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CHAPTER I

INTRODUCTION

Quality surveillance of military petroleum products

is the aggregate of measures to be applied to determine and

maintain their quality. Quality surveillance programs are

conducted in order that required petroleum products will be

available in a condition suitable for immediate use. Their

ultimate purpose is: (1) to insure that no life is ever

lost or equipment damaged or destroyed through the use of

contaminated or deteriorated petroleum products, and (2) to

promote economy by minimizing the necessity of surveying or

reclaiming any petroleum products because of contamination

or deterioration.

The success of any such program is dependent upon

several factors, not the least of which is the maintenance

of the highest standards of reliability in the testing lab-

oratories .

Importance of Laboratory Reliability

A chemical analysis has been compared to an elastic

yardstick never giving the same result twice. How is one

to know then if laboratory tests are "right"? The fact is

that any decision regarding a petroleum product based on

laboratory test results is a decision under uncertainty.
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Decisions under uncertainty always involve a risk of making

the wrong decision. This is of particular concern when test

results of a petroleum product border on acceptability

limits. In order to properly evaluate the risk of misclassi-

fying borderline material, it is important to know how much

stretch or shrinkage to allow in reported test results.

Common sense dictates that it is also important to reduce the

risk by reducing the elasticity of the yardstick as much as

is economically feasible. The economics of reliability

control are probably most apparent when considering a com-

mercial application for which the costs of reliability control

and the costs of wrong decisions can be quite accurately com-

puted. Consider a refinery laboratory where small devia-

tions could be expensive ones. When mixing a blend, a small

excess per sample unit of an expensive component could add

up to many dollars in excess costs in a continuous process.

J. T. Walter cites a report by one refinery of losses of one

million dollars per year on a single operation due to quality

2give-away. Conversely, a deficiency could cause rejection

of a product by a customer and add the costs of reprocessing

to the product.

In regard to military applications, consider the cost

of delay in discharging a tanker's cargo or defueling a ship

while additional samples are tested, if the first sample

results indicated that the quality was suspect. As a more
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sobering example, we might visualize a heavily loaded air-

craft faltering on take-off and crashing because of loss of

power due to vapor lock. This could result from mis-classi-

3
fication of unfit fuel based on unreliable test results.

From these examples, the importance of the reliability

of laboratory test results in any attempt to control quality

should be evident.

A Current Effort to Control Military Laboratory Reliability

At the command level, the maintenance of the highest

standards of reliability in testing laboratories is depend-

ent upon the ability to detect apparent trends toward unre-

liability. In pursuit of this goal, a correlation testing

program has been set up within a major military area command

as a part of its quality surveillance program. Identical

samples of aviation gasoline, motor gasoline, jet fuel,

diesel fuel and lubricating oil are prepared and distributed

tri-annually to each of ten participating laboratories. The

results are summarized and the average value of all observa-

tions is determined for each test. Reproducability limits

are then computed for those tests for which a method of

determining reproducability limits is given in the applicable

American Society for Testing and Materials (ASTM) Standard.

Reproducability limits can be computed for about seventy

five per cent of the tests. The test results falling out-

side of these limits are indicated by an asterisk. A Summary





of Laboratory Performance is prepared which tabulates by

activity, the number of tests reported for which reproduc-

ability limits are computed and the per cent within reproduc-

ability limits. Each summary includes the tabular data for

each of the two preceding series of tests as well as for the

current series.

Purpose of the Thesis

The purpose of this thesis is to investigate some

statistical methods of treating the data obtained through

the military area command correlation testing program

described above to extract more definitive information from

them concerning the reliability of the participating labora-

tories' test results.





CHAPTER II

RELIABILITY

This chapter discusses types of measurement error and

their effects, and defines the associated terminology as it

will be used throughout the following chapters.

Also defined are repeatability and reproducability as

used by the American Society for Testing and Materials.

CAUSES OF UNRELIABILITY

Scarborough points out that all measurements are sub-

ject to three kinds of error: systematic or constant errors,

4mistakes, and accidental errors.

Systematic Errors

Systematic or constant errors are those which affect

all measurements alike. In regard to laboratory test results,

they could for example, be due to improperly calibrated equip-

ment or due to consistent but incorrect operative techniques.

Systematic errors are usually evident as a constant bias.

Mistakes

Mistakes or blunders are due to carelessness primarily

in making or recording observations. The fact that they do

not follow any law makes gross blunders recognizable as

isolated data points. Minor mistakes, however, may be dif-

ficult to detect.





Accidental Errors

Accidental errors are those whose causes are unknown

or undetermined. They are usually small and they are con-

sidered to follow the laws of chance. Consequently they are

also referred to as chance errors or random errors.

The mathematical theory of errors deals with acciden-

tal errors only. That is to say, systematic errors and gross

blunders are due to assignable causes and can therefore be

optionally eliminated, controlled, or accepted. Accidental

errors however, cannot be avoided and are bound to occur with

a measurable probability.

COMPONENTS OF RELIABILITY

Reliability, precision, and accuracy have been defined

in various ways. All are comparative or relative terms

rather than absolute measures. Arbitrary scales for their

measurement must be established based on predetermined stand-

ards .

Precision

Precision is a quality of a set of data that describes

the degree of dispersion of the values. The lower the dis-

persion or scatter, the higher the precision. Single mea-

surements cannot be considered to be "precise" or "not

precise .

"
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Accuracy

Accuracy is a quality of a single measurement or a

series of measurements that expresses the degree to which

the single measurement (or the average of the set of measure-

ments) conforms to a predetermined "true" value. High

accuracy implies close agreement to the predetermined stand-

ard.

Target Analogy

The relationship between precision and accuracy is

best explained through use of the target analogy.

Figure 2-1 illustrates four groupings of twelve shots

in a target. Target A illustrates a grouping which is pre-

cise but not accurate. The shots are in a tight cluster but

considerably removed from the center of the target area.

This is analogous to the accompanying frequency histogram of

laboratory measurements in which the measurements are grouped

close together but their average value is considerably removed

from the true value of the property being measured.

Target B illustrates accuracy without precision. The

shots cluster around the center of the target in a random

fashion but are widely scattered. Likewise in the accompany-

ing frequency histogram, measurements are relatively evenly

distributed around the true value but are relatively widely

dispersed.





3
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FIGURE 2-1

TARGET ANALOGY: PRECISION AND ACCURACY
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Target C illustrates a dispersion of shots which is

neither accurate nor precise. Again the shots are widely-

scattered and also do not form a uniformly dense pattern

around the center of the target as they did in B.

Target D illustrates good marksmanship, that is

marksmanship that shows high precision (tight clustering)

and high accuracy (good centering)

.

Standards

The ASTM Standards on Petroleum Products and Lubri -

cants provide convenient standards of precision in the form

of Repeatability and Reproducibility amounts given with the

description of the test method. Repeatability, is defined

by them (ASTM) as the greatest difference between two single

and independent results by a single operator in a given

laboratory that can be considered acceptable at the ninety

five per cent confidence level. Reproducibility, is defined

as the greatest difference between a single test result

obtained in one laboratory and a single test result obtained

in another laboratory that can be considered acceptable at

the ninety five per cent confidence level.





CHAPTER III

FUNDAMENTAL STATISTICAL MEASURES

Introduction

This chapter briefly discusses the fundamental stat-

istical measures which are applied or considered in later

chapters

.

In the first part of the chapter the measures are

defined. Methods of estimating population parameters from

sample statistics are presented in the next section followed

by a comparison of the relative efficiency of the various

estimators. Finally a discussion is given of some of the

advantages and disadvantages to be considered when choosing

each statistic or estimator.

Frequent reference will be made to normal populations

or distributions of values. The theory of the normal dis-

tribution stemmed from work done by Karl Gauss and, for this

reason, the normal distribution is sometimes identified as

the Gaussian distribution. The normal curve is defined

mathematically as

2

f (X) = —-

—

exponential - (x ~ ^ (3-1)
aVTrf 2 c

in which p, is the mean value of the variable and a is the

standard deviation, both of which are described in this

chapter

.
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In the context of equation (3-1) f(X) is known as a

"probability density function." For any probability density

function, f (X), the probability that a value of X lies in the

interval XT < X < X is given by P(XT < X < X )L — _ u ^ -*
x L — — u

X
P(X

T
< X < X

n
)

= f U
f (X) dX

XT
L u

(3-2)

Thus, the probability that a value X lies between limits X

and X is equal to the area under the probability density

function f(X) between the two limits. This area is shown

in Figure 3-1.

L

FIGURE 3-1

A PROBABILITY DENSITY FUNCTION SHOWING THE AREA EQUIVALENT
TO THE PROBABILITY THAT X LIES BETWEEN XL AND Xy

A "normal distribution" for a variable such as X

signifies that the probability of X being between any two

limits X
T

and X is given by equation (3-2) if one uses

equation (3-1) for the definition of f(X).
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POPULATION PARAMETERS

Measures of Central Tendency

A universe or population is the totality of all per-

tinent observations that might be made in a given problem.

If these observations are normally distributed, they will

be symetrically dispersed around an "average" or central

value. The central tendency of the population is of funda-

mental interest in any statistical analysis.

The ARITHMETIC MEAN or ARITHMETIC AVERAGE, p., of a set

of N values. X., is defined as the sum of the set of values,

divided by the number of values in the set.

N
E X.

POPULATION MEAN =
y,

= ~ (3-3)

The arithmetic mean is the most commonly used measure

of central tendency and is the value generally intended when

the term "average" or "mean" is mentioned.

The MEDIAN is the middle value of a set of numbers

arranged in ascending or descending order according to value.

For an even number of data points, it is the arithmetic aver-

age of the two middle values.

50% of values < M < 50% of values

The MIDRANGE is a point halfway between the largest

and smallest observations. It is computed as the average of
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the first and last values of a set, ordered according to

value

X
l

+
*N

MIDRANGE Where X
1

< X
2

<. . .< X^ (3-4)
2

For a normally distributed population, the arithmetic

mean, median, mode and midrange have the same value.

Measures of Dispersion

The second of the two most fundamental measures in

statistical analysis is dispersion. Dispersion is a measure

of the extent to which the pertinent observations comprising

the population are scattered around a measure of central

tendency. It may be viewed as a measure of precision or the

consistency of, or the variation in, a set of measurements.

The RANGE is the simplest measure of general vari-

ability. This is the difference between the highest and

lowest value of an entire set of measurements.

RANGE = w = X^ - X
1

Where X, < X
2

<. . .< X^ (3-5)

The AVERAGE DEVIATION is the arithmetic mean of the

absolute deviation of each value of a set of data from the

central value.

AVERAGE DEVIATION = A.D. =

N

i

Xi-1
N

(3-6)

The VARIANCE, or MEAN-SQUARE DEVIATION, is the aver-

age of the squared deviations from the mean.
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N
7

S (X. - p,r

VARIANCE = a
2 = (3-7)

From a mathematical standpoint the variance is the

basic measure of the distribution, but a very frequently

used measure of dispersion is the STANDARD DEVIATION, or

ROOT MEAN -SQUARE DEVIATION which is the difference between

the mean and the point of inflection of a normal curve. The

standard deviation is defined as the positive square root of

the variance.

STANDARD DEVIATION = a ^ Q
2

(3-8)

ESTIMATING POPULATION PARAMETERS

A statistical estimation problem involves selecting,

on the basis of sample information, an estimate which approx-

imates the value of a population parameter. Estimators are

used when practical considerations militate against direct

measurement of the population parameter. If the cost of

testing exceeds the value of the added benefits, it is

uneconomical to measure the parameter directly. If the popu-

lation is infinite, measurement of all samples is physically

impossible. If the test required to measure a particular

property alters, consumes or otherwise destroys the product,

measurement of all samples is not useful. These considera-

tions apply to testing of bulk petroleum products.
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The problem of determining the "best" estimator is

varied by the circumstances of the situation. In general,

the "best" estimator is one which has a distribution con-

centrated near the true value of the parameter and which can

be applied economically.

Among the statistical criteria for evaluating esti-

mators are unbiasedness , consistency, and efficiency.

The bias of an estimator is the difference between the

mean of the distribution of the estimator and the true value

of the parameter being estimated. An unbiased estimator then

is one which has a distribution having a mean value exactly

equal to that of the parameter being estimated.

An estimator is consistent if the probability that an

estimate will vary from the true value of the parameter by

more than any given amount can be made arbitrarily small by

increasing the number of observations in the sample. More

simply stated, an estimator is said to be consistent if the

reliability of the estimate becomes greater as the sample

size is increased.

The efficiency of an estimator is a relative criterion

which will be discussed in a later section.

Estimators of the Population Mean

The sample mean, or arithmetic average, is an unbiased

estimator of the population mean for any type of population.

For a normally distributed population, the sample median and
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the sample midrange are also unbiased estimators of the popu-

lation mean. The purpose of the estimator is to approximate

the value of a population parameter, however, the presence

of extreme values in a set of sample observations (particu-

larly a small set) could greatly distort the estimate. To

minimize distortion, various modifications of the mean,

median, and midrange may be computed. These modifications

are variously identified in the literature but the majority

follow two general patterns;

a. Outlying data in a set are excluded from com-

putation of the mean, median or midrange.

b. An equal number of values from the lower and

upper ends of an ordered set are excluded from

computation of the mean, or midrange.

The elimination of equal numbers of values from both

the high and low ends of the ordered set will not of course

change the median. It should also be obvious that the median

is a special case of both the symmetrically modified mean and

the symmetrically modified midrange. Given a set of six

values, the following symmetrically modified means may be

generated:

(X + X + X + X )

Exclude X, and Xc = „X C
= —. — (3-9)

i b Z o 4

(X
3

+ VExclude X
±

, X
2

, X
5

, X
&

=
3
X
4

= ±-^ — - Median (3-10)
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Again using a set of six values, the following sym-

metrically modified midranges may be generated:

(X
?

+ X )

Exclude X, and Xr
= C C = x — (3-11)

1 6 2 5 2

(X + xA )

Exclude X
x

, X
2

, X
5

, X
&

= <Z. = r — = Median (3-12)

General equation for computation of symmetrically modified

mean

:

N-A
Z X.

(A + 1)
X
(N - A) (N-2A)

(3-13)

Where: A = number of values to be eliminated from each

end of the ordered set.

General equation for computation of symmetrically modified

midrange

:

c =
X
(A + 1)

+ X
(N - A)

(A + 1)*-(N - a) 2 K * L ^'

The principal advantage of arbitrarily discarding data

from both ends of an ordered set is the simplicity of the

procedure. It has the disadvantage of automatically reduc-

ing the effective size of the sample, discarding good data

along with any "bad" data. For the most scientifically

accurate work, statisticians prefer to discard members of a

5
sample set on an individual basis. This may be limited to
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eliminating only those values known to have been influenced

by some cause foreign to the rest of the set. It may also be

accomplished by following some statistical rule by which

values can be discarded with a predetermined error risk. The

6method of Dixon for testing extreme values, being a nonpara-

metric test, requires only the available sample observations.

Dixon's method makes use of critical values of ratios of

differences to be expected at various probability levels and

for different sample sizes. If the observations in the

sample are ranked in order of magnitude as follows:

X, < X < . . . < X , < X
1 2 n-1 n

the ratio for testing the smallest extreme is:

X
l^i " x

l
(3-15)

11 x . - X-,J n- j 1

and the ratio for testing the largest extreme is:

x - x
_ n n-i , ~ , c v

r. .
- (3-16)

ij x - x, . .J n l T
j

The appropriate ratio for various sample sizes is:

sample size 3 to 7 : r,
n

sample size 8 to 10 : r. .

sample size 11 to 13 : r~,

sample size 14 to 30 : r~„
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Tables giving the maximum expected values for Dixon's

ratios are widely reproduced in statistical texts. If an

observed ratio exceeds the maximum expected ratio, the

extreme value may be rejected with the risk of error set by

the tabulated probability level. Another method based on

statistical probability is the trial and error method. This

method requires an independent estimate of standard devia-

tion. A trial mean is computed from all the observations in

the sample. Confidence limits at some reasonable level, say

ninety five per cent, are then set around the trial mean.

Any extreme data point outside the ninety five per cent con-

fidence interval is assumed not to have come from the same

population as the rest of the data and is rejected. A new

trial mean and confidence interval are determined based on

the remaining data. The entire original set of observations

is tested against the new confidence limit and additional data

points are rejected and/or previously rejected data points

are picked up. The process is repeated until a stable set

of values is established, that is, no additional data points

are picked up or rejected by the newly computed confidence

interval

.

Estimators of Population Dispersion

Since the sample mean may not be identical with the

population mean, the sum of squares of deviation of the

individual sample values from the sample mean will be less
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than the sum of squares of deviation of the individual sample

values from the population mean. The variance of the sample,

computed from the sum of squares of deviation divided by n,

the number of items in the sample, will therefore be smaller

than if the sum of squares has been calculated from the true

population mean. To overcome this bias, the population

variance is estimated from a sample by dividing the sum of

squares of deviation by n - 1 instead of n.

ESTIMATED POPULATION VARIANCE &
2

= S
2

(3-17)

,2 _
n - 1

(s )

n

_
n - 1

n
'•:

i

(X
±

- x)
2

n
(3-18)

An unbiased estimate of the population standard devi-

ation can be obtained by multiplying the square root of the

estimated population variance by a correction factor which

7varies with the type of distribution and the sample size.

ESTIMATED POPULATION STANDARD DEVIATION

o
For a normally distributed population:

n = 2; k - 1.253

S K:nV7 (3-19)

n = 3; k = 1.128
n

n = 4; k = 1.085
n

n > 4; k = 1 + —, r-r
n 4(n - 1

)
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The sample range, w, multiplied by the appropriate

correction factor forms an unbiased estimator of the popula-

tion standard deviation. Tables giving correction factors

to be applied to the range can be found in readily available

9 10textbooks and handbooks and appear to be based on work

done by Pearson."

The sample average deviation, A.D., multiplied by a

correction factor forms another unbiased estimator of the

population standard deviation. Still another, and one which

is easier to compute than the average deviation, is the

modified linear estimator. Tables of average deviation

estimators and modified linear estimators were developed by

Dixon and have been published in at least one book which he

12has co-authored.

Table I summarizes the range, average deviation and

modified linear estimators of the population standard devia-

tion for sample sizes two through ten.
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TABLE. I

UNBIASED ESTIMATORS OF THE POPULATION
STANDARD DEVIATION

Sample _. A.D. from Modified
«- • Range R , ,

.

Size ^ Median Linear

0.8862 DIFA 0.8862 DIFC

0.5908 DIFB 0.5908 DIFC

0.3770 DIFA 0.4857 DIFC

0.3016 DIFB 0.4299 DIFC

0.2369 DIFA 0.2619 DIFD

0.2031 DIFB 0.2370 DIFD

0.1723 DIFA 0.2197 DIFD

0.1532 DIFB 0.2068 DIFD

0.1353 DIFA 0.1968 DIFD

DIFA = (H-L) where L = E X. , i = 1 to n/2

and H = Z X. , i = (n/2) + 1 to n

DIFB = (H-L) where L = Z X. , i = 1 to (n-l)/2

H = Z X. , i = (n+3)/2 to n

DIFC = (H-L) where L = X

H = X
n

DIFD = (H-L) where L = X, + X
2

H = X + X, - xn (n-1)

2 0.8865R

3 0.5907R

4 0.4857R

5 0.4299R

6 0.. 3946R

7 0.3698R

8 0.3512R

9 0.3367R

10 0.3249R
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EFFICIENCY OF ESTIMATORS

The efficiency of an estimator is a relative criterion

based on variance. The variance of an estimator is the mean

squared deviation of the estimates from the true value of

the parameter and the most efficient estimator of a given

parameter is the one having the smallest variance. Efficiency

is defined as the ratio of the variances of the sampling

distributions of the most efficient estimate and the esti-

mate being compared.

------„.--,-, _ „ _ Variance of the most efficien t estimator
hit r J-LJLijINL Y ii t: : -z—, , ,

. 7 ————————
Variance of 'che estimator being compared

Hence, the efficiency of the most efficient estimator is 1;

less efficient estimators have an efficiency of less than 1.

Relative efficiencies are approximately the ratio of

sample sizes which will give equal precision in the estimate

Efficiency of Population Mean E stimators

The sample mean is the efficient estimator of the

population mean. The variance of the sampling distribution

2
of the mean is o /n . From the definition of efficiency it

13follows that the variance of the sampling distribution of

an unbiased estimator of the mean of a normal population is

a
2/nE

.

The efficiencies of the median and midrange for

various sample sizes are given in reference 14. The

12
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efficiency of the median is high for small sample sizes

decreasing to a value of 0.637 as n approaches infinity. For

the midrange, the efficiency is also high for very small

samples but decreases rapidly as the sample size increases,

approaching zero as n approaches infinity.

By comparison of the sampling distribution of the

means of all possible combinations of two values from a large

sample , it can be shown mathematically that the estimator

with the highest efficiency among the group is the arith-

metic average of the 28.6 percentile value and the 71.4 per-

centile value. The 25.0 percentile and the 75.0 percentile

are usually used in practice for large samples because they

are easier to remember and have only a slightly lower

efficiency. The limiting efficiency of this modified mid-

range combination is 0.808 as n approaches infinity. For

smaller samples, the efficiency of the Average of the Best

Two increases above 0,308. For sample sizes larger than four,

the efficiency of the Average of the Best Two as an estimator

of the population mean is always greater than that of the

median or unmodified midrange. The estimators and effi-

ciencies of the Average of the Best Two for various sample

sizes are given in reference 14. Table II gives the esti-

mators based on the Average of the 3est Two for samples of

size two through ten. It also compares the efficiencies of

the median, midrange and Average of the Best Two as esti-

mators of the population mean for these same sample sizes.
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TABLE II

EFFICIENCIES OF ESTIMATORS OF THE POPULATION MEAN
COMPARED TO THE SAMPLE MEAN

Sample
Size

Sample
Median

Sample
Midrange

Aver

.

Eff.
of Best Two
Estimator

1.000 1.000 1.000 h(x
1

+ x
2 )

3 0.743 0.920 0.920 h(x
±

+ x
3

)

4 0.838 0.838 0.838 h(x
2

+ x
3

)

5 0.697 0.767 0.867 h(x
2

+ V
6 0.776 0.706 0.865 h(x

2
-f. x

5
)

7 0.679 0.654 0.849 h(x
2

J- X
6

}

8 0.743 0.610 0.837 h(x
2

-'- X6>

9 0.669 0.572 0.843 h(x
3

+ x
7 )

10 0.723 0.539 0.840 h(x
3

+ Xg)

Efficiency of Population Dispersion Estimators

The efficiencies of the range, average deviation and

modified linear estimators relative to the square root of

S have been determined and published. The efficiency of

the range estimator of population standard deviation is

relatively high for sample sizes of five or less, but

decreases to 0.85 for a sample of size ten and to 0.70 for a

sample of size twenty. As the sample size increases indefin-

itely, it approaches zero. The efficiency of an estimate
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based on the average deviation is greater than that of an

estimate based on the range for sample sizes larger than six.

For sample size ten, it is 0.S9. An estimate obtained from

the modified linear deviation has an efficiency equal to or

greater than either the estimate obtained from the range or the

estimate obtained from, the average deviation up to sample size

five. For larger sample sizes, its efficiency is consis-

tently greater. The efficiencies of the range, average

deviation and modified linear estimators for sample sizes

two through ten are given in Table III.

TABLE III

EFFICIENCIES OF ESTIMATORS OF POPULATION
STANDARD DEVIATIONS AS COMPARED TO S

Sample
Size

Range A.D.
Modified
Linear
Estimate

2 1.00 1.00 1.00

3 0.99 0.99 0.99

4 0.98 0.91 0.98

5 0.95 0.94 0.96

6 0.93 0.90 0.96

7 0.91 0.92 0.97

8 0.89 0.90 0.97

9 0.87 0.91 0.97

10 0.85 0.89 0.96
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CHOOSING STATISTICS AND ESTIMATORS

The proper choice of which statistic or which esti-

mator to use depends upon the problem. Again, the objective

is the closest economically obtainable answer to the true

value being sought.

Quality surveillance at the command level initially

seeks to detect conditions which may require corrective

action. Answers which are to be used for management by

exception can sacrifice some statistical efficiency for

computational efficiency.

Central Tendency

The arithmetic mean is the most widely used measure

of central tendency. Perhaps the most important reason for

this is that means of samples of uniform size tend to have a

normal distribution regardless of the type of distribution

of the population from which the samples were drawn. This

characteristic of the sample means permits the use of the

normal distribution in making probability statements about

the population mean with full confidence even if the distri-

bution of the population is unknown or uncertain. The

arithmetic mean, being based on all the data, draws the maxi-

mum amount of information from the sample. At the same

time, it is affected by extreme data, a significant dis-

advantage when sample size is small and the sample mean is to
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be used as an estimate of the population mean. Such is the

case when the central tendency value of a correlation test

sample distributed among a small number of laboratories is

to be used as an estimate of the true value of the property-

measured. It is obviously important to exclude extraneous

values from, the computation of the sample mean in such cir-

cumstances .

The sample median is a less efficient estimator of

the population mean when both the median and the arithmetic

mean are computed from the same number of observations. For

sample size ten, for example, efficiency of the median is

0.723. The median, however, has the advantage that it is

not seriously affected by the retention of extreme values in

17
a sample. Its efficiency in utilizing available data,

therefore , is one hundred per cent since none of the observa-

tions need be discarded. If, as the result of a test for

outliers, three extraneous values were discarded from a set

of ten to compute the arithmetic mean estimator of the popu-

lation mean, the efficiency of utilization of available data

is only seventy per cent. An approximation of the relative

efficiency of the arithmetic mean and the median as estima-

tors in this case can then be made.

Overall efficiency of arithmetic mean: 0.70 (I. 000) =0.700

Overall efficiency of median; 1.00 (0.723) = 0.723
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From this it can readily be seen that the choice of the

arithmetic mean as estimator does not guarantee the most

efficient estimate in every case.

In the same vein, it must be remembered that although

a more efficient estimator has a greater statistical chance

of being close to the true population parameter, this does

not guarantee that for each sample a more efficient estimate

will be closer to the parameter than a less efficient esti-

mate. There is also the question of the relative effort or

difficulty in finding the mean value or the median value.

If the data are arranged in an order set the median can be

located quickly regardless of the sample size. For small

samples, say ten or less, the median value can usually be

determined by inspection relatively quickly even if the data

are not ordered. Mathematically however, the median is hard

to handle

.

The midrange is a good measure of central tendency

for five or less observations but not as good as the mean.

For sample sizes larger than five, it is the least efficient

estimator of the population mean. Its chief merit is

simplicity of calculation but, being the average of the

largest and smallest values in a set, it is even more affected

by extreme values than the arithmetic mean and the same tests

for extreme values are required. However, the midrange is

superior to the mean or median for extremely short-tailed
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18
distributions. The Average of the Best Two is a means of

artificially creating a short-tailed distribution by chop-

ping off the most widely dispersed values. This estimator

offers several advantages. Its construction is such that

the probability of being significantly affected by outliers

is relatively small, and its efficiency relatively high

(0.840 for sample size 10). Yet, it is relatively easy to

compute

.

Dispersion

The range is the simplest measure of general vari-

ability and is very easy to compute. If the sample size is

small, say ten or fewer, it is a sensitive measure of the

19 20general variability of the population. ' Since only two

of the data points are involved in the calculation of the

range, it in no way expresses the variation of the other

values lying between these two extremes. Therefore, the

accuracy of the range estimate of dispersion decreases as

sample size increases. None the less, the range is an

extremely useful statistic for small samples and is often

used in quality control and inspection work.

The average deviation is sensitive to the variability

of the population regardless of the size of the sample since

it is based on all the data. On the one hand, it is an

obviously reasonable measure of variability for small samples
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because it is simple to interpret and easy to compute. On

the other hand, it is hard to handle in mathematical analysis

21owing to the use of absolute values. There is a tendency

to use the average deviation as a measure of general vari-

ability when the median is used as a measure of central

tendency because it is a minimum when measured from the

median. For a normal distribution, the standard deviation

i
7— ] 9is -%/ 77/2 or 1.253 times the average deviation. If the

average deviation is known from historical data, the standard

deviation of a measurement can be estimated from this rela-

tionship.

The variance and the standard deviation are the most

efficient of the estimators of population dispersion. They

are harder to compute than the range or the average devia-

tion but are much less affected by extreme values than the

range and are mathematically less cumbersome than the average

22deviation

.





CHAPTER IV

ANALYSIS BY NUMERICAL METHODS

INTRODUCTION

The purpose of this thesis as stated in Chapter I is

to investigate methods of extracting more definitive infor-

mation concerning the reliability of the participating

laboratories' test results from correlation test data.

Some statistical methods of treating available cor-

relation test data sets which will accomplish this purpose

are examined in this chapter. These methods are applied to

actual data and the results are interpreted.

The basis of single observation testing is presented

first and its limitations are pointed out. Next, a method

of analyzing paired sets of data is described and it is

shown that two sets of observations are the minimum required

to estimate the consistency of a laboratory's results using

a proven method. It is also shown that further analysis is

possible but is dependent upon an adequate degree of pre-

cision being exhibited by the two observations.

A method of treating multiple sets of data follows

which is shown to produce a measure of the reliability and

a measure of the systematic error of a laboratory's test

results as well as an improved measure of the relative
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accuracy of results. Two laboratory rating methods are

described which could be used as supplements to the Summary

of Laboratory Performance described in Chapter I. One method

provides an index of accuracy and an index of precision for

specific tests. The other provides a laboratory ranking

index for the family of tests associated with a given product.

The manner of presentation of each of the methods for

analyzing the correlation test data is to discuss the theory

and then describe the procedure. The procedural descrip-

tion includes illustrative computations using actual cor-

relation test data obtained from a major military command.

Terminology used in connection with the reliability

of laboratory test results is defined in Chapter II.

The statistical measures applied are those discussed

in Chapter III. Analysis of laboratory test results is not

only a problem of statistical estimation but also a problem

of hypothesis testing. The statistical tests applied in this

chapter have not themselves been discussed previously in

this thesis except for tests of extreme values, but they use

the same statistics discussed in Chapter III. The tests will

be described as they are introduced into the problem.
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TESTING SINGLE OBSERVATIONS

Discussion

Accuracy limits . A minimum of two sets of observa-

tions are required to establish an estimate of the precision

of a test method. These can be repeated tests by the same

operator using the same equipment to establish the operator-

equipment precision (repeatability) of the test method, or

paired duplicates from separate laboratories to establish

the interlaboratory precision (reproducibility) of the

method. Once established, the repeatability amount and

reproducibility amount can be used to check the accuracy of

a single observation when the true value of the property

being measured is known or can be estimated.

Let d represent the mean difference between pairs of

test measurements.

?
(XAj " X

Bj }

d = (4-1)
n

, It can be shown that the mean difference between

pairs, d, is (2/V~n) times the standard deviation. 3y

transposing terms, an expression is obtained for computing

the standard deviation of a single measurement.

a = d
Y""^~ = 0.8862d (4-2)
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A confidence interval to the true value of the prop-

erty being measured can then be established around the

single observation. X. ..

Confidence range for p,
= X - zo (4-3)

Assuming that the single measurement. X. ., comes from a
1 j

normally distributed population of similar measurements

affected by a large number of small random factors, z is the

normal deviate appropriate to the desired confidence level.

The term, - zo, is the tolerance set on the precision of

measurement X. Therefore, if d is known or can be determined,

the accuracy of a single measurement can be estimated cor-

responding to a predetermined degree of confidence.

Accuracy limits for X =
p, - zo

=
p, ± z(0.8862d) (4-4)

The value of z at the five per cent probability level

is 1.96.

Accuracv limits for X~ nc =
p. - ( 1.96 )( 0.8862 )d

= p ± 1.74d

These limits can also be expressed as a ninety five

per cent accuracy confidence interval for a single observa-

tion, X. ..

1J

(p, - zo) <X< (p,
+ zo) (4-5)

(p. - 1.74d) < X
Q g5

< (p, + 1.74d)
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This interval can then be used to test the hypothesis

that the single observation X. . is statistically the same as

the true value, p, , of the property being measured.

Procedure

Data and assumptions . The raw data required are the

test results for a given property obtained from a single

sample which has been divided and distributed among the

participating laboratories. Analysis of the data is based

upon the following assumptions: (A) The sub-divided samples

are homogeneous, that is, there is no quality variation of

the material distributed to the various participating lab-

oratories, (B) The universe of observations for each labora-

tory and all laboratories is normally distributed, (C) The

test procedure has been proven, that is, it is adequately

described to preclude general misinterpretation of the exact

procedures to be followed.

For example, the following single measurements were

submitted as the API Gravity of aviation gasoline sample

63-1700 by the ten participating laboratories in a cor-

relation test.





TABLE IV

MEASUREMENTS OF API GRAVITY OF AVIATION GASOLINE
SAMPLE 63-1700 BY TEN LABORATORIES

4 5 6 7 8 9 10
Test

API Grav. 69.8 69.1 69.6 69.1 69.1 69.2 69.2 69.2 69.4 69.2

Decision rule ; accuracy . Compute the estimated true

API gravity of the gasoline using the sample arithmetic

mean as the estimator. Substituting in (3-3):

The ASTM reproducibility amount, R.A., described in

Chapter II, can be substituted for the ninety five per cent

confidence interval range, - za, in (4-4) as a standard to

test the statistical accuracy of the single test result

obtained by each laboratory. (4-5) then becomes:

I
A R.A J __ /A R.A. \ , A r \

f
~ "2— < Xq.95 < p.

+
"J- (4-6)

and the decision rule is:

If the observed value is between the estimated

population mean minus one half of the ASTM Reproduc-

ibility amount and the estimated population mean plus

one half the ASTM Reproducibility amount, conclude

that results obtained by the laboratory for this test

are statistically accurate. If the observed value
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lies outside these limits, conclude that results

obtained by the laboratory for this test have

errors attributable to assignable causes with a

five per cent risk of being wrong.

Determine the ASTM Reproducibility amount, R.A., from the

Standard Method of Test for API Gravity of Petroleum

24
Products, ASTM Designation: D287-55.

R.A. = 0.5 degrees API

Compute the ninety five per cent confidence limits:

b ± ^y^- = 69.3 ± 0.25

At the ninety five per cent confidence level, test

the hypothesis that the API Gravity measurement X., reported

by laboratory j, is statistically the same as the true API

Gravity of the sample. Substituting in (4-6):

69.05 < X. < 69.55
j

If the X. is between 69.05 and 69.55 accept the
J

hypothesis and conclude that results obtained for this test

by laboratory j are statistically accurate. If the X. is

less than 69.05 or mere than 69.55 reject the hypothesis

and conclude that results obtained for this test by lab-

oratory j have errors attributable to assignable causes.

The hypothesis is rejected for two values:

X, = 69.8 > 59.55

X
3

= 69.6 > 59.55
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The distorting effect of. outlying data on estimates

of population parameters was discussed in Chapter III and a

trial and error method of eliminating outliers from compu-

tation of the mean was described. Applying this method:

10
Zj X .

— X, — X~
A - J

J
- 553.5 _ ftQ -

M.

"

g
- — 69.2

Compute new ninety five per cent confidence limits:

H ± ^~^- = 69.2 ± 0.25

Substitute in equation (4-6) and retest the hypothesis for

all ten measurements X.:
3

68.95 < X . < 69.45
J

The hypothesis is rejected for the same two values:

X, = 69.8 > 69.45

X
3

= 69.5 > 69.45

Since no additional data points were rejected and none

previously rejected were picked up, a stable set of values

has been determined.

This is the method presently used to evaluate cor-

relation test results. It has been previously pointed out

that this method gives no indication of whether systematic

errors or mistakes are the causes of out-of -control observa-

tions .
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TESTING PAIRED OBSERVATIONS

Discussion

Just as a minimum of two sets of observations were

required to establish an estimate of the precision of a test

method, two observations are the minimum data required to

estimate the consistency of a laboratory's results using a

proven method.

Precision Limits

Two observations can be analyzed for precision by

estimating the standard deviation from the mean difference

between pairs. Precision limits for \i :

p,
= X ± zo (4-3)

Confidence interval for X:

(u. - zo) < X < U + zo) (4-5)

Let the confidence range, - zo, which is constant for

a given probability level, be represented by the symbol 2C.

The paired test results from one laboratory are represented

by X. . and X^ .. The sample mean, X., is the estimator of the1 Aj Bj J'

population mean. Then:

(X. - c) < X. . < (X, + c)
J - A j — j

(4-7)

Substituting for X.:
J

XAj * X3-
"

2

i

+ X
Bj

- C < X A . < ^r £J-

— Aj — 2
C (4-8)

-
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Clearing fractions:

(XA .
* X

Bj
-2C) < (2XA .) < (XA .

+ X
B

. 2C)

Subtracting X,

(X
Bj

- 2C) < (XAj ) < (XBj
+ 2C)

Subtracting X
Bj

(-2C) < (XAj - XBj ) < (
+ 2C)

Transposing:

(X, . - X„ .) < - 2CAj Bj — (4-9)

Therefore

:

XAj - X
Bj < 2C < 2za (4-10)

Likewise

:

(X . - C) < X^ . < (X .
+ C)

Substituting for X., clearing fractions, subtracting X, . andj ., A j

X_ . , and transposing terms:

(X
Bj " X

Aj' £ ± 2C

And

X_ . - X A .. < 2C
Bj Aj| -

But:

X_ .
— X, . X, . — x._ .

Bj Ajj
|
Aj Bj

Therefore

:

X. . - X„ J < 2C < 2zaAj Bj - (4-11)
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At the ninety five per cent confidence level:

j>' .
- X„ . < 2(1.74)d < 3.48d

This range limit can then be used to test hypoth-

esis that a pair of observations (X, ., X„ . ) are s-ca-cisticallyAj Bj •*

one and the same value. If they are, further statistical

inferences may be drawn from them.

Estimating systematic error . If the two observations

from a laboratory show an acceptable degree of precision, an

estimate can be made of the amount and direction of systematic

error or bias which they contain.

(xA . - x. )
-- (xR .

- x )

BIAS = £J - 2J ^_ (4-12)

or, for simpler calculation,

BIAS =
(XAi

* X
3i> <*A

+ V (4_ 13) ,BIAS
2 ^

= X . - X
J

Although constant factors may be present in measure-

ments which are not statistically precise, there is a high

probability that either or both of the measurements also

contain errors caused by mistakes of unknown magnitude and

direction. A 'bias' computation would be meaningless in such

circumstances, could only cause confusion and should not be

made .
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Accuracy limi'ts . The standard deviation of the means

of samples of size n is estimated by dividing the estimated

population standard deviation by the square root of n. One

possible way to define accuracy in a normally distributed

population is:

X < p.
± z|-fM (4-14)- (Vn

J

where

:

a = the true value of the property being measured

a = the population standard deviation

n = the sample size

z = the normal deviate for the desired level of

confidence

x - S
n

But, once again, the proper choice of a statistic or

estimator is dependent upon the available • data and the

intended purpose for which it is to be used. For small samples

acceptance of the hypothesis that the sample mean and the true

value of the property being measured are statistically one

and the same value on the basis of the above test may occur

even when the situation is not true. For example, assume two

observations are obtained of a property whose true value is

zero. It can be readily seen that regardless of magnitude,

if the two observations have the same value but opposite signs

the average will be zero. Although the mean of the
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observations would be statistically "accurate" the hypoth-

esis test is obviously meaningless for such a situation.

One simple way to handle this dilemma is to tie the

accuracy determination to the precision test. The hypoth-

esis test for accuracy of a laboratory's test results would

then be modified to the extent that X would be redefined as

the average of a set of laboratory test results which are

statistically precise at some specified level.

Procedure

Data . The raw data required are the test results

for a given property obtained from, two samples which have

been divided and distributed among the m participating lab-

oratories. It is not necessary that both samples be of the

same product. It may be feasible to pool test results of

different products. Volk states that, in comparing paired

data, the pairs do not have to be measures of the same

thing, but the individual measurements in a pair will be made

25
at the same conditions. The objective is to avoid intro-

ducing additional sources of variability. Generally, this

objective can be accomplished if the test procedures are

identical and if the samples are reasonably close in the

25magnitude of the property being evaluated. However, even

though pooled test results are obtained from, statistically

homogeneous samples, if they are not duplicate tests of the
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same sample, they do not have a common mean. Consequently,

the observations X, . and X_ . cannot be compared directly.
lj 2j > *

The algebraic deviation from the mean, v. ., for each obser-r> ' 1 j

'

vation must be determined by subtracting the mean, X.,

computed for each test from each observation reported for

that test.

v. .
= X. .

- X. (4-15)
ij ij i

More will be said about the pooling of data, to form

larger samples in the section on multiple test results.

Correlation test results of the ten per cent distil-

lation point of two different samples of aviation gasoline,

grade 115/145 provided the data which will be used to

illustrate the procedure. These two sets of values are

given in Table V. The results labeled as Test 1 are measure-

ments taken on correlation test sample 64-27. Those labeled

as Test 2 are measurements taken on correlation test sample

64-3599. The corresponding matrix of observations, v. ., is

given in Table VI.
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Assumptions . Analysis of the data is based upon the

following assumptions: (A) The sub-divided samples are homo-

geneous, that is, there is no quality variation of the

material distributed to the various participating labora-

tories for each test, (B) The universe of observations for

each activity and all activities is normally distributed;

and, (C) The test procedure has been proven, that is, it is

adequately described to preclude general misinterpretation

of the exact procedures to be followed.

Decision rule : precision . The ASTM reproducibility

amount, R.A., described in Chapter II, can be substituted

for the ninety five per cent confidence interval range 2C

in (4-11) as a standard to test the statistical precision of

the pair of test results obtained by each laboratory. (4-11)

then becomes:

|v, . - v~ . I < R.A. (4-16)

and the decision rule is:

If the absolute value of the difference between

the deviation from, the test means of two independent

measurements is equal to or less than the ASTM repro-

ducibility amount for the test, conclude that results

obtained by the laboratory for this test are suf-

ficiently precise, i.e., errors affecting results are

probably due to chance causes inherent to the pre-

scribed test method. If the absolute difference is
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greater than the ASTM reproducibility amount, con-

clude that results obtained from performance of this

test by the laboratory have errors attributable to

assignable causes with a five per cent risk of being

wrong.

Determine the ASTM reproducibility amount, R.A., from, the

Standard Method of Test for Distillation of Petroleum Pro-

27
ducts, ASTM Designation: D35-61.

R.A. = 7 °F

For the m laboratories, compute:

v, . - v„ . , i = 1 to m
^J • 2j|

At the ninety five per cent confidence level, test

the hypothesis that the ten per cent distillation point

measurements X ? . and X_ . reported by laboratory i are stat-
1 j 2 j

£ J J J

istically the same in respect to their deviation from the

true values of the ten per cent distillation points of

samples 1 and 2 respectively. Substituting in (4-16):

I

v, . - v„ . < 7
i

lj 2j: -
I

If the absolute difference between v, . and v_, . is
lj 2j

equal to or less than 7, accept the hypothesis and conclude

that results obtained for this test by laboratory j are suf-

ficiently precise. If the difference is greater than 7,

reject the hypothesis and conclude that results obtained

for this test by laboratory j fail to meet minimum, standards

for precision.
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I 1The differences, v, . - v- . i . for the illustrative test
5

lj 2j|'

results are tabulated in Table VI. The paired test results

from all laboratories are precise according to the estab-

lished standard. Consequently, all may be further analyzed

for average bias and for accuracy.

Bias measurement . The mean deviation from the mean

of the paired test results reported by laboratory j is deter-

mined by:

v, .

+ v
? .

v. = *' ^ (4-17)
J 2

This is equivalent to (4-12) for the bias estimate based on

two observations from a laboratory which shows an acceptable

degree of precision. The values v . computed from the illus-

trative data appear in Table VI. These values will be further

utilized in testing the accuracy of the laboratories.

Decision rule : accuracy . A test for accuracy is

given by (4-14) in which X is defined as the average of a

set of laboratory test results which are statistically pre-

cise at some specified level. Substituting v. for X and

v. . for u. (4-14) becomes:

v. ; v. . ± -££= (4-18)
3 - ij y n

But v. . is zero by definition. Therefore (4-18) becomes;
ij *

v . < - -—5- (4-19)
J
- n
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The ASTM reproducibility amount, R.A., can be sub-

stituted for the ninety five per cent confidence interval

range - zo in (4-19) as a standard to test the statistical

accuracy of the paired test results obtained by each labor-

atory. Also substituting for n, (4-19) becomes:

:

-.\ jy^. (4 _ 20)"2 - j — 2

and the decision rule is:

If two single observations obtained from statis-

tically homogeneous sources are statistically precise

at the ninety five per cent level, and if the absolute

value of the average variation from, the mean of the

paired single observations is within the ninety five

per cent confidence range based on the applicable

ASTM Reproducibility amount, conclude that results

obtained by the laboratory for this test are accurate.

If the absolute value of the average is above or below

the ninety five per cent confidence range, conclude

that the results obtained performing this test con-

tain errors which cannot be accounted for by chance

causes with a five per cent risk of having reached

the wrong conclusion.

Compute the ninety five per cent confidence limits:

R P j- 7i
.

= - —~^ - - 2.5
2 z 2 2
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At the ninety five per cent confidence level, test

the hypothesis that in regard to deviation from the true value

of the property measured, the average of a pair of measure-

ments is statistically the same as zero. Substituting in

(4-20)

:

- 2.5 < v. < + 2.5

If the v. is between -2.5 and +2.5 accept the hypoth-

esis and conclude that, on the average, results obtained for

this test by laboratory j are sufficiently accurate. If the

v. is less than -2.5 or greater than +2.5, reject the hypoth-

esis and conclude that, on the average, the results obtained

for this test by laboratory j have errors attributable to

assignable causes.

The hypothesis is accepted for the ten laboratories

in the example but laboratory 1 is on the borderline.

While these results produce a quick and satisfactory

indication of accuracy, they do not make full use of the

available information. They do not take into consideration

the probability of statistically independent events. The

outcome of either of two separate laboratory tests is not

conditioned by the outcome of the other. Therefore observa-

tion A and observation B are statistically independent and

the probability of both A and B occurring is the product of

the probability of A occurring and the probability of B

occurring.





52

Pr(A and B) = (Pr A) (Pr B) (4-21)

The hypothesis test employed assumes that both obser-

vations (either the X, . and X_ . reolicate measurements or theAj 3j

v, . and v„ . single measurements) come from the same normallyAj Bj

distributed population. Therefore the distance from the

population mean of each observation can be expressed in

terms of multiples of the population standard deviation,

that is, the normal deviate, z. The area under the frequency

distribution curve, bounded by the interval dz which includes

z measures the probability of obtaining observation A in

a random sample as shown in Figure 4-1. Likewise, the area

under the frequency distribution curve bounded by the inter-

val dz which includes z^ measures the probability of obtain-

ing observation B in a random sample. In a normal distribution

Area = Pr(B)

Area = Pr(A)

FIGURE 4-1

THE PROBABILITY OF C "'ING A GIVEN VALUE
FROM A NOR DISTRIBUTION
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the probability of obtaining a particular value of z dim-

inishes as z increases. Therefore, the probability of

obtaining two observations out in one or the other tail of

the distribution due' to chance causes alone is very small.

Conversely, the probability of obtaining two observations

close to the population mean if only chance causes are

affecting the measurements is relatively high.

Given two sets of results, (z , = 1.95, z . = CO)
r\± jD_L

and (z - = 1.95, z ~ = 1.95) one would conclude intuitively

that results from laboratory 1 are more apt to be accur

than results from laboratory 2. Indeed it can be shown

that if a finite z-interval of 0.02 is substituted for dz,

the probability of obtaining the subset of measurements

(z„, z^, ) due to random variation is more than six and aAx Bi

half times as great as the probability of obtaining the sub-

set (z
A2 , z

B2 ).

Al = Pr (1.95 < z < 1.97) = .0012

Bl = Pr (-.01 < z < + .01) = .0030

Pr (Al and Bl ) =
( . 0012 ) ( .0030) = 9.50(10

-5
)

A2 = Pr (1.95 < z < 1.97) = .0012

B2 = Pr (1.95 < z < 1.97) = .0012

Pr (A2 and B2 ) =
( .0012 )(. 0012 ) = 1.44(10~6

)

The consequences of applying this rule do not appear

to be significant enough to justify the considerable extra

effort required. However the overall effect should be noted.
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Viewed from, the standpoint of confidence level, the prob-

ability of an observation A greater than z^ __ and an
0.95

observation B greater than z __ is ( 0.05 ) •( 0. 05 ) or 0.0025.

Therefore the decision rule carries a risk which varies

from 0.05 to 0.0025 of wrongly classifying an "accurate"

activity as "inaccurate." Conversely, the risk of failing

to detect an "inaccurate" activity is increased.

TESTING MULTIPLE OBSERVATIONS

Discussion

Consider the results of n tests submitted by m lab-

oratories as represented by the matrix of Table VII. Assume

that the universe of observations for each test is normally

distributed. The objective is to determine the kind and

magnitude of variability that can be expected to be included

in observations made by a given laboratory. Since the

measurement quality of interest is variability, the first

step is to convert the data to measurements of variation or

algebraic distance from the true value of the property being

measured.

For each test, a sample mean, X. , can be obtained

which can be used as an estimator of the population mean. If

the n tests were duplicate tests of homogeneous samples

taken from the same population, the test means would be

expected to cluster around a single value, the population





TABLE VII

SYMBOLIC MATRIX OF RESULTS OF n TESTS
SUBMITTED BY m LABORATORIES

55

.Lab.

Test i
m

X
11

X
21

X

X

12

22

X

X
2j

X1m

X
2m

X
il i2

X. . X.
ira

n Xnl X
n2

X . Xnm

mean, p, . The average mean, X, becomes a better estimator of

the population mean which can be used to determine the alge-

braic variation from the mean, v. ., of each of the n times

m observations. If the n tests were not duplicate tests of

the same batch of product, but (A) the tests were identical

in procedure, and (B) the materials tested are close enough

in magnitude of the property measured as to preclude any

significant variation in the random error due to material,

the test results can be compared in regard to variation from
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the mean but do not have a common mean. The v. . for each

observation can be determined only by subtracting the X. com-

puted for each test from each observation reported for that

test. A new matrix, Table VIII, results.

TABLE VIII

SYMBOLIC MATRIX OF DEVIATION, v. ., FROM

ESTIMATED TEST POPULATION MEAN

Lab.
Test m

2

v
11

V
21

v
12

v
22

v

V

Ij

2j

v.im

v
2m

v
ll

V
i2

v. . V.
im

n v
ni

v
n2

vnj
vnm

Homogeneity of Variance

By pooling data sets in this manner, larger samples

are available for estimating the variability of laboratory

observations resulting in potentially better estimates. Only

data sets having statistically homogeneous variances are

really comparable, however. A statistical test was devised
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by Bar tie tt for passing judgement in such cases. If n sets

of data are available with varying numbers of observations,

m, in each set, the statistical parameter, B
;
can be computed

in the following manner:
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TABLE IX

BARTLETT'S TEST FOR HOMOGENEITY OF VARIANCES

Degrees
Test ? of 2 2 2 ">

Data S Freedom f
i
S
i

lnS
i

f
i
lnS

i f~
Set - f.=( m .-l) i11

1 s
x

2
Cl f lSl

2
lnSl

2
f
1
lns

1

2
l/f

x

2 s
2

2
f
2

f
2
s
2

2
ir.s

2

2
f
2
ms

2

2
i/f

2

2 2 2 2
S. f. f.S. InS. f.lnS. 1/f.
i i li i ill

n S
2

• f f S
2

InS
2

f InS
2

1/fn n n n n n

TOTALS f Ef.S.
2

Ef.lnS,
'

i _
i

Compute

S
Z

= ir-i- (4-22)
r

and: flnS 2
(4-2 3)

then:
3 = £ (flnS - E f.ln_S.

z
) (4-24

C li

The value of B may be computed initially without ev ting

the correction factor, C„ The critical value of B at the

selected confidence level may be read from' a statistical





59

table of chi square available in most statistics texts and

handbooks, entering the table with (n-1) degrees of freedom.

If B is significant at the selected confidence level, i.e.,

exceeds the critical value, it may then be divided by the

correction factor, C, computed as follows;

C " '-
+

3(n-l) (4 "25 '

If the corrected value of B is also significant at the

selected confidence level, reject the hypothesis that the

sets of data being compared have the same variance.

Analyzing the Data

For each of the m participating laboratories, an

average algebraic variation from the mean, v., can be com-

puted. This is the average accuracy error and constitutes

a point estimate of the magnitude and direction of the system-

atic error or bias.
A

2An estimated population variance, a. , also can be

2compuated for each activity, using S . as the estimator.

This is a measure of the variation in the point estimate

of the systematic error due to random and accidental causes.

Having sufficiently isolated random, systematic, and

accidental errors to obtain an approximate measure of each,

a judgement can be made concerning laboratory reliability,
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by comparing the measures of reliability for each activity

against matching standards.

Procedure

Data and assumption . The raw data required are the

test results for a given property obtained from n samples

of different batches of product which have each been divided

and distributed among the m participating laboratories. It

is not necessary that all samples be of the same product.

It may be feasible to pool test results of different pro-

ducts. The considerations in this regard are the same as

for paired data. When doubt exists, a statistical test for

homogenity of variance of the pooled data is appropriate.

Analysis of the data is based upon the same assump-

tions already stated for paired data.

To illustrate the procedure, the correlation test

results used are the measurements of API Gravity for five

different products. The matrix of these observations is

given in Table X.

Estimating the population mean . Since the several

sets of test results are not repeat measurements of the

same product sample, the tests do not have a common mean.

A separate estimate of the population mean, u, . , must be

made for each of the i tests.
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The most efficient estimator of the population mean

is the sample arithmetic mean. Because outliers can have a

significant effect on the arithmetic mean of small samples,

an appropriate test should be applied to any values which

appear extreme. Dixon's test for extreme values, described

in Chapter II, will be used to check the two doubtful values

in Table X:

X, , - 69.2 and Xcn = 21.2
ii by

Ra tio test symbol r, , for the largest extreme applies in

both cases. The critical value for test r at the 0.05

level is 0.477

.1
Check X

n ,

X
10

X
9 = 69.2-68.3 = 0^4 =

X10 ~ X2 69.2-68.1 1.1
U - Jb -

Since the ratio does not exceed the critical value of 0.477

accept the hypothesis that X, , comes from the same popula-

tion as the other results submitted for Test 1.

Check X50 = 21.2;

21-2 - 20.3 = 0^9 m
21.2 - 20.1 1.1 u -°-^

Since the ratio exceeds the critical value of 0.477 reject

the hypothesis that Xco comes from the same copulation as the
by - J-

other results submitted for Test 5. An asterisk is used to

flag X._ as an outlier in the tabulated data,
by
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Compute X, for each of the n tests which have been

pooled for the analysis and use these values as estimates

of the corresponding population means. When computing

mean for Test 5, exclude X,-q from the computation to mini-

mize the probability of distorting the estimated true API

Gravity of sample 63-05. The arithmetic mean estimate of

the true API Gravity for each of the five tests is tabulated

in column X. of Table X.
l

To avoid the necessity of testing for outliers, it

may be desired to use the Average of the Best Two rather

than the sample arithmetic mean as the estimator of the

population mean. This estimator, discussed in Chapter III,

is relatively easy to compute and has a high efficiency for

small sample sizes. For sample size 10,

X = Aver, of Best Two = ^(x-, + x„

)

(4-26)
J o

Where: x_ = the X. . ranking third in magnitude amoncr
3 ij 3

observations for test i.

x = the X. . ranking eighth in magnitude amoncr
8 i j

observations for test i.

The Average of the Best Two estimate of the true API

Gravity is also tabulated in Table X for comparison with the

arithmetic mean estimate. Both values are identical for four

of the tests and are separated by only 0.1 degree API for

Test 1.
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Computing the matrix of deviations from, the mean . Sub-

tract X. from each of the m observations submitted for test i
1

to obtain the values v. . which measure the alqebraic devia-

tion of each observation from the estimated population mean.

v. .
= X. .

- (4-13)
lj lj i

The resulting matrix of values for the illustrative tests

is given in Table XI.

Testing for homogeneity of variance . Determine the

estimated population variance for each test using an unbiased

estima-o:

S
2

" S
2

(3-17)

2 n m - 2
'

S
-i T^T S(v, ,-v. ) !

(3-18)

Lj

A simpler computational form is:

\2 !

2 1
m

2

L : ' :

2
The values, S. , of the estimated, population variance for

each of the five illu :ive tests are given in Table XII.

Again it may be desired to use a short-cut method of

computation. The Modified Linear Estimator of the popula-

tion standard deviation described in Chapter III was

characterized as being relatively easy to compute and

having a high efficiency. For Tests 1 through 4 the

Modified Linear Estimator for sample size 10 is:
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g. = 0.1968 (xin + xQ - x
n

- x ) (4-28)

Where: x, , x~ , x~ and x, n
are the first, second, ninth and

tenth values ranked in order of magnitude from, smallest to

largest. Extreme values have a significant effect on

estimates computed from the Modified Linear Estimator.

Observation X,.-. should therefore be excluded from the compu-

tation of the estimated population standard deviation of

Test 5, reducing the sample size to 9. The Modified Linear

Estimator for sample size 9 is:

o. = 0.2068 (x ft
+ x„ - x, - x~) (4-29)

l y o j. z

Squaring the estimate of population standard deviation

obtained from these computations gives an estimate of the

population variance of each of the five tests. The results

are tabulated in Table XII for comparison with the efficient

estimator computed by equation (3-18). Agreement is reason-

ably close except for Test 3. If this estimator is used in

connection with Bartlett's test it is recommended that any

borderline indications of homogeneity or non-homogeneity of

variance be rechecked using the efficient estimator of the

population variance.

2
Compute S from (4-27):

2 1 556
S =

a a
= 0.0354

44

Then:

f(ln S
2

)
= 44 (-3.34) = -147.00





63

Compute B from (4-24) without evaluating the correction

factor, C:

B = £• [ -147.00 - (-174.40)] = ^ (27.40)

Refer to a statistical table of chi-square . Enter the table

with (n-1) = 4 degrees of freedom to determine the critical

value at the ninety five per cent confidence level.

'

2
- 9.488

The value of B exceeds, the critical value indicating that

there is a significant difference among the variances of the

five sets of test data.

Compute correction factor, C, from (4-25):

r =
l

+ 0-559 - 0.023 =u -- 3(5-1) — --o

Determine the corrected value of B:

B ~ 17045" " 25 ' 20

Since 3 still exceeds the critical value at the ninety five

per cent confidence level, reject the hypothesis that the five

sets of test results have the same variance and conclude that

they cannot be pooled to form a single large sample.

Form a subset of four tests by dropping the set

exhibiting the most extreme variance which is Test 1. Test

this subset for homogen of variance.





69

. f = £ f .
- 35

1

£ f
.
(S.

2
)

= 0.50311
£ f .

(In S.
2

)
= -153.35

S
2

- ^^ - 0.0144
3d

f(ln S
2

)
= (35)(ln 0.0144) = -147.70

B = ^ [-147.70 - (-153.35)] = ~ 5.65

Entering a table of chi-square with (n-1) = 3 degrees

of freedom, determine the critical value at the ninety five

per cent confidence level.

X^ = 7.815

Since the value of B is less than the critical value, accept

the hypothesis that the four sets of test results have the

same variance and conclude that they are comparable and can

be pooled. The new matrix is given in Table XIII.

Estimating bias . Compute the average algebraic

deviation from the mean. v. for each of the i activities,
J

excluding outliers from the computation. The v . can then be

used as a point estimate of the magnitude and direction of

the bias in results reported for this type of test by lab-

oratory j. The reason for excluding the extreme values is

that they were previously rejected en the basis of a hypothe-

sis test leading to decisions that they probably contained

errors due to mistakes. Inclusion of these mistakes would

distort the bias.
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If A.I. . is positive, the laboratory meets the minimum
J

standard established for accuracy. The larger the. value of

A.I. . the higher the degree of accuracy. If A.I. . is nega-

tive, the laboratory does not meet the minimum standard. The

larger the negative value is, the more inaccurate are the

results obtained by the laboratory.

For the illustrative example, n - 4 and the Repro-

ducibility amount given in the Standard Method of Test for

API Gravity of Petroleum Products, ASTM Designation:

D 287-55 is O.5.
24 Substituting in (4-31):

v .

' = : = 0.125
: 2 VT

and, substituting in (4-32):

A.I. .
= ?'Jr

2
.

5 - 1.0
J " v I

The I v. and A.I. . for each of the ten laboratories is com-
I J I J

puted and tabulated in Table XIII.

Of the ten laboratories, only laboratory 9 with an

accuracy index of -0.5 failed to meet the minimum standard

for accuracy in the determination of API Gravity of the four

products. Of the nine laboratories which are above the mi

mum standard, laboratories 3 and 4 each with an accuracy

index of +0.2 obtained the least accurate measurements whi

laboratory 8 reported measurements equal to the estimated

true API Gravity for all four products.
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Analysis of the data for precision . A measure of the

variation in the point estimate of the bias is the popula-

2
tion variance. Use S . , computed by substitution in (3-18)

or its easier computational form (4-27) as the estimator of

the variance of measurements made by laboratory j. Include

all the data in the computation because the objective is to

determine how tightly all the observations reported by the

laboratory are clustered. If the objective was to estimate

the precision of the test method (as it would be if the

standard was being tested) extreme values would be excluded,

again pointing out the fact that the proper choice of

statistic or estimator is dependent upon what one is trying

to measure.

2Computation of the variance of measurement, S . , of
J

the API Gravity of the four products of the example is

presented in tabular form in Table XIII.

Again using the ASTM Reproducability amount, R.A.,

as a basis, a minimum standard at the ninety five per cent

confidence level can be established for the relative pre-

cision of test results.

? I R A \

2

limum St :d for S, -
!

'"'
(4-33)

A Precision Index, P.I. ., can then be computed for each lab-
J

oratory as follows:

i Standard for S .

P.I. .

= ]- -1.0 (4-34)
3 S .

J
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If P.I. . is positive, the laboratory meets the minimum

standard established for precision. The larger the value of

P.I. ., the higher the degree of precision. If P.I. . is
J J

negative, the laboratory does not meet the minimum standard.

The larger the negative value is, the less precise are the

results obtained by the laboratory.

For the illustrative example, substituting in (4-33):

2 /o 5\
2

Minimum. Standard for S .
= F™- = 0.C28

j \ 3
|

and, substituting in (4-34):

_ 0.028 _-j 2
1 '°

J

Computation of the P.I. . for each of the ten laboratories of
J

the example is given in Table XIII.

Two of the ten laboratories, laboratory 3 with a

P.I. of -0.4 and laboratory 9 with a P.I. of -0.9, failed to

meet the minimum, standards for precision in determination

of the API Gravity of the four products. Measurements

obtained by laboratory 9 were the least precise while those

obtained by laboratory 8 were the most precise.

Interpretation of Analysis Results

Accuracy/mistakes . Relative freedom from mistakes is

determined by the simple inspection of incidence of extreme

values among observations reported by the laboratory. An
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excessive number of mistakes indicates possible carelessness.

In a laboratory with more than one operator or more t one

set of equipment, it ray reflect a difference in systematic

error among the tests. Since mistakes are due to assign-

able causes, the established standard for true mistakes

should be zero. However, since observations are classified

as mistakes on the basis of a statistical decision rule which

carries a risk of making a wrong decision, no stigma she;

accompany infrequent occurrences of "mistakes." For example,

a decision rule at the ninety five per cent confidence level

will misclassify one chance error out of twenty as a mis-

take in the long run.

Accuracy/s ic errors . Relatively poor accuracy

may be the result of a. systematic error or errors. T'r.^

estimated bias, v., provides a direct i : it of the
J "

magnitude enC. direction of e possible systematic error. A

large bias may reflect a local modification to the test

method, either intentional, or accidental by reason of mis-

interpretation. It may also indicate a measurii strument

out of calibration for ; reason.

Accuracy/ore c i s i on . Re 1 a t ive 1y poor sing 1e me a su r e

-

ment accuracy may result frc Lively poor precision.

When relatively poor precision is indicated it may be due

to (A) excessive v :ion in the response of a measuri:
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instrument, (B) failure to strictly conform with the pre-

scribed test method, or (C) carelessness producing frequent

minor mistakes in a random pattern.

Application to the illustrative problem . In the illus-

trative example, examination of the data indicates a single

gross blunder as the probable cause of the failure of lab-

oratory 9 to meet the mi im standard for accuracy. There

is no convincing evidence of a significant bias error affect-

ing measurements and three of the four measurements appear

free of mistakes.

Laboratory 3 meets the minimum standard for accuracy

but not for precision. Poor precision could result in poor

accuracy of any single measurement and the laboratory should

review the test method to insure that it is being strictly

followed.

Laboratory 4 is within limits of both precision and

accuracy but shows an apparent bias. Since bias is due to

assignable causes, the laboratory should attempt to discover

the cause and eliminate it.

LABORATORY RANKING INDEX

Discussion

An index for indicating the relative reliabilr'T y of a

laboratory in the performance of a specified test on a given
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product or homogeneous group of products was described in

preceding section. Laboratories can also be rated according

to their relative reliability in performance of the family

of tests associated with a single product. This would be a

useful refinement on the Summary of Laboratory Performance

described in Chapter I, in that it would supply a direct

performance standard for command personnel in evaluating

laboratories under their jurisdiction. To provide the most

efficient indication of operational effectiveness to the

military commander, consideration should be given to the

fact that certain properties of each product have greater

significance in regard to the operational performance of

the product than other properties. This importance can be

recognized by assigning weighting factors to each test.

The measure of relative accuracy common to ail tests

is the normal deviate, z. .. An a^oropriate Laboratory Rank-

ing Index, LRI ., for laboratory j then would be the total of

the weighted z. 's computed for each of the n tests.
1

n
LRI .

= E w. z. . (4-35)

Where

:

w. = the weighting factor for test i determined by

the relative significance of that test to the

operational performance of the product
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And:
,

x. . - u

.

Z. .
= -3J (4-36)

1 J A
G
i

The w. 's are arbitrarily chosen as oositive and if

these factors are normalized, i.e. E w. = 1, the Laboratory

Ranking Index will have the same units as z and will repre-

sent a weighted average.

Tests which are not adaptable to inclusion, notably

those which require qualitative rather than quantitative

observations such as the test for copper strip corrosion by

28
petroleum products, can be excluded from determination of

the Laboratory Ranking Index by assigning a weighting factor

of zero.

Procedure

Data and assumptions . The raw data required are the

results (for a sample of a given product) of all tests, n

in number
,
performed on the product at each of m labora-

tories. The same assumptions made in preceding sections

of this chapter regarding homogeneity of the sub-divided

samples, normal frequency distributions of observations,

and proven test procedures apply.

The procedure for determining the ranking index for

each laboratory will be illustrated utilizing correlation

test data reported for sample 54-31 of Ashless Dispersa
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Aircraft Lubricating Oil. It is arbitrarily assumed that

only five tests have been assigned a non-zero weighting

factor. These five sets of test results and non-significant

weighting factors assigned for illustrative purposes only

are listed in Table XIV.

Computing the norma 1 deviate . One estimates the true

value of the property for each test. Extreme values result-

ing from bias errors or mistakes must be excluded from the

computation. Test suspected outliers by Dixon : s ratio test

[equation (3-15) or (3-16)] and use the arithmetic mean as

the estimator of \i . As an alternative, the Average of the

Best Two estimator of \j, , taken from Table II, can be used to

facilitate computation,

Su spe cte d extreme va lue s in the i 1lu s t r a t ive da ta of

Table XIV were tested by Dixon's method and the observation

0.232 submitted by laboratory 1 for test 5 (Carbon Residua)

was rejected as significant at the ninety five per cent

confidence level. The arithmetic mean estimates of p. are

shown in the table.

One computes the algebraic deviation, v. ., from the
' i j

mean of test i and divides by the est: 5 standard devia-
A

tion of the population of laboratory test results, a., to

determine the normal deviate, z. .. The efficient estimator

of the standard deviation cc d from equation (3-19) may

be used. If it is desired to simplify computation by the
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use of one of the less efficient estimators, the Modified

Linear estimator given in Table II is recommended.

Values of v. ., a. and z. . computed for the illustra-

tive data are shown in Table XIV.

Computing the rankincr index . The Laboratory Ranking

Index, LRI . , is computed from equation (4-35 N
. The labc

tory with the smallest LRI is the most accurate in the over-

all measurement of the product's properties.

The LRI ' s for Aircraft Lubricating Oil computed for

the ten laboratories in the example are shown in Table XIV.

L boratory 6, with an LRI of 0.346, ranks best among the ten,

while laboratory 1, with an LRI of 1.697, ranks lcwest. One

interpretation that can be given to this relationship is that

the probability that laboratory 5 will properly classify oil

on the borderline of acceptability as the result of a single

set of tests is con si e'er- ligher than that of labora-

tory 1.
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CHAPTER V

ANALYSIS 3Y A GRAPHICAL METHOD

A graphical method for evaluating new laboratory test

29procedures has been proposed by Youden. This method

utilizes the median as a measure of central tendency. As a

measure of variability, it utilizes an unbiased estimate of

standard deviation based on the mean difference of paired

results. Using this technique as a foundation, a graphical

method for evaluating the relative accuracy and precision of

a group of testing laboratories utilizing specified, proven

test procedures will be developed in this chapter.

Correlation test data will be analyzed by this method

to illustrate the potential usefulness to a military com-

mander exercising quality surveillance over a group of widely

scattered laboratories.

DISCUSSION

In the target analogy, the reliability problem was

defined as one of consistently coming as close as possible

to the intersection of the horizontal and vertical hair-

lines. Assuming the unattainable situatic absence of

all error, laboratory test results would invariably be the

true value of the property being measured. However, the

existence of various sources of error has been acknowledged.
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Consequently, even under the best possible circumstances, the

measurement obtained is expected, with a given degree of con-

fidence, to be only one of an infinite number of values

within a statistically determinable range.

Assume first that errors do exist but that only mis-

takes or systematic errors are possible; none are due to

chance causes „ Relating this to the definitions given to

precision and accuracy, the assumption is one of perfect

precision but possibly poor accuracy. The true value of a

property being Treasured can be represented by either a hori-

zontal or a vertical centerline. An observed value of the

-;perty can then be represented by a point at a perpendicu-

lar distance from the centerline., which distance measures the

inaccuracy of the observation. Such a representation is

illustrated in Figure 5-1.

Assume now that two observations are to be made of the

same property. The first observation is to be plotted on a

horizontal axis the second is to be plotted on a vertical

axis. If the two axes are overlaid, a graph subdivided into

four quadrants as shown in Figure 5-2 results. The quad-

rants have been numbered counterclockwise from I to IV start-

ing with the upper right-hand quadrant in the conventional

manner. Let the true value of the property being measured

be zero and let the horizontal axis be identified as the

A-axis and the vertical axis as the B-axis. Both axes are
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OF TWO PERPENDICULAR AXES



<•



89

to the same scale. The two observations w sntified

as A and B respectively.

Recalling that chance errors are impossible, if no

mistakes or systematic errors occur both observations will

be the true value, placing data point (A,B) at the inter-

section of the two axes. The presence of only a system?

error will result in data point (A,B) appearing in either

quadrant I if the error causes observations higher than the

true value, zero, or in quadrant III if the error causes

observations lower than the true value, zero. The appear-

ance of a data point (A,B) in quadrant II or IV results fro~"

one observation being greater than and one observation being

less than the true value. This can be explained only on the

basis of a mistake since systematic errors produce a con-

stant bias and random errors have been disallowed.

Now discount the possibility of mistakes as well as

random errors. As a consequence, data points can occur only

in quadrant I or III if a systematic error is causing a

positive or negative bias respectively, or at the intersec-

tion of the axes if there is no systematic error. In fact,

since the systematic error has a constant value, the locus

of all possible data points is a straight line passing

through the intersection of the A and 3 axes and bisecting

quadrants I and III as i in Ficure 5-3.
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FIGURE 5-3

THE LOCUS OF EXPECTED VALUES FOR ALL OBSERVATIONS (A..B.)y 3

AFFECTED ONLY BY SYSTEMATIC ERRORS

The locus is a straight line through the intersections
of the A and B axes bisecting quadrants I and III.

As the next step, recognition is given to the existence

of chance causes of variation which will cause deviations from

the locus just described. Excluding the possibility of mis-

takes, a data point (A,B) is now expected to fall not on the

forty-five degree line through the intersection of the axes

but within an area surrounding a given point on the line.

The maximum amount by which a pair of observations can be

expected to vary a stated percentage of the time solely due

to chance causes can be determined and a circle of statisti-

cal confidence can be constructed around each point on the

line.
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The consistent recurrence of scattered paired data

points within such a circle centered on the intersection

of the two axes would indicate highly reliable performance.

The observations would be considered accurate because they

are clustered around the true values of A and B. They are

acceptably precise because they vary only within the limits

of the established performance standard. The consistent

recurrence of paired data points within such a circle of

confidence centered far out on the forty-five degree line

would indicate an acceptable degree of precision but poor

accuracy. The accuracy is considered poor because the

paired observations are centered on a point far removed from

the true values of A and B (Figure 5-4).

Since the forty-five degree line is the locus of an

infinite number of points, the circles of confidence around

them become a confidence band bounded by parallel lines on

each side of the forty-five degree line at a perpendicular

distance equal to the radius of the circle of confidence

(Figure 5-5 ) .

As a final consideration, assume the existence of

a large group of laboratories, each having only one opera-

tor and one set of equipment. Also assume once again the

existence of only random errors so that all data points will

cluster about the intersection of the true value axes. Two

variances can then be determined. The repeatability
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Zones of high pre-
cision without
accuracy

of high precision
accuracy

FIGURE 5-4

ZONES OF VARIABILITY ESTABLISHED BY SETTING ARBITRARY
STANDARDS FOR MEASURING ACCEPTABLE PRECISION LIMITS

zone of
reliability

of attainable

FIGURE 5-5

DEVELOPMENT OF THE CONFIDENCE BAND FOR PRECISION
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variance for the test is the random variance between repeat

measurements by the same operator using the same equipment

in the same laboratory. The reproducibility variance for

the test is the variance between measurements obtained at

different laboratories. The reproducibility variance will

normally be larger than the repeatability variance because

of the introduction of additional sources of random, varia-

tion.

Setting Confidence Limits

The horizontal deviations from the estimated true

population value, A, and the vertical deviations from the

estimated true population value, 3, are inc ient and

normally distributed and have a common standard deviation

for the population or for any particular laboratory. The

probability that a data point (A., B.) is within b standard
J

deviations of the point of intersection of the two axes

(A,B) can be determined by integration in polar coord

ates. The expression which results is;

2\
Pr (be) = 1 - exp -—

j
(5-1)

{

2o
J

i
2 2\

= 1 - e: - MM
! ^ 2
\

2 °
J

- 1 - exo —x—
j

(o-^)
"

i

2

where r = the radial distance to data point .3.) = ba
J J
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By rearranging terms, an expression is obtained for

computing the limiting value of b for any desired confidence

level

.

>-b
2

l

Confidence Level, C.L. = Pr (bo) = 1 - exp I
—~—

\

z
J

exp l—~\ = 1 - C.L. (5-3)
i

Taking logarithms of both sides:

_b
2

-—- = In (1 - C.L. )

_ -
v - in(l - C.L.)

b = 1.414 V-ln(l - C.L.) (5-4)

The radius of a circle of confidence around the inter-

section of the two means, r„ T ,
can also be computed.

r n _ = ba = 1.414 a
'v -ln(i - C.L.) (5-5)

The radius for a ninety five per cent confidence

level is;

r n
= 1.414 a -ln(l - 0.95)

= 1.414 a • V- (-3)

= 2.45 a (5-6)

The ninety five per cent level for the difference

3 1

between two observations is 2. /7a, " Using tr.

Reproducibility amount as a standard, for single observa-

tions %
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R.A. = 2.77 g„

°X " 2777 (5 " 7)

For the difference between averages of two pairs of

observations (or between the average of two observations

and the average of the two means);

= Z2L. = .

R - A «_ (5-8)x " 2~ 2,77

Therefore

:

= (2.45)(R.A.)
0.95 7,77

= 0.335 -^4-1
1 2

= 0.625(R.A.

)

(5-9)

In order to estimate the precision of individual

laboratories' test results, a straight line bisecting quad-

rants I and III is passed through the intersection of the

two median lines at an angle of forty five degrees to the

axis. Parallel lines can then be constructed on opposite

sides of this forty five degree line to fern a ninety five

per cent confidence interval or band. For convenience, the

limits given in AST:" lards on Petroleum Products

Lubricants are again to determine the perpendicular

distance from, the forty five degree line to the boundary of

the confidence I As before, the correction factor of

0.625 must be applied to cc: he amount from, a ranae for





95

a linear normal distribution to a radius for a circu.'

normal distribution. It may be found to be more convenient

to locate points on the limit line by measuring the hori-

zontal (or vertical) rather than the perpendicular distance

from the forty five degree line. This distance is deter-

mined by multiplying the radius by the secant of forty five

degrees, 1.414.

The Reproducibility amount rather than the Repeat-

ability amount was chosen as the basis for determination of

the ninety-five per cent confidence limits in order to have

a minimum standard applicable to all laboratories.

Repeatability amount is the difference which a pair of

results obtained by the same operator using the same equip-

ment she lot exceed. Quite obviously, such precision is

statistically beyond the reach of a large laboratory if

paired results were c led from different comb ions of

equipment and operator. The Reproducibility limit s are the

realistic limits in such cases.

PROCEDURE

Data

The raw data required are the test results for a given

property obtained from two s 2s, A and 3, of differe:

batches of product which have each been divided and dis-

tributed among the participating laboratories. Althc
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desirable, it is not absolutely necessary that both samples

be of the same product. It may be feasible to pair test

results of a sample of motor gasoline with test results of

a sample of aviation gasoline for example. The objective

is to avoid introducing additional sources of variability.

Generally, this objective can be accomplished if the test

procedures are identical and if the two samples are reason-

ably close in the magnitude of the property being evaluated.

Assumptions

Analysis of the data is based upon the following

assumptions: (A) The sub-divided samples are homogeneous,

that is, there is no quality variation of the material dis-

tributed to the various participating laboratories, (B) The

universe of observations for each laboratory and all labor-

atories is normally distributed, (C) The test procedure Y

been proven, that is, it is adequately described to preclu

general misinterpretation of the exact procedure to be

followed.

Plottinc th s Data

Select the paired test results to be plotted for a

given property and prepare a graph on rectangular coordinate

paper. Using the same units and the same scale on both axis,

mark an be range on the X axis and Y axis to cover

the range of results submitted for sample A and sample 3
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respectively. Plot the pairs of results reported by the lab-

oratories .

Correlation tes'c observations of Vapor Pressure on

sample 63-02 and sample 63-1701 of Combat Automotive Gasoline

will be used to illustrate the procedure. These . observa-

tions are tabulated in Table XV as Test A and Test 3

respectively. The paired data points are plotted in

Figure 5-5.

Est imating Central Tendency

The estimated true value of the property for sample A

and sample B can be determined graphically using the median

as an estimator. The median is chosen as the estimator

because of the relative ease with which it can be constructed

in comparison with the mean or Average of t =st Two.

latter estimators both require computation to evaluate the

estimate of the population value. The m z can be deter-

mined simply by Lng the :s. The median of

presented by the bol A, is a vertical line erected

perpendicular to the A axis so that the number of data
j

on : : side c the line is equal as illustrated in

Figure 5-7. The rr presented
'

bol B.
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FIGURE 5-6

PLOT OF PAIRED CORRELATION TEST MEASUREMENTS OF VAPOR
PRESSURE OF TWO SAMPLES OF COMBAT AUTOMOTIVE GASOLINE
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Setting Confidence Limits

Determine the radius of the ninety five per cent con-

fidence circle, r n qc-, by substitution in equations (5-6) or

(5-9)., If equation (5-9) is to be used, determine the

Reproducibility amount from the applicable ASTM Standard

Method of Test.

The R.A. will be used as the basis for computing r„ „
for this example. From the Standard Method of Test for

32Petroleum Products, ASTxM Designation: D323-5S, the R.A.

for automotive gasoline in the 5 to 16 pound vapor pressure

range is 0.3. Substituting in (5-9):

r 95
= °- 625 (°- 3 °)

= 0.188

Construct the ninety five per cent confidence circle

for accuracy around the intersection of the median lines A

and B, using the radius r„ _.... With parallel rulers, con-i j q _ g^ in-

struct a forty-five degree line (line passing through the

intersection of the median lines and bisecting quadrants I

and III) and ninety five per cent precision confidence limits

parallel to the forty-five degree line and tangent to the

ninety five per cent circle for accuracy. Figure 5-8

illustrates the completed graphical construction.
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FIGURE 5-8

CONFIDENCE LIMITS FOR ACCURACY AND PRECISION
OF DATA PAIRS (A.,B.)

J J

The circle is the ninety five per cent con-

fidence limit for accuracy. The parallel

lines tangent to the circle are the ninety

five per cent confidence limits for precision
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INTERPRETING THE PLOT

Plotted results can be interpreted from either of two

viewpoints. The general distribution of data points is of

interest in determining the likelihood of sampling errors.

The location of individual data points is the basis for lab-

oratory evaluation.

General Distribution of Data Points

If the only errors affecting the data were random

errors of precision, positive and negative errors would be

relatively small and would occur with equal likelihood. As

a result, data points should be expected to be tightly

scattered, more or less equally, in all four quadrants formed

by the intersection of the two median lines. This is the

ideal situation, and is unlikely to occur. Individual lab-

oratory biases will normally cause laboratories to obtain

results on the true samples which are either both negative

or both positive in relation to the median. A concentration

of data points in Quadrant I and Quadrant III can therefore

be expected. The more pronounced this tendency to individual

bias, the greater the departure will be from the ideal cir-

cular distribution.

In the event that the paired observations are nearly

equally divided among the four quadrants, the possibility of

invalid data resulting from a sample distribution error should

be considered.
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If the sample divisions distributed to the participating

laboratories are not homogeneous as to the property being

measured, some will yield high results and some will yield

low results. This is true for both samples. The equi-

probable set of paired results is:

(high A, high B; high A, low Br low A, high B; low A, low B)

.

It follows that a roughly circular scatter of data points

around the intersection of the two medians could be due to

heterogeneous divided samples.

Individual Data Poir

Data points within the circle surrc Lng the inter-

section of the two median lines indicate that the laboratory

obtains results for this test which are acceptably accurate,

that is, reasonably free from accidental or systematic

error. Only five per cent of the time will a pair of obser-

vations whose accuracy is affected only by random errors

fall outside this circle. Consequently, a data point out-

side the circle is interpreted as an of probable

inaccuracy.

a points within id surrounding the forty f

degree line indicate that the laboratory obtains acceptabJ

precise results for this test, that is, the operators a:,

careful in their work and the results ."..ported are free from

careless errors.
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Examination of Figure 5-8 shows that the data, used

as an example conform to the general distribution pattern

normally expected with a tendency to cluster in quadrant I

and quadrant III. The dispersion is greater than could be

desired however. The indication is that only four of the

ten laboratories are measuring the vapor pressure of combat

motor gasoline with an acceptable degree of accuracy. Lab-

oratory 2 seems rather precise and accurate, being on the

forty five degree line very close to the intersection of

the median lines. The observations reported by laboratory 6

are also highly precise. However the data point appears on

the forty five degree line at a considerable distance from

the intersection of the median lines 1 outside the

circle of ninety five per cent confidence for accuracy. It

is noted that both measurements were the highest submitted

among the ten laboratories for each sample. iterpreted in

accordance with the standard for minimum accuracy this

icates that vapor pres measurements of comb? tor

gasoline by laboratory 5 te. The hi agree of

precision makes it most probable that the inaccuracy is due

to a systematic error e -

i i g command should direct

the laboratory to check possible sources of the error ai

take corrective action. The same general conclusions

to laboratories 1 and 3. ;sults reported by labor -

tories 4, 5 and 9 are incc e. Sta
r
alone, ore can
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only speculate that most probably a mistake has entered into

one of the measurements of the pair (the measurement of

sample B) . In the case of laboratories 4 and 9, the loca-

tion of the data points could be due to a mistake entering

into one of the measurements, chance causes normal to the

method (one out of twenty measurements will fall outside the

ninety five per cent confidence limits in the long run), or

poor precision due to modifications of the test method or

due to carelessness. None of these possible causes can be

considered most probable without additional data

.

ALTERNATE PLOTTING METHODS

Additional analysis of relative performance can be

made by comparison of multiple sets of paired observations

from each laboratory. These observations can be combined

and displayed in various ways. Consider, for example, a

subset of four observations, (A,B,C,D) representing the

results of the same test on four different samples by the

same laboratory. The alphabetical sequence indicates the

chronological sequence that the tests were performed. The

time interval between tests is one month or more. There are

two logical ways in which this set of observations can be

formed into subsets of paired data. The first way is to

combine the observations in chronological pairs, without

duplication, to form the subset (AB,CD). The other way is

to combine the observations in chronological pairs, with
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duplication, to form the subset (AB,BC,CD). The later alter-

native has the advantage that it shows the path and there-

fore, the trend of the data points more readily by providing

visual continuity from, one point to the next.

The plotting procedure already described provides for

plotting the paired observations from two samples, A and B,

submitted by m activities. It has the time-saving feature .

that data are plotted directly as submitted, without pre-

liminary computation and a measure of central tendency, the

median, can be determined graphically. Additional pairs of

observations obtained from other samples, such as BC and CD,

st be plotted separately to use this procedure. If it is

desired to plot pairs obtained from, more than two samples

on a single graph for direct comparison, some manipulatic

is required to align the axes since the median of each sample

will be different. This can be accomplished by overlaying

graphs so that their axes coincide and tracing all

points cnto one grant. ':hsr method is to transfer d

points from one gr :o another by measuring their distance

from the axes. A third hod is to determine the medic

value of the observations submitted for each sample end

code the data by converting the observations to algebraic

deviations from the m The data points can then

plotted directly on a p: red graph with intersecting med

lines labeled zero.





Correlation test observations of vapor pressure

sample 54-28 and sample 64-3600 of Combat Automotive Gaso-

line are tabulated in Table XV as Test C and Test D in

addition to the two sets Test A and Test B already analyzed

as a pair. The paired data points (C.,B.) are plotted
J

-are 5-9 and the paired data points (C..D.) are plotted in
J J

Figure 5-10 „ All three of the available gr -s 5-8,

5-9 and 5-10 will now be interpreted as a group. By refer-

ence to the interpreta s graphical analysis of the

oaired data set (A.. 3.). one can see how tr ility of
J J

additional data enhances the u y of the method as a

management tool.

The test results reported by laboratory 2 are

accurate and highly precise. A single xueas : of t"

vapor pressure of an automotive gasoline ^:

accepted with a hj fidence i
- sry

close approximation of the true value. No actio: '.red

at the cor vel,

its reporte boratory 9 show very

poor precision. The pattern of alternating relatively large

positive ai gativ the estim" ue

vapor pressure of the : icates that the 'pc :e-

cis: :e to lessness or f

to follow strictly the \ prescribed for the test.

Depending on the possibility that the te

:
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: IITS FOR ACCURACY ARC PAZ CIS ICY
• , 3 .

)

J J
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: ACCURACY AND PRECIS ION
of ] us (c .,u .

J j





by more than one equipment-operator combination (information

which would be available to a military commander) a third

possibility exists. That is the possibility that the equip-

ment-operator combinations are biased in opposite directic

This possibility is very easily checked from test records.

2 military commander should direct laboratory 9 to check

the precision of its measurements of automotive gasoline by

internal investigation and experiment and initiate the

necessary action to improve the precision.

Vapor pressure measurement? made by laboratory 4 are

considered reliable with a high degree of precision a

accuracy. Data point
'

*

v ,

B

. ) was close to the B axis

although outside the ninety five per cent confidence limits

for precision and accuracy. "O'-e indication is that measure-

ment A. includes an error c:cz to either a - or random

causes with about equal probability. >T c action is r

-

Laboratory 5's test results are acceptably accurate

precise. Data poini _ . 3- ) was close to the A 3c 5 5

although outside the r cent confidence limits

for precision and accuracy. The indication is that measure-

ments are net quite as precise as those of laboratory

are generally accurate. Ju< its distance from

estimated true vapor pressure, the error of meas mat Bz

was most probably due to a bake but could also have been

due to random causes. No action by the military comman

is required.
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The behavior of the two paired data points of labor-

atories 7, 8 and 10 is the same as that of laboratories 4

and 5 but in reverse sequence. Laboratories 7, 8 and 10

were within the acceptable limits of precision and accuracy

in the earlier period. The latest paired set of measure-

ments from each is outside t : lies close to

one or the other of the m xes.

asurement C r by _V tory 6 was the same as the C.
6

The latest measurement, although acceptable as to accuracy

by the test, is again the highest measurement submitted for

the sample. '. .ication is that laboratory 5 has not yet

located and corrected the source of its sy z error.

The military commander should underscore this indication to

the laboratory for r attention. The same general

interpretation applies to the data reported by laborator

1 and 3 except that their bias is in the negative direction,

Lgure 5-11 has t, prepared to show the trend of

3 data submitted by eac 'ity in regard to accurecy

of jrements. Tr. diagrams are constructed to cne-h

the scale of Figure 5-?,. 5-9 5-10, and data are posted

as c tions fror the median to make them compatible,

save interpretations can be derived from this figure i

qiven above

„
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FIGURE 5-11

COMBINED PLOT OF DATA PAIRS
(A .,B .), (C .,B .) AND (C . ,D .)

J J J J J J

BY LABORATORY





CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

In this thesis, the author has investigated some

statistical means of obtaining more definitive information

concerning the reliability of military petroleum testing

laboratories than is currently obtained from existing cor-

relation testing programs. Numerical methods of analyzing

single observations, paired observations and multiple

observations, and a graphical method of analysis were dis-

cussed. Procedures were described for analyzing and inter-

preting the data by each method and were applied to actual

military correlation test data.

Table XVI summarizes the tests which can be applied

to each activity.

It was found that for a single observation one could

test the hypothesis at any pre-selected confidence level

that the single observation is statistically the same as the

true value of the property being measured. Since there is

no dispersion to a single measurement it cannot be tested

for precision. Therefore no further amplification can be

made of a decision that a single observation is statistically

inaccurate at the selected confidence level. This method,

using a ninety five per cent confidence level represented
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TABLE XVI

SUMMARY OF TESTS OF LABORATORY MEASUREMENTS

Tests based on the ASTM Reproducibility amount (R.A.)
provide confidence at the ninety five per cent level.

Tests of S ingle Observations

Hypothesis test for accuracy:

M.
- -^

1 < X- "0.95 -
A R.A
\i

+ —=

—

(4-6)

Tests of Paired Observations

Hypothesis test for precision:

v. - v~ . < R.A
lj 2j

(4-16)

Hypothesis test for accuracy (if precision hypothesis

is accepted) :

R.A - R.A.
; v . < + ==
~ 2 ~ 2 7 22 V~2

Estimate of bias (if precision hypothesis is accepted):

(4-20)

v
V, .

+ v„ .

_JJ lA
2

(4-17)

Tests of Multiple Observations

Precision index:

Minimum Standard fc
P.I

J 2
- 1.0 (4-34)

Minimum Standard for S
R.A,

(4-33)
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TABLE XVI (continued)

Accuracy index:

Minimum Standard for v .

|

A.I = _ 1 h. _ 1.0 (4-32)
*
J

A.C. .
= v

J
. I including all v .

J J

Minimum Standard for I v. I
=

R ' A
/ (4-31)Ml 2 V7T

Estimate of bias:

Bias estimate = v . excluding extreme values

Laboratory Ranking Index

n
LRI .

= E w. z. . (d_35)

v
i

= the weighting factor for test i determined by

the relative significance of that test to the

operational performance of the product.

X. . - jl.

Z-M
= -^ (4-36)

a

.

Graphical Analvsis

Radius of circle of confidence for accuracy or

precision:

r 0.95
= °- 525 (R.A.) (5-9)
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by the ASTM Reproducibility amount, is the current method of

evaluating correlation test data.

When two homogeneous sets of single observations were

pooled and analyzed as pairs of data, the hypothesis that

the two single observations of each pair came from the same

population could be tested at the ninety five per cent con-

fidence level, thereby measuring the relative precision of

the two observations. If the precision hypothesis was

accepted, the hypothesis that the average of the two paired

observations came from the same population as the estimated

p, could be tested to determine the accuracy of the measure-

ments. Again on the prior condition that the precision

hypothesis was accepted, the average bias error of the two

observations could be determined as an indication of a

systematic error due to assignable causes.

When several homogeneous sets of single observations

were pooled and analyzed as a group, it was found that

precision, accuracy and bias could be measured independently,

that is, the validity of the test of one quality of the

measurements had no dependence on the prior outcome of

another. Precision and accuracy were each measured by an

easily interpreted index computed by comparison to estab-

lished minimum standards. The sign and the magnitude of the

index indicates the relative goodness or poorness of accuracy

or precision.
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A graphical method of analysis was developed which

requires only one simple multiplication calculation for its

initial application and no mathematical calculations there-

after. The data are analyzed in pairs requiring a minimum

of two sets of single observations. When the analysis is

limited to two single observations it was found that the

same limitations were encountered in interpreting the results

when the pair of observations were not adequately precise

as were encountered with the numerical analysis of paired

observations. Increasing the number of sets of single

observations included in the analysis permitted more speci-

fic interpretation. When utilizing the graphical method of

analysis, the homogeneity of data sets could be verified by

observing the general pattern formed by the plotted data.

A separate statistical test of homogeneity of variance was

required when using the numerical method.

Analysis by the graphical method was used to illus-

trate how the pooling of homogeneous test data sets

increased the effectiveness of analysis of correlation test

results as a management tool of the military commander.

In the final analysis, the benefits of reliability

in performance of specific tests for specific properties

are in correctly classifying a product as to suitability for

use. A method of rating laboratories according to their

relative reliability in performance of the family of tests
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associated with a single product was therefore developed as

a useful improvement on the Summary of Laboratory Performance

The method provides for the computation of a Laboratory

Ranking Index which is a composite of the relative accuracy
*

of . measurement of the various properties of the product,

weighted in accordance with their significance in regard to

the operational performance of the product.

Conclusions

The current method of analyzing correlation test data

is statistically too primitive to provide the military com-

mander with adequate intelligence concerning the effective-

ness of the petroleum testing laboratories within his area

of jurisdiction.

Maintaining a high degree of accuracy among the petrol-

eum testing laboratories is the specific goal of a military

correlation testing program. But accuracy is a function of

precision and bias. By analyzing the accuracy of a labora-

tory's work in terms of precision and bias the correlation

testing program can be made into a more effective management-

by-exception tool. This requires, as a minimum, analysis of

paired homogeneous data sets or, preferably, analysis of

multiple homogeneous data sets.

Further investigation of the requirements of an

effective correlation testing program is strongly recommended,
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This thesis was limited to investigation of some statistical

methods of evaluating the reliability of results of labora-

tory tests of petroleum products and better methods of

evaluation were found. Many other facets remain to be

explored before a complete program can be formulated and

recommended for implementation. Evaluations of optimum

frequency of tests, evaluation of the significance of each

test, investigation of the validity of using the ASTM

Reproducibility amount as a standard, and investigation of

the relationship between correlation test measurements

and routine test observations are a few.
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