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FLIGHT SIMULATION OF THE
LONGITUDDIAL MOTIONS
OF ANOTHER AIRCRAFT

SUMMARY

Simulation of the control -fixed longitudinal dynamic character-

istics of the A^D-2, a Douglas jet attack aircraft, was attempted

with use of a variable -stability airplane, Princeton University's

North American Navion, and with telemetry for data presentation.

The variable -stability installation was built as a joint project

for both longitudinal and lateral -directional studies, and although

the attempt at simulation of the A^D-2 was not successful, it is

hoped that suitable guide lines have been established for similar

studies. As a secondary objective, the effects of feeding back

the airplane responses u,<x, and 9 were investigated.

The project commenced in October 1959 at Forrestal Research

Center, Princeton University, Princeton, New Jersey, and was

completed in May i960.





FLIGHT SIMULATION OF THE
LONGITUDINAL MOTIONS
OF ANOTHER AIRCRAFT

INTRODUCTION

Variable -stability aircraft and their use in flight research have

received increased emphasis with the advent of sonic and supersonic air-

craft. To date, much work has been done along these lines, primarily by

Cornell Aeronautical Laboratory, Inc., and the NACA (now NASA). For

longitudinal studies in particular, several aircraft including a C-^5,

an F-9k, a B-26, and a T-33> have been variously configured by Cornell

Aeronautical Laboratory with electro -hydraulic systems used to modify

elevator and other auxiliary control surface responses, in order that

studies could be made of:

1) aircraft natural modes that are essentially aperiodic and

convergent;

2) optimum handling characteristics;

3) proposed handling characteristics of an aircraft in design stages;

k) inertia effects;

5) phugoid damping.

Similarly, the NACA has devoted much effort towards such studies, also by

use of variously configured variable -stability aircraft. Refs. 1 through

8 apply.
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In this report, simulation of the longitudinal response character-

istics of the A^D-2, the Douglas attack jet aircraft, was attempted

with a North American Navion configured as a variable -stability air-

craft. Only specific response characteristics of the phugoid and short

period were studied, not pilot opinion or handling qualities, since

stick-force gradients and the like were not provided.

The variable -stability installation built in Princeton University's

North American Navion was constructed around a 3-&xes, stick-steering,

attitude-and-rate-sensing auto-pilot. Electrical signals produced by

various transducers were summed in the auto-pilot summing circuits, and

the control surfaces were moved by electrical servos through the ship's

control cable system in proportion to these signals. The variable-

stability installation was used to alter the normal stability derivatives

of the Navion and to introduce additional or psuedo-stability derivatives,

thereby changing the aircraft dynamic response characteristics

.

The auto-pilot installation was a joint project in which both longi-

tudinal and lateral-directional characteristics were studied. The other

half of the joint project, lateral -directional, is described in Ref . 9«

All studies were performed at the Forrestal Research Center, Princeton

University, during the academic year 1959-1960.
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THEORY AND ANALYSIS

The normal procedure in the determination of aircraft dynamic motions

is to solve the simultaneous, constant -coefficient, linear differential

equations of motion that characterize the transient response of the air-

craft to a disturbance from some equilibrium flight condition. This

procedure is* outlined in Ref . 10. In the determination of the design

requirements of the variable -stability installation, the longitudinal

equations of motion of both the Navion and the A^D-2 were compared as

outlined below.

EQUATIONS OF MOTION

The longitudinal (stick-fixed) equations of motion may be written

as follows, in non-dimensional time with the angles in radians:

(C + d)u + 1/2(033 - CL)<* +^8 = (1)
^eff

u
<* 2

C T
C
T

u + (^<* + d)c* -d9 =0 (2)Leff *

V + < Cm^ + %* dW (Cm
d0

d
"
hd2)9 = -°*

S e
*e (3)

M d^D ] A rn

where: CL. = C^ + x—ZTT - k— • -%r-=-D
eff ° 2 dM PSV d V

c = c + M.£^ + i/2 A^l
'

*<
>

£ ty.>
2 K

y
2

h a "77 (~) * inertia factor

/* =
ft gg / density factor
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Nov let the forcing function, £ q , take the following non-dimensional

form with angles in radians;

£e = K
s S s

+ Kl<* +-^ de + K
3
U + Kk@ ( U )

where K-. , K-, K_, and K. hereafter will be referred to as gain

constants. Equation (k) may also be written as:

I . ( Ah.) x + (_4^) * + (-AifL)d + (-%i^)u
w

s

+ (-*£*) 9, (5)

where £ , u, o< ,9 and 9 are understood to be perturbation

quantities

.

Substituting £ into the moment equation

:

(o^u +(cn^ + c^a)* + (c^a - ha2 ) e = - cm ^ ks i s

To write the moment equation in real time, p = d. Transposing

and collecting terms

:

(\ + C^
ft

K3)u +
( cm* + ^m^ ?>V + Cm %)<* + (Cm

Se^

+ C^. rP _ h r2p2 + C^ ^^ = " Cml Ks ^s

or
Si G3U + (Cm<^ G 1 + C^ r p

)« (Cm
ic

K4 + C^ G2 T p

- h rV) 9 = - Cm& K
s & s (6)
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Cr

where:: G, = 1 + Q.c-.. K->
1 r.

±

G2
= 1 x

LHe *2

s o s

CmX
G = 1 + ^_ Ko
3 r J

Expressing all the equations in a deteminent form in real time:

u cX 6 £

cDeff
+ rp V2^- c l) ci/2 °

Leff 2

C^ G
3

Cmo( G i + Cmde,rP
Cm fy + C &2 r p -cm Ks £

d e

-hJ^p2

GAIN CONSTANTS

Solutions to these equations of motion were obtained by assuming

the solution of the form:

u = V Kt/r
cx= «

l8
^ e.e.e M/r

Upon substitution of these variables into the equations of motion,

together with their first and second derivatives, three homogeneous

algebraic equations resulted. Further, expansion of the resultant

determinant gave the standard quartic equation in A , implicitly in

terms of the gain constants, as shown:
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c^ K + c A
3

+ c2
<S

2
+ c-l ?> + c =

where

:

C
k = ~ h T

C
3

" ^ [\^ + S« effJ

(7)

(8)

(9)

+ Cm , GP - ^h) +
hCLeff (CD _ - CL )

2
c
2

= r \ c
Deff

(c
iUd^ + u^eU2 •

+ ^ Cm _ G
m.ae

*2 + Cm e<
Gx + fyCm (10)

r C^ (PifSS Cm GP + Cm Gn) +
L ^ff /Cm, n02Deff 2 m

dfi
d * x 2 V ^B

'D m,
+ c

-a« -cjfS.^--^-^
+ %cm < (o,, + -gt.)

Co - 2 CLeffCm

>) (11)

[
CLeff

Cni
0<

Gl " cmu-^- G3J
+ K), °e

L
CDeff L *

(12)

In terms of modified transfer functions, the numerator terms were

found to be:

(X
c
mJe Ks 6 6 [r% 2

r p
cDeff + jjS c

Leff
]

Cm
Nu + -^ K

s S 6 Cj, r p
+ C

CL

% = - Cm

t<

(13)

(1*0

+ C
CL«

PT
CD*, . r

CL
Deff~2~^ " Leffp

+ L Leff2~ (15)
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Evaluation of the coefficients of the characteristic equation, in
«<

terms of the Navion stability derivatives as shown in Appendix A, yielded

the following relations explicit in the gain constants:

CJ+ = 1 (16)

C3 = 5.30 + 15.75 Kg (17)

C2
= 9^88 + 15.7^ Kx + 32.27 Kg + 15.73 K4 (18)

C± = .1*08 + .1*68 K± + 1.284 Kg - 1.91*2 K3 + 32.25 K4 (19)

CQ = .355 + 1.051 % _ 5.8I K3 + 1.285 Kk (20)

Also as shown in Appendix A, like constants of the characteristic

equations of the Navion and the Al*D-2 were equated in the following

fashion, and solutions for the gain constants were found:

^ ChlkD-2
=

( C^M0D. NAV.

(C ) = (C )

3A4D-2 3
y
M0D.NAV.

and so on, where the notation "Mod. Nav." refers to Modified Navion. The

gain constants were found to be as follows

:

K-, = - .0407 (i
AH
Ac*

Kg = - .21*0 (= A *> e
)

A&

K. = .01*65 (= _^_)
J Au

Kk = .0033 (= A^ e
)

Ae
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SIGNIFICANCE OF GAIN CONSTANTS

As may "be seen in Equation (6), additional airplane moments were

added to the longitudinal moment equation. For instance, the C™ GoU

term is implicitly composed of the two terms C™ + Cm ( Ko, where

Cm f K-3 is a moment increment added to the original moment C„ . Then

the individual moments are as follows

:

C
*u

+ C*ie*3 =
Sr* ACm

u
(21)

C^+Cn^Ki =Cm^+ ACm^ (22)

Cme + C4 e \ = % + AcmQ (23)

C
*d9

+Cm*e^ =Cmd9 + ACmde ^
Examination of these equations shows the following:

1) for the Navion, C™ = 0, so AC™ amounts to a pseudo static

stability derivative;

2) the same applies to AC™ ;

3) since aircraft responses to <X and 9 already exist, A

C

m^

and ACjjj,^ amount to altered stability derivatives and changed

response characteristics of the aircraft.

Signs of the gain constants indicate that K, through K- supply de-

stabilizing moments, while K. supplies a stabilizing moment. A study of

the magnitudes of the gain constants shows the following:

l) %: for a positive 15 increase in angle of attack, the variable-

,o
stability installation must apply .6 of up elevator;

8.





2) Kpt for a positive pitch rate of 5°/sec
.
, 1.2° up elevator;

3) K^: for an increase in speed of 12 mph, .3° down elevator; and

k) Kk : for a positive 15° increase in pitch angle, .05° down elevator,

As was shown by Equations (13) through (15)> the forcing function

Cm c Ks o s (which is effectively Cm ,- ^ e ) appears in the numerators,

but the gain .constants do not so appear. This is clearly the result of

making changes only to the moment equation, and none to the lift and drag

equations. The above indicated that with provisions only for modifying

moments, no simulation could be made of:

1) amplitude of oscillations in u, ©C , 6, and 9 during transient

responses, and

2) steady-state values of the above for say an elevator step input

forcing function.

It was seen, however, that this would 'not limit simulation of the transient

response characteristics damping and frequency.

9.





PROCEDURE AND EQUIPMENT

ANALYTICAL STUDIES

It was decided that a complete analytical study should precede the

flight simulation, with particular emphasis on the magnitude of acceleration

normal to the aircraft's flight path, and some emphasis on the effects of

the impossibility of simulating aircraft transfer functions of the A^D-2.

In order to accomplish the above, a computer program utilizing the Goodyear

Geda Analog Computer was organized. The dynamic response characteristics

of the Al+D-2 were studied first, and damping and frequency of each of the

two longitudinal response modes, short period and phugoid, were determined

from the computer and compared with those obtained by analytical methods.

For comparison, response characteristics of the unmodified Navion were

also determined, as outlined in Appendix B. Then by use of the computer

the simulation of the A^D-2 was accomplished, and the effects of vari-

ations of gain constants were studied. Normal accelerations, primarily

during the short period, were calculated, also as outlined in Appendix B.

In addition to the above, studies were made of the effects of the

gain constants on aircraft response as each individual gain constant was

fed back with increasing magnitude from a zero value.

DESIGN OF THE AUTO -PILOT

Simultaneously with the initial theoretical studies of the variable

-

stability installation, physical design considerations of the auto-pilot

variable -stability combination were examined. The first step was a flight

test program to determine control cable forces encountered in the Navion

during maneuvering flight. Flight test instrumentation used in these

10.





flight tests was kept simple to avoid an excessive delay in the construction

of the auto-pilot. Test instruments included a hand-held spring force gage,

a glass tube -and-spring accelerometer, and elevator, aileron, and rudder

control position indicators, which consisted of markings on bulkheads of

the aircraft close to the respective control and pointers attached to the

cockpit controls . Since auto-pilot construction had already begun on

Navion N91566, Princeton University's second Navion, N5113K, which is

essentially an identical airplane, was used for the flight tests.

Flight tests consisted of one flight where measurements were taken of

control stick force per g, stick force per velocity, and rudder and aileron

control force per deflection of each. Control stick force per g was measured

in steady turns, stick force per velocity was measured over a range of

velocity below and above the trim speed, 122 m.p.h., in 10 m.p.h. increments,

and rudder and aileron control force per deflection were measured in steady

sideslips. One test altitude was used, 3000 *t«> and one configuration:

landing gear and flaps up, canopy closed, cowl flaps closed, mixture rich,

1900 rpm, and 22 in. of manifold pressure. All tests were performed as

outlined in Refs. 13 and Ik.

With the Navion on the ground, the hand-held spring force gage wa6

U6ed to determine control cable forces encountered during the above flight

test work. Although measurements of control cable forces were made diffi-

cult by a cross -control coupling between the aileron and rudder cables, it

was believed that these forces could be subtracted out with sufficient

accuracy for design purposes. It was subsequently accomplished in this

manner.

11.





Cable force determination was the linking step to the determination

of required servo pulley gearing ratios . The two basic considerations in-

volved in the gearing ratios were whether the given servo-pulley combination,

with 160 in. lb. design torque, could provide the required cable forces, and

whether the speed of response of the servos was such that the airplane -auto-

pilot combination would be dynamically stable. The latter consideration is

outlined in detail in Ref . 9, and the result of both considerations led to

the design and construction of a larger servo pulley for the longitudinal

axis for better speed of response. Existing lateral and directional servo

pulleys were found to be satisfactory.

With the help of detailed blueprints and some parts of a Lear, Inc.

electric auto-pilot specifically designed for the Navion, location of

separate variable -stability auto-pilot components was decided. With limited

space available in the Navion, and with the existing arrangement of control

cables, the logical location of the three-axis servo installation was the

center of the bulkhead at the after end of the baggage compartment. De-

sign and construction of the servo support mountings and brackets commenced

early in November. Design and construction of the electrical and electronic

1

components got underway about the same time, as outlined in Ref. 9«

Angle of attack and sideslip angle sensors were procured from the Naval

Air Test Center, Patuxent River. By use of a probe, previously designed for

similar measurements, the angle of attack and sideslip angle sensors were

mounted in tandem, approximately one and one -half chord lengths ahead of

the leading edge of the left wing, at the tip. The dynamic and static

pressure probe, also previously designed, was mounted on the right wing-tip,

12.





also approximately one and one -half chord lengths ahead of the leading edge;

the transducer used for pressure (airspeed) measurements was located just

inside the right wing tip bow.

An electrical stick and rudder was designed and installed as described

in Ref. 9, along with the feed-back gain potentiometers and their mountings.

The balance of electrical and electronic equipment including telemetry was

designed and was installed in the baggage compartment; see Ref. 9«

When the servo and pulley installation had been completed, elevator

servo cables were fed aft from the servo installation and tied into the ship's

elevator cables at a small angle, with use of cable tie-ins provided by Lear;

aileron servo cables were fed forward through a pulley system to the then

existing aileron follow-up cables, and rudder servo cables were fed aft

through a single pulley to the ship's rudder cables. Tension on the ship's

cables was set at 30 lbs., as per Navion maintenance specifications, and

tension in servo cables was set at 25 lbs.

Servo clutch slip levels were set such that the safety pilot, with use

of the ship's controls, could, for example, over-ride the elevator servo of

the auto-pilot with 16 lbs. of control force. In terms of torque limits

for over-ride, slip levels were set as follows: elevator servo, 160 in. lbs.;

aileron servo, 100 in. lbs.; rudder servo, 60 in. lbs. These levels were

designed to permit control of the airplane in the cases of either inadvertent

engaging of the auto-pilot, or failure of the auto-pilot disengaging system.

Electrical and mechanical installations were mostly completed by the

middle of February, and a complete static (ground) test of the servo system

was inaugurated. The static check included:

13-





1) setting the servo limit switches;

2) with full control deflection, checking the slack sides of

the control cables for tension;

3) measuring the control force required to overpower the

auto -pilot;

h) observing the structural effects on the servo and pulley

installation, and surrounding mountings, during maximum

force tests;

5) observing all cables for excessive cable stretch during

rapid, large deflections of all controls;

6) checking the complete aircraft control system for proper

and safe operation;

7) inspecting the aircraft structurally after completion of

the above; and

8) testing for total weight and aircraft center of gravity •

location.

Upon completion of the static tests and electrical trouble -shooting,

at the end of March, the aircraft was test -flown to determine possible

discrepancies of the aircraft and the auto-pilot installation. After the

test flights, the Navion was given a somewhat less strenuous but thorough

static check.

CALIBRATIONS

Calibrations consisted essentially of determining first the number of

degrees of control surface deflection per volt input to the servo, for a

given servo feed-back gain, and second the magnitude of input signal from

Ik.





each transducer for particular potentiometer settings, e.g., the number

of volts input from the angle of attack vane at 5 angle of attack, with

a potentiometer setting of 0.1. The four sensors of the longitudinal

channel, angle of attack vane, pressure (airspeed) transducer, pitch gyro

and pitch -rate gyro, were calibrated in this fashion, as was the electrical

stick. Aircraft response quantities which were to be telemetered, the four

above plus elevator servo position (elevator position) were calibrated also;

this amounted to measuring the telemeter d.c. output voltage for an a.c.

transducer signal input.

FLIGHT TEST PROGRAM

The flight test program consisted of three flights which were necessary

to trouble-shoot communications, telemetry, and auto-pilot electronics, and

one flight during which test data was taken. Time did not permit further

testing.

The configuration tested was as follows: landing gear and flaps up,

canopy closed, oil cooler doors open, I85O r.p.m., and approximately 20 in.

of manifold pressure. Test altitude was 65OO ft., and airspeed was 110 m.p.h,

indicated (120 m.p.h. true). The forcing functions utilized in the tests

consisted of approximately .05 rad. elevator steps or impulses; these were

provided by the auto-pilot with deflection of the electric stick, which

had been calibrated to produce approximately .05 rad. of elevator deflection

for full aft deflection of the stick. Also, during phugoid tests, the wings

were held level by use of the auto-»pilot rudder controls

.

First, dynamic characteristics of the basic Navion were tested with

the auto-pilot and the elevator step forcing function; with telemetry, the

dynamic response characteristics were recorded on magnetic tape by an

15.





Ampex 309 -C tape recorder and on time history traces by a Sanborn 150

recorder. Second, with an arbitrary gain potentiometer setting of .15

for the u feed-back, and with the auto -pilot and a .05 rad. impulse

forcing function, the short period and phugoid motions of the modified

Navion were tested and recorded. In similar fashion, the <K. , ©, and

feed-backs were tested. After the completion of each test run, the auto-

pilot was disengaged, the aircraft was flown back to test altitude and

test airspeed, and the auto -pilot was re-engaged.

For reasons outlined in later sections, the simulation of the AUD-2

was not attempted.

16.





RESULTS AND DISCUSSION

GENERAL RESULTS

The primary objective, that of in-flight simulation of the A^D-2

with the Navion and its variable -stability installation, was not

accomplished because of the effects outlined below. The secondary
*

objective, which developed during the theoretical analysis of the simu-

lation, that of an investigation of the effects of variation of the

feed-back quantities on airplane dynamic response, was accomplished

through a theoretical analysis, but was not verified by flight test data.

However, it is felt that the information contained herein concerning the

variable -stability installation and the attempted simulation should be of

help in establishing guide lines for similar studies

.

ANALYTICAL RESULTS

As outlined in some detail in Appendix B, a comparison of the dynamic

characteristics of the two aircraft, the AUD-2 and the Navion, was made.

For ease of comparison, these characteristics are repeated here; factor-

ization of the two characteristic equations gave, in seconds:

Riugoid Short Period

Airplane P Tl/2 P Tl/2

Ato-2 31+.9 39.5 6.59 ^
Navion 32.9 62.6 3.78 .26

_.
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From the above, it may be seen that the variable -stability installation

had to be designed to change the dynamic characteristics of the Navion

in the following way: decrease the frequency of the phugoid and the short

period modes, decrease the damping of the short period mode, and increase

the damping of the phugoid mode. As outlined in the section on theoretical

considerations-, such changes were provided for by the use of the feed-backs

u,c* ,9, and 9, and the related gain constants were found to be of particular

magnitudes and algebraic signs.

At this point it should be re -emphasized that the characteristic

equation of the Navion was made exactly similar to that of the AkD-2 by

use of the feed-backs, but, in terms of transfer functions, the numerator

terms were in no way changed. The transfer functions of the modified

Navion then consisted of a constant comprised of Navion stability deri-

vatives, a fourth order denominator term peculiar to the A^D-2, and a first

or second order numerator term peculiar to the Navion.

As outlined in Appendix B, the effects of this kind of matching were

investigated. In a comparison of steady-state values, i.e., the magnitudes

of the perturbation quantities u,<* ,9, and 9 as t-*-oo , the same amount of

elevator deflection used as a step forcing function produced markedly

different results. For example, a .05 rad. elevator step produced

u
ss

= .246 in the A^D-2, and ugs = 6.15 in the modified Navion. As noted

in the Appendix, the latter is well beyond the small perturbation theory

employed in this investigation. Examination of the individual stability

derivatives involved in the steady state transfer functions showed why the

steady-state values differed so markedly between the two aircraft. Numer-

ator terms causing the difference include Cm and Ct , and a denominator
Oft ot
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term, CL , further complicated the picture i For example, Cm of the
is

Navion is approximately four and one-half times the value of that of the

AUD-2; C t
of the Navion is about twice that of the aUd-2j and in the

denominator, C T
of the Navion is about half that of the Ak"D-2. When

these parameters are multiplied together, as is done in the transfer

function, the' steady-state value of u of the Navion, considering an

equal amount of elevator step input, should be approximately 20 times

that of the X4D-2. It should be emphasized that the principal offender

in the steady-state transfer functions is the derivative Cm . In gener-

al, the same comments apply to the other perturbation quantities, <* ,0

and 9, to varying degree. The above results were verified by computer

studies and are tabulated in Table I.

As mentioned in EQUIPMENT AND PROCEDURE, computer studies were also

made of the dynamic characteristics of the AUD-2, the Navion, and the

modified Navion. Dynamic characteristics such as frequency and damping

of the oscillatory modes peculiar to the "three" airplanes are also listed

in Table I, and generally good agreement may be seen, except in the case

of frequency and damping of the short periods; accuracy in the determination

of short period characteristics from a time history trace is difficult at

best. Fig. Bl shows the computer wiring diagram used in the computer simu-

lation of the AUD-2, and it may be noted that it is a true representation

of the type of feed-back system used in the Navion variable-stability

installation.

Results of these computer studies also included transient values of

the dynamic responses u,o< ,b and 9, for both the A^D-2 and the modified

Navion. These results are also tabulated in Table 1. It may be noted
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that the initial amplitudes of the response quantities to an elevator step

forcing function of magnitude .05 rad. appear reasonable for the A^D-2, in-

cluding normal acceleration(g's), but such quantities for the modified

Navion are not only markedly different, but are well out of the realm of

the small perturbation theory, as was true in the case of steady-state

values. For the above reason, emphasis was shifted to the use of an im-

pulse forcing function; as may be seen in Table I, however, even a .05 rad.

impulse forcing function produced large initial amplitudes in oscillations

of the response quantities, including 3-2 to k.O g's during the short

period mode.

In order to determine the cause of such large differences between the

two aircraft in amplitudes of oscillations of the response quantities, the

airplane transfer functions were again examined, with emphasis this time

on transient response. This procedure is also outlined in Appendix B. Ex-

uu
,

amination of the transfer function T~(S) showed that the gain of the trans-

fer function is composed of, in the numerator, Cm and C-n , and in the

3
denominator, a constant 2, h, and ? . Evaluation of the gain showed that

Cm and T were the main causes of the large difference in gain between

the A^D-2 and the modified Navion, viz., the gain of the Navion was about

four times that of the AUD-2. Examination of the transfer function -^-(S)

showed that the gain of the modified Navion was approximately seven times

that of the A^D-2, and to further complicate the picture, the damping ratio

of the second order lead term of the numerator of the Navion transfer

function is approximately one-third that of the A^D-2, and well below criti-

cal damping. These factors appreciably altered amplitudes of response.
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Then it may "be seen that C again altered desired response character-
Oe.

istics of the modified Navion, and additionally, the terms h and 7" took part

in this alteration. Examination of these terms and others will now follow,

and later sections will touch on the same subject. It may be noted that a

reduction of the magnitude of the elevator step or impulse will reduce the

amplitude of bsc illations of the response quantities of the modified Navion,

and such reduction is linear with decrease in size of the step or impulse.

However, there is some lower limit to this type of reduction; from the pre-

vious section it may be seen that the .05 rad. elevator step, for example,

should be reduced by a factor of about 20 to .lU . Examination of this from

a practical standpoint, considering cable slop and resolution of the average

auto-pilot, shows that this is the right direction but the wrong path.

Examination of the effects of Cm , indicates that if Cm „ could be re-'mW m
&<

duced, response characteristics would be improved; a solution in this direction

would entail a small, auxiliary surface to be used as a moment -changer vice

the Navion elevator. This will be discussed in more detail in a later section.

Reduction of the amplitudes of the oscillations could be effected by increas-

ing the magnitudes of h and y ; this would indicate that the airplane to be

simulated should have approximately the same mass and the same moment of

inertia characteristics about the Y-axis as does the simulator airplane. It

may be shown, however, that with a 4- feed-back, moment of inertia character-

istics may also be simulated. Then, in the general case, y should be made

approximately equal to that of the simulated aircraft.

In the last direction indicated above, that of using a light air-

plane to simulate a light airplane, resolution of the auto-pilot again

becomes part of the picture. This phase was also investigated, and as
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was expected, in the case that the aircraft and simulator aircraft are

much alike in terms of stability derivatives and mass characteristics,

the gain constants, K-^. . . .K^, tend to become extremely small; then the

required magnitudes of the gain constants would tax an auto-pilot which

had resolution approaching infinity --or characteristics of a pure

analog computer.

Because of the above, and other effects outlined in following

sections, and the very limited time remaining for further investigation,

emphasis was shifted to the secondary objective mentioned previously:

a qualitative investigation of the effects of variation of the feed-back

quantities. This was accomplished by means of root locii plots and was

verified by computer studies. Only feed-backs of the algebraic sign de-

signed for the A^D-2 were studied. Details of the root locii plots may

be seen in Appendix B, and the general effects of the feed-back quantities

are summarized in Table II. General comments concerning these effects are

as follows: the principal effect of feeding-back angle of attack is to

cause the frequency of the short period mode to decrease and the mode

tends to become a convergent, aperiodic motion; there is little effect on

damping of the short period, and frequency and damping of the phugoid.

Feeding back pitch -rate has the effect of altering dynamic character-

istics of both the short period and phugoid modes; at very high gain, the

frequency and damping of the short period mode decrease, and the mode

tends to become aperiodic, convergent. Further, at low gain the damping

and frequency of the phugoid increase, at some medium gain the damping de-

creases and the phugoid becomes oscillatory and divergent, and for very

high gain the phugoid becomes aperiodic and divergent.
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Unlike angle of attack, the velocity feed-back has the principal

effect on the phugoid. For small gain, the frequency of the phugoid de-

creases, damping remains about constant, and the phugoid tends to become

aperiodic, convergent. With another small increase in gain, the phugoid

becomes aperiodic, divergent; further increase in gain results in greater

A

divergence. In contrast, the damping and frequency of the short period

mode are in general only somewhat increased.

The pitch angle feed-back, the only feed-back designed for stabili-

zing the motions of the modified Navion, also has a strong effect on the

phugoid. At low gain, the frequency of the phugoid decreases and the

damping increases until the motion becomes aperiodic, convergent. The

short period is effected also, since the frequency increases and the

damping decreases; this is again a small effect, however, as in the case

of velocity feed-back.

Although limited time did not permit an investigation of the effects

of the feed-backs taken simultaneously, at the magnitudes designed for the

AUD-2 the separate effects of the feed-backs may be qualitatively summa-

rized as follows : velocity and pitch angle feed-backs decreased the fre-

quency of the phugoid of the Navion, thereby changing the frequency to

that of the A^D-2 phugoid. The angle of attack feed-back was used to

decrease the frequency and pitch-rate was used to decrease the damping

of the short period. Finally, both pitch angle and pitch -rate were used

to increase the damping of the phugoid.

FLIGHT TEST RESULTS

As noted in the section on EQUIPMENT AND PROCEDURE, the in-flight

simulation of the A^D-2 was not attempted; some of the reasons therefor
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are outlined in the preceding section. Flight testing that was done con-

sisted of individual variations of the feed-back gains, also as mentioned

previously. Although the aircraft, the variable-stability installation,

the telemetering station, and associated equipment, were thought to be in

good working order at the time of the test flight, numerous difficulties

led to completely unsatisfactory flight test data.

Problems that arose with the Navion may be enumerated as follows:

during flight testing of the phugoid mode, it was noticed that engine

speed varied approximately 150 r.p.m. between high and low speeds of the

phugoid. It was felt at that time that the added moment from change of

thrust was causing an alteration of the dynamic characteristics of the

phugoid. This was particularly noticeable in the testing of the effects

of the feed-back u; for a small elevator impulse, with resultant small

amplitudes of oscillations of attitude and airspeed, and with resultant

small changes in engine r.p.m., the phugoid was a stable oscillatory

motion. At the same feed-back gain setting, however, and with a larger

elevator impulse, the phugoid became an unstable oscillation, during which

time the engine r.p.m. changed considerably.

Another problem encountered with the Navion was the difficulty in-

volved in trimming the aircraft prior to each test run* It had been found

on a previous test flight that the auto -pilot trimming circuit was entirely

too sensitive and could not be used to accurately trim the aircraft longi-

tudinally. Since too little time then remained for changes of trim

sensitivity, it was decided that the aircraft would have to be re-trimmed

with the ship's elevator trimming system between each run of the test
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flight with the auto-pilot disengaged. This was done during the test

flight, but this method did not provide the cure: the Navion trimming

system was also found to be very sensitive, and, in addition, manifold

pressure required to fly the aircraft at the test speed in a level con-

figuration varied by a6 much as four inches of mercury. The source of

this additional trouble was not found. This difficulty in assuming the

trimmed configuration naturally affected the phugoid test results

.

As will be discussed later, the sensitivity of the pitch channel

servo amplifier had to be reduced to prevent oscillation or cycling of

the elevator at the flight test gain potentiometer settings (feed-back

gains). This reduced the resolution of the elevator servo. The low reso-

lution of the elevator servo was evident during the tests of the 9 feed-

back; at low amplitudes of oscillation, there appeared to be little

response from the elevator servo. During larger amplitudes of oscil-

lation, the elevator was being moved in what was felt by the test pilot

to be rather large steps, as indicated by somewhat rough control of the

aircraft by the auto-pilot and seemingly large step-type changes in

attitude.

Additionally, some turbulence was encountered at the test altitude,

and attempts were made to avoid flying over freshly plowed .fields, and

the like. Also, communications proved to be unsatisfactory, despite the

use of a communications relay station between the Navion and the telemetering

station. Finally, considerable "drop-out" of the telemetered signal was

encountered at the telemetering station.
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The result of the above was unsatisfactory flight test data, and

there was no time left for repeated testing.

THE VARIABLE-STABILITY INSTALLATION

The variable -stability installation was built around a three -channel

auto-pilot, which in turn consists essentially of three servo amplifiers

and three servo motors used to position the control surfaces. The electric

stick is used to generate voltage signals, these signals are summed with

voltage signals from aircraft attitude and rate sensors, and the resulting

voltage causes the servo motors to position the control surfaces. The

installation is pictured schematically in Fig. 1. Considering the longi-

tudinal channel, the servo motor positions the elevator through a bridle

fastened to the ship's elevator cables, as may be seen in the schematic

drawing, Fig. 2. Also, since the various sensors and the electric stick

are excited by a.c. transformers, the signals generated have both magni-

tude and sense.

The gain potentiometers provided are used to divide the sensor signal

voltages, and the portions of the sensor signal voltages summed and fed to

the amplifier are dictated by the gain pot settings. The gain pot settings,

in turn, are a function of required gain constants . The algebraic signs

of the gain constants are determined by the polarity of the exciting trans-

former, e.g., for the A^D-2 simulation, polarity such that down elevator

results from an increase in u.

In addition, a trim circuit was installed. The trim circuit pro-

vides a voltage of magnitude equal to but of phase opposite to summed

voltages from the sensors, thereby permitting auto-pilot engagement.
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To illustrate the elevator-movement sequence, assume that the initial

input is a voltage generated by stick deflection. The servo and bridle

move the elevator until the servo follow-up circuit generates a signal

equal in magnitude and opposite in phase to the stick input signal. As

the aircraft responds to the elevator deflection, voltages are generated

by the pitch gyro, pitch-rate gyro, airspeed transducer, and angle of

attack vane. These voltages, after being summed in the pitch channel sum-

ming circuit, as may be seen in Fig. 3> are fed through the servo amplifier

to the servo motor, which deflects the elevator. The elevator augments or

damps the aircraft response, depending on the phase of the summed a.c.

voltage fed to the servo motor.

A detailed description of the variable -stability installation is con-

tained in Appendix C, including pictures of the installation, descriptions

of the structural and electrical components, and graphs of the control cable

forces which were the basis of the structural design.

Safety features of the auto-pilot consist of the following devices

:

an auto-pilot disengage switch is provided on the left console of the cock-

pit for the safety-pilot, and a disengage button is provided on the electric

stick for the test pilot. In addition, an electrical cut-off device is

provided. If a large error signal is received at the point of input to

the servo amplifiers, an electrical device breaks the circuit to the

servos, thereby disengaging the auto -pilot. When this occurs, another de-

vice disengages completely the gearing between the servo motor and the

servo pulley; the pulley then rotates freely on bearings only. Finally,

as noted previously, servo clutches may be caused to slip, i.e., the
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safety-pilot may manually override the servo motors with the ship's

controls

.

Structurally, the auto-pilot variable -stability installation was

found to be satisfactory in all respects except for cable slop in the

aileron system. Some bending of the aileron servo cable pulley brackets

was discovered during the static tests; this bending resulted in aileron

cable slack at very high control force conditions . These pulleys and

pulley brackets were the original ones used in the Navion aileron follow-

up system, and because of position, the brackets were not readily ac-

cessible for structural stiffening.

AUTO -PILOT LIMITATIONS

As mentioned previously, the gain constants required for the simu-

lation were found to be of such magnitude that, for example, the auto-pilot

o o
had to be designed to furnish about .6 of elevator deflection for a 15

change in angle of attack. Considering excitation voltage on the servo

, ,0 .0
motor ^corresponding to about 4 of elevator travel per volt), for a 15

change in angle of attack, the resulting voltage (from the angle of attack

vane) which was fed into the summing circuit was about .12 volts. The

other gain constants, in general, resulted in similar magnitudes of volt-

ages, with the exception of the pitch angle gain constant, which was an

order of magnitude smaller. In order to provide such magnitudes of

voltages, with the available sensor excitation voltages ( + 7*5 to + 30

volts), and in order to provide gain potentiometer settings that were

reasonable (towards the middle of the pot indicator scales), 15,000 to

500,000 ohm end-resistors had to be installed in the individual sensor
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circuits in series with the gain potentiometers. (For comparison, gain

potentiometers and sensor potentiometers have resistances of approxi-

mately 5000 ohms.)

In a chain type reaction, considerable quadrature was produced in

the summing circuit, the trimming circuit could not "interpret" the phase

shift of the voltage, with the result that the voltage in the summing

circuit could not be zeroed, and the auto-pilot could not be engaged.

Quadrature was forthwith adjusted, the auto-pilot was engaged, but with

any change of gain pot setting or sensor position, the electric cut-out

disengaged the auto-pilot. Quadrature, then, was found to be a function

of not only pot settings, but sensor positions as well. In addition, as

indicated, the electric cut-out could not "distinguish" quadrature from

a large error signal.

To relieve the above situation, the emphasis had to be shifted to the

second objective, investigation of the effects of variations of single

feed-backs. The end-resistors were removed, but some quadrature effects

were still found to be present. It was found that, for example, as the

angle of the angle of attack vane was changed, a small amount of phase

shift still took place; the explanation was that with the change of re-

sistance of the angle of attack pot (associated with movement of the vane)

came also a change in a.c. impedance, causing phase shift.

To relieve this same situation, and to thereby permit flight -testing,

the cut-out circuit had to be adjusted to a much less sensitive level,

and the sensitivity of the servo amplifier had to be decreased to prevent

cycling of the servo motor. The reduction of sensitivity of the servo
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amplifier reduced the resolution of the servo motor. The result was a

barely acceptable longitudinal auto-pilot, considering the small changes

of aircraft response which occur, for instance, during the phugoid mode.

To further complicate the picture, the only suitable pressure (air-

speed) transducer that could be located during auto-pilot installation

had a non-linear potentiometer. This could be an additional explanation

for aireraft -auto -pilot behavior during flight testing.

As mentioned previously, auto-pilot resolution was an additional

problem. Initially, resolution of the auto-pilot amounted to approxi-

mately + .5 , i.e., the auto-pilot could position the elevator within

one -half degree of the commanded deflection. This resolution was found

to be a function of the excitation voltage on the servo motor, and the

magnitude of the signal voltage required to close the servo relay circuit,

To improve resolution, the excitation voltage on the servo motor was in-

creased to the maximum available in the system, + 30 volts. In addition,

the peck-size of the relay was decreased with use of the servo-amplifier

throttling control, or in other words, the amount of time that the relay

remained closed was decreased. This effectively increased the peck-rate

of the relay. These two improvements increased the resolution to

o
about + l/k . In an attempt to further increase resolution, a high-

frequency sinusoidal voltage was superimposed on the relay, or, the

"dithering" process. The result was unsatisfactory in that the elevator

cycled at some sub-harmonic of the dither frequency. Finally, the sensi-

tivity of the servo amplifier had to be reduced to prevent cycling of

the servo motor, which was believed to be induced by electrical noise
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in the system; this reduced the resolution of the auto-pilot, but an

absolute value of the resolution was not thereafter obtained. However,

considering the .05 of elevator required by the © feed-back in par-

ticular, it may be seen that even the improved resolution is an order of

magnitude less than that required.

In summary, the resolution and the quadrature problems were additional

indications that a small, auxiliary surface should be used as the moment-

changer, instead of the Navion elevator. In such a case, voltages would

have been much larger, and quadrature problems of such magnitude could

have been avoided. Another approach would have been to design the auto-

pilot variable-stability system for d.c. summing circuit operation rather

than a . c

.

CALIBRATIONS

Quadrature also affected calibrations . With the end-resistors in

place in the sensor circuits, for accuracy, quadrature had to be constantly

adjusted during calibration for each range of pot settings. In addition,

the sensor output voltages, as measured in the summing circuit, were so

small that "they" could not be measured accurately with the existing volt-

meters; this necessitated the removal of the end-resistors, calibration

with other much smaller end-resistors, and a proportionate scaling of

the calibrated quantities. Final calibrations may be seen in Appendix C;

they are approximate for no end-resistors in place in the sensor circuits

.

WEIGHT AND BALANCE LIMITATIONS

According to the Navion Operator's Handbook, maximum permissable weight

is 2700 lbs., and maximum C.G. position is 30.5$ of M.A.C., gear down. With
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loaded configuration, including two pilots, full fuel load, and no passen-

gers, the variable-stability Navion weighs 2750 lbs., and with gear down,

the C.G. is 29.5$ of M.A.C.

ADDITIONAL DISCUSSION

In summary, it has been shown in the preceding sections and in the

Appendices, that with the Navion variable -stability installation, only the

Navion moment equation was altered, not the lift or the drag equations.

Further, provisions were made only for modifying two stability derivatives

of the moment equation, C„ and C™ , and for the addition of two pseudo-

derivatives to the moment equation, C^ and C™. It has been seen that

with such changes of the Navion moment equation, the characteristic

equation of the A^D-2 could be simulated, as was verified by use of the

analog computer. Such simulation meant that the longitudinal dynamic

characteristics damping and frequency of both modes of motion could be

simulated. As was shown later, however, steady-state values and ampli-

tudes of oscillations of the airplane responses could not be simulated.

This last, coupled with auto-pilot quadrature and resolution problems,

led to the abandonment of the simulation.

Although the Navion variable -stability installation has a number

of problems in the longitudinal channel, this does not detract from the

value of variable -stability installations in general. The literature

contains the results of many successful installations r and the real

value of such an installation is the fact that artificial control per-

mits changes in the stability characteristics of the test aircraft while

the aircraft is airborne. Without artificial control, it is impossible

32.





to modify existing stability derivatives of a given airplane without

major and costly structural changes. At the same time, without arti-

ficial control, it is impossible to add new and additional stability

derivatives, other than those normally contained in the three equations

of motion, since there is no choice of what the airplane can "sense."

With the variable -stability auto -pilot, the outputs of many types

of sensing devices can be used, and there are practically endless possi-

bilities in this direction, according to the literature, including Ref . 15.

For example, in Ref. h, the investigators used u and <x feed-backs to modify

only the characteristics of the short period mode of the test aircraft;

these response feed-backs were used in order not to appreciably change

the phugoid. Also, u and u feed-backs have been used to only modify

the phugoid response. As has been discussed in the present report, ck. and

u feed-backs actually do just what is indicated above, and a quick ex-

amination of the root locii plots will show that c< and u also have the

effects described above.

Another approach to the variable-stability installation theory might

be changes of the other two equations of motion, lift and drag, although

this is not believed to be as practical as the moment-changer version.

Also as indicated in the literature (see Ref. k) , the small, aux-

iliary surface as a moment-changer is a practical appendage of the variable-

stability installation. This has been verified by the results indicated

In the present report. Instead of using a very powerful tool such as the

Navion elevator to modify aircraft responses, it has been suggested, for

conjecture, that the elevator trim tab could be used as the moment-changer.
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Unfortunately, in the case of the Navion installation, this would mean

additional weight for an additional servo motor, and other auto-pilot

components, and it has been seen that maximum weight and C.G. conditions

presently exist.
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CONCLUSIONS

In view of the previous, it is concluded that:

1) Simulation of the longitudinal flight motions of other

aircraft cannot be successfully accomplished with the

present Navion variable-stability installation.

2) Considering simulation in general, unless all three

equations of motion can be modified, steady-state values

of aircraft responses and amplitudes of oscillations of

responses cannot be exactly simulated; however, character-

istic equations and thus dynamic response characteristics

such as frequency and damping of the aircraft modes can

be simulated.

a) Considering gains of the airplane transfer functions,

and auto-pilot resolution, a small, auxiliary surface

should be used as the moment -changer in such type of

variable -stability installation. Also, the test air-

craft should have room for weight growth.

b) Considering gains and numerator terms of the airplane

transfer functions, in general, the simulator aircraft

should have approximately the same time constant, f* >

as does the aircraft which is to be simulated.
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3) In the present configuration the Navion is not suitable for

in-flight testing of the effects of airplane longitudinal

response feed-backs.

h) Concerning feed-back quantities, oc has a primary effect on

the short period mode, u and -6- have primary effects on the

phugoid, and -9- has effect on both the short period and the

phugoid modes

.
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RECOMMENDATION

Considering present Navion weight, present CG. location,

longitudinal auto-pilot limitations, and engine (r.p.m.)

characteristics, it is recommended that future investigations

with the Navion variable -stability installation be limited to

lateral-directional flight testing.
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TABLE III

NAVION SPECIFICATIONS

Model k

Length

Wing Span

Wing Area

Gross Wt.

C.G. Position

Power Plant

Propeller

Landing Gear

North American Navion

27.25 ft.

33o6 ft.

18U.2 ft.
2

2750 lbs.

29-5$ M.A.C. (with Auto-pilot)

Continental, six cylinder,

horizontal -opposed, 205 HP

Hartzell, variable pitch,

constant speed

Tricycle, retractable
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FIGURE 2

CONTROL SYSTEM SCHEMATIC
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APPENDIX A

THEORY AND ANALYSIS

MODIFIED NAVION DERIVATIVES AND EQUATIONS

Given conditions: Clean configuration, power on (185O rpm)

h = 6500 ft., = .001957 slugs/ft. 3

VQ = 120 mph = 176 ft. /sec.

= .384 (Neutral Point)

= ,095/deg. = 5.45/rad.

= - .025/deg. = -1.435/rad.

= - .15/rad. (lY )jig
= 3055 slug ft.2

= - .07/rad.

From Ref . 11

Assumption

Calculations

Cm
0<

:

W/S :

\ '

CD„ :

Nr

J*
J%
Cm,

e

de

md^

That the derivatives above, which are 'for the

Ryan Navion, may be applied also to the North

American Navion; both airplanes are standard

"blueprint copies" made by two different air-

craft companies

.

*

'm*
= CL^ (*cg ' No) 5.M.295 - -384)

W/S

4J
<*

= - .485/rad.

= 2750/18U.2 = 14.93 lbs. /ft.
2

W/S 14.93 ,

"
q. " 1/2(.001957)(176) 2 ~ 93

2CLQ
Cl^ 2(A93) 5.45

= "tP; =
TT(6.04) .85

= -333/rad.

A 1





Calculations :

p
CL (.493)

2
,

c
Do •

CD = cDf
+1Fa; = - 02 5 V(6.oU).85 = -oto

-^ 7- m 2750 n ,r „^„? : r = fsv~
=

32.i7(.ooi957)(i76)(i8lf.2)
= 1>35 sec *

/* A - -£ fe-5 = 1+16
/ ^sT .OOl957(l» i+.2)5.7

Iv : Iv = Iy „ . - - mrcXCG *CG rJig

= 3055 - 85.5(l-39)
2
= 2890 slug ft.

2

luu u

CC
6ff

: CD
eff

* C
D

C T : Ct = Ct
Leff eff ^o

Characteristic equation, Modified Navion: Dividing all coefficients

kby - h r

c
i|
X

u
+ c

3
X 3 +c2 K 2

+ c1 ^ +Co =

where C^ = 1

= "hV [> ^ +C
%o< " h(^" +^

=
.05(1.35) [- -^ G2 - .07 - .05(2.725 + .oto)J

= 5.3O + 15.75 Kg

A 2





hf [\t^ + c™a
* - g* .£*«<% - °L )

= .050(1.822) [-
0to

{ " -
07 - ' 15G2 - -05(2.725)) '

. .05(^93) (-333 - .1193) + 2-725( - .1562) - -^^ 1
2

- l.U35Kll

. 9.88 + 15.7^ + 32.27Kg + 15-731^

I - rVr 3
[
CD

eff
(% C

«d8
G
2

+ °»* 0l) + %^"(^M G 2

-^ ^5%e
6 2 ) - ^ G3cDw K,cm 6e

(c
Deff+^Lk)

= -1

.05(2.1+6)

,040l\2.725( -.15)G2 - A85G4+ ( .493 ) 1-.15G
x]

+ (^93)
2

[-

- .07 - -^1 (- .15)G2 |
- ^p (.333)G

3
- l.U35Ku(.0U0l+2.725)

= .408 + .468% + 1.281H^ - 1.942K~ + 32.25K^

+ ^Cmt [cDeff
°£«

-hr
C
LeffCm cx °1 ' ^C

»u
G
3

^eff (cD. cL )|

14 irueff 2

+ ]

mk33^ [(.0401)2.725 - *^|3(.333 - .^93)

I

(.05)3.32 L 2 J

= .355 + 1.051 K
x

- 5.81 K3 + 1.285 K^

A 3





A4D-2 DERIVATIVES AM) EQUATIONS

From Ref. 12, the A4-D-2 derivatives are as follows:

Given conditions: Clean configuration, power on

h

From Ref. 12:

Computation:

'D,

'D,

= 6500 ft. V = Mach .2 = 218 ft. /sec.

C T = 3.62/rad.

'm
S

'm<*

.3265/rad.

.145/rad.

Cm = - 1.090/rad. =
*Cm

m
q

Cm
u

c

CG

3.263/rad.

.
V

2V

=

= 17,600 slug ft.
2

, S = 260 ft.
2

= 10.8 ft., W = 10,000 lbs.

= 25$ MAC, b = 27.5 ft.

W/S 10

'Emin

q " l/2( .001957) (218)^260

± .059, e i .572, A = 2.91

= .828

'D,
4 CD + (clT

"in TTAP

p

4 -°59 + ^91 (.572) = -^
.

2CLCL^ = 2( 828)3.62 = lak7/rB& .

fT(2.91).572

/- r m 10,000/g
pSV .001957 x 260 x 218

=2.81 sec,

A k





Computation:

Cm
a<*

: cm<*

°mde
: Cm

d6

K 2Ky
«

v2

A /"

= cm c = - 1.090(10.8) = . .00961/rad.mD*'2vr 2(218)2.81

m 10,000/g s s
=
TSC

-
.001957(260)10.8 " 5D *°

2 %
yO- c

£ kF {&& " »«
1+

Characteristic equation, An-D-2: Dividing all coefficients by -h T :

1
, ^ 1 t3 > / 2 1 4 "

Gi| /k + C3 ^ + C
2 A + C

1 A + C
Q

= 0, where

Ci| = 1

c 3 =rr [-h(cD + ^L) + c^ + c
mde

-1

-1

(.01715H2.81)
- .01715(.19 + l.8l) - .00961 - .0288 = 1.508

+ c-J

- .01715(2. 8l)2 [-01715 |.lnU(l.llt7 -.828) -.19(1.81)1

+ P
2 Si*

+ .19(- .00961 -.0288) + i.8l(- .0288) -.1U5I

= 1.536

A 5





C
l = hV3

[
CD (^- Cmd8

+ Cm
o< )

+ ^ ClCh^ -C^ f CV CL| )

( 0171$) (2 8l)3 L 19(1. 8lx-. 0288 -.1U5) + Allf\(.828)(-. 00961)

I
+ .0288(. 319)1

= .0968

j _ -CL
2Cyw _ -(.828)

2 (-.lU5) _ . aCo - 2iTT 2(.01715)(2.8l)
i+

" -
0454

GAIN CONSTANTS

Equating the constants of the two characteristic equations

:

( CiW-P - ( cu)AUD-2 v MmOD.NAV.
= 1

c
3

= 1.508 = 5.30 + 15.751*2

c
2

= 1.536 = 9.88 + 15.7^ + 32.271^ + 15.73^

C^ = .0968 = .^08 + A68KX + 1.28^Kg - 1.9^2Ko + 32.25^

C^ = .ok6k = .355 + 1.051^ _ 5 .8ik
3

+ 1.285^

Solutions of these equations yielded:

K-l = - .0*4-07, dimensionless

Kg = - .2^0, sec.

K, = .0465, rad.

Ki = .0033^ dimensionless

A 6





APPENDIX B

ANALYTICAL STUDIES

COMPARISON OF DYNAMIC CHARACTERISTICS

Factorization of the characteristic equations yielded the following;

A^D-2, and MOD. NAV.:

2
Phugoid

Short Period

NAVION

:

Phugoid

X + .0351^ + .0325 =

Xphu = - .01755 + .181

Tl/2 = 39-5 sec. P= 3k. 9 sec.

h
2

+ 1A73 X + 1A52 =

^sp = " -T37 + .95^i

Tl/2
= '9^ sec

* ^ = ^«59 sec *

^
2

+ .0212 h + .0366 =

T ;
= 62.6 sec. P= 32.9 sec1

l/2

Short Period \ + 5.28 }\+ 9-72 =

Tl/2
= * 2^ sec

* p = 3*7^ sec '

COMPARISON OF STEADY-STATE VALUES

The steady-state denominator term common to each aircraft transfer

function

:

A =

'Deff

'Leff

CL Cm

1/2 (CD - CL )

CL,

m,

;L/2

Bl





Steady-state numerator terms

:

1/2(CD - CL )

(Nu)s.:

SA 'm*

(Njs.s. =

(Nq)e^s.s. =

C L CL C
Loc

Deff
CL/2

Leff

:SA
c L

2

-
2

C% ,d

CDeff
1/2(C^ - cl)'

C Leff

CL

2

C*.

= - Cm
S a
^

"^°l^ cL

[_2 2
(cD - c L )

A^D-2:

Evaluation of steady -state values for .05 rad. © e

(down elevator) step forcing function yielded:

us.s.
= + ,2^ ("Computer: + .255

Ctfs.s. = - .113 rad. = - 6.^5° [computer: - .11^ rad
.J

©s.s. = - -0^9 rad. = - 3-95° [computer: - .070 rad.l

B2





MODIFIED NAVION:

For the same forcing function as above (including feed-backs)

u„ „ =6.15 Computer: 5.8

vs.s.
=

s.s.

= - 1.1 rad. Computer: - 1.0 rad. I

9s.s. 1.35 rad. Computer: - 1.3 rad._J

COMPUTER (DYNAMIC STUDY)

A^D-2: Computer equations:

Lift : u+ -£ u +-2>(CD^
- CL)« + J^e =

Drag : <X + -p u + —-^ <X - 9 =0
J 2 j-

Moment : 9 + ("^ k+ (l!^ )* + (^)© + ('^ ) 4 =
n ^ fc hr hT ^jrj-

Damping and Period:

Phugoid TjM ^O* sec, P =35.0 sec.

Short Period Twg »8 sec, P i 8.0 sec

Transient values: For .05 rad. oe (up elevator)

step input, amplitudes of initial

oscillations are as follows:

u = - M
<*sp

= 5 • 5

^phu = 7 .8°

9 = 19.
5°

B3





Transient normal acceleration:

V(n - 1) = | a

or (n - l)g = a = —, and 9
p

then 9 = g' n ~ ^

or n = — + 1 . From the computer,

9 = .08 rad./sec. initial amplitude of oscillation

during the short period;

Yk. 219(.08)
n = g + 1 =

32 .2 +1 = 1-5 g's

MOD. NAV.: Computer equations:

Lift: u + .0297u - .0592* + .18259 =

Drag: c* + .3655U + 2.02 o< -9 =

Moment: 9 + -730u + 5-32oc - .641°* + I.0380C + .05189 + 2.229

- 3-789 - 15.75 Ks 4 S =

Damping and Period:

Phugoid Tw2
= 39.O sec, P = 35.5 sec.

Short Period T, /

p
= .5 sec, P = k.Q sec.

Transient values: For .05 rad. &e (up elevator) step input ,

amplitudes of initial oscillations are

as follows

:

u = -10

c* = +83°

n = 6.8 g's

PA





For .05 rad. 6e (up elevator) impulse

forcing function, initial oscillations:

oe = 12° [Function of feed-backs^

u = - .75

-sP = 16°

* o
C* , = k
phu

n = 3.2 - k.O g's

COMPARISON OF TRANSFER FUNCTIONS

The denominator term common to all of the airplane transfer functions

(not including auto-pilot dynamics) may be written as:

k
&(S) = - hr (S - A X )(S

- /> 2 )(S
- *

3
)(S -h k ), where

An, Ap
# ..^k are ^he ro°'^3 °f "the characteristic equation

(A4-D-2 or MOD.NAV.)' Numerator terms may be written as follows:

N„ =
^u

= + c kt
r %\s +

cl* cl]
* 2 I ^ J

N
« - - cn

N
e

=
m. tj*?

2

\f
+ fa + r^ } s sj* ^ cdcv cLcv c L

2
)

Now examine a typical transfer function, say 7~(S):

u_ (s) . °_^>
^ - 2hT"

r
L*

[
s+

2Tc

CL 1

Dot J

Q (S -*!) (S -^)]

B5





Evaluation of this transfer function gives

:

1.9U1 Ls + 2.99]
MOD. NAV.: .

j_( S - ^....(s -^)]

.492 [s + A65]
Ato -2

: = [(s -A^.-.-ls -^)]

Now examine -n S )

:

4e

Te

(S) "^[(S -A x ) (S-\)]

This may also be written in servo-mechanism notation as follows:

4-(8) - K[s2
+ 2^u) nS,Cn

2
] where

*>t [(s - ^ (s -^)] ,

K is the gain, 5 i s the damping ratio, and <^
n is the natural frequency

of this minimum phase term (or second order lead term).

Evaluation of the transfer function gives:

-15.75 [s
2

+ 2(.05T6)(.258)S + (.258)
2
J

MOD. NAV.: = —f.
— : —-—

-,

-2Al [s
2

+ 2(.l62)(.208)S + (.208)
2
]

Ato "2 : ' [(S ->l) (S-V J

And examine c (S):

tf ^ r
[ (&-»!> (S -^) ]

B6





MDD. NAV.

Ato-2 : =

- 15.75 [s
2

+ 2(3.^8)(.286)S + (.286)
2
j

[(s - ^1 ( s -H) ]

-2A1 [s
2

+ 2(2.17)(.l64)S + (.i6kfj

[(s -h) (s -\)]

ROOT LOCUS STUDY OF FEED-BACKS

In a study of the feed-back quantities used to simulate the A^-D-2,

the characteristic determinant for the Navion must first be examined.

With angles in radians, and in real time, the determinant is:

U

( cD + rJ

CX

1/2(0^ - CL )

(°-h*+ rP )

2

( cm-- + Cn^^ fp)

e

Cl
2

^ Cm
de " hrP )rP

With the addition of a u feed-back in the moment equation, the

moment equation takes the following form:

S m
6.

+ (^ + C^rv )c< (o%e- hrp ) rpB .- cm^c

Then the characteristic equation takes the following form:

- h-r\a-Ai)U- A2 )(A- A
3 )(X-H)

0]

2*
Kcm t

r^
J Oft r,

CL ^
2CD^

= 0,

where A-^ f\}± are the roots of the characteristic equation.

Such roots naturally are modified by the root which is part of the second

term of the equation. The equation may be further simplified:

B7





a(X-M (* -K h ) R Q

where a = - h T /Cm , Cd , and is a positive number. Then:

A -
- C T

Cr

NAVION
2(.333)(1.35)

yy

Also, the roots of the characteristic equation of the Navion are:

Xphu " - - 01°6
*

' 19k±

X = - 2.64 + l.67i
s.p.

where "phu" indicates phugoid, and "s.p." indicates

short period.

Refer to the root locus diagram, Fig. B2. For K_ positive, or

down elevator for increasing u, examine the condition: it may be

seen that damping and frequency of the short period mode are somewhat

increased (period and time to damp to one-half amplitude, P and Tj/2>

are decreased), but the characteristics of the phugoid mode are altered

appreciably. The phugoid oscillation rapidly becomes unstable, then

becomes aperiodic and divergent.

In like manner, feeding back o<, 0, and 9, singly and in order,

results in the addition of the following terms to the original Navion

characteristic equation:
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o< : + KjC ?

e

*
2

+ T^
+C
#

/\ = - .0147 + .258i

2 . o
a = - hJ/Cm{ j condition.

• °e L
A
2

£V £*)„ ^s - ^ (C - L)j

/\ = 0, - 2.01, + .Ok

h ?/Cm. >
0°COndltiOn

Cl

a =
m<

K^se
r r +

? (Cd+ 2^^ +
i7^ ' ^ (CV Cl)

.

A = - 2.01, + .Ok; 180 condition

For the results of the root locus studies, refer to Figs. B2

through 5- For a summary of results of Appendix B, refer to Tables

I and II.
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APPENDIX C

VARIABLE-STABILITY INSTALLATION

The selection of the Minneapolis -Honeywell, USAF TYPE E-12, Auto-

pilot imposed some limitations on the force and speed of response avail-

able for control surface movement. Flight test results, presented In

Figs. CI and C2, showed that the force requirements of the vehicle for the

variable -stability installation, Princeton University's North American

Navion, (Fig. C3), were well within the 160 in. lb. shaft -torque output of

the servo motors. The speed and frequency response characteristics were

studied by another group working on the installation and are discussed in

Ref. 9.

Blueprints of an auto -pilot installation designed for the Navion were

obtained from Lear, Inc. From this basic design two brackets were made

of 1/8", 2J+-ST, aluminum sheet and bolted to the partial bulkhead at the

after end of the baggage compartment. Across these vertical brackets

a l/8", 2U-ST, aluminum plate was bolted such that the plate lay in a plane

approximately 90° to the ship's control cables. To support the servo motors

a four-sided box, about eleven inches square, was fabricated of l/8", 24-ST,

aluminum sheet and 3A" hy l/8", 17-ST, aluminum angle extrusions. To each

of three sides of the box a servo was bolted, the bolts extending through

aluminum angle stiffeners on the inner faces of the box sides. The remain-

ing side of the box was bolted to the plate and bracket combination. Ad-

ditional stiffening was supplied by l/l6", 24-ST, aluminum sheeting across

the top and bottom of the box and two small l/8", 24-ST, sheet metal fillets
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"bolted to the vertical brackets and the partial bulkhead as lateral supports

.

The entire servo mount was over-designed to preclude structural vibrations;

the completed unit is shown in Fig. Ck.

With the servos mounted vertically the capstans, or motor-driven

pulleys, were nearly parallel with the ship's rudder and elevator cables.

The bridle cable from the elevator servo, made of 3/32" aircraft control

cable, was fastened to the capstan and fed directly aft about five feet to

join the elevator cables at a small angle. The 1/8" rudder bridle cable

was wrapped around the capstan and fed directly aft on the right side; a

two in. fiber pulley was mounted on the under side of the sheet metal box

to aline the bridle cable with the left rudder cable. The aileron bridle,

of l/8" cable, also was wrapped around its capstan, and the free ends of

the bridle were fed forward through existing cable access holes in the

bulkhead; a two in. fiber pulley was necessary for alinement on the right

side. The l/8" bridle cable was then mated to the 3/32" cross-control

cable, the latter having been disconnected from the rudder cables. Standard

aircraft cable thimbles and turnbuckles were used in all cable connections

.

The rudder and elevator bridles were attached to the ship's cables using

sheet metal c -clamps. The bridle cable was united with the clamp by

a 3/l6" bolt passing through a thimble and the clamp; the clamp was tight-

ened around the control cable with three more bolts. After completion of

the bridle and cable matings, turnbuckles were adjusted for 25# tension

in all bridle cables and 39^ tension in the ship's cables. Servo clutch

slip levels were adjusted to allow overpowering of the auto-pilot with

reasonable control forces. The electrical servo stops were set to prevent
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full deflection of any control surface in response to auto-pilot signals.

A schematic diagram of the bridle -control cable arrangement is shown

in Fig. 2.

The conventional yoke and rudder pedals were removed from the right

side of the cpckpit. Two spring-loaded rudder pedals were mounted on the

floorboards; a small cable attached to the pedals was used to drive

a 36O potentiometer. The electric stick, a spring-centered flight con-

troller with adjustable fluid damping, was bolted to a pedestal for appro-

priate height. The flight controller had no provision for stick force

inputs; it had a small break-out force that was not objectionable. In

addition to the above, fig. 5 shows the auto -pilot trim box as it was

mounted adjacent to the flight controller.

Other modifications to the cockpit included the various auto-pilot

and telemetry power switches mounted to the left of the instrument panel

and the feed-back gain potentiometers grouped between the two front seats

(see Fig. C6). The gain potentiometers are wire-wound potentiometers of

approximately 5000 ohms each. With these feed-back controls eight air-

craft responses (
<fi , ^, 6-, -Q-, $ ,o< and u ) may be fed into the auto-pilot

to vary the response, and hence the dynamic stability, of the aircraft.

Control surface travel can be varied by either the stick and rudder pedal

gain potentiometers or by the servo follow-up gain controls

.

The major portion of the variable -stability installation was located

in the baggage compartment just aft of the rear seat. The top shelf of a

table was devoted to terminal strips that gave accessibility to the wiring

of the system. These strips made it possible to monitor all the sensor
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and excitation voltages; also, the sense of control deflection, for example

down elevator for increasing u, could be changed at the terminal board

merely by interchanging the transformer leads exciting the signal generator.

The power to excite the primaries of the four multiple -wound transformers came

from an inverter which converted the aircraft 28 volt d.c. supply to 115

volt, single phase, 1+00 cycle a.c.

The electronic portions of the auto-pilot were placed on a lower shelf

along with two rate gyros and the pitch -roll attitude gyro; three more rate

gyros were mounted on the floor of the baggage compartment (Fig. CT)« Al-

though only three rates of response were measured a separate gyro was re-

quired for each channel using the rate signal. The directional coupler

feed-back loop and the control stick and co-ordinated turn capabilities

of the auto -pilot were eliminated. An electronic safety device was ad-

justed to disengage the auto-pilot, by releasing the servo clutches

allowing the capstans to rotate freely, if an error voltage of approxi-

mately three volts suddenly appeared as an input to any servo amplifier.

A disengage switch on the control stick was wired also, along with another

disengage switch, for the safety pilot, adjacent to the main power switch.

To record in-flight data an ASCOP pulse width frequency modulating

telemeter station was used. The 15 channel filter conversion unit and

the rotary sampling switch and transmitter unit were mounted in the

baggage compartment (Fig. Ck) . The filter conversion unit allowed sampling

of fourteen signals, reserving one filter for reference voltage. The

rotary sampling switch operated at 20 cps and could sample V3 quantities

plus two zero readings; hence a telemetry terminal strip was made to
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parallel switch channels so that each of the Ik filter outputs could he

sampled three times per cycle. Additional data on the internal components

of the auto -pilot may be found in Ref . 9*

To accommodate the remaining attitude sensors two booms were mounted,

one at each wing tip rib as shown in Figs. C8 and C9» The booms, con-

structed for previous testing, placed the sensing devices about four feet

in front of the leading edge, ahead of the major pressure disturbances

around the wing. Dynamic and static pressure lines extend from the

pressure probe to a differential pressure transducer mounted inside the

wing. Two Giannini yaw vanes were orientated 90 apart on the left probe

to serve as sideslip and angle of attack vanes; vane mutual interference

was considered beneath the resolution of the system. Since two position

potentiometers were actuated by each vane only one angle sensor was re-

quired to supply signals to both the yaw and roll channels

.

To complete the installation it was necessary to calibrate the entire

system, that is to determine sensor signal voltages, for various gain

potentiometer settings, throughout the operating ranges of the various

attitude and rate sensors. Also it was necessary to determine control

surface deflection for given input voltages . Then, to enable reading of

the telemeter traces, ratios of a.c. sensor signal voltage to d.c. telemeter

signal voltage had to be established for each of the quantities to be

recorded. Results of the longitudinal channel calibrations are shown

in Figs. CIO and Cll.
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