centimeters from the primary
beam entrance end was chosen. This area was then scanmed for electron pairs. There were 42 electron pairs found in pellicle (T $-132,67$ in pellicle $\pi-133$, and 72 in pellicie S-134. The pellicles we used were from a 600 roicron Ilford $\mathbb{K}-5$ emulsion stack which was exposed to a $16.2+6 \mathrm{Bev} \Pi^{\circ}$ beam at CERN in 1960. This stack was Elown to Eerkeley, Califormia, and developed there four days after exposure. Of the 180 peilicles in the stack, numbers 121 through 180 are at the Jnited States Naval Postgraduate School on loan from Dr. Walte: H. Barkas at Lawrence Radiation Iaboratory.

Although it would have been desirable to measure the zate of ionization loss over the entire erergy range with a single species of particle, electrons of energy less than 30 Mev are difficult to measure. This difficulty arises largely becaust at these enexgits, electrons suffer large multiple scatterings. Because of the strong scattering: (1) it is difficult to contain the electron in an emulsion for any significant length; (2) the probability of inadvertantly shifting to another track is high: (3) it is difficult to separate the baskground count from the true count; and (4) the measurement of the electron track length becones somewha subjective. We therefore used pions and protons from the primary stars as our source of data for $\gamma<40$. Althorgh it was n.3t our intention to measure accurately the details of the rise to plateau, we wanted to be sure that our muasurements were sensitive
enough to detect a rise.
In order to calcuiate the pu values of the eleatroms protoas, and prons, a program was weitten for the CDC 1604 compucer as the USNPGS. A discussion of this program, along with the progear flow chart and printout are included in the appendices. Thres physicists did the multiple scatterimg on each track, scactering each electron track at ieast twice to prevent misidentification. For fast elsctens the determination of is complicated by the radiative energy loss along the electron path. In order to minimize errors resulting from this effect, no aingle electrux track was scattered for more than 1.5 centimeters, and most were suattered for only 0.5 centimeters. Each comptrer program cutput was analyzed for bremsstrahlung effects (see appendices), and if a bremsstrahlung was suspected, the track was discardsd. Eurthermore, the same segment of electron track veed in the measurement of ev* was used in the measurement of blob density. Thes if sone undetected bremsstrahlung did occur along the electron track, the blob density and the value of γ wruld be averaged $\cap v \in r$ the same range of pv.

As a reasure of the zate of ionization $10 \equiv=$, we have uied blob density rather than grain density. The greater infaration content of cther track parameters $/ 22,26 /$ is offats for xearminimum tracks by the ease and accuracy with wheth blab dexsity data can be gathered. Accuracy in this sense means reproducibility. Price /10/ has stated that it is possible to obtain
results by blob counting that vary by no more than 0.5% between observers.

Although the rise from minimum to "plateav" might have been differant had we used grain density, the shape of the "plateau" should not change. That is, if a drop from "plateau" exists when grain density is used as a measure of ionization, it will also exist when blob density is used. Therefore, all data in this paper is presenced in terms of blob densicy.

Two scanners were given the task of blob counting all tracks used. To prevent the need for calibration between the two scanners, each had two pellicles of her own. All blob cowneing in each pellicle was thus done by one observer. The electroa and pion tracks were normalized to tracks of the primary pion beam at the same depth in the emulsion. Periodic recounting of random tracke showed that several months were required to reach a satisfactory reproducibility of 1%. Because of this effect, much of the data gathered in the early part of this experiment were eventually discarded. The data presented in this paper are from three pellicles. Additional data from the fourth pellicle will be published at a later date.
3. Measurement of particle velocities

Multiple scattering measurements were made on each track to estimate the product of momentum and velocity, pw. The velocity and the corresponding value for op were then calculated. Scattering measurements were performed on proton, electron, and pion tracks using a Kovistka $\mathbb{R} 4$ microscope. The calculations were accomplished on a CDC 1604 computer: a program description, Flow chart, and listing for which are included in the appendices.

The same basic computation was used to estimate che value of pr for all particles. The expression /30/:

$$
P V=\frac{K_{c o}(s)^{3 / 2}}{573 D} \quad(\operatorname{In} M E v)
$$

was used for calculations. The scattering constant, co is that appropriate for a cutoff without replacement at four times the true mean second difference, D. The cell length, s, is in microns. The scattering constant was evaluated from the expression;

$$
k_{60}^{2}=675\left[0.090+0.272 \log _{10}\left(5 s^{\circ}\right)\right]
$$

where the constants are those given by scott /31/ and adjusted by Burkas /30/. The Equivalent cell length, S^{\prime}, corrects fur the dependence of K_{co} on particle velocity and charge. The same references supply the expression for the equivalent cell length;

$$
s=\left(0.23+0.77 v^{2} / c^{2}\right)\left(s^{1}\right)
$$

for singly charged particles.

Noise was removed from the scattering measurements for each track by two distinct procedures. The methods wsed were: (1) cell length vaziation $/ 32,30 /$ using cell lengths of one, two, and three times the prime cell length, and (2) subtraction of a constant noise appropriate to each observer.

Using cell length variation the noisa aan be estimated from:

$$
\text { Noise squared }(\dot{I}, j)=\overleftarrow{i}^{2} \Delta-\left[\frac{j \Delta^{2}-i \Delta^{2}}{\left(\frac{j}{i}\right)^{3+0.1 \Delta}}\right]
$$

In this expression $i \Delta \bar{\Delta}$ and are the means of the absolute values of the measured second differences wsing cell lenghts of i and j times s. The indices i and j vary from one to three: however i j. The factor of 0.14 in the exponent comes from considering the scattering constant as a function of cell length. The noise was calculated using cell oveirlap combinations of $(1,3),(1,2)$, and $(2,3)$ times the prime cell leagth. Whe three values were compared for consistency but the value of roise using cell overlap of (1,2) was the oniy one weed in estimating the true signal.

Repeated scattering measurements were performed on the 16 Bev primary pions by all observerz. For pions of this energy, apparent scattering is almost completely nolse. Using this noise, q, the true mean second difference for an electron track

$$
\mathrm{x}
$$

was estimated from:

$$
D^{2}=\Delta^{2}-q^{2}
$$

where Δ is the measured total mean second differencs. Prime ce11 lengthe of 100,250 , and 500 microns were wsef with the resultant noise found to be nearly independent of these cell lengths.

A11 tracks were scattered ewice, uscaliy by different observers. Tracks which did not yield results in staこisulcal agrement, either between observers or mechod of norise removal, were discarded or rescattered.

For fast electrons, the determination of fV is complicaced by the radiative energy loss along the path of the electron. No minimize this, no electron track was scattered more than 1.5 cm . Furthez, any electron track which showed evidence of a change in pv along the scattered length, either as a roticeable single scatter or as indicated by the compucer program, was discarded. The compret divides each track into segments ten cell lengths long to facilitate the detection of changes in pv possibly caused by bremsstrah1ung. (See app. I)

$$
\text { Of a cotal of } 362 \text { electron tracks (181 paires) lacated in }
$$

the scanned areas of the three plates, 225 were discarded because of detectable bremsstrah1ung or because the length of crack in one pellicle did not allow a minimum of 20 prime cell lengths. In addition to scattering each track twice, requiring agree-

ment between methods in determination of D, and requiring that no detectable bremsstrahlung occur in the used portion of the track: all tracks used met the conditions shown in \mathbb{I} g. 1 .

	Min. sig/n	Min No. of 5	5 used (micron)	Optimum No of s
$p r_{r} \leqslant 200$	1.5	20	100	40
$200<p r \leqslant 1000$	1.5	20	250	40
$p r>1000$	1.5	20	500	30

Fig. 1 Usability Criteria

Fig. $3 / 33 /$ was used to estimate the minimum cell length to use for scattering to expect a signal to noise ratio 1.5 iota specific value of pu.

The standard deviation, σ^{*}, of $p v$ determinations was estimated using $\sigma=\frac{137}{\sqrt{\frac{\pi}{\lambda}}} 132 /$; where n is the number of prime cells, λ is the degree of overlap, and \ddagger is taken from rig. 2.

λ	1	2	3
f	1	1.022	1.046

Fig. 2 Overlap Form Factors

Using the criteria in this section, the estimated \in rues in pu ranged from 15 to 30 percent.
\qquad

\qquad

促
(
4. Measurement of ionization

Blob dersity has been used as the measure of fontuation in this experiment. The greacer information consent of other track parameters, such as grain density or mean gap 1 erugth /34/: is offset for near minimm tracks by the ease and ascuracy with which blob density data can be gathered. Bausch and Iomb miscroscopes, with magnification of about 16×100, Gcuipped with coordinate stages by the Lawtence Radiation Laborabury at Berkelay, California, were used for blob coumting.

The energy of fast electrons decesases expuntatially with increasing track length in the emulsion. As the blob density is also a function of energy, care was taken to assure the scatcering measurements for second differences and the average biob densities were obtained over the same portion and lengch ut each electron track. Therefore if some undetected radiative encrg. loss occurred along an eiectron track, the ionization loss and the value of γ^{0} are averagad over the same range of pv.

Blob count calibration curves for the three plates used are shown in Eig. 4. These curves describe the vatiation of blob density with depth in the emulsion for each af the pellicles. To obtain these plots, the pellicle thickness was divided into teaths and then the blob density of che primary pions withir each tenth of pellicle thickness was determined. Each poirt regtesents about 12 trazks or 5,000 blobs. These tracks were all Iocated
in the same region as the electron pairs. The variation in these curves for pellicles processed together, clearly shews the need for careful calibration of each pelifcle. (See subhead y, cricique)

All blob density data were collected by twc scannexs. All counting in a given plate was done by one. Both scannets were. required to return periodically to their "nomalization tracks" (primary pions) to check for any change in subjective criteria used in blob counting. Changes did occur, and much of the data gathered in the early part of the experiment had to be discarded because of this. Several months were required to reach reprodecibility of about one percent. It should be noted the two scanneze had a continued systematic difference of about 3% in theis counts of the same tracks. As a consistency check the shape of one of the curves of Fig. 4, that for ת-134, was reproduced by each scanner.

The electron and pion blob densities were normalized by forming the ratio of blob density of a track to that of the primary pions at the same depth in the emulsion. To select the primary pion blob density to be used for normalizing a given track, the initial and final depths in the emulsion for that portion of the track used in data gathering were determined. The calibration curves were considered as linear sections and a welghted average track depth was used to establish the depth in the emalsion of the primary pion to be used for normalization.

Blob Counat Calibration aurkes Brob count pen domionon ract lengath Fractional pistancerrombottomotprate,z

5. Results

The effect which this experiment was designed to detect was a 5% variation in ionization loss at values of γ greater than 200. For γ greater than 10 , data were processed to provide a statistical uncertainty on all points plotted in Fig. 12, 13, and 14 of 2% or less. At lower γ values, no statistical uncertainty exceeds 3%.

To provide this degree of certainty, several tracks were combined to produce each data point, but each point represents only one type of particle. Tracks were added together, beginning with the lowest value of γ, until the sum of the blob count, N, for each point was such that $100 \times \sqrt{\sum N} / \Sigma N=2 \%$ or 3% as described above.

Since the 16.2 BeV pions ($\Upsilon \bumpeq 115$) to which the stack was exposed have an ionization loss which differs by less than 1% from the ionization loss of the plateau, the blob count for these tracks was selected as the value to which all others should be normalized. The effect of normalization on the data for each plate is illustrated by comparing Figs. 6, 7, and 8 with Figs. 9, 10, and 11 for plate numbers 132,133 , and 134 respectively.

The following relations describe how the normalized mean blob count, \bar{c}, the ordinate of Figs. 12, 13, and 14, was determined for each point.
两
$N_{i}=$ Number of blobs in the eth track
$N_{0}=$ Number of blobs in the same length of 16.2 BeV pion track $m_{i}=$ Number of blobs per 100 microns of track
$n_{0}=$ Number of blobs per 100 microns of 16.2 BeV pion track $n_{i}=N_{i} / m_{i}$
$c_{i}=n_{i} / n_{0}=N_{i} / m_{i} n_{0}$ or $c_{i}=\frac{N_{i} \pm \sqrt{N_{i}}}{\mathrm{mi}_{i}{ }^{n}} \quad$ assuming N_{i} has a statistical uncertainty of $\quad \sqrt{N_{i}}$.

$$
\sigma^{2}\left(c_{i}\right)=N_{i} / m_{i}^{2} n_{o}^{2}
$$

The \bar{c} is the average of the c_{i} 's weighted according to the inverse square of the statistical uncertainty. The summation is over the number of tracks involved.

or $\bar{c} \simeq \frac{\sum c_{i} N_{i}}{\sum N_{i}}$
since $\left(n_{o}^{2} / n_{i}^{2}\right)$ adjusted only the third decimal place of the normalized blob count. Therefore each track is weighted according to the number of blobs counted.

The value of γ for a given point represents the grithmetic average of the values found for each track represented by that point. On the plateau, the maximum spread of the values represented by any given point is 22% of the value at that point.
(Fig. 14, plate 134, $\gamma=2600$.) A typical spread is about 10%. Thus the points are separated by a distance somewhat greater than the error in γ.

These processes were used for determining the γ and normalized blob count of each point for each of the three plates, separately, to produce the curves of Figs. 12, 13, and 14. Combining these plates by superimposing the plateau regions produced the curve of Fig. 5. This method of combination was dictated by the overwhelming statistical weight associated with the information in the plateau region as compared to the information in the remainder of the curve. (For electrons, a total track length of about 84 cm . was examined.)

(

			N																	
		\checkmark	\checkmark														*		-	
		N	1																S	
			N		5															
		O	2		\bigcirc				\bigcirc											
			1	\cdots	\%			${ }^{\circ}$												
			0		7	-		\bigcirc											\checkmark	
			$9-$		\square	-		-	-	-	-									
			-			-												c	-	8
-			\bigcirc			-			-		9						*		,	8
									\bigcirc			\bigcirc								
								\bigcirc	-											
								-	0.											
								0.												
								-												
							\bigcirc		8.	。		\bigcirc								
									\bigcirc											
							0		\cdots			\bigcirc								
											0			8						
	\#				\bigcirc			-	\bigcirc							9	14	\cdots		8
-																				
,																				
-																				
												\square		\bigcirc						
,																				
									\checkmark											
																	0			
																			90	
4														-				,		
'													-							
												\square								
																				\square
														-					\square	
																			${ }^{4}$	
										\square			\square							
													。							
															-					
	$\# \#$	H						0	$\frac{91}{2 d+}$	tuno	03	9018		,	N		1		H	$11+$

年

(

6. Comparison with theory and other experiments

As was described in Subhead 1, the relativistic rize su plateau has been investigated by many persons. In 1950, Fickup and Voyvodic /11/ reported indications of a relativistic inctease in grain density of about 10% to a plateau starting at 20 . Similar results were obtained by Daniel ϵt al /15/. In 1033 Stiller and Shapiro /17/ reported a $14+3 \%$ rise to plateau. In our experiment, as in Stiller and Shapiro's, blob densities were substituted for grain densities to simplify counting and facilitats reproducibility among observers. The magnitude of the relativistic rise of blob count determined was $14 \pm 2 \%$. in our experiment.

The rate of rise to the plateau and the constant value an plateau indicated by our results is essentially the same as that determined by Stiller and Shapiro and many others but extends the investigated region on the plateau to higher values of γ. The effect noted by Alekseyeva et al /27/ was not observed.

Our data are entirely consistent with the theosy as deternined by Halpern-Hall /7/, and Sternheimer /9/, with the plateau beginning at γ greater than 100. This indicates a deviation from the theories of Daniel et a1 /15/ and Morrish / $14 /$ which predict a plateau beginning about $\gamma=20$.

7. Critique

Although the data seem to be in good agreement with ecrrently accepted theory, there are possible sources of error which corid obscure a departure from a flat plateau of ionization loss. These are the determination of γ from multiple scattering masurements and the variation of blob density with depth in the amision.

To check for systematic errors in our scattering data, the pellicles were taken to the Lawrence Radiation Laboratory at Berkeley and a random sample of tracks was scattered on the Roristka MS-2 belonging to the Barkas group. Consistent agreement withir statistical error was found, and we consider this the best evidence we have for thinking that our estimates of γ are not systematically in error.

Since our data were insufficient to allow restricting 9.11 tracks to a small fraction of the emulsion thickness, a correction was required to compensate for the variation of blob dersity with depth. (See subhead 4.) Although pains were taken in the normalization, one must recognize that the variation with depch is a severe handicap. Some encouragement comes, however, from the consistent results obtained from pellicles with rather different normalizing curves.

APPENDIX I

SCATTERING PROGRAM

This program was written for the purpose of calculating the pv of a singly charged particle in a nuclear emulsion. The method of multiple scattering is described in the section on detemination of velocity. Our program was written in Fortran 60 for specific use on a Control Data Corporation 1604 computer. A diジ・ advantage for use as a general scattering program is that in order to compute an equivalent cell length, an estimate of v / c must be made. The data printout format was designed so that the aseal computer paper could be filed and kept as a record. During the course of the experiment, printouts were added when deemed alvan tageous; until in its final form, the program outputs sufficiest data to analyze the run.

The following are the program inputs. On the first card of each run:

> Columns 1-3 Pellicle number Columns 5-7 Event number Columns 9-10 Prong number
> FColumn 11 Scanner identification
> Columns 12-17 Date of scattering
> Columns 18-22 Primary cell length
> Columns $23-25$ Number of Y coordinate readings

Columns 26-30 Estimate of v / c
Columns 31-35 Microscope calibration
> * This number is used for filing and for choosing a personal noise reading written into the program.

> On the second card of each run are the following:

Column 1 Number one if final track for this compratex run; otherwise number zero.

Column 2 Number one if computer is to calculate pv with both calculated and personal noise:
otherwise number zero.
Column 3 Always zero.
On the following data cards there are eight coordinate readings to each card, one reading every ten columns.

After reading the input cards, the computer calculates a noise reading; and using this noise reading, a value of pv. After a first run the program selects the personal noise reading for the individual doing the scattering, returns to the beginning, and \mathbb{E} calculates pv using this personal noise reading. The personal scanner noise was determined by having each person scatter the 16.2 Bev pions of the primary beam. Cell lengths of 100,250 , and 500 microns were used to scatter the pions; and since at these cell lengths the signal from a 16.2 Bev particle is virtually nonexistent, any reading is noise. Enough tracks were scattered by each person to determine a mean value of individual noise. The

\qquad －－ －

为
noise determined by this method was found to be independent of the ce11 length used.

The program outputs were selected so that crosschecks could be made. The outputs were:

1. The number of Y coordinate readings.
2. The Y coordinate readings.
3. A11 calculated second and third differenceso-if a second or third difference was cast out by the guillow tine method, the corresponding second or third difference will print out as zero.
4. Number of readings cast out by the guillotine method-. This output, together with output 3, can sometimes pinpoint a bremsstrahlung along an electron track.
5. Mean second and third differences--The calculation of second and third differences is made for primary ce11 lengths, double overlapping cell lengths, and triple overlapping cell lengths. There are six corresponding values of mean differences and cast outs.
6. The three calculated values of noise--Noise was calculated using primary and double cell lengths, primary and triple cell lengths, and double and triple cell lengths. Only the first value was used to compute pv, but the other two were printed out as a consistency check.
7. The actual second difference signal--This value is the square root of the mean second difference squared using primary cell lengths minus the calculated noise squared using primary and double cell lengths.
8. The signal using the mean third difference and the ratio of outputs 7 and 8 .
9. The three values of pv (using the three mean second differences), the estimated statistical error, and the signal to noise ratio, all using calculated noise.
10. The three values of pv , the estimated statistical error, and the signal to noise ratio, all using personal scanner noise--If outputs 9 and 10 did not agree within the estimated statistical error, the track was either rescattered or discarded.
11. The mean second differences for primary cell lengths divided into segments of ten consecutive second dif-ferences--This output was found to give the best indication of a bremsstrahlung along an electron track. A bremsstrahlung can be suspected when the mean second difference increases to a higher value between successive segments, and then remains at this higher value in succeeding segments.

There is one noteworthy aspect to this program. In some situations the calculated noise can be a negative number. Since

this situation has no physical significance, the calculated noise is set equal to zero. When the computer is later asked for a ratio of signal to noise, it can be troublesome. This situation can be programmed out, or it can be handled as we did. When the calculated noise from primary and double cell lengths prints out as negative, the signal to calculated noise ratio is ignored.it is always infinite.

APPENDIX II

a
\qquad

PRCGRAM SCAT
PROGRAM SCAT SYMROL DEFINITIONS
IDEV FIRST 3, PELL NRK 2ND 3, STAR NBR, LAST 2, PRJNG NPR
IDSC SCANNER NUMBER
$\begin{array}{ll}\text { IDATE MDNTH: IAYY YEAR DATA TAKEV } \\ \text { S } & \text { CELLLENGTH INMICRCNS } \\ \text { N } & \text { NUMRFR OF REATIMGS IN EV, IT }\end{array}$
BETA ESTIMATEORETA NJI IMPUT
LAST NON-LERD FOR LASTEVENT IN TUN
Y II ORDINATES IV MICROMETER VNITS
DIFF2(M, I) IS I-TH SVE DIFFFFR EELL LENGTH MS

SIGSQINI IS SQUARE CF NOISE CORRECTEU SEC DIFF FOR CE
ESSI IS EFFECTIVES FOR CALC OF KCO
FCO(N) IS KCO FOR CELL NS, IN FLT PT
$\operatorname{KHEK}(N)+1$ IF PPC CALC FOR CELL NS
SI
KHEK3 3 IF 3RD DIFF CALC OK, O IF REJECTED
46 PRINT 47
47 FORMAT (9HIJ.N.OYER //)
DIMENSION Y(200), KNIX(6), DIFF2 (3, 198), DIFF3(3, 198), DBAR2(3)
 2 SIGMIC (3), PEC(3), RBARS2(3), RATIO(3).
3SEG(20)
1 FORMATII READ IN DATA
2 FORMAT(8FIC.O)
3 FORMAT (II, i1, 11)
READ 1, IDEV, IOSC, IDATE, $S, ~ N, ~ B E T A, ~ C A L I B ~$
REAU 2; (YSII, l=1, M)
REARRANGE FOR POSSIBLE CUPLICATES
$11=0$
$N I=N$
DELTA=0.
003000°
IF (Y(I)) 3002, 5001,3001
Y(I) $=Y(I)+$ DELTA
$\mathrm{Y}(1-11)=\mathrm{Y}(1)$
GO TO 3000
$3002 \mathrm{Nl}=\mathrm{N} 1-1$
$11=11+1$
DELTA $=Y(I)+Y(I-1)$
3000 CONT INUE
$\mathrm{N}=\mathrm{Ni}$
$\begin{array}{ll}\text { DO } \\ \text { NSTOP }\end{array} \quad \begin{aligned} & M \\ & = \\ & = \\ & N-2\end{aligned}+M$

1) $51=1$, NSTOP
$L=I+2 * M$
$K=1+M$
DIFF2(M,I) = Y(L)-2.*Y(K)+Y(I)
5 CONTINUE
4 CONTINUE

```
                CALCIJLATE MEAN SECDND OIFFERENCES WITH
    NOT' M M = 1,3
    NIX=
    KNIX(M) = 0
    102 DOT I= NONSTOP
    TOIAL = TOTAL + ABSF(DIFF2(M,I))
    7 CONTINUE
    A = NSTOP - KNIX(M)
    DRAR2(M) = TOTAL/A
    ROBAK(M)=OBAR2(M)*CALIB
    0O 8 I= 1,NSTOP
    IF (4.*DBAR2(M)-ABSF(DIFF2(M,I)|) 9,9,8
    9 DIFF2(M,I)=0.
    NIX=NIX+1
    KNIX(M)=KNIX(M)+1
    8 CONTINUE
100 IF (NIX) 6,6,101
101 NIX=0
    TOTAL = O.
    6 CONTINUE
    DO 11 M=1, CALC 3RD OIFFS
    NSTOP=N-3NM
    DO 10 I= 1,NSTOP
    DIFFZ(M,I)=Y(I+3*M)-3.*Y(I+2*M)+3**Y(I+M)-Y(I)
    10
    11 CONTINUE
        CALCULATE MEAN THIRD DIFFERENEES WITH
                            CUIOFF AT 4 DBAR
        OO 12 M=1,j
    TOTAL=O.
    NIX=0
    KNIX (M+3)=0
NSTUP=N-3#M
17 DO 13 I=1,NSTOP
    TOTAL= TOTAL + ABSF(DIFF3(M,I))
    1 3
    B=NSTOP-KNIX(M+3)
    DBAR3(M) = TOTAL/R
    RDBAR(M+3)=DRAR 3(M)*CALIB
    OD 14 l=1,NSTOP
    IF (4.*OPAR3(M)-ABSF(OIFF3(M,I))) 15,15,14
    `15
    DIfF3(M,I)=0.
    NIX=NIX+1
    KNIX(M+3)=KNIX(M+3)+1
    14 CDINTINUE
    IF (NIX) 12,12,16
    16 NIX=0
    TOTAL =0.
    12 CONTINUE
    A = 3.+1./LOGF(CALCULATE NOISE SQUARED
    DO EOM M=1.2
    U0 21
    FN=L
    ERRSQ(M,L)= DBAR2(M)**2.-((CBAR2(L)**2.-DBAR2(M)**2.)/((FN/FM)**A-
    11.J!
    RERRSQ(M,L)=(ERRSQ(M,L))*(CALIB**2.)
    CONTINUE
```

$-2-7 \frac{1}{8}$ Mi
11

+1101

I \ldots

$$
\frac{1}{1}
$$

$$
18+2=
$$

(410 +4 +

$$
\begin{aligned}
& \text { y) } 4-x=-x=1 y=
\end{aligned}
$$

$$
\begin{aligned}
& 1
\end{aligned}
$$

CALCULATEPBC FRCM 1 ANO 2 CELLS
USING NOISE FROM 1 AND 2 CELLS
IF (ITEN:P)'122,122,1122
ERRSO $(1,2)=P E R S E R$
GO IO 31,21
122
IFRSO(M,N) IS NOISE SQUARED FROM CELLS MS AND NS
IF (ERKS (1.2)) 30,31.31
31
33
IF (CRAR2 (I)*2.-ERRSG(1.2) $32,32,33$

ESS GO $=1$ $\frac{2}{3} 42^{*} S$

PBC(I) = (FCO(I)*ESS**1.5)/(573.*SIGMIC(I))
RAIIOII) = SQRTF(SIGSQ(I)/ERRSQ(1,2))
RAIIO
KHEK (I) $=+1$
32
55
GO TO 55
KHEK(I)
55 CONTINUE
IF (IIEMP) 2000, 2000,2020
000 IF (OBAR $3(2) * 2-$ CALCULATE SIGVAL FROM 3RD DIFFS
200 KHEK $3=0$
GO 10202
$\left.201 \operatorname{SIG}^{2}=\operatorname{SCRTF}(\operatorname{DBAR} 3(2) * 2 .-\operatorname{DRAR} 3(1) * * 2.) /(1.5 *(12 . * * A)-1) 1.\right)$
SIGY=SIG3*CALIE.
KHEK $=+1$
202 GO TO $(60,61,63,64,66,67,69,701$, IJSC
60 ISCAN= BHJOHN:
GO 1072
61 ISCAN= \&HFRED
GO TO 72
63 ISCAN = 8 HH C, AIL
64 ISCAN $=8 \mathrm{HSHE}$ ILA
66 ISCAN= C HHARRY
GOTO 72
67 I SCAN=8HRUSS
PEKSER $=438.0745$
GO TO 72
69 ISCAN=8HSWEDE
PERSER $=654.403$
GO TO 72
70 ISCAN=8HOICK
72 PERSER $\operatorname{PRINT} 7354.408$
$730 F O 2 M$ MT ($10 \mathrm{X}, 10 \mathrm{H}$ EVENT NO., $10 \mathrm{X}, \mathrm{QHSCANNER} 10 \mathrm{X},, 6 \mathrm{H}$ DATE, $10 \mathrm{X}, 5 \mathrm{H}$
PRINT 74 IIDEV, ISCAN, IDATE,S,N
74 FORMAT $10 \mathrm{OX}, \mathrm{I} 10,10 \mathrm{X}, \mathrm{AQ}, 10 \mathrm{X}, 16,10 \mathrm{X}, \mathrm{F} 5,0,10 \mathrm{X}, 13 \mathrm{/1}$
750FORMAT (15X,5H Y(I), 8X, 8H10IF2(I), 7X, 8H2DIF2(I), 7X,8H3DIF2(I), 8X
18H10IF3(I), 7X,8H2UIF3(I), 7X,8H30IF3(I))
PLACE MATRIX IN HERE
PRINT 76, Y(1)
76 FORMAT (10X,F10.0)
PRINT 77, Y (2), DIFF2(1,11
77 FORMAT (10X,F10.0,5X, F10.0)
78 FORMAT $110 x, F 10,0,5 \mathrm{~S}, \mathrm{~F} 10.2)$, DIFF2(2,1), DIFF31, 11
PRINT 79, Y (4), DIFF2 11,3), DIFF2 2,2$)$, DIFF2 $(3,1), \operatorname{DIFF} 3(1,2), \operatorname{DIFF} 3(2$, 111
79 FORMAT 1 IOXF $10.0,5$ XF $10.0,5$ XF $10.0,5$ XF $10.0,5$ XF $10.0,5 \mathrm{X}, \mathrm{F} 10.01$
(2)

$$
14
$$

40

$K=N-9$

85 FORMAT (1OXF10.0, JXF10.0.5XF10.0.5X=10.0.5XF10.0.5XF10.0.5XF10.0)
$K=N-?$
$L=N-8$

$K=N-4$
PRINT $65, Y(K+2)$, DIFF2 $1, K+1), D I F F 2(2, K), D I F F 3(1, K)$
65 FORMAT (10XF10.0. 5XF10.0.5XF10.0.20XF10.0)
$L=N-3$
PRINT 68, Y(L+2), DIFF2(1, L+1), DIFF3(1,L)
68 FORMAT! $10 \times F 10.0,5 \times F 10.0,35 \times F 10.0)$
PRINT 71 YINI
71 FORMAT (1OX,F10.0)
I AWAY = 7 HCASTOUT
PRINT 80, I AWAY,KNIX(1), KNIX(2), KNIX(3),KNIX(4),KNIX(5),KNIX(6)
80 FORMAT(1OX,A7,14X,I3,12X,I3,12X,I3, $12 X, I 3,12 X,[3,12 X, I 3$ //1)
ISIG=6HSIGHAL

I PBC $=3 \mathrm{HPRC}$

IDBAR=4HDBAR
OPRINT 86:IDBAR, DRAR2(1), DBAR2(2), DRAR213), DBAR3(1), UBAR 3(2),
1DBAR3(3)
86 OFORMAT ($10 \mathrm{X}, \mathrm{A} 4,11 \mathrm{X}, \mathrm{F} 10.2,5 \mathrm{X}$
$1 F 10.2$
PRINT 35.
1 RDEAR 6$)^{\circ}$
IRDEAR(6)
35 FORMAT (10X, 7HDBARMIC, $, X, F 10.3,5 X, F 10.3,5 X, F 10,3,5 X, F 10.3,5 X$, IF10.3.5X, F10.3/1
INOISE $=8$ HNOISE SQ
IFIRST $=5 \mathrm{HM} 1 \mathrm{~N} 2$
ISEC $=5 \mathrm{HM} 1 \mathrm{NJ}$
THIRD $=5 \mathrm{HM}$ N 3
ITHIRD 5 HM
$0043 \mathrm{M}=1,3$
RBARS2(M) $=($ (DAAR2 (M)*CALIB)**2.)
43 CONTINUE
JOY = ZHOKARSSMI
PRINT $44, J 0 Y, R B A R S 2(1), R B A R S 2(2), R B A R S 2(3)$
44 FORMAT (1OX, AR, 5X,F10.5,5X,F10.5,5X,F10.5 /1/)
 IERRSQ(2, 2)
$87 \mathrm{FORMAT}\{O X, A 8,5 X, A 5,2 X, F 10,3,5 X, A 5,2 X, F 10.3,5 X, A 5,2 X, F 10.3 / 1$ ICHECK = GHNOISE JOY $2=8$ HERRSGMIC
OPRINT 45,JOY2, IFIRST,RERRSQ(1,2), ISEC,RERRSQ(1,3),ITHIRD, IRERRSQ(2,31
45 FQRHAT $1 O X, A B, 5 X, A 5,2 X, F 10,4,5 X, A 5,2 X, F 10,4,5 X, A 5,2 X, F 10,4 / / / 1)$

97 PRINT 3003 , PRC(M), RATIO(M)
3003 FORMATI10X,3HPBC, 1OX,F10.1,24H SIGNAL TO NOISE RATID,F10.2 /11 CO TO 41
98 PRINT 42
42 FCRMAT ($10 X$, 3HPBC, $10 X, 28 H N O I S E$ IS $3 R E A T E R$ THAN SIGNAL//I
41 CCNTINUE
LDIF=3HBY 3DIFF
IF (KHCK 3-0) 92,92,90
90 PRINT 9I, ISIG LDIF,SIG3
91 FORMATIIOX,AG, AB, $6 X, F 10.3 / / 1$
GOTO 94
92 IBAD=4HRARF

94 CONTINUE
PRINT 120, SIGMIC(1)
120 FORMAT (10X, 15 HSIGNAL BY 2UIFF, $5 \mathrm{X}, \mathrm{F} 10.3 \mathrm{/} / 1$
BUOGE $=$ SIG\} SIGMIC(1)
PRINT 121 BUOGE
PRINT 121 BUOGE
121 FORMAT (10x,27HSIGNAL RATIO 30IFF TO 2DIFF,F10.3 1/)

TOTAL $=0$.
$K A=N=$
$M A=2$
$M I=0$
111
00 I $10 \quad I=1, M A$

114
$B=M I+$
SEG (KA) $=\operatorname{TOTAL/B~}$
TOTAL $=0$.
110 CONTINUE
CALC SIGNAL IN MICRONS FOR SEGMENTS
DO $115 \mathrm{I}=1, \mathrm{KA}$
IF(ISEG(I ;) \#\#2-ERRSQ(1,2)) 110, 116,117

117

GO TO 119
116 SEG II 119 PRINT $=0$.
119 PRINT 118, SEG(I)
118 FORMAT
2020
DIMENSION PRGEマ(3)
PRIN $=N$
DO $400 \quad I=1,3$
TEMP $=$ KAIX(I)
${ }_{F A C T}^{\bar{T}}{ }^{I}=1 .+.022(F L-1$.
FACT2 $=$ PRIM-(2.:FL+TEMP)
DENOM = SQRTF(FACT1*FACT2/FL)
400
CONTINUE
IF (ITEMP) $402,402,2030$
402 PRINT 403
403 FORMAT $10 x$
403 FORMAT ($10 X, 45$ HERROR IN MEV CALCULATED FROM PG264 CERN NOTES/I DO $4 \mathrm{CO}^{\mathrm{J}} \mathrm{J}=1 ; 3$
PRINT 404, PRINT 404, PBCER(J)
404 FORMAT (10X, 17HPBC PLI'S OR MINUSSX,F 10.311
406 CONTINUE
ITCMP = 1
[F (INKER) 18, 18,22
2030
2031
FOKMAT $110 x, 24 H P B C$ USING PERSONAL NOISE/)
OO $203 \mathrm{I}=1$,
FRINT 2032 . PBC (I) PBCER(1), RATIJ (I)
FORMAT (10X, F5. $10 \times$ IZHPLUS OR (NU
2032 FORMAT $110 X$, F5.C, $10 X$, 13 HPLUS OR YINUS $5 X, F 5.0$,
$110 \times 21 H S I G N A L$ TO NOISE RATIO $5 x$, F5.211
2033 CCNT INUE $48,46,48$
18 IF (LAST)
48 CONTINUE
408
END
ENU

y iffin in
2-5

五
42
 1-1
$1+$
 Tell

$$
\frac{8}{2}
$$

\qquad

1
4
?
\qquad
$1+5$:

$$
1 \mathrm{man}
$$

413

$$
1
$$

[^0]$15+1$

We are grateful to Dr. John N. Dyer for his continuing advice and leadership. His knowledge and experience in the field of nuclear emulsions made this experiment possible. Dr. Fred R. Buskirk provided us with the necessary background and theoretical ability to begin and to sustain this combined effort.

Our thanks go to our scanners, Miss Sheila Flynn and Mrs. Gail Henderson, for their arduous and meticulous work in locating the pairs and counting several hundred thousand blobs.

Many valuable discussions were held with Dr. Harry E. Handler, who has contributed much to this work.

We are indebted to Dr. Walter H. Barkas of the Lawrence Radiation Laboratory, Berkeley, for the use of the plates from his emulsion stack and the loan of some of the scanning equipment used in this project.

The Koristka microscope was kindly furnished by Dr. Hofstadter at Stanford University.

BIBLIOGRAPHY

1. N. Bohr, Phil. Mag. 30, 581 (1915).
2. H. Bethe, Ann. Physik 5, 325 (1930).
3. F. Bloch, Ann. Physik 16, 285 (1933).
4. W. F. G. Swann, J. Franklin Inst. 226, 441 (1938).
5. E. Fermi, Phys. Rev. 56, 1242 (1939); 57, 485 (1940).
6. G. C. Wick, Ricerca sci. 11, 49 (1940); Nuovo cimento (9) 1, 302 (1943).
7. O. Halpern and H. Hall, Phys. Rev. 73, 477 (1948).
8. M. Scho̊nberg, Nuovo cimento 9, 210, 372 (1952).
9. R. M. Sternheimer, Phys. Rev. 88, 851 (1952); 89, 1148 (1953); 91, 256 (1953); 103, 511 (1956).
10. B. T. Price, Reports on Progress in Physics Vo1. XVIII, 52 (1955).
11. E. Pickup and L. Voyvodic, Phys. Rev. 80, 89 (1950).
12. D. R. Corson and M. R. Keck, Phys. Rev. 79, 209 (1950).
13. I. B. McDiarmid, Phys. Rev. 84 , 851 (1951).
14. A. H. Morrish, Phi1. Mag. 43, 533 (1952).
15. R. R. Danie1, J. H. Davies, J.H. Mulvey, and D. H. Perkins, Phil. Mag. 43, 753 (1952).
16. M. Shapiro and B. Stiller, Phys. Rev. 87, 682 (1952).
17. B. Stiller and M. Shapiro, Phys. Rev. 92, 735 (1953).
18. R. P. Michaelis and G. B. Violet, Phys. Rev. 90, 723 (1953).
19. J. R. Fleming and J. J. Lord, Phys. Rev. 92, 511 (1953).
20. G. Alexander and R. H. W. Johnston, Nuovo cimento, Series X, 5, 363 (1957).
21. B. Jongejans, Nuovo cimento 16, 625 (1960).
22. J. W. Patrick and W. H. Barkas, Nuovo cimento, Supp. No. 1, Series X, 23, 1 (1962).
23. P. Budini, Nuovo cimento 10 , 236 (1953); 4, 23 (1956).
24. C. O'Ceallaigh, CERN Report, Document BS-11, Geneva (1954); Nuovo cimento Supp. 12, 412 (1954).
25. P. H. Fowler and D. H. Perkins, Phil. Mag. (7) 46, 587 (1955).
26. W. H. Barkas, Univ. Calif. Lawrence Radiation Lab. Report UCRL-9578 (1961).
27. K. I. Alekseyeva, G. B. Zhdanov, M. J. Tretyakova, V. N. Zytovitch, and M. N. Shcherbakova, Proceedings of the IV International Conference on Nuclear Photography, Munich, 1962, 558 (1963).
28. B. Stiller, Proceedings of the IV International Conference on Nuclear Photography, Munich, 1962, 542 (1963).
29. M. M. Shapiro, Handbuch der Physik, Vol. XLV, Nuclear Instrumentation II 342 (1958).
30. W. H. Barkas, Nuclear Research Emulsions (Academic Press, New York, 1963) Vol. I
31. W. T. Scott, Phys. Rev. 85, 245 (1952).
32. D. H. Perkins, CERN 63-3, Feb. 1963, p. 245.
33. J. N. Dyer, (private communication), United States Naval Postgraduate Schoo1, 1963.
34. J. W. Patrick and W. H. Barkas, Univ. Calif. Lawrence Radiation Lab. Report UCRL-9692 (1961).

32768002076556 DUDLEY KNOX LIBRARY

[^0]: \qquad
 $=$

