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ABSTRACT

The problem of allocation of ASW forces assigned to an

oceanic convoy in a submarine warfare environment is postu-

lated as a two-person game with the payoff function being

based on the "formula of random search". The opponents in

the game are a convoy system and a submarine system. A

submarine is given the option of attacking the convoy system

either from afar with surface-launched missiles or near with

torpedoes. The convoy system is defended by units capable

of destroying submarines exercising either of their options.

The optimal allocation of forces for both sides is shown to

be a set of pure strategies which are dependent on the

parameters of the model.
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I . INTRODUCTION

GENERAL , The oceanic crossing of a convoy system in a sub-

marine warfare environment is a problem of major concern to

the U~ S. Navy, As in all warfare the lines of communication

must be maintained open to insure the support of the front

lines of defense. In present day warfare a primary means of

accomplishing this goal is by large oceanic convoys. An

enemy would desire to make this task impossible or at least

severely limit its success. In a non-nuclear conflict an

enemy would probably send submarines against the convoy/

since they are less susceptible to detection and attack than

either aircraft or surface ships. The convoy would have to

protect itself with anti-submarine warfare vehicles if it

expects to succeed in its mission.

Since the results of a given convoy crossing will depend

on the course of action taken by each force, modeling the

defense of a convoy as a two-person game is intuitively

appealing. In previous studies the convoy problem has been

analytically treated by various deterministic or probabilis-

tic mathematical techniques by Boice [1], Cooper [2], and

others. However, these approaches were founded on the as-

sumption that the opposition has some well defined tactic.

The game theoretic approach does not require this assumption

but more realistically considers that the submarine system

also has an allocation problem,

DEFINITION OF THE PROBLEM . Throughout this paper we will

refer to the convoy system and the submarine system which

oppose each other as Blue and Red forces respectively. The



convoy system is assumed to consist of Blue logistic units

and attacking units. The role of the Blue logistic units is

to transport men and equipment that are necessary for con-

ducting a foreign campaign across an ocean. The Blue attack-

ing units are to defend the logistic units. The submarines 1

primary role is the destruction of the convoy logistic units

before they reach their destination.

Once contact with a convoy has been made, there are two

methods of attack open to the Red forces. The most accurate

means of delivery of a weapon is for a submarine to penetrate

the convoy's screen and make a close-in torpedo attack. By

standing off outside torpedo range a submarine may be able

to use surface-launched missiles which are more destructive

weapons than torpedoes. In our analysis a submarine will be

allowed the option of attacking the convoy system either

from afar with surfaced-launched missiles or near with

torpedoes

.

Since a submarine cannot attack until he is at least

within missile range we will assume that all Red forces will

be located somewhere within missile range of the convoy's

path.

During both torpedo and missile attacks, a submarine's

susceptibility to detection is increased considerably over

normal cruising conditions. A missile attack requires that

a submarine surface before launching the missile. For a sub-

marine to realize an optimum attack position and torpedo fire-

control solution, during a torpedo attack, he must operate



at various speeds on various courses and occasionally broach

his periscope.

Because Red may be detected before he can attack, it

seems reasonable to assume that the Blue ASW forces will have

an opportunity of attacking the Red submarine before the con-

voy absorbs the Red attack.

As the convoy proceeds on its oceanic crossing two sep-

arate areas of the total ocean will be of primary concern to

both sides. The first, called the area of interest, is the

area surrounding the path of the convoy in which any sub-

marine present can conduct a torpedo attack as the convoy

passes. Thus the area of interest is a function of Red's

effective torpedo attacking radius. The second area, called

the area of concern, consists of the total oceanic area

adjacent to the area of interest from which a submarine can

attack with a surface-launched missile. Thus the area of

concern is a function of Red's effective missile radius. It

is assumed that Blue has knowledge of, or is capable of esti-

mating the size of these areas.

Since the enemy submarines can be expected to have a

reasonable knowledge of the originating and terminal points

of the convoy, they will be able to estimate the route uti-

lized by the convoy . Thus it is seen that both sides can be

expected to know both the size and the location of both areas

throughout the convoy crossing.

Within this setting, the commanders of both forces are

faced with the problem of how "best" to allocate their re-

spective attacking units between the areas of interest and



concern. In this paper we will concentrate our attention,

during formulation, to the Blue commander 1 s problem . It will

be evident, however, that we will resolve both commanders'

problems as a consequence of the game theoretic approach to

the solution of the Blue commander's problem.



II, FORMULATION OF THE MODEL

PAYOFF FUNCTION . Since both sides are confronted with an

allocation problem between the same two areas of the ocean,

the measure of the payoff should be a function of those forces

of both sides that, are deployed in each area, Because each

player is trying to destroy his opponent's ships a logical

measure of the outcome of each player's actions is the ex-

pected losses incurred by both sides in each of the two areas.

Each player would use the payoff function to guide his

decision making. The logical reaction of each player would

be to try to maximize his opponent's losses while minimizing

his own. However, it is important to realize that the nature

of the ASW problem precludes the equivalence between maxi-

mizing an opponent's losses with minimizing one's own losses.

For example, the minimizing of Blue losses is not equivalent

to maximizing Red losses because a Blue attacking unit need

not kill, but only prevent the submarine from attacking, to

minimize Blue losses. However, to maximize Red losses, Blue

must kill the Red units.

By minimizing the convoy system's losses the Blue com-

mander realizes an immediate benefit because the final value

of the logistic units completing the convoy crossing is maxi-

mized- By maximizing Red losses the Blue force also receives

a long-run return because the Red units destroyed represent

no threat to future convoys. Similarly, if the Red commander

is seeking to maximize Blue convoy losses he is fulfilling

his mission. At the same time, if he is minimizing his own



losses then he, too, is receiving both a long-and short-run

return.

The payoff for the Blue commander's problem will be

taken as the difference between Blue's expected losses and a

weighted function of Red's expected losses. Blue selects the

weighting factor in a manner such that the latter losses are

commensurable to the former from his viewpoint. The Blue

commander's objective will be to minimize this linear com-

bination.

Thus the payoff function, D, being the difference between

Blue's expected losses and weighted Red's expected losses,

may be expressed as:

D = DB - U (DR) , (1)

where DB = the total expected number of Blue logistic losses

(Blue ships)

;

DR = the total expected number of Red submarine losses

(Red ships)

;

U = the weighting factor equating a unit Red loss to

a unit Blue loss (Blue ships/Red ships)

.

In practice there is a difference in worth of a submarine as

compared to a logistic vessel. For this reason a weighting

factor or utility index, U, is used for each Red submarine

loss which equates the value of one Blue logistic loss to one

Red submarine loss.

The structure of the payoff function, D, implies that a

positive value of D corresponds to a gain by Red; a negative

value of D corresponds to a gain for Blue.

10



EXPECTED BLUE LOSSES . In the development of an expression

for the expected Blue losses we will assume that the Red

forces consist of submarines which have identical capabilities

and effectiveness, In addition, each Red submarine is assumed

to be able to render either torpedo or surface-launches mis-

sile attacks, but not both concurrently. Finally, since a

large convoy provides a "noisy" target, the probability of

detection of tne convoy by a Red unit can be considered to

be unity.

To prevent multiple detection of Red by Blue, and at the

same time to ensure a reasonable degree of survival, the sub-

marines are assumed to act independently of one another and

to be deployed uniformly over each of the areas.

We assume that each submarine has a limited supply of

torpedoes and missiles; consequently, to conserve his weapons

for the logistic units he does not expend his weapons on the

ASW vehicles. It is obvious that Red has no choice in the

case of ASW aircraft, but he may have a choice if Blue is

using ships as the ASW vehicles.

The Blue attacking units are assumed also to act inde-

pendently of each other, Further, we will assume that all

units will be assigned equal areas in which to conduct a

random search for Red submarines,

The independent, random search by both Red and Blue,

combined with the limitations of Blue's detection equipment

characteristics, sea and weather conditions, and operator

performance allows the use of the "formula of random search"

11



for determining the probability of detection of a Red unit

by a Blue unit. [2].

The total expected number of Blue losses, DB , may there-

fore be expressed as

:

DB = mP.C. + (M - m)P C (2)11 c c

where M = the total number of Red submarines;

m = the number of Red submarines in the area of interest;

M - m = the number of Red submarines in the area of

concern;

P. = the probability of a Red submarine in the area of

interest, A. survives an attack, by a Blue unit;

P = the probability a Red submarine in the area of

concern, A , survives an attack by a Blue unit;

C. = the expected number of Blue logistic units de-

stroyed (i.e., effectiveness constant) by a Red

submarine deployed in the area of interest;

C = the expected number of Blue logistic units de-

stroyed by a Red submarine deployed in the area

of concern.

The terms C. and C represent effectiveness constants and are
1 c v

functions of the performance of a submarine. They are depend-

ent on the number of Blue logistic units a Red submarine is

able to take under attack, the accuracy of its attacks, and

the effectiveness of its weapons.

EXPECTED RED LOSSES . Based on the assumptions associated with

equation (2) , we can express the total number of expected Red

losses , DR, as

:

DR = mPS. + (M - nDPS^ (3)

12



where PS = the probability a Red submarine in A is destroyed

by a Blue attacking unit, and

PS = the probability a Red submarine in A is destroyed

by a Blue attacking unit.

Since P is the probability a Red unit survives,

PS, = 1 - P. . Similarly, PS = 1 - P .

1 i •* ' c c

DETERMINATION OF PROBABILITIES . To determine the probabil-

ities of kill it is necessary to define another area. The

Blue .attacking units are deployed in an area which is called

the area of search, AS. The area of search has the convoy as

its center at all times and is made up of two parts. The

first is an area denoted AS- which is partially congruent

with the area of interest. The second, AS , is partially

congruent with the area of concern.

The formation or composition of the logistic convoy may

be thought of geometrically as a square, and the total area

of search, AS = AS + AS , may then be considered to be a

square with dimensions J by J, where J/2 is the maximum range

of the Red missiles . For symmetry, the area AS has dimen-

sions L by J and the area AS. has dimensions L. by J. Thus
c 2 1 i 2

J = L. + L where L. and L are measured perpendicular to the
1 c 1 C f c

convoy's track (see figure 1).

It should be noted that as the convoy transits, AS will

sweep out the area of interest, A,, and AS will sweep out

the area of concern, A .

c

The time, T, for the convoy to travel the distance J at

a speed of S is given by

T = £1
S

13
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Figure 1

Because all attacking units are assigned equal areas for

individual search,
/-. AS
AS. =

,

l n '

where AS. = the area assigned to each Blue attacking unit in

AS. ;
l

n = the number of Blue attacking units in AS .

.

Similarly in the area of concern:

A AS„
AS_ =

c N - n

where AS = the area assigned to each Blue attacking unit in

AS. ;
l

N = the total number of Blue attacking units available;

N - n = the number of Blue attacking units in AS .^ c

14



The probability, PS, that a Red submarine is killed in

any area, given it is present, is expressed by

PS = P P.P,
,w 1 d '

where P = the probability a weapon launched by Blue is

effective, given a weapon is launched;

P. = the probability that a Blue attacking unit gets

into an attack position and launches a weapon,

given that a Red submarine is detected by a

Blue attacking unit;

P, = the probability a Red submarine is detected by

a Blue attacking unit, given the submarine is

in the area being searched.

Using the "formula for random search" as the probability

of detection, P., the probability a Red submarine is killed

in the appropriate area is

:

wWT
PS = Pw

P
ll

1_exp- (4)

as;

where w - the relative speed of the Blue attacking unit and

Red submarine;

W = the effective sweep width of the Blue attacking

unit in either A or A .

1 c

Both w and W are assumed to be constant over the duration of

the convoy's oceanic crossing.

Upon substitution for T and AS in equation (4) , the

probability a Red submarine in the area of interest is killed,

PS , is
wW. Jnp ww

.

on -

L^^s-TasTPS
x

- <P
w ) (PJ |l-exp- g/ » g ^ (5;(P

i
j ^-^p-sTas"

1 1 u 1

15



Since w, W. , J, S, and AS are constant parameters of

wW J
the model, we set k .

= —r-
, where k represents Blue's

detection constant in the area of interest. In a like

manner, since (P ) and (P, ) are constant parameters we setw . 1 .

^
1 1

K = (P ) (P )

i w . 1 . , where K , is a measure of Blue's attacking

performance in the area of interest.

Similarly, we will denote k as Blue's detection con-

stant in the area of concern and K as a measure of Blue's
c

attacking performance in the area of concern.

Equations (4) and (5) can now be rewritten as

PS
i

= K
i
[l-exp-k

i
n] ; (6)

PS^ = K [1-exp-k (N-n) ] . (7)

EXPLICIT FORM OF THE PAYOFF FUNCTION . Substitution of equa-

tions (6) and (7) in equations (2) and (3) gives the explicit

forms of the expected Blue and Red losses. These forms, upon

substitution into equation (1) , result in the following ex-

pression for the Blue commander's payoff function:

D(m,n)=mC. [1-K. (1-exp-k. n) ] + (M-m)C (l-K [1-exp-k (N-n)])11 F 1 c ^ c c *

- u(mK. (1-exp-k. n) + (M-m)K [1-exp-k (N-n)]). (8)

16



III. CRITERION OF THE MODEL

In analyzing this military conflict situation as a game

of strategy, a player's skill and intelligence should be used

to determine the payoff. The formulation of the model was

intended to structure Blue's allocation problem as a two-

person, finite, zero-sum, non-cooperative game.

It is two-person since there are only two opponents,

Blue and Red. Since each player's resources are discrete

units and have an upper limit, both have a finite number of

possible alternative allocations. The game is therefore fi-

nite. The game is non-cooperative because neither side com-

municates with the other.

Consideration of Blue's allocation problem in the zero-

sum sense means that whatever Blue does not win (i.e., Blue

losses and Red survivals) will be considered to be a gain for

Red and Red's gain is measured by Blue on the same scale as

he measures his own payoff. It follows then that the sum of

Blue's and Red's payoff determined in this manner will be

zero.

A finite two-person, zero-sum game in which both oppo-

nents play simultaneously without information about the

other's action is called a rectangular or matrix game. For

such games, a payoff matrix or array of the payoffs to either

player resulting from all combinations of the players' strat-

egies can be constructed. If M and N are the total number of

available Red and Blue attacking units, respectively, then a

payoff matrix, D, can be constructed such that the number of

the rows and the number of the columns is equal to the number

17



of possible units that Red and Blue could respectively deploy

into the area of interest. This completely describes all

possible outcomes since units not allocated in the area of

interest are allocated to the area of concern. An element

of D, denoted d.
.

, represents the expected outcome for a

crossing in which Red uses i attacking units and Blue uses j

units in the area of interest. Thus D is a M by N matrix

with elements d.. such that i = 1,2,...,M and j = 1,2,...,N.

In solving for his optimal strategy in a matrix game,

Blue will apply the minimax criterion. Under this criterion

Blue makes use of the following three presuppositions.

First, Blue feels that Red's motives are diametrically

opposed to his own. Blue is trying to get the convoy across

the ocean and Red is trying to prevent this deed.

Second, Blue realizes Red could very closely approximate

Blue's payoff matrix and determine Blue's optimal strategy.

Third, Blue feels that if Red knew Blue's allocation

then Red would allocate his forces to reduce Blue's payoff

as much as possible. These three presuppositions indicate

that Blue considers Red a rational and intelligent opponent.

With these factors as his decision basis, Blue begins

his selection of his optimal strategy for allocation of forces

between the areas of interest and concern by investigating

the worst that could happen (i.e., the largest value of D)

for each of his possible alternatives. He then takes the

alternative corresponding to the minimum of these as his

optimal strategy. This is the well known minimax strategy

18



of game theory- Although it is pessimistic in nature, the

use of this criterion provides an upper bound on the worst

that could happen to Blue.

For any finite two-person, zero-sum game each player's

optimal strategy is either a pure strategy or a mixed strat-

egy. A pure strategy for Blue in our problem implies that

Blue always uses the same allocation between the areas for

the same given set of parameters of the model. A mixed strat-

egy under these same conditions implies choosing an allocation

prior to each crossing in accordance with some particular

probability distribution. We will show that only strategies

which are pure strategies will be optimal for this allocation

problem.

19



IV. BLUE'S OPTIMAL STRATEGY

DEVELOPMENT . In the determination of Blue's optimal strategy

we will initially ignore the integer requirement on the number

of Blue and Red forces allocated to any area.

If Blue plays some strategy n then the worst that can

happen to him is that D(m,n) will take on a value of

max D(m / n). Therefore, under the minimax criterion Blue
0<m<M

selects n yielding min max D(m,n) = v, . In a like manner,
0<n<N 0<m<M

Red would select m in order to max min D(m,n) = v~

.

<m£M 0_<n<N

The payoff function is now examined in the light of the

following saddle point theorem [6]:

Theorem: "Let f be a real-valued function such

that f (x,y) is defined whenever xGA and y€B

(A and B are sets) ; then a point, (x ,y ) , such

that x 6A and y GB is called a saddle point of
o o

f if the following conditions are satisfied:

(i) f(x,y
Q

) < f(x
Q ,yo

) for all x€A

(ii) f(x
Q ,yo

) < f(x
Q ,y) for all y6B.

Then a necessary and sufficient condition that

max min f(x,y) = min max f(x,y) = f (x ,y )

xGA ySB ySB xGA °

is that f possesses a saddle point."

Therefore, for our problem, if v, and v~ exist and are

equal then the optimal solution to the game is the set of pure

strategies (m
Q
,n

Q
). To prove that they exist and are equal it

must be shown that a saddle point exists at (m ,n
Q

) such that

the following relation holds:

D(m,n
Q

) _< D(m ,n ) _< D(m
Q
,n) .

20



Inspection of equation (8) shows that D is continuous in

both m and n for -»
: m •: « and -°° n ' °°. Closer inspec-

tion shows that D is convex in n for any given m and linear

in m for any given n. These properties suggest that a saddle

point (mQ/ n ) may be obtained by taking the partial deriv-

atives of D with respect to both m and n, setting both par-

tials equal to zero, and solving for the values of m and n

which satisfy the resulting system of equations.

The partial derivatives are

p. n -k.n -k (N-n)

55
= c

i"
K
i
(c

i
+D) (1 " e

X
' " c

c
+ K

c
(c
c
+U) (1"e

an -k.n -k (N-n)~ = - mK.k. (C.+U)e + (M-m)K k (C +U)

e

When these derivatives are set equal to zero, we get

-k.n
C. - K.(C.+U)(l-e 1

) = C - K (C +U) (1-
-k (N-n)

c c

m = M

-k
c
(N-n)

K
c
k
c
(C

c
-KJ)e

-k.n -k (N-n)
Kk .. (C +U)e X

+ K k (C +U) e
C

1 1 i c c c

, (9)

(10)

Equations (9) and (10) form a system of two equations

with two unknowns. Since (9) is a function of n only, it can

be solved for the value of n » Tnis value of n
Q

can then be

substituted in Q0) to determine rtu

Since D is strictly convex in n for any given m, it

follows that D(m ,n
Q

) £ D(m ,n) for all -« _< n <_ «. Further,

since D is linear in m for any given n, it follows that

'0D(m,n
Q

) = D(m ,n
Q

) for all -« £ m £ °° because n n was selected

21



3D
to give j— = 0, Thus (mQ/ n ) obtained from equations (9)

and (10) is a saddle point.

We will designate m* and n* as the optimal strategies

for Red and Blue; as such they must satisfy tne requirements

of <_ m* M and <_ n* <^ N. If m
fi

and n
Q

fall within the

feasibility region of m* and n* then it follows from the

saddle point theorem that m •= m* and n
n

=* n*. We will refer

to any pair of optimal strategies corresponding to this sit-

uation as an Internal-Saddle-point (ISP) solution.

A special property of ISP solutions is that < m* < M.

This property is a consequence of equation (10) . We can re-

write (10) to get the following form for m as a function of

-1n
Q

:

m
Q

= M

-k.n
Q

K k (C.+U)e
x

1 +
-k

c
(N-n )

- K
c
k
c
(C

c+
U)e

The term in brackets of this expression is positive and

greater than unity for -a < n
Q

< °°; therefore < m
Q

< M.

It follows that < m* < M whenever n
Q

<_ N.

A further consequence of the special property is that

the following cases will never occur :

(m , n
Q

) - (M,0) ,

(m
Q

, n
Q

) = (0,N) .

It is clear that the saddle-point solution will not

necessarily provide integer values for m* and n* due to our

relaxing of the integer requirement. To obtain the "best"

integer solution we will evaluate the payoff function for

the four integer solutions closest to m* and n* and choose

22



that integer solution having its D value closest to D (m* , n*)

,

We will refer to this integer solution as the pseudo-saddle-

point. We recognize the theoretical difficulties in round-

ing off non-integer solutions to obtain integer values, but

we feel that the approach is reasonable for a practical prob-

lem, particularly one whose parameters are somewhat inexact.

This will be discussed in more detail later in the paper.

Suppose now that n
fl

lies outside the interval [0,N].

What will the optimal strategies be? In answering this ques-

tion we will consider two cases; the first (Case I) corres-

ponds to n
Q

< and the second (Case II) to n
n

> N.

To facilitate the study of these cases, the expressions

for D when m = and m = M are useful. They are

D(0,n) = M
-k (N-n)

C -K (C +U) (1-e
C

)

m
C G C

[
-k,n

r -l

n

D(M,n) = M C.-K. (C.+U) (1-e
1

)

|_ l i l

(11)

(12)

Inspection of equation (8) shows that D(m,n) can be written

as the following convex combination of D(0,n) and D(M,n):

D(m,n) - XD(M,n) + (1-X) D(0,n)

where X = — - Obviously X 1 if m is required to lie in

the region : m ' M„ Figure 2 is a sketch of equations (11)

and (12) as a function of n. This figure shows an ISP solu-

tion (i.e., m* = m
fi

and n* - n
Q

) . The value of n where the

curves for D(0,n) and D(M,n) intersect is n
Q
because the

bracketed terms of (11) and (12) are, in fact, the right and

left sides respectively of equation (9)

.
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c
-K

c
(C

c
+U)] I

n
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*

MljC
i
-K. (C

±
+U) J—£

N n

Figure 2

From figure 2 it is easy to see that Case I (n
Q

< 0)

will occur when D(0,n) > D(M,N) for On N s The optimal

strategies in this case must then be n* = and m* = since

D(m / 0) < D(0,0) < D(0,n) for any : n <_ N and any : m £ M,

Case II (n
Q

> N) will occur when D(0,n) < D(M,n) for

On N. The optimal strategy in this case is then m* = M

and n* = N since D(m,N) < D(M,N) < D(M,n) for any n _< N

and any _< m : M.

From these observations and the derivation of equation

(9) it follows that Case I will occur when

3D
9m

<

n=0

and Case II will occur when

3D
3m

>

n=N
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In addition, it is worthwhile to observe that

3m"
K ° when n < n ;

|| > when n > n
Q

.

Further, -r— is a strictly monotonia decreasing function of n;

that is,

3Dj 3D
3m 3m

1 n=n
when n, < n

2
«

n-n.l

2 " "1

These results suggest a procedure for determining the optimal

strategy cases (Case I, Case II, or ISP) on the basis of the

values of the parameters of a particular problem. The devel-

opment of this procedure is based on the following lemmas and

theorems

,

Lemma 1 : The necessary and sufficient condition for Case

I (n A < 0) to occur is t— < 0.
/ 3m -.

' n=0

Proof: Assume n
Q

< 0. Since n
Q

is defined as the value

of n giving *— =0 and r- is a strictly monotonic decreasing3 3 dm dm

function of n, it follows that *— < for n = 0.
3m

Next, assume •=-—
' 3m

< 0. Prom the definition of n~ we
n-0

know 7T—\ - 0, From the monotonicity of tt— it then follows
3m J 3m

n=n

that n
Q

< 0«

The expression for -r— when n - isc dm

3D I

"k
C
N

~\ = C. - C + K (C +U) (1-e ) ,
dm|

n-0
X C C
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and tt— < is equivalent to
dm n ^

n=0
-k N

C.+K U(l-e °
) A -

C > —: = C (13)
c -k N c ' llJ;

l-K
c
(l-e

C
)

Therefore, as a consequence of Lemma 1, we can state the

following theorem.

Theorem 1 ; The optimal strategies are (m* , n*) = (0,0)

/*.

if and only if C > C .2 c c

We can make similar statements about Case II (n
fi

> N)

.

Lemma 2 : The necessary and sufficient condition for

> 0.
\ n

Case II (n~ > N) to occur is *—
dm

dm

n=N

The proof is similar to that of Lemma 1. In tnis case,

> is equivalent to
n=N

-k.N
C < C. - K.(C.+U)(l-e X

) = C . (14)
c 1 11 c

And, as a consequence of Lemma 2, we can state the following

theorem.

Theorem 2 ; The optimal strategies are (m*,n*) = (M,N)

if and only if C < CJ c c

Finally, as a consequence of theorems 1 and 2 and the

definitions of m
n

and n
n , we have the following corollary.

Corollary ; The optimal strategies are (m*,n*) = (m ,n
Q )

if and only if C < C < C .J c — c — c

From the theorems and the corollary we realize that the

necessary and sufficient conditions for each case can be de-

termined by an investigation of the relationship of C to
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C and C . To solve a given problem for the optimal strat-

egies, we would first calculate the values of C and C and
c c

compare the value of C with these calculated values. If

either Case I or II results then the optimal strategies are

easily specified. If the ISP Case arises then the optimal

strategies must be determined using equations (9) and (10)

.

The following numerical example illustrates this procedure.

EXAMPLE . Suppose the following parameters are given:

C = C. = 1-0 U = K , K. = k, - 0.5, k = 0.0405, and
C 1 C 1 1 c

M = N = 10.

From equations (13) and (14) we get C = 2.0 and C =0.67

Because C = 1,0 we have C C C and, from the corollary,

an ISP solution is optimal. Using equations (9) and (10) we

calculate the saddle-point solutions to be m = 3.54 and

n
fi

= 1.78. Since both m
fi

and n
fl

are well within their re-

spective feasible ranges, the optimal non-integer strategies

are m* = 3.54, n* = 1.7 8 and D(3.54, 1.78) = 4.37. However,

only integer values of m and n are permissible, thus the pay-

off function, D(m,n), must be evaluated for the four integer

solutions closest to m* and n* to determine the pseudo-

saddle-point solution. These four values are: D(3,l) = 4.50,

D(3,2) - 4.22, D(4.1) = 4.76, D(4,2) = 4.16. Since we should

choose that integer solution closest to the non-integer

saddle-point solution, we pick D equal to 4.50. This pseudo-

saddle-point solution yields integer strategies of m = 3 and

n = L
The relationship between m* and n* for ISP solutions to

problems in general is suggested by figure 3. This figure
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Figure 3
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shows the various optimal strategy regions and constant value

curves of m* and n* plotted on the C - k. plane for values

of the other parameters of our sample problem. Although it

may not be evident from this figure, it should be noted that

as k. increases the constant m lines asymptotically approach

the value of C . The C line corresponds also to the n =

curve and thus for very large values of k. all solutions will

be Case I (m* = 0, n* = 0).

From figure 3 it may be seen that an increase of k.,

with all other parameters fixed results in a decrease of n*

and an initial decrease then increase of m*. This seems rea-

sonable since as Blue's detection constant in the area of

interest increases, it forces Red to maintain more of his

effort in the area of concern, where he is not as vulnerable

to detection, and thus Blue is forced to direct his attention

to the area of concern. However, as Blue increases his effort

in the area of concern Red will desire to shift more of his

units to the area of interest.

An increase of C , with all other parameters fixed, re-
c

suits in a decrease of m* and n* . This implies the subma-

rines' effectiveness in the area of concern has increased and

as such Red would want to allocate more to this area. Sup-

posedly Blue's estimate of C would increase also and thus he

would allocate more ASW units to the area of concern. Hence

both m* and n* decrease since both sides are re-allocating

their units to the area of concern.

Associated with any particular set of m* , n* within the

region of ISP solutions will be either one or two different
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sets of C , k. values. Each case having only a single set

of C , k. values occurs where a constant ra line is tangent

to a constant n > line or where a constant m line intersects

with the n = line.

As we have shown, the optimal strategies can be calcu-

lated if the values of all the parameters are known. In re-

ality, these values will probably be the result of the Blue

commander's judgment because it would be difficult, for ex-

ample, for him to know precisely the submarines' effectiveness

with surfaced-launched missiles. The value of U, in partic-

ular, is completely subjective. Consequently, an awareness

of the influences of the various parameters is important.

An understanding of the parametric influences may be

facilitated by consideration of the optimal strategy in the

C - k. plane. Figure 4 illustrates the shape of these

regions for parameter values of our example. A large amount

of information about the influences of the various parameters

can be obtained by a study of the behavior of C and C in

this plane. For example, if U were to be increased from 1.0

to 2.0, then C would increase and C would decrease as in-
c c

dicated by the dashed curves in figure 4. Thus, the ISP

solution area of the C - k. plane increases. Conversely,

as U decreases this area decreases.

The changes in C , C , and D per unit change of any of

the parameters of the model can also be obtained by taking

partial derivatives with respect to the particular parameter

or by direct calculation if the other parameters are known.
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2.5

2.0

(m*,n*) = (0,0)

(m*,n*) = (m0/ n )

1.0 l

Figure 4

An analysis of the effects of changing the various param-

eters would indicate how best a planner might change his op-

timal strategy if the opportunity arises. In a sense it gives

a planner a limited option of regulating the outcome of the

payoff function if he has knowledge of and control of some of

the input parameters. For example, a planner may have the

ability to direct more effort or funds into one or more param-

eters which he is able to adjust. Through an examination of

the model he could determine how best to change his control-

lable parameters in order to realize the most benefit. As

another example, a planner may be able to obtain sufficiently

reasonable estimates of the input parameters so that a

31



"ball-park" optimal solution can be determined. He could then

determine from a sensitivity analysis which parameters merit

further study to obtain more precise estimates.
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V. DISCUSSION OF THE MODEL

ASSUMPTIONS . We have greatly simplified the model by assuming

both that the area of interest is like a "road" across the

ocean with the area of concern laying on either side and that

the areas assigned to the ASW units to search coincide with

the areas of interest and concern. What has been ignored here

is, first, the kinematics of search theory imposed by the

capabilities of the units of both sides, and second, the pos-

sibility that the convoy could be attacked with missiles from

the front and rear. This limits the application of the model

but not the use of a game theoretic approach in the analysis.

We have assumed that both Blue and Red know the location

and size of the areas of interest and concern. Red knows the

size of the areas since both areas are a function of the

capabilities of Red's weapons. Blue knows the location of

the convoy route since he chooses it. Blue can usually ap-

proximate the effective range of Red's weapons and will use

these estimates to assign his ASW units. Thus, we can say

that Blue fairly well knows the size of both the area of in-

terest and the area of concern. We have assumed that Red

knows the location of the" convoy route since this would prob-

ably lead to the worst possible outcome of a crossing as far

as Blue is concerned, and this assumption is thus consistent

with the pessimistic attitude of a player using the minimax

criterion.

Use of the "formula for random search" for the probabil-

ity of a Blue unit detecting a Red unit that is present is
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valid when both Blue and Red are moving independently and

randomly. Even though the "formula" is by nature pessimistic,

its use is consistent with the minimax criterion. The as-

sumption of Blue attacking units moving independently and

randomly is justified when a Blue attacking unit is individ-

ually assigned an area to search. This usually occurs when

they are either limited in number available, detached from

the immediate area of the convoy to search in some large re-

mote area, or dispersed because of the threat of a nuclear

attack. The assumption may not be justified if the ASW mis-

sion is conducted under coordinated, systematic, multi-

vehicle search plans. This type of search may occur when

the available number of both ships and aircraft are limited.

Such search plans negate both the assumption of each Blue unit

searching equal areas , and the assumption of homogenity of

the Blue attacking force.

The assumption of an independent, random, uniform deploy-

ment of Red submarines is quite reasonable because any mutual

interference that one submarine may have on another is

avoided.

The assumption that a Blue attacking unit always has an

opportunity to detect and attack a Red unit before the Red

unit attacks is a matter of conjecture. In many regards this

assumption is reasonable because the submarine must usually

commit some act that will increase his likelihood of detection

(i.e., expose his periscope when making a torpedo attack or

surfacing while conducting a missile attack)

.
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Although the primary mission of the Red submarines is

the destruction of the convoy logistic units, it is quite

possible that they may attack the escort vehicles. For ex-

ample, if an ASW aircraft carrier is involved with the convoy

most submarine commanding officers would prefer to sink the

carrier before they begin to sink the logistic units. The

destruction of a carrier obviously removes a major threat to

the Red forces.

Some of the parameters which we have assumed to be con-

stant in the model may in fact be quite variable. For ex-

ample, when we formulated the detection constant in an area,

we treated the relative speed between the Red and Blue units

to be a constant given value determined exogenous to the

model. The assumption of fixed relative speed between Blue

and Red units is reasonable when there is a large speed dif-

ferential between Red and Blue units such as when Blue uses

ASW aircraft units against Red submarines. The assumption,

however, is generally questionable. When ships are used as

Blue attacking units they will generally operate at low speeds

in order to enhance their sonar detection capabilities. The

behavior of these ships and the Red submarines, operating at

various speeds either to avoid detection or to establish an

accurate firing position, would result in a highly variable

relative speed- Also, if nuclear submarines are employed by

Red, the relative speed is probably not constant regardless

of the type vehicle used by Blue since the speeds of the

nuclear submarines can vary over a wide range.
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In summary/ although the validity of some of the assump-

tions may be debatable, the assumptions are realistic enough

to permit the model to be useful as a first approximation to

the study of a convoy crossing in a submarine environment.

PAYOFF FUNCTION AND ALTERNATIVES . In this study the goal of

the Blue commander has been to minimize the payoff function,

D = DB - U (DR) . It has been pointed out that this payoff

function implies that Blue receives both a short-run and a

long-run return. It should be noted that if long-run returns

are considered, then this implies that the Blue commander

would be willing to risk an increase in logistic losses to

gain a larger increase in submarine losses. The amount of

risk the Blue commander is willing to take is represented by

the value of U. If the value of U is small this implies he

is willing to take only a small risk in the increase of logis-

tic losses. Conversely if U is large he is willing to take a

high risk.

If the Blue commander had other objectives then an alter-

native payoff function might be appropriate. For instance, if

circumstances prevail which dictate a one-convoy-only situa-

tion then the influence of the long-run benefits received by

sinking a submarine would be ignored because the Blue command-

er's primary interest would be to prevent the submarines from

attacking the logistic units. The objective of the Blue com-

mander in this case would be to minimize only Blue losses.

This implies that Blue does not have to destroy the submarines

but only prevent them from attacking to assure the successful

crossing of the logistic units. A contingency such as this
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will exist when the value of the cargo of the logistic units

is of exceptionally high value (such as that of a country's

total amphibious assault force) . It should be emphasized

that using this payoff function in a multiple convoy situation

could very well lead to suboptimization.

If the size of the enemy's entire submarine force and

other pertinent information, such as resupply rate, are known

then a Lanchester approach might prove very interesting [8]

.

In this case the payoff function would be a relationship

DB
using the exchange ratio, =-5-. The user* however, should beUK

forewarned of the usual criticism of a ratio type of objec-

tive function; it is easy to lose sight of the magnitude of

the losses.

USE OF GAME THEORY , According to game theory, instead of

using the pseudo-saddle-point solution when a non-integer ISP

occurs, we should use a mixed strategy. From the nature of

the payoff function Blue's mixed strategy will assign positive

probability to some set of the min (M,N) alternatives. The

use of the pseudo-saddle-point solution, however, offers a

more realistic approach to this convoy allocation problem.

This can be seen for several reasons.

Since the Blue commander is faced with a single decision

that determines the allocation strategy for the complete cros-

sing, it seems reasonable that when the non-integer ISP case

occurs he would choose a strategy near the saddle-point.

Clearly, the pseudo-saddle-point solution is appealing

when there are a large number of units to allocate since the
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round-off procedure would imply only a small percentage

change from the non-integer outcome.

Further, the uncertainty of the Blue commander's esti-

mates of the values of the parameters of the model suggests

a variation in the location of the true saddle-point. One

might be able, for example, to make some confidence state-

ments about a calculated value of the saddle-point based on

the distribution associated with some parameter. As such,

the round-off procedure will possibly keep the allocation

strategy within the location of the true saddle-point. The

variability of the parameter estimates also allows the pseudo-

saddle-point to be used when a small number of units is to be

allocated.

Because game theory has been used in this study to

analyze the convoy system allocation, it is necessary to

realize that there are limitations or restrictions that are

inherent in a game theoretic approach to actual conflict

situations. As Quade points out [9]:

"Game theory does not cover all the diverse
factors which enter into behavior in the face of
a conflict of interest. There are certain impor-
tant limitations. First, the theory assumes that
all the possible outcomes can be specified and
that each participant is able to assign to each a
measure of preference, or utility, so that the one
with a larger numerical utility is preferred to
one with a smaller utility. Second, all the var-
iables which determine the payoff and the values
of the payoff can be specified; that is, a de-
tailed description of all possible actions is
required.

"

To what extent can we satisfy these limitations in our

problem? First, all possible outcomes can be determined in

our problem if the upper bound on the number of forces on
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each side is known or can be estimated with a high degree of

confidence. The assumption that this parameter will be spec-

ified is very reasonable since a credible estimate of force

size is usually available. Second, the payoff matrix in the

convoy allocation problem is a function of losses and surviv-

als and, hence, is readily adaptable to some measure of pref-

erence. Finally, even though knowledge of all actual param-

eters or variables in a complex problem is quite impossible,

a reasonable estimate of the major or more significant param-

eters in such a problem is conceivable.

Whether a game theoretic approach can be used for deter-

mining an actual strategy in war or only for planning purposes

appears to be dependent on the accurate description of all the

necessary parameters and the degree of confidence in the esti-

mate of their values, The convoy allocation model attempts

to include those parameters which represent all the major as-

pects of the situation. However, both a more detailed model

and a more precise investigation into the assumptions would

undoubtedly be required in the determination of actual wartime

strategies. Nonetheless, the model formulated in this study

appears useful for planning or policy analysis. A planner

can not only use the model to understand the general nature

of the problem but also to investigate the influence of

changes in parameter values. Both can be valuable when future

models of the convoy allocation problem are considered.

Because of the structure of the payoff matrix and the

nature of the payoff function required by the first and second

limitation respectively, the game theoretic approach provides
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a systematic analysis of both the alternative courses of

action and tne effects of changes in parameters.

Even tnough the game is one in which Blue and Red are

assumed to be diametrically opposed, it is possible that they

will not have precisely opposite objectives. This may be

taken into account by permitting each player to assign a dif-

ferent value to the weighting factor, U, which compares the

value of a Blue logistic unit to a Red submarine. Thus, even

though a matrix of outcomes in terms of absolute losses is

the same for both sides, each player would generate his own

payoff matrix and use it to determine his optimal allocation

strategy. The zero-sum problem would occur only if both

players use the same value for U f The general problem is un-

doubtedly a nonzero-sum game.

From a philosophical point of view, we have only deter-

mined Blue's optimal strategy- The Red strategy derived cor-

responding to Blue's optimal strategy is the strategy that

Blue contends is optimal for Red to use. This is the strategy

that Blue will assume that Red will actually employ when Blue

plans his courses of action. However, this is clearly not

Red's optimal allocation strategy if two different payoff ma-

trices exist.

What guarantee is there that analyzing Blue's payoff ma-

trix in the context of a zero-sum game and using tne minimax

criterion will give acceptable results to a decision maker?

Suppose that internal saddle point solutions are obtained

from both players' matrices and further that the two solu-

tions are not identical. Clearly, if both sides use their
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optimal strategies with respect to their own payoff matrix

they may be playing non-optimal strategies with respect to

their opponent's payoff matrix. However, if each side plays

his own minimax strategy then neither can receive a worse pay-

off as far as they are each concerned. Thus, tne minimax

solution of a player's own payoff matrix in our problem pro-

vides Blue and Red with upper and lower estimates, respec-

tively, of the payoff they will receive in the combined

problem. Each side would play these strategies if they had

no information about their opponent's value of U.

If a player can accurately determine nis opponent's pay-

off matrix then he may want to use a different strategy than

the one based on his own payoff matrix. Suppose Blue knows

not only Red's payoff matrix but also that Red uses the maxi-

min criterion to determine his optimal strategy. The best

course of action for Blue to take after evaluating Red's pay-

off matrix is to play that strategy which minimizes his own

payoff when Red uses his maximin optimal strategy. In this

case Blue's payoff would be at least as large as that for the

minimax solution. Thus, a purpose or need for a continuous

and persistent effort to obtain reliable intelligence of an

enemy's intentions or knowledge of his actions is quite

apparent.
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VI. EXTENSIONS OF THE MODEL AND FURTHER STUDIES

The use of the pseudo-saddle-point solution needs further

justification because the theoretical optimal solution for

integer-valued strategies to the saddle-point payoff matrix

indicates mixed strategies are best. The probability density

function associated with the mixed strategies should be in-

vestigated to determine if it is unimodal in the vicinity of

the saddle-point and if it has a small variance. It seems

that this might be the case when the payoff function is reas-

onably flat in the region of the saddle-point as occurred in

our sample problem. Such a study would indicate the validity

of the round-off procedure.

A worthwhile study would be the investigation of the

case where the Blue attacking units and Red units are not as-

sumed to be homogeneous in effectiveness. For example, Blue

could be allowed to use destroyers, aircraft, and submarines

simultaneously as attacking units and Red could have several

different types of submarines with different capabilities.

If submarines are used as Blue attacking units, they would

probably be deployed independently of one another in an area

beyond the area of search of the aircraft and destroyers.

Their purpose would be to provide a loose barrier patrol ori-

ented towards the general direction of the expected Red threat

Whereas our model presupposes the deployment of Red prior to

the convoy transit, the use of a Blue submarine barrier would

require a change in the model to allow for attrition of the

Red threat as it approaches the region of the convoy's

anticipated track.
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The effect of allowing Blue attacking units to be vul-

nerable to the Red submarines should be studied. This is

particularly important because ASW carriers are oftem em-

ployed by Blue. By the very nature of the target a submarine

commanding officer would take delight in the sinking of a

carrier!

An interesting extension would be the study of the effect

of relaxing the assumption that the deployment of the Blue

attacking units as independent units in equal, non-overlapping

areas. One approach might be to require coordinated, system-

atic search and attack plans which correspond more to actual

naval operations. The use of systematic plans, which are

usually based on acceptable assumptions, generally increases

the probability of detection since they utilize current

available data from the environment and other sources. How-

ever, it is important to note that systematic search plans

will rule out the use of the "formula of random search".

This "formula" gave the mathematical property of convexity

to the payoff function and hence greatly facilitated the op-

timization of this model.

It might be beneficial to point out that time is present

in the model in a limited manner since detection is usually

a function of time- Yet, the model is still static in nature

since the optimal strategies are derived for the complete

crossing. A better model would be one that permits several

changes in optimal strategies as the convoy crosses. After

a certain time, possibly measured in number of engagements

with Red units, the model would be updated to conform with a
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task-force commander's actions. A dynamic programming

formulation might be appropriate for such a model. This

model could also be applied to the problem of several sequen-

tial convoys.
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VII. SUMMARY AND CONCLUSION

A game theoretic approach has been applied to an oceanic

convoy situation in an enemy submarine environment. Provid-

ing tne capabilities and limitations of both opponents can

be specified, a procedure for determining the optimum alloca-

tion of both forces has been presented. The method is de-

pendent upon the planner's ability to estimate the detection

and kill effectiveness parameters of both opponents. The use

of the minimax criterion, while providing a pessimistic out-

look, does assure an upper bound on the worst that could

happen to either side.

To the authors ' knowledge this is the first study of an

oceanic convoy crossing which utilizes game theory as an

analytical technique. The results of the study have shown

that a game theoretic approach provides both opponents with

a flexible model from which a systematic solution to the allo-

cation problem can be obtained. More significantly, it re-

quires each player to consider his opponent's possible courses

of action.
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13. ABSTRACT

The problem of allocation of ASW forces assigned to
an oceanic convoy in a submarine warfare environment is
postulated as a two-person game with the payoff function
being based on the "formula of random search". The
opponents in the game are a convoy system and a submarine
system. A submarine is given the ontion of attacking the
convoy system either from afar with surface-launched mis-
siles or near with torpedoes. The convoy system is de-
fended by units capable of destroying submarines exercising
either of their options. The optimal allocation of forces
for both sides is shown to be a set of pure strategies
which are dependent on the parameters of the model.
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