

Calhoun: The NPS Institutional Archive

An analysis of methods used in estimating the CEP.

Hargrove, John Q.
Monterey, California: U.S. Naval Postgraduate School

AN ANALYSIS OF METHODS USED IN ESTIMATING THE CEP. JOHN Q. HARGROVE

U.S. NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNHA
2

$$
\begin{aligned}
& \text { by }
\end{aligned}
$$

```
    This voxl: is accoptec as Eulfulling
the thesis reruirements for the cogrec of.
    :MOMEX:O OF SCIENCO
    from the
    Unitch States Naval I'ostgrac'uate Jchool
```


1302 AC

This thesis piesents a acneral discussion of the problems involveci In estimating the Circular Probable Rror, wore comonly refered to as the CEP. A comparison is made between the estimates of the CEP under tro distinct models. The models are identical except for the location of the mean vector in relation to the target. The assumption of dependence is made in both iodels and the resulting estimates are compared with the corresponding cstimates obtained under the assumption of independence, Confidence interval estimates of the CEP are also presented. Tro methocs of removing outlicr or "haverick" observations are introduced and some of the possible effects on ti:e estimated CEP are discussed. The different estimating procedures are illustrated rit thee numerical problens.

 as Eully as yossible that the Cat is and to tllustratc some of tioc ...tiocis availajle to estinate tic Cil.

Ge chil was initially cieveloped in orner to oive some criterion foü nensuring the expected effectivences o a parieicular weapon syetc: an to give sonc :..eans Eor comparing similar reapon systeris or reapons. In order to develop this oriterion, it is escential that the ascumptions u゙sed arc rell uncerstood and establishec. whe appioach wost often usce
 pancont ane tine the variamees are gqual with tive justíicazion tiat these assumpions produce a nealigiblc error. !lorever, an crior may be introcuced and it is necessary to at least uncerstanel rinait is being assumed before mating jucgement on the logality of any assumption anis thesis therefore, atterups to explain such assumptions and to compare possible zesults of making certain assumptions in thmee example problers. The problcus axc all Eicticious anc utilized only for tie purpose of explaining the estimating prococtres anc assumptons.

Whe thesis is primazily directed at the reacer with a college bacirground in calculus, some matioiz theozj, anc sone fcel for basic probability anc statistical procedures. Fhe contents are arrangece in six sections and thace appencices. Section I is an introciuction to the probIon and the basic mathematical concepes rinch will be used. Jections II
and III introduce the most commonly used estimating procedures. Section IV explains the problem of deleting outlying observations from the determination of the estimate. Section V introduces the confidence interval. Section VI is a sumary of the techniques used in the previous sections. Appendix A is concerned with the mathematical techniques which are used to explain and transform the true orientation of the dependent variables. Appendis 3 explains tro methods of obtaining unbiased estimates of the CEP. Appendix C explains in detail the methods of integrations used. It is recomended that Appendices A and C be studied before starting Section II.

This thesis was witten during the period January-June 1062 at the United States Naval Post Graduate School, Nonterey, California. I wis'r to express my gratitude to Professor J. R. Borsting for his continued patience, encouragement, and most competent guiclance vhile acting as faculty advisor, and to Professor Max Hoods for his continuous aid and technical understanding of the problem while acting as second reader. I also wish to thank my wife for the moral, clerical, and artistic assistance given me during the writing of this thesis as well as the past two years.
Section itic
Face
CEMAPICATE OE APEROTA i
A3.52RAC: ii
PREFACE iii
LIG' OE ILLUJTAATIOHS viii
SECTIOH I INTHODUCTION TO T:Z PMOBIE: 1
1.1 General Discussion of the Circular Probable Ericor 1
1.2 l.athenatical Motation 5
1.3 The Basic Problem In Estimating the Cisp 8
1.4 The Problem of Dependence 11
1.5 Summary 15
SECION II DETEWLII:G TUE CWY UIM TTE DENSITY FUMOTIOH CEMTERED AT TAE TAKGET: VODBL I 17
2.1 Introduction 17
2.2 Ustimating the CEP Using Zodel I 20
2.2 Ostimating the CEP Using the Assumption That the Errors In the x and y Directions Are Independent 21
2.4 Information About the Problens 21
2.5 Exampe Problems 21
SECTIOU: III
 :OODEL II 32
3.1 Introduction 32
3.2 Estimating the CEl Using Mociel II 34
3.? Estimating the CGF Jsing the Assurption Fiat tiz Lrrons In the \because and y Directions Are Inupnordent 34
3.4 Comparison Of lodels I and II 35
3.5 Problem Set 35
SECTICN IV REOVING THE CUGIER: BODGL III 40
4.1 Introciuction To the Problen 40
4.2 Criteria For Rejection Of Outliers 42
4.3 Nethod I For the Rejection of Cutliers 44
4.4 Method II For the Rejection Cf Outliers 45
4.5 Procedure For Renoving Outliers üsing Mettod I or Nethod II 49
4.6 Information About the Problems 50
section v the comeidence ImTERVAL OF TE CEP 53
5.1 Introduction 38
5.2 Obtaining the Interval Estimate 53
5.3 Illustrations il
5.4 Conclusions 54
SECTIC!: YI SU:..AR: 68
6.1 Introduction 63
6.2 Comparison Of Moclel I ti th Wodel II 63
6. 3 Comparison of the Incependent and Dependent lethods Of Estimating the CEP 73
6.4 Bffects Caused By the :?moval OE Outliers 79
BIBLIOGMD:M 34
APDENDIK A ORIZ: RATION AND TRMSPORATION OE TAE BIVATIARE DENSITY FUNCIC:! $=0$
A. 1 Introduction 30
A. 2 Orientation of the Axes ©
A. 3 Detemmation $C \in$ the Crfentation ©f the Ares 91

\therefore At Illustrations 97
$\therefore .5$ Mansformation Uf the Axes 100
 $10 u$
2. 1 Introduction 10ú
3.2 Maximum Likelihood Estination 100
B. 3 Inbiased ":"axinun Likelihood" Estimare Of the CEP then $\nabla_{x}^{2}=\nabla_{y}^{2}=\nabla^{2}$ and $f=0$ 109
B.4 Comparison OE the Two Estimates: Relarive Efficiency 111
APPENDIX C IHTEGRATION OF TA: BIVARIATI GAUSSIA: IISTRIB'UTIOA 116
C. 1 Introciuction 116
C. 2 Intcoration over Cizcle 110
C. 3 Integrating Over An Sllipse 119
\qquad
\qquad
\qquad
$-$

$$
\begin{aligned}
& \text { Hinex } \\
& \text { (2) }
\end{aligned}
$$

Page
1．Bivariate Probability ilass
2．Bivariate Density Function wich has been Cut by a Plane Farallel to the x, y Plane．

3．Bivariate Density Function wich has been Cut
by a Flane Perpendicular to the x, y Plane
4．Zwo Bivariate Density Runctions with Different Variances about（ u_{x}, u_{y} ）：Side View 4
5．Univariate Density Function Showing the Area Under Consideration when Determining $P(a<X<b)$ 5
6．Inivariate Density Function Showing the Areas Under Consideration in the Intervals（ a, b ）and （ $c, \mathrm{~d}$ ）where $\mathrm{s}-\mathrm{a}=\mathrm{d}-\mathrm{c}$ ． 5
7．The Density Functions of Two Estimators 10
8．True Target Bearing Diagram 13
9．Flou Diagran of the Change in Velocity to be Gained 14
10．Vector Diagram of Velocities at Cutoff 10
11．a．Three Dimensional Diagran of the Orientation of the Bivariate Density Function where $0<\rho<1, a+b+c=90^{\circ}$ 18
11．D．Two Dimensional Diagram of the Bivariate Density Function Formed by a Flame Farallel to the x, y Plane Cutting the Density Function 18
12．a．Three Dimensional Diagram of the Reoriented Ares of the Bivariate Density Function 19
12．b．Tho Dimensional Diagram of the Reoriented Bivariate Density Function Formed by a Plane Parallel to the u, v Plane Cutting the Density Function． 19
13．a。 Timee Dinensional Density Function with Center at $\left(u_{: ~}, u_{y}\right)$ where $0<\rho<1$ 33
13．b．Ellipse Formci by a viane Parallel to the 天．，Pione Juting the Density Function with Contor at（an：${ }^{2}$ ） 33
14. a. Observations fron "wo Distributions about the ?arget 41
14. D. Density Functions of Nro Distributions about the "arget 41
15. Offset Elipse :adc by a Planc Marallel to x, y Axes Cutting the Density Function 44
16. Illuetration Showing the Circle of Interest which is Imposed on the Ellipse :ade by a Plane Darallel to the x, y Plane Cutting the Density Function 47
17. Illustration Showing the Circle of Interest
Which is Imposed on the Ellipse Vade by a Plane Iarailel to the u,v Ilane Cutting the iensity Iunction 47
A. 1 Oijentation of the Ellipse men $\hat{p}=0$ 90
A. 2 a. Orientation of the Ellipse vinen $0<\rho<1$ 91
A. 2 b. Oricatation of the Ellipse when $-1<\rho<0$ 81
A. 3 a. Orientation of the Density function then the Correlation Coefzicient is Zoro 93
A. 3 . Oricntation of the Axes when the Correlation cocfficient is Z̈ero 23
A. 4 a. Orientation of the Density Function rhen the Comelation Coefficient is 1 95
A. 4 b. Orientation of the Ases then the Correlation Coefficient is l 55
1.5 a. Orientation of the Densit; Function men $0<\rho<1$0.8
A. 5 b. Crientation of the twes men the CorrelationCoefficiont is $0<P<1$- a. Orientation of the Zensity Dunction or$-1 \lll<$
\therefore be Cricntation of the $\quad=2-1<1<2$

\therefore A Oneiwatec civontation of t'ia wes men
Drandence is aplict89
A. 9 Estimated Orientation of the Aes after Removal of the Outlicrs 100
A. 10 Ellipse Formed by Cutting the Bivariate .'ormal Density Function $\delta_{u v}(u, v)$ by a Flane Parallel to the u,v Axes 104
C. 1 Integration of the Bivariate Density Function Over a Circular Region 117
C. 2 Trapozoidal Technique of Integrating Under a Curve by Sumation 118
C. 3 Volume of Integration of Divariate Density Function
Ellipsc Formed by Plane Cutting $g_{v}, v(u, v)$
Parallel to u, v Planc119Table

1. Values of K for Given Values of $c=\frac{\sigma_{v}}{\sigma_{u}}$, $\operatorname{CLP}=K \nabla_{u}$ 85
2. Values of K Corresponding to Cumulative Probability P 36
3. Complete Γ Functions 87
4. Cumulative Chi-squarc Distribution 83
a. Properties of the Estimators Used in Vodels I and II 11
b. Various Estimates of the CEP 62
c. Lover Bound of the Confidence Interval Estimate 62
d. Lower Bounds of the Condidence Interval Estimate 63
e. Length of the Confidence Interval (Upper bound - Lower bound) 63
f. Computed Differences Between lodels I and II 74
g. Effects of Removing Outlicrs on $\widehat{\mathrm{CEP}_{2}}, \hat{\nabla}_{x}-\hat{V}_{y}$, and $\hat{\rho}$ 79
h. Estimators Üsed in Detemining Estimated Anes Orientation 27
i. Comparison oE the Ziasing Factors of the Tro Estimato:s 111
 sed in Socthone II …… III $11 i$
l. Valuce of the ratio Eunction rhen $\because=u,=0$ 113
5. Valucs of natio Function $\left\{\left(\widehat{S O M}_{1}-0 \pm\right)^{2}\right.$114

- Computec values of : 115
Grap:
 75
Diagra:

1. Data Points ased in Problem I 24
2. Data roints used in Problem II 25
3. Data Points used in Problem III 26
4-12. Data Points and Compretationsl nesults of :ocel I (Problems I, II and III) 27
12-21. Data Points and Computationsl Results of codel II (Iroblans I, II and III) 35
22-27. Data Foints and Computational Results of Removins Outlicrs (1roblems I, II anc III) 51
4. Sonficience Interval of tice CED, Comparison Between Model I and Nodel II using 1.1774 σ 65
5. Conficence Intcrval of the CiEP, Comparison using $\widehat{\mathrm{SP}}_{2}$ and $1.1774 \mathrm{~T}_{\text {max }}$ 66
6. Conficence Intorval of tic Cer, Comparison of licthod I and Z.cthod II using UFP $_{2}$ 67
7. Estimates of the CEP, Problen I 70
8. Estimates of the CEF, Problem II 71
9. Zstimates of the Can Problen III 72
34-36. Independent and Dependent Estimates of the CEP Problems I. II and III 76
37-39. Estimates of the Che Chowine Pffects of Tenoving Jutlicre 32
1.1 General Discussion of the Circulat Probaisle Error

The problem of determining useful estimates of the parameters
which describe the distribution of the fall of shot about a target is directly related to the high cost of testing expensive weapon systems. Since relatively few tests are allowed because of this expense, it is not improbable that a good weapon system could be completely rejected because of inefficient utilization of the small anount of data available. Also, the size and yield of the warhead is directly related to the estimated parameters. If the estimated variance is large, the effective radius will also have to be large to cover the target complex, and in turn the missile will not be able to reach the range of the same missile with a smaller warhead. The most efficient use of the limited data will thus sreatly reduce the risk involved in reducing the warhead size and increase the potential range. It also may aid in weapon deployment or assignment to larger targets because of the greater confidence that can be placed in the estimates. It seems logical that if a great deal of confidence can be placed in the weapon, fewer weapons will have to be assigned to a target, thus releasing some weapons for other targets. The important point is that the confidence placed on the estimators mus': be high enough to reduce the risk involved and provide a sound basis for decision.
wne method, which is commonly used, to measure and compare the estimated parameters, is called the circular probable error or CEP method. The CEP is defined as the radius of the circle with center
at (u_{x}, u_{j}) whicin includes 50% of a bivariate probaivility mass. The illustration in figure (1) shows the Eorn of this function. It is to be noted that most of the volume under the curve is centered at the target and decreases as the distance increases from the target. This particular function is well founded historically on the basis of the analysis of observations from long range gun fire.

Bivariate Probability Nass

Figure 1

The bivariate nornal distribution is a generalization of the normal distribution of a single variate and is bell shaped as show in figure (1) above. Any plane parallel to the x, y plane that cuts the surface will intersect the bell in the elliptical curve shom in figure (2).

4
立

35
$4=1$

$$
-2-1
$$

$=$

Bivariate Density Function which has been Cut by a Plane Parallel to the x, y Plane.

Figure 2
Any plane perpendicular to the x, y plane will cut the surface in a curve of the normal form as show in figure (3).

Bivariate Density Function wich has been Cut by a Plane Perpendicular to the x, y Plane.

Figure 3
The bivariate density function actually represents a five parameter fanily of distributions, the paraneters being the means (u_{x}, u_{y}), the variances $\sigma_{x}^{2}, \sigma_{y}^{2}$, and the correlation cocfficient ρ. This function is Symatric about the means and has its greatest value at the point (u, $\mathrm{x}_{\mathrm{y}}^{\mathrm{l}} \mathrm{y}$). It should also be noted that if the errors in the x and y directions are independent and the variances equal, then the distribution will be in the shape of a bell with two of the opposites sides "pushed in" an

14tisi

equal amount, The effect of the variance is show in figure (4).

Two Bivariate Density Functions with
Different Variances about (u_{x}, u_{y}): Side View
Figure 4

If the variances are equal, a plane cutting the surface, as in figure (2), will intersect the bell in a circle.

The height of the curve, forming the density function, at any point "a" is related to the probability of that point. Since this func. tion is continuous, the probability must be expressed in the form of an interval since the probability of any single point is zero. lowever, the probability tiat a \&un. considered, falls in an interval is equal to the area under the curve in the interval being considered. That is, the probability that $a \leqslant K \leqslant b$ is equal to the area shown under the curve in figure (5). Note that since the area under the curve about the point (u_{x}, u_{y}) is the greatest, the probability that the random variable X fall in this interval is greater tian that of an interval of cqual length away from the point (u_{x}, u_{y}). mhis is shom in figure (6).

Univariate Density Function Showing the Area Under Consideration When Determining $P(a<x<b)$.

Figure 5

Univariate Density Function Showing the Areas Under Consideration In the Intervals (a, b) and (c, d) where $b-a=c-c$.

Figure 6
1.2 Nathematical Notation
X and Y are said to have a bivariate normal distribution if their joint density function, $\mathrm{E}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})$, is given by

1.2 .1

The quantity x is said to be an observed value of a numerical valued random phenomenon x if for every real number x there exists a probability that X is less than or equal to x. In this problem the observed values of the random variables X and Y are the coordinates of the ciata points with respect to the target. These coordinates can also be referred to as miss distances in and across the line of sight.
1.2 .2

$$
\text { The paraneters } u_{x} \text { and } u_{y} \text { are the mean values in the } x \text { and } y
$$

directions respectively. The mean of a probability law is equivalent to the expected value of the randon variable uith respect to the probability law. This is mritten as:
(1.2) $u_{\because}=\Sigma(\because)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x E_{X, Y}(x, y) d x d y$
(1.3) $u_{y}=\Sigma(Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y E_{\therefore, i}(x, y) d x d y$

The mean value camot be determined exactly in our problem even if all of the missiles have been fired but estimates of the mean values can be detemined from the observations.
1.2 .3

The expressions $\left(x-u_{x}\right)$ and $\left(y-u_{y}\right)$ are the deviations from the mean values in the x and y directions respectively.
1.2 .4
∇_{x} and ∇_{y} are the standard deviations in the x and y directions respectively. The standard deviation is defined as the square root of the variance of the probability law. The variance ∇^{2} is defined as the second central moment of the probability law and is defined by:

$$
\text { (1.f } f^{2} \nabla^{2}=\left[(x-E(x))^{2}\right]=E\left[\left(X-u_{x}\right)^{2}\right]=E\left(x^{2}\right)-u_{x}^{2}
$$

It should be noted that the mean values detemine the location ($u_{\mathrm{x}} \mathrm{s} \mathrm{u}_{\mathrm{y}}$) of the center of the normal density function and the standard devia tions (∇_{x} and ∇_{y}) determine the shape of the function about the mean in the x and y directions respectively.
1.2 .5

The corrclation cocficient of two jointly distributed random variables X and Y is dicfincd by $\rho=\frac{\operatorname{cov}\left(X_{2} ?\right)}{\nabla_{x} V_{y}}$ where

$$
\begin{align*}
& \operatorname{COV}(X, Y)=E(X Y)-E(X) E(Y) \tag{1.5}\\
& E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X y E_{X, Y}(X, Y) d x d y
\end{align*}
$$

The correlation coefficient provides a measure of how good a prediction can be formed on one of the random variables on the basis of the observed value of the other random variable. In other words, if the valuc of one of the random variables is given, the expected value of the other rancom variable can be determined. This may be written as $\mathbb{E}(\because \mid Y)$ where the value of Y is given. That is,

$$
\begin{equation*}
Z(X \mid Y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \text { where } E_{X \mid Y}(x \mid y) \tag{1.6}
\end{equation*}
$$

is the conditional density function of the random variable X given the value of the rancom variable Y. The conditional density function is derived from the conditional probability of a random event A, given a'random variable $:$. This notion forms the basis of the mathematical treatment of jointly distributed randon variables that are not independent. ${ }^{1}$

In the particular case where two rancom variables X and Y are jointly nomally distributed, the conditional expected value of the random variable X given that the randon variable Y is some particular valuc y, is a linear function. This linear function is related to the orientation of the shape of the density function as shom in Appenci: A.
1
"Soclern Probability Theory and Its Appications" by Emanuel Parzen /1/ of Stanfore Iniversity.

In order to simplify the notation, it will be convenient to represent the bivariate density function in matrix: notation. The terms in formula 1.1 are first arranged in the form

$$
\begin{aligned}
& \text { (1.7) } f_{X_{,}}(x, y)-\frac{1}{2 \pi \sigma_{x} \sigma_{y i} 1-e^{2}} e x p-\left[\frac{1}{\alpha\left(1-\rho^{2}\right)}\left(x-u_{i,} y-u_{y}\right)\left(\frac{1}{\nabla_{x}^{2}} \quad-\frac{1}{\sigma_{x} \nabla_{y}}\binom{x-u_{x}}{y-u_{y}}\right]\right. \\
& =\frac{1}{2 \pi /\left.A^{-1}\right|^{1 / 2}} \exp -\frac{1}{2} Z^{\prime} A Z
\end{aligned}
$$

$$
\begin{aligned}
\text { where } \quad 2 & =\left(\begin{array}{lll}
x & \infty & u_{x} \\
\vdots & -u_{y}
\end{array}\right) \\
\therefore & =\frac{1}{1-\rho^{2}}\left(\begin{array}{cc}
\frac{1}{\nabla_{x}^{2}} & -\frac{\rho}{\nabla_{x} \nabla_{y}} \\
-\frac{\rho}{\nabla_{x} \nabla_{y}} & \frac{1}{\nabla_{y}^{2}}
\end{array}\right) \\
A^{-1} & =\left(\begin{array}{cc}
\nabla_{x}^{2} & \rho \nabla_{x} \\
\nabla_{y} \\
\rho \nabla_{x} \nabla_{y} & \nabla_{y}^{2}
\end{array}\right)
\end{aligned}
$$

Using this notation, we are now ready to look: at several models investigating the CEP and confidence interval of the CEP.
1.3 We Basic Problem in Estimating the CEP.

The problem of estimating the CEP is essentially that of finding the radius of a circle with center at (u_{x}, u_{y}) such that the probability is .5 that a random point (\therefore, Y) will lie insicle this circle. This may bc expressed as
(1,0) $P\left[\left(\because \circ u_{X}\right)^{2}+(V \sim u)^{2} \leqslant r^{2}\right]=\iint f(x, i(x, y)$ cixciy

$$
\begin{aligned}
& \text { where } \varepsilon_{x, \ldots}(x, y) \\
& \text { is given'by } \\
& \text { Copula (1.1). }
\end{aligned}
$$

In order to introduce tic problch, the assumptions will be made that the mean values are zero ($\left.u_{x}=u_{y}=0\right)$, that the errors in the x and y directions are independent $(\rho=0)$, and that the standard deviations are equal $\left(\nabla_{x}=\nabla_{y}=\nabla\right)$. Fire probability statement is thus simlafie: to
(1.2) $\left[\because^{2}+y^{2}<r^{2}\right]=\frac{1}{2 \pi \nabla^{2}} \iint\left(\exp -\left[\frac{\left(x^{2}+y^{2}\right)}{2 \nabla^{2}}\right] d x d y=.5\right.$ In order to perform the integration let $R^{2}=x^{2} \div \because^{2}$, Lan $=\frac{\square}{Z}$, $y=\sin , \quad X=z \cos$.
 (1.10) $2(\because \leqslant r)=\frac{1}{2 \pi \nabla^{2}}-\int_{0}^{2 \pi} \int_{0}^{r} r \operatorname{cxp}\left(-\frac{r^{2}}{2}\right) d r^{2}=1 \infty \operatorname{cxp} \frac{x^{2}}{2}=.5$

Therefore, the $C_{i n}=r=1.1774 \nabla$.
The problem o estimating the CEP is thus one obtaining a function of the n sample points $\left(x_{1}, y_{1}\right) \ldots \ldots . . .\left(x_{n}, y_{n}\right)$ which til estimate the standard deviation ∇. The estimators are functions of the observed values mich are used to estimate the trace values of the parameters. For couple, i in points from a sample are given, the average or incan value is estimated by

II

The distribution of $\overline{\bar{x}}$ becomes closely concentrated about the true value $\because \because$ as a becomes large.

Chere are many wajs to estimate the parameters under investigation, and it is therefore necessary to specify certain properties which are desired in estimators. For example, the distribution of the estimator should be concentrated near the truc parameter value. If $\hat{\partial}_{1}$ and $\hat{\xi}_{2}$ are different estimators of \hat{H} yith density functions $\hat{F}_{1}\left(\hat{\boldsymbol{A}}_{1}\right)$ and $E_{2}\left(\hat{\sigma}_{2}\right)$ as show in figure (2), then $\widehat{\hat{2}}$ is a better estimator of θ than $\hat{\hat{H}_{1}}$.

The Density Functions of Zwo Estimators

$$
\text { Figure } 7
$$

Other propertics which are desired in estimators are defined as follors: 1.3.1 Zelative Eficicncy. The relative efficiency of two estimators is defined as a ratio of the mean square errors of the estimators. That is,
(1.12) $\frac{E\left(\hat{B}_{1}-\theta\right)^{2}}{E\left(\hat{C}_{2}-\theta\right)^{2}}=2 . E$. where $2 . E$. is the ratio function.

If $\operatorname{mor} .<1$, then $\hat{\theta}_{1}^{2}$ is said to be a more efficient cstimate
of \hat{O} than $\hat{\theta}_{2}$.
1.3.2 Unbiased Estimator. An estimator, $\hat{\theta}$ is said to be an unbiasci estimate of the paraneter Θ if $E(\hat{\theta})=\theta$.
1.3.3 Consistent Estimator. An estimator $\hat{\theta}$ is saici to be a consistent cstimate of if if $\mathrm{P}(\hat{\theta} \rightarrow \theta) \rightarrow 1$, as $\mathrm{n} \rightarrow \infty$.
1.3.4 Eificient Estinator. Whe estimators with have the smallest
limitinc variances are called efficient estimators of a.
The estimators which will be used in the first part oE this thesis are shom in Tajlc a.

A more detailed discussion of certain estimators under special assumptions is presented in Appendix B.

1.4 Lithe 2roolem of vependence

In the gumery problem, the errors introcuced in the line of sigite are due to variations in the range and projectilc initial velocity. The error across the line of sight is due to baring errors. Since bearing errors and range errors are independent of eacin other due to the face that they are obtained from different sources, the mathenatical assumption is generally made that these errors are also statistically indenendent. lowever, if we broaden the perspective to 100% at the frajor errors introduced in a missile trajectory, the major errois in the line of sight and across the line of sigit are probably not indepencient of cack other.

Ahis is primarily due to Eacturs which did not especially influence the gimnery fire control problem such as croos in ship's mavicational
position, wrors introducen by missile attitude during the time of powera flistit, especially at cutofs, and weather conditions over the taiset.

In the gunery probich there are two types of navigational pro'slems. the finst is the relative problem of firing fron a moving object to another moving taret where the firc control problem is one of obtainw ing reiative bearings, ranges, courses, and specds. But the Eiring ship's truc navigaticnal position relative to tie tafget is not an influo encing Factor.

The seconcl problem is one of shore bombardment where the ship's navigational position is determined by visual fix. This is closely relased to missilc launching except that the sirst shot in shore bonjare. ment does not have to hit the target because the shore observer can tell the ship that syets to apply to the generating fire control solutiono "acrefore, this afain becomes a relative fire control problcai were crorors introduced by the ship's and target's relative positions are corrected by spotting. Whis is not practical in long range missile launching because of the inability to obtain correcteci visual navigam tional positions relative to the target due to lack of observers at t. target area. What is done instead is that the probable crors muse bu predetcmined and chough missiles launched to give a hie'l provabilib of cestruchion of the target complex. If we assume that the lanching ship is detcmincd to be at the launch reference point then the errors introduced are as show in figure (81.

> Byxg = Eiring bearing from
> sinip to position target
> will have at detonation.

True Farget Bearing Diacran

Figure 8

Byrg is proportional to $\left\{\begin{array}{l}\text { Ixonf } \\ \text { iyons }\end{array}\right\}$
Byrg ' is proportional to $\left\{\begin{array}{l}\text { Lrong }+ \text { Lxong } \\ \text { Lyong }+ \text { Lyong }\end{array}\right\}$
Since Byrg diEfers Erom Byrg' by the croors introduced in and across the line of si!nt, the errors are reflected in the $\mathrm{q}(1 \mathrm{gm}) \mathrm{s}$ inter. polation computer as exrox's in veloeity to be gained, winch have not been entored. Dut the exrors introduced are not indepencient because the inPuis influence chanmes in velocity to be gained in both iamge and cross rancer cirections as sinorm below:

Now Diagran of the Clange in Velocity to be Gained
Fisure 9
In the ermanery problem, the weather conditions over the firing ship's position are the same as the wather conditions over the target, therefore these values an be accurately estimated. Whe missile firing ship depends upon intelligence and weather forecasts to predict the inpets for target weather condithons. This information is therefore not as accurate as in the gunnery problen. Since the crrors introduced by weather prediciions influence the missile trajectory over the taret, the re-cntioj body is most likely to be noved in any direction and the probabilit; that the errors in and across the line of sight are inde. pencient of each other is low.

The crrors introduced by missile attitucie during cutorf an best be illustrated by d vector diagran.

$$
\begin{aligned}
& x=\text { miss }=\text { erz, } \neq 1 \text { ic } \\
& \text { IEcut } 1 \text { co }
\end{aligned}
$$

Vcctor Diacran of Velocitics at Cutofs

Figure 10

He missile attitude at cutoff can be regarded as a ramom variable bevanse it can assume any attitude due to the fact that the rey:irmonts to inntiate cutoff are due to past and prescne missile velocity and not to a prodicted velocity at some Δ t after cutoEf. Finus the errors introm duced iumine the At of cutofe will influence the errors in and acioss the line of sight in a rancom manncr. Zherecore, the probabilizy that Lia errors in and across the line of sight are indepenciont is again Lowerci.
\therefore conclasion is that duc to the complexity of the fire control aroblen, tic errors in and across the linc of sigit are probably not mitepertcrit. If re appioach the prublch with this assumpion and Eind that rise morease in accusacj ganced by this model is not sufficient to
 moicl can io risc.. 1.5 Suramo:

Scetion cas haz boon and to set in the enviromment of tix problent that is to be canluzt. Nise basae assamption radis is that the fall of
shot about the carget is a random varlable which obeys the bivariate normal probability laws. The assumption has been made that the errors In and across the line of sight are not independent and one of the objectives of this paper is to determine the effect of this assumption on the CET.
2.1 Introduction

The most important assumption madic in this model is that u_{x} and u_{y} are zero. This means that the center of the bivariate donsity function is at the target. Although this is the desircd condition, it may not bc true inftially due to the complexities of the fire control problem, One of the determinations that is made from the analysis of the firing data is thether a correction should be made to the fire control solution to bring the distribution of the fall of shot over the target. Therefore, by starting with the assumption that the center of the cistribution is at the target and finding that this assumption is wrong, it becomes necessary to determine and apply the correction to the fire control soluw tion. 11 so, it should be noted that although this assumption may not be truc initiallys it still may be true after correcting the initial Eire control solution.

If the center of the distribution is closc to the target, $(0,0)$ in the coordinate system, or suspected of beine so by analysis of the test data, the estimators determined from this model may be better estirators than the estimators used in :odel II in Section III. A comparison can be madc between model I and model II, using the criterion of relative cffio cacict to cetermine which model is theoretically the best. This criterion is colained in Section III.

In this model the errors in the x and y direction are assuned to De numaindefendens and distributer in acondance with the bivariate - robaidity bive bion probability clat a randor point (\because, Y) will lie

within a circle of radius kT aras is equal to

$$
\sqrt{x^{2}+y^{2}}<k \sigma \max \quad \sqrt{x^{2}+y^{2}}<k \nabla \max
$$

where Z and A are defined in (1.7).
In order to integrate over this form, it is necessary to first make a transformation to an orthogonal density function. The reason for this is that due to the assumption of non-indepencence $(\rho \neq 0)$, this density function is oriented along non-orthozonal lines called the expected value of X given Z and the expected value of Y given X or in simpler notation $E(X \mid Y)$ and $E(Y \mid X)$ as defined in Section 1.2.5. This orientation is illustrated in figures $11 a$ and 11 b .

Three Dimensional Diagram of the Orientation of the Bivario ate Density Function where $0<\rho<1, a+b+c=90^{\circ}$.

Tho Dimensional Diagram of the Bivariate Density Function Formed by a Plane Parallel to the x, y Plane Cutting the Density Function.
Figure lb

Fitis rexamanionk is shown to be valid byproving that

The transformed density Eunction thus becomes

$$
S_{17}, v(1, v)=\left.\frac{1}{2 \pi}\right|^{\left.\frac{1}{n-1} \right\rvert\, \frac{1}{2}} \exp -\frac{1}{2} \pi \cdots=
$$

$$
\text { (2.4) } \frac{1}{2 \pi \sqrt{\sigma_{u} \nabla_{v}}} \exp \left[-\frac{1}{2}\left(\frac{u}{\nabla_{u}}\right)^{2}+\left(\frac{v}{\sigma_{v}}\right)^{2}\right]
$$

"ine reoriented axes are now as shom in Eigures $12 a$ and 123 .

Thrce Ditensional Diagram of tine seoriented Axes of the Bivariate iens.ty そuructioa.

Fimpe 12a

Tto Dinensional Diagram of the ..eoriented Sivariate Density
Gunction Zormed by a plane Parallel to tive u, v Ilane Otting tive wensity Eumction.

2 he weats of tide wheformation are contained in sppencix $\therefore 5$.

$$
\begin{aligned}
& \text { (2.3) } \nabla_{u}^{2}=\frac{\nabla_{x}^{2}}{}{ }^{2}+\frac{\nabla_{y}^{2}}{\alpha}+\sqrt{\left(\nabla_{x}^{2}-\nabla_{y}^{2}\right)^{2}+4 \nabla_{x y}{ }^{2}} \\
& \nabla_{v}^{2}={\overline{\sigma_{x}}}^{2}+{\nabla_{y}^{2}-\sqrt{\left(\sigma_{x}^{2}-\nabla_{y}^{2}\right)^{2}+4 \sigma_{x y}^{\alpha}}}_{x}
\end{aligned}
$$

This transformed density function can be handled more easily
because the terms involving the correlation coefficient have been re w moved. The probability that a point (U, V) in the new coordinate system will lie within a circle with center at the origin and radius is This

$$
\begin{gathered}
\text { (2.5) } I\left(k, \sigma_{u}, \sigma_{v}\right)=\iint \pi_{u}, v(u, v) d u d v=P(k, c)=\frac{1}{2 \pi \sigma_{u} \sigma_{v}} \iint \exp -\frac{1}{2}\left(\frac{u}{\nabla_{u}}\right)^{2}+\left(\frac{v}{\nabla_{v}}\right)^{2} d u d v \\
\sqrt{u^{2}+v^{2}}<k \nabla_{u}<k \nabla_{u}
\end{gathered}
$$

where $c=\frac{\nabla_{p}}{V_{u}}$. This form is simplified in Appendix $C .5$ to

$$
\text { (2.6) } P(k, c)=\frac{2 c}{\pi} \int_{0}^{\pi} \frac{1-\exp \left\{\frac{-k^{2}}{1 c^{2}}\left[\left(c^{2}+1\right)+\left(c^{2}-1\right) \cos \eta\right]\right\}}{\left(c^{2}+1\right)+\left(c^{2}-1\right) \cos \eta} d \emptyset
$$

The values of (k) for various values of $P(k, c)$ and (c) are tabulated in tables one and two. Table one is used by entering the table with $c=\frac{\nabla_{v}}{V_{4}}$ in order to find k. This table can only be used for $F(k, c)=.5$. Table two is used by entering the table with $c=\frac{\sigma_{v}}{\sigma_{u}}$ and the probability $P(k, c)$ in order to find k. This table can be used for various values of $\Gamma(k, c)$.

2.2 Estimating the CEP using :ode I

The first step is to find estimators for $\sigma \%, \nabla y$ and ρ from the n observed points $\left(x_{1}, y_{2}\right) \ldots \ldots . . .\left(x_{n}, y_{n}\right)$. This is done by computing the sample variances $\widehat{\nabla}_{x} 2, \widehat{\sigma}_{y}{ }^{2}$, the sample covariance $\widehat{\nabla}_{x y}$, and the sample correlation coefficient \hat{i} mini are defined as Eollows:
$\hat{\nabla}_{x}^{2}=\frac{1}{N} \sum_{i=1}^{2} x_{i}^{i} \quad \hat{\nabla}_{y}^{2}=\frac{1}{N} \sum_{i=1}^{N} y_{i}^{2} \quad \hat{\nabla_{x y}}=\frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i}$ $\hat{\rho}=\frac{\hat{\nabla_{x}} y}{\hat{\sigma}_{x} \hat{\sigma}_{y}}$
In these formulas, $\hat{\nabla}_{x}^{2}, \hat{\nabla}_{y}^{2}$, and $\hat{\nabla}_{x y}$ are unbiased estimates of ∇_{x}, σ_{y}, and $V_{b y}$ 。
the transformed estimates of the variances are computed neat.
$(2,7) \hat{\nabla}_{a}^{2}=$
$\frac{\hat{\nabla}_{x}^{2}+\hat{\nabla}_{y}^{2}+\sqrt{\left(\bar{\nabla}_{x}^{2}-\hat{\nabla}_{y}^{2}\right)^{\alpha}+4 \bar{\nabla}_{x y}}{ }^{2}}{2}$
$\hat{\vec{V}}_{v}^{2}={\hat{\nabla_{x}}}^{2}+{\hat{\nabla_{y}}}^{2}-\sqrt{\left(\hat{\nabla}_{x}^{2}-\hat{\nabla}_{y}^{2}\right)^{\alpha}+4 \hat{\nabla}_{x}^{2}}{ }_{2}^{2}$
able two is entered with $\rho(k, c)=.5$ and $c=\frac{\hat{\sigma}_{v}}{\frac{\sigma_{u}}{\sigma_{u}}}$ to find k. The estimate of the $C E P=\widehat{C E P}_{1}=k \widehat{\nabla}_{1 A}$
2.3 Estimating tine CEP using the Assumption that the Errors in the x and y Directions are Independent.

If it has been assumed that the errors in the x and y directions are inclependent, an estimate of the CEP can be obtained by using the estimators in model I except that the estimated variances $\widehat{\nabla} 2$ and $\hat{\nabla} 2$ are used instead of the estimated transformed variances $\hat{\nabla} 2_{4}$ and $\hat{\nabla} 2$

$$
\begin{aligned}
& c *=\begin{array}{l}
\hat{\nabla} m i n \\
\hat{\nabla} m a x
\end{array} \quad \begin{aligned}
\hat{\nabla} m i n & =\operatorname{Min}(\hat{\nabla} x, \hat{\nabla} y) \\
\hat{\nabla} \max & =\operatorname{Nax}(\hat{V} x, \widehat{\nabla} y)
\end{aligned} \\
& P(k *, C \%)=.5 .
\end{aligned}
$$

Table two is entered with $P\left(k^{*}, c^{*}\right)$ and c^{*} in order to find $k *$. Then this estimate of the $C E P=\widehat{C P P}=k \% \widehat{V}$ max.

2.4 Information About the Problems.

In the problems winch follow, both estimates of the CEP will be obtained in order to compare the results in the summary in Section VI.

2.5 Example Problems

The problcins, which will be used to compare methods of estimating the CEP, have been set up in three cases. The first case will have ten sample points $\left(x_{1} y_{1}\right) \ldots\left(x_{10} y_{10}\right)$ and is representative of the point in time where cone initial decision may be made as to wether the

18
 $-$
\qquad
-
-

$$
17
$$

(natine
Bint
ins

$$
a=
$$

\qquad

0
2
(atene
2
为
-2
mos

年
20

SWitcin should be accepterl, rejected, or that hore tests should be ton acted. The second ase will have Iffeen sample points (x_{1}, y_{1}) \ldots.... $\ldots \ldots\left(x_{15} \%_{15}\right.$) wich will include the first ten sainle points. this is intencol to represent an internediate point in time there sone terminal decision may be mate on the acceptance of the weapon systen. The Lhird case will consist of twenty five sample points (\varkappa_{1}, y_{1})......... $\%_{25}, 3_{25}$). It should be noted that as the number of observations increase, the cstimators are more likely to be closer to the true values. She actual distributions of the 25 points are shom in diagrams 1,2 , and 3 . The coordinates of the points are as follows:

		lem I		en II		$\operatorname{lem}_{\mathrm{y}} \text { III }$		Case	
1.	-3.)	-1.0	-5. 3	8.6	- 3.6	-11.3			
2.	-2.2	5.0	-2.6	1.6	-3.6	3.2			
3.	-1.0	1.0	0	1.0	-1.6	- . 2			
4.	- . 6	-. 5	1.3	1.0	-3.0	- .			
5.	\cdots	3.0	-1.6	-1.0	1.2	- 2.2			
6.	1.0	0	. 5	-1.0	0	- 1.2			
7.	3.6	-2.0	3.0	-. 6	1.6	4.2			
3.	3.0	1.0	-. 4	-2.4	. 4	1.6			
.	6.3	4.0	-1.0	-4.0	1.3	. 4			
10.	5.2	$\therefore .4$	-4.0	-2.0	6.0	4.0			
11.	0	-1.0	-3.4	3.0	-2.6	- 3.6			
12.	1.4	4.0	0	2.8	1.6	- . 6			
13.	. 4	-4.0	-2.5	-1.3	. 4	. 2		II	
14.	2.5	3.0	. 2	-7.0	-1.3	1.4			
15.	.	-4.0	-2.6	0	- . 4	2.6			
16.	-2. 6	. 2	-5.0	- 5.8	-5.0	-4.0			
17.	-2.0	2.5	-5.0	-. 3	-3.8	-2.0			
18.	-1.)	2.1	-5.3	2.2	-2.0	-2.0			
1	\therefore	1.4	-1.4	3.0	-1.0	-1.0			
27.		. ${ }^{\text {a }}$	-. 6	0	-. .6	-1.3			III
21	1.3	$\therefore .3$	-1.4	1.4	3.0	- .			
22.	2.6	1.3	1.4	- 1.0	-. 4	. 6			
3.	. 2	4.6	2.3	2.0	. 3	-5.0			
24.	4.2	2.9	2.2	5.3	1.4	1.6			
25.	2.	1.6	3.4	-3.0	3.4	2.2			

The value of the CEP obtained using the estimators from this section will be compared to the estimates of the CEl from Sections III, IV, and estimators wich are explained in Appendix B. Tiis comparison will extend to the problem of rejecting outlicrs and the comparison mill be presented in Section VI.

Although these problems are primarily oriented at tests involving the more expensive weapon systems, such as the IREX, the environment can be extended to less expensive weapon systems winich will naturally have mote sample points. Although it was intencied to make the problems as realistic as possible, no attempt was made to utilize data from actueal missilc firings.

...1 $1 .{ }^{7}$, Wisc I. Data points and computational results.

Data Points in Problem I, $N=10$
Diagram 4
$\hat{\Gamma}_{x}=\sum_{1,}=10.3 \quad \hat{\Gamma}_{x}=3.2$

$$
\hat{\bar{V}}_{y}^{2}=\frac{\sum y_{i}^{\prime}}{N}=14.6 \quad \hat{\nabla}_{y}=3.8
$$

$$
\hat{\nabla}_{x y}=\frac{\sum x_{i} y_{i}}{N}=., \gamma \quad \hat{\rho}=\frac{\hat{\nabla}_{x y}}{\hat{\nabla}_{x} \hat{\nabla}_{y}}=.47
$$

$$
\hat{\nabla}_{u}^{2}=18.6 \quad \hat{V_{u}}=4.3
$$

$$
\hat{\bar{v}}_{v}^{2}=6.3 \quad \hat{\nabla}_{1}=2.5
$$

$$
\begin{array}{|c|c|}
\hline \begin{array}{c}
\text { Dependent } \\
\text { Model }
\end{array} & \begin{array}{c}
\text { Independent } \\
\text { model }
\end{array} \\
\hline C=\frac{\hat{\nabla}_{v}}{\hat{\nabla}_{\dot{u}}}=.58 & C^{*}=\frac{\hat{\nabla}_{x}}{\sigma_{i}}=.84
\end{array}
$$

$$
k=.92 \quad x^{2}=1.08
$$

$$
\widehat{C E P}_{1}=K \hat{\nabla}_{A}=3.97 \quad \hat{C E}_{1}>=K^{*} \hat{\nabla}_{y}=4.1
$$

Problem I, Case II. Data points and computational results

$$
\begin{aligned}
& \hat{\nabla}_{x}^{2}=\frac{\sum x_{i}}{N}=10.3, \quad \frac{1}{\nabla_{x}}=3.2 \\
& \hat{\sigma}_{y}^{2}=\frac{\sum y_{i}}{N}=14.0 \quad \hat{\nabla}_{y}=3.7 \\
& \hat{\nabla}_{x y}=\frac{\sum x_{i} y_{i}}{N}=2.5 \quad \hat{\rho}=\frac{\hat{\sigma_{x y}}}{\frac{\nabla_{x}}{V} V_{y}}=\alpha 1 \\
& \hat{\nabla}_{u}^{2}=15.3 \quad \hat{\nabla_{u}}=3.9 \\
& \hat{\nabla}_{v}^{2}=9.1 \quad \hat{\nabla}_{v}=3.0
\end{aligned}
$$

Data Points in Problem $I_{2} \quad N=15$
1.ctiem I, Case III. Data points and computational results.

Data points in Problem I, $i=25$

> Diagrara

Problem II, Case I. Data points and computational results.

$\begin{array}{ll}\hat{\nabla}_{x}^{2}=7.27 & \hat{\nabla}_{x}=2,70 \\ \hat{\nabla}_{y}^{2}=10,66 & \hat{\nabla}_{y}=3.27 \\ \hat{\nabla}_{x y}=-4,0 & \hat{r}_{2}=-.754 \\ \hat{\nabla}_{i 4}=12,31 & \hat{\nabla}_{4}=3.64 \\ \hat{\nabla}_{v}=4,65 & \hat{\nabla}_{v}=2.15\end{array}$

Dependent	Independent
iodel	i.ndel
$C=.59$	$C^{*}=.825$
$K=.928$	$K^{*}=1.07$
$\widehat{C E F}_{1}=3.37$	$\widehat{C E H_{1}^{*}}=3.50$

Data Fonts in Problem, II, $N=10$

Problem II, Case II. Data points and computational results.

$$
\begin{array}{ll}
\hat{\nabla}_{x}^{2}=6.52 & \hat{\nabla}_{x}=2.56 \\
\hat{\nabla}_{y}^{2}=11.7 & \hat{\nabla}_{y}=3.42 \\
\hat{\nabla}_{x y}=-2.21 & \hat{\rho}=-.256 \\
\hat{\nabla}_{u}^{2}=12.51 & \hat{\nabla}_{u}=3.54 \\
\hat{\nabla}_{v}^{2}=5.71 & \hat{\nabla}_{v}=2.39
\end{array}
$$

Dependent	Independent
Model	
$K=.666$	$C^{*}=.712$
$C E p_{1}=3.45$	$K=1.026$
$C_{2}^{*}=3.51$	

Data Points in Problem II, $N=15$
Diagram 8

Problem II, Case III. Data points and computational results.

$$
\begin{array}{ll}
\hat{\nabla}_{x}^{2}=8.92 & \hat{\nabla_{x}}=2.99 \\
\hat{\nabla}_{y}^{2}=11.71 & \hat{\nabla_{y}}=3.42 \\
\hat{\nabla}_{x y}=.325 & \hat{r^{2}}=, 031 \\
\hat{\nabla}_{u}^{2}=11.75 & \hat{\nabla}_{u}=3.42 \\
\hat{\nabla}_{v}^{2}=8.88 & \hat{T}_{v}=2.98
\end{array}
$$

Dependent	Independent
Vojlel	Model
$C=.872$	$C^{*}=.874$
$K=1.10$	$N^{*}=1.105$
$\widehat{C E H}=3.77$	$C E M,=3.15$

Data Points in Problem $1 I, 1 v=25$

[^0]problem IIT, Case 1. Data points and computational results.
$$
\widehat{C E P_{1}}
$$
.

Data Points in Problem III, $N=10$

$$
\begin{array}{ll}
\hat{\nabla}_{x}^{2}=14.2 & \hat{\nabla_{x}}=3.77 \\
\hat{\nabla}_{y}^{2}=19.28 & \hat{\nabla_{y}}=4.40 \\
\hat{\nabla}_{x y}=12.2 & \hat{\rho}=.735 \\
\hat{\nabla}_{u}^{2}=29.1 & \hat{\nabla_{4}}=5.4 \\
\hat{\nabla}_{v}^{2}=4.35 & \hat{\nabla_{v}}=2.1
\end{array}
$$

Diagram 10

Problem III, Case II. Data points and computational results.

$$
\begin{array}{ll}
\hat{\nabla}_{x}^{2}=10.3 & \hat{\nabla}_{x}=3.21 \\
\hat{\nabla}_{y}^{2}=14.33 & \hat{\nabla_{y}}=3.78 \\
\hat{\nabla}_{x y}=8.43 & \hat{\rho}=.695
\end{array}
$$

$$
\hat{\nabla}_{u}^{2}=20.9 \quad \hat{\nabla}_{u}=4.55
$$

$$
\hat{\nabla}_{v}^{2}=3.66 \quad \hat{\nabla}_{v}=1.91
$$

Dependent Godel	Independent model
$C=.42$	$C=.85$
$K=.82$	$K=1.09$
$\widehat{C E A_{0}}=3.72$	$\widehat{C E p}=4.10$

Data Points in Problem III, Now
Diagram 11
problem III, Case III. Data points and computational results.

$\hat{\nabla}_{x}{ }^{2}=$
8.82
$\vec{V}_{\lambda}=2.98$
$\hat{\nabla}_{V_{y}}{ }^{2}=11.05 \quad \hat{V}_{y}=3,33$
$\hat{\nabla}_{x y}=6,54 \quad \hat{\rho}=.66$
$\hat{\nabla}_{u}^{2}=16.6 \quad \hat{\nabla}_{u}=4.06$
$\hat{v}_{v}^{2}=$
3,3

$$
\frac{-1}{\nabla_{v}}=1.82
$$

Dependent Model	Independent orel
$C=.446$	$C=.895$
$K=.835$	$K=1,06$
$\widehat{C E M}=3.40$	$\widehat{C E}=3.53$

Data Points in Problem III, $N=25$
Diagram 12


```
    AT IITE POINT (u (u,uy): VODEL II
```

3.1 Introduction

The most important assumption made in model II is that iE an
infinite number of tests were conducted, the mean values of $: 3$ and y would be u_{x} and u_{y} respectively. This means that the center of the bivariate normal density function is at some point (u_{x}, u_{y}) with respect to the target at $(0,0)$.

If enough tests have been conducted to ascertain that this density function is offset from the target through the utilization of the estim motors, then it may be possible to enter a spot $\left(-u_{x},-u_{y}\right)$ to correct the fall of shot.

In this model the errors in the x and y directions are assumed bo be non-independent but are distributed in accordance with the bivariate normal probability laws.

The probability that a point (x, y) whose coordinates aide chosen at random will lie within a circle of radius $k^{\text {"Mas with center at }}$ (is, $z^{\prime} y$) is equal to
(2.1) $I\left[\sqrt{\left(X-u_{x}\right)^{2}+\left(Y-u_{y}\right)^{2}} \leqslant k \nabla \max \right]=\iint_{\therefore, Y}(x, y) d x d y=$

$$
\sqrt{\left(x-\infty u_{x}\right)^{2}+\left(y-i y_{y}\right)^{2}} \leqslant k \nabla_{\text {a }} \text { ax }
$$

$$
\begin{aligned}
& \frac{1}{2 \pi / A^{-1 / 2}} \iint \cos \left(=\frac{1}{2} Z^{\prime} A \lambda\right) d x d y \\
& \sqrt{x-4 y^{2}+\left(y-u_{y}\right)^{2}}<k \nabla \max
\end{aligned}
$$

In count to integrate over this form, it is necessary to first
translate the axes before making the transformation because the density Function is oriented along non-orthogonal lines away from the center of Ky coordinate s; stem. This orientation is show in figures $13 a$ and 13b.

mize Dimensional Density Function with Center at (u, w, where $0<P<1$

ellipse Formed by a Plane Parallel to the ry Plane Cutting the Density Function with Center at ($u_{x} \because \ddot{H}_{y}$)

Figure 13b

The translation is made by subtracting the means (u_{x}, u_{y}) from their respective random variable X and \therefore That is simply ($X-u_{i}$) and ($\because-u_{y}$) where in this case the matrix z on becomes $Z=\binom{\because-u x}{\because-u_{y}}$

The transformation is then of the same form as the one in Section II.
3.2 Estimating the CaI Using Yodel II

The first step is to find cstiantors for $u_{x,}, u_{y}, \sigma_{x}, \sigma_{y}$, and ρ from the n observed points $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots . . .\left(x_{n}, y_{n}\right)$. This is cone by First computing the sample means \bar{x}, \bar{y} an? then computing the sample variances $\hat{\nabla}_{x}^{2}, \hat{\nabla}_{y}^{2}$ the sample covariance $\hat{\nabla}_{x} y$ and the sample correlation coefficient $\hat{\rho}$ as follows: $\bar{x}=\frac{\sum \varkappa_{i}}{n} \quad \bar{y}=\frac{\sum y_{i}}{n}$.

$$
\begin{array}{ll}
\hat{\sigma}_{x}^{2}=\frac{\sum\left(x_{i}-x\right)^{2}}{n-1} & \hat{\sigma}_{y}^{2}=\frac{\sum\left(y_{i}-y\right)^{2}}{n-1} \\
\hat{\nabla}_{x y}=\frac{\left.\sum\left(x_{i}-x\right) y_{i}-y\right)}{n-1} & \hat{\beta}=\frac{\hat{\sigma}_{x y}}{\hat{\nabla}_{x} \hat{V}_{y}}
\end{array}
$$

The transformed estimates of the variances are then computed using formulas (2.6). able 1 or 2 is entered with $I(k, c)=.5$ and

3.3 Stithating the Cap Using the Assumption that the Errors in the x and y Directions Are Independent.

If it has been assumed that the cross in the x and y directions are independent, an estimate of the dial can be obtained by using the estimators in model II except that the estimated variances $\hat{\nabla}_{x}^{2}$ and $\hat{\nabla}_{y}^{2}$
are used instead of the estimated transformed variances $\hat{\nabla}_{V}^{2}$ and $\hat{\nabla}_{4} \alpha$. Chen $c *=\frac{\hat{V}}{\hat{V} \text { man }} \quad$ where $\left\{\begin{array}{l}\hat{V}_{\text {MIN }}=\operatorname{MiN}\left(\overrightarrow{V_{x}}, \hat{\nabla}_{y}\right) \\ \hat{\nabla}_{\text {max }} \operatorname{man}\left(\hat{V}_{x}, \hat{V}_{y}\right)\end{array}\right.$
Table 1 or 2 is entered with $P(k *, c \%)$ and $c *$ in order to find $k \%$. Then the estimate of the CEP is $\widehat{\text { CUP* }} 2=k * \hat{V}_{\text {max }}$.
3.4 Comparison of :yodels I and II

If yodel I is the true situation, then the estimator defined in section II is the most efficient estimator. If the mean is not at (0,0),
(Yodel II) then it still may be advantageous to use the estimate given for Yodel I if (u_{x}, u_{y}) is not too far away from the origin and if the sample size is small. This is because two degrees of freedom are lost in estimating $\left(u_{x}, u_{y}\right)$. This problem is treated in Appendix B using the criterion of relative efficiency.
3.5 Problem Set

Problem I, Case I

Data Points in roble.. I, $\quad,=10$

$$
\bar{X}=\frac{\sum X_{i}}{N}=1.2, \quad \bar{y}=\frac{\sum Y_{i}}{N}=2.0
$$

$$
\hat{\nabla}_{x}^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N-1}=9.48, \quad \hat{\nabla}_{x}=3.08
$$

$$
\hat{\nabla}_{y}^{2} \frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{N-1}=10.7, \quad \hat{V}_{y}=3.27
$$

$$
\hat{\nabla}_{x y}=\frac{\sum\left(\lambda_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1}=3.86, \hat{\rho}=\frac{\hat{\nabla}_{x y}}{त_{x} \hat{V}_{y}}=.38
$$

$$
\hat{\nabla}_{u}^{2}=13.99, \quad \hat{\nabla_{u}}=3.74
$$

$$
{\hat{V_{v}}}^{2}=6.16, \quad \frac{1}{V_{v}}=2.48
$$

$$
\begin{array}{|c|c}
\begin{array}{c}
\text { Dependent } \\
\text { model }
\end{array} & \begin{array}{c}
\text { Indicpendent } \\
\text { model }
\end{array} \\
\hline C=\frac{\hat{V}_{v}}{\vec{V}_{w}}=.664 & C^{*}=\frac{\hat{\mathbb{V}}_{x}}{\hat{V}_{y}}=.944 \\
K=.973 & K^{*}=1.14 \\
\hat{K}_{2}=3.64 & C E^{*}=3.7 a
\end{array}
$$

Froblem I, Casc II.

Diasram 14

Problem I, Casc III.

$$
\begin{array}{ll}
\bar{x}=1.6 & \bar{y}=1.9 \\
\hat{\nabla}_{x}^{2}=6.82 & \hat{\nabla_{x}}=2.62 \\
\hat{\nabla}_{y}^{2}=8.63 & \hat{\nabla}_{y}=2.94 \\
\hat{\nabla}_{x y}=-.374 & \hat{P}=-.048 \\
\hat{\nabla}_{u}^{2}=8.7 & \hat{\nabla}_{u}=2.96 \\
\hat{\nabla}_{v}^{2}=6.8 & \hat{\nabla}_{v}=2.61
\end{array}
$$

Depencent Odel	Incependent iodel
$C=.881$	$C^{*}=.891$
$K=1.11$	$K^{*}=1.11$
$\widehat{C E}_{2}=3.28$	$\widehat{C E}_{2}=3.26$

Data Foints in Proilen IIs $^{N}=25$

[^1]Problem II, Case I

Data Points in Problem II, $N=10$
Diagram 16

Problem II, Case II

$$
\begin{array}{ll}
\bar{x}=-.9 & \bar{y}=-.2 \\
\hat{\nabla}_{x}^{2}=6.16 & \hat{\nabla}_{x}=2.48 \\
\hat{\nabla}_{y}^{2}=12.52 & \hat{V_{y}}=3.54 \\
\hat{\nabla}_{x y}=-3.47 & \hat{p}=-.395 \\
\hat{\nabla}_{u}^{2}=14.04 & \hat{\nabla}_{u}=3.74 \\
\hat{\nabla}_{v}^{2}=4.64 & \hat{\nabla}_{v}=2.16
\end{array}
$$

Dependent	Independent
oder	del
$C=.576$	$C^{*}=.7$
$K=.918$	$K=.996$
$C_{2}=3.39$	$\hat{C E N}_{2}=3.52$

Data Points in Problem Ir: $: \quad$ = $=15$

Prole: II, Case III

Data Points in Problem II, $:=25$
$\bar{x}=-.9 \quad \bar{y}=.1$
${\overrightarrow{V_{x}}}^{2}-8.28 \quad \overrightarrow{\bar{V}}_{x}=2.88$
$\hat{\nabla}_{y}^{2}=12.2 \quad \hat{\nabla}_{y}=3.50$
$\hat{\nabla}_{x y}=-1.1 \quad \hat{\rho}=-.107$
$\hat{\vec{V}}_{u}^{2}=12.25 \quad \hat{\nabla_{u}}=3.5$
$\hat{\nabla}_{v}^{2}=7.98 \quad \hat{\nabla}_{v}=2.82$

Dependent model	Independent $C=.807$
$K=1.06$	$C=.822$
$\widehat{C E}_{2}=3.71$	$\hat{C E}_{2}=3.74$

Diagram 18

Problem III, Case I

$$
\widehat{C E P}_{2}
$$

\odot

Data Points in Frobiom III, $:=10$

$$
\begin{array}{ll}
\bar{x}=-.6 & \bar{y}=-.3 \\
\hat{\nabla}_{x}^{2}=15.4 & \hat{\nabla}_{x}=3.92 \\
\hat{\nabla}_{y}^{2}=21.3 & \hat{\nabla}_{y}=4.61 \\
\hat{\nabla}_{x y}=11.3 & \hat{\rho}=.625 \\
\hat{\nabla}_{u}^{2}=30.1 & \hat{\nabla}_{u}=5.48 \\
\hat{\nabla}_{v}^{2}=6.65 & \hat{\nabla}_{v}=2.58
\end{array}
$$

iacreat is

Problem III, Case II

Data Points in Problem III, $N=15$
Diagram 20

Problem III, Case III

Prole III, Case II

$\hat{\nabla}_{x y}=11.6 \quad \hat{p}=.903$
$\hat{\nabla}_{u}^{2}=24.82 \quad \hat{\sigma}_{u}=4.98$ $\hat{\nabla}_{v}^{2}=1.22 \quad \hat{\nabla}_{v}=1.11$

Dependent	Independent
Model	model
$C=.222$	$C^{*}=.834$
$K=.715$	$K^{*}=1.078$
$K_{2}=3.56$	$\mathcal{C i n}_{2}=4.21$

Data Points in Problem III, $\mathrm{N}=25$

This model covers the problen of outlicrs and attempts to show some of the reasons for eliminating the outliers from consideration in the cetcrmination of the estimates as well as several methods for eliminating then.
4.1 Introduction to the froblem.

The gencral problem of removing outliers is related to the fact that it is desirable to obtain estimates of the paraneters for the underlying bivariate density function which are not biased by observations fron a distribution different from this underlying distribuo tion. This in tum vill yield more accurate estimates of the cir It is necessary to safeguard the estimate of the CEP from the ill effect of including information in the analysis that is not due to variations in the population of missiles, but is caused by some other factors such as weather or human errors. It is also possible that observations which have large deviations from the other observations may come from different distributions due to improvement in the missile desien. this is especially true during the missile develope ment stages where eaci succecding missila has improved or different sujsystem components than preceeding missilcs. For cample, an imo provec fuel may not be correctly compensatec: for in the missile ouireo ance and fire control computers or a new type suitch may not function quite as initially designce. The conbination of changes may influence the range of the rissile so that it laws faxther brom the target than predicteu. If comensation is comectly maie for the succeeding shot,
it seans zeasonable that the observation for the Iirst sho" should not be included in the determination of estimates for the Cat.

Aso, as improved subsystems are added to the missile, it is possible that the carliex missiles will not have the same density function as the later missiles and thus have a different C.if. In this case, it may becone necessary to include only the later developed missiles in the determination of the CRP. Due to the fact that the missile developnent will be a continuing process with each wissile sligitly different than the preccedinf one, it may not be easy to cistincuish between these distributions. This is because both discribu= tions will have some observations close to the target and others araj From the target. The figures below may help to illustrate this point.

Observations from Ivo
Distributions about the "arget

* Sirst population

0 second population

Lensity Functions oE Cto Distributions about the Target

Figure 14b
it should be noted in figure 14 b that distribution I has sone pro"naility of occuring in distribution II. In this probability is larse, it may be extrencly difficult to separate the tro distributions. In Gact, is it is desired to separate the two distributions, there is some probability that observations belonging to the underlying distri= bution under consideration will be removed along with the observations from the distribution that is not being considered. Thus one of the problens in removing outlicrs is to keep the probability, that whe o'servations renoved as outlicrs which do in fact belong to the underlying distribution, as low as possiblc. If this probability is sall, it is possible that the obscrvations belonging to the underlying distribution thich are still removed will have such a low probability of occurence that their removal mill still lead to a better esimate of the parameters. This ma; be especially true for small sample sizes where one sufficicatly larse or small observation can totally ruin an analysis of the cata. Sherefore, in orcer to eliminate an arbitrary z̈csult, it is necescary to establish some criteria for climinating these owtlying obscrvations.

4.2 Criteria Lor Rejection of Outlicrs

Naturally sots winch land at long distances from the target can be casily icentificd as wild shots or outliers with possible menom crrors. But as the observations move closer to the target, it becomes necessary to utilize some type of probabalistic consiceration for cinc rejection of outlying observations. One vay to approach a solution to this problen is to set it up as a hypothesis testing problem. On tie

the hypothesis that the observed point $\left(x_{i}, y_{i}\right)$ belongs to the underlying distribution. The test is then conducted for each (x_{i}, y_{i}) for $i=1,2$,n, one at a time. The alternate hypothesis is then that the observed point (x_{i}, y_{i}) does not belong to the underlying distribution but to sone diffcrent distribution. This can be written as:

$$
\begin{aligned}
& H_{0}: f_{X_{,}, Y}\left(x_{i}, y_{i}\right)=f_{y_{0}, Y_{0}}\left(x_{i}, y_{i}\right) \quad \text { for each } i=1 \ldots \ldots, \ldots, f_{y_{0}, y_{0}}\left(x_{i}, y_{i}\right) \quad \text { where: } f_{X_{0}, Y_{0}}\left(x_{i}, y_{i}\right) \text { is the }
\end{aligned}
$$

thue underlying distribution.
The probability of a Type I error will be called v where v is the probability of rejecting the hypothesis that the point (x_{i}, y_{i}) does belong to the underlying distribution when in fact it does belong to the underlying distribution. This can be expressed as

$$
\text { Prob }[\text { Type I error }]=\mathrm{v}
$$

The probability of accepting the hypothesis that sone point (x_{i}, y_{i}) does belong to the underlying distribution when the point does not belong to the underlying distribution and is called the Probability of a Type II error.

Thus the probability of the Type I crror may be called the risk that the experimenter is willing to take in making a mistake by rejecting a point $\left(x_{i}, y_{i}\right)$ as an outlier which does in Eact belong to the underlying distribution even though the observed value docs exceed some value specifice by the criteria. Naturally, it is desirable to try to keep v small but if v is too small then the ?ype II exror will increase and all outliers will be included in the determination of the parameters.
4.3 :icthod I For the Rejection of Outlicrs.

This methor for the rejection of outlicre is based on the probability that a rancom point (x, y) will lie within the cllipse $Z \prime Z=k, \quad z \quad \lambda z$ is the matrix notation for the quacatic form of the dependent bivariate normally iistributed randon variables \therefore and Y. What is,

$$
(i .1) \quad z \cdot \Delta z=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-u_{x}}{\sigma_{i x}}\right)^{2}=2 \rho\left(\frac{X-u_{x i}}{\nabla_{i:}}\right)\left(\frac{Y-u_{v}}{\nabla_{y}}\right) \div\left(\frac{Y-u_{v}}{\nabla_{y}}\right)^{2}\right] \quad \text { and }
$$

k is defined by
(4.2)
$P\left(z: z \leqslant k^{2}\right)=\iint_{z} E_{A Z \leqslant k^{2}}:, z(x, y) c x d y=1-v$
Gconetrically it is the probability that the point (\because, will lic insicc the ellipse macie by a planc parallel to the x, y axes cutting the consity Eunction as shom in figure 15.

$$
\text { OfEset Zllipse .ade by a ilane Parallel to } x, y \text { Ares }
$$ Cutting the Density Function

Figurc 15

We to the orientation of this density function, it is necessary to make the transformation to the orthozonal u, V coordinate system in order to integrate over this Eom, This tronsformation is made in the same
manmet as in Sections II and III. The probability can now be expressed as

there $\because: S=\frac{u^{2}}{\nabla_{u}^{\alpha}}+\frac{v^{2}}{\nabla_{v}^{\alpha}}$
letting $T_{2}=\frac{U^{2}}{\nabla_{u}^{2}}+\frac{V^{2}}{\nabla_{V}^{2}}, \quad(4.3)$ reciuces to
(4.4) $P\left(T_{2}<k_{1}^{2}\right)=\int_{T_{2}<K_{1}^{2}}^{\left.\frac{1}{2} \exp p^{\prime}-\frac{1}{2} t\right) d t \quad 3}$

The random variable T has the Chi Squared distribution with two degrees of freedom. The above formula is a special case of the folloving result. If D_{i} are indepencent and normally distributed random variables with means u_{i} and variances , then

$$
\text { (4.5) } T_{5}=\sum_{i=1}^{m}\left(\frac{D_{i}-u_{i}}{\nabla_{i}}\right)^{2}
$$

The decrees of freecion m is the number of incependent terms in the sum. The density Eunction of $T_{\text {t. }}$ is

$$
\begin{array}{rlrl}
(4.6) \operatorname{IT}_{T}(t) & =\frac{t^{\left(\frac{m}{2}-1\right)} e \times p\left(-\frac{1}{2} \tau\right)}{\left(\frac{m}{2}-1\right)!2\left(\frac{m}{2}\right)} & t>0 \\
& =0 & & t \leqslant 0
\end{array}
$$

The areas mader this density function are partially tabulated in Table 4. The desired percentage of the area under this curve is found by entering Table 4 with 1 - v and the degrees of freedom m.

Tric decision mule tiat is used for the elimination of outliers is to state that an obsexvation is an outiiex witen

3 Band Comporation.
(4.7) $\quad k_{1}^{2}<\frac{u_{i}^{2}}{\hat{V}_{u}^{\alpha+}}+\frac{V_{i}^{2}}{\tilde{V}_{j^{\alpha}}^{2}}=Z_{i}^{1} A Z_{i} \quad$ for $\quad Z_{i}=\binom{x_{i}}{y_{i}}$
4.4 l.ethod II For the Rejection of Outliers.

This method for the rejection of outliers is based on the probability that a random point (X, Y) will lie within a circle of radius $k \sigma_{\text {max }}$. Then, letting
$r=\left[\left(x-u_{x}\right)^{2}+\left(y-u_{y}\right)^{2}\right], k$ is defined by (4.8) $P\left\{\left[\left(x-u_{x}\right)^{2}+\left(Y-u_{y}\right)^{2}\right]<k_{a} T \max \right\}=\int E_{X, Y}(x, y) d x d y=1-v$

$$
T<k_{2} V_{\text {max }}
$$

Geometrically, it is the probability that the random point (X, y) will lie insicic the circle imposed on the quadratic form made by a plane parallel to the x, y axes which cuts the density function as shown in Figure 16.

> Illustration Chowing the Circle o: Interest Which is Imposed on the Ellipse hade by a Mlane Farallel to the xsy Planc Cutting the Density Function

Figure 16

Wue to the oriantation of this density function, it is also necesm sary to make the transformation to the orthogonal u, v coordinate systen. The geometrical areas under consideration arc shown below in figurc 17 for this transformed ciensity function.

Illustration Snowing the Circle of Incerest which is Imposed on the Ollipse nade by a Plane Farallel to the u, v Planc Cutting the ensity function

It showld bo noted that this method vill reject points outside the cirele but insice the cllipse which is estimated from the ata points. Therefore, unless the variances are equal, this mothod will generally reject points farther from the target than method I, since sone points on or near the major axis will be outside the circle as shom in figure 17. Whe circle is necessarily of soaller dianeter than the major axis of the ellipse unless the variances are equal and then the circle and cllipse will be synonorous. Whis can be seen frorn the folloving incquality:
(4.0) $\quad \frac{x^{2}}{\nabla x^{2}}+\frac{x^{2}}{\bar{\nabla} y^{2}} \geqslant \frac{x^{2}+y^{2}}{\sigma_{\text {max }}^{2}} \quad$ where $\nabla_{\max }^{2}=\max \left(\nabla^{2}, \nabla^{2}\right)$

The probability that the point (U, V) in the transformed coordinate system will lie within the circle $\sqrt{0^{2} \div V^{2}}=k \nabla_{u}$ is expressed as (4.10) $\quad\left[\sqrt{v^{2}+v^{2}} \leqslant k \nabla_{u}\right]=1-V=\iiint_{U, V}(u, v) d u c l v=F(k, c)$ shere $c=\frac{\nabla_{v}}{\nabla_{u}}$
$\sqrt{u^{2}+v^{2}} \leqslant k \nabla_{u}$

This formula is the sare general formula that was used for the detemination of the CBP excopt that .5 has now been replaced by $(1-V)$ in the range fron $.5 \rightarrow 1$. The decision rule that is used for the elimination of outlicrs is to state that an observation is an outlier when
(4.11) $H_{1} A H_{i}=Z_{i} A Z_{i}>k_{2}^{2}$ where k_{2} is obtained Crom cable 2 by enterin With $l-V$ and the value $c=\frac{\hat{\sigma}_{V}}{\frac{R}{V}}$. It should be noted that this value of k defines the radius of the circle centered at (u_{w}, u_{y}) which includes ($1-V$) 100% of the bivariate probability mass. The value of k obtained from method I defines the ellipse which includes ($1-V$) 100% of the bivariate probability mass.
4.5 rrocecture for removing outliers Using, ethod I or .ethod II. "Io annal procedure to remove the outliers differs from the ism cussion in sections 4.3 and 4.4 in that the movability l - Vic only exact if the true values of the parameters $u_{x}{ }^{u} y_{y}, \sigma_{x}^{\alpha}, \sigma_{y}^{\alpha}$ and $\nabla_{x, y}$ are used. In should be noted that both procedures substitute estimates of these parameters for the true values and therefore the probability of Type I error is not exactly equal to V. The first step is to find estimators for $u_{x,},{ }_{y}, \nabla_{x} \nabla_{y}$ and from the n observed points $\left(x_{1}, y_{1}\right) \ldots$ $\ldots\left(x_{n}, y_{n}\right)$. Wis can be cone using either model I or model II frow Sections II and III respectively. The model used depends on which basic assumption is wace about the true values of the means $\left(u_{z}, u_{y}\right)$. If it is assumed that $u_{x}=u y=0$, then model I can be used. If it is assured that $u_{z} \neq 0$, andor $u_{y} \neq 0$, then model II can be used. Also, the criterion of relative efficiency can be used to determine whether model I or model II should be used. The estimates of the parameters $\bar{x}, \bar{y}_{3}, \hat{\nabla}_{x,}^{2} \hat{\nabla}_{y}^{2}, \hat{\nabla}_{x y}, \hat{\rho}, \hat{\nabla}_{u}^{2} \hat{V}_{v}^{2}$, are then computed by using the selected model. The estimate? value of the matrix A is computed next using the above estimates.

$$
\Lambda=\frac{1}{1-\hat{\rho}^{2}}\left(\begin{array}{cc}
\frac{1}{\hat{\nabla}_{x}^{2}} & -\frac{\hat{\rho}}{\hat{\nabla}_{x}} \hat{\vec{\nabla}}_{y} \tag{4.12}\\
-\frac{\hat{\rho}}{\bar{\nabla}_{x} \vec{\sigma}_{y}} & \frac{1}{\hat{\nabla}_{y}^{2}}
\end{array}\right)
$$

Orally the value V is predetermined by the experimenter and the outlier rejecter? on the basis of this value. It is advisable to delete the outline one at a si:.e until all of the date points are inside the region prescribed by the probability $\because V$ and the notion used. This is We to the fact that the estimated shape of the c rye is dependent upon the ara -wits and each astute point mill produce some change in the
cotimate shape o the wasity Eunction. The tiret ouli. 2 is ruver by investicating the points farthest from the cseinatec anan value and the poinc $\left(X_{i} \ddot{s}_{j}\right)$ is deleced whose estimated Guachatic Lom - in in is greater than k_{1}^{2} (for method I) or k_{2}^{2} (for method II), if there are tro or more points wich satisfy this requirement, the point is celeted irse wich ias the greatest valved quatratic form.
it is then necessary to recompute the estimators and use the abowprocecures again, thus removing outliers one at a time, until there are no points left with estimated quadratic foms creater than $k_{i}^{2}(i=10$ 2). The finai eatimate of the COP is then deternined fron the estimators derived using the data form the remaining observations. This estimate of the CEP will be refcrred to as $\widehat{C E P} 2 i$ where the subscripe i refers to the number of clata points removed.
4.6 Information About the Probiems.

In order to illustrate the above methocis, the sample problems aiven in Jection 2.5 vere used. Vodel II vas chosen arbitrarily for estinating the parameters for illustrative purposes. Both methocs of resecte ing outlicre were set up for cach problem case but instead of rejecting outhers with anj specific probability, the tables vere set up to show the probabjlity that a specific clata point could be rejectcc. This vas rone in order to compare the two methods.

Problem I, Case I. Data points and conyutational cesults.

Data Foints in Problem I, $\because=10$
step 1. In orier to zechuce conimtao tion, it is only necessary to find two naximur values of $Z_{i} \hat{A}{ }_{i}{ }_{i}$ in each of the
steps in removing the outlicrs.
$z_{10} \hat{\dot{A}}_{10}=5.27, z_{2}^{\prime} \hat{A}_{2}=3.32, \tilde{a}_{1}^{\prime} \hat{A}_{1}=3.31$

$1-V$	$\begin{gathered} \text { Sethod } 1 \\ n_{1} \end{gathered}$	\therefore ctho
- 0	4.61	-
. 25	5...	4.5
. 275	7.33	5. 5

$$
\text { Tiagram } 22
$$

Conclusion: z 'ter for point 10 is meatest and con be romoved with
00% probability by Method 1 and 95% probability by Method. 2.

The reconnuter cetimators, after deleting point 10 are then
$\bar{V}=0, \bar{y}=1.2, \hat{\nabla}_{x}=2.4, \hat{\nabla}_{y}=2.38, \hat{\nabla}_{x y}=.41, \hat{\rho}=.00, \hat{\nabla}_{u}=2.0, \hat{\nabla}_{V}=2.4$

Lependent odel	Inciependent orcl
$c=.21$	$c^{*}=.11$
$k=1.00$	$k *=1.06$
$\widehat{\mathrm{CEF}}_{21}=3.1$	${ }_{21}=$

Step 2. Ahe procedure should now be continued with the g remaining data points to detemine if any of the remining data points can ic renoved

 Yoblct. I, vaso II. Data pofnes ami computational resules.

$$
\begin{aligned}
& \because \operatorname{cop}_{1} 1 \\
& \hat{10}_{10}=5.04, \hat{\hat{r}}_{10}=\hat{1}_{15}=7.74
\end{aligned}
$$

Data boints in bohlen 1, 1,015

$$
\text { Hacran } 23
$$

Conclusion: $\mathrm{Z} \hat{\mathrm{h}} \mathrm{A}$ for chata point 15 is greatest and con lac rewoved :1th . $\% .5 \%$ probatilley by Vethod 1 and Mothod 2.

The recomputed estimatozs after cioleting potat 15 are thom
$\bar{x}=1.2, \bar{y}=1 . i, \hat{\bar{T}}_{x}=2.62, \hat{\nabla}_{y}=3.14, \hat{\bar{T}}_{x y}=3.45, \hat{\nabla}_{u}=3.00, \hat{\nabla}_{v}=2.26$, $\widehat{p}=.303$

こtep 2. .ne procouze is now continued with the l4 remainins cata points to reteminc if any of the remaining points can be removed vith a specizier probajility of 5%.

$$
\tilde{z}_{10} \hat{\hat{x}_{10}}=5.53
$$

$1-V$	Method 1	ethod 2
.25	5.1	4.41
.075	$? .38$	5.54

Conclusion: 2 'iz for chata point 10 is the larest and can be removec Weh 25% probability by method 2 but would not bo
removed as an outlier by method 1. Gor purposes of illustration, this data point will be renovei. The recomputed estimators after re:oving point 13 arc
$\bar{x}=.3, \bar{y}=1.7, \hat{\nabla}_{x}=2.47, \hat{\nabla}_{y}=2.71, \hat{\nabla}_{x y}=.1, \hat{T}_{i 1}=2.75, \hat{\nabla}_{v}=2.37, \hat{r}=.130$

2tep 3. The procecure is again continued with the 13 remainine data points to determine if any of the rewainind points can be renoved with a specified probability of "3\%. In this cxample there are no more outlicts.

Prowler II, Case I. at points and computational results

Data Points in Problem II, $\quad \mathrm{n}=10$

Diacran 24

Conclusion: zoA, for point 1 is greatest and can be removed with 5\% probability by method 1 and 97.5 probability by motion 2.

ت'se recomputed estimators after deleting point 1 are
$\bar{x}=-.5, \bar{y}=\ldots, \hat{\nabla}_{x}=2.15, \hat{\nabla_{y}}=1.02, \hat{\nabla}_{x y}=.79, \hat{\rho}=.201, \hat{\nabla}_{14}=2.23$, $\hat{\bar{V}_{V}}=1.72$

Step 2. The procedure, using the mainlining points, coos not reject any more data points in this proble.

Diagranim 25

Conclusion: $1 \hat{2}$ for point l is greatest anc can be renoved with 25\% prohaisility by method 1 and 99% probability by method 2.

Whe recomputed estimators after deleting point 1 are
$\bar{x}=-.5, \bar{y}=-.7, \hat{V}_{x}=2.15, \hat{V}_{y}=2.63, \hat{V}_{x y}=-.2, \hat{\gamma}=-.23, \hat{V}_{1}=2.62, \hat{V}_{y}=2.10$

Dependent ocicl	Indeponient W:cl
$\mathrm{c}=.803$	c\% $=.805$
$1:=1.076$	$1: *=1.088$
$\widehat{C E 2}=2.90$	$\widehat{2.1}=2.92$

Stel 2. The rocedure using the 14 retainine points loes not rejcet any are data pointa.

Data Diagran 26

Conclusion: zatz for poine 1 is greatest and can be fenover with
25\% probability by method 1 and 97.5% probability by method 2 .

The recomptus seimato:s ajer deleting point 1 are
$\bar{x}=.3, \bar{y}=1, \hat{V}_{x}=2.35, \hat{V}_{y}=2.30, \hat{V}_{x y}=2.15, \hat{P}_{=}=.305, \hat{\nabla}_{u}=3.09, \hat{V}_{v}=2.09$

Dependent Wrel	Independent :ocel
$c=067$	$c \%=.816$
' $=0.02$	$2 \%=1.1$
$\widehat{\sim}=3.2 ?$	$\widehat{21}=3.18$

 any mote data reves.

$$
\text { iagram } 27
$$

Conclusion: "解 for point 1 is createst and can bo rewover ats greater than 9 . ", "robebillty for boeh wetiods. ilso, foint io can be removed with 25\% probability by method 1 and 99% probability

by method 2 .

both pointe vert removed in this step.
The recoputed estinatozs after deleting points 1 and 10 are
$z=0.0, \bar{y}=.4, \hat{\nabla}_{x}=101, \hat{V}_{y}=2.20, \hat{\bar{V}}_{x y}=.217, \hat{\rho}=.075, \hat{V}_{u}=2.21, \bar{V}_{v}=1.3$

Semoncient : whej	In lepzenat $\therefore 0$:0. 1
$c=0.97$	
1.20 .093	$\therefore *=1.094$
$\therefore=122020.4 ?$	2in 22.42

5.1 Introcuaction

The previously introduced estimates of the Car are all called point estimates where the estimate of the CIP was defined by the locus of a point movinc at a constant distance（the racius）from a fixed point（called the mean oi $\left(u_{x}, u_{y}\right)$ ）．This conctant distance or radius is callod the Cap．Tinc confidence interval of the der attempts to give sone measure of the possiblo cror in the estinate of the CRI The conflence is defined as the probability that the true valuc of the 110 in an interval betwen I_{1} and I_{2} where I_{1} and I_{2} are functions of the ranclon observations $\left({ }_{i},{ }_{i}\right)^{\prime}$ ，i ex $1,2, \ldots \ldots n$ ．this cri－ pression in probability motation is
（5．1）$\left[I_{1}\left(X_{1} \ldots X_{n}, Y_{1} \ldots Y_{n}\right) \leqslant \operatorname{CLP} \leqslant I_{2}\left(X_{1} \ldots X_{n}, Y_{1} \ldots Y_{n}\right)\right]=1-\alpha$
This interval estimate is a function of the conficence requized，the number of obscrvations，and the estimate of the standard deviation user

5．2 Obtaining the Interval Zstimate
In order to avoid lenotiny computation in obtaining the interval cetimate，it is assumed that the variances are equal．That is

$$
\nabla \quad \pi^{2} \cdot \sigma^{2}
$$

The CEl ${ }^{3}$ vas definch in Section 1.3 as being equal to $k V$ where tive value h is a function of the ratio of the variances and the probabilit？ that the mean centered eircle contains 50% of the bivariate ciensity mass． 4 Soe Section 2．？

Since the variances are assumed to be equal, the ratio of the variances is 1 , and $n(k, i)=5$, so that $k=1.177$ h (from Table 1 with $c=1$)。 Although the variances are assumed to be equal, the estimates of the variances are not necessarily equal.

The estimate of the standard deviation will be determined by the follow ing two methods.
5.2.1 Determining the Confidence Interval, : method 1

In this method $\hat{\nabla}_{z}^{2}$ max $\left[\hat{\nabla}_{x}^{2}, \hat{\nabla}_{y}^{2}\right]$ will be selected to represent $\hat{\nabla}^{2}$
That is
(5.2) $\left.\hat{\bar{V}}_{z}^{2}=\sum_{i=1}^{N} \frac{\left(z_{i}-\bar{z}\right)^{2}}{n-1}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}, \frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}\right]$

If $\hat{\nabla}_{Z}^{2}$ is divided by the true value of the parameter and multiplied by rel, this formula becomes
(2.3)

$=\sum_{i=1}^{x} \frac{\left(z_{i}-\bar{z}\right)^{2}}{\nabla^{2}}$

Although the sum in (3.3) will not be an exact chi squared random varia able because it is the maximum of two chit squared random variables, an approximate confidence interval can be obtained by treating (5.3) as though it were a chis squared random variable. ${ }^{5}$

The confidence interval defined by (5.1) thus becomes

$$
\text { (5.4) 1.0x, } \begin{aligned}
& P\left(X_{N-1, \alpha / 2}^{2}<\frac{(N-1) \hat{\nabla}_{2}^{2}}{\nabla^{2}}<X_{N-1,1-\alpha / 2}^{2}\right) \\
&=P\left(\frac{1}{\sqrt{X_{N-1,1-\alpha / 2}^{2}}}<\frac{\nabla}{\sqrt{N-1} \bar{V}_{2}}<\frac{1}{\sqrt{X_{N-1, \alpha / 2}^{2}}}\right) \\
&=P\left(\frac{1.1774 \sqrt{2} \sqrt{N-1}}{\sqrt{X_{N-1,1-\alpha / 2}^{2}}}<C E P<\frac{1,1774 \sqrt{N-1 / 2} \sqrt{N-1}}{\sqrt{X_{N-1, \alpha / 2}^{2}}}\right)
\end{aligned}
$$

5 See section 4.7.

The values of $X_{N-1,1-\frac{x}{2}}^{2}$ and $X_{N-1, X / 2}^{2}$ are obtained by entering table 4 with no l and cither $10 \alpha^{\prime} 2$ or $\alpha^{\prime} 2$ respectively.
5.2.2 Determining the Confidence Interval, method 2 .

The estimate of the variance in this macho? is the average of the two estimates. That is
(5.5) $\hat{\nabla}_{z}^{2}=\frac{\hat{\nabla}_{x}^{2}+\hat{\nabla}_{y}^{2}}{2}=\frac{1}{2}\left[\sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)^{2}}{N-1}+\sum_{j=1}^{N} \frac{\left(y_{j}-\bar{y}\right)^{\alpha}}{N-1}\right]$

If (5.5) is divided by the true value of she parameter ∇^{2} and multiplied by $2(n-1)$, the formal becomes
(5.0) $\frac{2(N-1)}{\nabla^{2}}\left(\frac{\hat{\nabla}_{x}^{2}+\hat{\nabla}_{y}^{2}}{2}\right)=\frac{1}{\nabla^{2}}\left[\sum^{\prime}\left(x_{i}-\bar{x}\right)^{2}+\sum\left(y_{j}-\bar{y}\right)^{2}\right]$
there z_{i} and y_{i} are normally and independently distributed and \bar{x} and \bar{y} are the sample means. In is formula can be reduced by letting the values of i range frow 1 to n and the values of j range from n +1 to 2 n. then the formula becomes
(5.7) $\frac{2(N-1)}{\nabla^{2}} \hat{\nabla}_{2}^{2}=\sum_{k=1}^{2 N} \frac{\left(z_{k}-\bar{Z}_{k}\right)^{2}}{\nabla^{2}}$
where $z_{k}=x_{k}$ for $k=1 \ldots \ldots \ldots$ and $z_{k}=y_{k}$ for $k=n+1 \ldots \ldots$ on an
there are $2(n-1)$ squares in the sum. Thus (5.7) has a χ^{2} distribution with $2(n-1)$ degrees of fuendon by, the definition given in (4.5), the interval estimate is determined in the sene way as in (5.4) and the formal becomes
(5.3) $P\left(\frac{1.1774 \hat{\nabla}_{2}, \sqrt{2(N-1)}}{\sqrt{X_{2(N-1), 1-\alpha / 2}^{2}}}<\operatorname{csp}<\frac{1.1774 \hat{V}^{\prime}}{} \sqrt{2(N-1)}\right)=1-\alpha$

Ne vol es of $X_{x(N-1), \alpha / 2}^{2}$ an $X_{2(N-1), 1-\frac{\alpha}{2} \text { are ubtained by cintering }}^{2}$ (a) le 4 trith $2(n-1)$ anc cither lax'? or $x / 2$ respectively. It should be noted that this method of interval estimation is not as conservaw tive as method 1 because the average value is alvays less than the maximin of $\left(\nabla_{x}^{2} V_{y}^{2}\right)$ herefore, this interval estimate will be smalier,

5.3 illustration

The estimatos of the consicence interval of the CiEP lised in the Collowis illustrations mece obtained with the data from section 3 and $\backslash 1 a x=.05$. A comparison is male betrieen methoi' 1 ane acthoci 2 as rioll as a variation of the two methois where tho is. wizent stimate of the wit $\widehat{B W}_{2}=\hat{i} \hat{\nabla}_{u}$) was substituted for $1.1774 \widehat{\nabla}_{z}$. It shouls be cuphasize. chat none of the distaibution theory used in icetron 2 dolu's A:en $\overbrace{2}$ is used fox $\therefore \hat{\sigma}_{U}$. Noreforc, it is hate to get a mathe.. matically : :caningefl comparison betreon these mothods.
$\because a b l c$ b shows the verious cstimates of ticc CRE. The best esti: ate OF the CEP is mast likely to be $\widehat{0 W} 2$ we to the basic assumptions of copendence and unequal variances. Fhe estimate of $1.1774 \hat{\sigma}$ is the largest estimate of the CEI and therefore the ost conservative estinate of the 6.1.

Moblen	$1.13 \% \hat{V}_{\text {max }}$	$1.1774 \hat{\nabla}_{a}$	$\overbrace{2}$	arwber of Cbscrvations
1				
Case 1	3.36	3.72	3.64	10
Case 2	$\therefore .34$	3.38	3.37	15
Casc 3	3.45	3.25	3.2 .3	25
2				
Case 1	1.05	3.57	3.32	10
Case 2	$\dot{\sim} \cdot 15$	3.53	3.3)	15
Case 3	4.11	3.74	=. 71	25
3				
Case 1	5.12	$\therefore .00$	4.0́u	10
Case 2	4.62	4.21	3.55	15
Case ?	3.34	3.73	3.52	25

Pables c ant ithow the upper and lorev bomas of the conficience intervel cstimates.

able c				
$L_{1}\left(\%_{1} \ldots \ldots y_{n}, y_{1} \ldots \ldots y_{n}\right)=$ Loner Dound of the Confidence Interval Estimate				
Poblen	Oethod 1		ISthoci 2	
1	$\frac{1.1774 \hat{\Gamma}^{2} \sqrt{2-1}}{\sqrt{X_{N-1,1-\alpha / 2}^{2}}}$	$\frac{\widehat{\widehat{i F}}_{2} \sqrt{12-1}}{\sqrt{X_{N-1,1-\alpha / 2}^{2}}}$	$\frac{1.1774 \hat{\nabla}_{a y} \sqrt{2(n-1)}}{\sqrt{X_{2(N-1), i-\alpha / 2}^{2}}}$	$\frac{\approx \sqrt{2(n-1)}}{\sqrt{X_{2(N-1,1-}^{2}}}$
Case 1 Casc 2 Case 3	$\begin{aligned} & 2.65 \\ & 3.10 \\ & 2.70 \end{aligned}$	2.31 2.22 2.55	$\begin{aligned} & 2.02 \\ & 3.08 \\ & 2.72 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 3.07 \\ & 2.74 \end{aligned}$
2 Case 1 Case 2 Case 3	2.00 3.03 3.22	2.30 2.47 2.90	$\begin{aligned} & 2.70 \\ & 2.80 \\ & 3.12 \end{aligned}$	2.52 2.63 3.10
3 Case 1 Case 2 Case 3	3.74 3.35 3.00	3.28 2.00 2.75	$\because .75$ 3.35 3.11	3.53 2.83 2.84

rable a

It is noted that the lower bound estimates are for all practical purposes the sarie for both mothods, whth the average difierence being only . 01. Honever, "he upper boud differences sho:g that method 1 gives a greater cstimate with the average difference being 1.5. The lengths of the coneicence intervals are compared in Table e belor.

Inneth of the Conficionce Interval (Upjer bound - Iover bounc)						
Problem	הich $\hat{\nabla}_{2}$		$\begin{gathered} 1.2 \\ \text { oiference } \end{gathered}$	ifitl $\widehat{\mathrm{CCL}} 2$		$\begin{gathered} \text { 1-2 } \\ \text { Diference } \end{gathered}$
	Cetiod 1	तethod 2		:.ethod 1	Cothod 2	
1						
Case 1	$\therefore 335$	2.56	1.58	4.14	2.10	1.54
Case 2		2.04	1.61	3.23	2.03	1.25
Casc 3	2.10	1.124	. 60	2.00	1.45	. 54
2						
Case 1	C\%00	2.55	2.05	3.30	2.33	1.42
Case 2	3.30	2.00	1.50	2.87	1.21	. 36
casc 3	2.5.	2.56	\cdots	2.25	1. ${ }^{5} 5$. 61
3						
Case 1	5.15	2.58	2.53	5.23	3.33	1.25
Case 2 Case 3	2.38 2.35	2.35 1.55	1.53 0.70	2.20 2.15	1.38 1.56	1.01
Avarame differenco			1.46			1.10

It should be noted that the conficence interval becomes swallen as the number of observations incrase. Z"nis inplies that the turue value of the Cup is rore likely to be ofthin a staller inectual as the number of observations increase.

Diagrai..s 28,29 and 30 show the conficence interval using the cificrent estimates. The considence intervals vere obtained by using the ciata from case III of cach of the problems.
5.4 Conclusions
\because Cthoci 1 , usinz $1.1774 \hat{\nabla}$ max produces the largest estimates and therefore is the most conservative estimate of the conficence interval. \therefore onever, $\widehat{\mathrm{CHE}} 2$ and $1.1774 \hat{\sigma}_{\text {avg }}$ are likely to be better estimates of the OEP and therefore method 2 or the approximate interval using the ciepeno cent cstimate $\widehat{\text { CiP }}_{2}$ may be the best mothod for estimating the confidence interval. An analysis of actual missile cata shoulc cive a more realiso tic insight into the best choice of methods to use in estimating the conijecnce interval. In order to come to any definite conclusions about the different methods, some comprehensive distribution theory problems must be solvec.

$$
=-
$$

I

E
?
y

6．1 Introduction

The previous sections have been concerned with the development of different types of models and methods for estimating the radius of the mean centered circle which includes 50% of a bivariate probability mass．This section sumarizes the different models and methods used in the previous sections，and includes an malysis of the results obtained from problems．Although the sampe problems do not represent actual missile test results，an attempt has been made to make the data as realistic as possible．ThcreEore an analysis of the problems should show certain relationships between the models used to estimate the CEP that would aiso apply to actual missile test data． 6．2 Comparison CE Zodel I hith Nodel II。

The basic underlying assunption made in hodel I was that the true value of the mean mas located at the target，$(0,0)$ ．Therefore，the CEP in this model is defined as the radius of a circle around the target．

The basic uncerlying assumption made in vociel II was that the true value of the mean was located at some point $\left({ }_{x}{ }^{3} u_{y}\right)$ away from the target．Therefore，the estimated Cer for this hodel is the radius of a circle with center at some point．（ \bar{z}, \bar{y} ）。

A comparison of the estimate of the correlation coefficient shows that they change im much the sane ramer in both mocials．As suspected， a major difference between these wodois is ta the location of $\overline{3}$ and $\overline{3}$ ． This is shom in Diegrom an．32，and 23 minch lllustate the estimates

of the Cat. The estinate of the cok for robles 2 and 3 is practicaliy the same in all three cases mherefor wen the venter of the distrio bution is near the target, there is little practical difference between the tro models. Fowever, in problem 1 , the distribution of data points is around some point (\bar{X}, \bar{y}) away from the center. If the procedure given in Appendix 3 is used to estimate the zatio function, then the values obtained inlicate that $\widehat{\mathrm{SEP}}_{2}$ gives the best estimate of the CEP Cor a sample size of io in problem 1. Aiso, as the sample size increases - the ratio function increases, thus $\widehat{\mathrm{CS}}_{2}$ is also the best estimate for $n>10$. The values of R.F. obtained for problens 2 and 3 show a preference for Vodel I for small sample sizes and are very close to 1 for large sample sizes and therefore either estimate may be used.

These problens tend to substantiate the fact that the procedure of Vodel II is superior to the procedure of iodel I in large sample sizeso They also suggest that if lodel I is used in analyzing a small number of observations, it might be advantageous to check the assumption of mean (0,0) by computing the sample means.

t

1

-
$=$
6.3 Co maxison of The Irdependont Mu "epenient Dethods of Zstinating The CIT.

In the introcuction to the problen of estimating the Cap, the assumption mas made that the errors in the x and y directions were not independent. This assumption is matural uniess an apiori knowiedze suggests that the errors in the $:$ and y directions are independent. onever, the assumbion of independence in the fire control probion is quite difficult to justify due to its compiexity. Fherefore, it mould seem wise to estimate the magnitude of the error involved in assuming indopendence in order to find out how mucin dieference this assumption wili mean in the dotemination of the Cip.

It was shom in Appendix A that the true orientation of the density function was related to the correlation cocfficient. If the true shape of the density function is oriented at some angle with respect to the x and y axes and independence is assumed, the computed standard deviation is not the best estimate of the standard ceviation. Consequently the independence assumption introcuces an additional error in the estimate of the CEP.

Tablc E is used to illustrate some of the important differences in the results obtained from the problems using the two models.

Computed iifeferences Betiveen ovis 1 s I anc II

Fioblem	Vocel I			Model II			Differences cdei I o ．odel II；		
	$\left\|\begin{array}{l}\text { iadius } \\ \text { of } \mathrm{Can} \\ \widehat{C E P}\end{array}\right\|$	减会 est．of stanc？ dev．	Correl cooff． $\hat{\rho}$	Radil：s ○た こう $\widehat{C O}$	$\left\|\begin{array}{l} \text { Dife in } \\ \text { ist. of } \\ \text { stando } \\ \text { devo } \end{array}\right\|$	$\begin{gathered} \text { Wryel } \\ \text { Coeti. } \\ \hat{p} \end{gathered}$		ESt． of stcud c．ev。	Correl． acef． $\hat{\rho}$
		$\left(\hat{V}_{x}-\hat{V}_{y}\right)$			$\left(\hat{\sigma}_{x}-\hat{\sigma}_{y}\right)$				
I									
Casc 1	3.97	． 50	． 275	3.642	.15	． 380	． 33	． 45	． 095
2	4.15	． 54	.206	3.37	－ 77	． 281	． 25	－． 23	.825
3	3.55	． 54	． 204	3.25	－． 32	． 220	． 27	． 22	． 1116
II									
Case ？	3.37	． 51	－．454	3.33	． 81	－． 626	． 04	－． 24	$\ldots .072$
2	3.4 .5	． $20 ́$	－． 255	3.39	1.06	－． 395	． 05	$=.20$	－． 13 ？
3	3.77	－43	． 031	3.71	． 62	0.107	.06	$\infty .19$	－． 076
III									
Case 1	4.32	.63	． 735	4.56	.69	． 525	－． 34	． .06	． 110
2	3.72	． 57	． 695	3.56	． 65	－．03	． 06	－．08	$\ldots .203$
3	3.40	． 35	． 600	3.52	.65	． 650	－． 12	－． 30	.010

Tric table sio：is some difference in the magnitude of the radius of the cir as estimated by the two models with the maximum dizference beang $.33 / 3.07$ or 3．3\％．A1so，the trend in the size remains constant between the swo nodels．minat is，as the size of the eetiwated cer changes in one models it changes in the other model in the same dizection．

Gxap．i 1 shows a plot of the percent difference in the independent and dependent estimates versus the correlation coefficient．It should be emplasized that the points on the graph vere obtained Erom data computed fron the sample probler．

The differences in the estimares of the CEP from the problems are shom in Jiagrans 34,35 ，and 36 ．Dome of the differenses vere so small that these ostimates vere left offe $I=i s$ intcrestime to note that the distributicn of tata in problem 3 bons almost perfect correlau tion and the Estimated differentes ber＊diso a indimum．

1					－．．．．．．．	T	－							
							－1．－－7							
							＋th	－	－707					
9														
					＇，		＋1＋tros		\＃	－1				
8														
	\cdots						－1T＞		－17＋				－t＋	
7														
	）！						11	明相					101：	
6														
					－+1									
5					8									
		\square												
		＋．．．．t．				＋1\％		＋i＋i＋iti｜						
4														
			－			－							＋	
\because														
	$+$						T－T1							
			－1thtt		rimitin	＋+14						＋it		
2			＋1．7．											
							$4!$			4				
		1	＋1＋1	THift		4		4－71\％					1 $1+145$	
1				I， 1			$\square \square^{\circ}$						Ht＋t	
		－											＋1／	
				H				स＋7！H				HTHt	TX	1．5
0													＋	
		प－7：											\ldots	
－1				1＋7tit		\square							＋it	
－1			－	1－tit？										
				1＋तta									＋	
				＋6－t＋4		世任年	Tint＋1	Hithtt		Hiti			＋trot	
－2								TM＋1						
				$\frac{18}{7}$	Tf，	itit	$\pi 14$	H＋i＋						
－3				T，+1.			H／TH1					Ti	GdSt	$2+$
－3		\square				Tr｜t－								
－4		＋i＋7	C5］	$\underline{+1+t i t h}$						HET				
－	＋	＋1\％	（ $8, *$ ）	万，	171＋1		Hiti．	T114	पा1：	7t：	4＋6		TпT，	
			Case 2							＜ \int^{4}				
－5										1				
			－－7－4	＋+1									46	
				T				＋．＋1＋1					10－r	
－6	4	＋，＋	\square	＋1，	\square	1	－						\＃\＃	
			－ 4	T－tat										
											roblem		1	
－7	\square			－1，										
				\square						epencle	nt and	Depent	dent	
		THTT		T	而，	T＋TTT／	1711			stimat	es or			
	Ti，	＋17，							TH＋17i	Ero	11 苗ocel	$\underline{+1+4}$		
	Htin		＋					－77	1		T17＋1			
				$\square+$	HI，					Di	agram	，		
	＋1，	－＋+1	\pm	＋1＋11	$\square 1+7$	－		－7－1						
					THT－	\square		\square	पH1\％		1\％ग			
													＋1．	
	＋＋17	Tt＋1			＋4！	$1+1$		n－1，						
－7	7	6	$\bigcirc-y$	3	－3－1	－1	0	－1	12	23	－			

-1

$$
=
$$

$$

$$

6.f Wefects Caused by The demoval of Outliers.

The nost obvious effect on the CaP men outliers are romoved is
that the Cif becomes smalle: Aovever, there are several other effects winch are not obvious but may be important in determining winch estime tors can be used. Table g, using the sample problems, gives a comparisan between llethod I and :icthod II and the estimates of certain parameters before and after removal of outliers.

Table ${ }^{\text {g }}$								
Effects of Removing outlicrs on $\widehat{\mathrm{CEP}}_{2}, \hat{\rho}$, and $\left(\hat{\nabla}_{x}-\hat{\nabla}_{y}\right)$								
Problem	P(Type I Error)		6 CP		Correlation Coefficient		Zifterence 1 al$\begin{aligned} & \text { itand. Dev. }\left(\hat{V}_{x}-\hat{V}_{v}\right) \end{aligned}$	
	Method I	Method II	Before outlier removed	After outlie: renoved	Before outlier removed	After outlicr renoved	3efore outlicr Eemover	After sutirex remover
I								
Case 1	. 10	. 05	3.64	2.12	. 383	. 059	. 151	. 56
2	. 10	. 05	3.87	3.04	. 031	.136	. 77	. 24
II								
Case 1	. 05	. 025	3.33	2.31	-.626	. 201	. 81	. 34
2	. 05	. 005	3.32	2.75	-. 395	-. 03	1.06	. 52
III								
Case 1	. 05	. 025	4.66	3.03	. 625	. 306	. 69	. 43
2	. 05	. 01	3.56	2.42	. 003	. 075	. 65	. 29

The estimate of the CEP mas reduced by from 14% to 36% in the problems by the removal of outliers. If a probability of the rope I error had been specified as .05 , the point rejected as an outlicr in problen 1 would not liave been rejected by the elliptical method but would have been rejected by :'ethod II. This is beause hethod I and Vethod II are not the same and will not necessarily reject the same points for the same confidence level. The effects of removing outliers are shom in Diagrans 37,37 , and 39 ,

xich

 -2 $\frac{2}{2}$ \square
$\sin +\sqrt{2}$

It should be noted that the removal of outliers may change both the correlation coefficients and the difference between the standard deviations in the x and y directions. This is due to the large effect that an outlicr has upon the distribution parameters. Thus a large correlation coefficient may be due to the presence of an outlier and not due to correlation between the errors in the x and y directions. Therefore, before the independent method of estimation is rejected, an investigation should be made for outliers.


```
    < (a)
```

```
    < (a)
```



```
    1/
```

 1/
 4iti=comeromolitayy

```
4iti=comeromolitayy
```


1. aranuel Iazzen, Dowern irobability gheury and Irs phlsaatounsa Iolin itile, and Soms, Inces staniozi intrersicy. 1 riso.
2. A. . oot, Incroducrion io the ghoory of Scatistics, chiasmill Duok Company, Inco, arnel Comporiation, 1350 .

 Inctitute, 1?n?

 Division of ronci :otor of upanj, 1"io.
 Cambric'sc niversity trues, Lomion, Lle。
 Publishiuc Comyary, Cexe Instisute of Tecmatus: 1359.

EMES
Valurs o: in or Civern vateos of $e=\frac{\nabla_{v}}{V_{u}} \quad$ Cin $=$. ∇_{u}

 Watigren, Virginia, uncer tioc cirection of hamy iefigaten and

satisfyins

$$
\frac{1}{\pi \nabla_{u} \sigma_{v}} \int_{C} \int_{C}^{e}\left[-1 / 2\left(\frac{u^{2}}{2} \div \frac{v^{2}}{2}\right)\right] d u d v=
$$

were of the circice $u^{2}+v^{2}=r^{2} \bar{V}_{4} \quad$ and $c=\frac{V_{v}}{V_{4}}$ ion $c=0(001)$
an: $P=03.013 .29$.

See apercix C for volune of ancerrontan.

Comidece Manctans

$\therefore 1$	$\underline{L o g} \widehat{\mathrm{C}}$)		\log (N)		Log (N)		$\log \Gamma(1)$		$\log /(N)$
2.01	0.200	5.)	1.350	11.0	$\therefore 55$.	17.0	12.320	23.2	21.030
2.1	0.019	5.2	1.512	11.?	6.754	17.2	13.564	23.2	21.32?
2.2	0.042	5.4	1.64 \%	11.4	6.71	17.4	13.509	23.4	21. 5.3
2.3	0.005	5.5	1.78:	11.6	7.172	17.	14.235	23.5	21. 365
2.4	0.034	5.	1. 32	11.0	7.33 \%	17.	14.302	23.3	22.133
2.5	0.123	6.0	2.073	12.?	7.601	İ。	12.0551	24.0	22.422
2.61	0.155	. 2	2.223	12.2	7.314	? 0	14.200	24.2	22.637
2.7	0.183	6.4	2.351	12.4	8.023	18.4	13.050	24.4	22. 62
2.81	0.224	6.	2.537	12.6	3.244	18.	15.301	24.6	23.238
2.	0.261	6.3	2.656	12.3	0.4 .61	1\%。	13.553	24.8	23.555
3.0	0.301	7.0	2.857	123.0	8.580	12.0	15.806	25.3	23.792
3.1	0.341	7.2	3.021	13.2	8.00	1:2	15.060	25.2	24.200
3.2	0.324	7.4	3.137	13.4	$\therefore .121$	13.	15.315	25.4	24.34.
3.3	0.423	7.6	3.356	13.	Co34.4		16.570	25.	24.23
2.4	0.474	7.8	3.523	13.0	. 533	1. ${ }^{\text {2 }}$	16.?27	25.0	24.30)
3.5	0.521	3.0	3.702	14.00	9,734	20.2	17.035	25.0	25.190
3.6	0.570	3.2	3.373	14.2	10.021	20.21	17.32 .3	25.2	25.472
3.7	0.620	8.4	4.057	14.4	10.24?	20.4	17.602	20.4	25.956
3.8	0.671	8.6	4.237	14.6	10.479	20.	17.853	$2 \% .6$	20.037
3.8	0.724	8.8	4.420	14.8	10.703	20.7	18.124	25.3	25.321
4.0	0.773	. 2	4.605	15.0	10.940	21.3	15.36	27.0	20.605
4.1	0.833	$\therefore .2$	14.722	15.2	11.173	21.2	$150 \leq 43$	27.2	26.530
4.2	0.887	2.4	4. 313	15.4	11.407	21.4	I 0.12	27.4	C7. 575
4.3	0.347	9.5	5.172	15. 5	11.542	21.	12.176	27.6	27.452
4.4	1.005	9.8	5.365	15.0	11.078	21. 6	1.0.442	27.3	27.749
4.5	1.065	10.0	5.559	16.0	12.115	22.2	12.700	28.0	23.036
4.0	1.125	20.2	5.756	1202	12,335	22.2	1 \%. 075	$2 \% .2$	23.225
4.7	1.183	20.4	$5 . .54$	1906	12.504	22.4	20.242	23.4	2? 0 ¢13
4.8	1.251	10.6	S. 154	116.	12.335	22.5	20.512	25.0	25.203
4.8	1.315	10.	6.336	1200	130277	28.7	70.780	20.0	$2 \cdot 1.3$
5.0	1.330	11.0	5.53	17.0]	12.320	23.0	:1.250	22.0	2.0484
								29.2	2?.775
								20.4	30.067
								25.6	$30.55 ;$
								2.	30.652
								30.0	30.006

TAME

Cumulative Chissquaxe Distribution

A. 1 Introduction

This appencix is concerned with the orientation of the bivariate normal denstty function over the x, y plane. Primarily this requires an investigation of the correlation between the random variables X and Y and once the correlation is cletermined, a transformation of axes so that the function con be integrated more easily.
A. 2 0rientation of the Ares

If the correlation cocfficient is zero, that is the random variables \because and Z are indepenclent, the orientation will be symmetrical with respect to the x and y axes. This means that a plane parallel to the x and γ plane will cut the density function in the form of an ellipse whore minor and major ares are parallel to the x and y axes. This is show below in figure A.1. Note that if $\nabla_{x}=\nabla_{y}$, the cllipse becomes a cirole.

Oxdentation of the Ellypse Nien $P \mathrm{mo}$.
Q1gure Aol
If the cotrelation conficient is not zero and less than plus or ninus 1 , the ordentation is offect from the $\%$ and y axes in the direction

$$
\begin{aligned}
& \text {, } \\
& \text { rexiy) } \\
& \text { - - E..tacion vt he rillipse } \\
& \text { when }-1<\rho< \\
& \text { Figure :...23 }
\end{aligned}
$$

The error introciuced in assuming independence, when the random variables ": and \ddot{z} are not independent is a function of tic correlation coeficichet and is due to the true orientation of the density function with respect to the x and y axes. If it is assume that the error: in the x and y directions are independent when $\because 2$ Pact they are not, an
 Chis is due to the fact thar the computation of \hat{T}_{x}, \hat{T}_{y}, r ill be in the fireco timon of the assume! ares (${ }^{2}, y_{j}$) instead of tie direction of true orion
 knomedge of the true orientation an ours: to obtain the jest estimates of the variances. has can be done by obtaining estimates of the angles 4. -) between the assumed axes and tho trio axes. The following sections are devote i to dis itzexene possible orasro tations cue to we different ranges se the corelation col Eicient.

$$
=
$$

2min
4
1
+1m ne
반
 is $z=20$.

If $P=0$ o the dado variables X and : axe iddopendento riverefors
 of either the value at the conditional expectation danoct? Or indirect. using the linear proakctor.

The expected value of one random variable given the value of the

- the random variable was defined in section 1.2 .5 as
(A.1) $Z(:, 1 y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x, y) d x=\int_{-\infty}^{\infty} \frac{x f_{X, y}(x, y) d x}{f_{Y}(y)}=\frac{\frac{1}{2 \pi \nabla_{x} \nabla_{y}}}{\frac{1}{\sqrt{2 \pi} \nabla_{y}}} \int_{-\infty}^{\infty} x e^{-\frac{1}{2}\left[\left(\frac{x}{x}, \frac{y}{\sqrt{x}}\right)\right]} e^{-\frac{1}{2}\left(\frac{y}{2}\right)^{2}} d x$

$$
=\frac{1}{\sqrt{2 \pi} \nabla_{x}} \int_{-\infty}^{\infty} x e^{-\frac{1}{2}\left(\frac{x}{\nabla_{x}}\right)^{2}}=E(x) \text {, as defined in jus ion } 1,1,2
$$

The $\mathbb{Z}(Y \mid i)$ can be determined in the sate way and is equal to $\therefore(2)$.
A.3.1.2 Indirect Jetemination of the Condional Expectation Using the Best Linear Predictor.

The conditional expectation of one random variable given the value of the other rancor variable is a linear function of the known random variable then both random variables axe jointly normally distributed That is the $B\left(1^{\circ}\right)=A Y+3$, where A and B are constants which can be determined. The Itroar predictors for the conditional expectations meas consideration .11 be defined as follows?

$$
\begin{aligned}
& \rho=\frac{0 y(x)}{\sqrt{12(1)}} \\
& \text { from 1.2.5 }
\end{aligned}
$$

In the case where $P=0=\frac{\operatorname{CoV}(X, Y)}{\operatorname{Va(X)}}, \operatorname{Cov}(X, Y)=C=C_{1}=C_{2}$ from (A.2)

Therefore, the results become the same as in Section A.2.1.1. That is
(1.3 . $\quad E(\% 1 Y)=E(0)$ and

$$
E(Y \mid Y)=Z(Y)
$$

In the case that $P=0$, the orientation of the axes will be as show in
Figures $A_{0} 3 a$ and $A .31$ below:

Orientation of the Density
Function weer the Correlation Coefficient is Zero.
Figure A.3a

Orientation of the Axes wien the Correlation Coefficient is Zero

Figure A. 3 b
A.3.2 Determination of the Cementation if $F=1$ 。

- If $P=$ io the ER Y: and E $(: 1 K)$ will lie along the sam: axis. Wis can be proven ty using the best linear predictors in formula (A,2) and the definition of the correlation coefficient. What is

 mince

 the Som
 angle between the y axis and the line (Y| 1%) is
 The tangent of the anglo between the x axis and the line $E(x / y)$ is doteminod in the see way and in this case

Wherefore, in the case that $P=1$ the orcentacion of the axes will be as shom is sigutks ora ani $\therefore 4^{3} 3$ beiow.

Orientation of tho Density
Function when the Cozrelation Coctíicient is 1 .

$$
\text { rigure } \therefore 4 a
$$

Orientation of the bees when t'e Correlation Cocficien= is ? 。
Figure A.4b
A.3.3 Detemination of the Crientation of the dros if $0<\rho<1$. $I E O<P<i$, the $t w o$ ines $E(\pi \mid \because)$ and $Z(\because \mid \%)$ will not be the same or porpendicular and vill be oriented as shom in figures $A .5$ a and $A .5 b$, This can be proven by using the same method as in Section A.3.2, er.cept that

It follows from this that $0\langle C O y(\%, y)<\sqrt{\text { VAR }(\%)} \sqrt{\text { Vir }(Y)}$. Then using formias $A .7$ and $\therefore 8$ with the definutions of the constants in formulas $\therefore 2$ s the destre amoles are

the complete range of possible values for the to angles using to are

$0<\theta<\tan ^{-1} \sqrt{\frac{7 A n(x)}{1+(2)}}$

In thais case the orientation of the axes will be as show in figures

Orientation of the density
Function men $0<\rho<1$ 。

$$
\text { Figure i. } 5 \mathrm{a}
$$

$$
\begin{aligned}
& \text { Orientation of the Axes when } \\
& \text { Che Correlation Coaficient } \\
& \text { is } 0<\rho<1 .
\end{aligned}
$$

\therefore.3.4 Determination of the orientation of the axes it $-1<P<0$. If $=1<P<0$, it follows from formulas $A, 2, \therefore 10$ and dol that
(..12) $\quad \operatorname{ann}^{-1}\left(-\sqrt{\frac{V+1(1)}{V a(1 \cdots)}}\right)<\theta<0$,

$$
\tan ^{\infty 1}\left(0 \sqrt{\frac{0 \sin (\pi)}{\left.\operatorname{Vini}^{2}\right)}}\right)<\theta<0
$$

In this case the orientation of the axes will be as showy in figures \therefore an and $A .5 \%$

-2

 $x+2=5$
 $\operatorname{Liten}_{1+\infty}$

Her
4en
$1+14$ $=-2-2$

$$
\frac{x_{1}}{1 t^{2}}
$$

Orientation of the Density Function then $-1<\rho<0$

Figure \quad..sa

Orientation of the Axes riven $-1<\rho<0$.

Figure A. 5
A. 4 Illustrations

Although the true orientation of the axes will not be know, it can be estimate: by using the various estimators show in table h below:

Wee estimated parameters in the illustrations which follow are determined by using the data from the example problems in Section II.
A.4.1 Illustration
(1)

The data is obtained from example problem no. I with a sample size of $n=25$ 。
$\bar{x}=1.2, \bar{y}=1.2_{8} \hat{\nabla}_{x}^{2}=6.3, \hat{\nabla}_{y}^{2}=3.6, \hat{\nabla}_{x y}=x .4, \hat{户}=-.05$

$$
\text { where } \begin{aligned}
c_{1} & =\frac{\hat{\nabla}_{x y}}{\hat{\nabla}_{x}^{2}}=-.05=\operatorname{Tan} \theta & c_{2} & =\frac{\hat{\nabla_{x}}}{\hat{\nabla}_{y}^{2}}=-.04=\operatorname{Tan} \phi \\
\hat{\theta} & =1700518 & \theta & =177031 .
\end{aligned}
$$

The orientation of the axes is show in figure A .7

It should be noted that the orientation of the axes in figure A. 7 implies that the random variables x and Y are nearly independent and that the independent model of computing the CDP can be used with only a small error due to the orientation. The computed values for the two different estimates of the CEF are $\widehat{\mathrm{CEP}}_{2}=3.28$ and $\widehat{\mathrm{CHP}}=3.25$ A.4.2 Illustration

The data obtained from problem 3 with a sample size of $n=15$. $\overline{\bar{x}_{4}}=0.5, \bar{y}=\infty .2, \hat{\nabla}_{x}^{2}=10.7, \hat{\nabla}_{y}^{2}=15.4, \hat{\nabla}_{x, y}=11.0, \hat{\zeta}=00$ $\widehat{E(X)}=\widehat{E(X)}+c_{1}\left[X_{0} \widehat{S(X)}\right]$,

$$
\left.\widehat{E(X I Y)}=\widehat{E(Y)}+C_{2}[Y-\widehat{S Y})\right]
$$

The orientation of the axes is shoo in figure \therefore ?

estimated Orientation of the Axes
wen Dependence is Implied

Figure A。?

It should be noted that if this were the true orientation, it implies almost perfect correlation between the random variables ix and V. Wis orientation will exhibit the greatest difference in the astimates of the cap if independence fere initially assumed. The computed values for the two different estimates of the exp are $\widehat{\mathrm{SPP}}_{2}=3.52$ and $\widehat{020}=3.72$.
$\therefore 4.3$ Illustration

(3)

The data for this illustration is also obtained from problem 3 with a sample size of $n=150$ owever th this cases the - outliers have been removed and the sample size :!send for the compunction is 13.

$$
\begin{aligned}
& G=470150 \quad D=370 \mathrm{j}
\end{aligned}
$$

$\bar{x}=0.8, \bar{y}=04, \hat{\sigma}_{x}^{2}=3.6 i_{4}, \hat{\nabla}_{y}^{2}=4.8, \hat{\nabla}_{x y}=0.32, \hat{\hat{r}}=.07$

where

$$
\begin{aligned}
c_{1}=\frac{\hat{\nabla_{x y}}}{\bar{V}_{x}^{2}}=.036=\text { an } & c_{2}=\frac{\hat{\nabla}_{x y}}{\hat{\nabla}_{y}^{2}}=.056=\tan \psi \\
\hat{\theta}=503 & \theta=304.5
\end{aligned}
$$

The orientation of the asses after removal of the outliers is show in Eigure \therefore 。?

Estimated Orientation of the fixes
After Removal of the Outliers

$$
\text { Figure } \therefore .
$$

It should be noted that the removal of the outliers rotated the axes enough so that independence could be assumed with only a small error in the estimate of the CEP. The computer values for the two different estimates of the CEP are $C 2=2.42$ and C CR $2=2.52$. Thus the removal of outliers mill not only reduce the size of the CEP but may aid in the determination of whether the simpler model of independent estimates na: be used or not.
$\therefore 5$ transformation of the fores

Dut the utse of ...tria notation can greatly simplify the proceciure. It is necossary to first define some of the concepts which will be used, 1.5.1 Definitions:
$\therefore 5.1 .1$ The watrix $A=\left(a_{1 j}\right)$ where $\lambda=\left(\begin{array}{ll}a_{21} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ will be used for simplification.
$\therefore 5.1 .2$ The eransposed matrix is defined as $A 8\left(\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)$
A.5.1.2.1 Theorem 1. The transpose of $A^{\prime}=\left(A^{\prime \prime}\right)^{\prime}=A$
A.5.1.3 Whe inverse of \therefore is defined as the matrix A. 1 such that $\therefore A^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
\therefore. 5.1 .4 The identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
A.5.1.5 A symetric matrix is defined as a matrix such that the transpose of the matrix in equals h o That is
$A^{0}=\left(\begin{array}{ll}a_{11} & a_{22} \\ a_{12} & a_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} & a_{22} \\ a_{21} & a_{22}\end{array}\right)=A$
A.5.1.6 If C is a $2: 2$ matrix such that $C=I$, then C is defined as an orthogonal matrix and $C^{\prime}=C^{-1}$ 。
$\therefore .5 .1 .7$ characteristic root of a $2 \pi 2$ matrix A is a scalar λ such that $A Y-\lambda X$ and $A X-\lambda X=0$ for some vector $X \neq O$. It follows that if λ is a characteristic root of A_{g} then ($A=\lambda$ I) $=0$ and therefore $|\lambda \lambda I|=0$ 。

$$
\begin{aligned}
& \text { sure of diacoml chcmonts ass all toto. "at is, }
\end{aligned}
$$

A5.7. She quadratic form Q is defined as
A.5.2 The bivariate normal density Function in matrix notation is

$$
\begin{aligned}
& E_{n, \ldots,}, \frac{1}{2 \pi}\left|\pi^{2}\right| t\left(\begin{array}{cc}
\frac{1}{\sigma_{x}^{2}} & -\frac{\rho}{\nabla_{x} \sigma_{y}} \\
-\frac{\rho}{\nabla_{x} \sigma_{y}} & \frac{1}{\sigma_{y}^{2}}
\end{array}\right) \\
& \therefore 1=\left(\begin{array}{cc}
\nabla_{x}^{2} & \rho \nabla_{x} \nabla_{y} \\
\rho \nabla_{x} \nabla_{y} & \nabla_{y}^{2}
\end{array}\right)
\end{aligned}
$$

It should be noted that A and A^{-1} are both. symmetric matrices. that is $A=\therefore$ and $A^{-1}=\left(A^{-1}\right)$ 。 Thus the theorem applies that for every sym o metric matrix n^{-1} there exists an orthogonal matrix C such that $C^{\prime} s^{-1}$ on en where D is a diaconal matrix whose diagonal elements are the character" fistic roots of A^{-1}. she matrix D would thus be

$$
D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \quad \text { racer } \lambda_{1} \text { ard } \lambda_{2} \text { are the characteristic }
$$

In order to find the characteristic roots of all ire mist first use the identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $I \lambda=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$
the characteristic roots of a symmetric matrix are determined from the characteristic molymonial $E(\lambda)=\left|A^{\circ} \rightarrow \lambda I\right|=0$

$$
\begin{aligned}
& \left|\left(\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right|=0=\left|\begin{array}{cc}
\sigma_{x}^{2}-\lambda & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}-\lambda
\end{array}\right| \\
& \left(\sigma_{x}^{2}-\lambda\right)\left(\nabla_{y}^{2}-\lambda\right)-\sigma_{x y}^{2}=0 \\
& \lambda^{2}-\left(\nabla_{x}^{2}+\sigma_{y}^{2}\right) \lambda+\sigma_{x}^{2} \sigma_{y}^{2}-\nabla_{x y}^{2}=0
\end{aligned}
$$

$a i^{2}+a c=c$

$$
\begin{aligned}
& \lambda=\frac{\nabla_{x}^{2}+\nabla_{y}^{2} \pm \sqrt{\left(\nabla_{x}^{2}+\nabla_{y}^{2}\right)^{2}-4 \nabla_{x}^{2} \nabla_{y}^{2}}+4 \overline{\nabla x}^{2}}{2} \\
& \lambda_{1}=\frac{\nabla_{x}^{2}+\nabla y^{2}+\sqrt{\left(\nabla_{x}^{2}-\nabla_{y}^{2}\right)^{2}+4 \nabla_{x y}^{2}}}{2}=\nabla_{u}^{2} \\
& \lambda_{2}=\frac{\pi_{x}^{2}+\nabla_{y^{2}}^{2}-\sqrt{\left(\nabla_{x}^{2}-\nabla_{y}^{2}\right)^{2}+4 \nabla_{x} y^{2}}}{2}=\nabla_{V}^{2} \\
& D=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{cc}
\nabla_{u}^{2} & 0 \\
0 & \nabla_{v}^{2}
\end{array}\right)=A^{-1} \\
& A^{*}=\left(4^{\pi^{-1}}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{\nabla_{v}} & 0 \\
0 & \frac{1}{\nabla_{u}^{2}}
\end{array}\right)
\end{aligned}
$$

Che transfozme' densify Emetion is

$$
(1.13) \quad G_{U, V}(u, v)=\frac{1}{2 \pi / A^{*-1 / 2}} \in x p-\frac{1}{2} W^{\prime} A^{*} W
$$


```
    Z1lipse Formed by Cutting the 3ivariate
Nomal Density FunctionGuv(u,v) by a Plone
    Parallel to the u,v Ǎes.
Figure A.1
```

Fortunately it is not necessary to complete the orthogonal atilt winch satisfies the relationships above since the characteristics of the orthogonal matrix C requires that $C^{\prime} C=I$ and $C^{\prime}=c^{-1}$. Then

$$
\text { but } \begin{aligned}
& C A^{-1} C=A *-1 \\
&\text { therefore } \left.\quad \begin{array}{rl}
\left(C^{p} A^{\infty} 1\right. \\
C
\end{array}\right)^{* 1}=\left(A^{*-1}\right)-1=A * \\
&= C^{-1} \therefore C=A * \\
& C C^{-1} A C C^{-1}=C A * C^{-1} \\
& A=C A^{-1}
\end{aligned}
$$

Therefore, it can also be show that the corresponding areas under the density functions are equal. That is
(A.15) $\iint g_{., v}(u, v) d u d v=\iint(\therefore, y(x, y) d x d y$

$$
\begin{aligned}
& \text { where: } g_{U, v}(u, v)=\frac{1}{2 \pi \mid A *-1} \exp -\frac{1}{2} v, \therefore x \\
& f_{x,},(x, y)=\frac{1}{2 \pi|A-1|} \text { exp } \cos ^{2} Z \cdot A Z
\end{aligned}
$$

$-\square-$ 2 (

1
, -

Chis is because $14 \%=Z^{*} A Z$ as shom above and $\left|A^{*} *=\left|A^{-1}\right|\right.$. It is shom above that $\cos ^{1^{-1}} \mathrm{C}=\mathrm{A}^{*-1}$ and the determinates of the tro terms are $\left|C^{-1} A C\right|=\left|A^{-1}\right|=\left|C^{-1}\right|\left|\therefore^{-1}\right||C|=\left|A^{-2}\right|=\left|A^{-1}\right||C|=\left|A^{-1}\right|=\left|\therefore *^{-1}\right|$ Therefore $\iint \operatorname{g}_{u, y}(u, v) d u d v=\iint E_{X,},(x, y) d x d y$

B. 1 Introduction

The theory of estimation is concerned with the problem of finding functions of the observations such that the distribution of these functions will be concentrated as closely as possible near the true values of the parameters estimated. The density function of the observations under consideration was described in Section I and the paramo meters which are to be estimated are $u_{x,} u_{y}, \sigma_{x}^{2} \sigma_{y}^{2}$ and ρ. Some of the properties which are desired of the estimators were described in Section 1.30
B. 2 Vaximum Likelihood Estimation

If $f\left(x_{1}, x_{2} \ldots \ldots x_{n}, y_{1}, y_{2} \ldots \ldots . y_{n}, u_{x}, u_{y},{ }_{x}^{2}, \nabla_{y}^{2}, P\right)$ is the density function for a random sample of size n with unknot parameters $u_{x,{ }^{1} y}, \nabla_{x}^{2}, \sigma_{y}^{2}$, and P, then the likelihood function is

$$
\begin{aligned}
(B, 1) L & =\prod_{i=1}^{N} f\left(x_{i}, y_{i} ; u_{x}, u_{y}, \nabla_{x}^{2}, \nabla_{y}^{2}, 1\right) \\
& =\prod_{i=1}^{N} \frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right.}\left[\left[\left(\frac{x_{i}-u_{x}}{\nabla_{x}}\right)^{2}-2 f\left(\frac{x_{i}-u_{x}}{\nabla_{x}}\right)\left(\frac{y_{i}-u_{y}}{\nabla_{y}}\right)+\left(\frac{y_{i}-u_{y}}{\nabla_{y}}\right)^{\alpha}\right]\right.\right.}{2 \pi \nabla_{x} \nabla_{y} \sqrt{1-\rho^{2}}}
\end{aligned}
$$

Since it is more convenient to deal with sums than products, it is easier to maximize the logarithm of the likelihood function rather than the likelihood function itself. It should be noted thar the logarithm has its maximum at the same point as does the $12 k e l i h o o d$ function. The \log of (B, i) is

$$
\text { (D.2) } \begin{aligned}
L^{\prime}= & -M \log 2 \pi-\frac{N}{2} \log \nabla_{x}^{2}-\frac{N}{2} \nabla_{y}^{2}-\frac{N}{2}\left(1-\rho^{2}\right) \\
& \left.-\frac{1}{2\left(1-\rho^{2}\right)}\right\rangle_{i=1}^{N}\left[\left(\frac{x_{2}-a_{x}}{\nabla_{x}}\right)^{2} \cdots \rho^{2}\left(\frac{x \cdot-\left(x_{x}\right.}{\nabla_{x}}\right)\left(\frac{y_{i}-u_{y}}{\nabla_{y}}\right)+\left(\frac{y_{i}-4 y}{\nabla_{y}}\right)^{2}\right]
\end{aligned}
$$

Hes

\qquad
nem

1e

=-1
114
B
1
\qquad

$x^{2+1}=$
曈
$+\sqrt{4}$音

+
1
$\frac{1}{2}=$

The maximum likelihood estimate of each of the unknown parameters is obtained by setting the derivative of the function with respect to each of the un'nom parameters equal to zero and then solving the resulting equations simultaneously. To illustrate this procedure, the assumptions will be made that $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma^{2}$ and $P=0$. For this special case, formula (9.2) becomes
(B.3) $L^{\prime}=-N \log 2 \pi-N \log \nabla^{2} m^{\frac{1}{2}} \sum_{i=1}^{N}\left[\frac{\left(x_{i}-u_{x}\right)^{2}+\left(y_{i}-u_{y}\right)^{2}}{\nabla^{2}}\right]$,
and the partial derivatives are

$$
\begin{aligned}
& \frac{\partial\left(L^{\prime}\right)}{\partial \nabla^{2}}=-\frac{N}{\nabla^{2}}+\frac{1}{2} \sum_{i=1}^{N}\left[\frac{\left(X_{i}-U_{x}\right)^{2}+\left(Y_{i}-U_{y}\right)^{2}}{\nabla^{4}}\right] \\
& \frac{\partial\left(L^{\prime}\right)}{\partial U_{x}}=\sum_{i=1}^{N}\left(X_{i}-U_{x}\right)=\sum_{i=1}^{N} X_{i}-N U_{x} \\
& \frac{\partial\left(L^{\prime}\right)}{\partial U_{y}}=\sum_{i=1}^{N}\left(Y_{i}-U_{y}\right)=\sum_{i=1}^{N} Y_{i}-N U_{y}
\end{aligned}
$$

Equating the partial derivatives to zero and solving simultaneously, it follows that,

$$
\begin{equation*}
\widehat{U}_{x}=\sum_{i=1}^{N} \frac{X_{i}}{N}=\bar{X} \tag{B.4}
\end{equation*}
$$

$$
\begin{align*}
& \hat{u}_{y}=\sum_{i=1}^{N} y_{i}=\bar{y} \tag{1.5}\\
& \hat{\nabla}^{2}=\frac{\sum_{i=1}^{N} \frac{\left[\left(x_{i}-\bar{x}\right)^{2}+\left(y_{i}-\bar{y}\right)^{2}\right]}{2 N} .}{} . \tag{1.6}
\end{align*}
$$

Since maximum likelihood estimators are in general biased estim maters, it is necessary to examine them to see whether they are unbiased. For example, if the expected value of the estimator $\hat{\theta}$ is equal to B, θ where θ is the true primetor, wien
(B.7) $E\left(\frac{\hat{\theta}}{B_{1}}\right)=\theta$ and $\frac{\hat{\theta}}{B_{1}}$ is an unbiased estimator.
since $E\left(x_{i}\right)=u_{x}$ and $E\left(y_{i}\right)=u_{y}$ for $i=1 \ldots \ldots n$, it follows that \bar{x} and \bar{y} are unbiased estimators for u_{x} and u_{y} respectively.

The expected value of the estimator in formula (B.6) is obtained by recognizing the fact that there are $2(n-1)$ independent squares in the sum and therefore $2 n \hat{\nabla}^{2} / \nabla^{2}$ is a chi squared random variable with 2(n-1) degrees of freedom as defined in formula (4.5). Since the ex petted value of a chi squared random variable is equal to its degrees of freedom, it follows that

$$
\text { (B.8) } \quad E\left(\frac{2 N \hat{\nabla}^{2}}{\nabla^{2}}\right)=2(n-1) .
$$

Therefore,

$$
\text { (E.9) } E\left(\hat{\nabla}^{2}\right)=\frac{N-1}{N} \nabla^{2}=B, \nabla^{2}
$$

and $\quad \frac{\hat{\sigma}_{1}^{2}}{B_{1}}=\sum_{i=1}^{N} \frac{\left[\left(X_{i}-\bar{x}^{2}\right)^{i}+\left(y_{i}-\bar{y}\right)^{2}\right]}{2(N-1)}$ is an
unbiased estimator of ∇^{2} when the variances are equal. When the varia ances are not equal, the same procedure may be used and the unbiased estimators of $\nabla_{x}{ }^{2}$ and $\nabla_{y}{ }^{2}$ are
(B. 10)

$$
\begin{aligned}
& \hat{\nabla}_{x}^{2}=\sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)^{2}}{N-1} \\
& \hat{\nabla}_{y}^{-2}=\sum_{i=1}^{N} \frac{\left(y_{i}-\bar{y}\right)^{2}}{N-1}
\end{aligned}
$$

It should be noted that the estimators ($\mathrm{B}, 10$) are used in model II. Also, if the assumption is made that the true values of the means are

zero, then the estimators for the variances in l.odel I are also unbiased. The estimators of the means and variance used in :orel I and Yodel II are, apart. from the biasing factors, maximum likelihood estimators. However, it should be noted that the CEP is a function of the standard deviation and not the variance. The following section will determine unbiased estimators for the CEP using the procedure in this section.
3. 3 Unbiased "Maximum Likelihood" Estimate Of The CEP: When

$$
\nabla_{x}^{2}=\nabla_{y}^{2}-\nabla^{2} \text { and } p=0
$$

The maximum likelihood function of ∇ when $u_{x}=u_{y}=0$ is (B.11) $\quad \hat{\sigma}_{1}=\sqrt{\frac{1}{2 N} \sum_{i=1}^{N}\left(x_{i}^{2}+y_{i}^{2}\right)}$

SIn ce the sum in (1.11) divided by ∇^{2} has a chi squared distribution, it follows that the square root of a chi squared random variable divied by its degrees of freedom has a chi distribution. The density function of a chi distributed random variable with 2 n degrees of freedom 10

$u \leqslant 0$

Where $\Gamma(n)$ is the gamma function with parameter n. Then,

(3.13) $E\left(\hat{V}_{1}\right)=\frac{\Gamma\left(N+\frac{1}{2}\right) V}{(N) \sqrt{N}}$ and

$$
\widehat{\nabla}_{1}=\frac{\Gamma(N) \sqrt{N}}{\Gamma\left(N+\frac{i}{2}\right)} \sqrt{\frac{1}{2 N} \sum_{i=1}^{N}\left(x_{i}^{\alpha}+y_{i}^{*}\right) \quad \text { is an }}
$$

unbiased estimate of σ and therefore
(D.14) $\widehat{\text { CWPRTH }}=1.1774 \widehat{\hat{\sigma}}_{1}$ is an unbiased estimate of the CEP.

The maximum likelihood estimator of σ when the means are not
zero is
(D.15)

$$
\hat{V_{2}}=\sqrt{\frac{1}{\partial N} \sum_{i=1}^{N}\left[\left(X_{i}-\bar{X}\right)^{2}+\left(y_{i}-\bar{Y}\right)^{\lambda}\right]}
$$

Therefore,
(3.16) $E\left(\hat{V}_{2}\right)=\frac{\Gamma\left(N-\frac{1}{2}\right)}{\Gamma(N-1) \sqrt{N}} \nabla$
and
(3.17) $\frac{\hat{\lambda}}{\nabla_{2}}=\frac{\Gamma(N-1) \sqrt{N}}{\Gamma\left(N-\frac{1}{2}\right)} / \sum_{i=1}^{N} \frac{\left[\left(x_{i}-\bar{X}\right)^{\alpha}+\left(y_{i}-\bar{y}\right)^{\alpha}\right]}{\alpha N}$ is
an unbiased estimate of σ. Therefore
(2.18)

$$
\widehat{C Y F i t}=1.1774 \widehat{V}_{2} \text { is an unbiased estimate of the CZP。 }
$$

The reader may be interested in the magnitudes of the Lasting
Factors and a comparison of the biased and unbiased estimators the CIE. The results obtained using the data from the sample problem ans are presented in Tables i and j.

	Comparison of the Biasing Factors of the Two Estimators	
Case	CEP\% ${ }_{1}$	$\mathrm{CEP} \mathrm{C}_{2}$
1	$B_{11}=\frac{\sqrt{10} \Gamma(10)}{\Gamma(10.5)}=1.01$	$B_{21}=\frac{\sqrt{10} \Gamma(9)}{\Gamma(0.5)}=1.09$
2	$B_{12}=\frac{\sqrt{15} \Gamma(15)}{\Gamma(15.5)}=1.01$	$B_{22}=\frac{\sqrt{15} \Gamma(14)}{\Gamma(14.5)}=1.04$
3	$B_{13}=\frac{\sqrt{25} \Gamma(25)}{\Gamma(25.5)}=1.005$	$B_{23}=\frac{\sqrt{25} \Gamma(24)}{\Gamma(24.5)}=1.03$

Table j

Comparison of the Estimators with the Nethods Used In Sections II and III

Problem	$\underset{\substack{\text { Appendi: } \\ \text { CEP: } \\ 1}}{ }$	Section II		Appendix B	Section III	
		CEP_{1}	CEP:	CEP**	CEP_{2}	CEP*
1						
Case 1	4.20	3.97	4.13	3.86	3.64	3.72
Case 2	4.13	3.34	4.10	3.95	3.87	3.88
Case 3	3.53	3.48	3.51	3.29	3.28	3.26
2						
Case 1	3.55	3.37	3.50	3.47	3.33	3.55
Casc 2	3.59	3.45	3.51	3.48	3.39	3.52
Case 3	3.33	3.77	3.78	3.78	3.71	3.74
3						
Case 1	4.76	4.17	4.69	4.76	4.65	5.02
Case 2	4.10	3.65	4.03	3.92	3.56	4.21
Case 3	3.69	3.36	3.66	3.78	3.52	3.72

B. 4 Comparison Of The Tho Estimates: Relative Efficiency

Throughout this section it is assumed that $\nabla_{x}^{2}=\nabla_{y}^{2}=\nabla^{2}$ and $\rho=0$.
It can be proven that CEPdth has greater efficiency than any other
unbiased linear sample statiotic then the mean value is (0,0). In case

the mean is not zero but is knom to be small, this estimate sonic be consiciereci. Chi \% is asymptotically efficient whatever the population mean may be, hence, if the mean is greatly different from (0,0), كिt will be a better estimate than $\widehat{C H P} \%$. However, because 2 degrees of freedom are lost in estimating the coordinates of the mean, the estimate

know that the true mean is close to $(0,0)$, it is necessary to compare the two estimates by some criterion. The method with will be used is the ratio of the relative efficiencies. then $\widehat{0} \%$ and $\widehat{0} \% \%$ are usci, the formula is
(3.19)

$$
\therefore E_{0}=\frac{\left.E\left[\left(\hat{\left(E P_{1}\right.}-C E\right)\right)^{\bar{\alpha}}\right]}{E\left[\left(E P_{2}-(E P)^{\hat{\alpha}}\right]\right.}=\frac{E\left[\left(\hat{\nabla}_{1} \cdots \nabla\right)^{\alpha}\right]}{E\left[\left(\hat{\bar{V}}_{2}-\nabla\right)^{\alpha}\right]}
$$

This comparison may be done by assuming that the true mean is either some point $\left(u_{x}, u_{y}\right)$ or $(0,0)$. In the case that the assumption is made that the true mean is ($u, u y$) the joint density function is
(B.20) $E\left(x, y ; u_{x}, u_{y}, V\right)=\frac{1}{2 \pi \nabla^{2}} \exp \left\{-\frac{1}{2 \nabla^{2}}\left[\left(x-u_{x}\right)^{\alpha}+\left(y-u_{y}\right)^{\alpha}\right]\right\}$

Wen it is assumed that the true mean is $(0,0)$, the joint density Function is
(B.21) $8(x, y ; 0,0, \sigma)=\frac{1}{2 \pi \nabla^{2}} \exp \left[-\frac{1}{2 \nabla^{2}}\left(x^{\alpha}+y^{\alpha}\right)\right]$

The development of the ratio assuming that the true mean is (0,0) follows the procedure applied in formula (B.13). The result is
(D.2.2) $\left[\left[\left(\frac{\text { 分 }}{V_{1}}-V\right)^{2}\right]=\left[\frac{\Gamma(N) /(N+1)}{\Gamma م(N)}\right] V^{2}\right.$
(B.23) $E\left[\left(\hat{\hat{V}}_{2}-\nabla\right)^{2}\right]=\left[\frac{\Gamma(N) \Gamma(N-1)}{\Gamma^{2}\left(N-\frac{1}{2}\right)}-1\right] \nabla^{2}$

Combining formulas (3.22) and B.23), the ratio function is

$$
(N) \Gamma(N+1)-1
$$

(B.24) RoE $=$

$$
\frac{\Gamma(N) \Gamma(N-1)}{\Gamma^{2}\left(N-\frac{1}{2}\right)}-1
$$

inn the mean is $(0,0)$, the ratio function in (0.24) is less than 1 for all n. Table k presents values of the ratio function for $\mathrm{n}=2(1) 20,25(5) 50$. P.3. Woranda tables this ratio for $\mathrm{n}=2(1) 8$.

If it is lan om that the true mean is at some point ($u_{x} u_{y}$) then formula ($B, 20$) is the joint densify function of the component errors.

(3). In order to Eind the rean square ceviation of $C=\frac{1}{2}$, the same procedure can be follonec as in formula (3.13) and the result is the same as formula (2,22). The mean square ervor of chrw is a function of u_{x} anc u_{y}. ioranda assumed for case of computation triat $u^{\prime}=k_{1}$ f and $u_{y}=k_{2} \nabla$.

Letting u be defined by
(D.25) u $=$
$>\left(1^{\alpha}+y_{i}^{*}\right)$
\bar{V}. \quad has a non-central chi
squared distribution. Values of \therefore. F . siom in labl: 1 ian erpt from Fable (1) in reference (3)) were obtained by puttind $k_{1}=k_{2}$, and vary=
 increases, the ratio function ciccreases for a constant value of $\begin{aligned} & \text { e } \\ & \text { it }\end{aligned}$ can be ascertained from this table that for large n, curtw will je the best estimate unless 1 equals zoro and ctip\% vill be best for small n and small values of th. The practical use of the ratio under these assumptions require tice use of estimates to obtain the values of k_{1} and k_{2} and althougi not exact, may still supply sone usciful information.

A possible procedure for using Table 1 is as follows:
The values of \bar{x} and \bar{y} are first computed. Then $\hat{\nabla}_{1}$ and $\hat{\nabla}_{2}$ are comm pouted using formulas (B.11) and (B.15) respectively. The estimated value of k_{1} and k_{2} will then equal
(B.29)

where $\hat{\nabla}=\frac{\hat{\nabla}_{1}+\hat{\nabla}_{2}}{2}$

Using $k=\frac{k_{1}+k_{2}}{2}$ and n, an analysis of table 1 may show when $\widehat{\operatorname{CEF}} \mathrm{H}_{1} \%$
Is not the best estimate. The reader should be cautioned that no attempt has been made to theoretically justify this procedure,

In order to better illustrate the above, the computed values from the example problems for case 1 are show in table m.

Analysis of Table m using the Above values
1 for $k=.434, R_{0} . P_{0}>1$ for all $n>5$, therefore CP $_{2}{ }_{2}$ is best estimate.

2 for $k=.20$, NoE. $* .917<1$, for $n=3$, therefore CEDric is slightly better.


```
                                    RO-mI
```



```
..] Introcuction
```



```
the bivariate nowmal density -unction ajy ac simpli_iec by waking the
```



```
(C.1)
```



```
    },v(v,v\rangle=}=\frac{1}{2\pi\mp@subsup{v}{u}{}+v
~』2 Integration Ovel Uizc:le
```



```
#ith centen at th= origin an. racious k Vuis ruitten as
(C.2)
    I:(U2
```



```
intçu゙ation.
```

 6 "Circular mror frobnbilities: by H。Leon Marter /4/ of beronau=
 tical lescarch Laboratories.

Integration of the Jivariate Density Fiction over a Circular Region Figure 6.1

In orcier to simpliFy equations (c.1) and (0.2) let
(c.3) $\quad \frac{i 1}{\nabla_{u}}=m \cos 0, \quad \frac{V}{\nabla_{u}}=\sin \omega$,
then
$\left.N N_{1} \sigma_{u} \nabla^{2}\right)=\frac{1}{2 \pi \sigma_{u} \sigma_{v}} \int\left\{\lambda_{i}-\frac{1}{2}\left[M^{2} \cos ^{2} \theta+\frac{\nabla_{u}^{2}}{\nabla_{v}^{2}} M^{2} \sin N^{2} \theta\right]\right\}|J| \operatorname{din} \theta \theta$ where $M<k$

$$
J=\left|\begin{array}{ll}
\frac{\partial 1}{\partial m} & \frac{\partial u}{\partial E} \\
\frac{\partial v}{\partial n} & \frac{\partial u^{\prime}}{\partial \theta}
\end{array}\right|=M \sigma_{u}^{2}
$$

now let $C=\frac{\sigma_{L}}{\sigma_{u}}, \sin ^{2} \theta / \cdot \cos \theta \quad$ and the probability is

$$
\left.P(k, C)=\frac{1}{2 \pi c} \int_{0}^{2 \pi} \int_{0}^{2} \exp -\frac{m^{2}}{c^{2}}[(c-1) \cos a+1]\right\} m d m d \theta
$$

let $\cos ^{2} \theta-\frac{1}{2}(1+\cos \alpha), \phi=2 \theta, Z=\frac{m}{k}$ and the probability is
$P(k, c)=\frac{a c}{\pi} \int_{0}^{\pi} \int_{0}^{\frac{k^{2}}{4} x^{2}}\left\{-\left[\left(c^{2} 1\right)+\left(c^{2}-1\right) \cos \phi\right]\right\} d z \cdots \phi^{2}$
 $(c .5) I^{\prime}(k, c)=\frac{x c}{\pi} \int_{0}^{\pi} \frac{1-c x p-\frac{\dot{\lambda}^{2}}{4 c^{2}}\left[\left(c^{2}+1\right)+\left(c^{2}-1\right) \cos \phi\right]_{j}^{\prime}}{(c+1)+\left(c^{2}-1\right) \cos \psi} d \phi$ This do in interatol sing the trapozoinal ralc and utilizing computars to 'o the intcurating.
or ciample, the curve belon rearesmos so funcerion that ve ish
 into cqual sub intervals (e'd) an sth all of the sub intervals, is the sub intervals hacone s.aller, the accuracy of this type of intecration hocones batťz and this sumation secenique approaches the actual area rnder the cuive.

$+$

 converence of the tro netrois. In the le $\omega_{0}=x=T_{1}(x)$, then $\left.f_{m}(x)=000-=2(0)-2\right)$

Ite forma for intearation nor becomes
$(c .7) r(\Lambda-)=\frac{\alpha C}{\pi} \sum_{n=0}^{N} 1-\frac{c \times p-\frac{K^{2}}{4 c^{2}-}\left[\left(c^{2}+1\right)+\left(c^{2}-1\right) T_{m}(\lambda)\right]}{\left(c^{2}+1\right)+\left(c^{2}-1\right) T_{m}(x)}$

Whis sumation is no: ade for ifferent values of l, c, anc $\quad\left(k, c^{\circ}\right)$,
C. 3 Inderatire Ovaz it -11ips The probabilit, that a ranion point (7,7) ill lie vithin an ellipse wit. centur at oricin is written as
 Whe toro illustrations in figta 3.3 shot the reonetric aroa of integration

Volume of Integration of ivaiciat ensit, function

allinse Coze by slane Cutting g., (u,v) Farallel to u, v Planc

$$
\text { Zicure } .3
$$

the thace diacnsional for.. being a perfect bell and the two dimensional Sor: being a circle.

In oncer to furtiacz simpiaj this forin let

$$
P(k, M, Q)=\frac{1}{2 \pi \nabla_{u} \nabla_{v}} \iint_{M<K} \exp -\frac{1}{2} m^{2}|J| \operatorname{cmd} \theta \text {, where } J=m V_{u} T_{v}
$$

 to G, the fomula becones
$(2.11)-k,)_{0}^{k} \operatorname{di}\left(-\frac{1}{2} m^{-}\right) \ldots .$.

If ve let $t=$. 2, tho probuilit, stat. ont jecones

 Nat is
(2.13) PLTEK $J=K_{\text {is }}\left[\sqrt[u^{2}]{\nabla_{u}}+\frac{v^{2}}{v}-K K^{2}\right]=1-C^{\frac{K^{2}}{2}}$
 by enterines with $\Gamma(\ldots, t)$ and 2 dugrecs of frecio...

[^0]: Disecra: 9

[^1]: Diacram 15

