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ABSTRACT

The study of finite dimensional vector spaces has been logically

extended to that of infinite dimensional vector spaces. Of fundamental

importance to this study is the relationship between sets which span a

vector space, basis sets for such a space, and linearly independent sets

within the space. Without recourse to the finite dimensional case, a
*>/•- !*

new proof is presented to show this relationship. A corollary to this

is the most important result that every basis for a vector space has the

same cardinal number.
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INTRODUCTION

The standard method of proof in showing that all bases for an

infinite dimensional vector space have the same cardinal number is first

to prove this fact for the finite dimensional case, and then extend it

to the infinite case using a set-theoretic argument. [1][2] Using the

definition of a basis as a maximal linearly independent set and the

theorems developed here that a basis is a linearly independent spanning

set and also a minimal spanning set, we shall prove directly the theorem

that the cardinal number of any linearly independent set in a vector

space is no greater than that of any basis. The proof presented here

uses transfinite induction, and is a direct transfinite generalization

of the finite-dimensional proofs in [1] and [2]. As a corollary to this

theorem we have the essential fact mentioned above that all bases for

the same vector space have the same cardinal number.



DEFINITION

A non-empty set V is said to be a vector space over a field F if V

is an abelian group under an operation denoted by + , and if for every

aeF, veV, there is defined an element in V, written as av subject to:

(1) a(v + w) = av + aw

(2) (a + 6)v = av + 3v

(3) a(8v) = (aB)v

(4) lv = v where 1 is the multiplicative identity in F, i.e.,

la = a for all aeF

Henceforth, we shall call the elements of V vectors , and denote

them by lower case Latin letters. We shall call the elements of F

scalars , and denote them by lower case Greek letters. Moreover, where

no question of ambiguity can arise, we shall omit the words "over the

field F", and refer to "the vector space V".

DEFINITION

If V is a vector space over a field F, and if v n , ..., v eV, thenr In
any element of the form a^, + ... + a v , where the a. are in F, isJ 11 n n x

called a linear combination over F of v. , . .
. , v .

1' n

The empty sum is, by definition, zero. The reasoning behind this

is quite simple, for if < n < n„

,

n
2

n
l

n
2

I I + I
k=0 k=0 k=n +1

If equality is to hold also for n = n_ , then the last term, which is

the empty sum, must be zero.



DEFINITION

If S is any subset of the vector space V, then the Linear span of S ,

denoted by L(S) , is the set of all linear combinations of elements of S.

Note that if is the empty set, L(0) = {0}.

DEFINITION

If V is a vector space over F and if W C V, then W is a subspace of

V if, under the operations of V, W itself forms a vector space over F.

Equivalently, W is a subspace of V whenever w.. , w
?
eW, a, 6eF imply that

aw + Bw-eW.

It is easy to see that L(S) is a subspace of V. In fact, L(S) is

the smallest subspace of V which contains (always means 'b") S, and is

equal to the intersection of all subspaces which contain S.

Of particular interest are subsets S of V for which L(S) = V. To

describe such sets we make the following

DEFINITION

If L(S) = V, S is a spanning set , and S is said to span V.

Note that a vector space V always has a spanning set, for at the

very worst we always have L(V) = V.

DEFINITION

Let V be a vector space over F, and let D = {d.. , ..., d } be a non-v In
empty, finite subset of V. D is linearly dependent if there exist scalars

X- . ..., A eF, not all zero , such that \.d1 + ... + X d =0.
1' n 11 n n



DEFINITION

If X is an arbitrary, non-empty subset of V, then X is linearly

dependent if X has a finite subset which is linearly dependent. X is

linearly independent if it is not linearly dependent.

Note that X is linearly dependent if and only if there exist x.. ,

.... x eX and scalars A.. , .... X . none of which is 0, such that
n V * n '

A..X.. + ... + X x =0. Thus we remark that an arbitrary, non-empty set

is linearly independent if and only if all of its finite, non-empty

subsets are linearly independent. Since the empty set is a finite sub-

set of every set, we are led to make the definition that the empty set,

0, is linearly independent.

The following lemma is essential to the work which is to follow.

Lemma 1

Suppose that X is a linearly independent set. Then every element

of L(X) can be written in one and only one way as a linear combination

of elements of X.

Proof . Case 1 ; Suppose that X = 0. Then L(X) = {0}, for the only

linear combination of elements of X is the empty sum, which is zero.

Case 2 : Suppose that X ^ 0. By definition of L(X) there

is always at least one representation

v = / X x
v X

xeX

where all but finitely many X =0. Suppose we have two such representa-

tions:



v - I *
x
x

'
v = I yx

x

xeX xeX

Then = v-v =
J (A - y ) x « But X is linearly independent by

xeX

hypothesis, so that £ (^ - y )x = implies that A - y =0 for all
,. _ A. X X X

xeX

xeX. Thus X = u for all xeX.
X X

DEFINITION

If V is a vector space over F, a subset F of V is a basis for V if

B is a maximal linearly independent set. I.e.,

(1) B is linearly independent;

(2) If BC B' <= V then B* is linearly dependent.

The next lemma serves to relate the concept of a basis to that of a

spanning set.

Lemma 2

B is a basis for the vector space V if and only if B is simultaneously

(1) a linearly independent set, and

(2) a spanning set for V.

Proof . Suppose that B is a basis, but that B is not a spanning set.

Then L(B) <= V, so we may choose yeV-L(B). Let B' = B U {y} ^> B. Suppose

B' is linearly dependent. Then there exist b , ..., b eB' and non-zero

scalars A,, ..., A such that A n b^ + ... + A b =0. Now one of the b.In 11 n n l

must be y, for otherwise B would be dependent; we may assume b.. = y.

Then A,y = - A b_ - ... - A b ; hence, y = (-A /A
1
)b o + ... + (-A /A

n
)b ,1/2 nn ill nln



which implies that yeL(B). This is a contradiction so that B' is

linearly independent. This contradicts the hypothesis that, as a basis,

B is a maximal linearly independent set. Hence, B spans V.

Conversely, suppose B is a linearly independent set which spans V,

but that B is not a basis for V. Then there exists a linearly independent

set B' such that Be: B'. Choose yeB' - B and consider S = B U {y}c b'.

S is linearly independent, since it is a subset of B 1

, so that we cannot

express y as a linear combination of the other elements of S. This

implies y^L(B) , contrary to hypothesis, since yeB' - Be V and L(B) = V.

Hence, B is a basis for V.

The next lemma will describe a basis for us completely in terms of

spanning sets.

Lemma 3

B is a basis for a vector space V if and only if B is a minimal

spanning set. I.e.,

(1) B is a spanning set, and

(2) If B'c B, then B 1 does not span V.

Proof . If B is a basis for V, then B is a maximal linearly independent

set, and moreover B spans V. Suppose that there exists a spanning set

B
1 c B. Then B' is linearly independent since it is a subset of a linearly

independent set. By Lemma 2, B' is a basis, and hence a maximal linearly

independent subset which is a proper subset of the linearly independent

set B. This is a contradiction.

10



Conversely, suppose B is a minimal spanning set, but that B is not

a basis for V. By Lemma 2, B is then linearly dependent, so that there

exist b , ..., b eB and non-zero scalars A n , ..., A such that X n b n +In 1' ' n 11
. .. + A b =0. Since A n f 0, b n

= (-A./Ajb- + . . . + (-A A, )b . Thusnn 1 1 zlz n .; n

any linear combination of elements of B which involves B.. can be written

as a linear combination of elements of B without using b- . Therefore,

B
1 = B - {b } is a spanning set for V such that B'cz B. This contradicts

the fact that B is a minimal spanning set. Hence, B is linearly independent

and, as a spanning set, by Lemma 2, is a basis.

Examples

(1) Let E be the set of all ordered n-tuples with real

components. Then the vectors e = (1,0,0, ... ,0) , e_ = (0,1,0, ... ,0) , ...,

e = (0,0,0, ... ,1) form a basis for E .

No
(2) The set Q of all polynomials with rational coefficients

2 3
forms a vector space, and the set {l,x,x ,x ,...} is a basis for this

space.

(3) The real numbers may be considered as a vector space over

the field of rational numbers. However, no one has ever been able to

exhibit a basis for this space (although, as we shall show later, one

does exist).

We have so far defined a vector space and discussed a certain kind

of subset of it—namely, a basis. The question which one should now

investigate is the general existence of such a subset. That is, does

every vector space have a basis?

11



Before specifically investigating this fact, we develop certain

preliminary results. Since we intend to deal ultimately with infinite

sets, we introduce the Axiom of Choice.

Axiom of Choice

Let 9. be any non-empty family of non-empty sets. Then there exists

a set X such that for every set F in the family ft, X H F is a singleton.

I.e., we can "choose" one element from each set F in the family.

There are many equivalent forms of the Axiom of Choice.

DEFINITION

A well-ordered set is a partially-ordered set in which every non-

empty subset S contains a minimal element, i.e., an element x such that

x <_ y for every yeS.

DEFINITION

A subset S of a partially ordered set is called a chain if for every

x,yeS either x <_ y or y <_ x.

With these definitions, we are now able to state several of the

equivalent forms of the Axiom of Choice.

Zermelo's Theorem [3]

Every set can be well-ordered.

12



Examples ;

The natural numbers are well-ordered by their natural ordering; the

real numbers are not. However, Zermelo's theorem says that the real num-

bers can be well-ordered, but no one has done so constructively.

Zorn's Lemma [4]

If S is a partially ordered set such that every chain in S has an

upper bound, then S contains a maximal element.

Theorem 1

Let L be a linearly independent subset of V, and let S ^ L be a

spanning subset of V. Then there exists a basis B of V such that

Sz> B 2 L «

Proof . The class &of all linearly independent subsets of S can be

partially ordered by the relation of set inclusion. Since Left, (&, is not

empty. Let X = {A } be a chain in & , and let P be the union of the sets

in K. Obviously, P C S. We claim that P is linearly independent so

that Pefft. Suppose that P were linearly dependent. Then it must contain

a finite linearly dependent subset P' = {p , p , ..., p }. Since each

p. is an element of some Aa
.

, and since the chain is simply ordered, one

of the Aa . must contain all of the rest, so that it must contain P'.
1

This implies that this particular Aa . is linearly dependent, which is a

contradiction. Therefore, P is linearly independent and clearly serves

as an upper bound for the elements in Jf- Thus R, satisfies the conditions

of Zorn's lemma, so it contains a maximal (i.e., maximal in S) linearly

independent set which we shall call B. But B spans V (i.e., is maximal

in V also), for suppose there exists an element yeV - L(B) = L(S) - L(B).

Then y = A,s, + ... + A s , where the s.eS and at least one s., say s n ,11 n n i i J 1

13



is not in L(B). Then B U {s- } is a linearly independent set in S which

properly contains B, contradicting the maximality of B. Hence, L(B) =

L(S) = V, and by Lemma 2 , B is a basis for V.

Since V spans V, we have the following corollary:

Corollary 1

If L is any linearly independent subset of V, then L is contained in

a maximal linearly independent subset, i.e., in a basis.

Since is a linearly independent subset of V, we have

Corollary 2

If S is any spanning subset of V, then S contains a minimal spanning

subset, i.e., a basis.

The most important corollary is the following:

Corollary 3

Every vector space has a basis.

We now pause for a brief recapitulation. We have under consideration

a structure called a vector space, denoted by V. We have developed

various properties of certain subsets of V, namely, linea'fly independent

subsets, spanning sets, and bases. Since bases are maximal linearly

independent sets and minimal spanning sets, in some sense, bases should

be "smaller" than spanning sets, but "larger" than linearly independent

14



sets. In Theorem 2, we shall see that this is true in a precise sense,

namely, that if L is any linearly independent set, S any spanning set, and

B any basis, then #(L) <_ #(B) <_ #(S), where #(X) is the cardinal number of

the set X.

DEFINITION

If S and T are subspaces of the vector space V, then V is said to

be the direct sum of S and T, denoted V = S # T, if every veV can be

written uniquely as v = s + t where seS and teT.

Lemma 4

Suppose that S is a subspace of the vector space V. Then there

exists a subspace T of V such that V = S $ T. T is called the complement

of S.

Proof . Let B be a basis for S and extend B to a basis D for V which

is possible by Theorem 1. Let T = L(D-B). It is easy to see that

V = S ® T.

The standard method of proof for Theorem 2, as given in [1] and [2],

is first to prove the result for the finite-dimensional case, and then

to extend to the infinite-dimensional case using a set-theoretic

cardinality argument. Our proof is a direct transfinite generalization

of the finite-dimensional argument; it works equally well for either finite

or infinite-dimensional spaces. Raikov [6] also has a direct proof of the

theorem.

15



Theorem 2

Suppose that X is a linearly independent subset of the vector space

V and that Y is a basis for V. Then #(X) <_ //(Y).

Proof . Assume without loss of generality that X and Y are disjoint.

For if they are not, let S = X H Y and let T be the complement of S in V.

Let X f = X - S and Y' = Y - S. Then Y' is a basis for T, and X' is a

linearly independent subset of T. If we can show that #(X') <_ #(Y') it

will follow that #(X) <_ //(Y).

We now assume that X and Y are disjoint. Well-order Y, using

Zermelo's theorem:

Y = (y , yv .... yu . y^, ...) .

Let the ordinal number of this set be v so that y is defined for all
1 J a

ordinals a < y, but not for a = y. We shall define by transfinite

induction a transfinite sequence x_. x.. , .... x , x
, n , ... of distinctn 1 0) co+1

elements of X which will exhaust X. The ordinal number of this sequence

will be < y so that it will follow that #(X) £ //(Y).

Suppose that x has been defined for all 8 < a < y. Let

X = U { Xq }
a a. 8

8<a

Y = U {y
ft

}

6<a

W = X U Y - X
a a a

define X. , Y , and W in the obvious fashion for 6<a so that Wn = X. It
p p p u

will be shown that W is always linearly independent. Suppose further

16



that W is independent for 6<a. (Note that WA = X is independent by

assumption.) Assume for the moment that W has been shown to be
a

independent. We shall show how to select x so that W . is independent.

A corollary of this construction is that if a is a successor ordinal, W

is independent (just back up one step). We shall show separately later

that W is independent if a is a limit ordinal.

If X H w = X - X =0, we are through, since X = X and a<y, so
a a a

suppose that X H W ^0. Consider now yeY-W =Y-Y. We distinguish

between two cases:

Case 1 : y ^L(W ). In this case select x arbitrarily in

XPW = X - X . Since y ^L(W ), it follows that wU{y } is independent,
a a a a a ^a r

.

and hence that W in =wU{y } - { x } is also independent.
a+1 a a

Case 2 : y eL(W ). In this case we can write y uniquely as a

linear combination of elements of W as follows:
a

y = X n w n + A_w„ + ... + A w . (*)
•'a 11 2 2 n n

where all A. ^ and where each w.eW . Now Y is a basis, so that
l l a '

y ^L(Y ) = L(Yf)W ). This implies that at least one w.eXHW . AssumeJ a a a r i a

without loss of generality that w. eXflW . Now let x = w
n . Then° J 1 a a 1

W , = W |J {y } - (x } is independent, for suppose, to the contrary,
U i j- ut ut ut

that it is not. Then there exist non-zero scalars y n , u, , ..., y and
L) 1 m

elements w' , w' , . .
.

, w' e W - {x } such that12' 'ma a

Va + y
l
W
l
+ y

2
W
2
+ '•• + Vm =

° '

where we know that y^ ^ since W is independent. This implies that y
a a

can be written

17



ya
- C-y

1
/y )w{ + ...•+ (-wm/y

)w;

where no w! is equal to w = x . This contradicts the uniqueness of the

representation (*) of y . Therefore, W
, n is independent.

a a+1

Now we shall show that W must have been independent to start with.
a

In out construction of x , we showed that W . ., was independent whenever
a a+1

W was independent. Since W. = X is independent by assumption, this

proves that if a is a successor ordinal, then W must have been
a

independent, for all a <_ y. Suppose then that a <_ y is a limit ordinal,

and suppose that W were dependent. Then there exist w1( w„, . . . , w eW
a 1' V ' n a

and non-zero scalars A.. , A_, ..., A such that A n w-. + ... + A w =0.
1 l n 1 ± n n

Since

w = ( n x n w. ) u ( u Y n w ),
a

3<a
6

3<a
6

it follows that w.eW for some 3.<a. Let $_ be the largest index in the
l 3

.

i °
l

set of indices (3-,, •••, 3 }. Then for all i, w.eW . Since 8 ri
<a, W isIn i 3

Q
3
Q

linearly independent by assumption; this is a contradiction.

There are two possibilities. The first is that at some ordinal a<y,

X - X = so that X = X and the chain will stop. In this case, we are
a a

through, since X = X and Y = Y J Y imply that #(X) <_ #(Y). The other

possibility is that we can define x for all a<y« Then W = X U Y - Xf
a Y Y Y

is independent. But Y = Y and W z> Y so that W = Y since Y is a basis.
Y Y — Y

However, X and Y are disjoint so that X-X =0, i.e., X = X . This

implies that //(X) -#(X)-#(Y)- #(Y), and the theorem is proved.
Y Y

18



The theorem just proved shows that if L is a linearly independent

set of vectors in a vector space V and B is a basis for V, then //(L) _< //(B).

From this theorem we have the following important corollaries:

Corollary 1

If B
1
and B_ are two bases for V, then B.. is equivalent to B_. I.e.,

#(B
X

) - #(B
2
).

Proof . As bases, B.. and B~ are both linearly independent sets.

Considering B as linearly independent and B as a basis, we have from the

theorem that //(B..) _< //(B ). Reversing the roles, we have that #(B„) <_ //(B)

Thus by the Schro'der-Bernstein theorem [5] on cardinal numbers,

#(B
1

) = //(B
2
).

Corollary 2

Let B be a basis for V, let L be a linearly independent set in V,

and let S be a spanning set of V. Then //(L) <_ //(B) <_ #(S).

Proof . By Theorem 1, the spanning set S contains a basis B', so that

//(S) _> #(B'). By Corollary 1, Z/(B') = //(B). Putting this together with

Theorem 2 yields //(L) <_ //(B) £ #(S).

These are most important results for they show that, whereas a

basis for a vector space may not be unique, any two bases will have the

same cardinality.

DEFINITION

The cardinality of any basis of a vector space V is called the

dimension of V. This is unambiguous by the previous theorem.

19



We can now generalize the definition of direct sum from two to an

arbitrary number of summands.

DEFINITION

Let {A } .be a family of vector spaces over the same field F.
a aeA J *

Then the direct sum of the spaces A , denoted ® Ta , is the set of allr a' L
. a

aeA

functions f which map the index set A into the union of the A , with the
a

restrictions that f(a)eA and that f(a) must be except for finitely
a

many indices. Intuitively, the direct sum is the set of all "a-tuples"

with only finitely many non-zero coordinates. The usual functional

operations on the direct sum make it into a vector space over F. A

case of particular interest is when each A is the field F itself. Let y
a

be a cardinal number, and let A be an index set of cardinality y. Then

by F we mean the direct sum # ; A , where for every a, A = F. It isJ L
. a J a

aeA

easy to see that the direct sum is essentially independent of which

index set is chosen, as long as it has cardinality y. F is intuitively

a direct sum of "y copies" of F. Note that F is the set of all functions

f from a y-element index set A to F where f(a) = except for finitely

many values of a.

Lemma 5

F is a vector space over F and the dimension of F is y.

Proof. Let A be a y-element index set. For every aeA, define e eF—

—

a

as follows:

e_(8) =

if 6 ^ a

20



It is obvious that the set B = {e :aeA} is a basis for F , so that the
a

dimension of F = //(B) = y.

Lemma 6

If V is any vector space over F of dimension y, then V is isomorphic

to F
y

.

Proof . Suppose B' = {x } . is a basis for V, where //(A) = y. We
a aeA

have shown (-.emma 5) that B = {e :ae/\} is a basis for F . Define
a

<(>:V->-F as follows: If veV, write v uniquely as v = A n x + ... + A x^ la, n a
1 n

where all A. ^ and where each x^ eB' . Then v<j> is the function eF

defined as follows:

i a.
l

A. if a = a. for some i

v<J>(a) =

if a ^ a. for all i.

It is a routine computation to show that $ is an isomorphism of V onto F

and moreover that x <j> = e for every aeA.
a a

Lemma 7

Suppose that cj):V->W is an isomorphism of V onto W. If Lc V is

linearly independent then <J>(L) c W is linearly independent, and if S c V

is a spanning set then <J>(S)c W is a spanning set. Consequently, if Be V

is a basis, <j>(B) c: W is a basis.

Proof . Suppose that Lc V is linearly independent and that Aw +

... + A w =0 where each w.e<b(L). Let v. = d> (w.) so that v.eL. Thennn i T 11 l

A.. v n + ... + X v =A 1 d) (w n ) + ...+A<J> (w)=4> (A..W.. + ... + A w ) =11 nn 1
Y 1 n T nll nn

<j> (0) = 0, since
<J>

is an isomorphism. Since L is linearly independent,

21



X-j X~ = *•• = ^ = so that <))(L) is linearly independent.

Suppose now that S C V is a spanning set. Let weW be arbitrary

and consider v =
<j> (w)eV. Now veL(S) so that v = X n s. + ... + X s for11 n n

certain scalars X. and s.eS. But w = <t>(v) = <i>(X,s., + ... + A s ) =
i i 1 1 n n

X-<f>(s..) + ... + X <}>(s ) which is a linear combination of elements of
J. i n n

<t>(S). That is, weL(<j>(S)). Since w was arbitrary, cf>(S) spans W.

The following corollary is quite important.

Corollary

If V is isomorphic to W, then V and W have the same dimension.

We are now in a position to characterize completely all vector

spaces over an arbitrary field F.

Theorem 3

A vector space V over a field F is completely characterized by its

dimension. I.e., if V and W are vector spaces over the same field F,

then V is isomorphic to W if and only if the dimension of V is equal to

the dimension of W. Moreover, if the dimension of V is u, then V is

isomorphic to F .

Proof . If V is isomorphic to W, then by the corollary to Lemma 7,

V and W have the same dimension. Conversely, if V and W both have

dimension y, we have by Lemma 6 that both V and W are isomorphic to F ,

and hence isomorphic to each other.

22
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