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ABSTRACT

A procedure for determining the rank of a quadratic form

is outlined by Cramer [1] and Hald [2], Additional theoret-

ical verification of this procedure is presented and the

results are illustrated with applications in the analysis

of variance.
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I. INTRODUCTION

A comparison of several sets of observations drawn from

normally distributed populations can be performed by means

of the statistical procedure known as the analysis of var-

iance. The justification for the statistical procedure in

the analysis of variance depends directly uoon the applica-

tion of Cochran's Theorem stated below.

Cochran's Theorem Let X = (X. ,X~ , . . . ,X ) be distributed

as N (0,1) and suppose

n ~ k

I x
2,= I Q .(X)

1=1 1=1

where Q. is a quadratic form of rank n. , i=l,...,k. Then

Q, (X) , ...,Q, (X) are mutually independent and Q. (X) is dis-

tributed with n. degrees of freedom, i=l,...,k, if and only

if

k
T n. = n.

i=l
X

Cochran's Theorem formally relates (a) the degrees of

2freedom of a x random variable, Q(X) , with the rank of its

associated observed variate, 0(x) , when X is N (0,1) and

2
(b) the sum of the degrees of freedom of a set of x random

variables with the dimension of the random vector X; the

2independence among the x random variables is a consequence

of this relationship [2],



Hence, if a statistician is collecting a random sample

from a normally distributed population and if the sum of

squares of the observations from the random sample, x =

(x, , ... ,x
) , equals the sum of several quadratic forms in

x, say Q-,,...,QK , he must show that the sum of the ranks of

these quadratic forms is equal to the number of total obser-

vations before he can conclude independence of the Q. 's,

2
i=l,...,K, and assign x probability distributions to them.

In the analysis of variance these quadratic forms, when

divided by their ranks, represent independent estimates of

2
an unknown variance a associated with a random variable

2
vector Y which is N (y,a I). The N (0,1) hypothesis of

Cochran's Theorem becomes satisfied upon letting

2
Since the normalized quotient of independent x variables

is an F-random variable, F-statistics , which are used to

test hypothesis concerning y, can be formed from the ratio

of the quadratic forms in x.

In turn then, it can be seen that the application of

Cochran's Theorem depends upon the determination of the ranks

of the quadratic forms in x in the relation

n
2

I
x
i

= Q 1
(x) + Q 2

(x) + . . . + QR
(x) .

i=l

Cramer [1] gives a procedure for determining the rank

of quadratic forms as follows



2 2
".... If Q may be written in the form Q = L, + ... + L,

where the L. are linear functions of x. ,...,x and if there
1 In

are exactly m independent linear relations between the L.

,

then the rank of Q is k-m "

Cramer calls this a proposition.

Likewise, Hald [2] states a similar procedure as a def-

inition.

"The number of degrees of freedom for a set of variables,

L, , . . . ,L, , will be defined as follows: Let the k variables

L, , . . . ,L, be linear functions of n stochastically independ-

ent variables, x, , . . . ,x , which are assumed to be normallv

distributed with parameters (0,1). If m independent lin-

ear relations exist between the k variables, L. , . . . ,L,
,

the number of degrees of freedom is k-m. The number of

degrees of freedom for the sum of squares

k

Q = I L
2

i=l
X

is defined as the number of degrees of freedom for the k

variables L. , . . . ,L. .

"

1 k

Both Cramer and Hald point out that the m linear rela-
tions between the L's are iinearly independent. Formally,
a linear relation has the form

c, L, + . . . + c, L, =011 k k

where the c^ are constants and not all zero. When several
linear relations of this form exist, they are called inde-
pendent, if the corresponding vectors c = (c, ,...,c,) are
linearly independent.



Cramer's proposition is stated, but not proved. Hald, on

the other hand, precludes the necessity of proving the same

proposition by calling it a definition. In either exposition

no detailed theoretical verification is made of the procedure

for determining the rank of quadratic forms. It is the in-

tent of this thesis to (1) state and prove basic theorems

which can be used to determine the rank of quadratic forms

in the way presented by Cramer and Hald and (2) illustrate

the use of these theorems in the analysis of variance.



II. MATHEMATICAL BACKGROUND

The theory which is to be developed concerning the rank

of quadratic forms depends upon several mathematical results

from matrix algebra [3,4]. This chapter outlines the perti-

nent mathematical definitions and theorems that are necessary

to develop this theory.

A. MATRICES

A matrix A has elements denoted by a. . where i refers to

the row and j to the column. If A denotes the matrix, then

A 1 denotes the transpose of A, and A , the inverse of A.

The symbol |a| is used to denote the determinant of A. The

identity matrix is denoted by I; and 0, the null matrix .

The dimension of a matrix is the number of rows by the num-

ber of its columns, e.g., nxm. A matrix A of dimension nxl

2
is called a column vector ; its transpose A' , a row vector .

The rank of a matrix A is denoted by r(A) . Euclidian n-space

is symbolized by E .

Given matrices A = (a. .) and B = (b. .) where the number-ID ID

of columns of A equals the number of rows of B, the product

AB = C = (c. ,) is defined as the matrix C with the oq
ID -

2
Column vectors will be indicated by round brackets, as

x = (x,,...,x ); row vectors will be indicated by square

brackets, as x = [x, ,...,x ] a



n
element equal to

k
a , b, . A + B = C gives a . . + b . . = c . .

=! Pk kq ID ID iD

provided A and B have the same dimension. If k is a scalar

and A a matrix, then kA means the matrix whose ij element

is ka. .. A diagonal matrix D is a square matrix whose off-

diagonal elements are all zero; D = (d. .) where d. . = if
iD ID

i / j, A matrix is called symmetric whenever A = A 1

. If C

is an nxn matrix such that CC ' = I, then C is said to be an

orthogonal matrix, and C' = C

Theorem 2.1 r(AA') = r(A) = r(A').

3Theorem 2.2 Let A be nxn, symmetric and non-negative.

Then there exists a non-singular matrix C such that C'AC =

(d. 6 . . ) where d. {0 ,1} , i=l,...,n and the rank of A equals

the' number of non-zero d. 's.
i

Theorem 2 .

3

If A is an mxn matrix of rank r, and if B

is an nxq matrix such that AB = , then the rank of B cannot

exceed n-r.

Theorem 2 .

4

Consider the sum of k matrices of the same

dimension, A, + A« + . . • + A, , then

k k
r( [ A,)< J r(A ) .

1=1
1

1=1
x

B. QUADRATIC FORMS

If A is an nxn matrix and x = (x, ,...,x ) is an nxl vec-
- 1 ' n

+ v»

tor with i element x. then
i

3The symbol 6 . . is called the Kronecker delta and stands

for 1, if i= j ; 0, if i^ j

.

10



n n
Q(x) = x'Ax = V I a. .x.x.

" " i=l j=l *? X
^

is called a quadratic form in x. The quadratic form x'Ax and

its matrix A are called positive definite if whenever x 7* ,

x'Ax > 0; positive semi-definite whenever x'Ax for all

x t* and x'Ax = for some x ^ ; and non-negative whenever

x'Ax (or A) is either positive definite or positive semi-

definite. (Any non-negative matrix A of a quadratic form

x'Ax is assumed symmetric for mathematical convenience and

does not alter the value of x'Ax since

n n n n (a. ,+a .
.

)

x'ax = y y a. .x.x. = y y
l
^ 12= x.x.

- " i=i j=i « 1
^ i£i j£i

2 * d

(A+A')
= *' zj~ 2

A+A

'

where —~— is symmetric.) The rank of a quadratic form x'Ax

equals the rank of A.

11



III. RANK OF QUADRATIC FORMS

This chapter (1) defines linearly independent linear

forms and linearly independent linear restrictions on linear

forms and (2) develops the theory of rank determination of

quadratic forms.

A. LINEAR FORMS

Let X 4 be an nxl vector. If x = (x, ,...,x ) is in- ' 1 ' ' n

E , then the linear combination
n

n
L(x) = X'x = 7 X.x.

" " i=l X X

of components of x with coefficients from X is called a

linear form with the associated vector X. Since X'x is a

scalar, X'x = x'X. The square of a linear form is a quad-

ratic form since

L
2
(x) = (X'x) (X'x) = (x'X) (X'x) = x'(XX')x.

2
Here, XX' is nxn symmetric. The rank of L (x) = r(x'XX'x)

= r(XX') = r(X) = 1 by Theorem 2.1 since X ^ 0. So in gen-

2
eral, XX 1 is not positive definite. However, since L (x) =

2 2
(X'x) , L (x) is always non-negative.

If L. ,L~ , . . . ,L, are linear forms in E , they are said to

be linearly independent if their associated vectors

X,,X
?
,...,X, are linearly independent vectors in E , i.e.,

the rank of the matrix A = (X, ,X
? , . . . ,X, ) equals k.

Theorem 3.1 Q(x) is a non-negative quadratic form in E

of rank k if and only if there exists linearly independent

12



linear forms L, ,L
2 , . ... ,L. such that

k
2

Q(x) =
I

L. (x) for every xeE .

1=1

Proof : Suppose Q(x) = x'Ax is non-negative with rank k

and associated matrix A. By Theorem 2.2, there exists a

non-singular matrix C such that C'AC = (d.6. .) , d.e{0,l},3 - - — 1 xj X

i=l,...,n. Define L.:E -*E n by L.(x) = c!x where c! is the
' ' i n 1 J l - -l- -l

i row of C , i=l,...,k. Then, L. is a linear form and

letting z = (L, (x) , . . . ,L (x) ) = (c,' x , . . . ,c * x) , it follows

that z = C x or x = Cz. In that case,

n p n p

x'Ax = z'C'ACz = z(d.6. .)z = Y d.zT = ) d.LT(x).
- -- - - l i] -

.
L

, l l .
L

, l l -
J 1=1 1=1

But, by Theorem 2.2, k is precisely the number of non-zero

d. 's. Deleting those d. such that d. = and renumbering

subscripts, if necessary, yields

k
2

Q(x) = x'Ax =
I L. (x)

.

i=l
1

Since C is non-singular, the vectors c-j ,-...., ci are linearlv

independent and so then are the linear forms by definition.

Conversely, suppose L, , . . . ,L, are linearly independent

linear forms. Then, by definition, there exists k linearly

independent non-zero vectors L ,.. . ,A, where X. is asso-

ciated with L . , i=l , . . . ,k , that is

,

n
L. (x) = V X. .x.

j=l
l
3

x

13



for every x = (x.,.«.,x ) in E . Letting A.2 - 1 n n ^ -l

i-l,...,k the matrix

<SiV ./A. ) ,-in

A =

-11 -21 ' * ' -kl

-12 -22 ' * * -k2

-In -2n
X
kn

nxk

necessarily has rank k because the rows are linearly inde-

pendent, i.e., r(A) = k.

Consider

k
?

Q(x) =
I LT(x).

i=l X "

Now

L
2
(x) =L.(x)L.(x) = (A!x)'(a!x) =x'(A.A!)x

l - l - l - -l -l- - -l-i -

hence

k k
Q(x) =

I x' (A.A!)x = x' ( I X X\)x
i=l

-i i "
i=1

i-i

k

i=l

A
il

A • i A • ^ • . • A .. A .

ll i2 ll in

A in A I 1 A . ~
i2 ll i2

. . A . ~ A .

i2 in

A . A . , A . A . —
in ll in i2 in

x

nxn

14



Q(x) = x'

k
2

k k
) A . n / A . , A . ~ . • • / A. -A

.
L

1 ll .
L

. ll l2 .
L

, ll1=1 1=1 1=1

k k
V A. A., I A. X. nL

, in ll .S in i21=1 i=l

in

k k k

X. X
i2

X
il X. X

i2 • * " X- X
i2

X
in

i=l i=l i=l

k

I
i=l

in

x

nxn

= x'Ax where A = 7 A. A! .- — --.*«- -i-i
i=l

Notice that A is symmetric. Thus, Q(x) is a quadratic form

in x and it must follow that the rank of Q(x) equals r(A)

.

Observing that A is, in fact, the product of A and A',

A = AA" ,

and, applying Theorem 2.1, r(A) = r(AA') = r(A) = k. Con-

2sequently, r(Q(x)) = r(A) = k, and since L.(x) is non-

negative so also then is

£ L (x) = Q(x) . Q.E.D.
i=l

X

B. LINEAR RESTRICTIONS

A vector a = (a,,..., a,) in E, is called a linear restric-

tion on the set of linear forms, {L,,...,L,} if a / and

k
a'L(x) = 7 a.L. (x) =

i=l
x X "

for every xeE where L(x) = (L. f
.- . . f L. ) .n J. ic

15



As will be seen, a linear restriction has the effect of

reducing the rank of a quadratic form by one. Another linear

restriction will further reduce the rank, only if it and the

first are linearly independent. In general, it is important

to find the total number of linearly independent linear

restrictions on a given set of linear forms, {L, , . . . ,L, }, in

order to determine the rank of the quadratic form,

k .

Q(x) =
I LT (x) .

i=l 1

Theorem 3.2 If there are exactly m linearly independent

linear restrictions on the linear forms, L, , . . . ,L, , (m<k)

then the rank of

k
2

Q(x) =
I Lf(x) xeE

n
i=l

is k-m.

Proof : Suppose a,,..., a are linearly independent linear

restrictions on the linear forms, L, ,...,L, , where a. =

(a . , , . . . ,a
. , ) for each i=l , . . . ,m. Then

il' ' lk ' '

y a. -L. (x) = V a. .X'.x

,=i ^ ^ - >! id-:-

for all x in E , i=l,...,m, where X. is associated with the
n -j

linear form L
.
(x) for each j=l,...,k. Recall that

k
Q(x) =

I
L
Z
(x) = x' (AA')x

i=l
L

16



where

A' =

A-iT • • • A-.
11 In

A
kl • • •

X
kn

*i

*k

Let A =
si

a'-m

then AA'x =

1
= 1

±3 :

=

I a . A .x

for all x in E . Hence AA ' = 0. r(A) = m by hypothesis,

and by Theorem 2.3, r(A') <_ k-m.

Suppose m is the maximum number of linearly independent

linear restrictions on the linear forms, L, , ...,L, , and

r(A') < k-m. Since r(A) = m, there exists an mxm sub-matrix

A* of A such that | A*
|
^0. Without loss of generality, let

A* =

a
11

a
lm

aml mm

Since r(A') < k-m, the last k-m rows of A', X ',..., A.
1

,'
' -m+1 ' -k

among others, are linearly dependent. Then there exist

scalars b,,...,b, , not all zero (say b, ^0) , such that

b. A' , + ...+ b. A/ = 0.
1 -m+1 k -k

17



Let 8 = (0,...,0,b .,...,bj, Then certainly,

k k k

I 3^.(5) =
I b. A!x = ( I b. A!)x = Ox =

i=l m+1 m+1

so that a,,..., a ,8 are linearly independent. For suppose

Then

c. ou + . . . c a = c , , 8 = .1-1 m -m m+1-

c, a, , + . . . + c a , =
1 11 m ml

c i a -i~ + . . . + c a =
1 lm m mm

c, a, ,,+...+ c a ,, + c L1 B ,n =
1 l,m+l m m,m+l m+1 m+1

c^a,, + . . . + c a , + c . , 8, n1 Ik m mk m+1 k =0

or letting c = (c, ,... ,c ) , the first m equations can be

written A* c = 0. Since A* is non-singular, £ = , that

is , c, = . . . = c =0. and the last k-m equations become
1 m ^

cm+ l 8m+ l - °

c
m+ l

Bk = °-

But 8, ^ 0. hence c ,, = 0. Consequently, a, ,...,a ,8 are
k ' m+1 ^ x ' -1 -m -

linearly independent contradicting the maximality of m.

Hence r(A') = k-m and since r(A') = r(AA') by Theorem 2.1

r(Q(x) ) = k-m. Q.E.D.

18



Corollary 3.

3

If there is at least ra linearly independ-

ent linear restrictions on the linear forms, L, , ...,L, , (m<k)

then the rank of
k

Q(x) = I hUx)
ill

x

for all x in E is less than or equal to k-m.
n 3

Theorem 3.4 The linear forms L,,...,L, are linearly

independent if and only if there are no linear restrictions

on L _ t m . /L-. •

Proof : Suppose L, , . . . ,L, are linearly independent and

there exists at least one linear restriction, a = (a, ,...,ou)

on L,,...,L, such that a,L, + . . . + a,L, = 0. Hence, one

of the linear forms, say L, , can be written as a linear com-

bination of the remaining k-1 linear forms

a
2

a
kL

l
=

" ^L
2

-
' ' ' ~ 3^

L
k

(a
l * 0)

= e
2
L
2

+
' ' '

+ ek
Lk

a .

where $. = - —1, j =2,...,k.

Consider the vectors, /U , .. •.*]&./ associated with the

linear forms, L.,...,L, , and the matrix formed by these

vectors

,

A' =

11
. X

In

A, -. . . . A-,

kl kn

x
-i

x
-w

19



where by hypothesis, r(A') = k. Now

L
l

~ ^2-2- +
• • •

+ ^v-^v*

k k
= ( 7 3. A. , )x, + . . . + ( Y e.X. )x

• £ 2
i il 1 .£ 2

i in n

which implies

.1, hhii=2

h =

i=2
e.x.

— [ Aj t • • • i A, J 3

where 3 = (3~ , . . . ,3^.) • Hence, A, is a linear combination of

the remaining k-1 rows of A 1

, i.e., r(A') : k-1 which contra-

dicts the linear independence of the linear forms L,,...,L, .

Therefore, there are no linear restrictions on L. ,...,L. .Ik
Conversely, suppose there are no linear restrictions on

the linear forms, L, ,...,L, . Letting m = in Theorem 3.2,

the rank of
k

Q(x) =
I Lf(x)

i=l 1

2
for all x in E equals k-m = k. Since L. (x) is non-negative,

so then is Q(x). Upon applying Theorem 3.1 the linear forms,

L, ,...,L, , are seen to be linear independent. Q.E.D.

20



IV. APPLICATIONS TO ANALYSIS OF VARIANCE

Knowledge of the rank of a quadratic form is essential

in testing for the equality of means of k normal populations

having the same variance. This statistical method is called

the analysis of variance. This chapter demonstrates the use

of linearly independent linear restrictions of linear forms

to determine the rank of quadratic forms.

A. ONE-WAY CLASSIFICATION

Suppose that there exists k groups of independent obser-

vations

Yll" ' ' ,yln n
,y21" " ' y2n '• "' Ykl'-"* ,ykni12 k

from normally distributed populations with means u,,...,u,

2all with the same variance a . Thus the model is

v.. = u . + e . i= 1 , . . . , k -i-l,...,n.J i] 1 ij ' ' J ' ' l

where y . are fixed constants and the e . are independent
l ij r

2random normal deviates with zero mean and variance a .

Let x. = — (y. .-ii.) , Consider the identity
1 j a -* i j

' i J

x. = (x. .-x. ) + (x . -x) + X (1)
ID ID i i

where
n

.

l

x. = — } x . . 1=1 , . . . .k
i n. >. i] '

l j = l J

1
k

-
x = — y x .

.

n . S i
i=l

:j



Squaring both sides of equation (1) and summing over i and j

,

i=l,...,k, j=l,...,n. yields the identity

I I x.. =
I I (x..-x.) + I n (x -x) + nx

i=l j=l 13 i=l j=l 1: X
i=l

K 1

Q = Q
1

+ Q 2
+ Q 3

.

Since y. . is N(u. ,0 ) then x. is N(0.1) and

k 1

Q- .1 .1 JtJ

is x ( n ) an<^ nas rank

i=l j=l

n = V n.

i=l

The ranks of Q, , Q 2 , and Q.,, in turn, can be found by find-

ing the number of linearly independent linear restrictions

associated with each quadratic form and applying Corollary

3.3 and Theorem 2.4.

Consider first

1 n.
k 1

-
x 2

i=l i=l J

where x = (x,.,...,,x. ' *
* '

'

xkl '
* * *

'

xkn ^' Let L
ii ^ =

(x. .-x.) = X! .x be a linear form in x where X. . is an nxl
iD 1 "ID" " "ID

vector

n

.

1

i=l
y n rows

u=l

22



A. =

l
n

.

1

i - i
n

.

i

n

.

l

1

n

i=l
( I n +j) row
u=l

u

i=l-—
( I n

u )

u=l

th
row

i=l
n- ( y n ) rows

u=l

nxl

For each i=l.,,,.k there exists an nxl vector a, such that

n

a!L(x) = ^ a
ij

L..(x)

j = l

n

.

l

y (x. .-x.) = o

3 = 1

where

-1
=

1
0"

i=l
y n rows

u=l

i=l
th

( ) n ) row
u=l

nxl

23



and

L(x) =

X
ll

X
l

X- -x.
In, 1

x
kl

x
k

x, -x,
kn, k

k
nxl

Forming the matrix A = (a,,..., a,)

1 ...

A =

n, rows

n
2

rows

n, rows

nxk

it can be seen that the columns of A are linearly independent

i.e., r(A) = k; hence by definition, the set of k vectors

{a,,...,a, } are linearly independent linear restrictions on

the linear forms, L. , , . . . ,L, , . . .
,L, , , . . . ,L, . Applying

Corollary 3.3, r(Q,) _< n-k.

24



In a similar manner for

- - 2
Q
2
(x) =

I n
i
(x

i
-x)

i=l

where x = (x, , . . . ,x, ) let

L
i
(x) = /n7 (x

i
-x) (i=l,...,k)

= X!x
-l-

be a linear form in x where X . is a kxl vector
-l

/57 (-±)

X. =
-1

/H- (-|)

l k

*I ("?

L
n. (- £)
i k

.th
i row

kxl

Likewise, there exists one kxl vector a such that

a'L(x) = y a.L. x- - -
.

L
-. 11 -

i=l

I a. {/n7(x. -x) }
.
L

, i i i
i=l

= T /n7(x.-x)
i=l x x

=
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where

a = and L(x) =

kxl

/n^(x
1
-x)

v/R^(x
k
-x) kxl

Here a represents at least one linear restriction on the

linear forms, L. (x) , . . . ,L, (x) , and by Corollary 3.3

r(Q
2

) < k-1.

-2
.Lastly, Q 3

(x) = nx is the square of a single linear

form, L(x) = /nx, and has rank, r(Q
3

) = 1.

In summary,

r(Q) = n

rfC^) <_ n-k

r(Q
2

)
< k-1

r(Q
3

)
= 1

where Q = Q, + Q + Q 3
. Hence

r(Q
x

) + r(Q
2

) + r(Q
3

) _< n - k + k

but by Theorem 2.4

1 + 1 = n

r(Q) = n < r(Q
1

) + r(Q
2

) + r(Q
3
).

Consequently

,

and

r(Q
1

) + r(Q
2

) + r(Q
3

) = r(Q)

r(Q
1

) = n-k

r(Q
2

) = k-1

r(Q
3

) = 1 .

From Cochran's Theorem the quadratic forms 0, , Q 2 , and Q 3

2
are linearly independent and are x distributed with n-k,

k-1, and 1 degrees of freedom, respectively.
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The foregoing procedure for finding at least a lower

bound for the rank of a quadratic form

k
Q(x) =

I L?(x)
i=l

1

endeavors to construct a matrix of known linear restrictions,

A = [o^,. . . ,§. ]

whose rank is necessarily the number of linearly independent

linear restrictions on the linear forms L, , ...,L, . It could

be shown that if the linear forms L, , . . . ,L, are linearly

independent then Theorem 3.1 can be applied to give the rank

exactly. Such a procedure entails finding the rank of the

matrix of coefficient vectors, A = [Xw...,X, ] associated

with the linear forms L, , . . . ,L, . In general, the determina-

tion of the rank of A is complicated by the odd construction

of the X .

' s . On the other hand the matrix of the known lin-
-l

ear restrictions, A, contains only elements equal to zeros

or ones. Hence, the easier method of finding information

concerning the rank of a quadratic form is to look for the

linear restrictions and apply Theorem 2.2 or Corollary 3.3.

In the next section two-way classification of analysis

of variance is investigated and it will be seen that although

the matrix of known linear restrictions becomes larger deter-

mining its rank remains relatively easy.
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B. TWO-CLASSIFICATION

In the one-way classification of the analysis of variance

k groups of independent normally distributed observations are

recorded. The k groups represent k different variations of a

particular variable or factor which is needed to yield a de-

sired result, e.g., the observation itself. It is the purpose

of the analysis of variance to ascertain if there is any sig-

nificant differences in the results of any of these variations.

The measurement of crop yield using different types of ferti-

lizer is an example of such a grouping or classification.

In a two-way classification of the analysis of variance

the results of an experiment are classified according to var-

iations of two influencing variables. In the crop growth ex-

ample, crop yield can be classified, not only by different

types of fertilizer, but also by various soil compositions.

Suppose there exists r variations of one classification

and c variations of a second classification. Consider n

observations taken from each of re possible combinations of

the two classifications. In tabular form

*11 *1<

Yri • • • Yre
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where y = (y..,,...,y. ) is an nxl vector. It is assumed
•* -* 13I '

2 ljn

that the re sets of n observations are random samples from

re separate populations, each normally distributed about

2mean y . but all with the same variance a . The model is
i:

y . . = y . + e . i=l , . . . ,r

v=l , . . . ,n

2where e . . is N (0 ,a ) . Let
ljv

y . . -y . .2 1JV 1]
x. . = —* *
ljv a

and consider the identity

x. . = (x. . -x. .) + (x. .-x. -x .+x) + (x. -x)
13V 13V 13 lj i* »j i«

(2)

+ (x .-x) + X
'1

where

1
n

x. . = — y x. .

in n L
, livJ v=l J

c n
x. = — y y x. . =— y x.

.

i* en Z, L
. liv c .

L
, in

3=1 v=l J 3=1 J

1 r n r
x = — y y x. . = — y x.

.

• j rn.fi, L
, 13V r -ii 13i=l v=l J i=l

n r c
x = — y y y x. . =— j x. =— yrcn .

L
, .

L
. L

~ liv r .*•, i" c ,
L ~ »ii=l 3=1 v=l J i=l 3=1 J

Squaring both sides of equation (2) and summing over i, j and

v, i=l,...,r, j=l,...,c, v=l,...,n yields the identity
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r c n

r c

J

r c n

I I I
i=l j=l v=l

-s 2

(x. . -x. .)
2

1=1 J=l v=l J

+ n y V (x. .-x. -x ,+x) + nc y (x
•

-i
• i ID i" *D • ii=l -|=1 J J i=l

-V2
-x)

v - - 2 -2
+ nr g ( x -~x ) + rcnx

j = l •?

Q = Q
x

+ Q2
+ Q

3
+ Q

4
+ Q

5
.

2The rank, of Q is rcn since it is x with rcn degrees of

freedom. The ranks of Q. ,...,Q- can be determined by finding

the number of linearly independent linear restrictions asso-

ciated with each quadratic form and applying Corollary 3.3

and Theorem 2.4.

Following the procedure of the previous section consider

first

Ql (5> - I I I (x
iiv"^iix

i=l i=l v=l
13V 1D

where

x =

Sill

-lc

-rl

with x .

.

"ID

x
L' rc

.

rcnxl

;iji

X. .

ljn

L
X. .

i:n

i=l

,

D = l,
. ,r
• ,c

nxl

nxl
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Let L. (x) = (x. . -x. .) i=l..
1]V - 1]V in . ,

= X! . x
-ijv- v=l ,

.

. ,r be a linear form in x

. ,c

. ,n

where X . . is a rcnxl vector
-lJV

X.
-13V

1 -

1

n

1

n

1

n

1

n

1

n

{ (i-1) c+j }n rows

th
{ (i-1) c+j }n+v row

rcn-{ (i-1) c+j+l}n rows

y rcnxlJ

For each i, j, i=l,...,r, j=l,...,c there exists an rcnxl

vector a. . such that
13 n

a! .L(x) = 7 a. L. (x)
-iD " yii idv idv -

n
= I (x. . -x. .)L

, 1]V 11v=l J J

=
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where

X. .
=

-ID

(i-l)c+j n rows

rcn- (i-1) c+j+1 n rows

rcnxl

and L(x) = (L
i j v

(x)

)

rcnxl / i=l,...,r, j=l,...,c, v=l,...,n.

Note that there are re such vectors, a. .. Forming the matrix
-ID

using the nxl sub-matrices

1

1 = and =

nxl nxl

A becomes
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A =

1

1

10

1

1

00...000...0... 00...1 rcnxrc

It can be seen that the columns of A are linearly independent,

i.e., r(A) = re; hence by definition, the set of re vectors,

{a..; i=l,...,r, j=l,...,c} are linearly independent linear

restrictions on the linear forms {L. . (x) ; i=l,...,r,
1}V - lit

j=l,...,c, v=l,...,n}. Applying Corollary 3.3,

r(Q,) <_ rcn-rc = rc(n-l).

In a similar manner for

Q (x) = n 7 I ( x -
•~x - ~x - +x )x)

WnGJTG X — * l i t • * / i / • • • f " i / • * • / **• / JL6"C

i-i j-l
x

- '^

'li lc 'rl re

L..(x) = (x..-x. -x .+x) i=l,...,r
ID " ID i* 'D i.1

'

J — X,. . . , t-

= X! .x
-iD-

be a linear form in x where X . . is a rcxl vector
-ID
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X. =

_i
re

JL
re

r re

__1
re

_1
re

1 -

1
+

1
c

•

•

•

re

1
+ 1

c re

1 i +
c

1

r re

1
+ J^

c
•

re

1
+

1
c re

1

re

_1
re

i'+ -i
r re

JL
re

_1
re

.thj row

(i-l)c row

/ • n \ • th(i-l)c+3 row

. thlc row
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__1
re

_1
re

i -i
- + re

_1
re

_1
re

/ t \
• th

(r-l)c+j row

rcxl

Likewise there exist r+c vectors {a
.
;i=l , . . . ,r} and

-l

(3.; j=l,...,c} such that

a!L(x) = V a. .L.
.
(x]

i=l ^ ^ "

y (x. .-x. -x .+x)
iil ^ 1# '1
3

=

and

g'L<x) = i B ijL (x:

J.

= y (X. .-X . -X .+

i=l l 3 !' '1
X)

=
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where

r oi

c rows

c rows

2l
=

c rows

i
th block

of c rows

c rows

c rows

'rcxl

c rows

respectively

,

36



Forming the matrix

A = [o^, . . * '^v-'—l * " * * ' —C J

1

1 • •

1 • •

1 • •

1 • •

1 • •

• •

. .

1

• 1 •

• • 4 1

, 1 • ,

• 1 • « i m

• • 4 1

1 1 1 •

• 1 1 • • ' •

• 1 . , . 1 rcx(r+c)

it can be seen that

I «. = I 3. ,

i=l j=l J

hence the rank of A is at most r+c-1. Consider the (r+c-1)

x(r+c-l) sub-matrix of A,

A* =

10
10

0.
0.

10
10

1 . , , .

1 . . .

1 . , . 1

1 .

.

. 1

.10 0.

.01000.

c rows

r-1 rows
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Now | A* |
= + 1 depending if r+c-1 is odd or even. Consequent-

ly, r(A) = r+c-1 and by definition, the set of vector

{a,,..., a , $..,...,$ ) represent r+c-1 linearlv independent
—l —r -l -c .. i.

linear restrictions on the linear forms {L. . (x) ; i=l,...,r,

j=l,...,c} and by Corollary 3.3, r(0~) <_ rcn-r-c+1 =

(r-1) (c-1)

.

Consider next
r - - 2

Q^(x.) = nc I (x.
#
-x)

1=1

where x. = (x. ,...,x ). Let
1* r*

L
i.

( *-) = U. ;
rx)

= X! x.
-l • -

i=l , . . . ,r

be a linear form in x. where X. is a rxl vector
-l

.

l"
r

1

r

i -i
r

1

r

1

r

.thl row

rxl

There exists only one vector a such that

a'L x. = T a .L . (x.

)

---
. *<, li--.1=1

=
I (x -x)

i=l
x

=
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where

a =

rxl

Hence a represents one linear restriction on the linear forms

{L. (x.); i=l,...,r} and by Corollary 3.3, r(Q-J r-1.

By an analogous argument r(Q.) _< c-1.

-2
Lastly, Qr(x) = rcnx is the square of the single linear

form, L(x) = /rcn x, and has rank, r(Q
5

) = 1

In summary,

r(Q) = rcn

r(Q-

r(Q.

r(Q.

r(Q,

r(Q,

<_ rcn-rc

<_ rc-r-c+1

< r-1

< c-1

= 1

where

Hence

,

Q = Q
1

+ Q 2
+ Q

3
+ Q

4
+ Q 5

.

[ Q, < rcn-rc+rc-r-c+l+c-l+r-1+1 = rcn
k=l

K "

but by Theorem 2.4
5

r(Q) = rcn £ r(Q, ) .

k=l

Consequently

,

r(Q
x

) + r(Q
2

) + r(Q
3

) + r(Q
4

) + r(Q
5

) = r(Q)
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and

r(Q
1

)
= rc(n-l)

r(Q
2

)
= (r-1) (c-1)

r(Q
3

)
= r-1

r(Q
4

)
= c-1

r(Q
5

)
= 1.

From Cochran's Theorem the quadratic forms Q-w...,Qr

2
are linearly independent and are x distributed with degrees

of freedom equal to their respective ranks.
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V. CONCLUSION

In general it may be difficult to verify that the linear

forms L, (x) , . . . ,L, (x) are linearly independent directly, or

when they are not, to find the maximum number of linearly

independent linear restrictions on them in order to determine

the rank of the associated quadratic form

k
Q(x) = | L. (X) .

i=l
1

Fortunately, it is sufficient only to observe that if there

are at least m linearly independent linear restrictions,

then the rank must be less than or equal to k-m. Enough

information is often then available to establish that no

more linear restrictions exist. Hence, indirectly, the rank

is found to be exactly k-m. The application of rank deter-

mination to analysis of variance is an example of this in-

direct procedure.

It may now be stated that the procedure as outlined by

Cramer [1] and Hald [2] for determining the rank of quad-

ratic forms has been explicitly justified in detail and

illustrated.
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