EFFECT OF LONGITUDINAL HEAT CONDUCTION ON ROTARY REGENERATORS
 GUSTAVO D. BAHNKE

U.S. NAYAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

UNCLASSIFIED

ON ROTAR＂REGENERATORS

$$
\text { * } 九 木 大 丈
$$

Gustavo D．Bahnke


```
ON ROTARY YEGCNEINTORS
```

by

Gustavo D. Kahnke
Rieutenant, Chilean Mavy

Submitted in partial fulfillment of the reģuirments for the icgree of TASTER OF SCTEMCR
 IN

MECHMICAL ENGINEERING

United States Naval Postgraduate School Monterey, California

1962

APE Fichive
196 人
Batinke, 6
EREECT OT IONGTYDDNAL HEAT GONDUCTIOAON ROTARY REGENERATORS
by
Gustavo D. BahnkeThis work is accepted as fulfillingthe thesis requirements for the degree of
MASTER OF SCIENCE
INLECILANICAL ENGINEERINGfror the
United States Naval Postgraduate School

ABSTRACT

The general differential equations describing the behavior of the rotary regenerator including longitudinal heat conduction in the direction of fluid flow are sifficiently complicated to preclude a complete analytical solution. A few solutions found in the literature restricted to very apecial cases are diszussud.

A numerical finite gifierence method is pregented which will determine the effect of hongitudinal heat conduction in rotary regenerators for steady state conditions. In the development no assumptions are nade which would restrict the range of parameters for which the analysis would be applicable.

The conduction effect on the regenerator effectiveness was evaluated with the view of obtaining results most useful for the gas turbine regenerator problem, however, these results may also be used for other regenerator problems.

A CDC 1604 digital computer was used to carry out the computations. The results are presented graphically and in tabular form, employing a suitable set of non dimensional parameters. The range of parameters which have been covered arc:

$$
\begin{aligned}
& 0.5=C_{\min } / C_{\max }=1.0 \\
& 1.0=C_{\mathrm{r}} / C_{\min } \leq 10.0 \\
& 1.0=\text { NTUo } \leq 20.0 \\
& 0.25 \leqslant(\mathrm{hA})^{*} \leqslant 1.2 \\
& 0 \quad 1-0.2 \\
& 0.15 \mathrm{As}^{*}-1.3
\end{aligned}
$$

The author expresses his appreciation to C. P. Howard, Associate Professor, for his direction and encouragenent in this work.

TABEE OF CONTEITS

Section Title l'age
Abstract 11
List of Illustrations and Tables i.v
Nomenclature vii

1. Introduction 1
2. Mechod 3
3. Discussion of results 13
4. Sumary and Donctasions 20
5. Bibliography216.Appendix 1.50
6. Appendix 2 59

Figure
Page

1a Illustrative Matrix Arrangement and Fluid Flow
1b Schematic Representation of a Rotary Regenerator 6
2 Effectiveness versus Element Area 14
3 versus for $C_{\text {min }} / C_{\max }=1.0,1.0 \leqslant C_{r} C_{\text {min }}<\infty$, 46 $1.0 \leqslant$ NTUo $\leqslant 20.0$ and $0.25 \leqslant(h A)^{*}=A s^{*} \quad 1.0$

4

5

6

7

Table
1
Number of Passes to Mcet Convergence Criterion16

2-25 Longitudinal Heat Conduction Effect for:
2

$$
C_{\min } / C_{\max }=1.0, C_{x} / C_{\min }=1.0,(h A)^{*}=A s^{*}=1.0
$$22

"able
Page

3

9

10

11

12

13

14
$c_{\text {min }} / C_{\text {max }}=0.9, C_{r} / C_{\text {min }}=160,(h A)^{*}=A s^{*}=1.0$

15
$C_{\text {min }} / C_{\text {max }}=0.3, C_{x} / C_{\text {min }}=1.0,(1.5)^{*}=A s^{*}=0.5$

16

$$
\begin{equation*}
c_{\min } / c_{\max }=0.9, c_{r} / c_{\min }=2.9,\left(\operatorname{La}^{2}\right)^{*}=2 s^{*}=0.5 \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
C_{\min } / C_{\operatorname{mx}}=0.9, C_{r} / C_{\min }=10.03\left(W_{3}\right)^{*}=A s^{*}=0.5 \tag{37}
\end{equation*}
$$

18

$$
C_{\min } / C_{\max }=0.9, C_{r} / C_{\min }=10 \cdot C,\left(i u^{s}\right)^{*}=A s^{*}=0.25
$$

$$
C_{\text {min }} / C_{\text {mui: }}=0.9, C_{r} / C_{\text {min }}=1.0,\left(h L_{1}\right)^{*}=A s^{*}=0.25 \quad 38
$$

$$
c_{\min } / C_{\max }=0.5, C_{r} / C_{\min }=1.0,(i \alpha)^{*}=A s^{*}=1.0
$$

$$
C_{\min } / C_{\max }=0.5, C_{T} / C_{\min }=100,(i n)^{*}=A s^{*}=1.0
$$

$$
\begin{equation*}
C_{m i n} / C_{T a::}=0.5, C_{r} / C_{\min }=1.0,(\mathrm{Mi})^{\star}=A s^{*}=0.5 \tag{42}
\end{equation*}
$$

list of tables (CONTIMUED)

Table page
$23 \quad C_{\text {min }} / C_{\text {max }}=3.5, G_{x} / C_{\text {min }}=10.0,(h a)^{*}=0.5 \quad 43$
$24 \quad C_{\text {min }} / C_{\text {max }}=0.5, C_{2} / C_{\text {min }}=1.0,(h A)^{*}=0.25 \quad 44$

25
$C_{\text {rain }} / C_{\text {nax }}=0.5, C_{5} / C_{\text {nain }}=10.0,(W A)^{*}=0.25$
45

As: $=$ golid area nvallable for longitudinal beat conduction on the aide of Cmax, $8 q \mathbf{f t}$
$A s_{n}=s o l i d$ area available for longitudinal heat conduction on the side of Coin, $8 q \mathrm{ft}$

As = total oolid area available for longitudinn heat conduction, sq ft
$C=$ heat capacity rate (WC) of fluid or rotor matrix according to
subscript, Btu/hr, deg F
$c=$ specific heat of fluid (constant pressure) or rotor matrix material depending on Bubscript, Btu/lb, deg F
$h=u n i t$ conductance for thermal convection heat transfer, Btu/hr, $\operatorname{deg} F, 8 q \mathrm{ft}$
$k=u n i t$ thermal conductivity, Btu/hr, sq ft, deg F/ft
$L=$ total length of the matrix in the direction of fluid flow, ft
$N=$ number of aubdivisions according to subscript
$Q=$ heat transfer rate, $B t u / h r$
T = temperature of matrix, deg F

$T_{12(f, g)}=$ subscripted matrix temperature on the side of $C_{m i n}$ deg \bar{m}
$t=$ temperature of fluid, deg F
$t_{x(i, j)}=$ subscripted fluid temperature on the sicle of Cmar, deg F
$t_{n(f, g)}=$ subscripted fluid temperature on the side of $C_{m i n}$ deg F
$W=$ mass flow rate of fluid (lb/hr) or matrix (lb, rev/hr), according to subscript
$y=$ distance of a point from the cold end, measured in units of total length of matrix, $0 \leqslant y=L$

```
A
C
D
E
F
Subscripts.-
avg = average
c = cold side
h = hot side
i = inlet
min - minirum magnitude
max - maxinum magnleude
n - side of Gmin
o = outlet
r motor
x = side of Cmax
\infty= subscript on e to indicate value extrapolated to an infinite
number of elements.
```

Dimensionless parameters.-
$e=$ exchanger heat transfer effectiveness, ratio of actual to thermosdynamically limited maximum possible heat transfer rate

$=$ longitudinal heat conduction effect

```
CondCum: = Capacity rate rutio of fluid flon streams
Gr/Guin = capacity rate ratio of rotor matrix to minimum fluid capacity
    rate
(hA)*}=(hA)n/(hA\mp@subsup{)}{X}{},\mathrm{ conductance ratio
NTU = (hA)/C, number of transfer units on side designated by subscript
```



```
\ = , conduction parameter on side of Cmax
= KA , conduction parameters on side of }\mp@subsup{C}{min}{r
\lambda=\frac{4}{4}\mathrm{ , total conduction parameter}
As* = As n}/A\mp@subsup{s}{X}{}\mathrm{ , conduction area ratic, ratio of solid areas available
    for heat conduction in the direction of fluid flow
```


I. Introduction

The regenerative type of heat exchanger has been subjected to extensive creatment within the last thirty years or so and contributions to the theory of regenerators have been made by many writers. The most questionable of the idealizations made in the development of the theory is that of zero matrix conductivity in the direction of fluid flow. The loss due to heat conduction in the matrix material is specially important in the case of high performance regenerators in which a small reduction in the effectiveness will result in a large increase of the heat transfer areas to compensate for the loss. Another important factor is the modern trend toward smaller sizes, since the loss due to conduction of heat in the matrix obviously increases with decreasing length.

Schultz $[2]^{1}$ solved the problem including conduction for the special case of the balanced regenerator and very large values of $C_{r} / C_{\text {min }}$ (i.e., the capacity rate ratio of rotor matrix to minimum fluid capacity rate). In this case the system of partial differential equations defining the problem for the steady state are reduced to ordinary differential equations and the problem can be solved analytically.

Hahnemann 3 extended the solution to the unbalanced regenerator (i.e., unequal partitions of the cross sections and unequal heat transfer coefficients together with unequal capacity rate ratios of the fluid streams) but still for an infinitely large value of $C_{Y} / C_{m i n}$.

Loudon has shown, as reported by Lambertson 1 , that a correction factor for conductivity in the direction of fluid fiow for approximately
$1_{\text {Number }}$ in brackets refers to bibliography on page 21

equal fluid capacities, of the for:n:

$$
\frac{\Delta E}{C}=\frac{12!}{C L}
$$

should result in a somewhat pessimistic prediction of the reduction in effectiveness.

It is the objective of this thesis to develop and present a finite difference numerical analysis with solutions to solve for the conduction effect on effectiveness for the rotary regenerator. Since there are six dimensionless parameters required to specify behavior in the most general case, the ranges of the parameters covered in the solutions will be those of most interest to the gas turbine regenerator, however, the analysis will place no restrictions on these parameters.
2. Method

The conventional idealizations and boundary conditions assumed in the derivation of the governing differential equations, including the heat conduction in the direction of fluid flow 4 , are the following: (See Fig. la)
a. The thermal conductivity of the matrix material is zero in the direction of matrix metal flow. It has a finite value in the direction of fluid flow, and is infinite in the other direction normal to the fluid flow.
b. The specific heats of the two fluids and matrix material are constant with temperature.
c. No leakage of the fluids occurs either due to direct leakage or carry over, and each flutd flow is unmixed.
d. The convective conductance between the fluid and the matrix are constant with flow length.
e. The fluids pass in counterflow directions.
f. Entering fluid temperatures are uniform over the flow inlet cross section and constant with time.
g. The matrix temperature gradient in the direction of fluid flow is zero at the ends.
h. Regular periodic conditions are established for all matrix elements, i.e., steatiy state condition.

The differential equations derived by Schultz 2 are given in Appendix 1.

It was suggested by Dunibere and carried out by Lambertson [1] for the case of no conduction, that a rotary regenerator could be divided

FIG. la ILLUSTRATIVE MATRIX ARRANGEMENT AND FLUID FLOW
into finto folenents as represonted schemitically in fig. Ib. This sume method can be eacended to the case with conduction. If the ciemente are considered to be fixed ir space, cach element can be regarded as a crose flow heat exchanger with a ges stream and a metal otrcam. For an elerient on the sicle of Cmax, the heat transfer rate by convection is equal to the rate of change in enthalpy of the fluid across the element,

where $T_{\text {avg }}$ represents the mean temperature difference between the fluid and the matrix element. For a sall enough elcment the arithmetic mean temperature difference may be assumed valid, so that

where the fluid and matrix tempenatures are subscripted to indicate the average temperatures across the in? et and outlet of the element for simple unmized cross flow.

Considering an energy balance for the element, the energy transferrec to the element by convection plus energy transferred to the element by conduction less the energy transferred out of the elcment by conduction must equal the energy stored in the element:

By using equations (1) and (2) the outlex tomperatures for an element on the side of $\mathrm{C}_{\text {max }}$ may be solved for in terms of the remaining temperatures and the result expressed in dimensionless form (Appendix 1).

Since the longitudinal heat conduction is zero at the ends, the energy balance equation is different from equation (2) for the elements of the first and last row. Three different expressions for the matrix outlet temperatures are obtained:

First row elements

$$
\begin{equation*}
=\Gamma_{1}-a_{1}-1+D_{8}\left[T_{x}-\Gamma_{1}+?_{7}\right. \tag{3}
\end{equation*}
$$

Middle row elements

$$
=1, T \quad-0
$$

(4) 9

Lsst row elements

By solving for the fluid outlet temperature on the side of $C_{\max }$ in terms of the matrix outlet tempercture from equation (1), only one expression is obtained, minch holds for all the elements on the sicie of $C_{\text {max }}$,

Similasly, fow en denent on the asde of $\mathrm{C}_{\text {min }}$
with

Energy halance:

By the same method the outlet temperatures of the elcaents on the side of $C_{\text {min }}$ may be obtaind using equations (7) and (8).

First row elements

Middle row elements

$$
\Gamma_{,+1}=F_{1} t_{n(,)}-F_{2} T_{1, y}+\Gamma_{(1,-1, y)}-\Gamma_{1}
$$

Lust how elemunts

Solving for the fluid outlet temperature for the elements on the side of $C_{\min }$ from equation (7) gives

$$
\begin{equation*}
=F_{i} t_{n(c, j)}+F_{5}\left[T_{n(f, y)}+T_{n(f, g+1)}\right] \tag{12}
\end{equation*}
$$

which holds for all the elements on the side of $C_{m i n}$. For the values of the constants see Appendix 1 .

In addition to the four dimensionless groupings for no conduction, $C_{\text {min }} / C_{\max }=$ capacity rate ratio of fluid flow streams $C_{r} / C_{m i n}=$ capacity rate ratio of rotor matrix to minimum fluid capacity rate $(h \Lambda)^{*}=$ conductance ratio NTUo $=\quad$ over- \quad nll number of transfer units;
two additional dimensionless groupings are needed in the coefficients of equations (3), (4), (5), (6), (9), (10), (11), and (12) to take conduction into account. These conduction parameters may be defined as:

Also

$$
\frac{1}{1}=\frac{1}{1_{x}}-\frac{1}{4}=\frac{1}{4}
$$

since the thermal conductivity and the length of the matrix are the sac:e for both sides, and where

```
, conduction area ratio.
Another form of defining the conduction parameter is
```


In this case As is the total solid area available for conduction, that is

This form offers the acvantage that for a given value of the conduction parameter, the resulting effectiveness will not be affected by small changes in $A s^{*}$.

From the schematic representation shown in Fig. Ib, it should br noted that the left edge of the regenerator is physically the same as the right edge and, therefore, the atrix inlet temperature for the elements of the first coluran on the side of Cax is the same as the outlet temperature of the corresponding element of the last column on the side of $C_{m i n}$. Expressed mathematically,

```
=1,1, +, N1,+1)
```

where i and f can take the values of $1,2,3, \ldots \ldots . .$. lir. $^{\text {. }}$. This is referred to as the reversal condition.

From equations (3), (4), (5), (9), (10), and (11) it is seen that in order to solve for the outlet matrix temperature for a particular element, it is necessary to know the matrix temperatures of the next clement. An estimate of thess values can be made by determining the
temperature distributhon for the case of zero conduction in the dibcetion
 (5) and the constunts Fi3 and F8 in equations (9), (10) and (11) are sero in this case.

A temperature scale can be used for which the fluid entrance temperature is zero at che side of $C_{\text {nin }}$ and unity at the side of $C_{\text {max }}$.

$$
\begin{array}{ll}
t_{r i}(1, g) & =0 \\
t_{x(1, j)}=1 & \text { for } g=1,2,3, \ldots \ldots \ldots \ldots \ldots N_{n} \\
\text { for } j=1,2,3, \ldots \ldots \ldots \ldots N_{x}
\end{array}
$$

For calculation purposes a temperature distribution is assumea on the left edge and the problem is solved for the no conduction case in order to obtain an initial estimate of matrix temperatures for working the problem with conduction. This also provides the no conduction cifectiveness necessary for comparisun.

The outlet tenperatures are cilculated for every elenent by repetitive use of equations (3), (4), (5) and (6) sepending on the location of tise elcuent. The calculation is started with the first element, first colum on the side of $C_{\text {max }}$ and then working down the colum. When the finst colum of elemonts i.s completed, the second column is calculated and so on until the outlet temperatures of all the elements on the side of Chax are datermincd. It was found that convergence could be cnhanced if two passus per colum were made wofore procecding to the next one. The reason for this is that the equacions for the outlet temperatures contain the matrix comperatures of the next element which are necessary to cstimatc.

At the seal renresented by the double line in Fig. $1 b$,

$$
r_{x\left(1, N_{x}+1\right)}=T_{n(f, 1)}
$$

since the matrix outlet temperature for the elements of the last column on the sidc of $C_{\max }$ is physically the same as the inlet temperature of the corresponding element of the first colum on the side of $C_{m i n}$.

The sane method is applied to the side of $C_{m i n}$ as to the side of $C_{\text {nax }}$. If the temperature distribution assumed on the left edge was correct it would then be duplicated on the right (i.e., the reversal condition is fulfilled). If, however, this is not the case, the resulting temperatures on the right side $T_{n}\left(f, N_{n}+1\right)$ are now used on the left $\left(\mathrm{r}_{\mathrm{x}}(\mathrm{i}, 1\right.$,$) and the procedure is repeated. After each pass (i.e.,$ the complete calculation of a temperature distribution) an energy balance is rade; and before the solution is accepted for a particular set of parameters, the heat balance error together with the reversal condition has to be fulfilled to the specified accuracy.

The effectiveness of a heat exchanger is defined (Appenciis 2) as

$$
=\frac{C_{m \omega x}\left(t_{x i}-T_{x 0}\right)}{C_{\text {mixi }}\left(T_{x i}-t_{n i}\right)}=\frac{t_{n c}-t_{n i}}{t_{x i}-\tau_{n i}}
$$

From the conditions of the problem the above expression for effectiveness reduces to

The heat balance error was computed fron

 Ant the ieat balance errot converge to zeto will depend on the number of elements Lace. Nore important that this is the relation exlstiug hotwen the numb. of subdivisions for the three streams. The sufficient but not necessary conditions for convergence are (Appendix 1) that

Eig. 2 is a plot of the different values of effectirencss obtainced Lor the following set of parameters.

$$
C_{\text {Win }} / C_{\text {max }}=1.0, C_{T} / C_{\min }=2.0,(h A) *=1.0, \text { NTUO }=10.0 \quad 1=0.1, A s^{\prime}=1.0
$$

Several euryes are oblained depending on the relation existing between the mumet of sublivfsions fir every stream. To extrapolate the effectivenass to an infinite number of elements, these curyes may be approximated by straight lines. The error introduced will depent on the number of elemints used and will not be constant for all the range of the parcmeters. A.s an illustration consider the sut of parameters uscd to plot Fig. 2. Three cases are investigated:

1) $\quad H_{33}=N_{n}=\mathbb{N}_{1 / 2}$
2) $\quad \mathrm{N}_{\mathrm{m}}=\mathrm{N}_{\mathrm{m}}$
3) $\quad{ }_{y}=i_{H}=2 \mathrm{~N}_{r}$

A Lincar extrapolation is periormed using the values of effectiveness oliceined for values of $\frac{1}{N_{r}\left(N_{X}+N_{n}\right)}$. From the results it is [oun 3
that the minimum Nr necessary to give an error in the extropolated cfectiveness of less than 0.01% is 18 , for which $e_{\infty}=76.57 \%$

for the threc cases. The deturainine factor in the eatrapolation is the number of matrio elements. The higher the value of No us dor the extrapolation the smaller the error in the straight line approxination. Unfortunatcly, an increase in W_{x} will bring a higher increase of K_{x} and N_{n}, since the convergence condition for this example is

That this is only a sufficient condition can be seen from the case of

$$
N_{K}=N_{n}=N_{r} / 2
$$

for which the solution converges for values of $\mathrm{N}_{\mathrm{r}}>5$; and when

$$
\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{n}}=\mathrm{N}_{\mathrm{r}}
$$

the solution will still converge for $\mathrm{H}_{\mathrm{r}}>20$. It is true, however, that the closer the number of matrix elements are to the sufficient convergence condition, the fewer passes it takes for the solution to converge to the specified error in the effectiveness. Table 1 shows the number of passes necessary to obtain a olution with a heat balance error of less than 0.005%.

For a given set of parameters the effectiveness was determined first using one set of subdivisions and then recalculated increasing the number of subdivisions. A linear exurapulation was performed to obtain the effectiveness corresponding to an infinite number of elements. The accuracy for each value of effectiveness was specificd to be of four significant figures. When these values were extrapolated to an infinitc number of elements, the accuracy was reduced to only three sigaificant figures since a compromise had to be made with the time ayoilable for compatations and the number of ruas to be made. Rowever, the nethol

Numer of passes necessary to ohtain an effectiveness with a heat Walance error of less than 0.005% for the folluving set of parameters:

$$
\begin{aligned}
& \mathrm{Cnin}_{\text {mas: }}=1.0, \mathrm{C}_{\mathrm{r}} / \mathrm{C}_{\text {min }}=2.0,(\mathrm{ht})^{*}=1.0 \text {, } \\
& \text { ETUO }=10.0, \quad \lambda=0.1, \quad A s^{*}=1.0
\end{aligned}
$$

His.	${ }^{*} \mathrm{x}$	N_{n}	No. of passes	e**
12	12	12	27	76.581
12	24	24	22.	76.581
1.4	7	7	41	76.578
14	14	14	34.	75.576
14	28	28	27	76.576
16	16	16	41	76.574
16	32	32	32	76.574
18	9	9	62	76.573
1.8	13	13	50	76.572
12	36	36	38	76.572
20	20	20	60	76.572
2.2	22	22	71	76.571

* Co is obtained by a linear e:itrapolation of the effectiveness for H_{r} and $\mathrm{H}_{\mathrm{r}}-1$.

Emoses no rust:ictiun is to the ultimite accuracy of the solution.
When woriing vilit vily higin valias of C_{r} / Conin the computation time beconcs considerably lung. This is duc to the fact that the final temperatures differ very little from the assumed initial temperatures and a large number of elements is required. The starting estimates of matrix temperatures then becone very important. For the limiting case of $C_{r} / C_{\text {a }}$ in equal to infinite, there is no temperature variation in the direction of metal flow so that the method vithout modifications is not applicable. For this case, however, the exact solution of Hahnemann [3 is available.

The Fortran system was used to program the above method for the CDC 1604 digital computer. The matrix notation employed in the equations derived previously is very convenient in writing up the program, since several loops can be made by just changing tine subscripts of the variables involved. The complete computer program is given in Appendix 2.

3. DSscussion of results

The solutions generated are presented in tibular form fu Tables 2 through 25 and gxaphically in Figs. 3 and 4. The accuracy in the effectiveness was specified to be of three significant figures. It was found that for

$$
0.7(\mathrm{hA})^{*}=\mathrm{As}^{*}=1.3(\mathrm{~h} .)^{*}
$$

the resulting values of effectiveness mere almost identical to the ones calculsted Eoz

$$
A s^{*}=(h h)^{*}
$$

so that these were the values used in preparing the Tables.
By using Nruo and λ as defimed in the nomenclature, which contain (hA)* and As* explicitly, the influence of these two parameters on the conduction effect, $\frac{\Delta e}{e}$, were found to be very 3iall for values of $C_{m i n} / C_{m a x} \geqslant 0.9$ and $\backslash \leqslant 0.1$, which is the range for the gas turbine regenerator problem.

Figs. 3 and 4 show the effect of conduction on effectiveness for values of $C_{m i n} / C_{m a x}=1.0$ and 0.9 respectively, with different values of NTUo, $C_{r} / C_{m i n}$ and 1 , up to a limit of 10%. The conduction effect contimues to increase with increasing λ. For small values of λ this effect increases nearly exponentially. By further increasing λ, a saturation is reached which approaches the limiting condition of $\lambda=\infty$. Fig. 5 is a representative curve which shows the limiting influcnce on the conduction effece by contimuously increasing λ for a given set of parameters.

The conduction effect for values of $C_{x} / C_{m i n}=10.0$ are almost lientical with the values reported by Schultz $[2]$ and hahnemann $[3]$, $[6]$ for the limiting case of $C_{r} / C_{\text {min }}=\infty$.

Fox cmall values of WTVu the effect of increasing Cr/Cakn is to increase slfohtly the conductlon effect, as can be scen from Fig. 6. For higher values of NTUo the effect of conduction is reduced with increasing $C_{r} / C_{m i n}$.

The effect of increasing NTUo upon $\frac{j e}{e}$ is intimately related to the value of $C_{r} / C_{\text {min }}$ and $C_{m i n} / C_{m a x}$. This effect can best be explained by observing Fig. 6. For the case where $C_{m i n} / C_{m a x}=1.0$ the effect of increasing NTUo will result in an increase in $\frac{\Delta e}{e}$ regardless of the value of $C_{r} / C_{n i n}$; of course, the higher the value of $C_{r} / C_{\text {nin }}$ the maller this effect will be for relatively high values of NTUo. Now, by reducing $C_{\min } / C_{\max }$ and increasing $C_{r} / C_{m i n}$ a point is reached in which an increase in the NTUo will result in a reduction in $\frac{\operatorname{le}}{\epsilon}$. The point where this occurs will depend upon the value of the conduction parametei λ.
4. Sumaryy wist Conclusions

A finte differemee umerical analysls is presented which will determine the effect of the longitudinal heat conduction in rotary regenerators for steady state conditions.

The ranges of governing paraneters which have been covered are:
$0.5 \leqslant \mathrm{C}_{\min } / \mathrm{C}_{\max } \leqslant 1.0$
$1.0 \leqslant c_{r} / C_{m L n} \leqslant 10.0$
$1.0 \leqslant$ ITUO $\leqslant 20.0$
$0.25 \leqslant\left(\mathrm{hA}^{*}\right)^{*} \leqslant 1.0$
$0 \leqslant \lambda=0.2$
$0.15 \leqslant A s^{*} \leqslant 1.3$
The ranges of parameters of interest for gas turbine reqenerator application are plotted in Figs. 3 and 4. A more accurate determination of the conduction effect than that given in the figures can be made by interpolating values from the Tables.

The computer progran used to carry out the calculations on the CDC 1604 digital computer is included in Appendix 2. This program imposes no restrictinns on the prameters for which tive analysis would be applicable. It is recommended, however, that for values of $C_{r} / C_{m i n}>10$ the solution for $C_{\Gamma} / C_{\text {min }}=10$ be used. For this case the computer time for a solution increases considerably and the error introduced by assuming $C_{r} / c_{m i n}=10$ is negligible.

1. "Eexforatace Factors of a kiriodic Flow Ileat Exchanger", by Tome J. Kambercson, Tran h.S.E.E., vol 80, hpril 1958, pp 586-592.
2. "Regenerators with Longiudinal heat Conduction", by B. H. Schultz, Ire-ASta General Discussion on Heat Transfer, London, England, 1951, pp 440-443.
3. "Approxinate Calculation of Thermal Ratios in Heat Exchangers Including Heat Conduction in Direction of Flow," by H. W. Hahnemann, National Gas Turbine Establishment Mcraorandum so. M36, 1943.
4. "Accomplished Calculations of Heat Exchange in Regenerators", by H. Hausen, MAP Reports and Translations No. 312, November 1, 1946.
5. "The Periodic Flow Regenerator", by J. E. Coppage and A. L. London, Trans. ASME, vol 75, July 1953, pp 779-787.
6. "A Design Manual for Regenerative Heat Exchangers of the Rotary Type", by Harold H. Sogin and Kamal-Eldin lassan, WADC Technical Report 55-13.

TAPLE. 2 TONGTTUDTNAM, HEAT CONDUCTION EFFECT

$$
C_{\min } / C_{\max }=1.0, C_{r} / C_{\text {rain }}=1.0,(h A)^{*}=A . s^{*}=1.0
$$

	e \%	Conduction effect, A							
nTuo λ	0	0.01	0.02	0.04	0.08	0.14	0.16	0.20	0.32
1	46.64	0.42	0.78	1.48	2.61	3.94	4.30	4.95	6.42
2.	60.06	0.58	1.11	2.10	3.81	5.93	6.54	7.65	10.03
3	66.72	0.68	1.32	2.50	4.58	7.17	7.92	9.30	12.60
4	70.86	0.77	1.43	2.82	5.17	8.08	8.93	10.48	14.22
5	73.75	0.84	1.63	3.09	5.65	8.81	9.73	11.41	15.44
6	75.92		1.76		6.05	9.42		12.16	
7	77.63		1.87		6.41	9.93		12.80	
8	79.01		1.97		6.72	10.38		13.34	
9	80.16		2.07		7.01	10.78		13.82	
10	81.15	1.12	2.15	4.05	7.26	11.13	12.23	14.24	18.97
12	82.74		2.32		7.71	11.74		14.95	
14	34.00		2.46		8.10	12.25		15.54	
16	85.01		2.60		8.44	12.69		16.04	
18	35.86		2.72		8.74	13.08		16.47	
20	36.58	1. 49	2.83	5.17	9.01	13.62	14.60	16.85	21.96
40	90.37	1.92	3.55	6.30	10.54		16.58		24.25
100	93.87	2.70	4.78	7.97	12.55		18.79		26.54
500	97.87	4.04	6.80	10.57	15.42		21.65		29.27
1000	98.81	4.39	7.30	11.17	16.07		22.30		29.88

TABLE: 3 LOMGLTUDINAL HEAT CONDUCTLON EPTECT

	e\%	Conduction effect, - $\frac{1}{t}$ \%			
NTUO	0	0.02	0.08	0.14	0.20
1	47.62	0.81	2.66	4.01	5.04
2	61.97	1.13	3.88	6.05	7.81
3	69.15	1.33	4.64	7.28	9.46
4	73.61	1.49	5.21	8.18	10.63
5	76.72	1.62	5.66	8.89	11.54
6	79.04	1.73	6.05	9.47	12.28
7	80.85	1.94	6.38	9.96	12.89
8	82.31	1.93	6.67	10.38	13.40
9	83.53	2.01	6.93	10.76	13.86
10	84.55	2.09	7.18	11.08	1.4.26
11	85.44	2.16	7.37	11.38	14.61
12	86.21	2.22	7.56	11.65	14.93
13	36.89	2.28	3.74	11.89	15.22
14	87.49	2.34	7.90	12.11	15.43
15	88.03	2.40	8.05	12.31	15.71
16	83.52	2.45	8.19	12.50	15.93
17	83.96	2.50	3.32	12.67	16.13
13	89.37	2.54	8.44	12.83	16.31
19	89.74	2.59	8.56	13.00	16.48
20	90.09	2.63	8.66	13.12	16.64

TABLE 4 LONGITUDINAL HEAT CONDUCTION EFFECT

	29\%	Conduction effect, $\frac{\Delta e}{} \%$							
NTU0 $\^{\text {a }}$	\checkmark	. 01	. 02	. 04	. 08	. 14	. 16	. 2	. 32
1	48.23		. 82		2.69	4.05		5.10	
2	63.16		1.14		3.93	6.12		7.90	
3	70.65		1.33		4.67	7.33		9. 33	
4	75.27		1.48		5.20	8.20		10.67	
5	78.45		1.60		5.63	8.86		11.54	
6	80.82		1.70		5.98	9.40		12.23	
7	82.65		1.79		6.28	9.85		12.80	
8	84.12		1.37		6.54	10.24		13.28	
9	85.33		1.94		6.76	10.57		13.69	
10	86.34		2.00		6.96	10.86		14.05	
12	87.96		2.12		7.31	11.36		14.64	
14	89.20		2.22		7.59	11.75		15.12	
16	90.18		2.3		7.83	12.08		15.51	
18	90.98		2.37		8.04	12.36		15.84	
20	91.65		2.44		8.22	12.61		16.12	

TABLE 5 IONGITUDINAL HEAT CONDUCTION EFFECT

,	e\%	Conduction effect, $\frac{\Delta c}{e} \%$							
NTU0	0	. 01	. 02	. 04	. 08	. 14	. 16	. 2	. 32
1	49.12		. 84		2.73	4.11		5.17	
2	64.91		1.16		4.0	6.22		8.04	
3	72.80		1.34		4.70	7.40		9.37	
4	77.60		1.47		5.18	8.19		10.70	
5	80.86		1.56		5.54	3.78		11.47	
6	83.22		1.64		5.83	9.23		12.07	
7	25.03		1.71		6.07	9.61		12.55	
8	86.46		1.76		6.27	9.92		12.95	
9	87.63		1.82		6.44	10.18		13.28	
10	88.59		1.86		6.60	10.41		13.57	
12	90.11		1.94		6.85	10.79		14.04	
1.4	91.25		2.01		7.05	11.08		14.41	
16	92.14		2.06		7.22	11.33		14.71	
18	92.86		2.11		7.36	11.53		14.95	
20	93.45		2.15		7.49	11.71		15.16	
500	99.65	1.40	2.72	5.11	9.10		15.18		23.40
1000	99.80	1.40	2.72	5.13	9.14		15.24		23.47

MARLA 6 LONGITVDINAL HEAT CONDUCTIO: FEEECT

	$C_{\text {min }} / C_{\text {ana }}=1.0, C_{x} / C_{\text {min }}=1.0,(H A)^{*}=A .5^{*}=0.5$						
	c \%	Conduction Efect,					
	0	0.015	0.03	.06	0.12	0.24	0.48
1	46.62	. 62	1.17	2.12	3.64	5.72	8.05
2	60.08	. 85	1.64	3.04	5.35	9.82	13.03
3	66.75	1.01	1.95	3.63	6.46	12.63	15.90
4	70.50	1.1\%	2.19	4.09	7.26	11. 9.9	12.83
5	73.79	1.25	2.40	4.47	7.91	12.98	19.26
10	81.19	1.66	3.15	5.77	3.98	15.98	23.2
20	36.62	2.19	4.07	7.22	12.05	18.65	26.3n
40	90.46	2.69	4.92	8.51	13.77	20.73	28.69
100	93.61	3.24	5.84	9.85	15.4\%	22.60	30.64
500	95.57	3.51	6.35	10.60	16.48	23.76	31.31
1030	95.83	3.55	6.43	10.77	16.62	23.92	32.10

	$\text { win } \left./ G_{\text {max }}=1.0, c_{y} / c_{m i n}=2.0, h_{i}\right)^{8}=(8=.5$							
	e\%	Conduction effect, \%						
FTUo λ	0	. 015	. 03	.06	. 12	. 21	. 24	.3
1	49.11		1.22		3.73	5.51		6.75
2	64.92		1.70		5.62	8.47		10.6\%
3	72.81		1.97		0.16	10.10		12.78
4	77.61		2.16		7.32	11.17		14.17
5	80.86		2.30		7.32	11.85		15.16
6	83.23		2.42		8.22	12.55		15.92
7	85.04		2.51		8. 54	13.03		16.52
8	36.47		2.60		8.01	13.43		17.01
9	87.63		2.67		9.04	13.76		17.42
10	88.59		2.73		9.24	14.05		1.3 .76
12	90.11		2.84		9.57	14.52		10.3?
14	91.25		2.94		0.83	14.29		18.76
16	92.14		3.01		10.05	15.13		30.13
18	92.86		3.08		10.23	15.63		12.40
20	93.45		3.14		10.38	15.63		29.84
500	99.60	2.12	3.95	7.15	12.29		19.63	28.5\%
1000	99.79	2.1.7	4.0	7.21	12.37		19.73	28.6.7

2 $=1$

$1+=$

x x

Ulith int

$+4 \frac{1}{4}+1$

2
 2

'TABLE 9 LONGITUDTMAI, HEAT CONDUCTTON LEFECT

	e\%	Conduction effect,					
NTUo i	0	. 015	. 03	. 06	. 12	. 24	. 48
1	49.96	0.65	1.23	2.24	3.84	6.04	8.51
2	66.59	0.90	1.72	3.20	5.67	9.32	13.84
3	74.91	1.02	1.97	3.70	0.62	11.04	16.64
4	79.89	1.10	2.12	4.00	7.21	12.09	18.34
5	83.22	1.15	2.23	4.21	7.81	12.80	19.48
10	90.78	1.28	2.49	4.73	8.59	14.51	22.13
20	95.11	1.36	2.65	5.05	9.20	15.58	23.76

	e\%	Conduction effect, $\frac{\text { e }}{}$					
NTUo λ	0	. 025	. 05	. 1	. 2	. 4	. 8
1	46.59	1.02	1.90	3.38	5.57	8.25	10.84
2	60.13	1.43	2.69	4.88	8.22	12.50	16.84
3	66.84	1.70	3.21	5.80	9.78	14.88	20.07
4	70.10	$1 . .92$	3.61	6.50	10.88	16.47	22.16
5	73.90	2.10	3.94	7.05	11.73	17.65	23.66
10	81.28	2.74	5.05	8.81	14.25	20.93	27.63
20	86.64	3.52	6.27	10.56	16.50	23.61	30.62

TARIE 11 ZOUGITUDNAL HEAT CONDUCTION EFFECT

	e \%	Conduction effect, 40%					
NTUO	0	. 025	. 05	. 1	. 2	. 4	. 8
1	49.96	1.07	1.99	7.92	5.84	8.68	11.49
2	66.60	1.47	2.79	5.06	8.59	13.21	18.05
3	74.91.	1.68	3.20	5.84	10.00	15.53	21.43
4	79.89	1.30	3.44	6.32	10.86	16.93	23.48
5	83.22	1.88	3.61	6.64	11.44	17.88	24.86
10	90.78	2.1	4.03	7.44	12.83	20.10	28.02
20	95.11	2.23	4.29	7.92	13.69	21.46	29.83

	- \%	Cominction effect,					
nevo	0	.01	. 02	. 04	. 08	. 16	. 32
1	47.63	0.38	0.73	1.36	2.11	3.98	5.9
2	61.56	0.53	1.02	1.93	3.5?	8.0\%	C.6.3
3	68.40	0.62	1.21	2.30	4.26	7.3	21.20
\therefore	72.74	0.70	1.36	2.60	4.78	8.32	1.7.33
5	75.72	0.76	1.69	2.84	5.22	9.05	14. 59
10	83.27	1.01	1.96	3.70	6.70	21.33	93.95
20	88.69	1.32	2.32	4.36	3.21	13.50	29.6
40	92.41	1.68	3.15	5.84	9.58	15. 32	22.74
100	95.50	2.27	4.08	6.94	11.17	13.10	$2 \mathrm{~A}, 17$

TABEN 14 BORGYTUDILA: ĚEAT CONDUCTTON EFFECT

$$
G_{\text {inin }} / C_{\text {mix }}=.9, C_{r} / C_{\text {rin }}=10.0,(h A)^{*}=A s^{*}=1.0
$$

	e $\%$	Conauction effect, $\frac{\therefore \mathrm{e}}{0} 9$					
NTVo	0	. 01	. 02	. 04	. 08	. 16	.32
1	51.22	0.41	0.78	1.45	2.56	4.23	6.32
2	68.81	0.56	1.09	2.06	3.77	6.49	10.28
3	77.67	0.63	1.24	2.38	4.39	7.68	12.38
4	82.98	0.68	1.33	2.56	4.76	8.39	13.65
5	86.52	0.70	1.39	2.68	5.00	8.87	14.49
10	94.36	0.75	1.48	2.88	5.48	9.87	16.35
20	98.36	0.65	1.33	2.70	5.35	10.03	17.08

	e ${ }^{\text {\% }}$			ion	, $\triangle \frac{c}{c}$		
NTUo	0	. 015	. 03	. 06	. 12	. 24	. 48
1	47.53	0.54	1.03	1.88	3.23	5.11	7.23
2	61.40	0.74	1.43	2.67	4.76	7.89	11.81
3	68.26	0.87	1.69	3.17	5.70	9.55	14.48
4	72.51	0.97	1.88	3.55	6.40	10.73	16.29
5	75.47	1.06	2.05	3.86	6.94	11.63	17.64
10	82.98	1.35	2.61	4.89	8.69	14.33	21.38
20	88.34	1.68	3.23	5.97	1.0 .39	16.70	24.35

$5-\left(-\frac{1}{-2}\right.$

	e \%	Conduction effect, $\frac{\Delta e}{e} \%$			
NT:10	0	. 03	. 12	. 21	30
1	50.27	1.03	3.40	4.96	0.09
2	66.88	1.53	5.08	7.71	9.73
3	75.23	1.77	6.01	9.23	11.76
4	80.32	1.93	6.63	10.24	13.08
5	83.77	2.05	7.09	10.97	14.03
6	86.28	2.1 .4	7.45	11.53	14.75
7	88.18	2.22	7.74	11.93	15.32
3	89.69	2.29	7.97	12.34	15.78
9	90.90	2.34	8.17	12.64	16.17
10	91.91	2.38	3.34	12.90	16.49
12	93.47	2.45	8.60	13.31	17.00
14	94.63	2.50	3.80	13.61	17.39
16	95.50	2.54	8.96	13.85	17.67
18	96.20	2.56	9.07	14.03	17.90
20	96.76	2.57	9.16	14.18	18.09

	4%	conduetion effect, $\%$					
NTU0	0	0.015	0.0%	0.06	0.12	0.24	7. 63
1	51.22	0.58	1.10	2.01	3.45	5.45	7.73
2	63.30	0.80	1.55	2.89	5.15	8.55	12.83
3	77.66	0.92	1.78	3.35	6.04	10.19	15.58
4	82.98	0.98	1.91	3.62	6.58	11.18	17.2?
5	86.51	1.02	1.99	3.79	6.39	11.85	18.33
10	94.36	1.0%	2.12	4.11	7.65	13.29	20.77
3.0	98.35	0.96	1.96	3.97	7.71	13.80	21.92

俋

NTETO	$\frac{c_{\text {rin }} / G_{u}}{\text { e } \%}$	Conduction effect,					
	0	0.025	0.05	0.1	0.2	0.4	0.3
1.	47.60	0.07	1.62	2.90	4.92	7.21	9.57
2	61.29	1.18	2.26	4.13	7.08	10.98	15.69
3	68.13	1.39	2.65	4.87	2. 39	13.10	18.12
4	72.37	1.54	2.94	5.41.	9.32	14.54	20.11
3	75.31	1.66	3.17	5.83	10.03	15.61	21.54
10	82.74	2.05	3.92	7.17	12.16	18.61	25.35
20	33.02	2.43	4.67	8.45	14.0\%	21.04	20.16

两

	e $\%$	Commetion effect, $\frac{\Delta}{5} \%$					
	0	\because	0.05	0.1	0.2	0.4	0. 5
*	-3, 22	0.13	1. 4	3.15	5.1,	7.18	16. 3.
2	58. 00	1.27	2.45	4.49	7.72	13.ce	18.34
3	77.18	1.47	2.82	ᄃ. 21	0.06	14.32	24.!?
4	82.98	1.58	3.03	$\therefore .64$	3.37	15.70	22.1\%
5	86.51	1.64	3.17	5.93	10.41	16.62	23.5
10	9 an .3	1. ${ }^{\text {a }}$	3.41	6.48	11.56	18.67	26.6
20	93.35	1.59	3.26	6.16	11.0n	19.56	38.0r

(a)

	$\frac{c_{\min }}{e \%}$	Conduction effect,					
	0	0.01	0.02	0.04	0.CS	0.16	0.32
2	66.89	0.35	0.68	1.29	2.37	4.15	6.71
3	74.01	0.41	0.80	1.53	2.84	5.02	8.25
4	78.16	0.45	0.89	1.71	3.19	5.65	9.29
5	80.89	0.49	0.97	1.36	3.46	6.12	10.06
10	87.15	0.65	1.26	2.39	4.38	7.57	12.15
20	91.07	0.36	1.64	3.04	5.37	8.94	13.37

(

	e \%	Conduction effect, $\frac{\text { e }}{\text { c }}$					
NTUO	0	0.01	0.02	0.04	0.03	$0: 6$	0.32
1	56.42	0.28	0.53	0.98	1.74	2.90	4.37
2	77.34	0.37	0.71	1.35	2.49	4.36	7.06
3	87.30	0.33	0.74	1.43	2.68	4.82	3.03
4	92.60	0.35	0.70	1.36	2.60	4.80	8.29
5	95.59	0. 31	0.62	1.22	2.39	4.59	8.1
10	99.62	0.10	0.22	. 49	1.14	2.68	5.96
20	99.99	0.01	0.01	0.05	0.23	1.02	3.65

	$\frac{\operatorname{Cinin}^{\prime}}{=\%}$	Conduction efeect, $\frac{4}{6}$					
	a	0.01	0.02	0.04	n.aj	0.16	0.32
1	50.57	0.28	. 53	9.36	1.7!	2.85	3.97
2	65.65). 35	.69	1.3?	2.40	4., 5	6.56
3	72.44	0.39	. 78	1.49	2.78	4. 22	8.00
4	76.43	$0 . \therefore 2$.87	1.60	3.04	5.64	9.02;
5	79.10	0.45	0.89	1.72	3.85	5.86	9.79
10	85,44	0.56	1.09	2.12	4.09	$7 \quad 8$	11.95
20	89.72	0.74	1.44	2.72	4.95	8. 58	13.90

$+$

है = $=-$

[^0]Un

	$\begin{aligned} & q_{n!n} / \\ & =\% \end{aligned}$	Conduction effect, $\%^{\circ}$					
NTUo	0	. 01	. 92	. 0.4	. 08	.16	. 32
1	50.21	0.34	0.65	1.13	2.01	3.12	4. 24
2	64.39	0,38	0.75	1.42	2.61	4.47	6.89
3	70.98	0.38	0.77	1.51	2.89	5.19	8. 38
4	74.91	0.39	0.79	1.58	3.09	5.70	9.43
5	77.57	0.40	0.81	1.64	3.26	6.11	10.24
10	34.12	0.49	0.99	1.99	3.97	7.53	12.71
20	88.72	0.66	1.30	2.54	4.92	9.07	14.97

T:BLE 25 LONGITUDINAL HEAT COWDWLTOH EFFECT

$$
\mathrm{C}_{\min } / C_{\max }=0.5, \mathrm{C}_{\mathrm{r}} / \mathrm{C}_{\min }=10.0,(\mathrm{hA})^{*}=\mathrm{A} \mathrm{~s}^{*}=0.25
$$

	e\%	Conduction effect, $=\%$					
N2U0	0	. 01	. 02	. 04	. 08	$\therefore 6$.32
1	56.40	0.43	0.81	1.47	2.51	3.92	5.46
2	77.30	0.58	1.11	2.10	3.79	6.36	9.59
3	87.24	0.60	1.18	2.27	4.24	7.42	11.66
4	92.53	0.57	1.12	2.22	4.28	7.77	12.62
5	95.53	0. 50	1.02	2.05	4.10	7.73	12.99
10	99.60	0.18	0.41	1.01	2.59	6.18	12.12
20	99.99	0.01	0.04	0.22	1.13	4.29	10.59

FIG. 3

merivation of iterative equationn. -
Equations (1) and (2) from page 5 can be put in the following form:

$$
\begin{equation*}
\left.\tau_{x(1, j)}-T_{x(1+y}-C_{1} T_{i, j, j}+T_{x(1 ; j)}-T_{x(1 j)}-T_{x, i, j+1)}\right] \tag{1.1}
\end{equation*}
$$

where

and

Equations (1.1) and (1.2) may be written as

(1.3)

iby adding to equation (1.3) the product of $\left(1+C_{1}\right)(1.4)$ ans ...tat ing
where

From equation (1.1)
where

For the elements from the first and last row equation (1.2) becomes
and
respectively: I. te same procedure ns before and solving for the matrix outlet temperatures, the following equations are obtained:
and
for the first and last row elements respectively, where
and

Equations (7) and (8) may be written as
and

\qquad

and
$=8,1$ -
for the first and last row elements respectively, where

By comparison of equations (1.7) and (1.8) with equations (1.1) and (1.2) it follows that the form is the same and only the coefficients are different. The same holds true for equations (1.9) and (1.10) with equations (1.6) and (1.5) respectively. By substitution the following equations are obtained:
for the first, midde and last row elements respectively and
(2)
which is the same for all the elements, where


```
Equation(1,2) can bm vut if! kive rullovinge Eorm:
```

n that energy balance equations, the side of Coax has asoumat to be che hot siree sou that by the second law of thermodynamics.
and Exon equation (1.11)

Rearizn: 1 re equation (1.12)

(1.13)

Again by the second law of thermodynamics the matrix temperature variation in the direction of fluid flow ts such that

8迤

4
an

ind
so that

Substituting equation (1.16) in equation (1.13)

Three cases are investigated:
1.- If $C_{3} \quad C_{2}$ then equation (1.17) becoraes
2.- If $\mathrm{C}_{3}=0$ then equation (1.17) becomes
3.- If $C_{2}-2 C_{3}=0$ then equation (1.17) becomes

From the above cases it can be seen that a sufficient condition for equation (2) to converge is that

Substituting the values for the constants and rearranging yields

For the firgt anu list ruw elements the sonvergence criterion becones
which for substitution of the parameters gives

This condition is less stringent than for the middle row elements. Similariy, for the side o. Coin the sufficient condition for the middle row elements becomes
which for substitution of the parameters gives

For the first and last row eleaents it is found that
which requires that

18 the sufficient condition. This again is a less stringent condition than that inposed by the middle row elements.

Housen 4 has given o theory for regerierutore withut heut conduction. When the sarit neshoptiovs ore frofe, but the longitudimal conduction of heat is inclurled, (See page ? the differential equations obtailled are
for the side of $C_{\max }(8, y$ flowing frem $\because=0$ to $=\mathrm{L}$);
and for the side of Gain reversed gas flow)

A temperature scale can be $u s=d$ for wich the gas entrance temperature at the side of $C_{\text {min }}$ is zero and that at the side of $C_{\text {pas }}$ is unity. The boundary cois tions are then
and

\qquad

ant

$$
1 \pi
$$

\qquad五

APELMDIX 2

Computer program.

The Fortran system was used to program the problen for the CDC 1604 digital computer.

The siz: dimenoionless parameters are used as input together with increments and factors to change the values of NTUO, and As, so that solutions can be generated for several combinations of the parametere without having to feed into the computer these different seta of parameters every time.

Anothel input is the number of subdivisions of the three streams together with the increments, 30 that when the computer finishes the firet series of runs for a given number of subdivisions it automatically increase 3 the subdivisions by the specified increments and the two values of effectiveness obtained are extrapoluted to an infinite number of subdivisions.

In order to obtain the initial estimates of matrix temperatures, the problem is first solved neglecting the longitudinal heat conduction as explained previously. For this case the equations derived in Appencix 1 are simplified to (for detailed derivation see Reference 1)

$$
x=
$$

AER

$$
\prod_{i=2=1}^{1}, 1_{1},-1+11_{0}^{10}=9+1
$$

whare

$$
\begin{aligned}
& -1 \\
& A_{1}=1+\square+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& 10-1
\end{aligned}
$$

The inlet watrix tumperaturas necessary to faliate the problen for zero heat conduction are estimated by assuming \mid, (See rig. 1:) and feeding this value into the computer. Fhe romining inlet matrix tomperatures are obtained from the relation

The number of passes necessary to meet the desired accuracy in the solution changes accordingly with the initial estimates of matrix inlet temperatures, but considering that the computer time required to worl: the problem for zero heat conduction is so small as compared to the casc with conduction, that these estimates do not become important. Only for high values of C_{2} : Cmin these estiontes may be of significance since for tinis case the change in the reversal condition after cvery pass is very anail. In general, it was found that an estimater $T,(1,1)$

of	0.4 to 0.6	for $C_{I} / C_{\min }<5.0$
and	0.7 to 0.9	for $C_{I} / C_{\min }>5.0$

togcther with the above relation for $T_{X!1,1)}$ should converge to the solution in a reasonable time.

The temperature distribution is calculated by repetitive use of the iteration equations.

The effectiveness may be defined as

$$
=\frac{C_{n i x}\left(\tau_{x i}-\tau_{x_{0}}\right)}{C_{\min }\left(\tau_{x i}-\tau_{n i}\right)}=\frac{\tau_{n_{0}}-\tau_{n i}}{\tau_{x i}-\tau_{n i}}
$$

里

4
－
－

linerine

arlo
$1 \mathrm{~m}=\mathrm{m}$
野娄
Hartiver

$$
4
$$

1an 4
$=12 x=1$
\square

$$
\begin{aligned}
& \left.F \cdot x=-\frac{1}{1 \cdot}>-x+1\right)=1 \\
& T_{x_{u}}=-\frac{1}{N_{x}} \sum_{1}^{\infty} t_{\text {, iv }} \quad \text {) } \\
& i_{n_{l}}=\frac{i}{N_{n}} \sum_{\frac{!}{3}}^{n} t,=v^{\prime} \\
& \left.t_{T_{0}}=\frac{\vdots}{N_{1}} \sum_{i}^{i v_{2}} n_{1} v_{v}+1 y\right)^{\prime}
\end{aligned}
$$

therefore, the expression fur effectiveness for the definition reduces to

$$
=\frac{1}{N_{n}} \sum_{=}^{N} t_{n},
$$

Which is the expression used for the computation of the effectiveness. The heat balance error is computed from the relation

$$
\operatorname{exior}=\frac{\dot{x} \cdot \vec{a}_{1}}{\operatorname{ax}_{1}}=\frac{-\quad \frac{C_{\operatorname{man}}(1}{v_{\max }\left(I_{1}-\vec{i}_{1}\right)}}{1}
$$

which reduces to
error $=\quad$ -

$$
-\frac{-\infty}{-1-\sum_{1}^{2} i_{i,}, \frac{\Sigma}{1}}
$$

mind
a
$x=$

Thu estrapolater affectiveness is conputed fron the relation (s.6 Tie. 2)
where

The input parameters in Fortran notation are
$\mathrm{Pl}=C_{\text {min }} / C_{\text {max }}, 22=C_{r} / C_{\text {min }}, 13=(h A)^{*}$,
$P G=$ IVTUO , $P 5=\lambda, P G=A s^{*}$
The initial valucs of vibu, \backslash and $A s^{*}$ are changed by the following relations

$$
\begin{aligned}
& P 4=P 4 \div P 414 \\
& P 5=P 5 * P 5 A+P 5 I N \\
& P 6=P 6-P 6 I N
\end{aligned}
$$

where P4IN, $35 F A, \quad 45 N, ~ P G T N$ are also input values. The inputs P4FI, P5FT and P6FI are the final values of $94, P 5$, and P6 respectively.

The program is written so that the computer after working the
 P6 becones less than PGFI. Then it sets E6 equal to the initial value and changes P5. The procedure is again repeated until P5 becomes greater than P5FI. Then P5 is set equal to the initial value and P4 is increased by P4IN. The cycle is repeated until P4 becomes equal to or greater than H4FI.


```
ma
```

Ten
ater

[^1]

FIG. 20 FLOM DIA ixAM FOR NO LONDUCTION

	PROORAM	- - REMARKS
	PROGRAM BAHNIKE OIMENSION TH(40,40), UH (40,401, TC $(40,401$, UC $(40,40)$, ERR (92$)$, TCOI92), IUHC $(40,401$, UCC $(40,40)$, UH $1(401$, UH2 (40), EF $(20,20), F R!20,201$	
2	$\begin{aligned} & \text { FORMATIOF } 5.21 \\ & \text { REAO } 1, P 1, P 2, P 3, P 4, P 4 I N, P 4 F 1 \\ & \text { FORMAT } 1 O 151 \\ & \text { REAO } 2, N M, N H, N C, N M 1, N H 1, N C I \end{aligned}$	InPOT
3 401	```FORMAT(F5.3) REAO 3,UHII, 11 \(E M=N M\) U0 \(401 \mathrm{~K}=1\), NM \(t=k\) UH(K,) \(1=(1\) (EM + \(1.0-E)=U H\{1,1) 1 / E M\)```	INPUT: $\mathrm{UZ}(2,1)=T \times(1,1)$ Estimates of $\mathrm{T}_{\mathbf{z}}(1,1)$
4	$\begin{aligned} & \text { FORMATIPF7.21 } \\ & \text { REAO } 4, P 5, P S I N, P S F A, P S F 1, P G, P G I N, P G F I \end{aligned}$	INPUT
	$\begin{aligned} & S 6=P b \\ & S 6=P 6 \end{aligned}$	STORE INITIAL PS AND P6
5	$\begin{aligned} & N M_{2}=N M+N M_{1} \\ & N H 2=N H * N H 1 \\ & N C 2=N C+N C 1 \end{aligned}$	number of subdivisions for zad run
	$\begin{aligned} & \text { NE } 1=N M \cdot(N H+N C) \\ & \text { RE } 1=N E(\\ & N E 2=N M 2 \cdot(N H 2 * N C 2) \\ & R E 2=N E 2 \\ & R E=R E 1 / R E 2-R E 1) \end{aligned}$	aE - Variable uskd to extrapolate eftectiveness
	```EM2 =NM2 v06 L=1,NM2 t=l RT=1.0-((E-1.0)/EM2) UH2!LI=UH(1,1)\|RT```	estimates of $\mathrm{T}_{\text {x }}(1,1)$ for 2ad RDK
$7$	```FORMAT(//14HNO OF ELEMEVIS 3X,315,4x,3(5) WRITE OUTPUT TAPE 2,I,NM,NH,NC,NM2,NH2,NC2 PRINT T,NM,NH,NC,NM2,NH2,NC2```	
8	1C=1	Indicates lat run, using initial no or sobdiv.
$9$	$\begin{aligned} & E M=N M \\ & E H=N H \\ & E C=N C \end{aligned}$	fixed to floatino point conversion
	$\begin{aligned} & N M M=N M-1 \\ & N H P=N H+1 \\ & N C P=N C+1 \\ & N M P=N M+1 \end{aligned}$	definition of new vailables
10   11	$\begin{aligned} & 00 \quad 10 J=1, \mathrm{NH} \\ & T H(1, J)=1.0 \\ & \text { DO } 11 L=1, \mathrm{NC} \\ & I C(1, L)=0.0 \end{aligned}$	T $t_{x(1, y)}=1.0$ AND $t_{0}(1,8)=0.0$
$12$		constants for the no conduction case
c	hot sioe no Conduction	
121	M $=1$	M DENOTES PASS NUMBER
$13$ $15$	```00 is J=1,NH LO 15 1=1,NM TH(I)+(,J)=TH(I),J)+A)=(UH(I,J)-TH(1,J)) UH(1,J+1)=UH(1,J)-A2•(UN(I,J)-TH(1,Jl)```	iteration on side of Cmax
C   17   19	```COLO SIDE NO CONDUCTION DO \(17 \mathrm{~K}=1\), NM UC \((K, 1)=U H(N M+1-K, N H+11\) Do \(19 \mathrm{~L}=1\), NC \(0019 K=1, N M\) \(T C(K+1, L)=T C(K, L)+A S \cdot(U C(K, L)-T C(K, L))\) \(U C(K, L+1)=U C(K, L)-A 4 \cdot(U C(K, L)-T C(K, L))\)```	itsration on side of cmin
20	$\begin{aligned} & G I=0.0 \\ & 00 \quad 20 \quad \mathrm{~J}=1, \mathrm{NH} \\ & G I=1 \mathrm{H}(\mathrm{NM}+1, \mathrm{~J} 1+\mathrm{GI} \\ & 1 \mathrm{HO}=\mathrm{G} 1 / \mathrm{tH} \end{aligned}$	





```
01=12.0*(1)/C4
02=1C1+(C1).12.0.C3-C21)|/C4
03=1(%*C11)/C4
DL=(1.0-C\)/C)I
05=C1/C I I
06=12.0*C1//C5
07=(C1+1C1)*1C3-C2)1)/C5
08=1C3.C111/C5
M=I SIDE WITH CONDUCIION
OD 67 J=1,NH
L=)
6) UHC(I,J+1)=06.TH(1,J)-07:UHC(1,J)+08.(UNC(2,J)+UHC(2,J+1))
IH(2,J)=04*TH(I,J)+DS*(UHC(1,J) +UHC(),J+))
62 U064 I=2,NMM
UHC(1,J+1)=01*TH(),j)-O2*UHC(1,j)+OS*(UHC(1-1,j)+UNC()-1,j+1)+
IUHC(1+1,J)+UHC(1)+1,j+1))
64 [H()+I,J)=04•TH(I,J)+D5\bullet(UHC(1,J)+UHC(I,J+1))
UHC(NM,J+1)=06*TH(NM,J)-[7*LHCINM,J1+DR & (UHC(NMM,J) + WHC(NMM,J+11)
```

CONSTANTS FOR CONDUCTION CASE
66 IH(NMP,J) $=04 \cdot$ TH(NM, J) $+05 \cdot\left(\right.$ UHC $\left.\left(N^{\prime} M, J\right)+U H C(N M, J+1)\right)$
$\mathrm{L}=\mathrm{L}+1$
)F(3-1) 67,67,61
CONTINUE
$0009 \mathrm{~K}=1$, NM
UCCIK, I) =UHC (NMP-K, NHP)
COLO SIDE WITH CONOUCTION
vo $7 \mathrm{l} \mathrm{L}=1$, NC
$J=1$
UCC( $1, L+1)=F 6+$ RC( $1, L 1-F T * U C(1), L 1+F B *(U C C(2, L)+U C C(2, L+1) 1$
TC(2,L) $=F 4 \cdot T C(1, L)+F S \cdot(U C C(1, L)+U C C(), L+1))$
00 $73 \mathrm{~K}=2$, NMM
UCC(K,L+1)=F1*TC(K,L)-F2*UCC(K,L)+FS*(UCC(K-1,L)+UCC(K-1,L+1)*
ITERATION ON SIDE OF Cmio
UCC( $K+1, L)+U C C(K+1, L+1)$
$13 \quad \mathrm{IC}(K+), L)=F 4=1 C(K, L)+F 5=(U C C(K, L)+U C C(K, L+1))$

TC(NMP, L) $=F 4 \cdot T C(N M, L)+F 5=(U C C(N M, L)+U C C(N M, L+1))$
$J=\mathrm{d}+1$
IF(3-1) 75,75,71
15 CDNTINUE
$\mathrm{GI}=0 . \mathrm{D}$
$0076 \mathrm{~J}=1$, NH
76 GI=THINMP;JI+GI
$T H O=G 1 / E H$
$G 2=0.0$
$0078 \mathrm{~L}=1, \mathrm{NC}$
$\mathrm{G} 2=\mathrm{TC}(N M P, L)+G 2$
$\mathrm{TCO}(M)=G 2 / E C$
ERR(M) $=1.0-(P) \cdot T C O(M)) /(1.0-T H O)$
|F(ERR(M)) BO, 80, BI
ERRIMI $=-E R R|M|$
IF(ERR(M)-4.0E-6) $90,90, \varepsilon 2$
IF (90-M) 83, 83,85
IF(ERRIM-1)-ERR(M)) $84,84,81$
PAUSE 22
841 IFISENSE SWITCH 11842.55
842 IFISENSE SWITCH 2) 88.884
$85 \quad M=M+1$
$0086 \quad 1=1, \mathrm{NM}$
86 UHC(1, $11=$ UCC( 1 NMP-1, NCP)
GO 1060
87 PAUSt 21
GO TO 841
88 IF(IC-1) 881,881,882
8×| $E F(|A,|B|=0.0$
$E R\{\mid A, 18\}=0.0$
GO TO 97
882 FORMAT (IIHSOL DIV FOR13, 18X,E?.2,F8.2.2(F10.6,FY.2))
WRITF OUTPUT TAPE $2, B R 2, I C, F 5, P Q, F F\{I A,(B), F R(1 A, I B), T C O(M), T R R(M)$
GO IR 97

```
B84 FORMATI4FB.2,E8.2,F8.2,2x,13,F10.6,6.9.21
 PRINT 8\&4,PI,P2, P3, P4, Pr, PO, IC, TCOIMI,FRR(M)
 pause 23
 IFISENSE SWITCH 11885.53
 B8S IFISENSE SWITCH \(21114,8 E\)
 89 IFIIC-11 891.891,93
B9) EF(|A.|B|=ICO|MI
 ER\|A,\|B\|=ERR(M)
 GO 10102
\(90 \quad \mathrm{~T}=\mathrm{TCO}(\mathrm{M}-1)-\mathrm{TCO}(M)\)
 IFIIII 91,92,92
\(91 \quad \mathrm{~T}=-\mathrm{TI}\)
42 IFITI-4.0E-61 89,89,82
```



```
 FORMAT \(32 x, E B .2\), FB. 2,21 F 10.6, E9.21,F10.6,F8.31
 WRITE OUTPUT TAPE \(2,44, \mu 5, P h, E F(1 A, I R I, E X(I A, I B I, T C O(M), E R R(N I, E F F\)
 1, 82
 IFISENSE SWITCH 3143,102
 FORMATIFE.2,E9.2,F8.41
 PRINT 95, P4, PS,82
CO TO 102
\(4700974 \quad 1=1, N M\)
\(97100972 \mathrm{~J}=1\), NHP
972 UHC \((1, J)=U H(1, J)\)
973 OO 974 \(L=1, N C P\)
974 UCCII.LI=UC(1.L)
102 IFISENSE SWITCH S) 131,132
131 FORMAT(/4FB.2,E8.2,F8.2,3x,13/(15F7.4))
 HRITE OUTPUT TAPE \(3,131, P 1, P 2, P 9, P 4, P 5, B 6,15\),
 I(UHC (J, II,UCC(NMP-J,NCP), J=1,NM)
132 PG \(=\) PG 6 PGIN
 \(18=18+1\)
 (F(P6-P6F1) 103,103,51
103
 \(B=1\)
\(104 \quad\) PSOPSOPSFA+PSIN
 \(|A=|A+|\)
 IF(PSFI-PS) 105,50,50
 IF (IC-1) 106,106,108
 IC=2
 NMFNM2
 \(\mathrm{NH}=\mathrm{NH} 2\)
 NC \(=\) NC2
 DO \(107 \mathrm{~K}=1\), NM
107
 GO 10 O
IOD IFIP4FI-P4I 113,113,109
109
\(P_{4}=P_{4}+P_{4} \mid N\)
 \(\mathrm{NH}=\mathrm{NM}-\mathrm{NM}\)
\(\mathrm{NH}=\mathrm{NH}-\mathrm{NH}!\)
 \(\mathrm{NC}=\mathrm{NC}-\mathrm{NC}\)
 \(00111 \mathrm{~K}=1, \mathrm{NM}\)
111 UH(K, \(11=\) UHII \(K\))
 GO TO 8
113 PAUSE SO
 IFISENSE SWITCH 11114.1
114 DO \(115 \mathrm{~L}=1, \mathrm{NM}\)
IIS UHIL, II=UH2IL)
 GO 105
 ENO
 ENO
```


## UNCLASSIFIED


[^0]:    $\sqrt{4}$
    (1)

[^1]:    He

