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ABSTRACT

This thesis is the result of a literary research on the subject of

electromagnetic pumps for liquid metals. The research was conducted at

the U. S. Naval Postgraduate School to educate the authors in the field

oi" electromagnetic pimps and to fulfill requirements for a Master of

Science Degree i n Electrical Engineering.

This thesis which is a synopsis or' information obtained from various

technical publications is designed to give the reader information on the

theory and design of electromagnetic pumps in general. Included are:

(I) Description of operation of all types of conduction and induction

pumps (?) The development of the DC conduction pump from the equivalent

circuit. (3) Development of electrical efficiency (4) Analysis of arma-

ture reaction. (5) A comnrehensive bibliography. The important results

of work performed in the laboratory by various individuals has been in-

c luded.
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INTRODUCTION

The interaction between a magnetic field and an electrically con-

ducting fluid was studied in the early 1800' s when Michael Faraday

attempted to measure the voltage induced in the Thames River by its

motion through the earth's magnetic field. In 1821 he demonstrated

electromagnetic rotation. In his experiment he demonstrated that the

flow of an electric current would cause a magnet to revolve around a

wire carrying this current and that a current carrying wire could be

caused to rotate about a fixed magnet.

Although the basic principles of the electromagnetic pump have been

known for about one and a half centuries, the advance in magnetohydro-

dynamic channel flow was not significant until Hartmann's theoretical

investigations in 1937. He derived the fluid resistance law for laminar

flov/ in a channel of conducting fluid in the presence of a uniform trans-

verse magnetic field.

In the early 1930' s Einstein and Szillard built an electromagnetic

pump however, its low efficiency precluded its use for existing require-

ments.

However with the advent of the atomic reactor came the need for

an efficient, maintenance free, completely enclosed primary coolant loop.

Liquid metals are an excellent heat transfer medium due to their heat

conduction properties and metals with high boiling points are desirable

since system pressure can be operated at a low level.

Pumping "hot" radioactive liquid metals, presents a problem since

bearings and shaft wall seals can become a potential safety hazard if

leaks occur or if seals and bearings require maintenance, not to mention

the experse. Also the prospect of orbiting a space satellite using an

1





atomic reactor lor power, led to the need for a maintenance free cool-

ant otr.np which could be oriented in any aspect.

These needs paved the way Tor the rapid development of the electro-

magnetic pump which can be configured with no moving parts, thus no

bearings or shafts, and the pump is essentially free of maintenance.

However the law of "give and take" prevails as in most engineering situa-

tions; along with each gain come inherent losses as will be explained

later.

Although this thesis deals with electromagnetic pumps designed to

pump liquids, a new and rapidly expanding application has come to the

fore, namely the pumping of gases, and the use of hot charged gas to

generate electricity in magnetohydrodynamic (MHD) generators.





CHAPTER II

Basic Theory

The fundamental principle utilized in electromagnetic (E M) pumps is

basically the same as the principle used in electrical motors. When a

current carrying conductor is placed in a magnetic field, a force is exert-

ed on the conductor. If the current density vector (J) and the magnetic

flux density (B) are imagined to be in the plane of the head of a right

hand screw, the direction of the force will be the advance of the screw

when (J) is rotated into (B)

N S

Figure 2-1 Fundamental Principle

In equation form: Force (current) x (projected length, perpendicular

to the magnetic flux density) x (magnetic flux density).

In Vectorial form: F - (I 2 ) x B (2-1)

where F is force in newtons

I is total current in amperes

t is length of conductor, perpendicular to magnetic field, in meters.

B is magnetic flux density in webers / square meter.

Consider the incremental force on a fluid particle.

dP^'j^B^dxdyJz (2-2)
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Figure 2-2 Differential Element

The microscopic element is shown in Fig. (2-2), where j is the current

density in amperes per square meter in the x - direction. The basic

assumptions here are that the fluid is constrained to flow in only the z -

direction, and that the current density and magnetic flux density are

constrained to the x - and y - directions respectively, neglecting such

things as fringing, end-effects etc.

An electric field is established in the x - direction due to the

resistivity of the fluid (conductor) and due to the motion of the conductor

in the z - direction.

[E ]a ] p where E is electric field in volts/ meter and J) is

resistivity of the fluid in ohms/meter.

[E ] =AT BxV z y

The total electric field in the x - direction is:

[E L. - AT B + jxV z y
J
x '

In general, pressure (P) Force per unit area. The pressure

gradient can be found from equation (2-2)

(2-3)

dF dF

dA dydx

= \ B dz = dP, or the gradient is
X y

°





4L- - j B (2-4)

From figure (2-3) the pressure developed is:

AP= J j B d = jB C (2-5)

The volume flow is:

Q = OT
f

ab (2-6)

From equation (2-3) above, the voltage across b in Fig. 2-3, is found from

the dot product.

V = (E. b) - (j3
f

jx +/lT
f

B
y
) b (2-7)

Synchronous velocity ( f\J" ) is defined as the fluid velocity at which the
s

fluid current density becomes zero. Since

nrt
-

v+ ^f Jx b
(2-8)

1
B b
y

then OT
s

- ~-
b

(2-8a)

y

or slip s - —5 (2-9)

^"s

From equations 2-8 and 2-8a,

I V - ATC B b f\T B b - /V. B b
j v

= f y ' .Is i L-jl
V» f

b/> f

J x
= B

y
/

^s
3

(2-10)

X

pf





Conductor

Fluid

Figure 2-3 Conduction EM Pump
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I = j ac
x

fit b

ac

2
The I R loss in the fluid is:

9
W = (jac) ( fi. b) » j ^ (abc) or from equation (2-9)

ac

W, = B
2

/yj
2

s
2

(abc) (2-11)

2
The I R loss in the duct wall is:

J
2

= V
2

(2tc ) = / V
2

^

r j>\ b (b j jr.
Wd = ' = V" (2tc ) - / V \ ( 2tcb) where t * wall thickness

or W J - B
2

AT~b
2

2t (abc) (2-12)
d y —

ap
d

The power output of the pump is the product of pressure and volumetric

flow

Wq = ^pq = B
y
Jx

/lff (abc) (2-13)

Substituting eqs. 2-9 and 2-10 into eq. (2-13) gives

W = B
2

f\T
2

(1-s) (abc) (2-14)
o s

The duct efficiency N , , neglecting viscous losses, is now

N = W
d o (2-15)

o f d

Substitution of equations (2-11), (2-12), and (2-14) into equation (2-15)

results in a simplified form.





2t A
'f

a
where D = — jyr (2-17)

Differentiating equation (2-16) with respect to slip and setting the deriva-

tive equal to zero gives the slip (S ) at which maximum duct efficiency

(N, max) occurs.
d

S
m

= D( \Tl +-5-' - 1) (2-18)

N, max - 1-2 S (2-19)
d m

Equations (2-16) and (2-19) are plotted in Figure 2-4). This figure shows

that duct efficiency can be increased by decreasing the parameter D, i.e.,

reducing wall thickness, and/or fluid resistivity, or increasing duct re-

sistivity. For any given parameter D there is a value of slip which will

give a maximum duct efficiency shown by the dashed line in Figure (2-4).

For example, sodium fluid and stainless steel ducts have a resistivity

ratio —— < , 25 so that duct efficiencies of over 50% can be obtain-
ed

ed in quite narrow channels, a = .5", for example, and duct thickness of

1/16" to 1/8".

2
Electrical efficiency - The electrical efficiency includes the I R

loss of the fluid, duct, and windings. The assumptions of the previous

section still hold in addition to the following:

1. Space harmonics (AC pumps) and time harmonics in the excit-

ing MMF are neglected.

2. Fluid and duct wall currents are assumed to be compensated by

pump winding currents. (DC pumps)

3. Leakage reactance of the fluid and duct are neglected.

4. The excitation windings are symmetrically distributed along

the Z - axis.
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The current is the resultant of two components, the magnetizing

current (i ) which produces the flux density, nnd the load current (i.)
m 1

which compensates fluid and duct wall currents.

_H L

and

(1
D .—

> 'f

(2-20)

(2-21)

2 2
i + i therefore the winding loss is

W
i

= r
T

< im1 i m
t
x

) be (2-22)

where r
1

is the pump winding resistance in the x-z plane. By substituting

equations (2-10), (2-20), and (2-21) into equation (2-22) the following

expression is obtained:

(B)

a v . 2
( Tg_) - ( s s) (1 +

A u ?£>-)2
be (2-23)

Neglecting viscous losses, electrical efficiency, N becomes

W

N
e

=S

W + W£ '• !!, + W,old]
Using the relationships

iLLs)
(s+D) + a r

T
' T("s+D) 2 + (T & ? f ) ]

yM X a v

!»/« (2-;4)

2f = v and v = (1-s) v
s fa

s(i-s)

N
e (s+D) + ar

?/<

(s+Dr +/ 2 7T f P
(1-s)

4,

a v
f

(2-25)

In General Electric 's research work, nominal values were assumed for

the variables in equation 2-25, and the electrical efficiency was plotted

against slip as shown in Figure 2-5. Electrical efficiency is shown to

10
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decrease with increase in frequency. For a given frequency, electrical

efficiency increased with an increase in slip up to a maximum, then falls

off rapidly for further increases of slip.

Power Factor and Stored Energy - Energy stored in the magnetic fields

associated with the air gap is larger than normally encountered in motors

and generators. This fact is due to the large air gaps and the high re-

sistivity of the liquid metals in the gap which cause greater leakage flux

paths. The result is that A. C. EM pumps frequently have power factors

less than 50%. Power is therefore transferred at the expense of high current,

and to maximize the power transfer, it is necessary to add impedance match-

ing, capacitive loads, which in turn further complicates and adds weight to

the power supply.

In an inductive circuit the stored energy is

V = % L I
2

(2-26)

The reactive power is

V A R = I
2

x = I
2

(2TT f L ) - 47T f V (2-27)

where I is rms current.

The energy is stored in the duct region and in the winding flux

paths.

The energy stored in the duct region ( If ,)

lfd -k -JOT
gbc (2-28)

where g is the gap width and jus is the magnetic permeability of the

region between the stators.

The energy stored in the windings ( "U* ) is

-y
e

= h 4
2
P be (2-29)

12





2 2 2
Where i =» i + i , and ((P) is the leakage permeance per unitlml

length in X-Z plane, and is the sum of the permeances of the slots plus

the end turns.

The total energy is the sum of equations (2-29) and (2-30)

~W - % -^T" 8 b c + \ i
x

2
Rbc

yCC d S
Substituting for i. , and using fp= k. ,. - where k. > 1 accounts

for additional leakage flux paths, ds is slot depth, and f is the ratio

of slot width to slot pitch, the ratio of output to stored energy becomes:

„ = ^^ s <'-»> h (2„30)

^r 2g J> f
ilfff> Tg/u <^> 2 + * (a( a+D) v

s]

2

j

The assumptions are that the pole slots are filled and that the sides of

the slots are parallel.

In Figure 2-6, the ratio of power output to total stored energy was

plotted against slip for nominal values of the parameters of equation 2-30.

For a given value of slip the ratio decreases with increase in frequency.

Investigation of Flow in a Rectangular Duct

The following is a synopsis of work done by Ames Research Center and

published in reference [89]. Fig. (2-7) shows the configuration of the

equipment utilizing the DC conduction pump. The fluid, a special clear

solution of copper sulfate and ink with approximately equal density, was

used to show flow contours. In Fig. (2-8) the equipotential and current

lines are displayed for an electrode length/channel width 1/1. In Fig.

(2-9) poles pieces with contours covering a square, 90%, and 98% of the

current lines, effect the fluid flow as shown in Fig. (2-10), and in-

fluence the fluid velocity and pressure head as shown in Fig. (2-11).

13
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U. in (in/sec.) is fluid velocity, A H(psi) is change in pressure head,

and y is the cross-duct dimension between the electrodes. It is interest-

ing to note that although the square magnet face creates a more uneven

pressure head, the over all pressure differential is greater. It is evident

that although the 90% and 987» contours utilize more of the current, the

reduction of magnetic field density has a greater effect and hence the re-

sulting pressure is reduced. In this experiment the shaping of pole pieces,

to utilize the fringe current, was a detriment.

In another experiment, the electrode length was increased to 16" so

that the ratio of electrode length to channel width was equal to 4.57.

With this large ratio, the current end-effects were essentially eliminated

and the current in the pump region was considered to be uniform. In Fig.

(2-12), the ink filaments entering and leaving the pump were unaltered.

The conclusion is that the nonuniformities are not caused by the magnetic

field, however, it must be realized that only about one-third of the current

was being interacted upon by the field.

Much of the literature suggests that the use of electric current

barriers would alter the electric field, (see Figure (2-13)), so that

current fringe losses would be reduced. Two 11" barriers were inserted

parallel with the fluid flow in a 1" x 3-1/2" channel. Even though the

barriers were partially effective, the resulting loss of pressure head in the

center of the channel, due to the insertion of the barriers led to the con-

clusions that the net effect was nil.

Also noteworthy was an experiment conducted by Ames Research to com-

pensate the magnetic field to produce a uniform stream. One method used

curved pole faces, with the intention of creating a magnetic field to match

the electric field. The first approximation shown was based on the assump-

tion that the local magnetic field strength varies inversely with the local

19





....
,

Electrodes
Figure 2-12 Uniform Flow Produced by Long

Electrodes

9 = 9/2

1

\ • Electrode

.4

H.45-.3 1.4—

-

.3

-[-.45A-

A

-.3— -.2— -.1 .1
— .2

—

.2

.1

u. 1.-1

) 7 —
Barrier y^ -.1 s^Barrier

S ~ZZ^\\
-.2

-.3

-.4

\
\

>o
/2

V
El€tetrode

(a) Reduction in fringing of electric field brought about by very long
barriers

.

id

1

1 i 1 1

'Barriers

(b) Flow pattern.

Figure 2-13 Test Channel with 11-inch Electrical Current Barriers
Placed on Channel Center Line

20 [88]





air gap. Trial and error modifications were used to obtain the final de-

sign. The effects on the fluid are shown in Fig. (2-14). No mention of

pressure head measurements was made. However, the curvature of the

magnetic field passing through the current field causes turbulence in the

output side of the pump.
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CHAPTER III

Conduction Pumps

Conduction pumps are characterized by the fact that current is "conduct-

ed", from an external source into the liquid metal, via electrodes connect-

ed to the sides of the duct. The electrodes are generally located so the

current flows perpendicular to the magnetic field.

Referring to Figure (3-1), we see that conduction pumps are categor-

ized initially by their source, that is, either DC or AC. The majority

of the conduction pumps have been constructed with rectangular cross sec-

tions due to the ease of manufacturing and due to the wide ranges of pres-

sures which this type of pump can withstand. However, conduction pumps can

be constructed with many other configurations. These pumps will operate

with any liquid metal, including high resistivity metals, such as mercury,

bismuth, and lead because of the high currents, however, when the duct and

the fluid have resistivities that are nearly equal, duct losses will be

increased.

DC pumps, which require very high currents (kiloamps) at about one

volt, are further classified in two general types, namely pumps having

permanent magnets or those with electromagnets. Permanent magnets are

unique to small pumps since for larger pump sizes, the weight and cost

become excessive. Two classifications which are peculiar to DC pumps are:

(1) Homopolar generator pumps (Figure 3-2) which utilize the basic homopolar

generator design with a new technique of using liquid metal brushes to in-

crease the efficiency. The liquid metal brushes are necessary to conduct

the high currents required by the pump. The generator is surrounded by a

circular electromagnetic pump however, the necessity of metal lubricated
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bearings and shaft seals present an obstacle. (2) The other design is the

Thermoelectromagnetic (TEM) pump Figure (3-3). The power is obtained from

a thermoelectric element (thermocouple) mounted directly on the pump struc-

ture with one junction in contact with the hot fluid and the other in

contact with a cooler fluid. The generated voltage is in the neighborhood

of 1/10 of a volt. Therefore, it is necessary to place the thermocouples

in series to generate the desired voltage. The inherent problems of TEM

are: (a) the complicated control of the fluid and pressure due to the

temperature variations of the fluid and (b) starting the pump, since the

pumping action depends on the heat supplied by the "pumped" fluid.

A pump which is peculiar to AC EM pumps is the "Linear Pump with

Combined Transformer", Figure (3-4). In this pump the transformer is

mounted as an integral part of the pump. The flux produced by the primary

induces current into the secondary windings which in turn pass current

through the liquid. The main flux is 90° out of phase with the induced

current, hence produces no net work. But the counter flux which is in phase

with the induced current produces net pumping action in the desired direc-

tion.

The primary disadvantage of the DC conduction pump is its inconvenient

electrical supply of about one volt but supplying thousands of amperes.

The homopolar generator is an example of a supply which fulfills this re-

quirement at good efficiency. The ACconduction pump on the other hand can

be supplied more easily but at the risk of lower efficiency and power

factor.

The following Conduction Pumps can operate on either DC or AC, power:

Linear, multichannel, helical, spiral, centrifugal, and pinch-effect pumps.
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The differences in general stem from the duct configurations. When AC

supplies are used it is necessary that the field winding and the armature

(fluid) current be in series to insure that a proper phase relationship is

obtained for maximum pumping action i.e., it is desirable that the force be

a sine square function going from zero to twice its average value at double

the frequency of the power supply.

Linear Conduction Pump

The linear pump is the most common and is simplest in design, refer

back to Figure (2-3). The channel is usually made of stainless ste^l with

electrodes brazed on either side. The magnetic field is produced by either

AC or DC current supplied to the winding, and the current enters the fluid

(in phase with the field) through the electrodes. The theory of operation

was discussed in the previous section and will not be pursued here. Arma-

ture reaction, which will be discussed later, is a problem which can be

compensated by returning the current through the air gap. Appendix 1 to

this section contains an analysis for the DC conduction pump.

A commercial AC conduction pump built by MSA Research Corporation is

shown in Figure (3-5), along with a Performance Curves and Characteristics

for Various Styles Figure (3-6). The performance curve is for the pump

using sodium-potassium alloy (567c K. by weight).

Multichannel Conduction Pump

The multichannel pump differs from the linear conduction pump only by

the number of passes the duct and fluid makes through the magnetic field.

Figures (3-7) shows a two pass configuration. Since the magnetic flux is

used more than once, less magnetizing current is required. But the pri-

mary advantage is mechanical, in that the fluid entrance and exit duct and

the current supply electrodes can be clamped together, thus minimizing the
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forces transmitted to the pump duct from the liquid metal loop and from the

power supply buses. Due to the higher hydraulic losses, this type of pump

is restricted to applications requiring small pumps.

Helical Pump

In its simplest form, the helical pump is constructed by winding a

rectangular duct into the shape of a spring with adjacent turns connected

so that current can pass axially through the duct and fluid from ring-shap-

ed electrodes on the ends. The magnetic field passes through the fluid

radially between an inner and outer connected core. Compensation is

obtained either by using a double helix arrangement or by returning the

current through a hollow conductive cylinder fitted over or inside the

helix. This pump is applicable for high pressure, low flow situations.

Spiral Pump

The spiral pump, which like the helical pump is applicable for high

pressure and low flow uses, is constructed by winding a linear duct into a

tight spiral with connected loops so that current can pass radially through

the duct and fluid. The magnetic poles are above and below the face of the

spiral to allow the field to flow perpendicular to the current. A pressure

gradient is developed in the liquid along the spiral channel to cause pump-

ing action.

Centri-feugal Pump

Figure (3-8) and (3-9), show respectively, a spiral and a helical centri-

fugal conduction pumps. The ducts in these designs have no flow separators.

The spiral and helical flow is produced by the interaction of the current

and magnetic field. In both designs the excitation is provided by toroidal
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coils and in both cases the current and fluid enter and exit the pump through

the same duct. In the spiral centrifugal pump the radial current in the

fluid reacts with the axial magnetic field to produce rotation about the

centerline of the pump. In the helical centrifugal pump, the radial field

interacts with the radial fluid current to produce a tangential force on

the fluid. The tangential force on the fluid increases as the fluid passes

in a helical fashion through the pump. After leaving the annular duct, the

fluid is diffused, causing the velocity head to be converted to a static

pressure.

Pinch-Effect Pump

The pinch-effect pump shown in Figure (3-10) produces pumping action in

a different manner than those previously described. The current is con-

ducted into the duct and fluid via two electrodes. The magnetic field

surrounding the current is provided a low reluctance path by a C-shaped

core. The flux which is in phase with the current travels around the magnetic

flux path and then perpendicularly through the current carrying fluid. The

pinch action is such as to push the fluid toward the center as shown in the

f ollowing figure.

General Design Considerations.

Armature Reaction Effect .

In the electromagnetic pump, armature reaction is the effect produced

by the circulating current which distorts the magnetic field, thereby in-

creasing its strength at the inlet and reducing it at the outlet.

Since the total applied voltage is equal to the sum of the induced e.m.f.

plus the resistivity drop in the liquid:
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V - (vH + p J)b

a change in H is reflected by a change in J, or vice versa for a constant

applied voltage. The distortion of J and H results in a reduction of pump

pressure thereby reducing the pump efficiency. This situation is shown in

Figure 3-11.

In the case of DC rotating machinery the field distortion can be

virtually eliminated by compensating windings. In the case of electro-

magnetic pumps this is done by returning the current, that flows through

the duct walls and liquid metal, in the opposite direction. The return

current distribution should match as close as possible that of the duct and

liquid. A compensation scheme is shown in Figure 3-12. Figure (3-13) shows

compensation in an actual linear conduction pump with combined transformer.

Eddy-Current

In the case of the AC conduction pump, the main alternating flux will

induce large eddy currents in the liquid and will cause fringing between the

electrodes. These currents can be reduced by dividing the electrode into a

number of sections and by connecting opposite pairs to different isolated

windings of the supply transformer.

Windings

A good arrangement is to wrap the conductor, carrying the current that

transverses through the liquid, around the pole. This ensures, in the case

of the AC conduction pump, that the current and the flux are in phase to

obtain maximum pumping action.

Channel and Magnet Geometry .

See Figure 2-3. The performance of a conduction pump is greatly af-

fected by the relative proportions a:b:c of the duct. A large value of b/a
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is desirable to keep the supply current low. Also a large value of

c/b is desirable to improve efficiency but both of these ratios increase

the size of the pump. The cross section, ab, depends on the hydraulic

losses tolerated. If ab is too small, the losses may become excessive.

In the DC pump, low supply current, high efficiency, and small size are

in opposition. Similarly in the AC pump, power factor, high efficiency,

and small size ,ire in conflict.

End E ffects

The part of the electrode current (I ) that flows at the ends of
o

the pump outside of the pole region and the current that flows through

the duct walls have no pumping effect thus contributing only to losses.

To reduce or to make the end currents useful, it is necessary to grade

the field and to match the natural fringing of the current density. This

can be accomplished by pole shaping, by passing magnetizing turns through

the pole, or both. Another method involves the use of sheet metal baffles

in the duct ends outside the pole region. This arrangement however,

leads to additional hydraulic losses. Some methods are illustrated in

Figure 3-14.
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MTKNDIX I

Development of DC conduction pump theory from the equivalent circuit

R w
w A/vV

Rb

Re

AA/V

Figure 3A-1

DC conduction pump equivalent circuit
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In Figure 3A-1 above:

Ie = Current traversing the liquid which is between the poles

lb Fringing current (current through the liquid outside the poles)

Iw = Current that flows through the walls

Ec Counter e.m.f. developed in the duct due to the liquid flow through
the magnetic field.

Rw = Resistence of the walls

Re Resistence of the effective path through the liquid

Rb Resistence of the by-pass in the liquid

b Inside duct dimension in which current flows through the liquid

The magnetic force on the liquid is

F = Bb Ie newtons (3-1)

And the pressure developed is

2
P B Ie newtons/meter (3-2)

C
The total current traversing the duct is the sum of the currents in the

liquid and in the duct walls. The current in the liquid consists of two

parts, the one flowing between the poles (strong field) and the one that

flows outside the pole region (weak field) . The weak field contributes

little or nothing to the pumping action.

I = Iw + lb + Ie (3-3)

Ie Re + Ec - lb Rb - Iw Rw (3-4)

Solving (3-4) and (3-3) for I

I = Ie Re (Rw + Rb ) + Ie + Ec(Rw + Rb ) (3-5)
Rw Rb Rw Rb

The back e.m.f., Ec is

Ec = B v b volts (3-6)

and the velocity v in terms of the flow Q
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v Q meters/sec. (3-7)

ab

Ec = B Q volts (3-8)

a

substituting (3-8), (3-3) into (3-5) and solving for Q

I(Rw Rb) - Pa (Re + Rw Rb)H m /sec.

__
Rw + Rb B Rw + RbJ

Q - a_ I(Rw Rb) pa (Re + Rw Rb ) m /sec. (3-9)

This equation shows the dependence of flow on magnetic field density,

current, and duct geometry. Rb is best evaluated from experimental tests;

Rw and Re from resistivities and dimensions of the walls and liquid respec-

tively.

Taking the partial, ~d Q shows the linear dependence of flow on

current

3
"3Q a Rw Rb , m /sec . (3-10)

31 B (Rw + Rb) Amp.

The developed static pressure for no-flow condition, obtained from equa-

tion (3-9) is equivalent to equation (3-2).

P = B I Rw Rb nt./m
2

(3-11)
a (Rw Rb + Re(Rw + Rb))

Taking the partial 3 P from equation (3-9) shows the linear dependence of

3Q
pressure on flow, neglecting hydraulic losses

(3-12)BP
3Q

-B
2

a
2
(Re + Rw Rb)

Rw + Rb

In order to find the maximum flow as a function of B, take the partial 3Q
SB

and set the partial equal to zero:

3 Q - - a I Rw Rb + 2 a
2
P (Re + Rw Rb ) »

3B (Rw + Rb)B _3 Rw + Rb
B
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A
B - 2 P a ( 1 + Re + Re) webers (3-13)

I Rb Rw

The voltage applied to the pump, V

V Ec + Ie Re + BC; + P a Re (3-14)
1

a B

The electrical power will be W I V

W - I(—9 + P a Re ) (3-15)
C a "1

The power transferred to the liquid divided by the total power is equal to

the electrical efficiency

Efficiency - P Q (3-16)
I (B_2 + P a Re )

a B

Substituting Q from equation (3-9)

Efficiency = P a (I Rw Rb -( Rw Rb + Re Rb + Re Rw) P a/B ) (3-17)
B I ( I Rw Rb - Rw Rb P a /B)

for a DC pump with non-conducting walls. When high resistivity liquid

metal, such as Mercury, is to be pumped by a DC conduction pump with conduct-

ing walls, a high loss results from the current that flows through the duct

walls. Several experiments have been performed by Arnold Engineering Develop-

ment Center by insulating the electrodes from the stainless steel duct by

utilizing a high resistence ceramic cement. This configuration is illustrat-

ed in Figure (3A-2)

.

It should be noted that this pump was designed to work in a "Collector

System Complex" to remove the exhaust efflux from an evacuated chamber

where space conditions were simulated to test the effects on electrical

propulsion systems.

The first pump that was built consisted of a stainless steel 'jacket

with a rectangular passage; copper electrodes were embelded into a slot
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perpendicular to the fluid flow. A ceramic cement (Sauereisen #31) was

used to seal the system. The cement did not form a sufficiently tight bond

with either stainless steel or copper electrode, resulting in a mercury leak.

A different cement Torr-Seal was tried and the pump performed adequate-

ly but the vacuum problems were still present.

The efficiency of the pump with the ceramic tube wall was found to be

467. higher than the pump with conducting walls. This non-conducting wall

pump is specially suited to liquid metals with high resistivity.

Armature Reaction Analysis

A more detailed analysis of the armature reaction in the idealized DC

conduction pump is as follows: Assuming that no current flows outside the

pole and electrode region and also that only the components Jy, Hx and v
z

to be present. Then the Maxwell equation can be expressed as

-dH = 4 7T J (3-18)
dz 10

V = /Jb|H» b/10
8

(3-19)

Differentiating equation (3-18) and (3-19) with respect to z and substitut-

ing

d
2
H = 4 v dH (3-20)

dz2 y° 10^

Assuming a solution of the form

H = A + B e ° (3-21)

Where = 2 7Ty c .

>> io
y

Expressing the boundary conditions as

Hm

i

= 1/c
^q

H dz (3-22)
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Jm - 1/c Udl > 1/cJ 10 dH - 10 1
(He - Ho)

|
(3-23)

where c is the length of the pump and Jm and Hm are the mean values of J

and H respectively.

Substituting (3-21) into (3-22) and (3-23)

Hm = A - B c (l-e
Z

) (3-24)

2^

Jm = 10 (1-e^ )B (3-25)
4-7T c

Solving for A and B

A = Hm + 4 ?X Jm c (3-26)

10/3

B = 4 77 c (3-27)
10(l-2e 13 )

Substituting in equation (3-21)

H = Hm + 2 IX Jm c (1 + 2 & e
*

> (3-28)

$ 1 - e^

Substituting in equation (3-18)

J - Jm 2 e
c

(3-29)
1 - e a«

Since the total pressure developed in the pump can be expressed as

Pz = ) Jy Hz dz (3-30)

Substituting equation (3-28) and (3-29) into (3-30)

P = Hm Jm c [1- 2TTJm c ( & coth /& -1 )] (3-31)
Hm /3

The gross output power Wo (Pump power output + hydraulic losses) can be

expressed as

Wo = Pz v a b (3-32)

Wo = Hm Jm v c b a [1- Jm C2? (& coth £ -1 )] (3-33)
Hm

the Ohmic losses in the fluid are
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W
f

- a byo J J
2
dz = y3 Jm a b c /S coth^ (3-34)

The pump efficiency can be expressed as

Efficiency = Wo 1- & coth &
Wo + Wf 1 + Hm &

2 -rr Jm c

- 1- ^coth/g (3-35)

1 + o HmR
Hi

Using the notation Hi which indicates the maximum field at the poles edges

z = and z c that would be produced by the current in the liquid metal;

Hi » 2 Jm c = 4?T I = Ho - He (3-36)
2 a 2

Let us consider the effect of increasing the current density, keeping

v and Hm constant. With this condition, Wo can be expressed as

Wo = \l Hi (l-k
2

Hi) (3-37)

where k and k are constants; this expression has a maximum at

Hi = JL_ (3-38)
2 k

2

k Hi
Wo(max) - - Hm Jm a b c v (3-39)

2 2

Expressing k from equation 3-38 in terms of equation (3-33) to obtain

Hi = Hm /£ (3-40)
2 ( ^ coth fi -1)

Substituting (3-40) into (3-35)

efficiency = £ coth/3 -1 (3-41)
2 £ coth^ -1

This expression has a maximum value of 50% for large /S since cothB —*• 1

as /3 -> OO.

From the previous development it follows that if Hm and v are kept

constant and the current is increased, the power output increases up to a

maximum then decreases, with maximum efficiency only 50% of that of a pump
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perfectly compensated for armature reaction. Ideal compensation is not

realizable in practice due to end currents and wall currents. If the total

current is returned through the poles, the pump will be "Over compensated"

and the magnetic field will be increased at the outlet and decreased at the

inlet. The distortion of H and J again results in reduced pumping pres-

sure which leads to reduction of efficiency.
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CHAPTER IV

Induction Pumps

In induction pumps, as the name implies, the currents are induced in-

side the duct and hence in the liquid by a changing magnetic flux. The

induced currents flow in closed loops and if the currents can be made to

have a component perpendicular to and in phase with a magnetic flux, a

force or a pressure gradient can be developed.

The inherent advantages over the conduction pump are: (1) that an

external source of high current is not required, (2) nor are heavy electrode

connections with their corresponding contact resistance losses. (3) The

problem of designing efficient DC or very low frequency AC supplies is

partially solved.

Since high currents must be induced, it is necessary that liquid metals

have low resistivities. The primary fluids used to date are sodium and

sodium-potassium alloy. High frequencies are not desirable, in fact as

pump capacity increases, the frequency of the magnetizing current must be

decreased.

In Figure 4-1 is a block diagram of the induction pump family tree.

Most of the discussion in this paper will deal with stationary windings.

Single Phase Pumps

The single phase design is an annular duct configuration of which there

are two types, the pump with a secondary iron circuit (Watt Pump), or the

pump with a single iron circuit. These two types will be discussed later.

In the induction pump, symmetry can present a problem which is not

considered in conduction pumps. In Figure (4-2) the eddy currents are shown

for a single phase AC conduction Pump (assuming zero fluid velocity). Based
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on Lenz's Law the currents are such as to oppose the exciting mmf with a

resultant flux density as shown in the right hand sketch, of Figure (4-2),

i.e., maximum flux near the periphery and minimum toward the center of the

duct. The forces on the fluid are toward the center in this instant of time.

When the magnetizing flux goes from increasing to decreasing, the current

will change direction and the forces will be away from the center, but due

to the symmetry the net force at any instant of time will be zero.

The symmetry can be destroyed as illustrated in Figure (4-3) By attaching

low resistance bars to one end of the duct structure to off-set the eddy

currents. The counter flux generated by the eddy current distorts the flux

density so that the maximum occurs at the upper end of the duct. The force

is now directed on the fluid toward the region of decreased flux density,

hence the net force is downward toward the low resistance bars.

In Figure (4-4), an annular pump (Watt Pump) is shown to consist of

an annulus (a) where the pumping action takes place, small pipes (b) which

carry the liquid metal to and from the annulus, a secondary flux path (c)

,

a primary winding (d) , and the main flux path (e)

.

The pump is energized by single phase current flowing in the primary

winding. The primary flux, which is produced by the primary current, flows

through the main core. This alternating primary flux induces circulating

currents in the annulus (secondary) as shown in Figure 4-5. The secondary

current in the annulus produces a counter flux (0 ) which flows in the low
s

reluctance path provided by the secondary flux path (c) . The secondary

iron circuit is designed so that the secondary flux transverses the annulus

perpendicular to the secondary current. Since the secondary current and

secondary flux are in phase, net pumping action will take place in the an-

nulus in the axial direction.
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Flux fringing is kept to a minimum by tapering the secondary cir-

cuit near the annulus as shown in Figure (4-5). The secondary current,

which depends on total reactance of the secondary circuit, determines the

maximum pressure rise obtainable for a given core size and channel width.

End current losses are minimized by using a multiplicity of ducts (pipes).

Figure (4-6) is an example of an annular duct with a single iron cir-

cuit excited by a toroidal coil. To reduce unwanted eddy currents, the

magnetic core is laminated so that the lamination plates contain the axial

center line of the pump. The flux flowing parallel to the centerline induces

currents in the fluid in closed circles about the center line. The sketch

in the figure represents a particular instant of time where is in the

direction shown and is assumed to be increasing. The currents are shown as

tails of an arrow. Since the current and the main flux are 90° out of

phase, no net work is done since for half a cycle the force is in one direc-

tion and for the other half of the cycle the force is in the opposite direc-

tion. However, a counter mmf is established with an induced flux generated

to oppose the change of the magnetizing flux.

Since the magnetizing flux is more dense at point (a) than at point (b)

,

more current is induced on the left end of the annulus, i.e., a current

density gradient is established. The counter flux produced by the circulat-

ing current will be concentrated at the left hand side of the duct in phase

with the current. The net force will now be directed to the right.

Referring back to Figure (4-1), we see that the second and larger group

of induction pumps having stationary windings are the polyphase pumps which

are divided into rotating field and traveling field group. The polyphase

pump utilizes the principles of the polyphase induction motor. Polyphase
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alternating current is supplied to stator windings which are distributed on

one or both sides of the pump duct. The windings are located in such a

manner in slots to produce a sinusoidal mmf which moves along the duct to

induce voltages in the fluid and duct walls. The induced currents interact

with the traveling magnetic field to produce a force component on the fluid

in the direction of the axis of the duct. The advantages of polyphase pump

are (1) adaptability to existing power sources and (2) the freedom from

electrical contact with the duct.

Rotating Fields

Considering first the rotating fields, the classical example in most

literature is the helical induction pump (HIP) which most closely resembles

the squirrel-cage induction motor. The windings in the stator are distri-

buted in slots similar to any polyphase induction motor or generator. In

this case however, the copper conductors and the rotor have been replaced

by a fixed magnetic core and an annulus through which the fluid flows. The

central magnetic core provides a low reluctance flux path for the flux which

flows radially across the air gap. The annulus is in the form of a helical

duct network as shown in Figure (4-7). Waen the polyphase potential is applied

to the windings, a rotating mmf is produced due to design of the windings.

The rotating field induces axial voltages into the fluid and duct walls.

The induced axial currents react with the rotating field to produce a tangen-

tial force on the fluid. The fluid is forced through the helical ducts,

however, it is obvious that the axial component of the fluid velocity con-

stitutes a loss which increases as the helix angle increases. This loss can

be diminished by skewing the slots until a perpendicular angle between the

slots and the helical flow passage is approached for optimum flow.
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Compared to polyphase induction pumps, moving magnet pumps have the follow-

ing advantages and disadvantages:

Advantages:

a. Lower volt-ampere input due to the low power factor of polyphase

induction pumps.

b. Field windings are more effective, hence less volume of active

material required.

c. Since lower voltage can be used, the insulation requirements are

less stringent.

d. More design flexibility since speed and number of poles are not as

inter-related with frequency.

By designing the pump with suction and discharge on the same end, see

Figure (4-8), several improvements over the previous design are obtained,

namely: (1) The pump can be assembled more easily, (2) The coils can be

easily replaced without interferring with the duct work, (3) Pipe reaction

stresses are reduced. However, in the two pass configuration the poles

cannot be skewed for optimum flow and the change of direction of the fluid

by 180° increases hydraulic losses.

A pump with an annular duct without helical flow passage separators

and with skewed poles has been proposed. Although the pump is electrical-

ly and hydraulically inferior to pumps with helical ducts, the duct con-

struction is greatly simplified. The helical pump is used for relatively

low flow and moderate to high pressure applications.

Spiral Induction EM Pump

The spiral induction pump, like the helical induction pump uses a

complicated duct and stator design as shown in Figure (4-9). The duct is
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a spiral network with the inlet at the center and outlet at the periphery.

The duct lies between stators which have coils distributed in a radial or

spiral design to reduce unwanted eddy currents, and the stators are laminat-

ed perpendicular to the radius of the coils.

With a constant air gap and uniform slots, the flux densities will be

greater at the inside of the pump than at the outside. This effect can be

corrected by an air gap which varies, approximately, inversely with radius.

Also, as the stators become further apart, away from the center, the linear

velocity of the revolving field increases. To maintain optimum slip, it

is necessary to change the axial dimension of the duct inversely with radius

so that the linear velocity of the fluid increases with the linear velocity

of the field.

The spiral pump in general is inferior to the helical pump but due to

the symmetry of the stators on both sides of the duct, the leakage reactance

is lower than in the helical pump, hence a better power factor can be ex-

pected.

Disadvantages

a. Less reliability inherent with moving parts, bearings, etc.

b. Magnets structures cannot be used as duct wall supports.
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Centrifugal Pump

The EM centrifugal pump is less developed than the previously mentioned

pumps. This type of pump is limited to low pressure and low flow applica-

tions by hydraulic losses, however, the pump has some principles worth

considering. The centrifugal pump differs from the other types mentioned

in that it can develop relatively high fluid velocities in the pump, near-

ly independent of the system flow. The pressure is produced from the centri-

fugal force associated with the fluid velocity or by diffusion of the high

velocity liquid to convert the dynamic head to a static pressure.

The basic configurations are either helical or spiral ducts except that

separators are not utilized to direct the flow along a helical or spiral

path. The desired flow is obtained from the motion of the travelling field.

The configurations are similar to the DC Conduction Spiral and Helical pumps

shown in Figures 3-7 and 3-8, except that the excitation comes from toroidal

windings as shown.

Travelling Field Induction Pumps

Flat linear induction pump. (FLIP)

FLIP, which is in the travelling field category, has polyphase wind-

ings which are arranged in a form similar to the stator of an induction

motor. Instead of being placed in a circular arrangement, the windings

are distributed in a linear fashion to produce a sinousoidally distributed,

mmf wave which moves linearly at a velocity depending on the frequency of

the power supply and the pole pitch of the windings. Current and flux in

the liquid are presumed to be in time and space phase. One of the major

losses in FLIP is due to side effects, which are minimized by using high

conductivity side bars. The bars are equivalent to the end-rings in the

62





induction motor. Another loss is created by discontinuities of the travel-

ling wave of the exciting mmf at each end of the pump due to the fact that

the mmf does not close upon itself. An arrangement usually adopted is to

have half-wound end poles.

In order to simplify the mathematical analysis of this pump, it is

assumed that the width of the duct in the y-direction is infinite (neglect

side effect), and that only the components H and J of H and J exists.
y x

As seen previously, the total pressure Pz, the gross output Wo, and the

Ohmic loss in the fluid Wf can be expressed as follows:

3Pz = J H. (4-1)

(4-2)

(4-3)

dz (4-4)

Since the lines of flux are continuous

From Faradays Law the electromotive force (emf) is equal to the negative

rate of change of magnetic flux linkage,

e.m.f. - tz where ^ = N$ , in

this case^ Si =1

n h j - - ijl ._<*+ y^fe ) where J, is (4-6)^ I dt Jt 3 c f

fluid current density.

By applying Ampere's law:
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["H - ( H + d_H_ dz)~|d = 4 7r d(N Im) (4-7)

dz

d(N Im ) = d_ ~b H

d2 2 7T 3 z (4-8)

Substituting eq. (4-5)

d (N Im ) = d_ B>V (4-9)

dz 4Tfb 3 ?
*

The voltage per turn induced in the windings is

V
i

= d(i
(4-10)

N dt

Assuming flux of the form

= lCos(wt- f ) (4-11)

where V - 2 7T

A

from eq. (4-5) and using boundary conditions

H = H sin(wt-^ ) (4-12)
P

where H = 2 Tf 0.
p Tb 1

Substituting eq. (4-6) and solving for J
f

J. = 0. fw - v2TT"lsin (wt - V )
f

- $
1

|~w - v2TT"~]sin

4
defining syncronous velocity v , and slip s as

s

V
s

s A f — w A
2 7f

s
— V

s
- v

f

V
s

Jc = 2 7r 0. (v - v.)sin(wt- y ) = 2 g O s v .

f
4

1 S TT7 S

sin(wt-y ) (4-13)

64





» 8 v Hp 8in(wt- ^ )
s

Similarly for the duct where v and J)
m
J>.

J = 2 7r0,v sin(wt- f)=v Hp sin(wt- *f ) (4-14)

From relation (4-9) and (4-12)

d(N Im ) - d 2> H = d Hp cos(wt-y ) (4-15)
dz 4?r 3 z 2ft

Substituting in eq. (4-10)

V. - v b Hp sin(wt- ^

)

(4-16)

Substituting eq. (4-12) in (4-2)

p = s v
g X HP

2
(2- 17 >

The gross output power Wo

Wo = X v
8
v
t

s Hp a b =WA(|-»)8
<4 " 18)

1J>

2 2
where W =» Tv Hp a b

The Ohmic loss from eq. (4-4) is

Wf - a b s
2
v
g

2
Hp

2
jsin(wt- f )dz (4-19)

Wf = W. s
A

The efficiency, similar to the ideal induction motor

Efficiency = Wo = 1-s (4-20)
Wo + Wf

Anular Linear Induction Pump (ALIP)

In ALIP the flow is axial through an annular duct with the magnetic
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wave travelling parallel to the flow. The field is created by polyphase

windings in the form of toroidal coils, concentric with the annular duct

axis. The component of the flux that flows in the radial direction is

the one which interacts with the induced current creating a force in the

liquid metal in the axial direction. The ALIP is not subject to the side

effects present in the flat pump since the induced currents flow in closed

circular path in the liquid. The circles are concentric with the duct axis.

The end effects, however, are still present but can be reduced by proper

design of the end coils. An actual picture of the ALIP is shown in Figure

4-10.

Another version of the annular pump is the "Coaxial Annular Linear

Induction Pump (CALIP) , in which the inlet and the outlet of the pump are

on the same side. The liquid metal flows along a pipe inside the core and

returns in the annular gap between the core and the windings.

The advantage of this design is that the windings can be removed

from one side of the pump without disturbing the duct system.

Pumps with Rotating Pole Structure

This last group of induction pumps utilizes mechanically rotated field

poles similar to the rotor of a synchronous machine. The principle is the

same used in polyphase pumps with a rotating field and as noted in Figure

4-1, the sub-groups are the same. If the field windings are wound around

the rotating poles, dc or ac current may be supplied by slip rings.

Alternating power may be supplied by induction, then supplied to the field

via rectifiers mounted on the rotating structure. The alternate configura-

tion utilizes stationary, toroidal -shaped, field windings, which supply a

constant mmf across the duct. By rotating a rotor containing magnetic
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salients in the region across which the exciting mraf flows, a travelling

wave is, in effect, produced.

Figures (4-11) and (4-12) shows a Helical-Rotor Assembly and Duct re-

spectively, of a 2000 gpm Sodium Pump and Fig. (4-13) shows actual perform-

ance curves for this pump. This particular pump was tested, (Ref. S ),

as a pump and as an eddy-current braking device.

When a nuclear reactor is shut-down, high stresses can be incurred in

the metals between the hot core and the relatively cool primary coolant.

This pump was found to react very quickly to a shut down, and it effective-

ly throttled the coolant to prevent excessive stresses. The analysis of

the pumps braking ability is given in the above mentioned reference. The

important conclusions reached in the testing of this pump: (1) It is suit-

able for applications requiring capacities in the range from near zero to

over 50,000 gpm. (2) It is possible to pump any alkali metal at tempera-

tures of at least 2200°F by using the proper annulus wall, i.e., material

and thickness. (3) Operating experience demonstrated that the helical-

rotor EM pump is a reliable, well-sealed, low-maintenance system.

Spiral-Duct Moving Magnet Pump

Figure (4-14) shows one concept of a Spiral -Duct Moving Magnet Pump.

In this example the rotating magnets are on only one side but the pump can

be designed with rotating magnets on both sides. The use of spiral flow

passage separators is arbitrary.

Centrifugal Pumps with Moving Magnets

The spiral and helical centrifugal pump designs discussed in Section

4 can be configured with moving magnets. The literature on this particu-

lar design is quite sparse, and as a result the pump is only mentioned here.
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CONCLUSION

Electromagnetic pumps hpve unique features which are not found in

conventional pumps, namely: (a) Stationary components (pumps not having

rotating magnets) require little or no maintenance and bearings and

shaft seals are eliminated. (b) The fluid can be completely enclosed,

permitting safe use of highly reactive metals such as sodium and potassium

which are good heat conductors. If the fluid is used as the primary cool-

ant for atomic reactors, the enclosed system essentially encapsulates the

radioactivity absorbed in the cooling process.

In general, electromagnetic pumps are less efficient electrically,

and A. C. pumps have lower power factors than do electrical rotating

machines of comparable ratings. Lower efficiency is caused by higher

resistivity of liquid metals compared with the resistivity of copper,

the larger air gaps involved, and the trade-off of electrical efficiency

to improve hydraulic efficiencies. Duct-wall power losses which can be

quite large in some designs have no direct parallel in electrical rotat-

ing machines.

The choice of type of electromagnetic pump for a particular job

depends on cost, power to weight ratio desired, flow rate, pressure

head, and availability of sources, to name a few. Table 5-1, taken from

reference [31], shows the relationship between conduction and induction

pumps.

A. C. conduction pumps are restricted to small power applications,

since size and eddy curreni losses ncrease rapidly with power increases

in large pumps. In general, electrical efficiency decreases with in-

crease in frequency. A D. C. pump of similar output can be made smaller
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—Relative Merits of 50 c/s. 5 c/s. and D.C. Conduction Pumps

Form of supply

Auxiliaries ....

How cnnlm)

l-'irlil sysli'iu

Overall efficiency

Maximum pump
output

Cost

50 c/s A.C. 5 c/s A.C. D.C. D.C.

Layout

Pump size ....

Size of complete
equipment

Induction regulator or I A.C. motor and L.r.

variable tap auto- generator
transformer, p. r. cor-

rection capacitor
Voltngcf¥|rtilAtorpnni<

, ftintml of field of i. r.

lion generator
Single-turn or half- Single-turn series
turn Hcriei winding Winding: poMiMy two

i in n« in Kinnll pump*

Usually lowest
About 100 g.p.m.

Usually cheapest

Pump and transfor-

mer adjacent. Cor-
rection capacitor
near, regulator re-

mote
Pump small ....

Capacitor and trans-

formers each usually
several times larger
than pump

Next highest
About 500 g. .m., but
higher at iower fre-

quency
Becoming comparable
with 50 c/s near up-
per limit of output

Pump and transfor-

mer adjacent. Motor-
generator remote

Similar to 50 c/s pump

Motor and homopolar
generator

Control of field of

homopolar generator
One turn in large

piimpii; up to 3—5
turn. III •mull unmp.

Highest
Very large ....

Usually more expen-
sive than a.c. pumps
but this need not
necessarily remain
true when homopolar
generators are an
established line

Pump,homopolar gen-
erator, and motor
adjacent

Induction regulator or
alternative and con?
vcntional metal recti*

lier

Voltage regulator |n>*i-

tion

Tendency to employ
mora turns than with
honiopolttr Mimorm.ir
arrangement to keep
current lower
Possibly lowest
Large

Most expensive

Pump and rectifier ad-
jacent

Machines much larger

than pump, overall
j

size somewhat larger
|

than 50 c/s arrange-
ment

Comparison of 50 c/s, 15 c/s, 5 c/s,

Could be smaller than a.c. pump, but generally
same size for better efficiency and low current
Machines larger than
pump; this arrange-
ment normally gives
smallest overall size

Rectifiers very large in

comparison with
pump. Complete
equipment very bulky

and D.C. Conduction Pumps
Bismuth at 400°C. Tube wall, 85 microhm-cm. resistivity at 400*C.

Power supply .... 50 c/s 15 c/s D.C. 5 c/s D.C.

Output:
Flow, gals, per minute 60 250
Pressure, pounds per

square inch .... 40 75
Power, kilowatts 1-25 • 9-8

Input:
Voltage, volts 3-54' 1-4 0-89 2-6 li •

Current, kiloamp 11-6 11-6 8-6* 40 39
Power:

Kilowatts 12-3 11-4 7-7 61 42
Kilovolt-amperes .... 41 16-5 — 101 —

Power factor .... 0-30 0-69 — 0-60 '_ —
Efficiency:

Pump only, per cent 12 13 16 20 . 23
Including transformer,

per cent 10 11 — 16 —
Design details:

Liquid velocity, feet

per second .... 18 18 18 24 24
Tubedimensions, inches 0-61 X 0-21 0-61 X 0-21 0-61 X 0-21 1-4 X 2-8 1*4 X 2-8

Wall thickness, inches 0032 0032 0028 0064 0064
Peak field in gap, kilo-

gauss 9-7 9-7 10-6 15-2 10-6
Weight:

Pump, pounds 90 85 100 1200 800
Transformer, pounds 200 380 — 2600 —
Correction capacitor,

pounds .... 300 — — — .' _..
'

Dimensions:
Pump, inches 9x8x8 9x8x8 9x9x8 20 X 16 X 11 14 X 15 X 14
Transformer, inches ... 10 X 14 X 13 11 x 16 x 15 — 18 x 28 X 25 _-

Other auxiliaries Voltage-regulating Motor/L.F. fre- Motor/homo- Motor/L.p. Motor/homo-
transformer quency changer polar-gcncrator generator polar-generator

Kelative total cost — Not much greater Shows promise of Use of conven- Shows promise of
than 50 c/s ar- being cheapest tional equipment being cheapest
rangement arrangement

when homopolar
keeps cost low at

moment
arrangement

_ J

generator
developed^

•

Fag. 5-1 Comparison of 50c/s, 15c/s, 5c/s and DC Conduction Pumps
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however, due to D. C. power supply problems (i.e., kiloamps at about 1

volt) the less efficient and larger A. C. pumps may be used in the medium

power range.

In general, for high power levels, a D. C. pump using bismuth is

the best selection and for low power levels, inductions pumps using

sodium are the best choice.

Conduction pumps perform best with bismuth while induction pumps

operate best with low resistivity, low viscosity, and low density fluids

such as sodium, sodium-potassium alloys, and lithium.

In the induction pump group, Spiral Induction Pump (SIP) operate

more effectively for low power and high pressure-low flow applications

while the Annular Linear Induction Pump (ALIP) and the Flat Linear In-

duction Pump (FLIP) handle larger power applications more effectively.

Comparing the D-C conduction pump and ALIP (Table 5-1) for flow of 8300

gpm, the efficiencies are comparable but the ALIP has a power rating of

4.5 hp/cubic ft. verses .5 hp/cubic ft. for the D-C conduction pump.

In this particular example sited by Dr. Blake, the ALIP, operating off

the mains, replaced a D C. pump, a homopolar generator, and an induc-

tion motor.

The use of the electromagnetic pump is not restricted to pumping

primary coolant for atomic reactors. Development has led to its use

as an actuating device for valves, mixing of metallic liquids in chemical

processes, stabilizing space vehicles, and suspension of liquid metals

in casting processes. The reverse process is used in flowmeters to

measure flow rates of liquids or gases, and magnetic flowmeters are be-

ing used in the field of medicine to measure cardiac output.
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The electromagnetic pump is presently being exploited as a prime

mover for gases, plasma for example. The principle is also being applied

in reverse in MHD generators, where hot ionized gases flow through a

magnetic field to generate a voltage.

The above paragraph lists only a few of the important present day

uses of electromagnetic pumps. It is a certainty that the applications

for electromagnetic pumps will continue to increase with improved designs

and with increased knowledge of the pumps capabilities by engineers.
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