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ABSTRACT

Wavelengths and frequencies of self-excited moving striations in the

plasma of a Neon discharge were measured; from this data their velo-

cities were calculated. Measurements were performed in cylindrical

Pyrex discharge tubes of inner diameters 4, 10, 31, 75, and 140 milli-

meters over a pressure range of about 35 to 10, 000 millitorr and a dis-

charge current range of about 20 to 400 milliamps. In the 10, 31, and

75 millimeter tubes the average electric field of the plasma was mea-

sured under these same conditions. Wavelengths always increased with

tube radius, generally decreased as pressure increased, appeared inde-

pendent of current, and showed an exponential decrease as a function of

the parameter, pressure times current density. With the exception of

the 4 millimeter discharge tube, frequency generally decreased as

radius or pressure increased and appeared relatively insensitive to

current changes: in that tube frequency patterns were often erratic.

Velocity decreased with pressure and seemed unrelated to radius or

current. The electric field decreased linearly with the logarithm of

increasing radius, generally decreased as current increased and

followed no consistent pattern with pressure. Probes inserted into the

plasma for electric field measurements generally caused both striation

wavelength and frequency to decrease.
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TABLE OF SYMBOLS

SYMBOL MEANING

Wavelength, usually in centimeters

Frequency, Hertz (cycles /second)

Velocity, centimeters/ second

i Current, usually in milliamps

p Pressure, usually in millitorr

E Electric field, volts /centimeter

K Constant of proportionality, value

defined in the text

R Radius
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I. INTRODUCTION

The original purpose of this study was to find what effect discharge

tube radius had on the wavelengths of self-excited moving striations in

Neon. To accomplish this , five cylindrical discharge tubes with radii

of 2, 5 15. 5, 37. 5, and 70 millimeters were selected. Each was oper-

ated over a pressure range of about 20 to 10, 000 millitorr and a current

range of 20 to 400 milliamps. As the plan for the work was formulated

it became obvious that for little more effort, much more information

could be obtained about these striations' natural frequencies and veloci-

ties of propagation as well as the positive column's electric field gradient,

over these same geometrical, pressure, and current ranges. The

necessary equipment was accordingly added.

The final effect studied was that which the physical presence of

probes (used to determine the electric field gradient) in the discharge

tube have on the moving striation variables. This latter study seemed

appropriate since one would logically expect some perturbations of the

striation wave train because of the finite, though small, portion of the

positive column cross section occupied by a probe.

As is well known, the primary problem in developing useable data

on this subject is that for a given gas there are three major independent

parameters that effect the dependent variables subjected to study. A

single change in any one of the parameters of pressure, discharge

current, or tube geometry while the other two are held constant, will



cause a change in the striation's characteristics and in the electric field.

Ideally for this type of study, we fix the current and pressure at prede-

termined values, vary the radius and then measure effects. In reality,

precise fixing of tube geometry and current to predetermined values is

readily accomplished by glassware construction and proper electric

circuitry; however, exact, predetermined pressure settings require

highly sensitive metering (valves and gauges) and this is not readily

found. Even if obtainable, such sensitive metering would probably by

its very nature greatly increase experimental time when used in the

millitorr range.

Thus we have a four -dimensional problem to cope with where one of

the independent dimensions is not easily controlled, and the fourth

depends on the other three. As might be expected, the experimental

difficulties are trivial compared with the problem of the four-dimensional

analysis that must come from it.

The accumulated experimental data rapidly became so voluminous

that the author decided to code it so that the electronic computer at this

school could assist in the analysis. This proved to be exceedingly

useful: calculations, graphical displays, and other analyses that would

have taken many months to perform manually were accomplished in two

weeks. Total computer time was less than two hours, exclusive of

graph plotting. The latter was done "off-line" by other automated equip-

ment based upon information generated by the computer and fed to the

other equipment on magnetic tape.



II. REVIEW OF PREVIOUS WORK

A. General

The phenomena of moving striations in the positive column of a

gas discharge at low pressure has been studied for many years. In

researching published literature as well as an excellent review of the

literature, "Moving Striations" by Oleson and Cooper (1) (soon to be

published), one gets the distinct impression that there has been relatively

little study in recent years on the basic characteristics of self-excited

striations, i.e. wavelength, frequency, and velocity. The more sophis-

ticated areas such as those concerning the phenomena of artifically

excited striations seem to be holding current interest. In fact Pupp's

papers (2) in the early nineteen-thirties , still can be considered as a

major work in this fundamental area. But even his papers leave much

unanswered concerning the basic relationships between the variables

associated with self- excited moving striations.

As discussed in the introduction, the measurable quantities

characteristic of these striations are so dependent on three parameters

that there exist no simple cause and effect relationships. This probably

is a contributing factor to the paucity of recent work in this area. As

an aside thought: it may well turn out that the cause and effect relation-

ships will prove to be so non-linear, even to the point of being erratic,

that once they are experimentally determined one would be hard pressed

to develop the theory that explains them.



When earlier researchers found this lack of two-variable

linear relationships, they then combined sets of variables in an attempt

to find correlations (2, 3). Pupp, for example, found that plots of fre-

quency times tube radius versus pressure times tube radius fell on a

curve independent of radius and current. As will be discussed in section

VI, results of this study indicate that the curve may in fact be a banded

area of finite width rather than a thin-line type of curve.

B. Striation Wavelength

Druyvesteyn (4) found that the wavelength of striations in rare

gases involved a relationship /VR = f(pR, i/R) where "f" signifies

function and not frequency.

More recently, Kenjo and Hatta (5) found in Neon that

This was determined by using a tapered discharge tube. Although they

did not report their ranges of discharge current and pressure, some of

their published graphs indicate their ranges are encompassed by those

of this work. Extrapolating from their published graphs one finds that

their empirical equation is likely to be

X = KR"
where K is a constant of proportionality approximately equal to 5. It

must be noted that these authors did not publish the relation given by

equation number 2, but only the proportionality given by equation

number 1. The proportionality constant K was arrived at by taking a

mean value of 1. 75 for N and fitting their published data to the relation-

ship.

10



In the case of Argon, work by Alexeff and Jones (6) agreed

reasonably well with portions of Kenjo and Hatta's theories, when they

used a similar size and shaped discharge tube. However, Alexeff and

Jones found little dependence of wavelength on radius at the pressure

extremes.

Kenjo and Hatta made a point of basing part of the validity of

their relationship on the theory that only a single tapered tube should be

used to determine the /\^ = f(R) equation. They state that "to use many

cylindrical tubes with various radii is not preferable to obtain this rela-

tion, because the mode of each tube is not always the same. " However,

in the present investigation an attempt was made to overcome this objec-

tion by keeping all other parameters the same.

As will be discussed in detail later, results of this work agree

only partially with the theory of Kjnjo and Hatta. The theory appears to

fail noticeably when applied to very large and very small radii.

C. Striation Frequency

Pupp's findings, mentioned earlier, that the quantity frequency

times radius versus the quantity pressure times radius yields a smooth

curve, has since been observed several times (for example: Oleson

and Cooper (7), Donahue and Dieke (3)).

For the effect of tube radius on frequency, Oleson and Cooper

(7), and Alexeff and Jones (6) have found that frequency increases when

the tube radius decreases.

11



In section VI, it is shown that the results of this study agree

fairly well with this generalization if data taken from tubes of small

radii (5 millimeters or less) at low pressures (about 200 millitorr or

less) are not included. Again we see the problem that arises when we

attempt to relate a dependent variable to only one of the independent

parameters

.

D. Striation Velocity

Alexeff and Jones (6) found experimentally that at low pressures

(10 millitorr and less), the velocity was not related to discharge tube

radius, while at higher pressures, it seemed to be a function of radius.

They further noted a rapid decrease in velocity as the pressure was

increased. Results of this study support the latter finding, but no

clear-cut relation between velocity and radius was found.

Others, such as Oleson and Cooper (7), and Kenjo and Hatta (5)

have found that velbcities generally increased as tube diameter decreased.

E. Electric Field Gradient

Druyvesteyn (4) noted that in general the electric field was

inversely related to the discharge current. He also found it inversely

related to tube radius until tubes of "large" (unspecified) radii were

used, in which case the electric field was no longer a function of radius.

This study does not completely support that last statement in that the

electric field was still related inversely to radius out to a radius of

37. 5 millimeters (the 75 millimeter tube).

12



Guntherschulze (8) stated that in "wide" discharge tubes the

electric field was no longer a function of pressure and he called this

situation "the normal gradient. " If a 75 millimeter discharge tube can

be classified as "wide" this study shows a strong non-linear dependence

of the electric field on pressure through a wide range of radii.

More recently, Alexeff and Jones (6) found the electric field to

be "remarkably constant" and not a function of radius. (This study does

not at all support that statement. ) Opposed to their findings is that of

Kenjo and Hatta (5) that in a tapered tube E **** 4/R.

Oleson and Cooper summarized the situation with their obser-

vation (1) that "further experimentation is required to resolve this point"

(of obvious disagreement) on the effects that tube radius has on electric

field.

Also of interest is the relation found by Novak (9)

where f is a constant, independent of current, pressure and tube

diameter, but dependent upon the type of gas in the discharge. Data in

this study agreed with the idea of linearity shown by the equation.

However, a sharp discontinuity in the region of E = 2 volt/centimeter,

/V. - 12 centimeters, seems to imply that there are in fact more than

one constant of proportionality, f!c >
anc* that they appear to be related

to discharge tube radius. This is discussed further in section VI.

F. Probe Perturbations

13



No published works were found that discussed the perturbing

effects that the physical presence of probes in a discharge tube have

on the basic characteristics of self-excited striations.

14



IE. EQUIPMENT

A. Experimental Apparatus

This section describes the equipment and circuits used in this

study of self-excited striations' frequencies and wavelengths in a Neon

plasma. In addition to the detailed description below are line drawings

in Figures 1 through 5.

1. Vacuum System and Pressure Measuring Equipment

The discharge tubes were operated directly connected to

the evacuation and filling system to allow rapid variation in gas pressure.

A common vacuum, gas reservoir, and manometer system was used for

all discharge tubes. This system had the proven advantage of rapid

pumping speed after baking out with a portable oven. For example, the

-6
system could be evacuated to about 1x10 Torr in less than one

minute after being operated in the 1 to 10 Torr pressure region. This

advantage was quite useful due to the frequent pressure changes requir-

- 8
ed in amassing data. Ultimate pressures on the order of 1 x 1 Torr

were attained after several hours of continuous pumping. The entire

system except manometer, gas reservoir and a part of the glass tubing

and valve leading to the pumps were baked with a portable oven each

time a new discharge tube was installed. Bakeouts lasted for about six

hours, either at 410 C with all valves open or at 250 C if a new gas

reservoir had not been installed. In the latter case, the control valve

to the reservoir remained shut, necessitating the lower temperature.

15
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The system was evacuated with a Veeco EP2-1, two-inch

metal diffusion pump (speed 80 1/sec) and a Cenco Hyvac Model 14 fore-

pump. The diffusion pump was trapped with an AeroVac Model AT2F

liquid nitrogen trap. The connection to the rest of the system was via

glass tubing through a General Electric 1-1/2 inch bakeable valve. The

discharge tube and one inch diameter glass tubing lines connecting the

reservoir and manometer to the system were mounted above an asbes-

tos table top which accommodated the portable oven during bake-out.

Valves exposed to this baking were Granville -Phillips 1/2 inch valves.

A Linde one-liter flask of Neon constituted the reservoir and was changed

with the installation of every other discharge tube.

-4
Pressures less than 10 Torr were measured with a NRC

563-P ionization gauge connected to a Veeco Vacuum Gauge Controller,

type RG-2A. Pressures in the operating range of 20 to 10, 000 millitorr

were determined by an oil-filled manometer as read with a cathetometer

at a distance of 20 feet. It was intended that Westinghouse 790 3 Ioniza-

tion (Schultz) Gauge be used for measuring pressures in the lower part

of the operating range. However, operational failures in that gauge's

ancillary equipment did not permit it to be used within the time frame

imposed for this thesis.

Pressures of 1 to 10 Torr were read directly with the oil

manometer; its oil's density was such that one centimeteter of displace-

ment equalled 0.672 Torr. For lower pressures we assumed that Neon

obeys the Ideal Gas Law and proceeded as follows:

21



The manometer was filled with Neon to a relatively high

pressure so that a large displacement in oil levels was obtained (typi-

cally 45 to 50 centimeters). The displacement D was measured with a

cathetometer and the pressure P calculated; e. g. 50 cm oil x . 672

Torr/cm oil = 34. 6 Torr. While this measurement was being made the

manometer was closed off from the rest of the system and the system

-7
was pumped down to about 10 Torr. After equilibrium the valve to

the pumps was closed and the gas in the manometer allowed to expand

into the entire system. Again after equilibrium the second oil displace-

ment, D , was read (typically 0. 5 to 1.5 centimeters) and converted to

a pressure P . This procedure was repeated numerous times when a

new discharge tube was installed to the system. By averaging the read-

ings, a pressure ratio P /P was obtained for each tube plus rest of

system, and pressures on the order of 15 to 20 millitorr could be

accurately determined. As will be discussed later, at pressures below

100 millitorr, measurable self-excited striations were infrequently

encountered during this study.

2. Discharge Tubes

Five discharge tubes of different diameters were used in

this work; all made of Pyrex glass. Their inner diameters were 4, 10,

31, 75, and 140 millimeters and overall lengths were between 83 and 90

centimeters. The useable positive column in each was about 60 centi-

meters long. Diagrams of these tubes and their geometry are shown in

Figures 1 through 5.

22



The 10 millimeter tube consisted of two parallel tubes,

one with probes, one without, and joined at a common cathode -filament

base. The parallel tubes had separate anodes. The 31 millimeter tube

had a similar configuration. The purpose of this geometry was to allow

study of the perturbing effects that probes have on self-excited striations.

These effects will be discussed later. (Note: Hereafter, when discuss-

ing a tube of specific diameter, the singular form "tube" will be used,

even though the 10 millimeter and 31 millimeter configurations were in

fact each a pair of tubes with a common cathode base. )

In order to maximize common geometry, nearly identical

anodes, cathodes and their respective glass housings were used on each

tube. Anodes were tantalum disks, 3 centimeters in diameter. See

Figure 6. Filaments of all tubes were Westinghouse Style No. 14-39601

coiled ribbon, oxide coated, made of tungsten, rated at 5 volts, 7. 5

amperes. Tantulum cylinders surrounding the filaments served as

shields.

Two fixed probes made of 20-mil tungsten rod were

installed in one member of the 10 millimeter pair and 31 millimeter pair

of tubes, and in the 75 millimeter tube. These probes were spaced about

20 centimeters apart and approximately centered about the mid-length

of each tube. See Figures 2 through 4. Inside the tube the end of each

probe was bent through 90 degrees so that about one-quarter of an inch

of each probe lay along the axial center of the tube with probe tips

facing the anode. The remainder of the probe was sheathed with an

alumina tubing sleeve. See Figure 7. This construction technique had

23
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Figure 7. Probe installation.
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been previously shown to reduce spattered probe deposits and allows

more accurate measurement of the average axial plasma electric field.

(10)

The small girth of the 4 millimeter tube did not allow

probes to be installed in it. Several attempts by a highly skilled glass-

blower to install probes in the 140 millimeter tube failed. The large

surface area of this tube would not allow controlled annealing to take

place after probe installation: hence the tube always fissured during

cooling.

3. Discharge Tube Circuits

The filament power supply and the main discharge power

supply were common for all tubes. See Figure 8. The discharge tube

filament was operated by a diode rectifier, filtered 9 volt power supply

which was controlled by an autotransformer.

Discharge tube current was controlled by the voltage of

the main power supply which was connected through two 2580 ohm, 0. 5

amp rheostats in series, to the discharge tube. This power supply was

a locally constructed 0-5 kilovolt, 0-1 ampere, direct current, unregu-

lated, filtered supply with output voltage controlled by an autotransformer

on the input of the supply. In addition to the built-in ammeter and volt-

meter of the power supply, more accurate instruments for measuring

these parameters were in the circuit and will be discussed.in the

Diagnostic System Section.

4. Diagnostic System

a. Striation wavelength-measuring equipment

25
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Figure 8. Power supply, all discharge tubes,
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The original purpose of this study was to determine

what effect, if any, discharge tube diameter (or radius) had on direct

current self-excited striations in a plasma. Accordingly two RCA 1P22

photomultiplier (hereafter PM) tubes and a Tektronix Type 555 Dual

Beam Oscilloscope formed the heart of the diagnostic system.

This equipment was arranged so that the output signal

of a reference PM tube externally triggered the sweep of the oscilloscope

which displayed the output signal of the second movable PM tube as well

as that of the reference tube. See Figure 9. The PM tubes had a com-

mon power supply which was locally constructed, having a 1200 volt, 1

milliamp output. Each tube was mounted on a simple sliding truck which

in turn fitted on an aluminum track. The track was graduated with a

millimeter scale and was situated parallel to the discharge tube. By

observing the oscilloscope display of the second PM tube while moving

the tube along the length of the discharge tube, direct wavelength

measurements could be taken. Light from the plasma discharge to the

PM tubes was collimated by two slit-type baffles installed in a collimat-

ing tube locally constructed from 6-ounce frozen juice cans. All other

light was blocked from the tubes.

b. Striation frequency-measuring equipment

The signal output from the movable PM tube was also

used to activate a Hewlett-Packard Electronic Counter, Model 521A.

From a "T" connector at the oscilloscope, the signal went through a

Scott Decade Amplifier Type 140A set for 100-fold amplification, and

27
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tubes only.
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thence to the counter. See Figure 9. This technique gave direct fre-

quency measurements. Hence it was considerably more time saving as

well as inherently more accurate than measuring the length of the signal

wavelength on the oscilloscope reticle and converting that measurement

to a frequency by means of the time base setting,

c. Electric field measurements

These data were calculated by measuring the voltage

potential difference between the fixed probes installed in the 10, 31, and

75 millimeter tubes, and dividing this measurement by the distance

between the probes. This gave the average electric field values.

During the initial stages of the study, the voltage was

measured with a high impedance Keithley Vacuum Tube Electrometer

Model 600A. In spite of the fact that shielded cable leads connected the

probes to the electrometer (used on voltmeter setting) considerable time

was lost waiting for the meter to overcome "drift" effects each time it

was connected across the probes. Further, the slightest movement of

leads, or even the routine motions of the observer reading and recording

data, caused fluctuations in this highly sensitive instrument. In an

attempt to overcome this unacceptable and continuing time loss, a

Simpson Multimeter on voltmeter setting was tried out. This meter had

a sensitivity rating of 5000 ohms per volt in the voltage range utilized.

Under carefully controlled and identical conditions,

the Simpson Multimeter was found to give voltage readings within 2% of

those of the Keithley Electrometer when they were compared for probe

29



voltage measurements. These tests were made on the probe system

in the voltage range encountered in this work, i. e. 80 to 150 volts.

Also no other variables such as discharge current changed when one

meter was substituted for the other. Since there was a negligible time

lag involved with the Simpson meter, it was used for the remainder of

the study to measure the voltage between probes.

In order that there would be no possible perturbing

effects, the voltmeter was connected across the probes only for the

voltage measurement. It was then removed before the next wavelength

or frequency measurement was taken.

d. Discharge tube voltage and current measurements

A RCA Senior Voltohmyst Vacuum Tube Meter was

used to measure the anode-cathode voltage drop. Since the cathode was

at ground potential and often more than 1500 volts initial potential

difference across the discharge tube was required to establish the

plasma, this voltmeter was connected across the tube after the dis-

charge was activated. In this way the voltmeter's capacity was not

exceeded. After that, so long as there was a discharge, this meter

was not disconnected during data taking.

Even though high voltages were often required to

maintain the discharge, the current through the discharge was not

allowed to exceed 400 milliamps; hence the ammeter used was never

disconnected from the circuit. For currents of less than 100 milliamps,

a milliammeter of finer scale was placed in the circuit. When taking

30



data, the current was varied in 20 or 30 milliamp increments from 20

to 400 milliamps by adjusting the rheostats in series. Occasionally, the

main power supply voltage output had to be increased to get the 20 to

400 milliamp current range.

B. Data Analysis Equipment

In the course of this experiment more than 5000 items of data

were taken. Due to the myriad of ways that this data, together with

results calculated from it, could be arranged, the Postgraduate School's

Control Data Corporation (CDC) 1604 Computer was used to assist in

the analysis.

A data card was made for each observation of wavelength and

frequency. Also coded on this card were: tube diameter, probe spacing

distance, pressure and discharge current in the tube at the time of the

observation, anode-cathode voltage difference, and the voltage differ-

ence between the probes. In the case of the 10 and 31 millimeter tubes,

the frequency and wavelength in the adjacent tube under identical condi-

tions were coded on the same data card. Figure 10 shows a sample

data card.

Results of calculations with these data were graphed, when

applicable, by a CalComp 165 Plotter which was operated "off-line"

from the CDC 1604 computer. The methods of data analysis are

discussed in section V.
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IV. EXPERIMENTAL TECHNIQUE

A. Preparation for Data Taking

As is frequently done, the two parameters of gas pressure and

discharge current were varied, and the resulting striation frequencies

and wavelengths, as well as pertinent voltages recorded. After the sys-

tem had been baked out but before taking any measurements the following

took place:

1. The system and oil manometer were evacuated to a very

-7
low pressure (on the order of 10 Torr) and gauge and filament outgassed.

2. To reduce "clean-up" effects the tube was filled with Neon

to a pressure in the vicinity where data was to be taken and a discharge

operated for several minutes at a current of about 250 milliamps.

3. While the discharge was maintained the system was again

evacuated. When the discharge flickered out during this pump down,

the main voltage supply to the anode and cathode was turned off, but the

filament left on at its operating current.

-7
4. When a pressure of about 10 Torr was again reached

(usually in a very few minutes) the valve to the pumps was closed.

In this manner the system was purged prior to each series of

measuremffitnfrs ;ait a given .'pressure.

B. Measurements

1. General
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The system was again filled with Neon to the approximate

desired pressure. A discharge was established and the current increas

ed in 20 or 30 milliamp increments over a range of 20 to 400 milliamps.

At each increment the discharge was allowed to reach a steady state

before measurements were taken.

As is well known, self-excited striations are not present

at all pressures between 10 and 10, 000 millitorr, nor are they always

present at all currents between 20 and 400 milliamps for a fixed

pressure in that range.

Accordingly, this investigator started taking data on each

tube at a pressure of 8, 000 to 10, 000 millitorr if coherent striations

were present at this high a pressure. When such striations were found

at a selected pressure, the current was then varied over the operating

range and data taken.

If coherent striations were readily found in a particular

pressure range, once data had been taken at one pressure, the system

was evacuated, purged, and refilled to a pressure about one-fifth lower.

The overall plan was to take data at pressures of about 10, 000, 8000,

6000, etc. , 1000, 800, 600, etc. , and 100, 80, 60, etc. millitorr.

Whenever a pressure region that would not support coher-

ent self-excited striations was encountered in this downward trend of

pressure, the pressure was gradually reduced until the next useful

region was found. This explains the large gaps in pressure to be noted

in examining data and results in this thesis.
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In this manner the pressure was stepwise reduced until

measurable coherent striations were no longer to be found. At pressures

lower than these, the positive column still existed but no useful data

could be obtained due to the "noise" of the discharge. Possibly one of

the limiting factors in this regard was the spectrum sensitivity of the

PM tubes used in measuring wavelength and frequency. At very low

pressures (less than 100 millitorr) for all but the 140 millimeter tube,

the discharge gradually changed colors from its distinctive "neon red"

to a whitish-orange. In the case of the 140 millimeter tube the color

changed through shades of purple to a light lavender. It may be that a

PM tube more sensitive to yellow-orange than red will be able to dis-

cern any self-excited striations present at these low pressures.

However, since coherent moving striations also depend upon the length

of the discharge tube (1) there may be none present at these low pres-

sures in such relatively long tubes as used in this work.

It was noticed that in general measurable striations are

more pressure sensitive than current sensitive in these operating ranges.

Usually striations could be found over most of the current range once

the pressure was in a satisfactory region. On a few occasions at

unsatisfactory (for our purposes) pressures, stabilized striations were

found if the current range were increased to 1 amp. However, the

electrical components of this system would not permit any sustained

operation at currents greater than 500 milliamps since that was their

rated maximum. Further, heat dissipation was a problem for this
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system when it was operated at currents greater than 350 milliamps.

Therefore this interesting side-line was not pursued.

2. Pressure Measurements

As discussed in section III, pressure was measured with

an oil manometer as read by a cathetometer at a distance of 20 feet. In

the 1000 to 10000 millitorr range the pressure in the system was read

directly. For pressures less than 1000 millitorr, the gas expansion

technique described in section III was employed.

3. Wavelength Measurements

The two PM tubes were used to measure the wavelength.

These tubes were placed side by side on their truck mounts, so that

their apertures were close to the discharge tube. As described pre-

viously the signal output of one tube (reference) was used to trigger the

sweep of one of the beams of the dual beam oscilloscope while being

simultaneously displayed on the other beam. The signal from the

second (movable) PM tube was displayed on the triggered beam.

First, the waveform and phase of the triggered display

were noted. The second PM tube was then moved down the length of

the discharge tube until the phase of the waveform became the same as

in the original position. This indicated that the distance travelled by

the PM tube was just one wavelength. This distance was measured

directly using the millimeter scale attached to the track which held the

trucks of the PM tubes.
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Whenever possible, wavelength measurements were taken

from a starting point about 15 centimeters from the anode end of the

discharge tube and measured toward the cathode. However, for the 140

millimeter tube (and occasionally the 75 millimeter tube) the cathode

fall region (dark space. . . no positive column present) extended from the

cathode toward the anode for about one-third the distance between the

two. And for this tube, wavelengths between 30 and 40 centimeters

were often found. Therefore, the starting point for measuring wave-

lengths was moved to about 5 centimeters from the anode in order that

the wavelength to be measured was "contained" in the positive column

that could be seen by the PM tube.

4. Frequency Measurements

The signal from the PM tube that measured wavelength

also triggered the electronic counter that measured the frequency.

These measurements were taken at the point along the discharge tube

that marked the starting point of the wavelength measurement.

The display time of the counter was set so that a frequency

count was displayed every second. For frequencies less than 10, 000

Hertz, the count rarely varied more than 2 per second for any pressure-

current combination. However at higher frequencies the counts

sometimes varied by + 3% from the mean. In these cases, about 10

consecutive counts were averaged to obtain the mean frequency for the

pressure-current combination.
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After the frequency and wavelength had been measured in

the probe-free tube of the 10 and 31 millimeter pairs, the PM tubes were

depressed into position to make the measurements in the probe tubes.

While a discharge was operating in one of the members of

the pair, none was operated in the other to avoid the possibility that

radiation from one tube might perturb the plasma constituents in the

other while the latter were being observed.

5. Electric Field Determination

The average electric field was calculated (one of the jobs

of the CDC 1604 Computer) from the voltage measurements made

between the fixed probes in the 10, 31, and 75 millimeter discharge tubes,

As mentioned in section III, voltage measurements were

made initially by a Keithley Electrometer and later by a Simpson

Multimeter. The distance between the probes had been previously

measured. The computer merely divided the measured voltage by the

inner-probe distance to obtain the electric field strength.

6. Discharge Current and Voltage

The current of the discharge, along with the pressure, was

a variable parameter that fixed the values of the parameters. Two

laboratory ammeters were used in this study. For currents less than

100 milliamps, a milliammeter graduated in 5-milliamp intervals was

used; for 100 milliamps and greater, a 0-1 amp ammeter, graduated

in 10 milliamp intervals was used.



Discharge voltage was measured between anode and

cathode (anode was positive; cathode was at ground potential) by a

vacuum tube voltmeter. The original purpose of this measurement was

to provide a check that identical electrical conditions existed in the

members of the 10 and 31 millimeter tube pairs (after assuring that

identical currents passed through each tube). Hence, at the same

pressure, any striation wavelength or frequency difference between

pair members could be attributed to the presence of probes in one of

them.

39



V. METHOD OF DATA ANALYSIS

Coded data cards as illustrated in Figure 10 were prepared for

every measurable striation wavelength observed while incrementing

pressure and discharge current. As previously mentioned, frequency,

current, voltages and pressure at the occurrence of the striation were

also included on the data card, as well as the tube's geometry. This

information was thenifed into the Postgraduate School's CDC 1604

Computer along with necessary program and control cards. Desired

calculations were then performed by the computer and results printed

out and/or graphed for study. A flow chart showing the basic program

structure is illustrated in Figure 11.

For initial analyses, data cards were segregated by tube size

(radius is one of the independent parameters) and then further sorted

into groups of like pressure or like current. The program then had the

computer make calculations, e.g. , electric field and striation velocities,

for print out. Finally these calculations as well as portions of the input

variables were plotted as functions of the independent parameters.

Typical results are shown in Figures 12 through 16. In this manner, the

types of graphs shown on the next page were made.
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Program Control Information

Instructions are given the com-
puter that prepare it to receive

and store in "memory" (i. e.
,

dimensioning) all input data and

results of calculations to be per
formed later.

-±
Input of Data

Data from the experiment is

read into the computer by coded
punch cards and stored in mem-
ory.

±
Calculations Performed

Calculations with the input data

are performed based on the con-

trol cards that are part of the

main program.

Cut-. .

Information Printout

Portions of the input

data as well as calcu-

lations derived from
it are printed out.

Graphic Output

Computer gener-

ated calculations,

etc. are machine
graphed for output.

Figure 1 1

.

Computer program flow chart.

41



dependent variable independent parameter independent parameter
(varying) (constant)

1. striation wavelength, 1. a. current 1. a. pressure and
frequency, velocity, radius

electric field; for the

10 and 31 millimeter pairs Lb. pressure Lb. current and

of tubes: the differences radius

in wavelength, frequency,

and velocity, between
adjacent tubes.

2. logarithms of the 2. same as above 2. same as above
above

This initial analysis showed many trends on how the dependent

variables were related to the independent parameters. For example,

it is readily observed in Figures 12 and 13 that both wavelength and

velocity are independent of currents greater than 100 milliamps. These

graphs as well as those in Figures 14 and 15 showed that the dependent

variables were quite sensitive to pressure. These trends are discussed

in more detail in section VI. There were also cases of unusual behavior

to be noted: for example, the frequencies found in the 4 millimeter tube

were very much related to the current at certain pressures but at other

pressures were not nearly as sensitive. See Figure 16.

Next data on all five tubes was displayed on the same graph. These

graphs showed the dependent variables of each tube as functions of

pressure at equal discharge currents. This technique is illustrated by

Figure 17. Here again obvious trends were noted but no clear-cut rela-

tionship of the dependent variables on tube radius alone was found.

In the middle regions of tube radius, pressure, and discharge

current, it was found that relationships were often well-behaved.
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Figure 12. Striation wavelength versus discharge tube current.

10 millimeter discharge tube, common pressure curves
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31 millimeter discharge tube, common pressure curves

44



( **r1*)

3oooo

a,o«w>

f«606

»oo ?0O IOt>o

Figure 14. Striation frequency versus pressure.
75 millimeter discharge tube, common current curves.

45



(cm;

50 -

ao

l

jOO
I

50O IOOO
4 I Przssare
5000 fnillctorr
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Figure 17. Striation wavelength versus pressure.
Data from all discharge tubes for 180 milliamps current.
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(All of this graphic output of data made it easy to see how earlier inves-

tigators who took data in these central regions had arrived at their

empirical equations relating dependent variables to only one or two

independent parameters.) However, coherent moving striations are

also found outside these middle regions; here, data no longer seems

to fit these equations.

Therefore, the final analyses involved the relationships between

the mathematical products of variables. Most frequently used as inde-

pendent variable combinations were pressure times radius, and pressure

.. 2
times current density. It should be noted that the latter, pi/ff R ,

combines all the independent variables into one factor. An example of

how dependent variables relate to these defined parameters is shown in

Figure 18. In general these relationships proved to be more linear than

when single independent parameters were used.

It was suggested that the well-known parameter, current density,

be used in an attempt to relate the dependent variables. However, the

2
1/R factor in this variable caused exceedingly little data taken with one

2
tube to overlap data taken with another when i/ff R is calculated. In

2 -2
this study, 1/R ranges in value from 1/4 to 1/4900 millimeters

Hence, to get appreciable overlap between tubes in current density, the

discharge current would have to range over a factor of about 1000 also.

Since the mathematical product, pressure times current, ranged

over a factor of 2000 in this work, the artificial parameter pressure

times current density was used. In this way, correlation between the

discharge tubes at the microscopic level could be had.
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Data from all discharge tubes.
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VI. OBSERVATIONS AND CONCLUSIONS

A. Wavelengths

The greater the tube radius, the greater the striation wave-

length. This was one of the most consistent results obtained in this

work. The mathematical relationship between these two factors is not

at all clear, however. None the less, when wavelengths in each tube

are compared under conditions of equal pressure and equal discharge

current, there exists no case of a smaller tube having a wavelength

greater than that of a larger tube. All attempts failed to empirically

relate wavelength to radius alone.

A general conclusion reached is that striation variables are

most dependent upon pressure and geometry and exhibit relatively

little dependence on discharge current.

As mentioned in section II, Kenjo and Hatta derived a rela-

tionship that the wavelength was mathematically proportional to the

tube radius raised to a power between 1. 5 and 2. (5). This author

X~ N
= 5 x R ,

where N was 1. 75. Certain data taken in this work agrees quite well

with this equation when compared with similar pressure and current

readings. However, this was true for the 10 and 31 millimeter tubes

only. The equation fails badly when data from the extreme radii tubes

of this experiment are applied to it.
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The following chart shows these results.

experimental data theoretical predictions

tube radius wavelength wavelength

1. 2 millimeters 1. 8 to 4 cm 0. 3 cm
(largely 2. 5

to 4 cm)

2. 37. 5 millimeters 6. 5 to 40 cm 48 cm
(largely 15 to

25 cm)

Hence, one can only conclude that the constant of proportionality, K,

is in fact not a constant. It seems more likely, however, that the

"basic" relation \«C R , (1.5^ N^ 2.0), is faulty.

The wavelength seems sensitive to radius for radii between 5

and 37. 5 millimeters. If the logarithms of wavelength and radius are

plotted holding the pressure and current constant, a sigmoidal curve

is usually obtained. Such a plot is shown by Figure 19. Unfortunately,

even here one cannot empirically determine an equation of the nature

\ = f(R)> because this graph is valid only for a particular combination

of current and pressure. Changing either of these parameters changes

the slope of the curve and hence a more appropriate relation would be

\= F (p, i )f(R). However, for all pressures and currents of this

work, the general sigmoidal nature of the relation is preserved.

As noted earlier, wavelength is rather independent of current if

we use it as the sole independent parameter. Only currents less than

100 milliamps had a noticeable effect on wavelength; in that region

wavelength increases with current.
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Figure 19. Striation wavelength versus discharge tube radius.

Typical curve obtained from data of equal current

and equal pressure.
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Pressure, as the sole parameter, seems to have the most

pronounced and uniform effect on wavelength. As is shown in Figure

17, increasing the pressure decreases the wavelength, the effect being

more pronounced at larger radii of discharge tubes. Figure 20 shows

mean effects of wavelength as a function of pressure for several of the

tubes in this work. Of interest is the reverse effect to be seen with

the 75 millimeter tube at pressures between 300 and 1000 millitorr.

No explanation is offered for this happening.

Combining variables and plotting the logarithm of wavelength

versus the logarithm of pressure times current density yields an

approximately linear band as shown in Figure 21. This indicates that

an increase in the pressure-current density variable causes a decrease

in wavelength.

Novak's empirical relation ^^ft/E, was found to agree

somewhat with observations in this study. However, Novak specified

that j * was independent of tube radius. Results of this study are

shown in Figure 22. From this graph it appears that Tf may depend

on radius since the linear groupings to be noted each represent data

from one discharge tube.

B. Striation Frequencies

Frequency, in general, increases as the tube radius decreases,

However, no mathematical relation between these two alone was found.

Throughout this phase of the study, all trends and relationships were

well behaved with the exception of those resulting from the 4 millimeter
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Figure 20. Striation wavelength versus pressure. Data averaged
over all currents for the indicated discharge tubes.
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Figure 21. Logarithm of striation wavelength versus logarithm
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discharge tubes.
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Figure 22. Striation wavelength versus electric field.

Data from 10, 31. 75 millimeter discharge tubes
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discharge tube. The erractic nature of its behavior is obvious in

Figures 16 and 23. The frequencies measured in the 140 millimeter

tube remained remarkably constant: always between 300 and 750

Hertz. However it was noted that the glow discharge in this tube

never completely filled out the tube radially, the mean radius of the

visible glow discharge being about 50 millimeters.

With the exception of the 4 millimeter tube, currents greater

than 100 milliamps had no effect on the frequency. In the case of that

tube however, frequency increases greatly with current as shown in

Figure 16. For the others, frequencies increased slightly as the

current increased from 20 to 100 milliamps.

With the exception of the 4 millimeter tube, frequency gener-

ally decreased as pressure increased. Typical findings are illustrated

in Figure 23. Figure 24 shows the mean (averaged data) effects of

pressure on frequencies for all the tubes used.

C. Striation Velocities

Striation velocity was not measured directly but was computed

by the equation y^ — AV • Because wavelength increased with increas-

ing tube radius whereas frequency decreased at the same time, there

was no clear cut relation or trend between velocity and radius. This

finding is shown by Figure 25, which illustrates typical results for

velocities as a function of pressure at constant current. The genera-

lization, made in earlier studies (5 and 7) that velocity generally

increased as tube diameter decreased cannot be supported by this

work.
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Figure 23. Striation frequency versus pressure.
Data from all discharge tubes for 220 milliamps current.
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Currents greater than 100 millimaps had no effect on velocity;

it remained quite constant above this value. Between 20 and 100 milli-

amps, velocity generally increased with current. This result follows

from the same effect observed between frequency and current.

As pressure increased, velocity decreased and this trend is

shown in Figures 25 and 26. Figure 26 represents the mean (averaged

data) effect of pressure on velocity for all tubes. This finding is in

agreement with that of Alexeff and Jones (6).

D. Electric Field

The average electric field was computed by dividing the

voltage difference measured between the two fixed probes by the dis-

tance between them.

For pressures on the order of 2000 millitorr and less, it was

found that the electric field decreased linearly with increasing radius,

seeming to follow a relation give by

£ =£ -K U5(R) 4.

where E = 8.0 volts /centimeter , R is the radius in millimeters andO

K a constant of proportionality =*4. 5.

There was no general agreement between findings of this

study and the empirical equation of Kenjo and Hatta, E = 4/R.
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Applying this relation we find:

experimental data

tube radius electric field

1 . 5 mm

2 . 15.5 mm

3. 37. 5 mm

3. 3 to 6 volt/cm
(largely from 4

to 6 volt/cm)

1. 3 to 2. 8 volt/cm
(largely from 1. 5

to 2 volt/ cm)

0. 3 to 1. 7 volt/cm
(largely from 0. 5

to 0. 9 volt/cm)

theoretical prediction

electric field

8 volt/cm

2. 6 volt /cm

1. 05 volt/ cm

For currents greater than 100 milliamps, the electric field

generally decreases as current increases. This effect becomes more

pronounced as tube radius decreases. Surprisingly in the 75 milli-

meter tube, the electric field was found to increase with current for

currents between 20 and 100 milliamps. This is shown in Figure 27.

Pressure affects the electric field but there was no uniform

trend to be noted, much less an indication of a mathematical relation

between the two. Figure 28 shows the mean (averaged data) effects of

pressure on the electric field. Guntherschulze's "normal gradient"

(8), was notfound. From Figure 28 it can be noted that there is a

general trend of electric field increasing with pressure until about

1000 millitorr is reached. After that, it continues to increase in the

case of the 75 millimeter tube but decreases in the others.

E. Probe Perturbations
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Figure 27. Electric field versus current.

75 millimeter discharge tube, common pressure curves
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It was observed that probes generally decrease both the

frequency and wavelength of the moving striations, this effect being

more pronounced at lower pressures.

At about 1000 millitorr pressure, the velocities of stria-

tions in a discharge tube with probes are about 20 percent less than

those of striations propagating in a tube without probes. This differ-

ence decreases to about 1 percent as the pressure increases to 1000

millitorr. At high pressure no significant difference was found.

F. Final Comments

In analysing the graphs to obtain best-fit curves, allowances

were made for point density at certain locations on the figure. In the

offset printing of this study, these high density areas will appear black

and data points within them will be indistinct. Conversely, distinct,

well-separated data points represent a minute portion of total data:

typically 1 point out of 500 total.

In general it was found that most of the unusual behavior

came in the extreme pressure and radius regions when those two para-

meters wejre^simultaneously in effect. Several of the graphs in this

study illustrate this by showing a cluster of points off the mean fit

curve. For example, Figure 22 shows such a cluster in the area of

3 to 4 volt/centimeter along the electric field axis and about 2 centi-

meters along the wavelength axis. This data was taken at high

pressure in a small diameter tube (7500 to 10, 000 millitorr, 10 milli-

meter tube). On the same figure the very few points on the upper left
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portion of the curve (wavelength of 30 to 40 centimeters) are from the

75 millimeter tube operated at pressures of 35-75 millitorr.

Good correlation between Pupp's work and this were found.

Figure 29 shows all the data taken in this work plotted as radius times

frequency against radius times pressure. However, the data clearly

fits a hyperbolic band of finite thickness rather than falling on one

smooth curve, as observed by Pupp. Most of this added width is due,

again, to data taken at pressure and radii extremes.
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