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this thesis presents a general discussion of the problems involved

in estimating the Circular Probable Error, /.ore commonly referred to as

the CSP, A comparison is made between the estimates of the CEP under

two distinct models. The models are identical except for the location

of the mean vector in relation to the target. The assumption of depen-

dence is made in both models and the resulting estimates are compared

with the corresponding estimates obtained under the assumption of inde-

pendence. Confidence interval • estimates of the CEP are also presented.

Two methods of removing outlier or ,:l.averick" observations are intro-

duced and some of the possible effects on the estimated CEP are discussed.

The different estimating procedures are illustrated with three numerical

problems.
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The t
••

J.JI
'• is familiar to most i.'aval Offic , the under 1;

assumptions upon which this measure of '.' jtiveness rcs^c are oft

misunderstood § Therefore! it is the objective of this thesis to exp]

as fully as possible what the CSp is and to illus ... of the

... thods available to estimate the C3P,

?he C3P was initially developed in order to give some criterion for

measuring the expected effectiveness o.
T

a particular apon syste

give some means Tor comparing similar weapon systems or weapons. In

order to develop this criterion, it is essential that the assumption

sed are well understood and established, rhe appro; .' est often

is to assume that the errors In and across the line of sight arc inde-

pendent an:.' that the variances are equal with the justification that

these assumptions produce a negligible error. However, an errox may be

introduced and it is necessary to at least; understand what is being

assumed before making judgement on the legality of any assumption. ..'his

thesis therefore, attempts to explain such assumptions and to compare

possible results of making certain assumptions in three xa iple probl-.

The problems are all ficticious and utilized only for the purpose of

explaining the estimating proc ..V.res and assumptions,

'he thesis is primarily directed at the reader i college back-

ground in calculus, some matrix theory, and some "eel for basic proba-

bility anc". statistical procedures* -""'c contents arc arranged in six

sections and three appendices. Section I is an Introduction to the prob-

lem and the basic mathematical concepts whicl '.ill be used. .'.Sections II
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and III introduce the most commonly used estimating procedures. Section

IV explains the problem of deleting outlying observations from the deter-

mination of the estimate. Section V introduces the confidence interval.

Section VI is a summary of the techniques used in the previous sections.

Appendix A is concerned with the mathematical techniques which are used

to explain and transform the true orientation of the dependent variables.

Appendix B explains two methods of obtaining unbiased estimates of the

C8F« Appendix C explains in detail the methods of integrations used.

It is recommended that Appendices A and C be studied before starting

Section II.

This thesis was written during the period January-June 1962 at the

United States i\'aval Post Graduate School, Monterey t California, I wish

to express my gratitude to Professor J, R, Worsting for his continued

patience, encouragement, and most competent guidance while acting as

faculty advisor, and to Professor Max Woods for his continuous aid and

technical understanding of the problem while acting as second reader,

I also wish to thank my wife for the moral, clerical, and artistic

assistance given me during the writing of this thesis as well as the

oast two years.
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SECTION I

INTRODUCTION TO C E PRO LEW

1.1 General Discussion of the Circular Probabl Irror

The problem of determining useful estimates of the parameters

which describe the distribution of the fall of shot about a target is

directly related to the high cost of testing expensive weapon systems.

Since relatively few tests are allowed because of this expense, it is

not improbable that a good weapon system could be completely rejected

because of inefficient utilization of the small amount of data available,

Also, the size and yield of the warhead is directly related to the esti-

mated parameters. If the estimated variance is large, the effective

radius will also have to be large to cover the target complex, and in

turn the missile will not be able to reach the range of the same missile

with a smaller warhead. The most efficient use of the limited data will

thus greatly reduce the risk involved in reducing the warhead size and

increase the potential range. It also may aid in weapon deployment or

assignment to larger targets because of the greater confidence that can

be placed in the estimates. It seems logical that if a great deal of

Confidence can be placed in the weapon, fewer weapons will have to be

assigned to a target, thus releasing some weapons for other targets.

The important point is that the confidence placed on the estimators

must be high enough to reduce the risk involved and provide a sound

basis for decision.

i method, which is com-uionly used, to measure and compare the

estimated parameters, is called the circular probable error or CEP

method. The CEP is defined as the radius of the circle with center





at (u ,u ) which includes 50% of a bivariate probability mass. The

illustration in figure (1) shows the form of this function. It is to

be noted that most of the volume under the curve is centered at the tar-

get and decreases as the distance increases from the target. This par-

ticular function is well founded historically on the basis of the

analysis of observations from long range gun fire.

-50% of volume.

Bivariate Probability ;>:ass

Figure 1

The bivariate normal distribution is a generalization of the normal

distribution of a single variate and is bell shaped as shown in figure (1)

above. Any plane parallel to the x,y plane that cuts the surface will

intersect the bell in the elliptical curve shown in figure (2),





• d^Uy) hJim

Bivariate Density Function which has been
Cut by a Plane Parallel to the x,y Plane.

Figure 2

Any plane perpendicular to the x,y plane will cut the surface in

a curve of the nonaal form as shown in figure (3).

/

(«»,^y)

Bivariate Density Function which has been Cut

by a Plane Perpendicular to the x,y Plane,

Figure 3

The bivariate density function actually represents a five parameter

family of distributions, the parameters being the means (u ,u ) , the
X y

variances rr, (T* and the correlation coefficient r . This function is
X V

J

symmetric about the means and has its greatest value at the point (u ,u ).
x y

It should also be noted that if the errors in the x and y directions are

independent and the variances equal, then the distribution will be in

the shape of a bell with two of the opposites sides "pushed in" an





equal amount. The effect of the variance is shown in figure (4).

Two Bivariate Density Functions with
Different Variances about (u ,u ): Side Viewx y

Figure 4

If the variances are equal, a plane cutting the surface, as in

figure (2), will intersect the bell in a circle.

The height of the curve, forming the density function, at any

point "a" is related to the probability of that point. Since this func-

tion is continuous, the probability must be expressed in the form of an

interval since the probability of anv single point is zero, however,

the probability that a *.~, . ../... va+iauie X, in the distribution being

considered, falls in an interval is equal to the area under the curve

in the interval being considered, That is, the probability that

a£X£b is equal to the area shown under the curve in figure (5).

Note that since the area under the curve about the point (u ,u ) is the
X y

greatest, the probability that the random variable X fall in this interval

is greater than that of an interval of equal length away from the point

(u ,u ). This is shown in figure (6).x v





A J*

Univariate Density Function
Showing the Area Under Con-

sideration When Determining
P(a <X<b),

Figure 5

Wx

Univariate Density Function
Showing the Areas Under Con-

sideration In the Intervals
(a,b) and (c,d) where
b»a d-c.

Figure 6

1.2 Mathematical Notation

X and Y are said to have a bivariate normal distribution if their

joint density function, f v v (x,y), is given by

(1.1) f (x,y) - i__ exP(- i r/x- uxf d£(X'U*yy
(y) i/y-^n ]

1 ac-ml vj / \fi/\ v7/\vwj>

1.2.1

The quantity x is said to be an observed value of a numerical

valued random phenomenon X if for every real number x there exists a

probability that X is less than or equal to x. In this problem the

observed values of the random variables X and Y are the coordinates

of the data points wi th respect to the target. These coordinates can

also be referred to as miss distances in and across the line of sight.





1.2.2

?he parameters u and u are the mean values in the x and yx y

directions respectively. The mean of a probability lav; is equivalent

to the expected value of t'ae random variable with respect to the proba-

bility law. This is written as:
CO oO

(1.2) u
x

= S(x)=
j Jx :

;:/;
(x,y)dxdy

- oo - <=o

JOJO
(1.3) u

y
= E(y)-J j y f

X)Y
(x,y)dxdy

.oO -

The mean value cannot be determined exactly in our problem even if all

of the missiles have been fired but estimates of the mean values can

be determined from the observations.

1.2.3

Che expressions (x - u ) and (y - u
7
) are the deviations from the

x y

mean values in the x and y directions respectively.

1.2.4

vy and ware the standard deviations in the x and y directions

respectively. The standard deviation is defined as the square root of

the variance of the probability law. The variance \
r is defined as the

second central moment of the probability lav; and is defined by:

(1.4) V 2 - [jfc - ec;))
2
]

= e£(x - u/] = s(x2 ) - u
^

2

It should be noted that the mean values determine the location (u ,u )x y

of the center of the normal density function and the standard devia-

tions (^o< and Vy ) determine the shape of the function about the mean

in the x and y directions respectively.





1.2.5

The correlation coefficient of two jointly distributed random

variables X and Y is defined byp = COV (X,Y) V7here

vx Ty

.1.5) COV (X,Y) = E(X Y) - E(X)E(Y)

E(X = / fxyf ,,(x,y)dxdy

rhe correlation coefficient provides a measure of how good a predic-

tion can be "ormed on one of the random variables on the basis of the

observed value of the other random variable. In other words, if the

value of one of the random variables is given, the expected value of

the other random variable can be determined. This may be written as

E(X|Y) where the value of Y is given. That is,

(l.G) E(X|Y) - fxf (x|y)dx where f.,.„(x|y)

is the conditional density function of the random variable X given

the value of the random variable Y. The conditional density function

is derived fro;,; the conditional probability of a random event A,

given a random variable X, This notion forms the basis of the mathe-

matical treatment of jointly distributed random variables that are

not independent,*

In the particular case where two random variables X and Y are

jointly normally distributed, the conditional expected value of the

random variable X given that the random variable Y is some particular

value y, is a linear function. This linear function is related to

the orientation of the shape of the density function as shown in

Append i:; A,

" w.odern Probability Theory and Its Applications" by Emanuel Parzen

/!/ of Stanford University.
7





In order to simplify the notation, it will be convenient to

represent the bivariate density function in matrix notation. The

is in formula 1.1 are first arranged in the for...

/ - f \I K ' Uk
\

/ _ ex^-i z'/?z

whereu- z -

-1.

Using this notation, we arc nov? ready to look at several models

investigating the CEP and confidence interval of the CEP.

1.3 The Basic Problem in Estimating the CEP.

The problem of estimating the CSP is essentially that oJ finding

the radius of a circle with center at (u ,u ) such that the probability

is .5 that a random point (X,Y) v;ill lie inside this circle. J'.us

be expressed as

(1.3) P[(X-uv)
2+(y-u )\< r^J- ((?.. ,(x,y)dxdy where fx Y (x,y)

J / / is given by

ito-uf*&-**$*<

r

'

" :la Cl ' l) *





In order to introduce the problem, the assumptions will be made

that '.: ...can values arc zero (u =u ^O) « that the errors in the x an
X y

directions are independent (f =0), and that the standard deviations

arc equal (^'x = Vy = V). The probability statement is thus sirapli-

:

i

c i to

(1.9) Pfx
2 + ?-< v*J = _1 (jexp -

[
(x2 + y

2
) 1 dxdy = .5

In order to perform the integration let R2 = X2 + Y
-2

, JanS = V ,

Y = Rsin©, X » ..cos3.

Then P(R$r) = //£ {(rcosS) (rsinSjjdjdrcS where J =/dx/dr r d«/
yy A »* ' /dy/*r dy/ J

** '
r

[1.10) P (Rfr } = 1
/ /

r exp /- r2 ) dx - 1 - e>:p -r

-T7* / 7 \ 2 / 2

refore, the C2P = r - 1.1774T.

problem of estimating the CEP is thus one of obtaining a

function of the n sample points (x, ,y )..,....... ^x ,y ) which will

estimate the standard deviation V . The estimators are functions of

the observed values which are used to estimate the true values of the

parameters. For example, if m points from a sample are given, the

average or mean value is estimated by

\ L 9 L X J ^ X. + X_ + X •O0*.9O*OV T X

m

distribution % x becomes closely concentrated abc e true

value v... as m becomes large.





There are man \ s to estimate the parameters under investigation ?

it is cherefore necessary to specify certain properties which arc

desired in estimators, Tor example, the distribution of the es'ci .,;

should be concentrated near the true parameter value. If 9. and 9_ are

A A
orent estimators of 9 with density functions fj(9.) and f

? (9 ) as

shown in 'Mgure (9), then 9 9 is a better estimator of 9 than 9..

Che Density Functions of Two Estimators

Figure 7

Other properties which are desired in estimators are defined as follows

1.3.1 Relative Efficiency* The relative efficiency of two estimators

is defined as a ratio of the mean square errors of the estima-

tors. That is

(1.12) E(0, - 9)^ - R.F. where R.F, is the ratio function.

If R,F, < 1, then 97 is said to be a more efficient estimate

of 9 than w
2

»

1.3.2 Jnbiased Estimator. An estimator, Q is said to be an unbiaso

estimate of the parameter 9 if E(6) = 9.

1.3.3 Consistent estimator. An estimator 9 is said to be a consistent

estimate of 9 if P(8 ~>9)->l, as n-**> ,





1,3.4 Efficient Estimator. The estimators which have the smallest

limiting variances are called efficient estimators of 9.

The estimators which will be used in the first part of this thesis are

shov.ii in Table a.

Table a

Properties of the Estimators Jsed in Ikdels I ai

Parameter Estimator Properties
A/

u , X - \ X. Unbiased, efficient,
consistent.

\T
A « 1 >(x< - x) | Unbiased, efficient and

n - 1/L.
/-i

consistent.

A more detailed discussion of certain estimators under special

assumptions is presented in Appendix B.

1.
', the Problem of Dependence

In the gunnery -problem, the errors introduced in the line of sight

are due to variations in the range and projectile initial velocity,

error across the line of sight is due to bearing errors. Since bearing

errors and range errors are independent of each other due to the fact

that they are obtained from different sources, the mathematical assump-

tion is generally made that these errors are also statistically in

dent* however, if we broaden the perspective to look at the major errors

introduced in a missile trajectory, the major errors in the line of

Bight and across the line of sight are probably not independent of

each other.

'his in primarily due to factors which did not especially influence

the gunnery fire control problem such as errors in ship's navigational

11





position, errors intro nissile attitude during the ti

powe: I ;ht, especially at cutoff, and weather a Ltions over :

.j t

,

In mnery problem there are two types of navigational proble

rhe first is the relative problem of firing from a moving object to

another moving target w' are the fire control problem is one of obtain-

ing relative bearings, ranges, courses, and speeds, t the firing

ship's true navigational position relative to the target is not an in

encing factor,,

The second problem is one of shore bombardment where the ship»s

navigational position is determined by visual fix, This is closely

related to missile launching except that the first shot in shore bomb;

ment does not have to hit the target because the shore observer can tell

the ship T..\.at spots to apply to the generating fire control solution,

refore, this again becomes a relative fire control proble re

errors introduced by the ship's and target's relative positions arc

corrected by spotting, _his is not practical in long range missile

launching because of the inability to obtain corrected visual naviga-

tional positions relative to the target due to lack of observers at C

get area. What is done instead is that the probable errors must

predetermined and enough missiles launched to give a high probabil.

of destruction o:. the target complex,, If we assume tha : : e launchin

ship is determined to be at the launch reference point then the errors

introduced are as shown in figure (3».

12
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K

- :
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(LxoHfrL) >

ALxoM

s—v r/ « •
'/"/fX

fy/OA
'•

7"o T

Byrg = firing bearing from
ship to position target
•111 have at detonation.

True Target Bearing Diagi

jigure 8

g is proportional to f Lxong ?

I Lyong 5

Byrg ' is proportional to C Lxong + Lxong I

( Lyong + Lyon;' j

Since Byrg differs from Byrg* by the errors introduced in and

across the line of sight, the errors are reflected in the )s inter-

polation computer as errors in velocity to med, which have not been

entered* t the errors introduced are not independent because the in-

z influence changes in velocity to be gained in both range and cross

range directions as shown below;

13
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Flow Diagram o.: the Change in Velocity to b3 Gained

Figure 9

In the gunnery problem, the weather conditions over the firing

ship's position are the same as the weather conditions over the target,

.-efore these values can be accurately esti , lissile firii

ship depends upon intelligence and weather forecasts to predict the

inputs for target weather conditions. This information is therefore not

r.s accurate as in the gunnery pi'oblem. Since the errors introduced by

weather predictions influence the missile trajectory over the target,

the re-entry body is most likely to be moved in any direction an

probability that the errors in and across the line of sight are in --

pendent of each other is lov;.

: errors introduced by missile attitude during cutoff can best

be illustrated by a vector diagram.





* '

1

/

ty
/: c/

i

:

|

Vector Diagram of Velocities at Cutoff

Figure 10

The missile attitude at cutoff can be regarded as a r variable

it can assume any attitude due to the fact that t nts

to initiate cutoff are due to past and present missile velocity and not

to a predicted velocity at some A t after cutoff. rhus the errors intro-

.:. the /'it of cutoff will influence the errors in and across

ne of sight in a random manner. Therefore, trie probability that

rs in and across the line of sight arc independent is again

e conclusion is that due to the complexity of the fire control

! errors in and across the line of sight ar bably not

indepei , >proach the problei Lth this assumption :

iecuracy j ned by this model is not Lcient to

le men r,e in - ithematical difficult}-, t in indent

Section c - -v . . proble

to be , Ls that the fall





shot about the target i3 a random variable which obeys the bivariate

normal probability laws. The assumption has been made that the errors

in and across the line of sight are not independent and one of the

objectives of this paper is to determine the effect of this assumption

on the C2P.

16





;ct i u

. ...: I) ... . CEI ..!'.. C E DE! SITY F I ^TIOI ZE

AT rHE rARGET: l.ODliL I

2.1 Introduction

The most important assumption made in this model is that u and u
x y

are zeco, .'his means that the center of the bivariate density function

is at. the target* Although this is the desired condition, it may not

true initially due to the complexities of the fire control problem. One

o£ the determinations that is made from the analysis of the firing data

\x a correction should be made to the fire control solution to

bring the distribution of the fall of shot over the target. Therefore,

starting with the assumption that the center of the distribution is

at the target and finding that this assumption is wrong, it becomes

necessary to determine and apply the correction to the fire control solu-

tion. Also, it should be noted that although this assumption may not be

true initially, it scill may be true after correcting the initial fir,

control solution.

I the center of the distribution is close to the target, (0,0) in

the coordinate . , or suspected of b ir so by analysis of the test

data, the estimators determined from this model may be better estimators

than the estimators used in Model II in Section III. \ comparison can be

.•tween I and model II, using the criterion of relative effi-

to determine wl jd-il is theoretical 1- the best. This criter-

ion is explained in Section III.

In thi ei n the x and y direction are assumed to

non-ir . In accordance Ith the L-tvariate

... Lty that (X,Y) wil I lie

17





within a circle of radius k\T- * s equal to
:;:ax

(2.1) P(k tM)-P^z+Y
2:<k7L

flX
)- f[ f „ Y (x,y)dxdy« I? 1 exp - .•

* > max y] ..,. yj_^-.T^
fx2+Y 2 O* T max

| :
2+Y2 < kV max

where Z and A arc defined in (1.7).

In order to integrate over this form, it is necessary to first make

a transformation to an orthogonal density function. The reason for this

is that due to the assumption of non- independence ((Vo), this density

function is oriented along non-orthogonal lines called the expected value

of X given V and the expected value of Y given X or in simpler notation

B(X/Y) and B(Y/X) as defined in Section 1.2.5. This orientation is

illustrated in figures 11a and lib.

C-?
a.

> JL*<?

Three Dimensional Diagram of
the Orientation of the Bivari'
ate Density "unction where
o <p< I. a+b+c 90°.

ure I la

Two Dimensional Diagram of th

Bivariate Density Function
Formed by a Plane Parallel to

the x,y Plane Cutting the

Density Function,

Figure lib
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i is shown to be valid byproving tl

(2.2) e W »/
x,

, and

(2.3) 5] v- tlC^-vT* *%

a
nsformed density function thus becomes

v (u,v)
- 1 exp

27T| \*-»
J %

-\.;<
.

\2v r_j. exp |-%/Ji4 ^V v '¥"

reoriented axes are now as shown in figures 12a and 12!:.

UC/J

tY//*0 <XMS

Three Dimensional Diagram of
the Reoriented Axes of the

Figure

Two Dimensional Diagram of the
Reoriented Bivariate Density

tction Formed by a Plane
Parallel to the u,v Plane Cutting

Density Function*

re 12b

Ion arc . lined . '..5.
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This transformed density function can be handled more easily

because the t involving the correlation coefficient have been re-

moved. The probability that a point (L',V) in the new coordinate sys':

will lie within a circle with center at the origin and radius k^Tjis

(2.5) l(U,^,v^)- /T» (u,v)dudv - P(k,c)« 1 ffexp -Wu^^MnW

where C - "5£.. rhis form is simplified in Appendix C.5 to

I
1 - expf-k2 Rc2+ 1) + Cc2 - l)cos#|{

/ fc 7
- + l)+(c 2 - l)cos2

(2.6) P(k,c) - 2c

Che values of (jc) for various values of P(!;,c) and \c) are tabulated in

tables one anc two. Table one is used by entering the table with

c » ^? in order to find k, rhis table can only be used for 1" '

s k , c) = . 5

.

VT,

rable two is used by entering the table v/i t'
. c » ^ and the probability

v*
P(kjC) in order to find k. This table can be used for various values

of P(k,c),

2.2 REstimating the CEP using :;odel 1

Che first step is to find estimators tor V"::, T~y and (° Erom the n

observed points (x. ,y ) (x ,y ) . This i s done by computii

the sample variances vy/, T*y , the sample covariance vxy, and the sample
<^

correlation jsoeffici en t \ whlph are defined as follows:

In these formulas, Vx 5
v y, and vxy are unbiased estimates of u,T;

T <y .





transformed estimates of the variances are computed n

2.7) VT,
J ;

Table two is entered with P(k,c) .5 and c « ^L to find k,

stimate of the CEP = CEP
L

- k V^

2.3 Estimating the CEP using the Assumption that the Errors in the

x and y Directions are Independent.

If it has been assumed that the errors in the x and y directions

are independent, an estimate of the CEP can be obtained by using the

£ 2 ^2
estimators in model I except that the estimated variances V"x and V y

^2 ^ 2
are used instead of the estimated transformed variances V" u and^v

C* Vmin where Train •- Min(vx,V"y)
-<rmax 'y'max = haxC7"x,v"y)

P(k*,c*) - ,5 ,

Table two is entered with P(k*,C*) and c ,v in order to find k ,v
.

Then this estimate of the CEP = CEPJ k* V max.

2.4 Information About the Problems,

In the problems which follow, both estimates of the CEP will be

obtained in order to compare the results in the summary in Section VI.

2 .

5

Exar-p 1 2 Pro b 1 ems

The problems, which will be used to compare methods of estimatin

the CEP, have been set up in three cases, .'he first case will have ten

Sample points (:•...,.<) . ,.. ,...•• (x. n ,y ) and is representative of the

point in time where some initial decision may be ..ado as to whether the

21





Ld be accepted, rejected, or that more tests should be

second case will have "iftcen sample points (x. ,y ) o • » e

,,... ) which will include the first ten sample ooints. This is
15 15

int . • • .-..yresent an intermediate point in t i icre some terminal

on the acceptance of weapon system, rhe

case will consist of twenty five sample points (x,,y.) (x ,y

It should be noted that as the number of observations increase, the

estimators are more likely to be closer to the true values, fhe actual

distributions of the 25 points are shown in diagrams 1,2, and 3,

coordinates of the points are as follpws:

Problem 1 Problem II 1 Problem III Case
1

x y x x y

1. -3.0 -1.0 -5.3 8.6 -8.6 .11.8
2, -2.2 5,0 -2.6 1.6 -3.6 3.2
3. -1.0 1.0 1.0 -1.6 - .2

4. - .6 - ,6 1 » o 1,0 -3.0 - .

5. 3.0 -1.6 -1. 1.2 - 2.2 i

6. i.O .6 -1,0 - 1.2
7. 3,6 -2.0 3.0 - .6 1.6 4.2

, 3.0 1.0 - .4 -2.4 .4 1.6
i

• 4.3 -1.0 -4.0 1.3 .4

1 ,
-4.0 -2.0 5.0 __ 4.0

11. -1. -3.4 3.0 -2.6 - 3.i

12, 1.4 2,8 1,6 - .6

13. .4 - 4 . -2.' .1.8 .4 .2 II
14. 3.0 .2 -7.0 -1.8 1.4

15,
/ f> -2.6 • - .4 2.6

16. -2.0 .2 -5.0 -5.8 -5.0 -4.0
17. -2.0 .6.0 - .8 •3.8 -2.0

. -1. 2.1 -5. 2.2 -2.0 -2.

1 . 1.4 -1.4 5,0 -1.0 -1.0
. . - ,1 -I. III

21 L, < • -1.4 1.4 3.0 - .

. 1.4 -1.0 - .4

, 2.0 .3 -5.0
24. 4 .

2

5,
'

1.4
. -1.0

'

J - . ... ..

-





value of the CEP obtained using the estimators from this

lection will be compared to the estimates of the CEP from Sections III,

IV, and estimators which are explained in Appendix B. This comparison

will extend to t ! .e problem of rejecting outliers and the comparison

ill be presented in ccction vi.

Although these problems are primarily oriented at tests involving

the -ore expensive weapon systems, such as the IRBM, the environment

can be extended to less expensive weapon systems which will naturally

have more sample points. Although it was intended to make the problems

as realistic as possible, no attempt was made to utilize data from

aetural missile firings.
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Case I. Data points and computational results.

6 A ^06

b

4-X.JiXJX^

- V

-6

Data Points in Problem I, M=10

diagram 4

!>
' - /o. j sr* = *.*

f
ys

V*
y

X 2X' X,'

~7T
7x Vy

^*= /£6 T^ V,3

y\

fc = 6.3 V, - 2.i"

Dependent
todel

Independent
..odel

n

i7

^ »•«$**'

Problem I, Case II. Data points and computational results

Data Points in Problem I v N,s*15

Diagi am 3

= ^^ -

V

' Aa
- - /O.-i . ix

A/

v y

f/* ?./

Dependent
Model

Independent
1-odel

C - ^ . , gr

/< r /,oy K* ^ J, Of

cf^ =rttfj= y./
*: AV M
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- • l t Case III. Cata points and computational results.

If

Data Points in Problem I, N=25

Diagram

v/ = IK^ fo.G v; - 3.3
A/ ' 1

Vv
- 7./ VL - 2,7

Dependent
Model

• .

c» 27 ~
•
v

, .^ 5

/c-: /,0-T /r*- a

Cf^ :^-3,5T CEfr -

Problem II, Case I. Data points and computational results.

Vx - 727 Vx - l,lO

Vy X -/Ot 6,(> Vy- 3,27

V^y_ -%o P- ~.

/I TV hw
4. ( "y '

Dependent
Model

Independent
J-^Qdel

C =
-

•

/r = A^7

a>, = i (
j"o

Data Points m Problem II, N=10

)iaj?2 s





roblem EI, -ase II. Data points and computational results,

^>*S 11,7 Vy = 3,V<2

7^*= r.7/ v* = a,2f

Dependent
Uo-deJ

C - .Co

Independent
txxdel

* W
Data Points in Problem II, N=15

Diagram 3

Problem II, Case III. Data points and computational results.

-6

e

©

©

-V -z

s

®

-

©

a. v (,

z

C£f
t f

* cuus

n ©j

--1 •

'

\

-H

,b

Data Points in I pb] .

.

I, N-25

V^ - 11,71

s\

Tu l
= /i.yr %* m

r

*,?£

Dependent

.odsd

Independent
Ho.de.1

K- l.io

C - ,57?

C£^= vy csr]

•

\ .

•-
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1 em III, Case I. Data points and computational results.

€^ = M.3L V*=377

Data Points in Problem III, N-10

Diagram 10

v/ = H.ir t„ -*J

Dependent—Model

CZPr-fM

Independent
Lij.de 1

CZP~*1.io

Problem III, Case II. Data points and computational results.

Data Points in Problem III, N-15

ram • 1

IO.I
-t

?-*s 3.At

1133 3,1?

V.V3 e-- . us~

2- -*.

zo.i y.^r

l.Ui /,<?/

Dependent
Model

C£Z>
t

sJ.7*

Independent
Model

C£/>**i,iO





Problem III, Case III. Data points and computational results,

Data Points in Problem III, N=25

Diagram 12

s\v a ? \

I -3

n,os~
-A

3jS

Vxy = C ,S*f ,u

/£,& *H* 7,<%

3,2 /,to

Dependent Independent
• I&dfil.

i
Uode l

** S.90
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SECTION III

DETERMINING THE CUV WHEN DENSITY FUNCTIO: IS CENTERE1
AT THE POINT (u ,u ) : MODEL II

x y

3.1 Introduction

The most important assumption made in model II is that if an

infinite number of tests were conducted, the mean values of :: and y

-would be u and u respectively. This iv.eans that the center of the
X y r J

bivariate normal density function is at some point (u ,u ) with respect
y

to the target at (0 ? 0).

If enough tests have been conducted to ascertain that this density

function is offset from the target through the utilization of the esti-

mators, then it may be possible to enter a spot (-u ,-u ) to correct
X y

the fall of shot.

In this model the errors in the x and y directions are assumed to

be non-independent but are distributed in accordance with the bivariate

normal probability laws.

The probability that a point (x,y) whose coordinar.es are chosen

at random will lie within a circle of radius k ' mar. with center at

(u ,u )

- y

i)

is eqvlal to

«(2. /(X -u )
2

-; (Y -v
2

k Vrnax •

x y
(x,y)dxdy -

/(x-u )
2+(y-u )

2
^ kVraax

1 ffexp(-% Z'A^ixdy
2 TT /A^&J

/ x-u )
2 + (y-u

r
)
2 < I: Tree

' y
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- to integrate over this for:?., it is necessary to first

translate the axes before making the transformation because the density

function is oriented along non-orthogonal lines away from the center of

x,y coordinate system. This orientation is shown in figures 13a and

13b.

JtJV'v]

* OX'^

Phree Dimensional _ensity Function v?ith Center at(u ,u)v:here 0<r^ 1
X' y

Figure 13a yi\

x ax/r

Ellipse Formed by a Plane Parallel to the x,y Plane Cutting the Density

x s
y

Figure 13b

.'unction with Center at (u ,u )
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ition is made by subtracting the means (u ,u ) from their

resoectivc random variable X and . That is simply (X - u ) and (Y = u )X

where in this case the matrix Z no-.:- becomes Z ^/X - u
x

The transformation is then of the same form as the one in Section II,

3.2 Estimating the CEP Using Ibdcl II

The first step is to find estimators for u ,u , ^J",,, ^J~ , and (° from
y y

the n observed points (x. ,y.) (x_,y_) , (x ,y ), rhis is done by

cc

first computing the sample means x,y and then computing the sample

variances Vx v^ the sample covariancc %< y and the sample correlation

efficient \ as follows: IE x i *5l
''

*

n n

^ 5<xi
- x >

2

>v So'. - y)
2

v * n-l v >' n-l

A STvxy = _
Txt_

• transformed estimates of the variances are then computed using

formulas (2.5). .able 1 or 2 is entered with P(k,c) = .5 and

c = v v to find !:. The estimate of the CEI = CEP„ » kv •

3,3 Estimating the CEP Using the Assumption That the Errors in the
x and y directions Are Independent.

If it has been assumed that the errors in the x and y directions

are independent, an estimate of the CEI can be obtained by using the

estimators in model II excel : 1 .: t tstimated variances \T ^ and Vv x v

y

.





OS

ire used instead of the estimated transformed variances V^ and V^ .

Chen c* - V min uhere

.'able 1 or 2 is entered with P(k*,c*) and c* in order to find k*»

2
Then the estimate of the CEP is CEP*« - k* V .max

3.4 Comparison of :bdels I and II

If ;;odel I is the true situation, then the estimator defined in

Section II is the most efficient estimator. If the mean is not at (0,0),

(Model II) then it still may be advantageous to use the estimate given

for Model I if (u ,u ) is not too far away from the origin and if the
x y

sample size is small. This is because two degrees of freedom are lost

in estimating (u ,u ), This problem is treated in Appendix B using the

criterion of relative efficiency.

3.5 Problem Set

Problem I, Case I

X- ^.s/a
,N y _ 5 ^ Z 3L.0

N
TTi J(X-£-xT - 9 if 8 V; ^ 3.08

/v-/
rr\^sfo-yr =10.7

,
ry = 3.^7

Vx^ V_/ Vx Vy

s\ o
\

^*=/3.99 ^=^.7V

i _
%,*-<..!(>

,

• A.U

Data Points in Problem I, N«l(

Diagram 13

..... ,, ...

Dependent Independent
Model Model

7y

/(--- .?7J K*= /./ y

> =3.6V >*= : 7A
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Froblen I, Case II.

)ata Points in Problem I, N=15

Diagram 14

x -- h™ y - i.oz

8 *x*- ?,r/ ^ = j*.?*

/3.6 V"y = 2,i9
6

7iy = ,
*T e --

,
o?i

<i

/J,/
', *,7o

d.

^.2.
?. V VV r 2,9

Dependent
. del

Independent
:;odel

C= ,y*</

k = t.oy?

Problem I, Case III •

-(, -v -i

G

6 © ®

b

G v

(•' a

\ o
1X

-2

© -1

-6

v
-/ - £,r 7"„ - 2,6/

Dependent Independent
].

:odel

/c = i.n

Mndol

Data Points in Proi le i I
s
N-25

Diagra
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Problen II, Case I

Data Points in Problem II, K=10

iagram 16

x -l.o

% X
6>,97

577

Vu
l

- is; Li

7T,
'

Dependent

C r ,¥ST

v = .;

vx . 2, CV

,-S~

-
,
4A<o

i,?i'

/ , 7 /

Independent
Model

Problem II, Case II

x = -
. 9 y - -

.
a

Dependent
Model

Independent
Model

C -,4"76 C* = ,7

/V-- ,?/? /<*- ,9 9fe

C £ /£ = 5.3? C £/*»*= 3,f«i

Data Points in Problem II, N=15

Die 17
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II, Case III

®

Q

H 6 A = -. 9 y ->

t
$,*2 % " o?. ? ^

U> %x
= /A. A ^y = 3,-fO

V
Sy - -/./ e--,io7

K (XX./S

-z

-i

&
Data Points in Problem II, K=25

Diagram 18

%x
- 7.?? T*-3i.**

Dependent
Ilodel .

C- Joy

fi - l.O(o

££^ = '3.7/

Independent
ilodel -

Problem III, Case I

X dWi

(9

6>

Data Points in Prob III,

)iagrax 19

1-10

€M

-a

-?

-10

X = , 6

V= a/, j

y = -,3

%x
- d,6r v^^.r^

^y = //J

%X
' SO,

I

Jen endent
fodel

C2i°z
- -1,(0(0

Independent
iiodel
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Problem III, Case II

Jj -l

Data Points in Problem III, N=15

Diagram 20

X = ~.(° y - -.*

Dependent—i^odel

c = .£<**

/(-- ,?/r

,v 2 3. J (o

Tv -~ hi I

Independent
Model _

K** I, of?

>-
*-- i,z\

Problem III, Case III

(•>

&
A O.X/S

K

o

'2

-</

-4

-?

-10

Data Points in Problem III, i:=25

Diagram 21

Dependent

r
lb del

Independent
-JJodel

C- .ma C*= ,v<^

K-- .rsy
;< * -

/ . i y

C£\=?,i"A C£^-- '3,1*1
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SECTION IV

;i oving . . :li :rj . >el hi

Tl is model covers the problem of outliers and attempts to show

some of the reasons for eliminating the outliers from consideration in

the determination of the estimates as well as several methods for

eliminating them. •

4.1 Introduction to the Problem.

The general problem of removing outliers is related to the fact

that it is desirable to obtain estimates of the parameters for the

underlying bivariate density function which are not biased by obser-

vations from a distribution different from this underlying distribu-

tion. This in turn will yield more accurate estimates of the CEP.

It is necessary to safeguard the estimate of the CSP from the ill

effect of including information in the analysis that is not due to

variations in the population of missiles, but is caused by some other

factors such as weather or human errors. It is also possible that

observations which have large deviations from the other observations

may come from different distributions due to improvement in the

missile design. This is especially true during the missile develop-

ment stages where each succeeding missile has improved or different

subsystem components than proceeding missiles. For example, an i

proved fuel may not be correctly compensated for in the missile gv

ance and fire control computers or a new type suitch may not function

quite as initially designed. The combination of changes may influence

the range of the missile sc that :her from the target t

predicted,, If co is corn for the succeeding shot 9

40





it Si easonable that the observation for t rst shot should not

be included in the determination of estimates for the CEP (

Also, as improved subsystems are added to the missile, it is

possible that the earlier r.iissiles will not have the same density

function as the later missiles and thus have a different CEP. In this

case, it may become necessary to include only the later developed

issiles in the determination of the CEP. Due to the fact that the

..-.icsile development will be a continuing process with each r.-.issile

slightly different than the pre coed ing one, it may not be easy to dis-

tinguish between these distributions,, This is because both distribu-

tions will have sor.e observations close to the target and others a

from the target. The figures below may help to illustrate this point.

x

O
.0 X <KXIS

e

u
\

i \

y \

Observations from Fwo

Distributions about the J.^rget

first population
second population

Figure 14a

•nsity Pane t ions of Two

Distributions about the Target

di'^ure 14b
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It Id be noted in figure 14b that distribution I has some

probability of occuring in distribution II. If this probability is

rge, it may be extremely difficult to separate the two distributions.

In .act, if it is desire-.! to separate the two distributions, there is

some probability that observations belonging to the underlying distri-

bution under consideration will be removed along with the observations

from the distribution that is not being considered. Thus one of the

problems in removing outliers is to keep the probability, that the

observations removed as outliers which do in fact belong to the under-

lying distribution, as low as possible. If this probability is small,

it is possible that the observations belonging to the underlying dis-

tribution which are still removed will have such a low probability of

occurence that their removal will still lead to a better estimate of the

parameters. This nay be especially true Cor small sample sizes where

one sufficiently large or small observation can totally ruin an analysis

of the data. Therefore, in order to eliminate an arbitrary result, it

is necessary to establish some criteria for eliminating these outlying

observations.

4.2 Criteria for Rejection of Outliers

Naturally shots which land at long distances from the target can

be easily identified as wild shots or outliers with possible unkno

errors. But as the observations .rove closer to the target, it becomes

necessary to utilize some type of probabalistic consideration for the

rejection of outlying observations. One way to approach a solution to

this problem is to set it up as a hypothesis testing problem.

rvations (x, «.y. ) . „ „ „ „

,

„ . {x ,y ) , a test is made of11 ii n
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the hypothesis that the observed point (x.,y^) belongs to the underlying

distribution. rhe test is then conducted for each (x^y.) for i = 1,2,

8 . n, one at a time. The alternate hypothesis is then that the

observed point (x.^y.) does not belong to the underlying distribution

but to some different distribution. This can be written as:

H ; f.. y (x. ,y.) = £., (x
4 ,y t ) for each i = 1 n,

a, i i i
••o 5

i o

H,: f„ Y(x,,y.) / L C^^yJ x.'here: f (x. ,y.) is
i .,-11 \) 9 -o J 1 ^/o x i

the

true underlying distribution.

The probability of a Type I error will be called v where vis the

probability of rejecting the hypothesis that the point (x.,y.) does

belong to the underlying distribution when in fact it does belong to the

underlying distribution. This can be expressed as

Prob [/Type I error1 = v

The probability of accepting the hypothesis that some point (x.,y.) does

belong to the underlying distribution when the point does not belong to

the underlying distribution and is called the Probability of a Type II

error.

Thus the probability of the Type I error cay be called the risk

that the experimenter is willing to take in making a mistake by rejecting

a point (xj,y.) as an outlier which does in fact belong to the under-

lying distribution even though the observed value does exceed some value

specified by the criteria. Naturally, it is desirable to try to keep v

small but if v is too small then the Type II error will increase and all

outliers will by included in. the deter..: >n of the parameters,
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4.3 Method I For the Rejection of Outliers,

[his method for the rejection of outliers is based on the probability

that a random point (X,Y) will lie within the ellipse Z'AZ = k. Z'AZ is

the matrix notation for the quadratic for.-.T of the dependent bivariate

normally distributed random variables X and V. That is,

(4.1)

k is defined by

(4.2)

1~
2
^r -Af(x-uxy Y-uv\ ;

-
,

Y--v
'

and

(d' •.;
N< k 2 ) = / /fx v (x,y)dxdy=l--<

• ,Z*k2
•-

Geometrically it is the probability that the point (h,Y) "ill lie

inside the ellipse made by a plane parallel to the x,y axes cutting I

density function as shown in figure 15,

X A.X/S

' Z'2- Ellipse hade by a Plane Parallel to x,y Axes
Cutting the Density Function

Figure 15

Due to the orientation of this density function, it is necessary to

make the transformation to the orthogonal u,v coordinate system in order

to integrate over t tii )rm„ Chis trai sformation is made in the same

A 4





manner as in Sections II and III. The probability can nov be expressed

a s

\2) P(W»A*W<k2)- ffz :

.

v
(u,v)dudv =

AlTrY // exp(-%W'A*W)dudv

where h'» *7 = u
2 + v2

letting, -2 "
I ^

+
X-. > (4»3) reduces to

vT* %*

(A .4) P(T
2
<k2

) - f %exp(-%t) dt

Ta < K*

The random variable T has the Chi Squared distribution wi th two degrees

of freedom. Fhe above formula is a special case of the following result,

If D are independent and normally distributed random variables with

means u. and variances , then

rn

!4.5) T. = "s/Dj - u.-« VZ(£
x'l T:

The degrees of freedom m is the number of independent terms in the sum.

The density function of T is

(4 - s) V° " -7m ,,\»<

t <

The areas under this density function are partially tabulated in Table 4.

The desired percentage of the area under this curve is found by entering

Table 4 with 1 - v and the degrees of freedom

The decision rule that is used for the elimination of outliers is

to state that an observation is an outlier when

3
:ion - . : eo2 of St£ i tic: .'., M. Mood /2/ of
ion.





(4.7) i<2< £+ =2;>1 i $°* Z,:
,

A.A Method II For the Rejection Of Outliers.

This method for the rejection of outliers is based on the probability

that a random point (X,Y) wi 1 1 lie within a circle of radius k V~ •max

Then, letting

r = [~(x - u )*• + (y - u ) J, k is defined by

(4.S) P ][(x - u
x
)2 + (Y - u^^k^^J- /f

X)Y
(x,y)dxdy = 1-v

Geometrically, it is the probability that the random point (X,Y) will

lie inside the circle imposed on the quadratic form made by a plane

parallel to the x,y axes which cuts the density function as shown in

Figure 16,
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• 1 V

d>

_,

Illustration Showing the Circle o~ Interest
which is Imposed on the Ellipse Made by a PL

Parallel to the sc,y Plane Cutting the Density junction

Figure 16

Due to the orientation of this density function, it is also neces-

sary to make the transformation to the orthogonal u,v coordinate systeii

The geometrical areas under consideration are shown below in figure 17

for this transformed density function.

a ax/r

Illustration Showing the Circle of Interest
which is Imposed on the Ellipse made by a Plane
Parallel to the u,v Plane Cutting the Density Function





It s ould 1 : t : :
1 ". this method will reject points outside the

circle but inside the ellipse which is estimated fro:. ata points.

Therefore, unless the variances are equal, lIu;. ... il] nerally

reject points farther from the target than method ., , since some points

on or near the major axis will be outside the circle as shov?n in

figure 17. The circle is necessarily of smaller diameter than the

major axis of the ellipse unless the variances are equal and then tl !

circle and ellipse will be synononous. This can be seen from the follov7-

ing inoqvoli ty

:

'
4 - 9 > jL + *L y,

-' 2 y 2 where p.
2 a max(^2

j ^2 }

(TIT
2 Fy 2 TP^J V max

T e probability that the point (L',V) in the transformed coordinate

system t
: i 1 1 lie within the circle/l' 2 + V2 = k^tj is expressed as

(4.10) I
;[ju 2 +V2^ kVJJ = 1-1/- fjz. : v

(u,v) dudv = P(k,c) where c- V}

fJZ% kvu
^

This formula is the same general formula that was used for the determin-

ation of the CiF except that .5 has now been replaced by [l-V) in the

range from .5 -*1. The decision r-.le that is used for the elimination

of outliers is to state that an observation is an outlier when

(4.11) WJA*W. - Z?A2.>k 2 where k is obtained from table 2 by entering
1 1 1 i . 2 *

A
with 1- V and the value c= Vv . It should be noted that this value

of 1c defines the radius of the circle centered at (u ,u ) which includes
x ' y

(1-V)100% of the bivariate probability mass. The value of k obtained

from method I defines the ellipse which includes (l-\/)100% of the

bivariate pro ability mass.
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Proce oving Outliers Usin ethod I or Method II.

al procedure to remove the outliers differs from the dis-

jctions 4.3 an 4.4 in that :he probability 1-yi:: only

exact if tl : true values of the parameters u
x »u » v'T* V~* and \/~ ^ \

I .. ould be note: 1

, that both procedures substitute estimates of

se parameters for the true values and therefore the probability of

I error is act exactly equal to V . .'he first step is to fin

. :imators for u ,u ,y ,\f and( fro:.: the n observed points (x ,y )...
y x

i 11
. .».(x ,y ). is can be done using either model I or model II fro..'

Sections II and III respectively. "ho model used depends on which basic

ass ade about the true values of the means (u„,u ). If it

is assumed that u„»u «0, then model I can be used. If it is assu.
** y

that u r* 0, and/or u /0, then model II can be usee1

. Also, the criterion

of relative efficiency can be used to determine whether model I or

I] uld be 'jsef!. i'he estimates of the parameters

x »y» ^x» vy» V» » M » v * are t'1211 computed by using the selected model.

ated value of the matrix A is computed next using the above

estimates.

(4.12)

y

. rmally the value /is pre ' ined by the experimenter and t

outlier rejected on.the basis of this tralue. It is advisable to ' lete

Liers one at a time until all of the data points are inside -

region prescribed by the probability l-/and 2thod used, fhis is

:hat sti a tea sha is dependent -upon

. ed point LI change in the
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est shape of the density function, 1 .Irst outlier is

by invei .. ! in - its farthest from the estimate

e point (x.,y.) is deleted whose estimated quad .

•
.

is greater than kf or method . I) or kx (fox method II). If the

are two or more points which satisfy this requirement, the point is

eel; : irst which has the greatest valued quadratic for ,

It is then necessary to recompute the estimators and use the ab

procedures again* thus removing outliers one at a time, until there are

no points left with estimated quadratic forms greater than k^ (i«=lor2)

.

rhe final estimate of the CEP is then determined from the estimators

derived using the data from the remaining observations. This estimate

of the CEP will oe referred to as CEP„ where the subscript i refers
zi

to the number of data points removed.

4.6 Information About the Problems,

In order to illustrate the above methods, the sample proble iven

in Section 2.5 were used. Model II was chosen arbitrarily for estima-

ting the parameters for illustrative purposes. Both methoi s of reject-

ing outliers were set up for each problem case but instead of rejecting

o tliers with any specific probability, the tables were sot up to >h

the probability that a specific data point could be rejected. as

done in order to compare the two methods.
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Problem I, Case I. deca points and co. :• '.tat ional results.

I

• ,

t.
ith

/

f <r~7

.'^
•

Data Points in Problem I, d=10

in' .a . 22

Step 1. In on! r to reduce compi I

tion, it is only necessary to find t1

maximum values o_ Z'AZ in each of t

i i

steps in removing the outliers.

A A A
a

$,
no rtno • 2 2

><•$

1 1

l-V Method 1

k
2

- 4.61

.95 5. - 4.5

.975 7.33 5. ;

,/s.
Conclusion: £'AZ for point 10 is greatest and can be removed it

.\ probability by Method 1 end 9% probability by Method. 2.

. _ ted estimators, after deleting point 10 are then

, y - 1.2, ^ = 2.94, Vy = 2.3G, Vxy - .41, P - .06, 77, - 2.5, %» 2.4

Dependent Indej endent ;

. odel . odel

r - 1 c* = .J 1

;

c = 1.0 k* - i.O

CEI "21 "2.

. p 2. Dhe procedur* • now be continu wit! the 9 remaining data

points to jtermine if any of 'c<\o remaining data point-: can '

e removed
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ith a specif i | i*o1 il i tj of 90% usl id 1 or 95% probability

':., In |
. i there aj . Liers.

I, Caj [I. points and computational results.

Step 1.

7.74
*io**io ' 15 i:

a loin tr; in Problem 1, N«15

Dia pram 23

l-V :: itl o 1 Met

. . 5. ';. 3

. 75 7.: .] 1

.99 L .21 7.7

Conclusion i Z'AZ for data point 15 is greatest and can b

With 27,57. prol si llity by Method 1 and Method 2,

The sti ators aftei leleting point 13 are th

5c - 1.2, y - l,6 f
«« 2, >2, 7y - 3.44, ^y

- 3.45, $, -3, , ^ - 2, .

r * ,383

j i ndent
( del

T)

"
. J.

°*rC3

n t

. . I

c*« -
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.'he procedure is now continued with the 14 remaining data

points to determine if any of the remaining points can be remov

a spec: probability of . .

' .53

L

l-V

,

.

'

1 Ketho

5, 4.41

.38 5.54

Conclusion: '.' \Z "or data point 10 is the largest and can be removed

with '5;. probability by method 2 but would not be

removed as an outlier by method 1. For purposes of illustration, t

data point will be removed, rhe recomputed estimators after removing

point 13 are

x -
, , y - 1.7, T*m 2.47, If- 2.71, ^ <=

, 1, ^- 2.79, \£- 2.37, P = .KG

indent

hodcl

c - . 8 5

k = 1.3'

:sp.
2
-3.04

Inde] ...

: .del

22

Step 3. The procedure is again continued with the 13 remaining data

points to determine if any of the remaining points can be remove

a specified probability of .

*'". In this exai le there are no more outliers,

53





Proble II, Case I. ata points and computational results

~
'

1

X. aMs.

H

y

6

ok

He •
•

V \

®
6 -V

-Y

-J © a v

Data Points in Problem II, N-10

ilagrai i 24

Step 1. ..' \ . " 6.18
L 1

1-V

.95

|.975

.::

cthod 1

5,

7,38

iethod 2

5.22

6.35

Conclusion j Z'AZ Tor point 1 is greatest an can be removed with

?57. probability by nothod 1 and 97,f# probability by method 2.

. computed estimators after deleting point 1 are

5 -.5, y - -,S, $"» 2, 16, ft- 1.32, £,- ,79,f- .201, $- 2,23,

ft- 1.72

Dependent
i 1

c - .:

': -1.03

.

t

-2,31

Independent
Model

KP* - i.3'V
21

rocedure, usinj th re ainJ i oints, does not reject

Ints i blem,
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[I, Case II. results.
i

•

Step 1. ;
- 7.33

\l-y

. r 5

od 1

k 2
a

5.99

7.

.

3.30

)ata . ci.its in Problem II, N«15

Diagram 25

Conclusions Z'AZ for point 1 is greatest an;' car. be removed vith

probability by method 1 and 99% probability by method 2.

recomj estimators after deleting point 1 cxc

s\ ^ -a -\ y

x - -.5, y - -.7,^- 2.16, VT - ; .68, ^- -."'J -.03, J[-
-•

' !»^= 2 »*6

Depend . I

!el

1: «1

.

tl
"2.?0

Inde

21

2. rocedure usin 14 remaining points docs not rej :

b .
.

-'. lints,
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Froble j^ Case I. p ints results.

^ ^
1.

1 1

•

X ax/

J

©

S

A -fc.

;^\

-5

V

-to

-8

-/o

1-V
1

-.hod 2

. 75

j .

7.

4.1

5.33

.'

Data Points in Problem III, i>10
. am 26

Con- : int 1 is greatest and can b I with

by method 1 and 91.% probability by method 2.

The :ter deleting point 1 arc

/\ s\ s\ /\ s\ s\

I - .3,
"- = l,%m 2.1 , %- 2,36, IL« 2.19, P- .306,^= 3, )9,V 2.09

lent

c = .

-

:

/./

Step 2, The lining does not reject

t :• -
.
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r i . , comput Its.
'

-
I/

•

1
, ,

l

. ....
P. Q 7

1

-V

8
'

'

3 Illf

A
tclusioni '

'
"

: -" point 1 is greatest and C£v. 5ved wii

gree . ;han 7, . Lty ethods, .1. . , Foint 1

be r with 95% pr< lity by method 1 and 99% probability

by method 2. In this pi

both poi;ir;r \.v/r j ,U1 this : ...

o:s a: .. ] lint 1 and 10 a

5 - -,0, y - - l.?l,fj- ^.2C,^T , L7 f f. ,075,^ . L,^- 1.39

.

57





SCTION V

THE OONFIDEN 212 3 1RVAL OF i ZZl

5.1 Introduction

The previously introduced estimates of the CEP are all called

point estimates where the estimate of the CiiP war, defined by the locus

of a point moving at a constant distance (the radius) from a fixed

point (called the mean or(u„,u )). This constant distance or radius

is called the CEP. The confidence interval of the CEP attempts to

give some measure of the possible error in the estimate of the CEP,

» col Evidence is defined as the probability that the true value of

tl JEP lies in aw interval between L, and I... where L, and L- are

ctions of the random observations (I'.,'.'), i !,2,..,..n. rhis

pression in probability notation is

(5.1) ifl. (X ...X ,Y ...Y ) -^CEP 4L (X....X ,Y,...Yn)1 = /-*
«» * i u l a c. i n 1

. iterval estimate is a function of the confidence req

or of observations, and the estimate of the standard deviation us

5.2 Obtaining the Interval Estimate

In order to avoid lenj putation in obtaining the interval

estimate, it is assumed that the variances are equal. That is

* - , r2

Tl CB] (fined In lection L.3 as being I kV"wh<

vali k is a 'unction of t\ e ratio of the b probabilii

en centered ci re riate density mass.

i
•
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:ce the variances arc assumed to be equal, the ratio of the variances

Is 1, and P(k,l) * .5, so that k 1. 1774 (from Table 1 with c - 1)

Althoush the variances are assumed to be equal, the estimates of the

variances are not necessarily equal.

The estimate of the standard deviation will be determined by the follow-

ing two methods,

5,2,1 Determining the Confidence Interval, Method 1

In this method V" - max^V, 7"
J
will ke selected to represent v ,

That is

(5.2) ^-
2

- tcz^ill
2

- **{*** -*\ 2
. K&zlL2

]Z
^-f n-1 *- n-1 n-1 J

If *y j is divided by the true value of the parameter and multiplied by

n-1, this formula becomes

(5.3) (n-1) Tz - > (2t-lt) 2

Although the sum in (5,3) will not be an exact chi squared random vari-

able because it is the maximum of two chi squared random variables, an

approximate confidence interval can be obtained by treating (5,3) as

though it were a chi cquarcd random variable,-5

Tha confidence interval defined by (5,1) thus becomes

(5.4) 1.*- ?( X* „ < <*/-<) & < Xi.
4
,-%)

_ <
V" < I

)(T %̂ WrT* fT^~^
—

Jj-i in m iwjii ii* mJl.

. Section 4.3.

39





2.
'

L

The values of X ^ and / . , are obtained by entering

table 4 with n-1 and . itl sr l-o</2 or oC/2 respectively.

5,2.2 Determining the 'Confidence Interval, ! ethod 2.

the variance in this method is the average of the

two estimates* 'That is

If (5.5) is divided by the true value of the parameter V and multiplied

by 2 (n-1) , the formula becomes

where k. and y. are normally and independently distributed and :: and
;

are the sample means» T1 is formula can ho reduced by letting the valv.es

of i range from 1 to n and the values of j range from n + 1 to 2n, rhen

the for;.:'.' la becomes

(5.7) iOvzlL y/ - > (2k-?*)

where Z, « X, for k = l.,.,....n and z, y for !c « n •! I ...... ,,2. .

there are 2(n»l) squares In the sum« rhus (5,7) has aT distribution

'. ' 2(n»l) degi ' of freedo i : I Ion given in (4,5),

erval -' !•; determined In t « in (5,4) and

forrau]
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'

°£jL [tkt-ritts
'

<0J -i) |-^» are obtained by entering

(n-1) and either l-o</2 or p(/2 respectively, It should

be noted that this method of interval estimation is not as conserva-

tive as method 1 because the average valve is always less than the

of (\Jf ^/[Therefore, this interval estimate will be smaller,

5.3 Illustration

nates of the confidence interval of the CEP used in :

following illustrations were obtained wi lata from Section 3

sne [l-<*) « ,95. A comparison is made betwe tethod 1 an

-.ell as a variation of the two methods t\ re
j

:at estimate

of the C 3 ' CUP, -" I; y^} was substituted for 1.1774 ^j. It shou]
'

t :t non ... stribution theory isc; : in Met 2 hoi

^—

-

^
hen *EP is used for k V^ . Therefore, it is hard to get a mathe-

...<•. tically parison between these methods.

the various estimates of the -EP« Ehe best estimate

CEI is most Likely to be I.. •e to the basic assumptions of

/\

.ndence and unequal variances, rhe esti late of 1,1774 v
7""

is the
...ax

largest estimate o2 the CEP and therefore the est conservative i ate

of the CEP.
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—

1 e

•\ A ^ . ,j>er of
. ^i' "V

;,ax i.r ' V" Observations

1

2 tse 1
Q/. 3.72 3.64 10

Case 2 .34 3. 15

Case 3 3.45 3.26 3.23 25

2

Case 1 4.05 3.57 3.: 10

Case 2 4.15 3.53 15

*ase 3 4.11 3.74 3.71 25

3

Case 1 . 5.00 4.: 1

Case 2 •'.. 4.21 J. - 15

ua se 3.34 3.73 3 *>? 25

'al les c and show tl lover bo - confidence

interval estimates.

"able c

i Lj(x..,,,x , yi....y ) = Lo lound of the Confidence Interval Estimate

Prol

1

Case 1

Case 2

tse 3

Case

Case 3

3

Case i

Case 2

Case '.

. od 1

-A
1.1774 V" ,J5-1

Meth<

EP (nTl 1.1774V f2(n-l)
2 avg

f::TJ2(n-l)

•1 Xl(+,)f*
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Table d

(x. ... .:•.,, >'»... > ; " ;:•-' Boui s of the Confidence Interval Esti

.
.00 1

1.17 747".. f~~\

Pa/-/M-l,*/&

c 1

se 2

Case 3

Case 1

Case 2

Case 3

3
. se 1

Cas 2

Case 3

7.00

4.30

7.40

6.53
5.73

7.24

CEP
2f1

i ^-A/-///a_

. =

:

4.56

6.10
5.34
5.16

3.50

i le tho d 2

'4V~ /:1.1774V /2Cn-l)
avg

5.4
5.12

4.16

5.26

.

4.73

7.36

5.7C
'.

.

:

'

/2(n-i;

V ^*i"A/-/ )//*

>.:

5.10
4.20

...

4.75

4. .:

4.50

It is noted that the lower bound estimates are for all practical purposes

the same :or ethods, with the average difference being only .

.'. /ever, - bound differences show that method 1 gives a greater

estimate with the average difference bein^ 1.59. The lengths of t!

confidence intervals are compared in Table e below.

Table e 1

Length of the Confidence Interval (Upper bound - Lower bound)

Problem
h Tz J. M c

rence
With CEP2 1-2

Di ' "erence! et! od 1 1 Method 2 Method 1 hothod 2

1

e 1

; -.•?
"

Case 3

i

2

- s

Case 2

j Case 3
! 2

1

Case 2

Case 3

4.35

2.1

4, {

5,50

2.51

\
-

"

'

2."
:. e j4

1.44

2.

1.66

w -

2.35
L. .

1. :

1.61

2.05
1.50

2.53
lo.

4.14
"<

2.00

3. .

2 e

2.2

5,

3.00

j 2.15

2.60

2.03

1.4
'

2o38
1.

lM
3.33

1. .

1.56

1.54
1.25

.54

1.42

. j

.61

1. :

1.01
.-

Average difference 1.10
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It should be noted that the confidence interval becomes smaller as the

nurabef of observations increase. This implies that the true value of

the Zc,l' is i.cre likely to be within a smaller interval as the number of

observations increa; .

Diagrams 28,29 and 30 show the confidence interval using the

rferent estimates. The confidence intervals were obtained by using

the fata from case III of each of the problems.

5.4 Conclusions
/\

thod 1, using 1.1774 v produces the largest estimates and

therefore is the most conservative estimate of the confidence interval.

However, CEPo ?r>.d 1.17/4v n are likely to be better estimates of the

CEP and therefore method 2 or the approximate interval using the .'open-

dent estimate CZ?2 may be the best method for estimating the confidence

interval. An analysis of actual missile data should give a more realis-

tic insight into the best choice of methods to use in estimating t

confidence interval. In order to come to any definite conclusions about

the different methods, some comprehensive distribution theory problems

must be solved.
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S2CTI : VI

SUMMARY

6 .1 Introdu ct ion

The previous sections have been concerned with the development of

different types of models and methods for estimating the radius of the

mean centered circle which includes 50% of a bivariate probability

mass. This section summarizes the different models and methods used

in the previous sections, and includes an analysis of the results

obtained from problems. Although the sample problems do not represent

actual missile test results, an attempt has been made to make the data

as realistic as possible. Therefore an analysis of the problems

should show certain relationships between the model- used to estimate

the CEP that would also apply to actual missile ti ita,

5.2 Comparison Of Model I With Model II.

The basic underlying assumption made in Model I was that the true

value of the mean was located at the target, (0,0). Therefore, the

CEP in this model is defined as the radius of a circle around the

target.

The basic underlying assumptio: II was that the true

value of the mean was located at some ooint (u ,u ) away from the
x* y J

target. Therefore, the estimated CEP for this nodel is the radius of

a circle with center at oint, (x
r y).

A comparison of the estimate of the correlation coefficient shows

that they change in :. i mner in both models. As suspected s

a major diffeier.ee ' :hese is .
' location of x and y.

This is shown '
:

i 'I.''',-..- .rate the estimates





of •

. ,
:" ': the CHP for problems 2 and 3 is practically

In all three cases. Therefore, when the center of the distri-

bution is near the target, t .. _ is lit actical difference between

the two models. However, in problem 1, the distribution of data points

is around some point (x,y) away from the center. If the procedure

given in Appendix !! is used to estimate the ratio function, then the

values obtained indicate that CE?2 ss the best estimate of the CEP

for a sample size of 13 in problem 1. Also, as the sample size increases

the ratio function increases, thus CEP
2

is also the best estimate for

n > 10. The values of R.F, obtained for problems 2 and 3 show a pre-

ference for Model I for small sample sizes and are very close to 1 for

large sample sizes and therefore either estimate may be used.

These problems tend to substantiate the fact that the procedure of

Model II is superior to the procedure of Model I in large sample sizes.

They also suggest that if Model lis used in analyzing a small number

of observations, it might be advantageous to check the assumption of

mean (0,0) by computing the sample means.
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parison Of The Independent And Depend I ethods Of Estimating

The CEP.

In the introduction to the problem of estimating the CEP, the

assumption was made that the errors in the x and y directions were not

independent. This assumption is natural unless an apriori knowled

suggests that the errors in the x and y directions are independent.

ever, the assumption of independence in the fire control problem is

quite difficult to justify due to its complexity. Therefore,, it would

seem wise to estimate the magnitude cf the error involved in assuming

independence in order to find out he much difference this assumption

will mean m the determination of the CEI

t

It was shown in Appendix A that the true orientation of the density

function was related to the correlation coefficient. If the true shape

of the density function is oriented at some angle with respect to the

x and y axes and independence is assumed, the computed staxidard devia-

tion is not the best estimate of the standard deviation. Consequently

the independence assumption introduces an additional error in the

estimate of the CciP.

Cable f is used to illustrate some of the important differences

in the results obtained from the problems using the two models.
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T £

Computet erences Ls I and II

1

—

| ' —
£erences

i Problem I _. Model I I del I - Model 11)

IUS .: in Co> .
'£ in rel« dius Correl.

of :.;: est. cf coef f

,

! Oi est. of. coef f

.

. of <' f .

stan ,
•-» s tai s\ St. > A

L. ... CH? r SI dev. p 1> dev. P
>

: T

j
Case 1 3.97 i . 75 3.: . .330 .33 .45 .095

2 4.15 .2C i. . .0 .25 -.23 .125
n
-i 3. 5 j .54 .2( 3.. .32 . .30 .27 .22 -.116

II
„ 1

1 3.37 .57 -.454
|

3.33 26 .04 -.24 -.072
2 3.45 * -.25^ 3.2 1.06 = .395 o'jO -.20 -.139
^

3.77 .43 .031 3.71 .62 -.107 .06 -.19 -.076

' in
z I 4.3 2 .735 4. . .625 -.34 -.36 .110

2 3.72 ^7 .695 3.55 .65 . 03 . -.03 -.2

3 3.40 . 3.52 .65 .650 -.12 -.30 .010

e table shows some difference in the magnitude of the radius of

the CEP as estimated by the two models with the maximum difference being

•33/3.97 or 8.3%. Also, the trend in the size remains constant between

the two models. That is, as the size of the estimated C2P changes in

one model, it changes in the other model in the same direction,

3raph 1 shows a plot of the percent difference in the independent

and dependent estimates versus the correlation coefficient. It should be

asized that the points on t aph were obtained from data computed

from the sample problem.

differences in the estimates of the CEP from the problems are

shown in Diagrams 34, 35.. and 36, ioi of the differences were so

small that these estimates were left off. It is interesting to no

that the distribution of blem 3 erfect correla-

nd the estimat





>

:;
:

::.::'U ...:.:.
OlID

fl

+u

::

\

'

::::.. I
• - .

I ,

. .. - .

-it..

\ - •

-

" Mi

rTTTT i TT7tiTT

4m !

-f+

GEE ...

I

ft

mir rt tt

« ffiffiffl

TM II'i' rHr '— ;•-— j-M-U-L-
,
. ,

U.J..J

mm

rrrr

^

rx.

I R

or

i i

mm.

:i

ttitti

f-+,-

H—

m in.

Htttfa

:;t

TtTTrmi
I

J TJ—•"'— .....
. . H

:fflffi

ST

iilj 111
-

- Y

L.

T'411

:i

-H- rrH-r-H ;

I ,
.'_ LD

M—— ilUii 1

'
1 1 _

I

m-
H rt

-

;

. .

~
i TTj i rmrn tHi h-b-h-

Graph I:

£ rrnffrtW H H

m

ffiffifffl

+-H4

NtM
~ 4-i Tl 1 11r

tit

Hu

ir±tttt

ESH ' ipse
'

:

-T—-"

LLU ...jtt
jj
H Tfte values ' for thislRraph .

i

^ ....... .

-vs'.the Correlation --"Coef fi clent.
'

\...
1 1 i

j
N M-

ffiffls

'
ill I

j

-{deteririiricd by usinr; corr.puta

::""r:derive"'d~fro^ i the ' prdbl'easl
ti n i ft ••- " :-- j -..-..wmm \

i ll Will

\

m

iii

iw -•

flffff

I
:

•
•

-

ffnTTntTt-H SB

Efc

r452BS tfttil

ttffltttti

0^

+4444

444-

±f

H

:±

Li+1

it

UTD

44

4-j-J

::i

ti

:+

j

Tfc

uu

mmm
ffiB

:t

H
-j-i,rf

rni

'O .-/

fimfftaja
>. o









.-

4444 AW
i ..... . .

.' . : . . .

i

7

t

c

ittntrl

Mm ;:;•

1 ...... ...

1LUIIIIUi . -
i.

-ffl P

^rrr. d rm

rati:

--

;!.:.

.:.

;UJ .

"'.:":

mm

•
•

.

. .

LU -
1

I

to

—
-:r-T~:: r

,

I

... ....

I

HP
...

p

n il! 4 hi ' ' ——

'

m-U

liim

W

!

T? ' l -

'

! I
- ^ - rrt

\

rM

~rrr:

-W-U4---

fflr

i
at

ttfls

4-+

m

Li-iiU

EKE

ill 1

tttiiJ.LLli.
J...

Jil
±ti

n

Ctl

:H
m

irnttr

m

iti

rmru

l l l ll llll lll l ll

UU

ii H i jiTli tii thtil

..: ft
;Miffia

!

-r

Uj

ftttfiTtitei •

ifr+i-i

'

TTT .

'

-Ml,!
ti h 1 ! 1 1

M

! rfr

44+W ....

MEmm ...

...

r

t

Tr

RffiP"

n

.

i
4 -'.

4-

' nnn ...
.

.

jS+^u., ........... .
.

ti+U j ;j —
-lomjriM t

*7 -4 -r -v -3 -,/ -y o >

;-t

I

Hf

i .4LIL4T

r jj
-T.ffit

FH+

Mm

ifflfflt
Lit

, 1
1

IB1*

^Independent: and .Dependent;;,

Estimates-
1

of :.tfte„C2i>_;

alii
, ;

,.Diagrarrl 35.. .^.itnm^^Tnj^

r





m
;

; I





5,4 Bffectfl Caused By The Removal Of Outliers.

.'he most obvioua effect ou the CEP when outliers are removed is

that the CEP becomes smaller. However, there are several other effe<

which are not obvious but may be Important in determining which estin "->

tors can be used. Tables, using tha sample problems, gives a compari

between Method I and Method II and the estimates of certain parameters

before and after removal of outliers.

Table g

Effects Of Removing Outliers On CEP , r , and ("',

Problem

I

Case 1

2

II

Case 1

2

III

Case 1

2

i-O-ype I Error!

Method i Method II Before After

Correlation ^ Difference i

Coefficient (° Stand, pev.

Before After iefore ter

.10

.10

.05

.05

.05

.05

outlier outlier' outlier! outlier' outlier outlie

jremffvg d, re. .oved

.05

.05

.025

.005

.025

.01

%64 2.12
7 "7JaOl 1.04

3.33 2.31

3.39 2.75

4.66
3.50

3.03
2.42

removed' removed, re JVjgdJ rjmovgd

.303

.031

-.626
-.395

.025

.903

,059
.126

.151

.77

.201 .01

-.03 1.00

.306 .69

.075 .65

.24

.34

.52

.43

.29

;'he estimate of the CE? was reduced by from 14% to 36% in the

problems by the removal of outliers.
,
If a probability of the VP e 1

error had been specified as .05, the point rejected as an outlier in

problem 1 HOUld not have been rejected by the elliptical method but

would have been rejected; by Method II, This is because Method I an
'

Method II are not the same and will not necessarily reject the sane

points for the same confidence level. The effects of removing outliers

are shown in Diagrams 37, 30, and 39,

7?





In should bo noted chat the removal of outliers may change both

the correlation coefficients and the difference between the standard

deviations in the x and y directions. This is due to the large effect

that an outlier has upon the distribution parameters. Thus a large

correlation coefficient may be due to the presence of an outlier and

not due to correlation between the errors in the x and y directions.

Therefore, before the independent method of estimation is rejected, an

investigation should be made for outliers.

SO
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TA3LE 4

Cumulative Chi -square distribution
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APPENDIX A

MENTATION AND TRANSFORMATION 0? THE BIVARIATE DENSITY FUNCTION

A.l Introduction

This appendix is concerned with the orientation of the bivariate

normal density function over the x,y plane. Primarily this requires an

investigation of the correlation between the random variables X and Y

and once the correlation is determined, a transformation of axes so

that the function can be integrated more easily.

A,2 Orientation of the Axes

If the correlation coefficient is zero, that is the random variables

X and Y are independent, the orientation will be symmetrical with

respect to the x and y axes. This means that a plane parallel to the

x and y plane will cut the density function in the form of an ellipse

whose minor and major axes are parallel to the x and y axes. This is

shown below in figure A.l, Note that if^-Vy, the ellipse becomes a

circlet 3

1

\

(<*X,Uyi

X O.KU

Orientation of the Ellipse When j° -0.

Figure A.l

If the correlation coefficient is not zero and less than plus or

minus 1, the orientation is offset from the x and y axes in the direction

90
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^ Kl a,) x a>is

/
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Orientation . . pse
n <P<1

,2a

-

f the I'll ipse

when Kft

ire ..,2b

error int ed in assuming independence, when the random

variables .". and '.' are not independent is a function of the correlation

coefficient and is due to the true oriei >n of the density function

with respect to the x and y axes. If it is assu hat the errors in

:tions are independent when in fact they are not* an

additional error will computinj tes of the variant

-a s\

'. i ii due to the fact that the computation of ^v'y i '~: in the; direc=

tion of the as;; 'x »y) instead of .. lirection of true orien=

tation S( |Y),2(Y1 ') • • to obtain so

knowledge of the true orientation in order to obtain the best estimate

he variances lis can be obtaining estimates of tl

a, -. axes and I s s

sections are devotee to rent possible o

tations . of the correlation cc fi< ix\ ,
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A.3.1 Deter, ning 1 rrelat: affici

is zero.

(
iriables X and Y are - ent. Therefc

..'!.'•
.

;

..
J .

-
.

' ). ... pre i in by determinate

of either the value of the conditional expect.; h or indired

using I . . lear predictor.

A. 3. 1.1 ..
• : termination of the t ional Expectation if (®

rhe expected value of one random variable ven the value of the

other random variable was defined in Section 1»2„5 as

f k "W r* (it \tj\ V - V \ ' ' I

- oO

Un Vi

7" Vy

_ OO

"^V7*/ r £(*) t
*S deTttJeJ /a/ J

r/*«/AU

The E(Y|X) can be determined in the : vad is equal to E(Y).

.'."•1.2 Indirect - ination ol the Conditional Expectation Using the

Best Linear ; ictor.

.: -ional expectation of one random variable given the value

of the other random variable is a linear function of the known ran-

variable when both random variables are jointly normally distributed.

: is the E(X|Y) = Ay - rhere e constants which can be

determined, rhe linear predictors for the nal expectations under

consideration . LI 1 as follows?

2





:A.2) IX) - E (y) ..[ :i] where
'1 „

-

T,
— <vr

E(X/Y) - E(X) + CJY-E(Y)] where C „ CCVCy:) = J\/£
v .-v . V, X J

P froi L

.

In the case where? =0 - COV(:(,Y) , COV(X 7) - C - C from (A. 2)

VAR(X) 1 2

Therefore, the results becorr.e the same as in Section A.2.1.1. That is

(A.?) E(X/Y) - B(X) arid

E(Y/X) *E(Y)

In the case that P =0, the orientation of the axes will be as shown in

figures A. 3a and A,3b below:

X OQCJS

Orientation of the Density
Punctioi the Cc r 1 ition
'Coefficient is Zero.

Figure .'..3a

^0 -

x atiS

(U
Xi
u
Y

) £(XlY)

Orientation of the Axes when
the Correlation Coefficient

is Zero

»

Figure A. 3b

33





A.3.2 >n of the Orientation if (° =• l s

. If (° = l s
t:i '

) will lie along the same axis,

can be proven by usj est linear predictors in formula (A. 2) and

trie definition of the correlation coefficient,. That is

(\.4) P = I = £___. ,
:) and therefore 00V(X,Y) -JVAR( :)JvAR(Y)

^VAlUXVVAiJv(V)

Then using f01 -• [Ao2) S(Y/X)=E(Y)+C
1
[(X-E(X)]

re

:.:/:) ^ varIx}

usinr, the result in formula A, 4. Since

E(X), E(Y), and

J

;

A:fCT
are constants,, the random variable S(YIX) is of

tne form

(A.6) E(Y/X) re Ap-Cj and :(Y)-E(X) The tangent of the

angle between the y axis and the line E(Y|X) is

(A. 7) dTE(Yj V = ?an9 = C, or JVA f"
)

v V \ ' )

in the case where P= 1

The tangent of the angle between the x axis and the line E(XIY) is

determined in the ame way and in this case

'

, n0 - C, e case where P «* 1. Since ran$=i .A- (X)

(75 v

1 = 3T9 lines must be the same.





Therefore, in the cast P - 1 9 the orientation of the axes vail be

as sho - »4a and .'..<4b be .
.

Orientation of the Density
Function when the Correlation
Coefficient is 1.

Figure A. 4a

-7

/

o

/
<L.

X
X

$?*
?<$

) y axtf

Orientation of the Axes \

Correlation Coefficient
is 1,

Figure A. 4b

A. 3. 3 Determination of the Orientation of the Axes if 0<:<?^ 1.

0< f < i, the two lines E(X|Y) and E(Y|X) will not be the same

or perpendicular and will be oriented as shown in figures A. 5a and A 5b,

This can be proven by using the same method as in Section A. 3. 2, except

that

VAR(X) \ \ )

It follow; m this that 0* 00V(X,Y) < /VAR(
j ) a Then using

formulas A.7 and A 8 8 with the definitions of the constants in formulas

\.,Z t
the dei ingles are

A.. 10) Tan© C =
) 5

Tan0 - C> = jgVCy/ )^fl^ :P.
'





range of possible values for the two angles using A. 9 are

(A. 11) 0< 9<Tan- - VA

V vAa(x)
0< < Tan" 1 /"w

In tb.is case the orientation of the axes will be as shown in figures

\, 5a and A, 5t •
^

Orientation of '- Density
junction when < f ^ 1.

re A,

>N

h '7'

/
/

/
I

/

/

Orientation of the Axes v/hen

the Correlation Coefficient
is < f < 1.

Figure A. 5b

A,3«4 ;inatio;i of the Orientation of the axes it" ~l<v < 0,

If -1 <(J < 0, it follows from formulas A, 9, A.10 and A. 11 that

(A. 12) ai
-1

i

rTrT7
r7

:. w e < o,

V"-- ..'.*:) ;

tax
»1

\/VAR(Y)

In this case the oi -ntation of the axes will be as shown in figures

, a and ":.
: .





*-%

y ax/j

Orientation of the Density
Function when -1 < (° <

Figure A, oa

Orientation of the Axes
when -1 < f < 0.

Figure A. 6b

A. 4 Illustrations

Although the true orientation of the axes will not be known, it

can be estimate ising the various estimators shox.Ti in table h belowJ

F Table h

. —
Estimators Jsed in Determining Estimated Axes Orientation

Estimator used Value Estimated

X E(X)

y B(Y)

vtt
z it a a '*'\

: . its. >^<\J

fy VAR(Y)
Tx i/VAR(X)

Vy . l/VAR(Y)

00V(X,Y)

rhe estimated parameters in the illustrations which follow are

determined by using the data from the example problems in Section II.

A.4.1 Illustration (1)

The data is obtained from example problem no. 1 with a sample size

of n = 25.

97





x = l,2, y = 1.0, ^=6.8, ^v ' •
'

» ^y

2(YJ::) = E(Y) -:- CjL'a - S(X>] 9 E(XIY) =

where C. -
_
jxy_

_
« -.05 - TanQ C- -

-.4, f
3

= -.05

EO0 - C
2
[Y - ECY)]

•a

\7aK - -.04 = Tan0

9 = 176°51« - I77°31»

The orientation of the axes is shown in figure A.

7

VUJ

\

t-\
— — ~~ J^

S>

x axis

\

\

Estimated Orientation
of the Axes

Figure A.

7

f$Tyj

It should be noted that the orientation of the axes in figure A.

7

implies that the random variables X and Y are nearly independent and

that the independent model of computing the CEP can be used with only

a small error due to the orientation. The computed values for the two

different estimates of the CSF are CEP
2
= 3.28 and *&&*= 3.25

*

A.4.2 Illustration (2)

The data obtained from problem 3 with a sample size of n = 15.

.90
A

'•o, y V* - 10.7, 7p= 15.4, \T
y
= 11.6, (

E(X/X) = E(Y) + Cj[X-E<X)J E(XIY) = E(X) + C i Y-E(Y)J





GL. = - and C„ = 30'. ') = .755 = Tan0

VAR(X)
,'-.->- -

VAR(Y)

= V '

orientation o axes is shown in figure A. 8

$
x

/
/

fi

/
/

/
/

/
/

/

^
( .*,-*)

r^

A
^

^
x ax/ j

Estimated Orientation of the Axes
wien Dependence is Implied

Figure A.

8

It should be noted that if this were the true orientation, it

implies almost perfect correlation between the random variables X and

.'his orientation will exhibit the greatest difference in the esti-

mates of ..' CEP if independence ; ere initially assumed. The computed

values for the t\x> different estimates of the CEP are CZp2= 3.52 and

A.4.3 Illustration (3)

he data for this illustration is also obtained from problem 3 with

a 'sample size of n - 15 iowever s in this case^ the two outliers have

en removed and . iple size - . :ion is 13.
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3, y = .4, V= 3.64, VL = 4.8 S ŷ
« .32 P- ,07

/.:) - •::.) * c [ :• :(x)]

re

9 - 5° 3'

S( I '- E( - c
2
£y-e(y)]

- 3°

The orientation of the axes after removal of the outliers is shown in

stigure ... .

X axis

Estimated Orientation of xes

After Removal of the Outliers

Figure A.

9

It should be no;: 1 :hat tl re oval or the outliers rotated .

axes enough so that independence could be assumed with only a small error

in the estim he CEP. The computed values for the two different

estimates of the CEP are "CEP-,- 2.42 and CEP& - 2 9 52. Thus the removal

of outliers will not only reduce the size of the CEP but may aid in the

deter.. ion c
r whether the simple: ^dependent estimates

may be ^sed or no .

. , 5 Transf< . a of the A

En ord integrate ... .3 necessary

to trai ifoi . . done in several wa;





but the use. o notation can greatly i Lfy the procedure,

It is necessary to first define some of the concepts which will be u i

A. 5.1 Definitions;

f
an a

i2\
,5.1.1 atrix A-Ca^) where A= J "

J

will be used for

V a
21

a
2?V

simplification.

.. i.1.2 The transposed matrix is defined as A' i

'au a2r

a
i2

a
22'

A.5. 1,2.1 Theorem 1. The transpose of A'^CA')'^

A.5.1,3 The inverse of A is defined as the matrix A"*- such that

\A" 1 =/l 0)
( 1

'

A. 5. 1.4 The identity matrix I =/l 0\
lo :'

A. 5.1.5 A symmetric matrix is defined as a :rix such that the

transpose of the matrix A equals , That is

/
a
ll '2A (

aU a
l 2\

A» - =! -A
,a

12
a22' V a21

a 22'

A. 5.1.6 If C is a 2x2 matrix such that C Z I, then C is defined

as an orthogonal matrix and C f -C°*-

A.5.1.7 A characteristic root of a 2x2 matrix A is a scalar }\ such

that AX- A X and AX«= Aa-0 for some vector X ^ 0. It follows

that If A is a characteristic root of A, then (A-Al)X»0

and therefore /A- A U B 0«

10 >





..5,1,0 trix D ii i squai rix

1 Li :\t is,

d. .

'il u

d /
22'

,5.1* - -ic for;;-. Q is defined as J»Z'AZ

. „2 riatG nor..ial density function in matrix notation is

•» -
y)

: 7T /a^/I
exp- where A *

It S I that A and A""*- a. natrices. That

is A « A* ' ."^-(A" 1-)
' , Thus the theorem applies that for every sy

..-ic matrix A" 1 there exists an or tal matrix C such that C'A~*OJD

where D ii i agonal elements are . haracter-

istic roots of A"'L

. The matrix D would thus be

X, o

(

A| nd A^ characteristic

roo .,

In order to find the characteristic roots of A" 1 we must first use the

identity matrix I ~/l ') ' hcn l^*/ ! °^ w /^ °)

roots of a symmetric a determined from the

lial £(fc) m lA-<* A 1/

A

O

.

X

O =
V^y

77
l
-

A

= a

7 ',"».





tic equation

A -

*.

»"»' k)'(
,-)•"'

-I

A*'(*'T-(
-/ /WJX °1/

O X

trans' : Junction is

:a.13) Q ^' ^ .
, ;>
t^ A

no\7 have a normal bivar;.' .pendent ran.

variables If and V such that the matrix '.; =/V\is distributed K(0

W - C 2 re C is the ortl - s£ies

.

Lnal terms inv the correlation constant

not pear in the q for this distribution,

shci I ')/%* pL The orientation

U e A. 1 1

.





a

lillipsc Formed by Cutting the Bivariate
jrmal Density Function^U|.(u,v) by a Plane

Parallel to the u,v Axes.

Figure A.l

Fortunately it is not necessary to compute the orthogonal matrix J

which satisfies the relationships above since the characteristics ol t

orthogonal matrix C requires that C C = I and C - C~*. Then

(A, 14) (W »A*( :

; = (C»Z »A*(C«Z «(Z • CA*C» (Z =(Z »A(Z

but C'A- 1 C=A"" 1

therefore (C f A" 1 Q" 1-^*- 1 )" 1^*

=C" 1AC=A*

CC" 1ACC" le«CA*C" 1

A =CA*C
-i

Therefore, it can also be shown that the corresponding areas under the

density functions are equal „ That is

( A. 1 5 ) jfa. v
(u , v) du dv= Cft ..

Y
(x

, y ) dxdy

where: Q. „(u,v) 1
' •".'•;

exp -5 Z'AZA, ..

2T |A-ij £
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;. is is because W»A*W =» Z'AZ as shown above and | A*"*/ =j A"*/ . It is

shown above that O^T'C «= A* and the determinates of the two terras

are /C^AC^/A*" 1
/
= |<7 ^(A"

1
/

/ C\~ (A*" 1
/ -/ A"*/ /cW A' 1

/
-/a*"*/.

/CI

There:© rejTtf (u,vV«<WT

f

x y
(x,y)dxdy

to

:





APPENDIX B

iSTI . lTION

3.1 Introduction

The theory of estimation is concerned with the problem of finding

functions of the observations such that the distribution of these

functions will be concentrated as closely as possible near the true

values of the parameters estimated. The density function of the obser-

vations under consideration was described in Section I and the para-

meters which are to be estimated are uvf u - ~r
2

, U~ z and (° „a y
v x y

Some of the properties which are desired of the estimators were

described in Section 1.3<>

B.2 Maximum Likelihood Estimation

If f(xp x
2

sc
tt»3

rl»y2-,# " ,yn»
u
x
,u

y» Tx» ^y* ^ ; ls the

density function for a random sample of size n with unknown parameters

ux» uv * ^~\» ^y> anc* * tnen tne likelihood function is

A)

(B.1) L
=J1

ffa Y; ;"*,",, T^Ty* (

)

Since it is more convenient to deal with sums than products, it

is easier to maximize the logarithm of the likelihood function rather

than the likelihood function itself. It should oe noted that the

logarithm has its maximum at the same point as does the likelihood

function. The log of (.0,1) is

(3.2) l
1

* -#fiy*w-g/o
3
vf-fv? -£(/-?*)

. i \ fix* - f - ae P&&) iud*i\ + i^^u.

iG6





The maximum likelihood estimate of each of the unknown parameters

is obtained by setting the derivative of the function with respect to

each of the unknown parameters equal to zero and then solving the

resulting equations simultaneously,. To illustrate this procedure, the

assumptions will be made that^<*»Vy" 7" andf™ 0. For this special

case, formula (3.2) becomes

(3.3) l. - -;: log 27T -n log^-* X [(*;-(/«)* + Qa-arF

and the partial derivatives are

A/6W)

HL'l

V I

N
^

—

/ (Xi-U*) +(Y.'~"yf]

6 14*

till

- 1^- M - ^ -a/ a*

T

4.-I

fJ

< s
l

N
l(Y;~«y) - ZYt-NUy

Equating the partial derivatives to zero and solving simultaneously,

it follows that,

CB,4)

(B.5)

SIX*

y

A.-I

Since maximum likelihood estimators are in general biased esti~

mators, it is necessary to examine them to see whether they are unbiased,

For example
?

if the expec"- /alue of the estimator $is equal to S, &

where Q is the true paramet hen
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(B.7) p
( p / © and —^— is an unbiased estimator.
\ M ' D,

Since F(x 4
) •» u and £(y.) - u for i = l..... »n, it follows

1— ix l y

that "x and y are unbiased estimators for ux and u respectively.

The expected value of the estimator in formula (B.6) is obtained

by recognizing the fact that there are 2(n-l) independent squares in

the sum. and therefore 2n \T/y3> is a chi squared random variable with

2(n»l) depress of freedom ds defined in formula (4.5). Since the ex-

pected value of a chi squared random variable is equal to its degrees

of freedom, it follows that

CM) E(^t^) -2(n.l).

therefore,

$1. iuxi^J^in ,. an
ti, *'•» *LAS~J)

unbiased estimator of v when the variances are equal. ..'hen the vari-

ances are not equal, the same procedure may be used and the unbiased

estimators of T and Vy are

v *

It should be noted that the estimators (B„10) aro usee in Model II.

Also, if :• sumption is made that the true values of th \na are
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zero, then the estimators for the variances in Model I are also unbiased.

The estimators of the means and variance used in Model I and Model II

are, apart from the biasing factors, maximum likelihood estimators.

However, it should be noted that the CEP is a function of the

standard deviation and not the variance. The following section will

determine unbiased estimators for the CEP using the procedure in this

section,

B.3 Unbiased "Maximum Likelihood" Estimate Of The CEP: When

Vj^ «Vy - V and P - 0.

The maximum likelihood function of 7~when u u isx y

<B.n> vr = J -sUrl &* + y<1)

4*1

iinse the sum in (C # ll) divided by V" has a chi squared distribution,

it follows that the square root of a chi squared random variable di-

vided by its degrees of freedom has a chi distribution. The density

function of a chi distributed random variable with 2n degrees of free-

dom in

<JU2> f„<u) - ^ -^ S£Ci '—. u >0
u

u 4

where / (n) ia the gamma function with parameter n.

Than,

I





13) L(V ' J
* rmw^ ™<

unbiased estimate of V and therefore

(B.14) :.:?** 1. 1774 7^ is an unbiased estimate of the CEP.

The maximum likelihood estimator of ST when the means are not

zero S

"

(3.15) % * I
Jp ftik-Xf+ti-V)

Therefore,

and

y
^

an unbiased estimate of T . C re

(g# l$) C&Pjfr* 1.1774 ^ is nn unbiased estimate of the CEP.

,: ... dtudes of the biasing

factors and a comparison of the biased and unbiased estimators ) the

C2P # The results obtains ta from the sample problei s

presented . Ic, i and jo





Table i

Comparison of the Biasing Factors of. the Two Estimators

Case CEP**

3,, =/ lQ ' (10) - 1.01
11 T^ToTBT

B i9
mfe Al5) - 1.01

12
/^15.5)

B., »j' 25 P(25)° 1.005
13

rc«.5)

CEP**

3
9

q/To /'^(9) = 1.09

r (9.5)

3
?2

°| l5 / (14)= 1.04

/

v
(14.5)

Boo °(25 /^(24)° 1.03
23

^(24.5)

Table j

Comparison of the Estimators with the Methods Used In Sections II and III

i'robler:

Case 1

Case 2

3Case

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3

Appandlx g

CEP**

4.20
4.13
3.52

3.55
3.5S

3.33

4.76
4.10
3.69

Section II

CEP CEP*
1

Appendix B

"SEP""
2

3.97
3.34
3.43

4.13
4.10
3.51

3.37 3.50
3.45 3.51

3.733.77

4.17
3.65
3.36

4.69
4.03

3.36

3,95
3.29

3.47

3.43
3.73

4.76
3.92
3.70

Section III

CEP,

3.33
3.39
3.71

CEP*
2

3.64 ! 3.72
3.37 : 3.88
3. 23 i 3.26

3.55

3.52
3.74

4.66 5.02
3.56 : 4.21
3.52 3.72

B,4 Comparison Cf The Txjo Estimates! Relative Efficiency

Throughout this section it is assumed that % = Vy - V and y => 0.

It can be proven that CEP** ha8 greates -.fficiency than any other

unbiased linear sample statists en the near value is (0,0). In case
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the mean is not zero but is known to be small 9 this estimate should be

consid , CEP*,* is asymptotically efficient whatever the population

mean may be, hence, if the mean is greatly different from (0,0), CEP**

will be a better estimate than CEP**. However, because 2 degrees of

freedom are lost in estimating the coordinates of the mean, the estimate

CEP** will not be as precise as CEP** for small values of (u ,u ),
1 x y

In order to determine whether to use CEP** or CEP** when it is
1 z

known that the true mean is close to (0,0), it is necessary to compare

the two estimates by some criterion. The method which will be used is

the ratio of the relative efficiencies When CEP** and CEP*"' are used,

the formula is

[ICEP" -CEPf

This comparison may be done by assuming that the true mean is

either some point (u ,u ) or (0,0). In the case that the assumption is
x- y

made that the true mean is (u ,u ) the joint density function is
x y

CB.20) fCK,y;u
x
,»,T)- jjf^- e*P{- ^[(A-u,fi- Ky-^t

When it is assumed that the true mean is (0,0), the joint density

function is

(B.21) g(x,y; 0,0, v-
)

/

<3 7TT*
ex/3

/

J.V°
(xM

The development of the ratio assuming that the true mean is (0,0) follows

the procedure applied in formula (3,13). The result is

<2, f~(N) Pfttl)
(b.22) £\[v;—rf] I

.

i

1

/"
" /

v*





CB.23)J»

A
(K- -IT) r*

Combining formulas (3.22) and 3.23) s
the ratio function is

Xaj)P(m+/)

(3.24) R.F. -
(A/*

I

r^)fs

(AJ~t)

r * (v- i)

-

1

When the mean is (0,0) 9 the ratio function in (B.24) is less than

1 for all n. Table k presents values of the ratio function for

n = 2(1)20, 25(5)50. P. 3. Itoranda tables this ratio for n = 2(1)8.

Table k

Val ues Of The Ratio Function When u « u
x y

n R.F.

2 .482

3 .656

4 .743
5 .795

6 o830
7 .854
8 .373
9 .337

10 .' S

11 .908
12 .

'.- X j

13 ,922

14
15

16 ,937

17 ,940
18 .944

19 .

20 .9^;

n

25

30

35

40

45
50

R.F,

.959

.966

,971

,974
.977

.979

If it is known that the true, mean is at some point (u ,u ) then
IT jjS

y

formula (3,20) is the joint density function of the component errors.

The R.F. ratio for th: :ase was devel \ by P. 3. iioranda in reference





(3). In order to find t an square deviation of CEP**, the sa.

procedure can be followed as in formula (.'.13) and the result is tl

same as formula (B.22). Che mean square error c ••'" is a function

of u and u • Ibranda assumed for ease of computation that u k
x y x 1

and u =» k '

.

Let tin:; u be defined by

(B,25) u

« n.

i. has a non- central chi

squared distribution, Values of ...:'. . n in rab] 1 ^an erpt from

Tabic [l) in reference (3)) were obtained by putting k = k , and vary-

ing I: from D(,1)1»0. rhe results of derivation show that as n

increases, the ratio function decreases for a constant value of k. It

can be ascertained fron this table that for large n, CEPft* -ill be the

best estimate unless !; equals zero and CEP** will be best for sr.-.all n

and small values of I;, Jhe practical use of the ratio un

assumptions require the use of ei tes to obtain the values of k

md !;
9

and although not exact, may still supply some -::cful information,

Le 1

CS (CEP. - CEP) E vCZr
o

- Jbx) 2
)

0.0 0.1 0.2 0.0 0.7 0, 0.9

.482 ,487 .503 .530 .575 , ,723 1.01 1.21

,
' ,663 ,633 ,727 ,79 . 3 1,06 I,

.743 .751 .777 ,82 ,919 1. 1,23

. 7
;•

'

,
'.

.
'

':

, 11, ...

. 3! , . 1 1 I .

•

. I ,:
•'. .. . 72 1.12

i
-. * 7 1 , I .

:

,
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A possible procedure for using Table 1 is as follows?

The values of x and y are first computed. Then v/ and Ware com*

puted using formulas (B.ll) and (B.15) respectively. The estimated

value of k and k. will then equal

(B.29) k,

t where V — " ~

Using k. + k„ and n, an analysis of table 1 may show x/hen CEP**

is not the best estimate. The reader should be cautioned that no

attempt has been made to theoretically justify this procedure

>

In order to better illustrate the above, the computed values from

the example problems for case 1 are shown in table m.

Table m
Computed Values of <

Problem
CN-10)

1

X y Itodel I lodel II T k
i

U
2 Rv \y^

1.2 2.0

J! Ta
3.3 .364 .605 .4843.5 3.2

2 WO .1 3.0 3.0 3.0 .333 .033 .133

* .6
-

.3 4.1 4.2 4.1 .146 .073 .109

Analysis of Table n Using the Above Values

1 fork" .434, R.F. > 1 for all n >5, therefore cip** is best
estimate.

for k .20, R.F. - .917 < 1, for n
slightly better.

, therefore CEP** is

3 for k .109, tt.F. - .334 < 1 for n - 8. CEP?'* is better.
'

1

115



•



-

INTEGRA - . .T' : - IBUTK

Intro ction

rhis appendi iisc ;s the details of the integration intr(

; l\ integration of an ellipse or a circle over

the bivariate normal density function ' plified by making the

at ion exp] ii pj . . Chat i equation
.

(C,l) (•" >.
=

I

{ :: r
<-

1

2 j ;, v

-2 ,-

C.2 Integration !ircle

. probal point (1,7) will lie :ircle

with center at the origin an ius k ^uis written as

(C.2) v )
i >

'''

I i V < k 71A

illustrations in . ',,} tow the .trie area of

integration.

-Circular Error Probabilities" by K. Leon Karter /4/ of Aeronau-

tical Research Laboratories,
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n .

^1

-

x ax/v

Integration of t s livariate Density Function Over a Circular Region

Figure C,l

In order to simplify equations (C.l) an . 1,2) let

(

3) — = mcos©, — = :..-.

then

/

51TTTU Tv
)jexp{- -i-[M*CQf*0 *- J^ A**/*'© JjlJ I,-,./

where M<K

t)U oW
I

let c - S"
t
S/A/

z
= i -tc

2.7T K

and the probability is

let »*0 =
a (1

+COW©), ? a ^j 2 and the probability is

/

J ('U; =
7T

7T j

• /CV/) + (C-/)CO*0]{ </z ••

o
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i into c the probability beco

;

/

o

; HO d<t>

i is inte .. using the trapozoidal rule and utilizing

computers to do the Integratin .

, the curve belo resents some function that \

to integrate over !esignated interval, vide the interval

into equal sub intervals (d0) and sum all of the sub intervals, As the

sub interval aller, the accuracy of this type of integration

and this summation technique approaches the actual area

under the cu:

Trapozoidal fechni der a Curve '.nation

?i \ 2

or integration with n intervals thus becomes

- •
=

: Z l ~ 4:2 ) ^(C2-H) + (C2-l) C 3MB 1/,
7T 2L (^,i) +.,... -

.

a - IT

n
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chebys that con re

rapidly than the cion. a by cornp

convergence of the t\;. ods. If we ? = x = T [x'
,

- -
;

- I

Lc for integration now becomes

(C7) f

nation is no- ifferent values of k,c, an P(k,c).

C.3 Integrating Over an Ellipse

; probability that a ran Lnt
. , 1) ill lie within an ellipse

r at the origin is written as

. .
<

V
1

2 7T VT. T, i
-* + v ]l

.HP
+ tl

^ Vt

\'5

<k

rhe two illustrations in figure C.3 show the geometric area of integration

i
.MS

Volume of Integration of
i va r i a t e Den s i

t

:t ion
Ellipse 1 1 an< I t ing

g (u,v) Parallel to u,v Plan..

re C.3

119





e vari. i [ual, this f is also circular,

the tl
" Li being a perfect bell i ... two dimensional

form being a circle.

In order to further si tis form let

(C. ) u » m VZ»00Se, v » ^H VP SING, ' llity becoi

PCk,fl,0) 1 (7exp.%M* \y\dMd9 where J-"^^ 7^

thus^

(c.io) i . //,-. f-a
""- 7<9,

27T /

Formula C.IO can be inte h ' in - integrating

respect to 9 and respect to m. t r int i :i-.; with respect

to &, the formula becoir.es

o

If we let t=m , the probability statement becomes

/

(C.12) P(k,t) = h
J
exp -

: (t) is the chi square ! densi
o

function wi agrees of freedom as defined i. '..5)

That is

•

For any value of 1 ^'-.,u) the value of k^ can be obtained from table 4

by entering with P(k,t) and 2 degrees of free
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