
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2001-06

Concepts, applications and analysis of a submarine

based wireless network

Wilkins, William G.

http://hdl.handle.net/10945/10988

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
CONCEPTS, APPLICATIONS AND ANALYSIS OF A

SUBMARINE BASED WIRELESS NETWORK

by

William G. Wilkins Jr.

June 2001

Thesis Advisor
Second Reader

Xiaoping Yun
C.Thomas Wu

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2001
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)

Concepts, Applications and Analysis of a Submarine Based
Wireless Network
6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

i. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As Information Technology tools continue to improve, we must take advantage of this wave by developing wise solutions
to help automate many daily tasks presented onboard submarines. Java based applications and Commercial-Off-The-Shelf
(COTS) technology provides us low cost solutions that increase the availability and mobility of the information we seek. Small
pen based computers and wireless LANS allow us to create dynamic and distributable applications that can route paperwork or
fight casualties. It is imperative we take full advantage of these technologies in the design of our new submarines as well as in
retrofit of our older ones.

This thesis attempts to solve a key task, Damage Control (DC) communications, by designing a Java based application
known as SWIPNet (Submarine Wireless Prototyped Network). This virtual grease board application uses multicast sockets to
send standard DC and crew reports to all wireless handhelds that participate in a casualty. A proposed Virginia class wireless
network, known a Non Tactical Data Processing System (NTDPS), was then analyzed to determine network efficiency in the
presence of a SWIPNet and 14 other submarine type network loads. Demonstrations have proven that SWIPNet provides a
more efficient way to communicate and can function effectively on the NTDPS.

14. SUBJECT TERMS Wireless Local Area Network, mobile computing, Java, pen-based
computing, PDAs, Handheld Computers, database, OPNET Modeler, Microsoft Access, Damage
Control, Multicast Sockets

15. NUMBER OF
PAGES 24 8

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSD7ICATIONOF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for pubic release; distribution is unlimited

CONCEPTS, APPLICATIONS AND ANALYSIS OF A SUBMARINE BASED
WD2ELESS NETWORK

William G. Wilkins Jr.
Lieutenant, United States Navy
B.S., Auburn University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2001

Author:
William G. Wilkins Jr.

Approved by:
CW. c^x^-?

Xiaoping Yun, Thesis Advisor

C. ThomajrWu, Second Reader

Dan Boger, Chairma
Department of Computer Science

m

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

As Information Technology tools continue to improve, we must take advantage

of this wave by developing wise solutions to help automate many daily tasks presented

onboard submarines. Java based applications and Commercial-Off-The-Shelf (COTS)

technology provides us low cost solutions that increase the availability and mobility of

the information we seek. Small pen based computers and wireless LANS allow us to

create dynamic and distributable applications that can route paperwork or fight

casualties. It is imperative we take full advantage of these technologies in the design of

our new submarines as well as in retrofit of our older ones.

This thesis attempts to solve a key task, Damage Control (DC) communications,

by designing a Java based application known as SWTPNet (Submarine Wireless

Prototyped Network). This virtual grease board application uses multicast sockets to

send standard DC and crew reports to all wireless handhelds that participate in a

casualty. A proposed Virginia class wireless network, known a Non Tactical Data

Processing System (NTDPS), was then analyzed to determine network efficiency in the

presence of a SWIPNet and 14 other submarine type network loads. Demonstrations

have proven that SWIPNet provides a more efficient way to communicate and can

function effectively on the NTDPS.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. GOALS FOR THIS THESIS 1
B. THESIS OUTLINE 1

II. DETAILED SUMMARY OF WIRELESS GROUP RESEARCH 3
A. SCOPE 4
B. THEORY

1
'
4
'
6 5

1. Channel Path Characteristics 4'6 5
2. Spectrum Types4'6 7

a. FH/SS 7
b. DS/SS *
c. Comparison between FH/SS and DS/SS 8

3. Electromagnetic Interference (EMI)1 8
C. STANDARDS

2'4,5,6 9
1. OSIModel4'5'6 9
2. CSMA/CD4'6 10
3. CSMA/CA 4'5'6 11

a. Hidden Node 15
b. Fading Effects 16

4. Security2 16
D. HARDWARE

ALL 17
1. Handheld Devices M 18
2. Wearable Devices 2'3'4'5 19
3. Performance of Above Tested COTS Equipment1A5 19
4. Wireless Components *" 20

E. SOFTWARE DEVELOPMENT
3
'
5 21

1. Coding Languages3'5 21
2. Feasibility Application ^ 22

F. TESTING^ 23
1. Platform Environments M 23

a. USS Ohio Test (August/1997)1 23
b. USS Harry S. Truman Hangerbay (March/1999) 3-4J 23
c. USS Memphis (August/1999)4'6 25
d. NPS Labs (3/2000)2'4'6 25

G. SYSTEM REQUIREMENTS
! 27

1. Requirements l .*. 27
H. CHAPTER SUMMARY 27

III. APPLICATION AND NETWORK REQUIREMENTS 29
A. TCP/IP MODEL, THE WORKING MODEL, [HUGHES97] 29
B. INTERNET PROTOCOL (IP) ADDRESSING 30
C. THE JAVA LANGUAGE 31

vii

1. Why Java? 31
2. Security Issues 31

D. SOCKET BASED COMMUNICATION 32
1. What is a Socket? 32
2. How Sockets Can Be Used for Communication 32
3. Submarine Applications and Socket Based Communication 32

a. Drill Control 32
b. Supply System 32
c. Log Taking 33
d. Preventive Maintenance (PM) 33
e. Sub to Sub Data Transfers 33
f Casualty/Damage Control 33
g. Standard Operations 34
h. Troubleshooting 34

4. Specific Socket Communications [MahmoudOO] 34
a. Transmission Control Protocol (TCP) Sockets 34
b. User Datagram Protocol (UDP) Sockets 35
c. Broadcast Sockets 35
d. Multicast Sockets 35
e. Remote Method Invocation (RMI) 35
f. Common Object Request Broker (CORBA) 36

E. THE DC COMMUNICATION MODEL 36
F. BUILDING A DAMAGE CONTROL APPLICATION 39

1. General Software Constraints 39
a. Scalability 39
b. Mobility 39
c. Multithreaded 39
d. Operate Similar to Current DC Communications 39
e. Reliability Higher Than Current DC Communications 39
f. Easy to Setup and Use 40
g. Network Capable 40
h. Fast Data Transfer 40
i. Customizable Configuration to the Ships Needs 40
j. Applet and/or Application Capable 40
k. Persistence Protection 41

2. General Hardware Constraints 41
a. Open Operating System 41
b. Network Connectivity. 41
c. Rugged 41
d. Long Batter Life 41
e. Mobile Input Method 41
f. Mobile View Method 42
g. Comfort 42
h. Storage 42

G. CHAPTER SUMMARY 42

viii

IV. SUBMARINE DC IMPLEMENTATION IN JAVA 43
A. GOALS 43
B. SCOPE OF THE PRODUCT 43
C. FEATURES OF SWIPNET 44

1. Desired Features 44
a. Standard DC Reports 44
b. Voice and Video 44
c. Persistent Storage 44
d. User Interface 44
e. Availability 44
f. Security 44
g. Encryption 44
h. Maintainability 45
i. Customization 45
j. Post Drill Feedback 45

2. Key Design Features 45
a. Sender/Listener Approach 45
b. Multicast 45
c. Applet/Application 46

D. OLD VS NEW COMPARISION 46
1. Application is Better Than Applet 46
2. No Bottlenecks 47
3. Less Error Prone 47
4. No Single Point of Failure 47
5. Easier to Deploy to a Ship 47
6. More Scalable ...48

E. SYSTEM SPECIFICATIONS 48
1. Package Layout 48
2. Class Summary 50
3. Key Method Summary 52

F. GRAPHICAL USER INTERFACE (GUI) LAYOUT 54
1. In General 54

a. Color Use 54
b. Compactness 55
c. GUI Components 55

2. Launching (DCNet object) Console 55
3. Sending (Client object) Console 56
4. Listening GUI (Server object) Console 57
5. Deploying the Application for Use 58

G. CHAPTER SUMMARY 58

V. SOLVING THE PERSISTENT DATA PROBLEM 61
A. STORAGE MODELS 61

1. Flat Files 61
2. Relational Databases 61
3. Object Oriented Databases 62

ix

4. extensible Markup Language (XML) 62
B. CONNECTION MODELS 63

1. Java Database Connectivity (JDBC) 63
2. Server Side Models 63

C. DC DESIGN REQUIREMENTS 63
1. Initialization 64
2. Power Outage Recovery 64

D. PERSISTANCE DESIGN USING MICROSOFT ACCESS 64
1. Entity Description 65
2. Relationships 67
3. Microsoft Access Implementation 68
4. Connecting the Database 69

E. DATA INTEGRITY FEATURES USING MICROSOFT ACCESS 69
1. Security 69

a. Encryption 69
b. User and Group Accounts 69
c. DB Password 70
d. Security Wizard. 70

2. Protective Locking of Data in a Multiple User Environment 70
a. Record Locking 70
b. Page Locking 70
c. Table and Recordset Locking 70
d. Opening an Entire Database with Exclusive Access 70

3. Data Integrity 71
4. DB Recovery and Backup 71

F. CHAPTER SUMMARY 72

VI. SUBMARINE NETWORK ANALYSIS 73
A. GOALS 73
B. DEVELOPMENT PLAN 74
C. MODIFYING THE ORIGINAL DESIGN 75
D. ASSUMPTIONS OF MODIFIED LAN: 76

1. LAN Classification 76
2. Link Classification 77
3. Fiber Interface Boxes (FIB) to Switch Conversion 77
4. Grouping of Traffic into Subnets 77
5. Placement of Components 78
6. Selection of Backbone Switches 78
7. Others 78

E. LAYOUT OF THE SUBMARINE NETWORK 79
1. Physical Layout 79

a. Submarine Cross Section Description: 79
b. Control Center and Link Layout Description 80
c. Submarine LAN Component Description 81

F. KEY SERVICES AND MEASURED VALUES USED IN STUDY 82

1. Key Services 82

x

a. Class Roaming Service 82
b. Application Service 83
c. Plug-in and Printing Service 83

2. Metrics Studied during Simulation 83
a. Packet Based Metrics (TCP/IP Network layer) 83
b. Application Metrics (TCP/IP Application layer) 84

3. Parameters Defined for Simulation 84
a. System Parameters 84
b. Workload Parameters 85

4. Factors Varied during Simulation 85
G. OPNET MODEL 85

1. OPNET Model Assumptions 86
2. Problems Encountered 86
3. OPNET Diagram 87
4. Configuration of the Simulation Components 88

a. Wireless Client (Example of HTTP client) 88
b. Access Point (Example of AccessPoint4) 89
c. Domain Controller (Primary Domain Controller) 89
d. Workload Profile (All profiles developed) 90
e. Application (Example ofHTTPöKB) 91

5. Other Components..: 92
H. WORKLOADS AND TASKS DESIGN 92

1. Submarine DC Drills 93
2. Log Taking 93
3. Repair Maintenance Management 93
4. Supply Inventory 93
5. Preventative Maintenance 93
6. Message Routing 93
7. Watch Bill Scheduling 93
8. Refit Planning 93
9. Plan of the Day (POD) Deployment 94
10. Qualification System94
11. Fitness Reports (FITREP) and Evaluations (EVAL) Tracking 94
12. General Record Storage and Retrieval 94
13. Online Training 94
14. Online Ship Inspection and Exam History 94
15. Crew Leisure Activities 94

I. WORKLOAD MATRK AND TTMEFRAMES 95
1. Matrix 95
2. Timeframes 96
3. Workloads Assumptions 96

a. Mean Application Frequency for Given Timeframe 96
b. Mean Size of Application Loading 96
c. Timeframe# 98
d. Task Areas 98

xi

e. Servers 98
f. Application Services Selection 98

4. Workloads Plotted 98
5. Workload Grouping 99
6. Application Grouping 100
7. OPNET Simulation Results 100

a. Subnet-to-Subnet Throughput (bps) 100
b. Application Mean Response Time 101
c. Application Load (Wireless Clients) 102
d. Ethernet Delay 103

J. ANALYTICAL MODELING 103
1. Definition of Problem 103
2. Assumptions of the Analytical Model 104
3. Approach 105
4. Analytical Results 106

K. SENSITIVITY ANALYSIS 107
1. Workloads Applied 107

L. CHAPTER SUMMARY 110

VII. RECOMMENDATIONS AND CONCLUSION 113
A. SUMMARY 113
B. RECOMMENDATIONS FOR FUTURE WORK 114
C. FINAL CONCLUSION 115

APPENDIX A - SELECTED SOURCE CODE 117

LIST OF REFERENCES 205

INITIAL DISTRIBUTION LIST 209

xu

LIST OF FIGURES

Figure 1 - Channel Characteristics 6
Figure 2 - Types of Fading 7
Figure 3 - OSI Model 10
Figure 4 - CSMA/CD Network 11
Figure 5 - CSMA/CA (Infrastructure Mode) [From: KuroseOl] 12
Figure 6 - CSMA/CA (ADHOC Mode) [From: KuroseOl] 12
Figure 7 - Collision Avoidance (Basic Access Mechanism) [From: KuroseOl] 13
Figure 8 - Collision Avoidance (RTS/CTS) [From: KuroseOl] 14
Figure 9 - Hidden Node (a) and Fading Effects (b) [From: KuroseOl] 15
Figure 10 - Handheld and Wearable Devices That Were Evaluated 19
Figure 11 - Evaluation of Selected COTS Equipment , 20
Figure 12 - Wireless Components That Were Evaluated 21
Figure 13 - Java Virtual Machine Flow Path 22
Figure 14 - USS Harry S. Truman Hangerbay 24
Figure 15 - Average Throughput vs. Number Clients (USS Truman) 24
Figure 16 - Access Point and Throughput Coverage (USS Memphis) 25
Figure 17 - Lucent WaveLAN (Turbo) Line Of Sight 26
Figure 18 - System Cost Wireless (Subsystem) 27
Figure 19 - TCP/IP Model 30
Figure 20 - Damage Control Status Board - USS Batfish 37
Figure 21 - Package Level Diagram 50
Figure 22 - SWIPNet Class and Method Level Diagram 52
Figure 23 - Launching (DCNet object) Console 56
Figure 24 - Sending (Client object) Console 56
Figure 25 - Listening GUI (Server object) Console 57
Figure 26 - Entity Relationship (ER) Diagram 66
Figure 27 - Relationship Schema/Relationships and Attributes 68
Figure 28 - Flowchart of Network Design 74
Figure 29 - "Original Design" LAN 75
Figure 30 - "Modified" LAN 76
Figure 31 - "Modified" LAN Physical Layout 79
Figure 32 - Control Center Layout 81
Figure 33 - OPNET Model (with expanded Gold Subnet) 87
Figure 34 - Example Wireless Client Configuration 88
Figure 35 - Example Access Point Configuration 89
Figure 36 - Example Domain Controller Configuration 90
Figure 37 - Profile Configuration 91
Figure 38 - Example Application Configuration 91
Figure 39 - Other Modeled Components 92
Figure 40 - Workload Selection Flow Chart 92

xiii

Figure 41 - Workload Matrix 95
Figure 42 - Timeframes Defined 96
Figure 43 - Twenty-Four Hour Loading Results 99
Figure 44 - Subnet-to-Subnet Throughput [bps vs. minutes (m)] 101
Figure 45 - a) Application Response Time b) Application Response Time 102
Figure 46 - Application Load From Wireless Clients [bps vs. minutes (m)] 102
Figure 47 - Ethernet Delay for a Basic Workload 103
Figure 48 - Longest Path scenario 104
Figure 49 - Calculation of Mean Ethernet Delay E(D) 105
Figure 50 - Delay vs. Arrival Rate 107
Figure 51 - FTP Response Time (sec vs. minutes) [All Simulation Runs] 109
Figure 52 - Ethernet Delay E(D) (sec vs. minutes) [All Simulation Runs] 109
Figure 53 - Response Times a) x5 Workload b) x38 with No Video 110

xiv

LIST OF TABLES

Table 1 - IP Classes and Address Range 31
Table 2 - SWIPNet Package Summary 49
Table 3 - SWIPNet Class Summary 52
Table 4 - Key SWIPNet Method Summary 54
Table 5 - Inter-Arrival Times 100
Table 6 - Longest Path E(D) Comparison Table 106

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

ACKNOWLEDGMENTS

The author would like to acknowledge the financial support of NAVSEA

PMS450 in sponsoring this research.

The author would also like to thank Professors Xiaoping Yun and Thomas Wu

for their guidance and support during this research effort. I would also like to thank the

previous members of the wireless research group that provided me assistance and

guidance in getting started with this research.

Finally, the author would like to thank his spouse, Emily, and his boys,

Christopher and Michael, for their enduring patience and understanding during the

writing of this research. Your love and humor provided the support I needed to bring

this work to a close, thank-you.

xvu

THIS PAGE INTENTIONALLY LEFT BLANK

xvm

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

ACK Acknowledgement

AP Access Point

API Applications Programming Interface

A/V Audio Visual

AWGN Additive White Gaussian Noise

BSS Basic Service Set

BDC Backup Domain Controllers

CORBA Common Object Request Broker

COTS Commercial Off the Shelf

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DB Database

DBA Database Administrator

DC Damage Control

DCC Damage Control Central

DCF Distributed Coordination Function

DES Digital Encryption Standard

DBFS . Distributed Inter Frame Space

DS/SS Direct Sequence Spread Spectrum

DTD Document Type Definition

EAB Emergency Air Breathing

EMC Electro Magnetic Compatibility

EMI Electro Magnetic Interference

ER Entity Relationship

EOOW Engineer Officer Of the Watch

FH/SS Frequency Hop Spread Spectrum

FIB Fiber Interface Box

FSK Frequency Shift Keying

xix

FTP File Transfer Protocol

GUI Graphical User Interface

HIPERLAN High Performance Radio Local Area Network

HTTP Hypertext Transfer Protocol

Hz Hertz

IP Internet Protocol

JIT Just in Time

JVM Java Virtual Machine

J2EE Java 2 Enterprise Edition

JSP Java Server Page

JDBC Java Database Connectivity

JRE Java 2 Runtime Environment

LAN Local Area Network

LOS Line-Of-Sight

MAC Medium Access Control

MIC Man In Charge

ML Markup Language

NAVSEA Naval Sea System Command

NFTI Navy Field Thermal Imager

NPS Naval Postgraduate School

NSSN New Attack Submarine

NTDPS Non Tactical Data Processing System

OB A Oxygen Breathing Apparatus

OOD Officer of the Deck

ORSE Operational Reactor Safety Exam

OS Operating System

OSI Open Systems Interconnection

PAN Personnel Area Network

PB Prewatch - Based

PPB Paperwork/Postwatch - Based

xx

PDC Primary Domain Controller

PHY Physical Layer

PIB Pre-Inspection Based

PM Preventive Maintenance

PMS Preventive Maintenance System

QPSK Quadrature Phase Shift Keying

RAM Read Access Memory

RB Random Based

RDB Random Day Based

RIP Routing Information Protocol

RMI Remote Method Invocation

RTS/CTS Request-To-Send/Clear-To-Send

SIFS Short Inter Frame Space

SOF Special Operations Force

SQL Structured Query Language

SSL Secure Socket Layer

SWIPNet Submarine Wireless Prototyped Network

TCP Transmission Control Protocol

TRE Tactical Readiness Exam

UDP User Datagram Protocol

URL Uniform Resource Locator

W3C World Wide Web Consortium

WB Watch Based

WLAN Wireless Local Area Network

XML extensible Markup Language

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

I. INTRODUCTION

The dawning of the information age has presented the submarine force with an

interesting dilemma of how, when or even why should we use certain technological

advances to increase efficiency of key processes onboard a submarine. Wireless

networks, handheld wireless computers and distributed software packages are examples

that have increased our potential to share and distribute information. Most of these

examples are available as Commercial Off the Shelf (COTS) products. These products

have the potential to help crewmembers become more efficient in managing task,

coordinating workloads and even combating casualties that can occur onboard a

submarine. This thesis is part of an outgoing research project that involves the testing,

analysis and design of submarine applications deployed on a wireless network.

A. GOALS FOR THIS THESIS

The main thrust of this thesis is to investigate the real world technological

options available from COTS based broadband and wireless technologies. It will also

encompass taking submarine concepts and apply them to different areas, like wireless

LAN's (Local Area Networks) and pen based computers, wireless sensors, and

broadband submarine based application that solve everyday tasks. A desired end result

within this thesis is to design and implement a virtual Damage Control (DC) status board

that can be used within a wireless LAN system and to tests its feasibility within a

simulated Virginia Class wireless network.

B. THESIS OUTLINE

The following describes the way the remaining chapters are broken down.

Chapter II will include an overview summary of previous work. This chapter provides a

starting point for continued research within this thesis. Chapter HI summarizes

researched concepts that are needed to design and build a submarine based virtual DC

-1

system. Chapter IV explains the design of this Java based application. Chapter V

describes the database that was designed to provide persistent storage for the Java based

application designed in chapter IV. Chapter VI describe the building of the Virginia

class wireless LAN simulation using OPNET Modeler 7.0B. This chapter will explore

the loading capabilities of this network and try to discover new insights on how to build

this network better. Also this simulation will be performed to ensure that such a network

can support the virtual DC application designed in Chapter IV. Chapter VII presents

conclusions and recommendations for further study.

-2-

II. DETAILED SUMMARY OF WIRELESS GROUP RESEARCH

Students from Naval Postgraduate School (NPS) initially began efforts to

determine the feasibility of wireless components aboard ships and submarines. It began

in 1996 with the Submarine Wireless LAN (SWLAN) project between NPS, NAVSEA

PMS450 and Electric Boat. This project initially conducted a market assessment of

current wireless technologies and looked at what shipboard applications that would

benefit from the integration of a wireless subsystem aboard naval vessels. Since that

time countless wireless products have been evaluated. These products range from

wearable computers to access points and wireless PCMCIA cards. Also several

client/server applications have been developed to promote a proof concept with wireless

technologies, including damage control and log taking. A series of wireless test have

been conducted aboard the USS Ohio (SSBN 726), USS Harry S. Truman (CVN 75),

USS Memphis (SSN 691), and within NPS Labs to gather field data. This data has been

used to evaluate claims made by manufacturers and to identify the best wireless

components. It is the goal of the SWLAN project to provide guidance on the newest

wireless technology in the areas of testing and design to NAVSEA PMS450 and other

Naval organizations.

This chapter presents an overview of topics covered previously by other graduate

students. It is intended to summarize key research aspects and provide a foundation for

continuing work, including this thesis. Specifically, this chapter pulls some of the key

ideas from six graduate level theses that have been conducted within the SWLAN.

Some areas have been expounded upon in greater detail form supplemental resources,

but those familiar with these works could skip to Chapter III for the original work of this

thesis.

3-

A. SCOPE

The scope of this chapter is to summarize reoccuning themes presented in

previous research. The themes, summarized from past research, can be broken down into

six key areas:

a Theory1,4,6

a Standards 2'4'5'6

a HardwareMl

a Software Development3'5

a Testing2'3'4'5'6

a System Requirements 2'3

The following theses cover these areas to different degrees. Credit is given via

superscripts of areas these authors covered and some direction is provided for a reader

who desires more detailed information. It is not intended to write all the specifics that

are written in these theses, instead to summarize the more current ideas, list some

interesting insights these authors have discovered and add some discussion from other

references when warranted. The following works and authors have contributed to the

SWLAN research group and their works are summarized within this chapter.

a [Debus98] - "Feasibility Analysis for a Submarine Wireless Computer

Network Using Commercial off the Shelf Components"

a [Roemhildt99] - "Analysis and Vulnerabilities of Spread Spectrum

Wireless Local Area Networks on Surface and Sub-Surface Combatants"

Ml - All six theses addresses topic, ' - [Debus98], 2 - [Roemhildt99], 3 - [Rothenhaus99], 4

[Matthews99],5 - [Sayat99], 6 - [McConnellOO]

-4

Q [Rothenhaus99] - "Distributed Software Applications in Java for Portable

Processors Operating on a Wireless LAN"

a [Matthews99] - "Analysis of Radio Frequency Components for Shipboard

Wireless Networks"

a [Sayat99] - "Damage Control and Log Taking Java Applications for

Shipboard Wireless LANs"

a [McConnellOO] - 'Testing and Evaluation of Shipboard Wireless Network

Components"

B. THEORYIA6

Three key areas of wireless systems is the channel characteristics, spectrum type

and signal propagation. It is important to understand these characteristics in order to

explain performance differences or effects of wireless components operating in a

submarine or shipboard environment.

1. Channel Path Characteristics 4'6

Certain assumptions are made within any communication system. This section

describes some assumptions that are made when describing shipboard channel paths.

Three types of channels Rayleigh, Ricean, and AWGN (Additive White Gaussian Noise)

are possible as shown in Figure 1. They are characterized by their direct path and

multipath components. AWGN is the most basic channel path where a transmitted direct

path signal experiences "freespace loss". This loss is proportional to the square of the

distance between server and client. The next two are characterized in terms of large scale

and small scale fading. Large scale fading is loss due to obstructions. Small scale

-5

[Trans [^ Direct Path Propagation ll—| RCTr |

a. Direct Path Reception (AWGN Channel)

Reflected Signal

„ — " ^ zrx

| Trans f~y Direct Path Propagation L-| Rcvr |

v /
^ Reflected Signal r

b. Multipath Reception with Direct Path Component (Ricean Fading Channel)

Reflected Signal

v /
^ Reflected Sicnal r Reflected Signal

c. Multipath Reception without Direct Path Component (Rayleigh Fading Channel)

Figure 1 - Channel Characteristics

spreading is more complex and is broken down into time spreading and time variations.

Time spreading is a signal phase that results from phase variations as a direct path and

reflected signal that arrive with different phases and constructively and destructively

combine to form the received signal. Time spreading results in a frequency select type

fade (Figure 2), know as a Deep Fade, that has channel nulls. Time spreading can also

result in flat fading which is more desirable since it fades the entire signal. Time

variation-fading results due to relative motion between transmitter and receiver, which

causes the propagation path to change. Time variation is further categorized as fast fade

and slow fade, both of which are dependent on the velocity of the movement. Fast fade

occurs when the symbol duration is greater than the coherence time and is similar to

frequency select fading. Slow fade is when the coherence time is greater than the

transmitted symbol duration. In a shipboard environment direct path components

between the client and a base station (Access Point) rarely exists. Shipboard

environment expected to exhibit slow, flat fading characteristics with occasional channel

nulls. So the channel that best characterizes a submarine environment is a Rayleigh

channel. This concept is important when analyzing attenuation and coverage ability of

different spectrums.

Frequency

a. Frequency Selective Fading

b. Flat Fading
Frequency

Frequency

c. Flat Fading with Channel Null

Figure 2 - Types of Fading

2. .4,6 Spectrum Types

Spectrum types identify the method that wireless components use to propagate

wireless signals through air. Two types are covered: Frequency Hop Spread Spectrum

(FH/SS) and Direct Sequence Spread Spectrum (DS/SS). Both spectrum types are

commercially available in today's wireless LAN products.

a. FH/SS

Frequency Hop passes a signal using a narrowband carrier that changes in

frequency. The transmitter and receiver each know this pattern. In effect, FH/SS hops

-7-

from narrowband to narrowband within a wideband using each narrowband for a specific

amount of time.

b. DS/SS

Direct Sequence uses a redundant bit pattern. This pattern is called the

spreading or chipping code. Implementation is accomplished by modulating a

narrowband signal with this chipping code. This makes DS/SS appear as a low power

wideband noise to a narrowband receiver. In effect, you get a broadband signal by

artificially increasing the modulation using the spreading code.

c. Comparison between FH/SS and DS/SS

LT Richard McConnell [McConnellOO] provides an excellent comparison

of the two spectrums in terms of coverage, reliability, immunity and scalability. He

points out that DS/SS generally wins out in each category due to its more robust signal.

This robustness is generally due to the fact that it spreads its signal across a wider

spectrum. Therefore it is less affected by attenuation, as would a narrowband signal.

Also the modulation technique, Quadrature Phase Shift Keying (QPSK) for DS/SS is

more efficient than Frequency Shift Keying (FSK) used in FH/SS.

3. Electromagnetic Interference (EMI)'

Electromagnetic interference (EMI) and electromagnetic compatibility (EMC)

are two topics currently under research at NPS. The only prior research was within

[Debus98] thesis. A summary is included for completeness within this chapter. More

study is needed within this area and is currently being researched within another

student's graduate thesis.

EMI is important because any equipment that comes onboard and transmits RF

signals can potentially disrupt onboard systems. Two frequencies are normally

encountered when dealing with wireless components. They are 900Mhz and 2.4 GHz,

more recent industry focus on 2.4 GHz. Currently two documents cover the control of

these transmitting devices. Those documents are MDL-STD-461D, Requirements for the

8-

Control of Electromagnetic Interference Emissions and Susceptibility and OD-30303,

The HERO Design Guide. Each document defines a maximum electric field constraint

on all transmitting devices. This electric field value is expressed in V/m and equation

(1) is used to convert this electric field to a power output value so it can be directly

compared to any PCMCIA card. MIL-STD-461D sets a maximum electric field of

5V/m (lOKHz to 40Ghz) and OD-30303 sets it at 13.5 V/m (900Mhz) if unity gain (Gt

=1) and a distance of 1 meter (r=l), are assumed. Then the corresponding maximum

output is 833.3mW and 6.1W respectively. Most PCMCIA transmitting devices transmit

at a maximum of lOOmW and thus meet these requirements (at 1 meter). Also note that

OD-30303 sets the maximum based on 900Mhz. Since higher frequencies only improve

these limits, then the 2.4 GHz stations would also easily meet this requirement at one

meter.

r2xE2

P°u'~30xGt
(1)

More research is needed to first challenge these limits and also explore hidden

EMI effects that my not be prevented just by setting limits on max power output.

C. STANDARDS 2456

1. OSI Model4 5 6

The OSI model (Figure 3) provides a layered approach description that is used

when taking about network systems. Although not actually implemented, it does

provide a direct mapping to the implemented and very popular TCP/IP model. The

TCP/IP model uses the Application, Transport (TCP), Network (IP), Data Link, and

Physical layers that are described within the OSI model (see Chapter m for more detail

on the TCP/IP model).

9-

Application

Presentation

Session

Transport

Network

Data link
S02.2LLC

8023
Ethernet

CSMÄ/CD

80211
Wireless

CSMA/CA Physical

Figure 3 - OSI Model

The layers that are focused on within past research and this thesis reside in the

Data Link (specifically the MAC layer) and the Physical Layer. These are where two

types of networks, Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), operationally

reside and where they distinguish themselves. Layers above the Data Link layer are

essentially the same in most networks and are not discussed here.

2. CSMA/CD46

IEEE 802.3, CSMA/CD and Ethernet are all interchangeable words that describe

a protocol that works within a CSMA/CD Network (Figure 4). This protocol deals with

the lower two levels in the OSI model (the Physical and MAC sub layers). Common

Physical Layer components are 100BaseT, lOBaseT, 100BaseFX, etc. On the MAC sub

layer, when a network client has data to transmit, it first listens to the channel. If the idle

(i.e. no transmitting clients) then the client transmits. If not idle, then the client waits for

idle channel. When two clients transmit overlapping signals, a collision occurs. During

-10

this "collision detection" process a jamming signal is issued and a random back off time

is applied until another transmission is attempted. This process is repeated. Below is a

typical bus connected CSMA/CD network that shows several wired clients that compete

in the same collision domain. A bridge is also shown that connects this bus network to

other networks (or LANs) and works inside the Data Link layer.

Client X Client Y Client Z

Other
LANs

Client A Client B Client C

Figure 4 - CSMA/CD Network

3. CSMA/CA4A6

IEEE 802.11, CSMA/CA and wireless LAN are also interchangeable. The

fundamental building block of a wireless network is a basic service set (BSS), shown in

Figure 5. This set consists of a base station, commonly referred to as an Access Point

(AP) and one or more wireless stations (clients). These clients can be mobile or fixed.

A BSS operates in what is called infrastructure mode [KuroseOl], also shown in Figure

5. In this mode the Access Point provides an interface to the hardwired LAN and allows

clients to access servers and other hardwired components.

-11-

/-
LAP

\/

lädt \f
BSS

/
LAP

I —l

DOO

Figure 5 - CSMA/CA (Infrastructure Mode) [From: KuroseOl]

Another mode, considered "on the fly" is called ADHOC Mode [KuroseOl],

shown in Figure 6. ADHOC modes operate without an Access Point. Here wireless

clients connect directly with each other. The mode primarily investigated in this

research is Infrastructure Mode, since ultimately the implementation is geared towards

wireless network integration into a wired CSMA/CD network on board a submarine.

However, it is noted that both modes function similarly on the Datalink layer.

\f
\f

Figure 6 - CSMA/CA (ADHOC Mode) [From: KuroseOl]

12

Datalink Operational Description [BianchiOO] - Wireless LANS do not use

Collision Detection like CSMA/CD, because the ability to receive and transmit at the

same time is not possible in a wireless environment.

source destination

L/iro

ftm

Figure 7 - Collision Avoidance (Basic Access Mechanism) [From: KuroseOl]

Even if it were Hidden Node and Fading Effects (discussed later) could still

cause a collision. So a scheme known as collision avoidance was developed to overcome

these limitations.

The primary medium access control (MAC) technique of 802.11 is called a

distributed coordination function (DCF). DCF describes two techniques to employ for

packet transmission to overcome the inherit Hidden Node and Fading limitations. The

default DCF scheme is a two-way handshaking technique called basic access mechanism

(Figure 7). This mechanism is characterized by the immediate transmission of a positive

acknowledgement (ACK) by the destination station, upon successful reception of a

packet transmitted by the sender station. Explicit transmission of an ACK is required

since, in the wireless medium, a transmitter cannot determine if a packet is successfully

-13-

received by listening to its own transmission. In addition to the basic access, an optional

four way hand-shaking technique, known as Request-To-Send/Clear-To-Send

(RTS/CTS) mechanism (Figure 8).
source destination

D1FS

StF:

CTS.

» oV>

Figure 8 - Collision Avoidance (RTS/CTS) [From: KuroseOl]

Before transmitting a packet, a station operating in RTS/CTS mode "reserves"

the channel by sending a special Request-To-Send short frame. The destination station

acknowledges the receipt of an RTS frame by sending back a Clear-To-Send frame, after

which normal packet transmission and ACK response occurs. Since a collision may

occur only on the RTS frame, and it is detected by the lack of CTS response, the

RTS/CTS mechanism allows an increase in the system performance by reducing the

duration of a collision when long messages are transmitted.

A station with a new packet to transmit monitors the channel activity. If the

channel is idle for a period of time equal to a Distributed Interframe Space (DIFS), the

station transmits. Otherwise, if the channel is sensed busy (either immediately or during

the DIFS), the station persists to monitor the channel until it is measured idle for a DIFS.

At this point, the station generates a random backoff interval before transmitting (this is

the collision avoidance feature of the protocol), to minimize the probability of collision

14

with packets being transmitted by other stations. In addition, to avoid channel capture, a

station must wait a random backoff time between two consecutive new packet

transmissions, even if the medium is sensed idle in the DIFS time.

Since the CSMA/CA does not rely on the capability of the stations to detect a

collision by hearing their own transmission, the destination station transmits an ACK to

signal the successful packet reception. The ACK is immediately transmitted at the end

of the packet, after a period of time called Short Interframe Space (SIFS). As the SBFS

(plus the propagation delay) is shorter than a DIFS, no other station is able to detect the

channel idle for a DIFS until the end of the ACK. If the transmitting station does not

receive the ACK within a specified ACK Timeout, or it detects the transmission of a

different packet on the channel, it reschedules the packet transmission according to the

given backoff rules.

As mentioned before collision avoidance is implemented by the DCF in two

ways the Basic Access Mechanism and Optional RTS/CTS. These methods will help

prevent the two problems that can occur in wireless systems.

a. Hidden Node

The hidden node case (Figure 9a) arises when station A transmits to B. C

is also transmitting to B. A hidden node occurs when a physical obstruction prevents A

and C from hearing each other's transmission, even though both are interfering at

destination B. The hidden node effect causes an undetectable collision.

A. B «C

i undetectable collision.

Ü Ü Ü

(b)
Figure 9 - Hidden Node (a) and Fading Effects (b) [From: KuroseOl]

15

b. Fading Effects

Another undetectable collision occurs as signal strength fades as it

propagates through a wireless medium, known as a fading effect (Figure 9b). Station A

and C are placed such that their signal strengths are not strong enough for them to detect

each other's transmission. However, they are strong enough to interfere with each other

at station B.

4. Security2

Effective security policies are developed on all levels of the OSI stack.

Operating systems like Windows NT has an elaborate security model that centers around

access tokens that are created when users perform valid logins. These access tokens

provide the keys to resources within the network. Then there are other lower level

security options that deal with the communication channels themselves. Communication

channel protection will be the focus in the following discussion.

The Internet itself is an unprotected communications channel. It is vulnerable to

hackers and eavesdroppers that can intercept and alter data. Packet sniffer programs can

intercept packets and reassemble and analyze them quite easily. Several advances in

digital cryptography have helped safeguard against these types of intrusions. These

advances can be broken down into several categories [IDSOO].

The first is Symmetric Cryptography. Here a secret key is used to encrypt and

decrypt digital data. This encryption technique can very quickly encrypt and decrypt

large amounts of data. Some of the more popular Symmetric Cryptography techniques

are 56-bit Digital Encryption Standard (DES), 112-bit Triple DES, 40-bit Exportable

DES and 128-bit Blowfish. A big disadvantage of this type of cryptography is that both

the sender and receiver must possess the secret key to allow use of this secure channel.

The management of this key then posses a security risk and administrative burden.

The second type is Public-Key Cryptography. Both parties have a paired private

and public key. The public key is made public so that anyone can obtain it. The private

16-

key is held and showed only be known by its user. This cryptography helps minimize

the security burdens involved with Symmetric Cryptography and not only gives a means

to encrypt data it also allows a sender to digitally sign a message. In effect it allows

authentication and verification of sent messages. A short example illustrates this. If

John wants to send an encrypted message to Nancy, he encrypts it with Nancy's Public

key. Only Nancy has her private key pair and is the only one who could decrypt the sent

message. If John wants to digitally sign it, then he would perform the above encryption

and also perform a second encryption with his private key. This signs it. Since Nancy

has access to John's private key, she can decrypt and she knows it is from John. Then

she can decrypt with her private key to ensure the message is authentic (i.e. not

tampered). RSA is one of the most popular Public Key techniques. A disadvantage to

this type of cryptography is the "Man in the Middle" attack that could intercept and

deceive a sender and receiver by replacing a public key during a public key swap

between a sender and receiver. This type of attack is countered by having a trusted third

party known as a Certification Authority to ensure safe transport of public keys. Another

disadvantage of Public-Key Cryptography is the algorithm is a lot slower and more

complex than Symmetric Cryptography and leads to what is called Hybrid

Cryptography.

The third is Hybrid Cryptograph. This involves using both Symmetric and

Public-Key Cryptography. Symmetric is used for high speed and large file encryptions

and the Public-Key is used to securely transfer the Symmetric keys between parties. This

is a more practical approach to cryptography and is implemented in what is called

Secure Socket Layers (SSL). This client/server protocol is a widely accepted method of

creating secure channels. It was developed by Netscape and is implemented

automatically in most Web browsers and Servers.

D. HARDWARE ALL

A lot of time and effort has been used to perform detailed and effective

evaluations of wireless related COTS hardware components. An overview is given of

17

the criteria that were looked at when performing these evaluations. Also presented is a

simple summary of the more effective devices that were encountered during past

research.

1. Handheld Devices*11

When evaluating handheld devices for shipboard use a lot of factors need to be

considered. Those include price, pen and input options, handwriting recognition,

keyboard options, voice input, battery life and consumption control, expansion and card

slots for PCMCIA cards, size and ruggedness, processor speed, RAM size and disk

size/type, type operating system, Java JVM available, color and screen resolution, and

ease of driver upgrade and Operating System (OS) reinstalls.

There are a variety of operating systems available into today's handhelds. They

include PALM OS (C/C++ language), Windows 9X, Win CE 2.0, Linux, etc. Of course

in our evaluation the Win 9X, was the easiest to work with because it is the defacto

standard in OS. That is the availability of drivers, ease of installation, and applications

available all favor this OS. It also has a full-featured browser with a built-in Java Virtual

Machine (JVM) that allows the applications that have been written to run. Of course, the

drawback to Windows 9X is the reboot process that is required each time you have to

reconfigure the network drivers or TCP/IP settings. Win CE 2.0 was better in some

respects because it is an ON/OFF device. It does not boot through MS-DOS. The

PALM has the same type feature. The drawback to PALM and Win CE 2.0 is the limited

applications that are available to interface in a network environment. Also the lack of

Java JVM, made those platforms undesirable in development of Shipboard applications.

However, technology is changing quickly and that hurdle is quickly becoming old news.

Mitsubishi Amity VP 2'3'4'6 and Cassiopeia PA-24005 were a couple of the many

handhelds that were evaluated. The Amity VP is a Win 9x platform with a 133 MHz

AMD, Am5x86 processor. It has 48 MB of memory and 810 MB hard disk. The screen

is 7.5" color VGA. It also has two Type U PC card slots accepting many types of

PCMCIA cards. The PA-2400 is a Win CE 2.0 device that runs an 80 MHz, Hitachi S-3

18

Super-H RISC microprocessor with 16 MB of ROM and 8 MB of RAM. It has one Type

II PCMCIA slot, one Type I CompactFlash™ slot, and one Infrared port. Pictures are

listed in Figure 10 with evaluation listed in Figure 11.

Mitsubishi
Amity

Xybernaut
MAIV

VIA
Flex

Casio
Cassiopeia

Figure 10 - Handheld and Wearable Devices That Were Evaluated

2. Wearable Devices2'3'4'5

Wearable devices include the Via II Flex 2'3'4,5 and Xybernaut MA IV 2'3. The

Via II Flex has a flexible MediaGX processor from Cyrix that runs at 180, 200 and 233

MHz. It weighs only 22 oz; runs Win 9X and has a 3.2 GB hard drive with 64 MB of

DRAM and two Type II PC card slots. It has Lithium hot-swappable batteries that can

run for 6 hours.

The Xybernaut has a 200Mhz processor, a 2Gb hard drive and runs Window 9X.

It has two types of displays: a monocle or a screen. The monocle is a computer image

that allows hands free operation.

3. Performance of Above Tested COTS Equipment1A5

Figure 11 shows the results of the evaluation. Amity performed as the best

overall handheld and the Flex performed as the best wearable device.

19

Device Expense i Durability/
: Ergonomics

Functionality! r ...-*■?. \ Endurance ;
Interface

Amity Medium i Good/Average Good Average Average
Flex High _ i Average/Good]Good_ L_-J?°2!-L]_

Good Good T
Average

Xybernaut High i Average/Poor Poor
; Cassiopeia : Low j Good/Good P°°r L(M.Mf3SuredJ_ Average

Figure 11 - Evaluation of Selected COTS Equipment

4. Wireless Components Ml

When evaluating wireless components the research was specifically targeted at

ones that can create a wireless network. Those include PCMCIA devices, Access Points,

and ISA cards. The criteria use to judge those components are: Speed, IEEE 802.11

compliance, output power, range, bandwidth, ease of installation and configuration, and

available antenna attachments.

Commercial components are grouped into FH/SS or DS/SS devices that are non-

802.11 and 802.11 compliant (Figure 12). Testing has been on components that operate

in the 900MHZ 1 and 2.4 GHZ range. The general market shift has been towards the 2.4

GHZ standard and thus has been the focus of more recent research. Some of the 2.4Ghz

basic service sets were Proxim RangeLAN802 (FH/SS, non-802.11) 2'3'4'5, Aironet

4500/4800 (DS/SS, 802.11) 6, BreezeCOMA-10 (FH/SS, 802.11) 2'4, and Lucent

WaveLAN (DS/SS, both non 802.11 and 802.11) 2'3'4'6. The figure below shows the

basic service sets (AP's and PCMCIA cards) of the ones listed above. During most of

the test the LUCENT WaveLAN (DS/SS, 802.11) was the winner based on upgrade

capability, speed, and function ability.

20-

FH/SS DS/SS

Non-802.11

802.11

1 HKI
^^i ail" ^irtwffi^a ;;iSs*-'.:'

:i;;

;.:■ '

■•-'*■.;!

-— • , ■:. ..:

.'' i ■ ..'

: ^ Iffilill :1 .

Figure 12 - Wireless Components That Were Evaluated

E. SOFTWARE DEVELOPMENT 3,5

1. Coding Languages3'5

The programming language used for all prior developed shipboard applications

was Java by Sun. It was used for a variety of reasons. It is a write once run anywhere

language because it uses an intermediate structure called a byte code, see Figure 13.

This byte code can run on any Operating System (e.g. Windows 9X, Windows NT,

Linux, Unix, etc) as long as there is an interpreter for that type of platform. This

interpreter is known as a Java Virtual Machine (JVM) and can run in a stand-alone mode

or within a web browser. More specifically, Java source code (Java file) is

intermediately compiled to byte code (.class file). This byte code in loaded and verified

by the JVM. Then the bytecode is interpreted to run as an application or applet running

over a network. Sun has recently introduced a Just in Time (JIT) compiler. A JIT

21-

compiler translates and stores the entire class file during loading this provides faster

overall execution of the Java bytecode because it avoids the program having to interpret

each line of code, which leads to performance hits if a section of code is executed

multiple times.

Sun advertises that Java is platform independent, allows for rapid development,

has a large class library, object oriented, high performance, near real time,

multithreaded, simpler and less bugs than C++, secure, and designed especially for

networked environments. We have found this to be true in most cases. The performance

of Java compared to C++ applications was as good as 100% using a JIT compiler

[Mangione98]. Interpreted bytecode (older method) caused Java to run 4-5 times slower

than C++ [Mangione98]. Also, Java has a built in garbage collector that dynamically

scavenges memory references automatically, which makes programming easier but does

create some real time dependency when the application executes. Besides these

performance issues, Java has proved successful for the test of concept programs that

have been developed so far.

Java Virtual Machine

Cb*
Lrader

Purer
Inteipxefer

— Byte-Cade
venficx

Figure 13 - Java Virtual Machine Flow Path

Feasibility Application 3,5

The applications developed were a Damage Control Client system for a surface

ship and a submarine. Also log taking client applications were developed that connected

22

to a Database (MS Access) to prove that Java can connect and update a database in a

wireless system. These applications still need a Damage Control Central console to make

a working system that is implementable onboard a submarine. More detail in this area

will be presented during the redesign described in Chapter HI.

F. TESTINGALL

1. Platform Environments M

a. USS Ohio Test (August/1997)1

This test gave data on how well wireless components work on a 726 class

submarine. This test included a Digital Ocean Grouper wireless LAN (900MHZ,

DS/SS), and a Newton MessagePad 2000. Some of the results worth noting were a 70 to

90 kbps throughput. It was also observed that transmission at 2050 mw caused some

EMI spicks on meters in the Engine Room.

b. USS Harry S. Truman Hangerbay (March/1999) 3'4'5

This test gave some interesting insight into wireless testing in a hanger

bay (Figure 14) of a good size ship. It was conducted at Newport News in a Hanger Bay

that contained no Aircraft but did contain some availability support equipment.

Equipment used was a Lucent WavePoint II AP and PCMCIA cards which were 2.4

Ghz, DS/SS, 802.11 compliant running at 2 Mbps. Also some testing of the Via II and

Xybernaut wearable PC's were conducted. An Amity handheld and Dell

-23

> MDps r— U.KS MDps ■ 1.20 Mbps

■—i ii i i i

0.81 Mbps

20-30 dBm I > 30^111 "^ 20-30 dBm

N— 1.33 Mbps
0.73 Mbps X Access Point

Figure 14 - USS Harry S. Truman Hangerbay

Laptop were also used. Below shows the area of coverage and the data rates seen as

clients were roaming off of one access point throughout the hanger bay. Figure 15 shows

the throughput as the clients were increased.

Averace Throughput vs Number of Clients

r -
r-

0.8

0.6

0.4

Number of Clients

)()C Average Throughput per User
H—h Cumulative Throughput

Figure 15 - Average Throughput vs. Number Clients (USS Truman)

24

c. USS Memphis (August/1999) 4'6

This test was done on a platform that is designated for testing.

Client/Server data rates were collected sending FTP files in the Forward compartment

and Engine Room. For a 2MBps system the throughputs that were measured averaged

around 1.3 Mbps for a single client. It was also shown that 10 access points provided

full coverage throughout the submarine as shown in Figure 16. Also DS/SS performed

well in a Multipath environment. The ship diagram was not included due classification

requirements.

FORWARD COMPARTMENT
Access Point Space

AP1 FCML
AP 2 FCML
AP 3 FCLL
AP 4 FCLL
AP 5 FCUL
AP 6 FCUL

Average Throughput

Access Point Space
AP 7
AP8
AP 9
AP 10

ERMLA
ERLL
EFiUL

ERMLF
Average Throughput

Location
Forward End of Crews Mess

Aft of Central Air Monitoring Station
Stbd Side of Auxiliary Machinery Room

Forward End of Torpedo Room
Stbd Side of Combat Systems Electronics Space

Aft End of Control on Port Side
1.31 Mbps

ENGINE ROOM
Location

Forward End of Shaft Alley, Port of Centerline
Forward Part of PLO Sump, Stbd of Centerline

Forward, Stbd Corner of ME Bedplate
Centerline, Above Vital AC Switchboards

1.34 Mbps

Figure 16 - Access Point and Throughput Coverage (USS Memphis)

d. NPS Labs (3/2000)2'4'6

This testing was done to compare data rates between Lucent WaveLAN

and Aironet 4800 series Turbo PCMCIA Cards. Both are 2.4Ghz and rated at 11Mbps.

-25

t>23)4>5>a)7)8) 9D tB1t)B)-H)1OS)©1X)B)S)2DD2D22)a02O230a3Daoa)2aD3B3D3aD3B)3O3BD3S)3Da)aD4D

m]jitr1tfOt!ftiFpm^^—[}$lr[iriPftp

Figure 17 - Lucent WaveLAN (Turbo) Line Of Sight

Lucent's card is 802.11b compliant and Aironet is 802.11 compliant. The

test was performed in a direct Line-Of-Sight (LOS) and non-LOS mode. The results

from one of the test are shown. The data rates seen were 2.0 to 4.5 Mbps and represent

100% improvement over previous generation products. Below is a sample Line of Sight

graph for the Lucent WaveLAN Turbo in both directions. It shows that max distance is

about 330 feet before a significant drop in data rate is seen. Lucent performed slightly

better in overall average data rates compared to Aironet.

26-

G. SYSTEM REQUIREMENTS 1

1. Requirements'

The actual requirements are subject to change as hardware gets better and

prices drop on available COTS technologies. Figure 18 shows the typical cost required

to outfit a wireless subsystem onboard a Virginia Class Submarine. These figures were

looked at to further analyze the feasibility for deployment with regards to budget

management.

$2,500 $2,500

■safe sJHtfil N/A N/A $10,000

)irsl^|ll|iS|ii»i^
<mM®&$

$33,499

Figure 18 - System Cost Wireless (Subsystem)

H. CHAPTER SUMMARY

During the review of the past research it has been determine that some areas are

important enough to warrant future research. Those areas include the development of

applications that take advantage of wireless technology. Those applications would

include Damage Control interface and log taking software. A network analysis is

needed on the proposed Virginia class wireless network to ensure that the applications

created can be supported within this network. There are many tools such as OPNET

Modeler that can do this. Also, other areas that need more research are concerns about

27

Security and Electromagnetic Inference (EMI) affects. Also, a look at the new Bluetooth

technology that allows small Personnel Area LANs (PANs) to connect components

wirelessly when less than 10 feet shows promise when used with the current sensor

technology. The HiperLAN standard should also be looked at because it promises

higher wireless bandwidths to be delivered from server to client. Based upon this review

of past research, current members of SWLAN project have set out to further research

Security, EMI, Bluetooth, HiperLAN, DC Applications, and Network analysis to provide

more assistance to NAVSEA PMS450. Chapters m, rV, and V of this thesis concentrate

on designing a new type of DC application. Chapter VI performs a network analysis of

the Virginia class Non Tactical Data Processing System (NTDPS) to ensure it can handle

a load presented by this new application.

-28

m. APPLICATION AND NETWORK REQUIREMENTS

Networks provide for multiple and redundant ways to communicate. This

chapter explores some key network issues and concepts that relate to the remainder of

this thesis. It is designed to lay the groundwork for building a vital submarine

application known as Damage Control (DC). First, key concepts such as the TCP/IP

model are described to give the reader the basic framework for how networks really

work. Then a description of socket-based communication is described to introduce the

communication tools that can be used transport communications streams within a

network. Next, this chapter describes the system that is trying to be modeled by showing

a Damage Control status board currently used on USS Batfish. The chapter concludes by

describing the necessary requirements a Virtual DC application needs in order to be

implemented.

A. TCP/IP MODEL, THE WORKING MODEL, [HUGHES97]

The TCP/IP model, see Figure 19, is similar to the OSI model described in

Chapter n, except it leaves out the session and presentation layers. These layers are not

widely used in today's networks. In practice, application layer protocols generate

streams of data that are sent to the transport layer. This layer encapsulates this data into

segments with header information and is important because it provides some important

transport layer functions, such as error control, flow control etc. that help make a

network work properly.

-29

-Application:

Transport

Network

Data Link

Physical

DCNet, Server. Client Communiations

TCP, UDP

Ethernet

Actual Actual
Signals Signals

'Application;

Transport

Data Link-

Physical

Sender #1 Receiver #2

Figure 19 - TCP/IP Model

Two options are available in this layer, UDP (User Datagram Protocol) and TCP

(Transmission Control Protocol). They both have advantages and disadvantages. Their

use depends on the type of data that is sent and received. Both UDP and TCP send the

segments they generate from the application layer to the transport layer. This layer puts

these segments into IP packets and adds addressing information used to route these

packets to a destination. The IP layer sends its packets to the data link layer, where the

IP packets are encapsulated into frames, Ethernet Frames for this case. The Data Link

layer also prepares the data to be put onto the physical cable, where it is transmitted as

voltages.

B. INTERNET PROTOCOL (IP) ADDRESSING

IP addresses take the form of x.x.x.x, where x is one byte, represented in decimal

format (see Table 1) byte has a range of 0000 0000 to 1111 1111 and thus has a range of

0-255. The maximum DP address is therefore 255.255.255.255. These addresses are

uniquely assigned to each networked computer in the world and functions similar to a

home address for mail delivery. The range of IP addresses are grouped into network

classes based on the first byte:

30

Address Range
1-127.X.X.X
127-191-x.x.x
192- 223.X.X.X
224- 239-x.x.x (Multicast)

So 240-255.X.X.X (Reserved)

Table 1 - IP Classes and Address Range

Classes A, B, and C are assigned to an organization based on balancing the

subnet to hosts ratio. They provide a way to create a few numbers of subnets with many

hosts, or vice versa. Class D networks operate in multicast mode and are the main

transport address range that will be used to design a virtual DC application. Class E

addresses are reserved for future use.

C. THE JAVA LANGUAGE

1. Why Java?

When designing submarine applications a look at the available languages is a

necessity. C++, Java, Ada, and VB all perform some degree of network function ability.

Based on ease of use, available libraries and power, Java has proven to be the designer's

choice and used as a basis for most discussions and design during the rest of this thesis.

2. Security Issues

Chapter JJ addressed many of the encryption and network security issues. This

section is to address some of the higher-level Java security issues. Java Application has

full access to system resources, whereas programs developed as applets (downloaded

from a server) work within a security Sandbox. This sandbox analyzes downloaded

applets and determines if they are trusted or not. Trusted applets have digital signatures

that may operate outside the sandbox. Outside the sandbox means you could download

31

an applet from a server and that applet could then have access to your local resources

(i.e. file access, opening Sockets, creating threads, etc. The Sandbox rules are enforced

by a Security Manager file that comes with all major Java enabled browsers [Hughes97].

There are ways to override this security manager, but not without the users knowledge.

D. SOCKET BASED COMMUNICATION

1. What is a Socket?

Sockets are a basic component in networking software. They are a mechanism

that operate at the transport layers and provide a mailbox for applications to send or

receive data streams. These data streams then travel on the network and can hold

virtually any type of data used in today's communications.

2. How Sockets Can Be Used for Communication

To operate a Socket in Java establishes a port number on the computer. This port

number and the machine's pre-configured IP addresses are all that's needed to provide

communications such as voice, video and data file transfer.

3. Submarine Applications and Socket Based Communication

There are many submarine applications that could benefit from networked

applications, such as:

a. Drill Control

Using a drill team of shipboard personnel provides crew training during

drill sets. This team initiates and controls each drill set applications that could be used to

allow the drill team to effectively log the time performance of each drill set and provide

instant feedback to the ship's Commanding Officer.

b. Supply System

This feature would allow petty officer to check for parts and order parts

without leaving his workspace unattended.

-32-

c. Log Taking

Currently logs on machinery are written on paper. Trends of this data are

usually just a simple review of the data by a supervisor. Integrating applications would

allow the operator to log data to a database. This database could then be analyzed with

more sophisticated tools to draw more concise conclusions from the data. The wireless

feature of applications also gives the necessary freedom to the watchstander to take these

logs.

d. Preventive Maintenance (PM)

All divisions on a Submarine perform weekly, monthly, quarterly, etc.

maintenance on their gear. Applications would provide the technician with online

maintenance procedures and provide an electronic log of successful/failed maintenance

items. This log could then be used to track the corrections of the failed PM's.

e. Sub to Sub Data Transfers

Times could arise where submarines need to share data in a real-time,

local environment. Applications could be used to link two-surfaced submarines (or two

at periscope depth with a scope to scope link). They could then pass pertinent

documents or lengthy conversations.

/ Casualty/Damage Control

This is where applications would truly shine. Communication is the

hardest yet most important aspect that ensures effective casualty control. Applications

would provide a central summary console to be located in control where the

Commanding Officer would have access to real-time data. Important items like

compartment rigs could be updated without clogging up phone circuits. Wireless

transmissions and socket communication can travel through smoke and if access points

were damaged by certain local hot spots, others would reliably transfer the important

data to control.

33

g. Standard Operations

There are many day to day operations such as Ventilating the Ship or

Shooting a Sonar Buoy that require multiple stations to interact. Applications could

provide a socket based communication tool to allow more effective communication

between operators and also allow access to the written procedures used in that operation.

h. Troubleshooting

When equipment breaks down, applications could be designed to include

a powerful search engine to gather all pertinent documents at a touch of a button. This

would minimize the hours it takes for a technician to remember what and where the

needed documents are to fix this problem. This allows the technician to start

troubleshooting sooner. The equipment could then be returned to a full ready status

quicker.

This thesis selected Casualty/Damage Control concept for implementation.

4. Specific Socket Communications [MahmoudOO]

a. Transmission Control Protocol (TCP) Sockets

In Java, a TCP socket comes in two forms: A serverSocket and a Socket.

A server socket waits for a client socket to request a connection. Once a connection is

made, then a unique pair is created for data flow. TCP advantages include: guaranteed

delivery, in order delivery, flow control, error control and congestion control. Its

weakness is that it does not scale well. For each connection, N-l open sockets are

required (Connection-Oriented). It is similar to a telephone. Each friend you call

requires a new connection. TCP also has a lot of overhead to provide its reliable

servicing. This tends to make it slower than UDP. It also doesn't work well in a real-

time or streaming environment. It does guarantee delivery, but there is no guarantee on

when it will arrive. This best effort service is the way today's Internet is designed,

though there is extensive research in areas to provide better service, including timing.

-34

b. User Datagram Protocol (UDP) Sockets

UDP sockets do not form pairs like TCP. UDP just send data to an

address on the network and hope it is arrives. There is no guarantee for data delivery.

That is its disadvantage. Its advantage is there is almost no overhead and only one open

socket is necessary to send to multiple addresses (hosts). Therefore it scales better and is

usually faster and better suited for real time and streaming applications.

c. Broadcast Sockets

Broadcast uses UDP sockets and sends messages on a special address.

The special address allows the sender to send data once and all hosts on that network

will receive it. This special address is the last number (255) within that network. (E.g.

Class C net: 192.1.2.0 broadcast address is 192.1.2.255) It is better than UDP, because it

doesn't require multiple sends for multiple hosts, only one send. Also, since it uses UDP

sockets underneath, it only requires one open socket, whereas TCP requires a socket

open for each host. The disadvantages are that all host receive the packets, which may

not be desired.

d. Multicast Sockets

Multicast operates similar to broadcast, but it allows for some

discrimination in who receives the packets. Also, whereas Broadcast has one address,

multicast covers a range of addresses to choose from (224-239.x.x.x). Only host that

have "subscribed" to an address will receive that data. Multicast works similar to 2JV

phones on a submarine. One person talks, and if others are "dialed in" they can listen to

the voice traffic.

e. Remote Method Invocation (RMI)

RMI is a Java based TCP implementation that provides a "remote calling"

mechanism, that allows a host to make function or method calls on a server. This

mechanism provides a way to make a system consisting of computers on a network seem

like just one computer. In other words, it can hide the network from the application

35-

developer. It can allow the developer to take advantage of a powerful server to perform

task intensive code and provide output to the host, which may be slower.

/ Common Object Request Broker (CORBA)

CORBA is similar to Java's RMI, but it allows not only cross platform

development, but also cross language development. RMI and CORBA are described here

but not used in the design developed latter in this thesis.

The Multicast method that was chosen to implement the design described in

Chapter IV.

E. THE DC COMMUNICATION MODEL

Damage Control is the way casualties are fought onboard submarines. During

damage control drills and actual casualties, several stations are manned. They include

Damage Control Central (DCC), DC Fwd, DC Aft, and the Scene of the casualty. DCC

is the main controlling station for the casualty with the DCC coordinator and assistant

manning it. This station maintains the status via a grease pencil and status board similar

to the USS Batfish status board depicted in Figure 20 [DCConcepts96]. This status

board is used to sort out fast moving details of the casualty. The DCC coordinator then

makes reports and recommendations to the Officer of the Deck and the Commanding

Officer.

The Scene is a party with a designated Man in Charge that is actively combating

the Fire, Flooding, and other casualties. They make certain standard reports to DCC to

make them and other supplemental watch stations aware of the current status.

-36

SHIPS LAYOUT FÜOM SSM

BOAT: U.S.S. BATFISH
BOARD SIZE: 33" x 15' 4

CASUALTY 1 CASUALTY 2

MAN IN CHARGE MAN IN CHARGE

ADDITIONAL
PERSONNEL
REO

ADDITIONAL
PERSONNEL
REO

INJURIEO
PERSONNEL

INJURIED
PERSONNEL

DAMAGED
EOUIPMENT

DAMAGED
EOUIPMENT

CASUALTY
STATUS

CASUALTY
STATUS

REFLASH
WATCH

REFLASH
WATCH

INITIAL
SITUATION
REPORT

INITIAL
SITUATION
REPORT

NFTT NAME TIME

NAME TIME

°DR ATM

NAME TIME

RIG
SPACE

CONTROL
BOW
DIESEL
OPSUL
OPSML
TORP RM
AMR 1
AMR2UL
AMR2LL
ERUL
ERLL

CAMS ATM LIMITS

IHR 24HRS 90DAY

02 130-220
H2 7.6
CO 152.6
C02 30T
R-12 1520MT
P-114 1520MT

POST FIRE ATMOSPHERE

Figure 6: USS BATFISH (SSN 681) DC Status Board

Figure 20 - Damage Control Status Board - USS Batfish

Other reports such as compartment rigs, atmospheres, repair and assistance team

status, immediate and supplemental action status, engineering report are also sent. These

reports are made on Sound powered phones throughout the ship and DCC writes their

status on the grease status board. As you can see this casualty board tracks two

casualties and maintains a ship rig status and atmosphere limits. Other such boards on

other naval submarines function similarly. The boards are simple but nothing more than

a notepad to organize information. A more helpful and dynamic solution is needed.

A DC software application can be used to emulate this process in a more efficient

manner. First, the grease status board would be replaced with a 20" touch screen

monitor designed to provide a graphical user interface that is laid out to give a DCC the

maximum information. A GUI can layer information on top of each other, unlike a

grease board. It also can update automatically or make decisions or recommendations

-37

that based on the information received. This would serve to make the job of tracking

information a lot easier for DCC.

Another advantage of this type application is the reduction of communications on

the Sound Powered phones. Currently only one person can talk at a time, and sometimes

a lot of reports are missed because DCC is reporting to the OOD or CO or updating the

status board. A network can deliver multiple communications in both directions because

of its duplex nature. Thus allowing rapid and multiple communications all at once.

Currently failed communications are the top reasons why drills perform poorly during

exercises done on submarines. Real casualties suffer from the same problems.

Another possible disadvantage is the use of a handheld computer during the heat

of a casualty. Can we expect a person to be able to use a pointing stylus properly when

there is smoke in his face or he is knee deep in water? The answer is probably not.

Some type of video and voice system needs to be integrated within this system to help

overcome this. These are issues that will be looked at later.

Another disadvantage this system would have is the susceptibility to a power

outage that currently does not plague Sound Powered phones. A battery backup system

would be needed to keep the network up during a loss of power. Also, a persistent

storage model such as a backend database is needed to hold the state of the damage

control status throughout the boat. This state would include the speed and current depth

sensor, atmospheres and compartment rigs throughout the boat, all reports form casualty

members and all supporting casualty reports. It should also track in what compartments

the injured personnel are, the people wearing what Breathing Devices and time

remaining. Hose teams are also important to track in a casualty. This information is

some of the state information that should be kept and this concept should be integrated

into the virtual grease board concept described earlier.

-38

F. BUILDING A DAMAGE CONTROL APPLICATION

1. General Software Constraints

a. Scalability

There should be no imposed limits on the number of computers that can

send reports. The application must scale easily to all members of a crew, which is

typically up around 150 personnel.

b. Mobility

The user should be able to move around as the casualty is being fought.

Wireless networks have this unique advantage because no wires are attached to the user.

c. Multithreaded

An application should multithreaded for a couple of reasons. First it

allows a listening station to monitor more than one casualty and more than one user at

the same time. Also, multithreaded applications tend to be faster since they allow

parallel operations. Finally, listening sockets will block (halt that thread of execution)

until a packet is received. If the listening socket is in the same thread as the GUI

interface then that will lock the user interface until packets are received an undesirable

effect.

d. Operate Similar to Current DC Communications

Multicast communications are similar to sound powered phone

communications. Multicast works like a conference call. One or more people speak and

others can listen.

e. Reliability Higher Than Current DC Communications

Multicast as discussed earlier works by sending UDP packets, which have

no guarantees to arrive at their destination. However, dropping these packets at different

routers onboard the submarine is highly unlikely because the congestion traffic would be

low on the network. Several lab test conducted on reliable packet delivery have shown

no lost packets conducted over several days of continuous transfer. In any case, the

-39-

reliability would be better than today's sound powered phone communications, where

reports have been shown to be lost in the heat of a casualty.

/ Easy to Setup and Use

An application should be easy to use and setup once shipped for use to

the submarine. There should also be adequate documentation to show an average sailor

how to use and install it properly.

g. Network Capable

This application should be able to send and receive packet

communication at any time and on any computer. This would allow anyone at anyplace

to monitor the casualty, like maybe the CO in his stateroom. This portability is key to

successful use of a DC system during a ship casualty.

h. Fast Data Transfer

Although not normally issue, if say video cameras are attached to NFTI

or all users are voice capable then the network must have bandwidth to ensure the

packets arrive at there destination in a timely manner. If they arrive late then it does

someone no good when trying to fight a casualty in real time.

i. Customizable Configuration to the Ships Needs

Each ship will have different crew names. Standard messages such as

Man in Charge or Injured personnel will be different for different ships. Also special

equipment or slightly different approaches to fighting casualties are allowed to some

degree onboard different submarines and the application would have to be customizable

to reflect this.

j. Applet and/or Application Capable

These requirements would allow the software to be run within a browser

served from Server on the network or ran as an installed application on that computer.

Both have their advantages and disadvantages, but generally an application is less

restrictive.

-40-

k. Persistence Protection

Recovery of the system to its current state during a power outage requires

some type of persistent storage. Whether the state of the casualty is maintained on a DB

or a text file system, this system needs to provide persistence protection if the networks

and computers go down.

2. General Hardware Constraints

a. Open Operating System

System must support a common operating system (e.g. Windows

95/NT/CE, or Linux), however if written in Java this requirement can easily be relaxed

because of multi-platform capability.

b. Network Connectivity

The virtual DC system must support constant and reliable network

connectivity for communications.

c. Rugged

The system must be rugged enough for the afloat environment. However,

it is important not to stress this too much, for it raises cost. If it's inexpensive enough

and it breaks, you can just replace it.

d. Long Batter Life

System must have at least a few hours battery life, with the radio card

active. System must also allow for a hot-swap of batteries without re-boot (Especially in

Windows 95/NT models).

e. Mobile Input Method

System must support pen-based input, and either handwriting recognition

or voice recognition to allow more flexibility for casualties that are restrictive to steam

suits or fire fighting ensembles that can hamper pen-based inputs.

•41-

/. Mobile View Method

System must support a portable viewing method of either a head mounted

monocle or sunlight viewable screen.

g. Comfort

The system must be comfortable in both form and function because of

the long hours of use by crewmembers.

h. Storage

System must have suitable Read Access Memory (RAM) and hard drive

capabilities to support full function applications.

G. CHAPTER SUMMARY

This chapter explored some of the specific network issues related to building

submarine applications that can be used to demonstrate the usefulness of an onboard

submarine wireless LAN. It explored some of the initial research for building a specific

application. In the next chapter research is dedicated to building a Damage Control

(DC) application and explaining how it works and its usefulness.

42

IV. SUBMARINE DC IMPLEMENTATION IN JAVA

This chapter sets out to describe a Java based application that can be used as a

prototype to demonstrate the capability of a wireless US Navy submarine network. This

description is intended to map the design process of this application. It also provides a

comparison with the DC application designed in [Sayat99] to show why multicast

communication is more reliable than the database centric approach taken in Sayat's

thesis.

A. GOALS

SWJPNet stands for Submarine Wireless Prototyped Network. It's goals as a

research topic are to investigate the feasibility of writing such an application in Java for

a wireless network. As a deployed application it is designed to provide timely DC

information to Damage Control Central (DCC) to combat casualties and to provide

reports to the Officer of the Deck (OOD) used to maintain the Safety of the ship. It is

intended to streamline communications of current DC practices by allowing messages to

be sent and retrieved via wireless devices throughout the ship.

B. SCOPE OF THE PRODUCT

To provide a working application that can be easily installed on any type of

platform, SWJPNet would consist of pen-based consoles that run Windows

CE/95/98/NT, Unix, Linux, Palm or Macintosh to allow user input. These consoles

would be bridged wirelessly to the ship's existing LAN via access points that are

strategically placed throughout the ship for 100% connectivity. This wireless network

would be used to take used in a variety of applications, namely damage control (DC).

SWJPNet's distributed software would be written in Java to take advantage of its robust

network class library.

-43

C. FEATURES OF SWIPNET

1. Desired Features

Although all these features are not fully incorporated in the current design, it is

setup so they can be easily added later in future iterations.

a. Standard DC Reports

To provide Standard Damage Control Reports for all major casualties

onboard Submarines (Implemented).

b. Voice and Video

To provide voice and video communications to allow ship consoles

throughout the ship to see the status at the scene without being there.

c. Persistent Storage

To provide persistent storage, ability to recover if power is lost (Partially

Implemented).

d. User Interface

A user interface or console to send and retrieve reports that is familiar to

current DC practices to minimize the learning curve involved (Implemented).

e. Availability

SWIPNet will be available 24 hrs a day connected to an AC adapter. It

will also have a battery backup (up to 4hrs) with hot swap capabilities.

/. Security

Database and server will be locked and controlled by the SWIPNet

Administrator.

g. Encryption

Applets version will run in Microsoft Internet Explorer with 128-bit

encryption.

44-

h. Maintainability

SWIPNet designed to function with minimal maintenance support.

Using commercial of the shelf (COTS) products will allow for backup components

(PDA's, server and database equipment at a low cost).

L Customization

Available for different ship designs, e.g. Virginia, Los Angeles or Ohio

classes. Different ship designs have different compartments and different names and

types of equipment. This affects the standard reports that would be built into a virtual

DC application.

j. Post Drill Feedback

Allow the system to email a report (or Database report) of times, actions

and reports during a drill or actual casualty.

2. Key Design Features

a. Sender/Listener Approach

SWIPNet is based on a Sender/Listener approach. The Sender (Client

object) in this case is the handheld computer that is deployed throughout the ship. The

Listener (Server object) is designed as a bigger display that should be used by Damage

Control Central. All roaming clients can send Damage Control reports to the Server,

which functions as a listening station to receive and direct these reports to its appropriate

GUI display. Future designs will incorporate sending features within the Server and

listening features within the Client.

b. Multicast

Multicast was chosen as the primary communication method. Multicast

sockets function similar to sound powered phone communications on naval submarines

and ships. This communication allows some one to speak and if the station dial is tuned

or dialed in to that station then they can here the current communications. Any number

-45-

of people can hear these communications. The multicast socket is thus analogous to the

sound powered phone station onboard the naval platform.

c. Applet/Application

Currently the application can run as an applet within a web browser.

Some issues do arise. They concern security and Java's Sandbox protection scheme.

Currently, if run as an applet the Sandbox will not allow the Client to start threads or

open a multicast socket. These securities can be turned with Internet Explorer 5.0 or

higher allowing the applet to run on the client like a preinstalled application.

D. OLD VS NEW COMPARISION

In [Sayat99] a DC network client was developed that used a database centric

approach. This older version had a client applet (or sender) push the information to a

database when an update was issued. Then the server applet (or listener) had to pull the

information periodically to see the current state of the casualty. This thesis design took a

different approach to the design by using multicast sockets wrapped within by a Java

application to provide the communication channel. This effectively cut out the

middleman, i.e. the database and provided a more reliable system. This new design is

better for the following reasons:

1. Application is Better Than Applet

During a casualty it makes more sense to have a SWJPNet application already

installed on a DC handheld. SWIPNet is designed to run as either an applet or an

application. However, comparing the approaches in this research has shown the

application approach to be more reliable and faster. Applets have sandbox restriction

(discussed in Chapter JU) that can be overridden, but this override tends to be browser

dependent making them somewhat unreliable. Also, applets have to be served from a

database server, which tends to slow the response during a casualty. The SWIPNet

46

application could be quickly downloaded and used, but DC equipment onboard

submarines are always pre-staged making the preloaded application approach better.

2. No Bottlenecks

Having a database to hold the state is important but if the data must always pass

through the database, then it tends to slow down the communication. Multicast sockets

send directly to the listener and eliminate this bottleneck. This speed is very important in

a casualty because reports must be generated in real time to allow the necessary actions

to occur to control and stop the casualty.

3. Less Error Prone

The database centric approach is dependent on a JDBC-ODBC driver to allow

the client and server to communicate with the database. This approach has a tendency to

lock up and fail to update or retrieve from the database. This occurred with no error

message making troubleshooting difficult. Also the clients and server consoles were

designed as applets. Thus if the database server was down the applet would not be

served.

4. No Single Point of Failure

The database centric approach is dependent on the machine the holds the

database server or links to it to be fully operational for the whole system to even

function. If the database server went down then the applet consoles and the state data

could not be served. The approach taken in this thesis allows multiple machines to send

reports via sockets and the information can travel along any routed path to listeners who

have joined the group or channel making this system very fault tolerant.

5. Easier to Deploy to a Ship

The system built in this thesis is easily deployable to ships because it only

requires install of a Java Runtime Engine, which makes the SWIPNet Jar file executable.

The SWIPNet system will immediately start working over the network. The database

centric approach taken in [Sayat99] requires a detailed setup of a database, a database

-47-

server (like IDS Server) and the OBDC driver, which could prove to complex for an

average sailor.

6. More Scalable

The SWIPNet application designed in this thesis can scale to as many senders

and listeners that are needed to combat the casualty. The database centric approach will

only allow one client or server access to the database at one time to ensure integrity of

the data. Thus more clients can communicate with the SWIPNet application and the

setup process of the whole system would be easier.

There is one advantage that the database centric approach has over the SWIPNet

design and that is the concept of persistent storage. The database holds the state in case

of a power outage onboard a ship. This makes integration of a database as a state holder

and system initializer important. Based on this the concept will be integrated into the

SWIPNet design, but not at the expense of speed.

E. SYSTEM SPECIFICATIONS

1. Package Layout

The SWIPNet design is laid out into five different packages (control, dcObjects,

gui, shipObjects, and utility). These packages group the similar class files used in this

design. Table 2 describes these packages. The control package holds the main interfaces

that run this class. Each dcObject and shipObjects contains a gui object from the gui

package. Gui classes were separated into their own package to allow easier modification

to the interface.

-48-

Packages

swipNetxontrol This package contains DCnet, Server, and Client, which
are used as the main interface and controls for the user.

swipNet.dcObjects This package contains the damage control Objects used
by the control package to hold dc reporting information.

swipNet.gui

This package contains all GUI parts implemented by
swipNet.dcObjects and swipNet.shipObjects and
package. They are separated from the shipObjects and
dcObjects, to allow editing of the user interface
independently of lower level code changes.

swipNetshipObjects
This package contains the ship Objects used by the
swipNet.control package to hold ship-reporting
information.

swipNet.utility
This package contains utility functions and classes used
throughout the project, like PostOffice, Initialize and
JDBCBridge (not fully implemented).

Table 2 - SWIPNet Package Summary

Figure 21 shows the relationships between each of the packages and the classes

they contain. DCNet is the main interface. It configures and launches a client and/or

server. The Client object sends dcObjects and shipObjects via multicast packets

generated in the PostOffice class. The Server then receives these packets using its Post

Office from the network. These packets contain the pieces of the dcObject and

shipObjects broken up into network bytes. The Initialize class provides all standard DC

reports needed to initialize the system. Also, from this figure it shows that each gui

classes is part of its respective dcObject or shipObjects. The JDBCBridge class is not

shown because it was not fully implemented. However its intention is to allow a

persistent database to provide standard DC inputs to the Initialize object and have this

object to travel the network and initialize each client and server (see Recommendations

for Future Work in Chapter VII).

-49-

**ApH*t

control

~l CimeguMiMUMncNM t*

Co-feu» «to LruftCMt T

StneidstnoMMtHCf:

»^iKm»mmßi^ß^Uswi^.

^?**>e*i!i*&,

Figure 21 - Package Level Diagram

2. Class Summary

Table 3 describes classes that have been fully implemented (except JDBCBridge)

within this design. The Fire class is operates similar to all the other classes, within the

dcObject package. The same goes for the FireGui class. The shipStatus operates similar

to the other object in the shipObjects package with the shipStausGui design being

significantly different than the CompartmentRigsGui, EngineeringStatusGui and the

ShipAtmosphereGui.

-50

Fully Implemented Class Summary

Client

Client subscribes to two multicast address and sends
Casualty and Ship reports within one Communicate thread; It
creates a client GUI by adding GUI objects such as FireGui,
etc and uses a PostOffice object to send, Fire, Flooding
objects, etc.

DCNet

DCNet class provides and configuration and launching
display, it has the ability to configure the station location,
multicast address and launch a Client (sender) and/or Server
(listener)

Server

Server is a listener object, it subscribes to three multicast
address and receives two casualty objects, and ship objects;
All three run within 3 communicate threads; Server creates
its on GUI objects and uses PostOffice to receive sent
packets

Fire

A Damage Control casualty object that holds information
within strings that can be directly sent over the network for
Fire casualties; The fire object is fully implemented and fully
documented.

FireGui

Graphical user interface (GUI) that shows either Server or
Client components and represents the data contained within it
matching dc or ship object; GUI isolated by itself to allow
easier editing

ShipStatus
A ship object that holds information within strings that can
be directly sent over the network for ShipAtmospheres
parameters

ShipStatusGui

Graphical user interface (GUI) that shows either Server or
Client components and represents the data contained within it
matching dc or ship object; GUI isolated by itself to allow
easier editing; ShipStatus contains some, extra threads (w/
depreciated methods) to simulate depth and speed on a
progress bar

Initialize

A class that holds information for Initializing all objects,
isolated to its own class to allow for future development with
a initializing database and allow reuse of its String array
components

PostOffice Responsible for sending and receiving of streams on
designated network multicast addresses

51

JDBCBridge
Developed for communications with a database, created but
not fully implemented

Table 3 - SWEPNet Class Summary

3. Key Method Summary

Figure 22 provides all the major classes and their specific methods used within

SWTPNet. Only Fire and FireGui are shown because the other casualty classes and their

gui's function similarly. Table 4 describes the most important methods within each of

these classes. Further details can be obtained from reading the generated javadoc html

files or reading the selected source code enclosed in Appendix A (All source is included

except AirRupture, FastLeak, Flooding, HotRun, HydRupture, RadSpill, RxScram,

SlowLeak, Air Rupture and their gui's since they are very similar to Fire and FireGui).

OOMX
;-<*-N.'S.-y- "1<H;*! j.!l*lj;t

i»s>c*»te
j*««tfn«C VC
:*uut*#nt<ttifo< . Z>*t*M "SSWMJ
=* Sf»i**»*■**' (*»»??*asx> n*fM£ -tss^aas
..<r:0 w:a
;-jtJn$C-: «** ^;.,-»„li..- «^

pill

3&^50c,*rt f

•*&m*. Q***r$o*C9 WBwt.tfra.c cxAjrorrai -
wäfam** MURtana« OafcuAMrnti * *

* —-*JM Mm1

-'«ttHm'-KH

'3*lw»rsc;C«»tl^; y

Figure 22 - SWIPNet Class and Method Level Diagram

52

Key SWIPNet Class Methods

DCNet Class

main (String[] args)
Entry Point, used to initialize the applet as an
application, allows program to function as an applet
or an application

Server and Client Class

init()
init 0 - nest jbinit (), to catch exception and use
Jbuilders GUI builder interface

start () start(), starts the casualty and ship threads

Client Class Only

returnCurrentTime() Utility method to parses the time from an entire date
object. This method is private to the Client class

Fire, Flooding, ShipStatus etc
Classes

setOwner(String A, String B)
Set the ownerName and multicast address A -
ownerName, like DCC; B - multicast you are sending
on

setData(String A, String B, String C)
A - IP address and domain name of the computer
that's using this object; B - time Sent stamp; C - any
message to add

setStatusFromGui()
When called takes the current Combo Box settings
and copies it to its corresponding String

copyStatus(Fire fire) Takes the Strings from the callers Fire object and
copies to its matching text field

Fire(byte[] aBuffer)

This constructor allows casting to the appropriate
object depending on the its type; The
DatalnputStream should be read in the SAME order
that the toBytes places them onto the
ByteArrayOutputStream, ORDER Counts

-53

toBytes()

This method converts or writes all instance variables
within the fire object to a stream to allow a byte
buffer to be sent on the network, again ORDER
Counts

FireGui, FloodingGui Classes, etc

FireGui(boolean isServer)

Fire() Constructor, allows this class to be used for
Client or Server; Their GUIs are different.
isServer - if true, initialize as a Server, if not then
display as a Client.

PostOffice Class

sendMulticastPacket(ObjecttypeObject,
MulticastSocket socket, InetAddress

address)

This method takes Objects like Fire, ShipStatus, etc,
a Datagram (or multicast) Packet by using that object
toBytes() method; It assumes that a the Socket has
already joined a multicast Address.

receiveMulticastPacket
(MulticastSocket socket,InetAddress

address)

This method receives Objects like Fire, ShipStatus,
etc and converts it to the appropriate object so the
caller can use "instance of to determine the correct
object.

factory (byte[] ba)

This method accepts a byte[] array and looks at the
first int value to determine what to cast the object to.
Each casualty or ship object like Fire, ShipStatus etc.
has an instance variable (typeOfDCObject), which is
always ordered First. This Method returns an Object
that holds the disguised DC casualty or ship object

Table 4 - Key SWIPNet Method Summary

F. GRAPHICAL USER INTERFACE (GUI) LAYOUT

1. In General

a. Color Use

Colors are used within each panel of the Launching console (DCNet

object), Sender (Client object) and Listener (Server object). These colors are used to

provide color recognition and separation within each panel.

-54

b. Compactness

The Launching console (Figure 23) is designed to be small and

unobtrusive. The Listening console is bigger to allow more information to displayed at

once. This allows for two casualties and ship status to be monitored at the same time in

three separate panels. The Listening (Figure 25) console also has a Station Reports and

Ship Control message area to determine what station has just reported. Also, the

Listening console has a built in submarine diagram to help track casualty locations.

Another feature the Listener has is the ability to slide unused panels out of the way. The

Listening console is designed for a 18" touch screen. The Sending console (Figure 24) is

designed for a small handheld wireless connected console. It list tabs for all dcObject

GUI's and shipObjects GUI's for compactness. These objects are not separated as in the

Listening console.

c. GUI Components

The Java Swing class is used throughout this design. Specific

components include, JComboBoxes (for listing items), JLabels, JProgressBars, JPanels,

JTextfields, JTextAreas, JScrollablePanes, JRadioButtons, JButtons, JToggleButtons,

JFrames and JApplets. Future design will include more components to maximize the

information displayed.

2. Launching (DCNet object) Console

The Launching Console (Figure 23) contains multiple labels and combo boxes

designed to allow the user to select pertinent initialization data. The DCNet will

configure and launch a Sending Console via the "Send DC Channel Reports". The

Location and Multicast channels are needed before the Sending console is started. The

"Set Location" is the station that the Sender is located at onboard the ship. The Set DC

Channel and Ship Channel set the multicast address, which the different reports will be

sent on, for that specific casualty and the ship status reports. The "Monitor DC

Channels" launches a Listening Console and configuration functions similarly to

Reporting console except it has an extra combo box to set a second DC multicast

-55

address, for monitoring a second casualty. A hide feature is used to place the respective

GUI in the background.

igäDCNet

Send DC Channel Reports Moniloi DC Channels HIÜOl

PPM Ü3 _■■*' j ' LAUKCH

|228.7.5.4 jj_
.y.-Li_...: _,_ WBts&Sfcitäää DC CKumd 1 Büßio]DC Chan»el J JÜJfiHM SHIP a"™1]__tt__&l

Figure 23 - Launching (DCNet object) Console

3. Sending (Client object) Console

The Sending GUI's (Figure 24) location in this case has been set to ERUL, and is

sending the Fire reports on the 229.7.5.4 multicast address. If the Server is listening on

this address then the reports will be heard and displayed. If the Ship tab is selected then

the address shows 228.7.5.6, and is the channel those reports are sent on.

INITIALIZE NFTICamera TECKDrawings

^mmggt | OCC || Scene (OBA | HOSE |

Man m Charge at Scene Is:

KO

Scene Assistance Rod?

3 Personnel to Scene

Injured Personnel?

ST2 Sounds

Damaged Equipment?

Pump Damage

Status of Fire Is:

Spreadlna to Upper Level

ERUL, Send on 228 7.5.4 Send

1: Sent Fire, Time: 22:15:12

Figure 24 - Sending (Client object) Console

-56

Future iteration will design the ability to receive into this console. Multiple

Clients can run on the same machine, making it possible to send on more than one

multicast channel, and thus each client could respond to more than one casualty. The

console is laid out to maximize the amount of potential displayed information in the

smallest space.

4. Listening GUI (Server object) Console

The Server objects at this stage in the design are just listening windows (Figure

25). Future development will design in the ability to send also. This example shows the

location set to Damage Control Central (DCC).

i;wm*uze WFTicamera TCCHPrawmm

i±iai£]

fS —™l.- " 1,-—"—'—*.— ■■-—"^

CC [Scene [OBAfHOSE)

Man tit Chai&s at Scone Is:

XO |;
Scums Assistance Rttd?

3 Personnel to Scene

intöteti Pwsoimal?

ST2 Sounds

Damage* Equipment?

Pump Damage ■;

f

Status of Firnis:

Spreading to Upper Level

IDCC. Listen on 228 7 5 4 II Paus«

: -DCC .this is ERUL"
FIRE Updated on 228.7.5.4
Time: 22:15:12

1 *DCC .this Is ERUL"
8HIPSTATUS Updated on 228.7.5.6
Time: 22:15:31
■ "DCC .this Is COND. BAT
FIRE Updated on 228.7.5.6
Time: 22 20:28

Station Reporte and Ship controlMessatfes <

fparameters~tsan8ars fprassures]

Sh«) Speed

Sltfe Depth

Cturet« Shin operation

pec. Listen on 228 7.5.6 Paus»

| DCC fSceno fOBA [HOSE I

Casualty Location

Ship Ridded for Firo?

Atmosphere within Limits ol:

DCC. Usten on 228.7.5.5

Figure 25 - Listening GUI (Server object) Console

-57

The center panel displays reports for Ship, Engineering, Compartment Rigs, and

Atmospheres. This information is central to both casualties and thus located in the

center. The Message window receives and displays reports sent from different stations

throughout the ship.

5. Deploying the Application for Use

Jar File Execution - A nice feature of Java is it allows a developer to compact all

the source code in a deliverable package known as a jar file. This allows a user to have

the ability to run the application on any machine because all files necessary to run them

are available. The current jar file for the developed SWJPNet application is 161 KB.

This size makes for a fast download to any networked computer in the network. To run

the application all the user needs is a Java Virtual Machine which can be downloaded

free from Sun Microsystems within the Java 2 Runtime Environment (JRE). To ensure a

jar file can be executed when clicked by the user an entry into the jar's manifest file is

needed to identify the main () class in your project. The entry would be similar to

Manifest-Version 1.0, Main-Class: swipNet.control.DcNet. The JRE, when installed,

creates an association with the .jar extension to allow the operating system to associate

the JVM and your main class in your project

G. CHAPTER SUMMARY

This chapter set out to develop applications for a submarine wireless network.

Although there are many possible applications that could be developed, Damage Control

was chosen based on its complexity and need for improvement. With this application, it

was shown that multicast communication is a powerful way of transmitting multiple

traffic streams in a quick and efficient manner. It also mimics well they current way

communications are down on a submarine. This chapter described the advantages the

multicast application approach has over a database-centric, applet-type approach

designed in [Sayat99]. The applications presented in this chapter also brings to light the

58-

power of the Java programming language in both is simplicity and its portability across

all types of hardware and operating systems.

59-

THIS PAGE INTENTIONALLY LEFT BLANK

-60

V. SOLVING THE PERSISTENT DATA PROBLEM

The SWIPNet application designed in Chapter IV performs well at delivering

real-time Damage Control reports in a multicast environment. A major weakness

however is the susceptibility to a network power outage. This chapter looks a different

available storage models. It also looks at different ways to connect the storage model to

the SWIPNet application to provide persistent storage. This chapter concludes by

choosing the best model and creating an implementation to create a more robust

SWIPNet application.

A. STORAGE MODELS

Different storage models are available to capture the state information that would

allow the system to recover from a power outage. These include:

1. Flat Files

SWIPNet could dump reports and state information to a file that resides on the

hard drive. In fact this was sometimes used in troubleshooting. However flat files do

not provide a robust solution in a multi client environment because they are on the local

machine. This prevents adequate sharing of the data. The data also has a tendency to

get out of sync since it is recorded in several places. Also flat files provide virtually no

security or integrity controls of the data placed in it. Based on this flat files are not a

choice for implementation.

2. Relational Databases

A relational database is the defacto standard in data storage. Based upon a firm

mathematical background and healthy history, relational database companies offer many

solutions like Microsoft Access, Oracle, Sybase, SQL Server etc. Relational sharing of

data is usually achieved through a client server approach. Data are retrieved and stored

via a standardized language known as Structured Query Language (SQL). Relational

databases also offer the required security and integrity constraints needed in a multi user

61

environment. Based on this a relational database was chosen as the storage model for

implementation. Also two relational database were looked at, Microsoft Access 2000

and Oracle 8i. Oracle 8i provided a more robust Client Server database that provides for

many clients in a Client/Server environment [MorrisonOO]. Oracle 8i provides many

tools to a Database Administrator (DBA) to manage it. Microsoft Access 2000 is

designed more for a single user [Balter99] and defaults the more robust client server

handling to SQL server. Oracle 8i is the best choice, however based on funding and

availability Microsoft Access was chosen as the database to implement.

3. Object Oriented Databases

A relatively newer approach for storing data, Object Databases store entire

objects. Thus a Fire Object or Flooding Object could be stored and retrieved easier than

a relational database. However this technology is relatively immature and there are not

many vendors that offer this solution. Based on this Object oriented databases was not

chosen as an implementation model.

4. extensible Markup Language (XML)

While Java is considered the portable language XML is considered portable data.

Designed by the World Wide Web Consortium (W3C), XML has proven extremely

useful because it provides an easy interchange of structured data across any platform,

network or application. XML allows you to create a structure for your file known as a

DTD (Document Type Definition) file. This file creates the structure and the data

populates this structure in an xml file. Tags delimit pieces of data. These tags have no

predefined meaning, they are solely defined in the DTD file. Thus new ML (Markup

Languages) can be created like ChemML, BikeML, or DCML. XML provides a

structure that can go to any level of complexity and there are tools, like XMLSpy, that

can validate the correctness of your data. XML provides an excellent way to store and

send data over the network and would work well within the SWDPNet design. Since a

relational database was chosen for implementation an XML implementation will be

saved as a recommendation for future work.

-62

B. CONNECTION MODELS

1. Java Database Connectivity (JDBC)

Java provides JDBC Applications Programming Interface (API). This API

provides code level access to SQL-based databases. Specifically this access would allow

SWJPNet to connect to a central SWJPNet database from anywhere on the network. A

DriverManager and Connection object [White99] manage this connection. The Driver

Manager controls and loads the driver for a particular database. The Connection object

creates the connection to a database via Uniform Resource Locator (URL) and user

name and password. Once a connection is made the Statement object in JDBC sends

SQL statements to the database and returns the results to the user. The ResultSet holds

these results. The ResultSet is then manipulated as necessary within the program.

JDBC provides the link necessary to allow SWIPNet to provide a system level

Initialization and to return the system to a consistent state after a power outage. This

model is used in the design of the JDBCBridge object used in Chapter rv.

2. Server Side Models

Although not part of the SWJPNet design, Java offers J2EE (Java 2 Enterprise

Edition) [SunOl]. J2EE offers several server side solutions for database connectivity,

including Servelets, Java Server Pages (JSP's), and Enterprise JavaBeans. Server Side

models process the desired query on the Server machine and return the result to the

client. This solution works well with multiple databases and clients and is the right

solution for an enterprise wide application. The use of this technology sounds promising

but it is reserved as a recommendation for future study.

C. DC DESIGN REQUIREMENTS

As described before there are several options to integrate a persistent storage

implementation into SWIPNet. The preferred method is to use JDBC-ODBC driver to

allow provide two required features:

-63-

1. Initialization

During this phase a submarine crew keeps the database updated with current

crewmembers and equipment. Also, technical diagrams and DC procedures would also

need to be updated as revisions occur. During the start of the casualty the JDBS-ODBC

driver would allow the database to initialize each sender and listener with the current

names of the crew and other important data. This allows the sender to use a combo box

to select the data to send vice typing it. This speeds the DC reports, which is vital in the

casualty.

2. Power Outage Recovery

As the casualties are occurring, the reports that are sent are also dumped by the

listener (or Server object) to the database. This maintains the current state of the

casualty. If a power outage occurs then the data can be recovered and the system re-

initialized using state data of the database and the Initialize.java and JDBCBridge.java

designed in Chapter IV. This assumes that battery backups were either not used or have

depleted their reserve.

D. PERSISTANCE DESIGN USING MICROSOFT ACCESS

The Entity Relationship model in Figure 26 shows the entities and relationships

necessary to capture DC state information. The entities also have attributes that are seen

in Figure 27. A total of nine entities, shown as rectangles, are needed. Each entity

represents a specific table of information that will hold DC information within the

database. The relationships between each entity are also shown in appendix A create the

desired Integrity Constraints within the database. These constraints are based on the

Business rules described below. All relationships are One to Many with the exception of

Location relationship which is Many to Many and creates the required extra table.

-64

1. Entity Description

a Casualty - This object captures the type of casualty (Fire, Flooding,

etc). It also holds the Time the casualty started and the specific

casualties Status. Each casualty would also have a Man In Charge

(MIC)

a Crew - This object captures all crewmembers currently on board.

□ Compartments - This object captures every compartment onboard a

submarine that a casualty could occur in. For example ERUL -

Engine Room Upper Level, AMR2UL - Auxiliary Machinery Room

2 Upper Level, or FCML - Forward Compartment Upper Level.

a Reports - This object captures all reports that are sent to and from

Damage Control Central. These reports capture the source, time sent

and the specific messages that are needed to control the casualty.

They would represent the old way of using the sound powered phone

circuit.

D Sensors - Captures all sensor information that is monitored by the

Virtual Damage Control system. Ex: DP-023 a depth sensor needed

to monitor the ships current depth.

o Atmospheres - The atmosphere captures the current level of

atmospheres (e.g. 02 level) and shows if that limit is currently being

met. This information is important for determining if breathing

devices are needed by crewmembers.

a Rigs - This object captures the compartment rigging status of key

components throughout the ship. Rigs place the ship in maximum

sustainability posture during casualties. These rigs are performed by

crewmembers and reported. The necessary information needed to be

captured is the Type (e.g. Rig for Fire), the Status (Rigged or Not)

and the Location (e.g. ERUL - Engine Room Upper Level)

65-

a Hoses - Deployment of hoses are used in many casualties. Hoses are

labeled by the compartment they come from and is captured as it's

hose Types. Teams of crewmembers usually man one hose.

a BreathJDevice - They are different types of breathing devices

onboard submarines (e.g. OBA - Oxygen Breathing Apparatus, Mark-

V - Gas Masks) and knowing which devices is being worn by what

crew member is important because of the time restrictions and

atmosphere restriction of each device.

SENSORS

ATMOSPHERES

Figure 26 - Entity Relationship (ER) Diagram

-66-

2. Relationships

The following describes the desired relationships needed in the SWIPNet DC

design. Basically they are the business rules and constraints between each entity (See

Figure 26).

a Injured Person - Only one Crewmember can be injured in many

(since can transfer across) Compartments, and a Compartment can

have many injured Crewmembers.

a Man in charge (MIC) - Many Crew MIC (on different levels) per

Casualty, and many Casualties for each Crew MIC.

□ Wears - BreathJDevice are issued to many Crewmembers and a

Crew member can have only one Breath_Device.

a Mans - Many Crew members allowed per Hose, but only one Hose to

each Crewmember.

a Location - One Casualty can occur in many Compartments and one

Compartment can hold many Casualties.

□ Read_From - Many Sensors per Compartment, but one Compartment

per Sensor.

□ Taken_At - Many Atmospheres per Compartment, but only one

Atmosphere type per Compartment.

Q Rig_Location - Many Rigs per Compartment, but only One

Compartment per Rig.

-67-

a Makes - Casualties can have many reports, but only one report per

casualty type.

3. Microsoft Access Implementation

This is the actual implementation in MS access. Figure 27 shows this

implementations entity and corresponding attributes. Each entity would represent a table

in the database and the attribute would represent a column. A relationship only appears

as a table if it is a many-to-many relationship.
Microsoft Access - [Relat

W&-. Now Ob)oct: Table

Figure 27 - Relationship Schema/Relationships and Attributes

-68-

4. Connecting the Database

The actual implementation of this connection will become a recommendation for

future work. It should be noted that currently SWBPNet has been designed to easily

allow this implementation to occur by creation of the Initialize and JDBCBridge objects,

see Chapter IV, that can be sent just as easily as a Fire class, Flooding Class, etc that are

currently being sent.

E. DATA INTEGRITY FEATURES USING MICROSOFT ACCESS

The following section describes features that would be used to provide data

integrity during a casualty as state data is updated to a database. Since this database

would be used to provide initialization data to DC consoles at the start of the casualty it

is important that the data is not tampered with before a casualty and that the database

does not become corrupt during the casualty. It might also be important to use this data

after the casualty to identify a problem or help the crew train better during drills. Areas

that are addressed are security, database concurrency locking, data schema integrity, and

backup [Balter99].

1. Security

a. Encryption

This makes the data in the database indecipherable from data in a word

processor, disk utility, etc. You can get to it by Tools|Security| Encrypt/Decrypt

Database

b. User and Group Accounts

These options under Tools|Security allows you to create groups and

assign permissions of different objects, such as tables, queries, etc. much like the

security model in WindowsNT itself. For example, a Group such as "Data Access" is

given permission to all forms to enter data. The DBA could then add a user to that group

and then they could access the forms and enter data.

69

c. DB Password

Microsoft (MS) Access 2000 allows you to set a password for the entire

database.

d. Security Wizard

Like most MS Office products, wizards are there to assist in complex

processes. Security in Access is no exception. The Security Wizards allows things like:

1) Designating objects that need security, 2) Creating users, 3) Setting passwords, etc.

MS Access 2000 also allows a new feature called an MDE file, which is a

copy of the existing database with all the underlying source code removed, thus

protecting the most of the efforts of the designer.

Most security aspects are applied to the Database and the objects in the

database. MS Access also allows linking tables to other backend sources like SQL

Server. This client/server approach also has built in security feature similar to some

described previously.

2. Protective Locking of Data in a Multiple User Environment

The following features provide different levels of granularity for locking the

data. It is recommended that Table and Recordset locking be used for the SWTPNet DC

design.

a. Record Locking

Only the record the user is editing is locked

b. Page Locking

A 4KB page with the record being edited is locked

c. Table and Recordset Locking

The entire table or recordset with the record being edited is locked.

d. Opening an Entire Database with Exclusive Access

The entire database is locked, unless that user has opened the database in

Read Only mode. If so, then others can open the Database in Read Only

70

Tools|Options|Advanced sets the above global multi-user settings for the

user. No Locks (optimistic approach), All Records or Edited Records (pessimistic

approach) are the choices that choose these settings. Within each query, form or record

the Properties sections also allow specific locks to be applied specifically to those

objects during development. Reports don't offer locking choices because they cannot be

modified. No Locks choice means the page of data will not be locked until Access tries

to write the changed data to disk and is considered the least restrictive. All Records is the

most restrictive, and other users can only view the data. Edited Records takes a 4KB's

surrounding the record is locked.

3. Data Integrity

Referential Integrity is an option on one-to-many relationships in the database.

This concept is used within the database created for this project. It enforces a set of

rules to help prevent orphan child data within the database. Cascade Update and

Cascade Delete are also used in this database and work similarly as described in class.

Menus are developed in this database to guide the user. This Main Menu is

presented at startup and the underneath database is hidden from the user. This also helps

maintain data integrity by minimizing the confusion for the user.

4. DB Recovery and Backup

MS Access allows creation of a working backup through what it calls a

"Replica". This Replica is a linked copy of your existing database, designated the

Design Master. Once a Replica is created from the Tools|Replication menu, changes in

the data can occur by a user in the Replica or the Design Master. Any structural

changes, however, can only be applied in the Design Master. The Periodic Synchronize

Now option allows the Design Master to update the Replica (ie. Backup). Synchronizing

can create conflicts between the databases. Access has an option to resolve the conflicts,

71

that allows you to keep existing data, keep revised data, overwrite with conflicting data

and overwrite with revised data. A Replication Manager is also available to automate a

lot of these processes. Synchronizations can also be scheduled during different times of

the day. Partial replicas are also allowed (i.e. a subset of the database).

WindowsNT 4.0 and 2000 [MinasiOO] also has some backup features: the

Backup utility allows periodic backup to a tape drive to help protect the data. Also

Windows NT allows two fault tolerant schemes Disk Mirroring (RAID1) and Striped

Sets with Parity (RAID5). RAID stands for Redundant Array of Independent Disk.

These protection options help protect data in case of a disk failure. RAED1 actually

creates, transparent to the user, a second disk image in case the first disk fails. RAID5

places parity stripe information on all disk. If one of the disks in the set fails then that

disk can be replaced and the data regenerated to recover all data.

F. CHAPTER SUMMARY

Chapter V looks at different storage models that could be used as a persistent

data model for the SWIPNet application developed in Chapter PV. This model was

developed using Microsoft Access 2000. A recommendation for future work is to use

the JDBCBridge class and the Initializer class developed in Chapter IV to provide

connectivity to this database to help overcome the design weakness that SWIPNet is

vulnerable to, i.e. network power outage. This connectivity should also provide for a

Initialization sequence for the system that can be designed for the specific boats who

will use SWIPNet.

■72-

VI. SUBMARINE NETWORK ANALYSIS

The focus of this chapter is to provide some insight into the integration of a

virtual Damage Control (DC) wireless component application into a submarine type

LAN. The LAN that has been picked for this analysis is a Non Tactical Data Processing

System (NTDPS) currently being considered for the Virginia class submarine. A

diagram that has been proposed for this system has been obtained with permission of

NAVSEA and has been used to develop the test model used in this chapter. This

diagram is called the Original Network and is shown in Figure 29. The tool used to

build and analyze this network is OPNET Modeler 7.0B.

A. GOALS

Q What applications should the wireless clients support and is the network

robust enough to handle them?

□ Prove that a submarine DC application can run on a wireless network

assuming all other network loads are present.

□ Describe the network/traffic patterns in a normal 24 hr day and identify

the peak traffic times.

□ Determine the maximum number of wired and wireless workstations the

network can support?

a Define and test the Longest Path scenario.

□ Identify the average and Longest Path Ethernet delay, average throughput

and average utilization in terms of number of clients, types of

applications and distance to servers?

a Validate the simulation (OPNET model) with an analytical model.

a Describe the redundancy and reliability of the Network. Identify

weaknesses and recommend improvements.

73

B. DEVELOPMENT PLAN

To meet the above goals a network had to be designed from diagrams received

from NAVSEA code 450. The flowchart, Figure 28, outlines the major steps that were

used to develop this model. This flowchart outlines all the major steps of this chapter

concluding with a Chapter Summary.

| Original Design |

| Layout SUBNet |

| OPNET fobdel |

124 hr Workload

Results

i Validation

Sensitivity
Analysis

Ghapter
Summary

Figure 28 - Flowchart of Network Design

The Original Design was requested and obtained by NAVSEA code 450 is

shown in Figure 29. It was the basis for the models develop and was modified under an

assumption set used to develop the Modified LAN. Once a modified diagram, Figure

30, was developed, the next step was laying the components out, as they would appear

on a submarine. This submarine modeled assumes a 250 ft long by 34 ft wide (living

area). These dimensions needed to be set to allow OPNET modeler to accurately

calculate the results of this model. Once the components were laid out, the OPNET

model was built and a 24 hr workload was applied to obtain the results. The submarine

DC application is part of this 24 hr workload. Validation of the OPNET model was

accomplished by comparing a "Longest Path" scenario's Total Delay to a calculated

-74

delay value described fully in [Sadiku95]. Sensitivity analysis attempts to stress the

system to determine the maximum number of clients and workload that could be applied

to this system. This analysis concentrates mostly on the wireless part of this system.

The conclusions summarize the strengths and weakness of the designed system and

makes recommendations for its implementation.

C. MODIFYING THE ORIGINAL DESIGN

The system designed was obtained from the Naval Sea Systems (NAVSEA)

command (Figure 29). The proposal is founded on ideas presented from Electric Boat.

SNp'sOfiee " Jun&Box

CACC — JunctBox

FibeiOpöc
Cable System

■lit
lilt
Ink
Hit
ink

((((
1stLmlFR35
(PORT) 24 man

bunkraom
Access point

((((

1st Level FRSO
(PORT) 24m«)

bunk room
Aoots point

((((
1st Level FR50
(STBD) 24m»

bunkraom
Aooess point

lilt
■lit
lilt

((((

(«(

lilt
■lit
■lit
■lit

Engine Room
Acots points

3rd Level FR 46 (STBD)
18 man bunk worn

Aootss point

COSTRM

XOSTRM

CPO Quart»
Aoots points

(Qb/2)

CrentfsMes
(points

<Q*/2)

lilt
Ink

Figure 29 - "Original Design" LAN

Per phone conversations with NAVSEA, the design was modified to adhere and

comply with the OPNET Modeling tool. Figure 30 depicts the modified design. It should

be noted that this layout and all further steps were done without any further inside

knowledge of the NTDPS system. This was done to ensure the confidentiality of the

actual system.

-75-

- ((((

Ship's Off« : Junct Box
MBBtstlX

III!
Inl
Ink 3tdUvdFR«(STBD)

18 nun bunk room

COSTRM

XOSTRM

CPO Quirtto

(0*2)
■lit
Hit

Figure 30 - "Modified" LAN

This diagram is used to layout Components shown in Figure 31. It is important to

note that in order to map the original design a series of assumptions were made which

are listed below.

D. ASSUMPTIONS OF MODIFIED LAN:

1. LAN Classification

The original design appears to utilize FDDI or SONET over ATM, operating

over an optical fiber. However, the Original Design is actually a 100 Mbps Fast

Ethernet BUS LAN with 100BaseFX and 100BaseTX, integrated with wireless Access

Points and Clients throughout the submarine.

-76-

2. Link Classification

The Cable Plant (wired transmission medium) on the NTDPS in actuality is a

100BaseFX (Fiber). This portion of the network was modeled as 100BaseTX (Twisted

Pair) for two reasons:

For one, the rated bandwidths are the same throughout the wired portions of the

network (i.e., 100Mbps), so implementing it with fiber would provide no significant

advantages with regard to bandwidth. However, it should be understood that the

advantages of fiber are its immunity to EMI and electrical interference. In addition, fiber

has a Lower Signal Power loss, provides better security, is lighter and will not produce

fires or explosion in comparison to twisted pair media [Quinn97]. Clearly these are all

important factors for designing a LAN within the confines of a submarine. However, the

focus of the study is delay, utilization and throughput and no significant change in the

conclusions using 100BaseFX with the distances involved are foreseen in this study.

Another primary reason twisted pair was selected is that the OPNET Modeler

does not provide a default 100BaseFX component. One can custom design a 100BaseFX

component by mapping lOOOBaseFX and changing some internal variables, but the

focus was on designing the overall network. Attempts to convert the variables were too

time consuming and was not assured the design would truly reflect the correct

parameters of a 100BaseFX component.

3. Fiber Interface Boxes (FIB) to Switch Conversion

The initial diagram shows certain Access Points (AP), which connect to a FIB.

As discussed above, the simplified cable plant uses 100BaseTX Ethernet Bus, thus the

FIBs are essentially just switches and no longer need to convert fiber signals to electrical

signals and vice versa.

4. Grouping of Traffic into Subnets

The proposed LAN shows that certain FIBs have classes of traffic assigned to

them. For example, the officer's staterooms and wardroom access points are connected

to the same FIB (switch). This general grouping of access points was kept in the design,

-77-

and modeled as Subnets. All Subnet are chosen based on their respective traffic stream

(e.g., officer's message traffic requires the Gold subnet, wireless clients, and access

points to be located in the wardroom and stateroom areas).

5. Placement of Components

The physical locations of compartment components (Servers, Switches, Access

Points, and Clients) were selected based on what made the most sense. They are

assumed to be located in the middle of the compartment.

6. Selection of Backbone Switches

While trying to obtain configuration data about the Xylan switches, it was

discovered that Alcatel, Inc. has purchased Xylan, Inc. This made obtaining data for use

in the OPNET model nearly impossible. Based on this, the choice was made to use a

comparable switch from Alcatel. This selection was the Omni-Switch, ESM-100C-32W-

2C, 32-port 10/100 Fast Ethernet backbone module [ProductsOO]. However, after phone

conversations with Alcatel, it was discovered that there are no OPNET Model libraries

developed for these switches (note: they are looking at it for the future). Because of this,

a comparable Cisco router was used to model the backbone switches within the OPNET

Model.

7. Others

For simplicity, the Special Operations Force (SOF) junction boxes and

NIPRNET/INE connections, shown in Figure 29, were not modeled. In addition, it is

assumed the primary and backup domain controllers (PDC and BDC) have one NIC card

per server. These assumptions were made to concentrate the focus on the backbone and

wireless portions of the LAN.

78-

E. LAYOUT OF THE SUBMARINE NETWORK

1. Physical Layout

a. Submarine Cross Section Description:

a Dimensions: 250 ft long and 34 ft in diameter

Q Five Subnets: Red (Engine room), Blue (Enlisted Berthing),

Green (CPO Berthing), Gold (Officer Berthing) and Orange

(Command and Control Center)

a Control Center (Figure 33) is located in Navigation (NAV)

Q Junction Boxes: are Ethernet drops for wired workstations and

printers

Legend

Mk 5 Top Level SUBNETS - on* 8 Port Switch+BSS(s) =•> SUBNET Gold, Green, Blue, Orange, Red

>-19 Basic Service Sets(BSS) = 1 Access Point (AP)+Wireless CHent(s)

5 Fast Ethernet Junction Box Plug ins

250" Total

Figure 31 - "Modified" LAN Physical Layout

-79

b. Control Center and link Layout Description

u Server to Access Points Links: Fast Ethernet, CSMA/CD protocol

with 100BaseTX [Hammond86]

a Access point to wireless client link: uses the UMBps, IEEE

802.11b, CSMA/CA, Direct Sequence (DS/SS) protocol

[Tanenbaum96].

Q Transport and Network Protocol: TCP/IP throughout the entire

network.

a Subnet: One eight port Ethernet switch, multiple access points and

multiple wireless (SEE OPNET RESTRICTION).

Q Control Center (Figure 32): Two NT 2000 Servers and three

backbone switches (A, B, & C).

Q OPNET RESTRICTION: OPNET allows one AP per subnet with

multiple clients. This is known as a Basic Service Set [GuideOO].

Therefore, the Gold, Green, Red, Blue, and Orange subnets

themselves contain Subnets to house each of the AP's shown. For

example, the Gold subnet contains 3 subnets (called AP4, AP6, AP7)

that house one AP and their respective wireless clients.

-80-

JH 5 Top Level SUBNETS

19 BOX Service Set (BSS)

5 JvuKtJtffi Box Phis ins

Totals:

2 Domain ConirolksCNT 2000)

3 Baclsboas Switches

Coanecis to 3 SiisnetsM BSSß Plugins

Connection Tvpes:
10C3«eT

802.11b DSWn*ss

Figure 32 - Control Center Layout

c. Submarine LAN Component Description

a NT 2000 Servers (PDC and BDC) - Both support HTTP, FTP,

Database, E-mail, Streaming Audio and Video, and application

services for the LAN. Note: Primary and Backup Domain Controllers

(PDC and BDC) are part of the Windows NT 4.0 Architecture. These

terms are no longer part of the Windows 2000 Architecture

[MinasiOO]. The terms are still used in this thesis for convenience and

familiarity.

81

a Backbone Switches (A, B, & C) - Cisco C5000 Switches are used

because they provide the most compatible with the Alcatel Omni-

Switch. These switches have 24 Ethernet and 12 Fast Ethernet ports.

a Subnet Switches (within Subnets) - These are basic switches with

8 Fast Ethernet ports. They are equivalent to the FIB discussed

earlier.

a Access Points (AP) - Wireless routers that route traffic to multiple

wireless clients. They are configured in Infrastructure mode (vice

ADHOC or Peer-to-Peer) and set for UMBps, Direct Sequence

routing.

Q Wireless Clients - Windows 2000, 11Mbps, Direct Sequence.

These clients are assumed stationary and can run all required

workloads.

a Junction Boxes - Provide Ethernet plug-in access to regular NT

workstations and network printers.

F. KEY SERVICES AND MEASURED VALUES USED IN STUDY

1. Key Services

The NTDPS system will serve the crew of the submarine by providing certain

key wireless and wired functions. The system level services include:

a. Class Roaming Service

Providing wireless Windows Server access to five classes of

crewmembers. These classes are Enlisted, Chief Petty Officers, Officers, Engine Room

Watch Standers and Control & Command Center Watch Standers. The respective

subnets will only allow wireless access when their wireless clients are within the area of

their subnet. This "class type" isolation is done for three primary reasons. For one, they

provide a separation of traffic and better security. Next, they help to ensure that one

subnet will not become overloaded by a non-domain user (e.g., 50 enlisted members

82

overwhelming the Gold - officer's subnet). Lastly, since the system is designed for non-

tactical data (usually personal), it provides the required access within the most likely

place that the respective user would be when trying to access the network (e.g., enlisted

crew within the berthing area, Chiefs in the CPO quarters, etc).

Class roaming service could be avoided if it is determined that roaming

capability of one class through all domains of the wireless clients becomes more

important than the above three factors.

b. Application Service

The Windows Server and wireless clients will be able to perform a range

of Client/Server applications: HTTP, FTP, e-mail, Telnet, Database Queries, and

Streaming Video and Audio.

c. Plug-in and Printing Service

There are also several Windows Workstations and network printers that

are able to plug into the hardwired section via junction boxes; printing is also a desired

service.

2. Metrics Studied during Simulation

All metrics were analyzed, however only key metrics are presented in this

chapter.

a. Packet Based Metrics (TCP/IP Network layer)

Mean Ethernet Delay (seconds)

Mean Subnet-to-Subnet Throughput (bps)

Link Utilization

Total Arrival Rates (packets/sec)

Number of hops

Distance between hops (ft)

Queuing Delay (seconds)

83

Application Metrics (TCP/IP Application layer)

• Mean Inter-repetition times (seconds) - Poisson distribution

• Mean size of application transfer (Bytes)

• Mean response time for each application (seconds)

• Type of application (HTTP, FTP, Email, Stream A/V, Database)

3. Parameters Defined for Simulation

The following are parameters that were studied that could affect the performance

of the system. They are listed in two primary areas, System and Workload. Again they

are listed for completeness but only key parameters will be discussed later.

a. System Parameters

Bus speed (Mbps)

CPU speed of server

CPU speed of wireless client

IP forwarding rate (bits per second)

Buffer size (bits)

Packet length (Bytes)

Types of links (100BaseTX, Wireless)

Number of subnets

Background utilization of the links (percent)

84

b. Workload Parameters

• Type of application service (HTTP, FTP, DB, Email, Stream A/V)

• Frequency and file size (Bytes) workloads of the applications

• Workload per time of day

• Location of components in the submarine

• Distance (feet) of server to clients

• Number of wireless clients

• Hops between server and client

• Number of subnets

4. Factors Varied during Simulation

The following are factors that were changed during the OPNET simulation.

a Arrival rates (packets/sec)

□ Application each client runs (HTTP, FTP, EMAIL, Streaming A/V,

Database)

a Distance (feet) and hops between server and clients

a Inter-repetition times (seconds) of applications

a Workload and number of clients

G. OPNET MODEL

The modified LAN was built using OPNET Modeler version 7.0B. As noted

earlier, there are five subnets in the design. Located within each subnet are a switch,

access point and wireless client. The Gold Subnet also contains the PDC and BDC,

Cisco backbone routers and serves as the central brain of the network. The OPNET

Model is shown in Figure 33.

-85

1. OPNET Model Assumptions

There is only one NIC card per server, therefore only one connection is allowed

between the Cisco backbone routers (Switch A, B, C). Windows 2000 servers support

all desired applications; HTTP, FTP, e-mail, Database, and Streaming A/V.

A Basic Service Set (BSS) constitutes a subnet with a respective Access Point

and Wireless client. OPNET allows only one access point per subnet [GuideOO];

therefore the original assumption of having multiple access points (as illustrated in

Figure 32) has been simplified to one.

The settings within OPNET for servers, switches, access points and wireless

clients to be default, unless specifically mentioned otherwise.

It is assumed all applications perform under the pretense of the "Best Effort

Service Model" and use TCP/IP over Ethernet to route packets.

2. Problems Encountered

A buffer overflow led to dropped packets on the MAC layers of the access points

and wireless clients. In an attempt to resolve this problem, the buffer size was increased

and IP forwarding rate of both the access points and the wireless clients by a factor of

four and ten, respectively. The resulting buffer size of the access points and wireless

clients are 1,024,000 bits each. The IP-Forwarding rate of the access points is set to

50,000 bits/sec and the wireless clients to 5000 bits/sec. Under these conditions I were

able to simulate HTTP43KB, HTTP4KB, FTP1MB, FTP300KB, EMADL40KB, and

Database 32KB successfully on each client. Increasing these values any higher gave no

added benefit. That is no further load could be added within a successful simulation.

Start time offset for the applications must be at least 15 seconds to allow the

routing information protocol (RIP) to run. If it is set to zero, an OPNET compile error

occurs. Also, it was not possible to achieve 100 % utilization for throughput on

wireless/wired system. It can only be concluded that either the OPNET program is

-86

flawed or the bottlenecks in the system were not readily apparent. Therefore, most

conclusions are based on mean response time.

3. OPNET Diagram

Figure 33 shows screen shots of the actual OPNET model. The top level

contains five subnets described earlier. The Gold subnet contains the control center and

the respective BSS subnets. Inside AP4, AP6, and AP7 are the AP and the number of

wireless clients needed to run the various simulations.

• ftanct C$4554 $<* IM Umm $fifMm)&mJtuc.VtMim |S«to« SataMKSMwtkJ

ft iß g» fatm: MeMi. *** §wis grin &>

ämWTfäWä:

:&■

HPSA

itoo&vit

!'£$ \3ß\

^3^
MX

m

Figure 33 - OPNET Model (with expanded Gold Subnet)

87

4. Configuration of the Simulation Components

The Configuration Panels are included to aid in future development with OPNET

modeler. This program is very powerful yet its complexity takes many hours to learn.

Showing the configuration panel shows the default values used during the simulations

and the values that were changed to create the desired model.

a. Wireless Client (Example of HTTP client)

The default values shown in Figure 34 that were changed include the

Data Rate (bps), Physical Characteristics, Buffer Size (bits), IP Forwarding Rate

(bits/sec), and this case a HTTP workload was applied to the Supported Profiles.

nttflPtJPft'' ^' ''"-.''"'-"'.'' .W" .fVatuev ■■■ A
name HTTPSailor

model wlan_wkstn_adv

ARP Parameter Default

Application; ACE Tier Configuration Unspecified

Application: Destination Preferences None

Application: Murcicasrjng Specification :None

Application: RSVP Parameters None

Application: Segment Size 64,000

Application: Source Preferences None

Application: Supported Profiles ;l~)
Application: Transport Protocol Specification TCP
CPU Background Utilization :None

CPU Resource Parameters Single Processor

Client Address ; Auto Assigned

IGMP Host Parameters Default

IP Address Information ;(...l
IP Default Gateway Not Set

IP Forwarding Rate : 50X100

IP Gateway Function Disabled

IP Ping Traffic None

IP Processing Scheme ' Central Processing

IP Slot Information iNOTUSED

IP Static Routng Table None

RSVP Protocol Parameters Defaut

TCP Parameters :Defaut

Wireless LAN MAC Address Auto Assigned "•\.
Wireless LAN Parameters J (...■) -*j:-
^ r.v, f - ;;.;^-r;;:';; v f.iy^^^y^^ry- $??ig&]<]*":. sSK&K^SltSv.SK

HTTPS^tof

fWiieless LAN Parameters) Table

s ftlÜUote;''
1* \V^ri-t'<;!<;."v

ilüiü V

■;i*¥: ~3\
DataRateJbps]_

PhysicajQiaacteiistics__

Short Retry LirrÄ (dots)

Long Retiji Limit (slots)

Access Point Functionality

Channel Settings

Buffet Size (bits)

illMSi
jDirecjSequence_

:L....'''.IZ'...
■i'_ _'_'___'_..
'Disabled

: 1024000

W, (SS-

^^^j^ftijii^fe^iSSiSi la ¥~£52-^£*££:

Figure 34 - Example Wireless Client Configuration

88

b* Access Point (Example of AccessPoint4)

The default values shown in Figure 35 that were changed include Data

Rate (bps), Physical Characteristics, IP Forwarding Rate (bps), and Access Point

Functionality.

■ -<oi«|

S^31%S1&M^M&;

ARP Parameters (IFO POJ
ARP Parameters pPl POJ
BGP Parameters
EtGFtP Interface Table
EIGRP Metric Variance
EIGRP Start Time
Ethernet Address (IFO PO)
Ethernet Frame Bursting (IFO PO)
Ethernet Operational Mode ()F0 PO)
Ethernet Promiscuous Mode (IFO PO)
IGMP Router Parameters
IGRP Flush Timer
IGRP Hold-time Period
IGRPfnvaSd Timor
IGRP Metric Variance
IGRP Process Mode
IGRP Start Tine
IGRP Update Interval
jGRP Update Stop Time
IP Address Information
IP Default Gateway
IP ForwerrJng Rate
IP Gateway Function
IP Multicast Routing
IP Ping Traffic
IP Processing Scheme
IP Slot Information
IP Static Routing Table
OSPF Area Configuration Table
ÖSPF External Routing Information
OSPF Interface Table
OSPF Router ID ,
ÖSPF Routing Table Interval
PIM-SM Interval
PIM-SM Source Threshold
RIP Garbage Coflection Value
RIP Interface Table
RIP Local Port Number
RIP Process Mode
RIP Start Time
RIP Timeout Value
RIP Update Interval
RIP Update Stop Time
RSVP Protocol Parameters
TCP Parameters
WirelessLAN MAC Address " "'_
Wireless LAN Parameters

im

 .

^Active
5.0

;so
■7ST0

(...)
Not Set
500.000
Enabled
Disabled
Nooe
Control Processing
(...)
None
(...)
None
(...)
Auto Assigned

■GO
600

;s
120
(...)
RIP Port
Active
5.0
180
30
BS
Defau*
Polet*

: Auto Assigned
(...)

1-AdwnoBl

fifthd»;.'"
iiSS,:.:-.;

Data Rate Hops)
Physical Charactensbcs

Short RebyUmft [slots)

Long Retry Ln« (slots)

Access Port Functionary
Channel Scttngs

Büß« Säe (bits)

11 Mbps

Diect Sequence

13:

-- • I tgm-MM

7
:4 '

■ Enabled

 Jffijox

.it

Figure 35 - Example Access Point Configuration

c. Domain Controller (Primary Domain Controller)

CPU Resource Parameters, as shown in Figure 36, were changed to

support three processors for the PDC with the BDC disabled. This allows a probe to

89-

analyze the full traffic stream between switch B and the PDC. Three processors were

needed to ensure the PDC was not the limiting node in the network under these

conditions.

(PDC) Attributes

name

model

xposition

yposition __

threshold

icon name

Application: Supported Services

CPU Background Utilization

mtm ~3'!
...PDC

ethemet_nt_server

111.9 '_

^J3.23 ZZ-1- 1
.JM. LL

;NT_server

'..:^..'."..Z.1Z_...'.
...J.None___"

CPU Resource Parameters : Mufti Processor (3)

RSVP Protocol Parameters :Defau» _

Server Address 'AutoAssgned

TCP Parameters _ _

altitude modeing _

financial cost

E*ended'Atli& J
r Apf^Qiano^toSdectedKiiects ■

" Detail- -} '' Promote"- |

jPefau» ■:■$?

relative to subnet-platform , -;|
. ..„_ .^

..: -Mi

-]7-Advanced*

•~£Ä.-.l- r i

(Application: Supported Services) Table

el "v j% >£y <-- ^ jDescnptan' H^SJSiaESSi

1
[Supported

Hettansfet8neMB .'•
He7iar«sfar30CKB fell"

Figure 36 - Example Domain Controller Configuration

d. Workload Profile (All profiles developed)

The profiles, as shown in Figure 37, were created to hold the applications

that will run on each of the clients. HTTP profile contains HTTP43KB and HTTP6KB.

FTP holds the FTP1MB and FTP300KB. EMAIL and DB holds the EMAIL40KB and

DB32KB respectively. Video holds the 128X120 video stream application.

WorkloadOne contains all applications and the PrintColor holds a print application, but

both were unused.

-90-

M

g

jSmtoexB _ constant (0)_

(Sraianeais constant (0)

[Smianeous «5*15! M-
jSmianeous _ constant (0)_

jSmJtaneous const?*!?)

jSmtowus_ ,?5**!.I?L
Smianeous constanl(0)

jconstart[288CtO [lirWed _

icaisjart(^| jUnWed _

;constart (2KO| jUnMaJ

jOTStant(28ÄlL .JUninited

iranstant [28äl0)_ JJnWed

;constant(28B00] ilinWed

y,^^j^^^.-^fc
^T^SäS^SBlftB

■;>•■•; •y-:'-' ;•-.';

«5

j.nn

•tOsg^^pyOw^^^feofedvt|yl^&

Betaut | gonote } ägsäceK JuOi

j End or none lUniruteu ' ^
TEnd tf'MÜe' TünMecl ~Ü

'cbBi»^inMea<B|comtaritn9
jjWri>B«»ang6KB 'cartwtpS)

ir ifp&icg pSSi
SPSS

Bi^i!lfiftiS^ii^^^^i|gSai ^•wiiaäSf^

Figure 37 - Profile Configuration

e. Application (Example ofHTTP6KB)

Applications are configured as shown in Figure 38. The Inter-arrival

Time is the time between each HTTP request. The 6KB is based on a 1000 bit ASCII

page and 5 objects per page that average 1000 bits. The other workloads were similar

calculated and explained in detail in the next section.
Esssssnsxmssa

model
ACE Tier Information
Application Definitions
Voice Encoder Schemes

Application
Application Config
!None

AH Schemes

Cl~)&!l#V^'i'?X3*P^

 zl.

WS^^S^^S^^^^^ßt^^S^^^^^SM^mm

Fie TrensfcM3d0KB
FJo Prir* (Heavy)
VideoLoFle*

Voice over IP Cel (PCM QuaUyj
Web Bro»*«inolmofle*3Ke
Web Bro««rKia<B_

A°~?**?>*:'-

»si»««
HTTP Specification
Pope Interarrivel Time (seconds)
Page Properties
Serve« Selection
RSVP Paremetet s
Type of Service

: HTTP 1.1.*""
! poisson (6)
 '\';l

&£ ■■■■..
..Lt..)

[None : •:■■'!

J ,l;rtAlp^eiOWäoc»iV"
' (ICOO) löocääüni.) ". ""..'.._" 7! HTTP sWyot"

*:-,*X*X?BL-Zrj3Z7?l m&miM

Figure 38 - Example Application Configuration

91

5. Other Components

The following components in Figure 39 were included in this study but their

default values not manipulated. Also, No workloads were applied to the printers or

workstations.

Pirte.2 ttwgtW

Figure 39 - Other Modeled Components

H. WORKLOADS AND TASKS DESIGN

The purpose of this section is to identify basic Submarine network task, the

"time" peak loading occurs during a normal workday and the applications needed to

support the basic task list onboard a submarine. Figure 40 shows a flow chart used to

determine this data.

Legend:

Malar Sten

Figure 40 - Workload Selection Flow Chart

92

15 task areas were identified that could be running on the modified NTDPS LAN

during different times of the day.

1. Submarine DC Drills

Represents SWIPNet Communication flow and reporting during daily DC drills.

2. Log Taking

Log taking includes the recording and analysis of equipment parameters by

watch Standers throughout the ship 24 hours per day.

3. Repair Maintenance Management

Includes maintenance communications and approval tracking after the

maintenance has been completed.

4. Supply Inventory

Would include the network load for an application that purchases parts, tracks

current supply, and updates inventory.

5. Preventative Maintenance

Schedule Preventive Maintenance (PM's) and track their completion.

6. Message Routing

Consists of message routing through the Chain of Command. Those messages

would include message retrieved from the daily broadcast and messages used to

communicate to the crew about daily routines.

7. Watch Bill Scheduling

This includes the load that would route inputs and changes for a dynamic watch

bill for ship's watch Standers. Would also include the crew downloading this watch bill

as needed to determine what watch they have.

8. Refit Planning

Includes the creation and distribution of a refit plan. This would only occur near

the end of a patrol before entering a refit period.

-93-

9. Plan of the Day (POD) Deployment

Includes the POD creation and distribution to the crew.

10. Qualification System

This load tracks the qualification of all crewmembers. Specifically, Smart cards

verification, digital signatures and tracking point counts contribute to this loading.

11. Fitness Reports (FITREP) and Evaluations (EVAL) Tracking

Officer / Enlisted performance would load the system by taking inputs from

crew members and tracking the writing and approval of the report by their superior.

12. General Record Storage and Retrieval

This would be digitized services that allows viewing and updating of medical,

dental and pay records.

13. Online Training

This service is an automation of training that includes digitized lesson plan

retrieval, test and training tracking and training scheduling.

14. Online Ship Inspection and Exam History

This load is dedicated to the operational exams (e.g. ORSE, TRE, NTPI) that

occur each patrol. Specifically, it would include lessons learned distribution and

deficiencies correction.

15. Crew Leisure Activities

Considered the heaviest network load but assumed to only occur in the evening

and at night. This load includes online training, digitized movie/sound retrieval, web

browsing and email, and general network entertainment needs. The task areas are

grouped into specific timeframes to simplify the calculations. Six timeframes were

identified as unique (see Figure 42). Then five applications (depicted at the top of Figure

41) were identified to support these task areas. Next, the frequency at which these

applications would occur within their respective timeframes was determined. With this

data in-hand, a graph was created to illustrate that peak loading would occur during the

-94

timeframe of 1900-2100. These two hours helped to scope the workloads applied to the

OPNET model. It is important to note that these workloads have not been validated. It

is recommended that real usage patterns be obtained by attaching a monitored system to

a real submarine's LAN system.

I. WORKLOAD MATRIX AND TIMEFRAMES

1. Matrix

The numbers should be read as follows: "Mean application Frequency" for given

timeframe/ "Mean Size" of upload or download/ 'Timeframe #" the event occurs.

Task Area

»—>-' *.'i

HTTP

2000/6KB/5

FTP Stream A/V EMAIL

20/15.5MB/5

Database

1000/32KB/5

3000/43KB/2 120/1MB/2 30/15.5MB/2 80/40KB/2 3000/32KB/2

2000/6KB/1 20/1MB/1 70/40KB/1 300/32KB/1

2500/6KB/1 25/1MB/1 40/40KB/1 500/32KB/1

^
4000/6KB/1 40/1MB/1 70/40KB/1 500/32KB/1

15/300KB/1 150/40KB/1

1500/6KB/3 40/40KB/3 30/32KB/3

1500/6KB/4 24/300KB/4 40/40KB/4

1500/6KB/3 30/300KB/3 10/15.5MB/3 20/40KB/3

1000/6KB/1 24/1MB/1 24/40KB/1 1000/32KB/1

10/300KB/1 40/40KB/1

1500/6KB/4 48/1MB/4 30/15.5MB/4 80/32KB/4

1500/43KB/1 12/1MB/1 3/15.5MB/1

500/6KB/4 6/1MB/4 60/32KB/4

15000/43KB/6 750/1MB/6 200/15.5MB/6 1500/40KB/6 100/32KB/6

Figure 41 - Workload Matrix

95-

2. Timeframes

Timeframes represent a way to group task that occur in similar timeframes

during the day. This provides for an appropriate statistical input to OPNET Modeler.

Timeframe Description
US Paperwork/Post-WatchBased (PPB)
M Watch Based (WB) ass

3

f$/i

Pre-Watch Based (PB)
Pre-Inspection Based (PIB)
Random Day Based (RDB)
Random Based (RB)

Timeframe Occurrence
(0700-0800,1300-1400,1900-2100)
(Every Hour for 24hrs)
(0400-0500,1000-1100,1600-1700,2200-2300)
(Minus 5 Days prior to inspection)
(0700-1630)
(24Hr Day with Normalization (Note 1)

Figure 42 - Timeframes Defined

Note 1: The task Crew Leisure Activities occur in the Random Based

Timeframe. The Random Based timeframe has a normalization factor to account for

activities that would naturally become lower during specific times of the day. These

activities include web browsing and using the network for entertainment purposes.

Normally during the Mid-Watch, a significant portion of the crew is sleeping; thus a

60% reduction normalization was applied to the calculated load to reduce the loading to

reflect real life. Also during the day the crew is busy doing other task areas therefore a

30% reduction normalization was applied to crew activities during this time frame. Last,

during meal times a 80% reduction normalization was applied due to the fact that a

significant portion of the crew is eating and not doing network activities.

3. Workloads Assumptions

a. Mean Application Frequency for Given Timeframe

The mean frequency for each application is expected to occur for a given

task area (e.g. Random Day Based occurs from 0700-1630). These numbers were based

on what is needed to support the given task area.

b. Mean Size of Application Loading

OPNET Modeler helped provide this data. The determined load size of

each application are listed and described below:

96-

□ HTTP: This application supports two sizes 43KB and 6KB. 43KB

is considered image browsing and consists of one ASCII page

with a constant size of 1KB and 7 large image pictures with a

mean size of 6 KB. This equals 43KB per page. 6KB is

considered regular browsing and consists of one ASCII page of

constant size 1 KB and 5 medium picture files of 1 KB each for a

total of 6KB. Each request and response is preceded by a 150-

byte header, but will be assumed zero in calculations. OPNET

maintains four TCP connections per HTTP client to limit the

number of active connections at any given time. HTTP 1.1

persistent protocols is used during the simulation. One SWIPNet

DC report sent corresponds to one 6KB ASCII HTTP request.

a FTP: This application supports two mean sizes of 1MB and

300KB for get/puts, The acknowledgement of a put transaction is

a constant 512-byte message. In a get transaction, the initial

request is a constant 512-byte message. Effective transfer sizes

are assumed to be 1MB and 300KB for a get or put.

Q Streaming Audio/Video: This assumes high quality video of

128x120 resolution at 10-frames/ sec. and assumes equal and

constant bandwidth in both directions (client to server and back).

An estimation of a mean streaming video session is 15.5 MB each

used to calculate the workloads.

a Email: Supports one size of 40 KB. This assumes the mean size

of each person's mail is 20 KB and that you have one sender and

one receiver. So you have one upload and one download for a

total of two for each email. E-mail is acknowledged by a 16-byte

response message, so the effective transfer is 40KB per e-mail

sent.

97-

□ Database (DB): Supports one size of 32KB per query/entry of the

database. Each database query transaction request is a constant

512-byte acknowledgement. Effective transfer per query/entry is

assumed a constant 32 KB for this application.

c. Timeframe#

All task areas will be mapped to a specific timeframe. The timeframes

depicted in Figure 42 are the respective times expected to occur.

d. Task Areas

15 task areas were evaluated. It is assumed that all of these tasks will be

performed only via handheld wireless units. It is understood the workloads developed

from these tasks could occur on wired workstations, but the analysis looks at worst load

conditions. Workstations would have the advantage of tying into the 100 Mbps BUS

LAN, but the 11 Mbps wireless section is the main focus in this study.

e. Servers

Assume that all the tasks will be serviced from a central location.

Specifically, the PDC and BDC, which are located in NAV. These services are provided

for an assumed 24-hour normal workday. The BDC is disabled to allow analysis of a

full workload through one server, the PDC.

/. Application Services Selection

It is assumed that only HTTP, FTP, e-mail, Database, and Streaming

Audio and Video are needed for all 15 task areas defined earlier. Telnet services loading

were assumed to be negligible due to its light loading requirements.

4. Workloads Plotted

Results were plotted in Figure 43. This figure shows that the maximum loading

occurs between 1900 and 2100. These times will be the focus within the OPNET model.

-98

24 HR Load (MB/HalfHour)

200.00

ooooooooooooooooooooooop oooooo o p p p p o opoppppppopp
Oi>(VP3VIO(DN(»0)0^n/WV'0!ON 00 0> C> r~ C\J CO

Time 24 hrs(30 min div)

J

Figure 43 - Twenty-Four Hour Loading Results

5. Workload Grouping

All workloads (i.e., HTTP43KB, HTTP6KB, FTP300KB, FTP1MB, EMAIL

40KB, DB32KB and Streaming Video) are applied simultaneously with a Poisson

distribution inter-arrival time (illustrated in Table 5) and are calculated from their mean

frequency per half hour.

99

Application Supported HTTP ~> FTP ~> Streaming Email Database

Size (KB) -> 3 6 1000 300 15500 40 32

Mean Total Frequency (per half hour) -> 0 304 6 1 1 15 79
Mean Inter Arrival Time
(seconds between events) -> 0 6 293 1,464 1,239 117 23

Table 5 - Inter-Arrival Times

6. Application Grouping

Similar applications are group and applied them to five distinct wireless clients.

For example, HTTP6KB and HTTP43KB were applied to the HTTP wireless client.

7. OPNET Simulation Results

This section presents and discusses the results from the OPNET Model with a

"xl" (times one) workload applied. This workload is the two hour time period (1900 to

2100) developed in the 24-hour workload graph discussed earlier. Probes were placed

throughout the model to collect Link Throughputs, Application Response Times and

Throughputs, and Wireless Delay, Load and Throughput and Ethernet Delay.

Simulations reach steady state about the 10 minute mark, so this simulation was run to

30 minutes and captures the behavior for a two hour interval described in the workload

section. The Full workload was distributed as follows. DB Client was in AP12 (Blue

Subnet), EMAIL Client within AP3 (Orange Subnet), VIDEO Client within AP14 (Red

Subnet), HTTP Client within AP4 (Gold Subnet), and FTP client within API3 (Green

Subnet).

a. Subnet-to-Subnet Throughput (bps)

Figure 44 depicts the traffic flow between subnets. As shown, the

maximum steady state throughput of 1,540,000 bps occurs between the Red to Green

Subnet and the Green to Gold Subnet Link. This steady value is reached at the 30-minute

100

real time point of the simulation. This highest throughput occurs in these link due to

placement of the HTTP client within the Gold Subnet and the VIDEO client within the

Red Subnet.

CS4554 Sub LANSplitNewDesign Basic WoikLoad: aver... Hol El

■ Object SubNotRed <-> SubNetJjreen [0] of Submame Network <-
■ Object SubNet_Red <-> SubNet_Blue (0] of Submarine Network <•■
■ Object SubNeLOrange <■> SubNet_Gold [0] of Submarine Network <■
■ Object SubNet Green <■> SubNeLGold [0] of Submarine Network <-■

abject SubNet.Gold <■> SubNet.Red [0] of Submarhe Networfc <■•
■ Object SubNetBlue <•> SubNeLOrange [0] of Submarine Network <-

average of poinHo-point.throughput(bits/sec)
1.750,000

1.500.000.

1^0.000 .

1J00.0OO

750.000!

500.000 t

250.000!

I
Om 5m

II I I I
10m 15m 20m 25m 30m

Figure 44 - Subnet-to-Subnet Throughput [bps vs. minutes (m)]

b. Application Mean Response Time

Figure 45 b) illustrates the events (dots) occurring during the simulation.

The max response time is three seconds for an FTP download. This makes sense

because FTP is the largest file (1MB) within the applications. The Mean (Average)

Response Time is also included.

-101

■ average of DB Entry. Response Time (sec)
■ average of DB Querji.Response Time (sec)
■ average of Err^.Dovm(aad Response Time Isec)
■ averarje of Ftp-Downtoad Response Tme (sec)

average of HTTPPage Response Time (seconds)
■ average of Video Conleiencing,Packef End-tc-End Delay (sec)

i
Om

I
5m

~T~
10m

I
15m

I
20m

T

r
25m 30m

CS4554 Sub_LAN-SplitNewDesign_Basic_WorkLoad:

I DB Entry.Response Time (sec)
I DBQueiy.Response Time (sec)
I EmalDowiload Response Time (sec)
I Ftp-Downfoad Response Time (sec)

HTTP.Paae Response Time (seconds)
I Video Conferencing.Packet EntHo-End Delay (sec)

1 .-

r~
Om

- M " - .« * •%■■-«

~T~
10m

I
15m

I
20m

"I ■,
30m

Figure 45 - a) Application Response Time b) Application Response Time

c. Application Load (Wireless Clients)

It can be seen, from Figure 46, that VIDEO and HTTP clients place the

largest load on the system. This occurs because HTTP has a very high frequency (or

small Inter arrival time) and video because it is sending and receiving 10 frames/sec at

128 by 120 resolution.

siqn Basic WoikLoad:

■ Object VideoSator of Submarine NetworkSubNet RedAPU
■ Object EMAILSaior of Submarine Nat*wrk.SubNe(_0rar«eAP3
■ Object FTRSeüor of Submarine Network.SubNet QreenAP13
■ Object HTTPSaüar of Submarine Network.SubNet_Go]dAP4

0rjjectDBSailaolSubmariieNetwork:SubNet_BlueAP12
average of Wide» Lan-Load (bits/sec)

;'; 1.500JMO

1.250.000.

1.000.000.

750.000

500.000

250.000

ok.
I

0m
I) I I I

5m 10m 15m 20m 25m 30m

Figure 46 - Application Load From Wireless Clients [bps vs. minutes (m)]

102-

d. Ethernet Delay

The Ethernet Delay is constant at .000376 sec, as shown in Figure 47.

This value is similar to the calculated values presented latter in the Analytical Modeling

section.

CS4554_Sub_lAN-SplitNewDB HöEBSBEaEäS

i^&^si^

^.ÄWfc-«-^;«*'^^
$&$ij£& äi;%w^ . i.V.- A.

i^^^^^^S
' iSi^ÜI

: .'".-v-:* — \- m 1H

^aiftiwt-
ÄflH rl8

,-':;.-. ' : ■- *,'■•* •i ■"

tlte, -5a ,.)*•',; 15» :
I

3&n

Figure 47 - Ethernet Delay for a Basic Workload

J. ANALYTICAL MODELING

To validate the results generated from the OPNET simulation model of the

submarine LAN, an analytical model was developed in order to provide values that

could be compared to the values generated by the simulation. Since the submarine LAN

utilizes an Ethernet protocol, the mean delay equation for CSMA/CD networks

presented in Sadiku and Hyas' Simulation of Local Area Networks [Sadiku95] provided

an easy and efficient way to measure the effects of various sizes of data transferred on

the network.

1. Definition of Problem

Due to the complexity of the submarine LAN architecture, taking measurements

of the entire network proved to become overly tedious. Therefore, in order to simplify

the analytical model, the worst case scenarios was chosen to provide a comparison of the

two models. The Longest Path scenario relates to the longest path that data must travel

-103-

and the maximum nodes encountered. For the submarine LAN, the longest path (see

Figure 48) was determined by simulating the data that must travel from the primary

server and reach a user at access point 13 within the Gold subnet. Switches A and B

were made unavailable within both models (OPNET and Analytical) to represent those

components being considered not operational. This forces the data to travel from the

primary server through Switch C, out through switch 5, switch 4, switch 3, switch 2,

access point 13, and eventually reaching the client. The overall distance is estimated to

be 495 feet.

• SEE

model:

Figure 48 - Longest Path scenario

2. Assumptions of the Analytical Model

The following lists the assumptions made in order to conduct the analytical

a Arrivals at all nodes follow a Poisson arrival rate.

Q Queues are modeled as a M/G/l [Sadiku95].

a All stations generate traffic at the same rate.

104

a Packet Length is equal to the Maximum Segment Size of 64Kbits.

a The transmission medium is assumed to be error free.

a The propagation delay is 5 |is/km through the transmission medium.

□ The wireless components are treated as CSMA/CD connected devices to

simplify the calculation vice CSMA/CA

o Longest Path: Switches A and B are non-operational, thus the longest

path from the access point within the Green subnet to the server is 495 ft.

3. Approach

The general formulas used to determine the Ethernet Delay E (D) are illustrated

in Figure 49. E (D) was calculated for several values of mean arrival rate (X) (i.e., 20,40,

60, 80, and 100 packet/sec) applied to one client within AP13. Note: The actual values

and computation were performed using a Microsoft Excel spreadsheet. Example

calculation: X = 20 packets/sec (with Packet Length = 64000 bits/packet):

Ac man*«nicefine: B(S)

H(S) » U>/R« 6«00 / BOOOO 000

E(S)»OJ00064f

9u imuiaitfllxa*: V
Jl-20 »64000-1,280000 bpt

9Mt«td tBimlz«to: X X

Nk- 20 * 11680 * U l,280,000*p((baci<tp*öi)

Hu*tfhMH*itr: p
p-Jl »US)" 1^80,000 «•0.0004400-019J
9M «kite «aApcp*(4ioa.*lqr: x
X-1 *P « 495 / 3.2B *a00000000 - 7.54 * 10-* (

Fn- covtM* ytdcstafBt: apt), ■;&)
H»-t* ,«adI(S»)-S«(S>- *096 *10-7

Mean Ethernet Belay E(D):

A [* < i*2')-+(4« + 2)«2 C^)+5* 2 + 4«(2V-1)* 2 J
^(£)) " 2 U-*£*(£).+ *+2.t«J>

- i .|i?ui' _ m ,' +2.* + S(.Sy + ■«- - .00032 Mc

Figure 49 - Calculation of Mean Ethernet Delay E(D)

105

Using the mean delay equation, delay values were calculated for the Longest

Path scenario. The only input parameter that was varied during the computation of

values was the total arrival rate of the data.

In order to provide a comparison set of values that could be compared with the

OPNET and the analytical results, a C simulation program for CSMA/CD LAN's

(Appendix B of the Sadiku and Hyas text [Sadiku95]) was compiled and ran. The

parameters (i.e. Distance, #nodes, bus speed, etc) for the Longest Path scenarios were

input to the program and the results for the Mean Ethernet Delay, E(D), were calculated.

4. Analytical Results

The results of the analytical model were computed using a Microsoft Excel

spreadsheet. These values are compared in Table 6 to the OPNET results and C

simulation program.

(packets/sec) E(D) in sec [Eqtn Shown] E(D) in sec [Sadiku's Program] E[D] in sec OPNET

JMHL 0 0 0

20 0.000320324 0.000335294 0.00040523

0.000320129 0.000342993 0.000404641

Np^^ Wmm WM 0.000320064 0.000353308 0.000405748

*®$33& 0.000320032 0.000364436 0.000406155
iiwi

»SSI«
0.000320012 0.00037772 0.00040702

Table 6 - Longest Path E(D) Comparison Table

Next these values were plotted in order to graphically represent the results

(Figure 50). As the graphs indicate, there is a great deal of similarity between the values

of the analytical model and the Sadiku and Eyas CSMA/CD simulation program

[Sadiku95] values. Additionally, both of these results nearly correspond to the results

from the OPNET simulator. The average E (D) between these three methods for the

Longest Path scenario is approximately .00036825 sec.

-106-

Longest Path Delay vs Arrival Rate

OJ0005

f OJ0004 s
SJ 0.0003

£ 0.0002
•9 aojoooi

N=l nodes (CBMI)

Bos Rale = 100Mbps

Lp= 64000 Bits

Length» 495 ft

« » Ä "» » © t>{ > to to e

Arrival Rate (jpps)

Figure 50 - Delay vs. Arrival Rate

E(D) in Seconds
[Sadikn's
Program]
E[D] in Seconds
OPNET
Modeler
E(D) in Seconds
[Eqtn Shown]

The differences between calculated and the actual OPNET model is attributed to

the simplifying assumptions made for CSMA/CA type networks.

K. SENSITIVITY ANALYSIS

1. Workloads Applied

The following scenarios were run to stress the system, by increasing the number

of clients/workload, until the system failed. It is shown that VIDEO streaming clients

severely limits the overall number of clients the system can handle. So to increase the

number of HTTP, FTP, DB, and EMAIL clients, VIDEO was excluded or varied to see

were the system performance degraded significantly. FTP Response is shown in Figure

51. The following workloads were applied:

a "Basic_Workload" - Is the workload developed within the Workload

Section of this chapter. Includes one client of VIDEO, HTTP, FTP,

EMAIL, and DB (5 Wireless Clients total).

107-

a "x5_VF' Workload - Increases the Basic Workload by five (25 Clients

total)

□ "xlO_x8Vid" - Increases HTTP, FTP, EMAIL, and DB by 10 and Video

by eight. (48 Clients total). At this point the degradation of the

MAC/TCP layers were seen. Buffer overflows started causing dropped

packets and the simulation would only run for 15 minutes (model time)

and took 14 hours to finish the simulation.

□ "xlO_VT" - Increases the Basic workload by a factor of 10. (50 Clients

total). This simulation resulted in a simulation failure.due to 10 video

clients overloading the system and causing excessive buffer overflows.

a "xlO_NoVid" - At this point the simulations was changed to include no

video. This simulation is a factor of ten of the basic workload without

VIDEO. (40 Clients Total).

□ "x 19_NoVid" - This idea continues (76 Clients total).

a "x38_NoVid" - Represents 152 wireless clients excluding video.

a "x57_NoVid" - Represents 228 wireless clients excluding video. The

maximum delay for each packet in this workload approaches 35 seconds

at the 30 minute real time point of the simulation. This delay is

unacceptable and is a result of having to many clients that are overloading

the system. This delay is similar to the degradation seen in the

"xl0_x8Vid" workload that provided a huge VIDEO load on the system.

108

■IUi.BIJ^I.IJ.IBJIJ.IJ»IJIJ.I.MJJ.I.I.U1IIIWWWI
■ SND_x5_VF
■ SND_x57_NoVid_VF
■ SND_x38_NdVid_VF
■ SND x19 NoVid_VF

SND_x10 x6Vid_VF
■ SND_x10_x5Vid_VF

SND_x10_VF
SND_x10_NoVid_VF
CS4554_Sub_LAN-SpBlNowDesian_Basic_WoikLoad

average of Ftp.Download Response Time (sec)
40

10

-^\

-^ ^

;L

I
5m 10m 30m

Figure 51 - FTP Response Time (sec vs. minutes) [All Simulation Runs]

The Ethernet delay (Figure 52) for the full system centers around .0004 seconds

and is fairly constant regardless of the workload applied. This is attributed to the longest

path effect and constant distance (i.e. fixed wireless Clients assumption) that anchors

the system delay. This value is the expected delay for any simulation run.

■MJUi.lllJ.IMJI.lill.IJM.IJI.llll
H SND_xS_VF
■I SND_x57_NoVid_VF
■ SND_x3S_NoVid_VF
m SND_x1S_NoVid_VF

SND_x10_x8Vid_VF
■ SND_x10_x5Vid_VF

SND_x10_VF
SND_x10_NoVid_VF
CS4554_Sub_LAN-SpB«NewDesign_BaM'c_WorkLoad

average of Ethornet.Delay (sec)

I
30m

Figure 52 - Ethernet Delay E(D) (sec vs. minutes) [All Simulation Runs]

109-

As shown in Figure 53 the simulation with five video clients starts to become

unstable as End-to-End delay approaches infinity. Whereas the "x38_NoVid" remains

stable, but with borderline unacceptable response times.

I aveeageofVwfeoConlwenciri&Pat^
I avwag6ofHTTP.PagaRssponteTi»[s6cond«)
I avaageofRp;DovfltadResponseTime(s6c}
I average of EmaiDownloed Response Time (tec]

avetage of 08 Quay-Response Time (sec)
I average of OB Entiy.Retponse Time (tec)

I average of DB EntryBesporae Time {sec)
I average of DB Query^espcrue Tine (seel
I average of EmaiLDcvmload Response Tine (i8c)
I average of Ftp.DowoloadRe«porue Time (sec)

average of Ftp.Upload Response Time (sec)
I average of HTTP.Page Response Time (seconds]

Figure 53 - Response Times a) x5 Workload b) x38 with No Video

L. CHAPTER SUMMARY

This simulation of the proposed NTDPS LAN to determine the feasibility of

deploying a virtual DC system based on this LAN's loading capacity and the 14 other

tasks that could be assumed would be running at various times throughout the day.

Based on this study this Network could easily handle this application. It has been shown

during this study that up to 152 wireless clients with each running the full fifteen tasks

workload, as shown in Figure 41, can run without acceptable degradation. If this virtual

DC application integrates streaming video on this system then no more than five could

be transmitting this video stream at one time. These five could be improved to a higher

value if these bandwidth intensive streams could be moved to a hardwired connection

and thus take advantage of the 100Mbps line. This study has also shown that this system

has an expected worst case delay, of .00036825 seconds, is fairly constant regardless of

the proposed workloads applied. Also based on the normal days workload, as shown in

Figure 43, the peak workload would occur between 1900-2100 giving more room on the

110

network for virtual DC drills that normally occur during the daytime. Ultimately this

study has shown that this system could provide support for a real casualty that could of

course occur anytime.

-Ill

THIS PAGE INTENTIONALLY LEFT BLANK

-112

VII. RECOMMENDATIONS AND CONCLUSION

A. SUMMARY

This thesis explored current software and hardware technologies to determine

their effectiveness on today's submarines. It looked at a five year culmination of

research conducted by the NPS wireless research group and summarized this research

into six key areas: wireless theory, standards, hardware, software development, testing

and system requirements. This thesis then advanced these concepts in the area of

software development and network simulation testing.

Software development includes analyzing the day-to-day routine onboard a

submarine to determine what task could be improved with a wireless based application

design. Fifteen tasks were identified that could benefit directly from this type of

application. One important task, Casualty and Damage control, was selected as the

model for implementation. To help develop a design the DC communication model

from the USS Batfish was analyzed. From this model a set of design requirements were

developed that specified the minimum requirements the system would need. From these

requirements SWIPNet was developed. SWIPNet is a three console, Java based,

multithreaded, multicast socket driven, application. It is designed to provide standard

DC and crew reports to anywhere on a ship that has wireless coverage. This application

uses multicast sockets to create a virtual communication channel similar to the sound

powered phone communications used on submarines currently. Future application

features include the ability to provide streaming video from cameras attached to NFTI

and an ability to reference technical drawings virtually to provide more effective

casualty control. A database connection model was partially implemented to provide

persistent storage and reliability in case of a system wide power outage when battery

backups fail. For the persistent storage model a Microsoft Access 2000 database to store

system critical information was developed and JDBC (Java Database Connectivity) was

utilized to connect to SWIPNet for initialization.

-113-

After the completion and demonstration of SWIPNet it was important to know if

this application would function effectively in a real wireless submarine environment. To

accomplish this in the most precise manner OPNET Modeler 7.0B was used to produce a

simulation of the NTDPS, a proposed Virginia Wireless network, in the presence of a

SWIPNet type load. This simulation had several parts. The first part involved a slight

modification to the original design obtained from NAVSEA Code450 to adhere to the

OPNET Modeler criteria. The next step included designing a submarine cross section

and laying out the network components (Switches, Servers, Subnets etc). The next step

involved the creation of a detailed 24 hour workload that includes a SWIPNet type load

and uses various combinations of HTTP, FTP, EMAIL, DB and Audio and Video to

accomplish their tasks. This full workload was then applied to the built OPNET

simulation. Subnet-to-Subnet throughput and application response time graphs show

that SWIPNet would work well on the NTDPS. Sensitivity analysis was also performed

to determine when this system would fail by progressively increasing the full workload

factor. This analysis showed that the system performs satisfactorily up to 152 wireless

clients (each carrying a full workload). To provide an extra layer of validity to the

simulation an analytical model was developed for the longest path scenario and the

Ethernet delay was compared. The results showed the simulation to be accurate based

on similar Ethernet delays.

B. RECOMMENDATIONS FOR FUTURE WORK

SWIPNet is designed to become a deployable virtual DC application. Currently

the application is deployable yet it lacks a "full" implementation of three features that

this thesis had originally set out to complete. The first includes persistent storage to

provide a robust solution against a network power outage and a boat specific

initialization sequence. Currently a database and the connection classes (JDBCBridge

and Initialize) have been created, but not linked within the SWIPNet code. A

recommendation for future work is to use these designed components and finish the

linkage to the SWIPNet application. The second feature would be to finish the

114

integration of a NFTI camera video stream into the sender and listener consoles and the

last feature is the displaying of technical drawings to help provide isolation of

components in a casualty.

Other areas that could be explored, is to provide a model such as XML for the

persistent storage model and a Server Side connection model (e.g. Servlets, JSP's and

Enterprise JavaBeans) described in Chapter V. These models could potentially replace

the relational database (Microsoft Access 2000) and JDBC models currently designed.

Also the OPNET Modeler simulation performed in Chapter VI, could be updated as the

more design decisions have been made concerning the NTDPS on the Virginia class

wireless network.

C. FINAL CONCLUSION

Access to information is the key for efficient communications onboard a

submarine. We must continue to reevaluate our systems to determine the best solution.

Technology has produced COTS based wireless components that give us the ability to

access information in a mobile environment. It provides us more flexibility and

increases information flow at a low cost. This thesis takes advantage of this technology

by developing Java based application, known as SWIPNet. SWJPNet can be used to

provide more efficient DC communications and quicker response times. This improved

DC model can ultimately make our submarines safer.

SWIPNet is an example of what we can do with a wireless system. It illustrates

forward thinking of current task and procedures. This application and others like it are

the future of mobile computing. It is imperative to place these tools into the hands of our

personnel today to create a powerful dynamic work environment to meet our demands of

tomorrow.

-115

THIS PAGE INTENTIONALLY LEFT BLANK

-116

APPENDIX A - SELECTED SOURCE CODE

Package: swipNetcontrol
Class: DCNet

package swipNet.control;
import j ava.awt.*;
import java.awt.event.♦;
import Java.applet.♦;
import j avax.swing.*;
import j avax.swing.border.*;
import swipNet.utility.Initialize;

/**
* DCNet class provides and configuration and launching display,
* it has the ability to configure the station location,
* multicast address and launch a Client (sender) and/or
* Server(listener)<p>
* ©author LT William G. Wilkins
* ©version 1.0

*/

public class DCNet extends JApplet {

boolean isStandalone = false;

/♦♦controls first time initialization from user preferences
*/
protected boolean firstTimeC = true;

/♦♦controls first time initialization from user preferences
*/
protected boolean firstTimeS = true;

/♦♦Object to initialize the gui comboboxes
*/
protected Initialize iz = new Initialize();

/♦♦Client Applet that is launched from DCNet
*/
protected Client c;

/♦♦Server Applet that is launched from DCNet
*/
protected Server s;

/♦♦Position Dividers
*/
Divider divOne =new Divider();
Thread threadOne = new Thread(divOne);

JToggleButton toggleButtonClient = new JToggleButton();
JToggleButton toggleButtonServer = new JToggleButton();
JPanel cPanel = new JPanel(); JPanel sPanel = new JPanel();
JFrame cNewFrame = new JFrame(); JFrame sNewFrame = new JFrame ();
JLabel jLabelOne = new JLabel();
JComboBox jComboBoxOne = new JComboBox(iz.dccCasLocArray);
JLabel jLabelTwo = new JLabel();
JComboBox jComboBoxTwo = new JComboBox(iz.multicastChoices);
JLabel jLabelThree = new JLabel();
JComboBox jComboBoxThree = new JComboBox(iz.multicastChoices);

117

JLabel jLabelFour = new JLabel();
JComboBox jComboBoxFour = new JComboBox(iz.dccCasLocArray);
JLabel jLabelFive = new JLabel();
JComboBox jComboBoxFive = new JComboBox(iz.multicastChoices);
JLabel jLabelSix = new JLabel();
JComboBox jComboBoxSix = new JComboBox(iz.multicastChoices);
JLabel jLabelSeven = new JLabel();
JComboBox jComboBoxSeven = new JComboBox(iz.multicastChoices),-

/** Constructor of DCNet*/
public DCNet() {

this.setName("") ;

}
/** Constructor of DCNet
* @param args receive name from mainO
*/

public DCNet(String [] args){
this.setName("");

}

/** initialize DCNet*/
public void initt) {

try {
jblnit() ;

}
catch(Exception e) {

e.printStackTrace() ;
}

}

/**
* jbinitO, used in Jbuilders gui builder interface, creates the GUI
*/

private void jblnit() throws Exception {
this-getContentPaneO.setSize(1010,100);
this.getContentPaneO.setLayout(new GridLayout(1,0));

//set preferences
cNewFrame.setSize(380,720);
sNewFrame.setSize(1060,960);
toggleButtonClient.setText("<htmlxfont size=3

color=white><bold>LAUNCH</fontx/html>") ;
toggleButtonServer .setText ("<htmlxfont size=3

color=whitexbold>LAUNCH</html>,') ;
cPanel.setBackground(new java.awt.Color(166,162,187)) ;
cPanel.setBorder(BorderFactory.createEtchedBorder());
cPanel.setToolTipText("Create Casualty Channels to Send on");
cPanel.setLayout(null);
sPanel.setBackground(new java.awt.Color(177, 156, 176));
sPanel.setBorder(BorderFactory.createEtchedBorder());
sPanel.setToolTipText("Create Casualty Channels to Listen on");
sPanel.setLayout(null);
jLabelOne.setFont(new java.awt.Font("Serif", 1, 12));
jLabelOne.setForeground(Color.white);
jLabelOne.setText("SET Location");
jLabelTwo.setFont(new java.awt.Font("Serif", 1, 12));
jLabelTwo.setForeground(Color.white);
jLabelTwo.setText("DC Channel");
jLabelThree.setFont(new java.awt.Font("Serif", 1, 12));
jLabelThree.setForeground(Color.white);
jLabelThree.setText("SHIP Channel");
jLabelFour.setFont(new java.awt.Font("Serif", 1, 12));
jLabelFour.setForeground(Color.white);
jLabelFour.setText("SET Location");

118

jLabelFive.setFont(new java.awt.Font("Serif", 1, 12));
jLabelFive.setForeground(Color.white),-
jLabelFive.setText("DC Channel 1°);
jLabelSix.setFont(new java.awt.Font("Serif", 1, 12));
jLabelSix.setForeground(Color.white);
jLabelSix.setText("DC Channel 2");
jLabelSeven.setFont(new java.awt.Font("Serif" , 1, 12));
jLabelSeven.setForeground(Color.white);
jLabeISeven.setText("SHIP Channel");
Insets insetsC = cPanel.getlnsets();
jLabel0ne.setBounds(5 + insetsC.left, 0 + insetsC.top, 75, 35);
jComboBoxOne.setBounds(85 + insetsC.left, 7 + insetsC.top, 95, 20);
j ComboBoxOne.setSelectedlndex(0);
jLabelTwo.setBounds(5 + insetsC.left, 34 + insetsC.top, 75, 35);
jComboBoxTwo.setBounds(85 + insetsC.left, 41 + insetsC.top, 95, 20);
jComboBoxTwo.setSelectedlndex(0);
jLabelThree.setBounds(225 + insetsC.left, 34 + insetsC.top, 80, 35);
jComboBoxThree.setBounds(310 + insetsC.left, 41 + insetsC.top, 95, 20);
jConiboBoxThree.setSelectedlndex(2) ;
toggleButtonClient.setBounds(190 + insetsC.left, 5 + insetsC.top, 300, 25);
toggleButtonClient.setBorder(BorderFactory.createEtchedBorder());
toggleButtonClient.setBackground(new Color(143,138,170));
Insets insetsS = sPanel.getlnsets();
jLabelFour.setBounds(5 + insetsS.left, 0 + insetsS.top, 75, 35);
jComboBoxFour.setBounds(85 + insetsS.left, 7 + insetsS.top, 95, 20);
jComboBoxFour.setSelectedlndex(0);
jLabelFive.setBounds(5 + insetsS.left, 34 + insetsS.top, 80, 35);
jComboBoxFive.setBounds(85 + insetsS.left, 41 + insetsS.top, 80, 20);
jComboBoxFive.setSelectedlndex(0);
jLabelSix.setBounds(170 + insetsS.left, 34 + insetsS.top, 80, 35);
jCoiriboBoxSix.setBounds (250 + insetsS.left, 41 + insetsS.top, 80, 20);
jComboBoxSix.setSelectedlndex(1);
jLabelSeven.setBounds(335 + insetsS.left, 34 + insetsS.top, 80, 35);
jComboBoxSeven.setBo;inds(415 + insetsS.left, 41 + insetsS.top, 80, 20);
j ComboBoxSeven.setSelectedlndex(2);
toggleButtonServer.setBounds(190 + insetsS.left, 5 + insetsS.top, 300, 25);
toggleButtonServer.setBorder(BorderFactory.createEtchedBorder()) ;
toggleButtonServer.setBackground(new Color(159,134,158)) ;

//add
this.getContentPaneO.add(cPanel);
cPanel.add(jLabelOne) ;
cPanel.add(jComboBoxOne);
cPanel.add(jLabelTwo);
cPanel.add(j ComboBoxTwo);
cPanel.add(jLabelThree) ;
cPanel.add(j ComboBoxThree);
cPanel.add(toggleButtonClient);
//add
this.getContentPane().add(sPanel) ;
sPanel.add(jLabelFour);
sPanel.add(j ComboBoxFour);
sPanel.add(jLabelFive);
sPanel.add(j ComboBoxFive);
sPanel.add(jLabelSix);
sPanel.add(JComboBoxSix);
sPanel.add(jLabelSeven) ,-
sPanel.add(jComboBoxSeven);
sPanel.add(toggleButtonServer);

}//end jblnit

/** start() the applet, adds listeners to buttons to launch a sender or
listerner based on user

location and multicast address input */

119

public void start() {

toggleButtonClient .addltemListener(
new ItemListenerO {
public void itemStateChanged(ItemEvent e)
{

try {//Put Desire Action Here

if (e.getItemSelectable()==toggleButtonClient){

if (e.getStateChangeO ==
ItemEvent.SELECTED){

if(firstTimeC == true){
String holdString[]

= {(String)jComboBoxOne.getSelectedltemO ,

(String)jComboBoxTwo.getSelectedltemO ,

(String)jComboBoxThree.getSelectedltemO} ;

c =new Client(holdString);
cNewFrame.getContentPane().add(c,

BorderLayout.CENTER);//Client

cNewFrame.setTitle((String)jComboBoxOne.getSelectedItem()
+ ", Casualty Traffic on "
+

(String)jComboBoxTwo.getSelectedItem()
+" Ship Traffic on " +

(String)jComboBoxThree.getSelectedltemO);
cNewFrame.setLocation(0,100);
c.init();
c.start();
cNewFrame.addWindowListener(

new WindowAdapter(){
public void windowClosing(

WindowEvent e)

cNewFrame.setVisible(false) ;

color=white><bold>reLAUNCH</fontx/html>n);

toggleButtonClient.setSelected(false);

{

toggleButtonClient.setText(
"<html><font size=3

);
}

}

}
cNewFrame.setvisible(true);
toggleButtonClient .setText(
"<html><font size=3

color=white><bold>HIDE</f ontx/html>") ;
firstTimeC = false;

}//end inner if
else{

cNewFrame.setvisible(false);
toggleButtonClient .setText(
"<htmlxfont size=3

color=whitexbold>reLAUNCH</fontx/html>") ;
}//end else

}//end outer if
}//end try
catch (Exception ex){

-120-

ex.printStackTrace();
}

}});//end inner class and method call

toggleButtonServer .addltemListener(
new ItemListener() {

ItemEvent.SELECTED){

public void itemStateChanged(ItemEvent e)
{

try {//Put Desire Action Here

if (e.getItemSelectable()==toggleButtonServer){
if (e.getStateChangeO ==

={(String)jComboBoxFour.getSelectedltern()

(String)jComboBoxFive.getSelectedltern(),

(String)j ComboBoxSix.getSelectedltem(),

(String)jComboBoxSeven.getSelectedltem()}

BorderLayout.CENTER);//Server

if(firstTimeS == true){
String holdString[]

s =new Server(holdString);

sNewFrame.getContentPane().add(s,

sNewFrame.setTitle((String)jComboBoxFour.getSelectedltem()
+ ", Casualty Traffic on "

(String)j ComboBoxFive.getSelectedltem()

(String)jComboBoxSix.getSelectedltem ()

(String)jComboBoxSeven.getSelectedItem())

WindowEvent e)

+

+ " and " +

+" Ship Traffic on " +

sNewFrame.setLocation(0,100);
sNewFrame.setVisible(true);
sNewFrame.addWindowListener(

new WindowAdapter(){
public void windowClosing(

{

sNewFrame.setVisible(false);

color=whitexbold>reLAUNCH</html>"),

toggleButtonServer.setSelected(false);

Set Dividers

color=whitexbold>HIDE</fontx/html>") ;

toggleButtonServer.setText(
"<htmlxfont size=3

}
}

);
s.init();
s.start();
threadOne.start();//Start Thread to

}
sNewFrame.setVisible(true);
toggleButtonServer .setText(
"<htmlxfont size=3

firstTimeS = false;

-121

}//end inner if
else{

sNewFrame.setVisible(false);
toggleButtonServer.setText(
"<htmlxfont size=3

color=white><bold>re]^UNCH</html>") ;
}//end else

}//end outer if
}//end try-
catch (Exception ex){

ex.printStackTrace();
}

}});//end inner class and method call

}//end Start

/**Stop the applet - not implemented*/
public void stopO {

}

/♦♦Destroy the applet, cleanup of threads and sockets of client and server
applets*/
public void destroy() {

c.destroy();
s.destroy();

}

private class Divider implements Runnable{//Inner Class to Set Dividers
public Divider(){}
public void run(){

s.setDivider();
}

}

/♦♦Entry Point, used to intialize the applet as an application, allows
program to function as

♦ an applet or an application

*@param args[] An array of methods from the command line arguments
♦©return void
♦/
public static void main(String[] args) {

DCNet applet = new DCNet(args);
applet.isStandalone = true;
JFrame frame = new JFrame();
frame.setTitle("DCNet Send DC

Channel Reports"
+ •■ |"
+" Monitor DC

Channels");
frame.getContentPane().add(applet, BorderLayout.CENTER);

applet.init();
applet.start();

/♦Stop process on window close*/
frame.addWindowListener(
new WindowAdapter(){
public void windowClosing(WindowEvent e)

-122

{

System.exit(0);
}

}
);

try{
Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
frame.setLocation(0, 0);
frame.setSize(1010,100);
frame.setVisible(true);

}
catch(Exception e){

}
}
// static initializer for setting look & feel
static {

try {

UIManager.setLookAndFeel("com.sun.j ava.swing.plaf.windows.WindowsLookAndFeel"
);

}
catch (Exception e) {}

}

}

123-

Class: Client object

import j ava.awt.*;
import j ava.awt.event. * ;
import Java.applet.*;
import j avax.swing.* ;
import javax.swing.border.*;
import Java.net.*;//Socket objects
import java.util.*;//For Date
import swipNet.utility.*;//Post Office
import swipNet.dcObjects.*;//Fire, etc
import swipNet.shipObj ects.*;//ShipStatus, etc
import swipNet.gui.*;//for control bar gui

/* *
* Client subsribes to two multicast address and sends Casualty and Ship
* reports within one Communicate thread; It creates a client gui by adding

*gui objects such as Firegui, etc
* and uses a Postoffice object to send, Fire, Flooding objects, etc.<p>
* ©author LT William G. Wilkins
* Oversion 1.0

*/
public class Client extends JApplet {

boolean isStandalone = false;

//Creation of GUI Objects
//Fire
//Level 1
JTabbedPane casualtyTabPanel = new JTabbedPane();
//Level 2
Fire fireOne = new Fire(false);//Set false since a client
Flooding floodingOne = new Flooding(false);
HydRupture hydRuptureOne = new HydRupture(false);
AirRupture airRuptureOne = new AirRupture(false);
HotRun hotRunOne = new HotRun(false);
FastLeak fastLeakOne = new FastLeak(false);
SlowLeak slowLeakOne = new SlowLeak(false);
StmRupture stmRuptureOne = new StmRupture(false);
RxScram rxScramOne = new RxScram(false);
RadSpill radSpillOne = new RadSpill(false);
ShipStatus ss = new ShipStatus(false) ;
Engineeringstatus es = new Engineeringstatus(false);
CompartmentRigs cr = new CompartmentRigs(false);
ShipAtmospheres sa = new ShipAtmospheres(false);

//Misc Creation
ControlBarGui bar = new ControlBarGui();
BorderLayout borderLayoutl = new BorderLayout();
Communicate commOne;
Thread clientOne;

/**
* Client() constructor, used if no arguments are not supplied from user
*/
public Client() {

this.setName(-Casualty Traffic on ■ +"228.7.5.4" +" Ship Traffic on" +
228.7.5.6");

fireOne.setOwner("Scene", "228.7.5.4") .-//Nothing special about these
mulitcast address

fireOne.fireGui.host.setText("Send on 228.7.5.4");
floodingOne.setOwner("Scene","228.7.5.4");
floodingOne.floodingGui.host.setTextt"Send on 228.7.5.4");
hydRuptureOne.setOwner("Scene","228.7.5.4");

124

hydRuptureOne.hrGui.host.setText("Send on 22
airRuptureOne.setOwner("Scene", "228.7.5.4") ;
airRuptureOne.arGui.host.setText("Send on 22
hotRunOne.setOwner("Scene", "228.7.5.4") ;
hotRunOne.hrGui.host.setText("Send on 228.7.
fastLeakOne.setOwner("Scene", "228.7.5.4") ;
fastLeakOne.flGui.host.setText("Send on 228.
slowLeakOne.setOwner("Scene","228.7.5.4");
slowLeakOne.slGui.host.setText("Send on 228.
stmRuptureOne.setOwner("Scene", "228.7.5.4") ;
stmRuptureOne.srGui.host.setText("Send on 22
rxScramOne.setOwner("Scene","228.7.5.4");
rxScramOne.rsGui.host.setText("Send on 228.7
radSpillOne.setOwner("Scene","228.7.5.4");;
radSpillOne.rsGui.host.setText("Send on 228.

ss. setOwner ("Scene", "228.7.5.6") ,-
ss.ssGui.host.setText("Send on 228.7.5.6")
es.setOwner("Scene", "228.7.5.6") ;
es.esGui.host.setText("Send on 228.7.5.6")
cr.setOwner("Scene","228.7.5.6") ;
cr.crGui.host.setText("Send on 228.7.5.6")
sa.setOwner("Scene", "228.7.5.6") ;
sa.saGui.host.setText("Send on 228.7.5.6")

8 .7 5 4") ;

8 7 5 4") ;

5 4 '),

7 5 4");

7 5 4");

8 7 5. 4");

.5.4") ;

7 5 4");

conimOne = new Communicate("228.7.5.4","228.7.5.6"
clientOne = new Thread(commOne);

}
/**
* Client() constructor, used if arguments are supplied from user
*
* Sparam args used to set gui name and owner if arguments are supplied from

* user
*/

public Client(String [] args){

this.setName(args[0] + ".Casualty Traffic " +args[l] +"Ship Traffic " +
args[2]);

fireOne.setOwner(args[0] ,args[l]) ;
fireOne.fireGui.host.setText(args[0] +
floodingOne.setOwner(args[0],argsjl]);
floodingOne.floodingGui.host.setText(args[0]
hydRuptureOne.setOwner(args[0],args[1]);
hydRuptureOne.hrGui.host.setText(args[0] + "
airRuptureOne.setOwner(args[0],args[1] \;
airRuptureOne.arGui.host.setText (args [0]' + "
hotRunOne.setOwner(args[0],args[1]);
hotRunOne.hrGui.host.setText(args[0] +
fastLeakOne.setOwner(args[0],args[l]);
fastLeakOne.flGui.host.setText(args[0] + ",
slowLeakOne.setOwner(args[0] ,args[l]) ;
slowLeakOne.slGui.host.setText(args[0] + ",
stmRuptureOne.setOwner(args[0],args[1]) ;
stmRuptureOne.srGui.host.setText(args[0] +
rxScramOne.setOwner(args[0],args[l]);
rxScramOne.rsGui.host.setText(args[0] + ",
radSpillOne.setOwner(args[0],args[l]);
radSpillOne.rsGui.host.setText(args[0] + ",

ss.setOwner(args[0],args[2]) ;
ss.ssGui.host.setText(args[0] + ", Send on
es.setOwner(args[0],args[2]) ;
es.esGui.host.setText(args[0] + ", Send on
cr.setOwner(args[0],args[2]);
cr.crGui.host.setText(args[0] + ", Send on

Send on " + args[1])

Send on

Send on

H args[l])

+ args[l]);

", Send on " + args[l]);

Send on " + args[1]);

, Send on "

Send on

args[l]);

argsfl]);

", Send on "'• + args[l])

Send on " + args[l]);

Send on " + argsfl]);

+ args[2])

+ args[2])

+ args[2])

125

sa.setOwner(args[0],args[2]);
sa.saGui.host.setText(args[0] + ", Send on " + args[2]);

commOne = new Communicate(args[1], args[2]);
clientOne = new Thread(commOne);

}

/**
* initO - nest jbinitO, to catch exception and use Jbuilders gui builder

*interface
*/

public void init() {
try {
jbinitO ;

}
catch(Exception e) {

e.printStackTrace();
}

}

/**
* jbinitO, used in Jbuilders gui builder interface, creates the GUI
*
* ©return void
*/

private void jblnit() throws Exception {
this.setGUIPreferences();
this.addGuiComponents();
this.setJMenuBar(bar);

}
/**
* start the communicate thread
*
* ©return void
*/

public void start() {

clientOne.start();

/**
* Communicate - inner class that sends onjects to a server class
*/

private class Communicate implements Runnable{

int portNumber = 5000;
MulticastSocket socket;
InetAddress addressOne;
InetAddress addressTwo;

PostOffice po = new PostOffice();
String multicastAddressCasualtyOne= "228.7.5.4";//Default for Casualty

Objects
String multicastAddressCasualtyTwo= "228.7.5.6";//Default for ShipObjects

String threadName;
int sendNumFire■= l;int sendNumFlooding = l;int sendNumHrup = l;int

sendNumAr = 1;
int sendNumHrun = l;int sendNumFl = l;int sendNumSl = l;int sendNumSr = 1;
int sendNumRscram = l;int sendNumRspill = l;int sendNumSs = l;int sendNumEs

= 1;
int sendNumCr = l;int sendNumSa = 1;

/ * *
* Communicate(String mcAddressOne, String mcAddressTwo) - contructor, with

126

* String input address
* dparam mcAddressOne the address the casualty data is sent on
* ©param mcAddressTwo the address the ship data is sent on
*/
public Communicate(String mcAddressOne, String mcAddressTwo){

multicastAddressCasualtyOne = mcAddressOne;
multicastAddressCasualtyTwo = mcAddressTwo;

}

/**
*Adds listeners to each Button within each gui, and if pressed packages the
* current state of user input
* to the gui interface and sends the data using a postoffice object.
* ©return void
*/
public void run()

{

try
{

socket = new MulticastSocket(portNumber);
addressOne = InetAddress.getByName(multicastAddressCasualtyOne);
addressTwo = InetAddress.getByName(multicastAddressCasualtyTwo);
socket.joinGroup(addressOne);
socket.joinGroup(addressTwo);

threadName = "Thread One";
Thread.currentThread().setName(threadName);

fireOne.fireGui.jButton.addActionListener(//Listeners to

new ActionListener(){
public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

fireOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),"Messa
ge") ;

fireOne.setStatusFromGui();
po.sendMulticastPacket(fireOne,

socket,addressOne);

fireOne.fireGui.directLinkTextArea.append(sendNumFire++ + ": " + "Sent Fire,
Time: " + returnCurrentTime()+ "\n");

}
catch (Exception ex){
ex.printStackTrace();

}}}) ;

floodingOne.floodingGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

floodingOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),"M
essage");

floodingOne.setStatusFromGui();
po.sendMulticastPacket(floodingOne,

socket,addressOne);

floodingOne.floodingGui.directLinkTextArea.append(sendNumFlooding++ + ": " +
"Sent Flooding, Time: " + returnCurrentTime() +"\n");

}

send info

-127

catch (Exception ex){
ex.printStackTrace();

}}}) ;

hydRuptureOne.hrGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

hydRuptureOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),
"Message");

hydRuptureOne.setStatusFromGui();
po.sendMulticastPacket(hydRuptureOne,

socket,addressOne);

hydRuptureOne.hrGui.directLinkTextArea.append(sendNumHrup++ + ": " + "Sent Hyd
Rupture, Time: " + returnCurrentTime() +"\n");

}
catch (Exception ex){
ex.printStackTraceO ;

}}}) ;

airRuptureOne.arGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

airRuptureOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),
"Message");

airRuptureOne.setStatusFromGui();
po.sendMulticastPacket(airRuptureOne,

socket, addressOne);

airRuptureOne.arGui.directLinkTextArea.append(sendNumAr++ + ": " + "Sent Air
Rupture, Time: " + returnCurrentTime() + "\n") ;

}
catch (Exception ex){
ex.printStackTrace();

} } }) ;

hotRunOne.hrGui.j Button.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

hotRunOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),"Mes
sage") ;

hotRunOne.setStatusFromGui();
po.sendMulticastPacket(hotRunOne,

socket,addressOne);

hotRunOne.hrGui.directLinkTextArea.append(sendNumHrun++ + ": " + "Sent Hot Run,
Time: " + returnCurrentTime()+"\n");

}
catch (Exception ex){
ex.printStackTrace();

}}}) ;

fastLeakOne.flGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

-128-

fastLeakOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(), "M
essage");

fastLeakOne.setStatusFromGui();
po.sendMulticastPacket(fastLeakOne,

socket,addressOne);

fastLeakOne.flGui.directLinkTextArea.append(sendNumFl++ + ": " + "Sent Fast
Leak, Time: " + returnCurrentTime()+"\n");

}
catch (Exception ex){

ex.printStackTrace() ;
} }}) ;

slowLeakOne.slGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

slowLeakOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),"M
essage");

slowLeakOne.setStatusFromGui();
po.sendMulticastPacket(slowLeakOne,

socket,addressOne);

slowLeakOne.slGui.directLinkTextArea.append(sendNumSl++ + ": " + "Sent Slow
Leak, Time: " + returnCurrentTime() + "\n") ;

}
catch (Exception ex){

ex.printStackTrace();
}}}) ;

stmRuptureOne.srGui.jButton.addActionListener(
new ActionListener(){
public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

stmRuptureOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),
"Message");

stmRuptureOne.setStatusFromGui (•) ;
po.sendMulticastPacket(stmRuptureOne,

socket,addressOne);

stmRuptureOne.srGui.directLinkTextArea.append(sendNumSr++ + ": " + "Sent Stm
Rupture, Time: " + returnCurrentTime()+"\n");

}
catch (Exception ex){

ex.printStackTrace();
} }}) ;

rxScramOne.rsGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

rxScramOne.setData(addressOne.getLocalHost().toString(),returnCurrentTime(),"Me
ssage");

rxScramOne.setStatusFromGui();
po.sendMulticastPacket(rxScramOne,

socket,addressOne);

rxScramOne.rsGui.directLinkTextArea.append(sendNumRscram++ + ": " + "Sent Rx
Scram, Time: " + returnCurrentTime()+"\n");

-129

}
catch (Exception ex){
ex.printStackTrace();

}}}) ;

radSpillOne.rsGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

radSpillOne.setData(addressOne.getLocalHost().toStringO,returnCurrentTime(),"M
essage");

radSpillOne.setStatusFromGui();
po.sendMulticastPacket(radSpillOne,

socket,addressOne);

radSpillOne.rsGui.directLinkTextArea.append(sendNumRspill++ + ": " + "Sent Rad
Spill, Time: " + returnCurrentTime()+"\n");

}
catch (Exception ex){
ex.printStackTraceO ;

}}}) ;

ss.ssGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

ss.setData(addressTwo.getLocalHost().toStringO ,returnCurrentTime(),"Message");
ss.setStatusFromGui();
po.sendMulticastPacket(ss, socket,addressTwo);
ss.ssGui.directLinkTextArea.append(sendNumSs++ +

": " + "Sent Ship Status, Time: " + returnCurrentTime()+"\n");
}
catch (Exception ex){
ex.printStackTrace();

} } }) ;

es.esGui.jButton.addActionListener(
new ActionListener(){
public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

es.setData(addressTwo.getLocalHost().toStringO ,returnCurrentTime(),"Message");
es.setStatusFromGui();
po.sendMulticastPacket(es, socket,addressTwo);
es.esGui.directLinkTextArea.append(sendNumEs++ +

": " + "Sent Eng Status, Time: " + returnCurrentTime()+"\n");
}
catch (Exception ex){
ex.printStackTrace();

}}}) ;

er.crGui.jButton.addActionListener(
new ActionListener(){
public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

er.setData(addressTwo.getLocalHost().toStringO,returnCurrentTime (), "Message") ;
er.setStatusFromGui();
po.sendMulticastPacket(er, socket,addressTwo);
er.crGui.directLinkTextArea.append(sendNumCr++ +

»: " + "Sent Compartment Rig, Time: " + returnCurrentTime()+"\n");

-130-

}
catch (Exception ex){
ex.printStackTrace();

} } }) ;

sa.saGui.jButton.addActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent e)
{
try {//Put Desire Action Here

sa.setData(addressTwo.getLocalHost().toStringO,returnCurrentTime(),"Message");
sa.setStatusFromGui();
po.sendMulticastPacket(sa, socket,addressTwo);
sa.saGui.directLinkTextArea.append(sendNumSa++ +

ii. n+ "Sent Ship Atmosphere, Time: " + returnCurrentTime()+"\n");
}
catch (Exception ex){

ex.printStackTrace();
}}}) ;

}

catch(BindException be){
System.out.println("Unable to Connect to Network, \nCheck Your

Network Connection and Restart");
fireOne.fireGui.directLinkTextArea.append("Unable to Connect to

Network, \nCheck Your Network Connection \nand Restart");

}
catch(Exception e){
e.printStackTrace();
System.out.println("Exception occured in clientCommunicate");

}
}

}

/**

* stop() - not implemented, but called if run as an applet in a browser
*/

public void stopO {

}

/ **

* Destroy the applet, cleanup of threads and of casualties and ship threads
*
* ©return void
*/
public void destroy() {

clientOne.destroy();

}

Set the prefences used in the client interface
*
* ©return void
*/

private void setGUIPreferences(){

//Set Preferences For GUI
//Level "this"
this.setEnabled(true);
this.setSize(new Dimension(380, 720));
this.getContentPane().setLayout(borderLayoutl);

-131

//Level 1
casualtyTabPanel.setTabPlacement(JTabbedPane.LEFT);
casualtyTabPanel.setForeground(new Java.awt.Color(59, 80, 153));
casualtyTabPanel.setMaximumSize(new Dimension(380, 200));
casual tyTabPanel.setMinimumSize (new DimensiondO, 10));
casualtyTabPanel.setPreferredSize(new Dimension(380, 100));
casualtyTabPanel.setFont(new Font("Dialog",Font.BOLD,12));

* add the gui components to the client interface
*
* ©return void
*/

private void addGuiComponents(){

//Level this
this.getContentPaneO.add(casualtyTabPanel, BorderLayout.WEST)

//Level 1
casualtyTabPanel.add(fireOne.fireGui, "Fire");
casualtyTabPanel.add(floodingOne.floodingGui, "Flooding");
casualtyTabPanel.add(hydRuptureOne.hrGui, "Hyd Rupture");
casualtyTabPanel.add(airRuptureOne.arGui, "Air Rupture");
casualtyTabPanel.add(hotRunOne.hrGui, "Hot Run");
casualtyTabPanel.add(fastLeakOne.flGui, "Fast Leak");
casualtyTabPanel.add(slowLeakOne.slGui, "Slow Leak");
casualtyTabPane1.add(s tmRuptureOne.srGui, "Stm Rupture");
casualtyTabPanel.add(rxScramOne.rsGui, "Rx Scram");
casualtyTabPanel.add(radSpillOne.rsGui, "Rad Spill");
casualtyTabPanel.add(ss.ssGui, "Ship");
casualtyTabPanel.add(es.esGui, "Engineering");
casualtyTabPanel.add(cr.crGui, "Rig Status");
casualtyTabPanel.add(sa.saGui, "Atmospheres");

* Utility method to parses the time from an entire date object
*
* ©return String
*/

private String returnCurrentTime(){
int index=l;
long time = System.currentTimeMillis0;
Date date = new Date(time);
StringTokenizer st = new StringTokenizer(date.toString());
String holdDatet] = new String[7];r

while(st.hasMoreTokens()){
holdDate[index] = st.nextTokenO;

index++;

return holdDate[4];//The Current Time: 4th component of date object
}

/**Entry Point, used to intialize the applet as an application, allows
program to function as

* an applet or an application
*
*@param args[] An array of methods from the command line arguments
*@return void
*/
public static void main(String[] args) {

132

Client applet = new Client(args);
applet.isStanäalone = true;
JFrame frame = new JFrame();
frame.setTitle(args[0] + ",Casualty Traffie " +args[l] +" Ship Traffic " +

args[2]) ;
frame.getContentPane().add(applet, BorderLayout.CENTER);

//Exit process on window close
frame.addWindowListener(
new WindowAdapter(){

public void windowClosing(WindowEvent e)
{
System.exit(0);

}
}

);
applet.initO;//initialize call
applet.start();//start call

try{
Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
frame.setLocation((d.width - frame.getSize().width) / 2, (d.height -

frame.getSizeO.height) / 2);
frame.setSize(380,720);
frame.setVisible(true);
}
catch(Exception e){}

}
// static initializer for setting look & feel
static {

try {

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
}
catch (Exception e) {}

}
}

133

Class: Server Object

package swipNet.control;

import java.awt.*;
import java.awt.event.*;
import Java.applet.*;
import javax.swing.* ;
import j avax.swing.border.*;
import java.net.*;//Socket objects
import java.util.*; //For Date
import swipNet.utility.*;//Post Office
import swipNet.dcObj ects.*;//Fire,etc
import swipNet.shipObj ects.*;//ShipStatus, etc
import swipNet.gui.*;//for control bar gui

/ * *
* Server is a listener object, it subsribes to three multicast address and

receives
* two casualty objects, and ship objects; All three run within 3 communicate

threads;
* Server creates its on gui objects and uses Postoffice to receive sent

packets<p>
* ©author LT William G. Wilkins
* Oversion 1.0

*/
public class Server extends JApplet {

boolean isStandalone = false;
//Imagelcon icon = new Imagelcon ("swipNet.control.duke.gif");

public JSplitPanesplitPaneMiddle;
public JSplitPanesplitPaneCaslandMiddle;
public JSplitPanesplitPaneAllBottom;
public JSplitPanesplitPaneAll;
JLabel sub = new JLabel (new Imagelcon("MySub.jpg"));
JPanel subPanel = new JPanel();

//Creation of GUI Objects

/**Panel One- objects that hold the status of casualty one*/
//Level 1
protected JTabbedPane casualtyTabPaneA = new JTabbedPane();

//Level 2
Fire fireOne = new Fire(true);//set true since a server
Flooding floodingOne = new Flooding(true);
HydRupture hydRuptureOne = new HydRupture(true) ;
AirRupture airRuptureOne = new AirRupture(true) ;
HotRun hotRunOne = new HotRun(true);
FastLeak fastLeakOne = new FastLeak(true);
SlowLeak slowLeakOne = new SlowLeak(true);
StmRupture stmRuptureOne = new StmRupture(true) ;
RxScram rxScramOne = new RxScram(true) ;
RadSpill radSpillOne = new RadSpill(true);

/**Panel Two- objects that hold the status of casualty two*/
//Level 1
protected JTabbedPane casualtyTabPaneB = new JTabbedPane0;
//Level 2
Fire fireTwo = new Fire(true);//set true since a server

-134-

Flooding floodingTwo = new Flooding(true);
HydRupture hydRuptureTwo = new HydRupture(true);
AirRupture airRuptureTwo = new AirRupture(true);
HotRun hotRunTwo = new HotRun(true);
FastLeak fastLeakTwo = new FastLeak(true);
SlowLeak slowLeakTwo = new SlowLeak(true);
StmRupture stmRuptureTwo = new StmRupture(true);
RxScram rxScramTwo = new RxScram(true);
RadSpill radSpillTwo = new RadSpill(true);

/**Panel Center- objects that hold the status of ship objects*/
//Level 1
protected JTabbedPane casualtyTabPaneC = new JTabbedPane();
//Level 2
ShipStatus ssThree = new ShipStatus(true);//set true since a server
Engineeringstatus esThree = new Engineeringstatus(true);
CompartmentRigs crThree = new CompartmentRigs(true);
ShipAtmospheres saThree = new ShipAtmospheres(true);

//Misc Creation
//JTabbedPane reportPane = new JTabbedPane();//Holds report info
JPanel reportPanel = new JPanel();//Holds report info
JTextArea reportTextArea = new JTextArea(250,180);
JScrollPane reportJSP= new JScrollPane(reportTextArea);

public ControlBarGui bar = new ControlBarGui();
BorderLayout borderLayoutl = new BorderLayout();

CommunicateOne commOne;
CommunicateTwo commTwo;
CommunicateThree commThree;

Thread casualtyOne;//Threads for communication between objects
Thread casualtyTwo;
Thread shipThree;

/ * *
* Server() constructor, used if no arguments are supplied from user
*/
public Server() {

this.setName("Casualty Traffic on " + "228.7.5.4" + " and " + "228.7.5.5"
+ " Ship Traffic on " + "228.7.5.6");

fireOne.setOwner("DCC","228.7.5.4");
fireOne.fireGui.host.setText("Listen on 228.7.5.4");
fireTwo.setOwner("DCC","228.7.5. 5") ;
fireTwo.fireGui.host.setText("Listen on 228.7.5.5");

floodingOne.setOwner("DCC","228.7.5.4");
floodingOne.floodingGui.host.setText("Listen on 228.7.5.4");
floodingTwo.setOwner("DCC","228.7.5.5") ;
floodingTwo.floodingGui.host.setText("Listen on 228.7.5.5");

hydRuptureOne.setOwner("DCC","228.7.5.4") ;
hydRuptureOne.hrGui.host.setText("Listen on 228.7.5.4");
hydRuptureTwo.setOwner("DCC","228.7.5.5");
hydRuptureTwo.hrGui.host.setText("Listen on 228.7.5.5");

airRuptureOne.setOwner("DCC","228.7.5.4");
airRuptureOne.arGui.host.setText("Listen on 228.7.5.4");
airRuptureTwo.setOwner("DCC","228.7.5.5") ;
airRuptureTwo.arGui.host.setText("Listen on 228.7.5.5");

hotRunOne.setOwner("DCC","228.7.5.4") ;

135-

hotRunOne.hrGui.host.setText("Listen on 228.7.5.4");
hotRixnTwo.setOwner("DCC","Listen on 228.7.5.5");
hotRunTwo.hrGui.host.setText("Listen on 228.7.5.5");

fastLeakOne.setOwner("DCC", "228.7.5.4") ;
fastLeakOne.flGui.host.setText("Listen on 228.7.5.4");
fastLeakTwo.setOwner("DCC","228.7.5.5");
fastLeakTwo.flGui.host.setText("Listen on 228.7.5.5");

slowLeakOne.setOwner("DCC","228.7.5.4");
slowLeakOne.slGui.host.setText("Listen on 228.7.5.4");
slowLeakTwo.setOwnerC'DCC","228.7.5.5");
slowLeakTwo.slGui.host.setText("Listen on 228.7.5.5");

stmRuptureOne.setOwner("DCC","228.7.5.4"),-
stmRuptureOne.srGui.host.setText("Listen on 228.7.5.4");
stmRuptureTwo.setOwner("DCC","228.7.5.5");
stmRuptureTwo.srGui.host.setText("Listen on 228.7.5.5");

rxScramOne.setOwner("DCC","228.7.5.4");
rxScramOne.rsGui.host.setText("Listen on 228.7.5.4");
rxScramTwo.setOwnerC'DCC","228.7.5.5");
rxScramTwo.rsGui.host.setText("Listen on 228.7.5.5");

radSpillOne.setOwner("DCC","228.7.5.4");
radSpillOne.rsGui.host.setText("Listen on 228.7.5.4");
radSpillTwo.setOwner("DCC","228.7.5.5");
radSpillTwo.rsGui.host.setText("Listen on 228.7.5.5");

ssThree.setOwner("DCC","228.7.5.6");
ssThree.ssGui.host.setText("DCC" + ", Listen on " + "228.7.5.6")
esThree.setOwner("DCC","228.7.5.6");
esThree.esGui.host.setText("DCC" + ", Listen on " + "228.7.5.6")
crThree.setOwner("DCC","228.7.5.6");
crThree.crGui.host.setText("DCC" + ", Listen on " + "228.7.5.6")
saThree.setOwner("DCC","228.7.5.6");
saThree.saGui.host.setText("DCC" + ", Listen on " + "228.7.5.6")

convmOne = new CommunicateOne("228.7.5.4");
commTwo = new CommunicateTwo("228.7.5.5");
commThree= new CommunicateThree("228.7.5.6");
casualtyOne = new Thread(commOne);
casualtyTwo = new Thread (commTwo) ,-
shipThree = new Thread (commThree) ,-

}
/**
* Server constructor - new instance of server created with arguments
*
* Sparam args used to set gui name and owner if arguments are supplied from

user
*/

public Server(String [] args){
this.setName(args[0] + ", Casualty Traffic on " + args[l] + * and " +

args[2] + " Ship Traffic on " + args[3]);

fireOne.setOwner(args[0],args[l]);
fireOne.fireGui.host.setText(args[0] + ", Listen on " + args[l]);
fireTwo.setOwner(args[0],args[2]);
fireTwo.fireGui.host.setText(args[0] + ", Listen on " + args[2]);

floodingOne.setOwner(args[0],args[l]);
floodingOne.floodingGui.host.setText(args[0] + ", Listen on " +

argsfl]) ;
floodingTwo.setOwner(args[0],args[2]);
floodingTwo.floodingGui.host.setText(args[0] + ", Listen on " +

args[2]);

136

hydRuptureOne.setOwner(args[0],args[1]);
hydRuptureOne.hrGui.host.setText(args[0] +
hydRuptureTwo.setOwner(args[0],args[2]);
hydRuptureTwo.hrGui.host.setText(args[0] +

airRuptureOne.setOwner(args[0] ,args[l]) ;
airRuptureOne.arGui.host.setText(args[0] +
airRuptureTwo.setOwner(args[0],args[2]);
airRuptureTwo.arGui.host.setText(args[0] +

hotRunOne.setOwner(args[0],args[1]);
hotRunOne.hrGui.host.setText(args[0] +
hotRunTwo.setOwner(args[0],args[2]);
hotRunTwo.hrGui.host.setText(args[0] +

fastLeakOne.setOwner(args[0],args[1]);
fastLeakOne.flGui.host.setText(args[0] + ",
fastLeakTwo.setOwner(args[0],args[2]);
fastLeakTwo.flGui.host.setText(args[0] + ",

slowLeakOne.setOwner(args[0],args[1]);
slowLeakOne.slGui.host.setText(args[0] + ",
slowLeakTwo.setOwner(args[0],args[2]);
slowLeakTwo.slGui.host.setText(args[0] + ",

stmRuptureOne. setOwner (args [0], args [1]) ,-
stmRuptureOne.srGui.host.setText(args[0 3 +
stmRuptureTwo.setOwner(args[0],args[2]);
stmRuptureTwo.srGui.host.setText(args[0] +

rxScramOne.setOwner(args[0],args[l]);
rxScramOne.rsGui.host.setText(args[0] + '
rxScramTwo.setOwner(args[0],args[2]);
rxScramTwo.rsGui.host.setText(args[0] + '

radSpillOne.setOwner(args[0],args[l]);
radSpillOne.rsGui.host.setText(args[0] +
radSpillTwo.setOwner(args[0],args[2]);
radSpillTwo.rsGui.host.setText(args[0] +

Listen on " + args[l]);

Listen on " + args[2]);

Listen on " + args[l])

Listen on " + args[2])

Listen on

Listen on

Listen on

Listen on

Listen on

Listen on

+ args[1]);

+ args[2]);

+ args[lj);

+ args[2]);

+ args[l]);

+ args [2]) ,-

Listen on

Listen on

Listen on

Listen on

Listen on

Listen on

+ args[l])

+ args[2])

+ args[l]);

+ args[2]);

" + argstl]) ;

' + args[2]);

ssThree.setOwner(args[0],args[3]);
ssThree.ssGui.host.setText(args[0] +
esThree.setOwner(args[0],args[3]);
esThree.esGui.host.setText(args[0] +
crThree.setOwner(args[0],args[3]);
crThree.crGui.host.setText(args[0] +
saThree.setOwner(args[0],args[3]);
saThree.saGui.host.setText(args[0] +

Listen on

Listen on

+ args[3]);

+ args[3]);

Listen on " + args[3]);

Listen on " + args[3]);

commOne = new CommunicateOne(args[l]);
commTwo = new CommunicateTwo(args[2]);
commThree= new CommunicateThree(args[3]);
casualtyOne = new Thread(commOne);
casualtyTwo = new Thread(commTwo);
shipThree = new Thread(commThree);

/**
* initO

interface
*/

nest jbinitO, to catch exception and use Jbuilders gui builder

public void initO {
try {
jbinitO;

137

}
catch(Exception e) {

e.printStackTrace();
}

}

/ **
* jbinitO, used in Jbuilders gui builder interface, creates the GUI
*/

private void jbinitO throws Exception {
this.setJMenuBar(bar);
this.setGUIPreferences();
this.addGuiComponents();

}

/**
* start(), starts the casualty and ship threads
*/

public void start() {

casualtyOne.start();
casualtyTwo.start() ;
shipThree.start();

}

/**
* CommunicateOne - inner class that defines communication of casualty one
*/

private class CommunicateOne implements Runnable{

int portNumber = 5000;
MulticastSocket socket;
InetAddress address;
PostOffice po = new PostOffice();
String multicastAddressCasualty= "228.7.5.4";//Default

long time = System.currentTimeMi11is();
Date date = new Date(time);
String threadName;

//For Receive
int reportNumber = 0;
Object holdObject = new Object();
String holdDataOneA[] = new String[6];
String holdDataTwoAf] = new String[6];

Fire fireReceive = new Fire(true);//used to temp hold the received objects
Flooding floodingReceive = new Flooding(true);
HydRupture hydRuptureReceive = new HydRupture(true) ;
AirRupture airRuptureReceive = new AirRupture(true);
HotRun hotRunReceive = new HotRun(true);
FastLeak fastLeakReceive = new FastLeak(true);
SlowLeak slowLeakReceive = new SlowLeak(true);
StmRupture stmRuptureReceive = new StmRupture(true);
RxScram rxScramReceive = new RxScram(true);
RadSpill radSpillReceive = new RadSpill(true);

/**
* CommunicateOne() - contructor, with String input address
*
* Sparam mcAddress - allows to set multicast address for this thread
*/

public CommunicateOne(String mcAddress){

138-

multicastAddressCasualty = mcAddress;
}
/**

* Cycles through a while loop and receives multicast packets, determines its
type, and updates the listener gui

*/
public void run()

{
try
{

socket = new MulticastSocket(portNumber);
address = InetAddress.getByName(multicastAddressCasualty) ;r
socket.joinGroup(address);
threadName = "Casualty on " +

multicastAddressCasualty.toString();
Thread.currentThread().setName(threadName);

while(true){

holdObject = po.receiveMulticastPacket(socket,address);

reportNumber = reportNumber +1;
if (holdObject instanceof Fire){

fireReceive = (Fire)holdObject;
holdDataOneA = fireReceive.getData();
holdDataTwoA = fireOne.getData() ,-
reportTextArea.append(reportNumber + ": "+ "\"» +

holdDataTwoA[l]+ " ,this is " + holdDataOneA[1]+"\""+
"\n " + holdDataOneA[0] + "

Updated"+ " on " + holdDataOneA[2] +
"\n Time: n + holdDataOneA[4]

+"\n");
if (fireOne.fireGui.doUpdate == true){//If the pause

button is not pressed allow updates.
fireReceive.copyStatus(fireOne);//Copies only the

casualty specifics, not owner, etc.
}

}
if (holdObject instanceof Flooding){

floodingReceive = (Flooding)holdObject;
holdDataOneA = floodingReceive.getData();
holdDataTwoA = floodingOne.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

holdDataTwoA[1]+

Updated"+ " on "

+"\n");

}
floodingReceive.copyStatus(floodingOne);

if (holdObject instanceof HydRupture){
hydRuptureReceive = (HydRupture)holdObject;
holdDataOneA = hydRuptureReceive.getData() ;
holdDataTwoA = hydRuptureOne.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

holdDataTwoA[1]+ " ,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

Updated"* " on " + holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

+"\n");

}
hydRuptureReceive.copyStatus(hydRuptureOne);

if (holdObject instanceof AirRupture){
airRuptureReceive = (AirRupture(holdObject;
holdDataOneA = airRuptureReceive.getData();

-139-

holdDataTwoA[1]+ "

Updated"+ » on " +

+"\n");

holdDataTwoAtl]+ "

Updated"+ " on " +

+"\n");

holdDataTwoA[1]+ "

Updated"* " on " +

+"\n");

holdDataTwoA[l]+ "

Updated"+ " on " +

+"\n");

holdDataTwoA[l]+ "

Updated"+ " on " +

+"\n");

holdDataTwoA = airRuptureOne.getData();
reportTextArea.append(reportNumber + ": "+ n\nn +

,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

}
airRuptureReceive.copyStatus(airRuptureOne);

if (holdObject instanceof HotRun){
hotRunReceive = (HotRun)holdObject;
holdDataOneA = hotRunReceive.getData();
holdDataTwoA = hotRunOne.getData();
reportTextArea.append(reportNumber + ": "+

,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

'V

}
hotRunReceive.copyStatus(hotRunOne)

if (holdObject instanceof FastLeak){
fastLeakReceive = (FastLeak)holdObject;
holdDataOneA = fastLeakReceive.getData();
holdDataTwoA = fastLeakOne.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

}
fastLeakReceive.copyStatus(fastLeakOne)

if (holdObject instanceof SlowLeak){
slowLeakReceive = (SlowLeak)holdObject;
holdDataOneA = slowLeakReceive.getData();
holdDataTwoA = slowLeakOne.getData();
reportTextArea.append(reportNumber + ": "+ «\«« +

,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

}
slowLeakReceive.copyStatus(slowLeakOne);

if (holdObject instanceof StmRupture){
stmRuptureReceive = (StmRupture(holdObject;
holdDataOneA = stmRuptureReceive.getData();
holdDataTwoA = stmRuptureOne.getData() ,-
reportTextArea.append(reportNumber + ": "+ "\"" +

,this is " + holdDataOneA[l]+"\""+
"\n "+ holdDataOneA[0] + "

holdDataOneA[2] +
"\n Time: " + holdDataOneA[4]

}
stmRuptureReceive.copyStatus(stmRuptureOne);

holdDataTwoA[1]+

if (holdObject instanceof RxScram){
rxScramReceive = (RxScram)holdObject;
holdDataOneA = rxScramReceive.getData();
holdDataTwoA = rxScramOne.getData();
reportTextArea.append(reportNumber + ": "+ n*

,this is " + holdDataOneA[l]+"\""+

140-

"\n " + holdDataOneA[0] + "
Updated"* " on " + holdData0neA[2] +

"\n Time: " + holdDataOneA[4]
+"\n");

rxScramReceive.copyStatus(rxScramOne);
}
if (holdObject instanceof RadSpill){

radSpillReceive = (RadSpill)holdObject;
holdDataOneA = radSpillReceive.getDataO;
holdDataTwoA = radSpillOne.getDataO;
reportTextArea.append(reportNumber + ": "+ »\»» +

holdDataTwoA[1]+ " ,this is " + holdDataOneA[l]+"\"" +
"\n " + holdDataOneA[0] + "

Updated"* " on " + holdDataOneA[2] +
"\n Time: " + holdData0neA[4]

+"\n");
radSpillReceive.copyStatus(radSpillOne);

}//end While
}//end Try

catch(BindException be){
System.out.println("Unable to Connect to Network, \nCheck Your

Network Connection and Restart");
reportTextArea.append("Unable to Connect to Network, \nCheck Your

Network Connection \nand Restart");
}
catch(Exception e){
e.printStackTrace();
System.out.println("Exception occured in commThreadOne");

}
}

}

/**
* CommunicateTwo - inner class that defines communication of casualty Two
*/

private class CommunicateTwo implements Runnable{

int portNumber = 5000;
MulticastSocket socket;
InetAddress address;
PostOffice po = new PostOffice();
String multicastAddressCasualty= "228.7.5.5";//Default

long time = System.currentTimeMillis();
Date date = new Date(time);
String threadName;

//For Receive
int reportNumber = 0;
Object holdObject = new Object();
String holdDataOneB[] = new String[6];
String holdDataTwoB[] = new String[6];

Fire fireReceive = new Fire(true);
Flooding floodingReceive = new Flooding(true);
HydRupture hydRuptureReceive = new HydRupture(true);
AirRupture airRuptureReceive = new AirRupture(true);
HotRun hotRunReceive = new HotRun(true);
FastLeak fastLeakReceive = new FastLeak(true);
SlowLeak slowLeakReceive = new SlowLeak(true);
StmRupture stmRuptureReceive = new StmRupture(true);
RxScram rxScramReceive = new RxScram(true);

-141

RadSpill radSpillReceive = new RadSpill(true);

/**
* CommunicateTwo() - contructor, with String input address
*
* @param mcAddress - allows to set multicast address for this thread
*/

public CommunicateTwo(String mcAddress){

multicastAddressCasualty = mcAddress;
}

/**
* Cycles through a while loop and receives multicast packets, determines its

type, and updates the listener gui
*/
public void run()

{

try
{

socket = new MulticastSocket (portNumber) ,-
address = InetAddress.getByName(multicastAddressCasualty);
socket.joinGroup(address);
threadName = "Casualty on " +

multicastAddressCasualty.toString();
Thread.currentThread().setName(threadName) ;

while(true){

holdObject = po.receiveMulticastPacket(socket,address);

reportNumber = reportNumber +1;
if (holdObject instanceof Fire){

fireReceive = (Fire)holdObject,•
holdDataOneB = fireReceive.getData();
holdDataTwoB = fireTwo.getDataO ;

reportTextArea.append(reportNumber + ": "+ "\"" +
holdDataTwoB[1]+ " ,this is " + holdDataOneB[1]+"\""+

"\n "+ holdDataOneB[0] + "
Updated"+ " on " + holdDataOneB[2] +

"\n Time: " + holdDataOneB[4]
+"\n");

if (fireTwo.fireGui.doUpdate == true){//If the pause
button is not pressed allow updates.

fireReceive.copyStatus(fireTwo);//Copies only the
casualty specifics, not owner, etc.

}
}

if (holdObject instanceof Flooding){
floodingReceive = (Flooding)holdObject;
holdDataOneB = floodingReceive.getData();
holdDataTwoB = floodingTwo.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

holdDataTwoB[1]+ " ,this is " + holdDataOneB[1]+"\""+
"\n "+ holdDataOneB[0] + "

Updated"+ " on - + holdDataOneB[2] +
"\n Time: " + holdDataOneB[4]

+"\n");
floodingReceive.copyStatus(floodingTwo);

}

142-

holdDataTwoB[1]+ "

Updated"+ " on " +

+"\n");

if (holdObject instanceof HydRupture){
hydRuptureReceive = (HydRupture)holdObject;
holdDataOneB = hydRuptureReceive.getData();
holdDataTwoB = hydRuptureTwo.getData();
reportTextArea.append(reportNumber + ": " + "\nn +

,this is " + holdDataOneB[1]+"\""+
"\n "+ holdDataOneB[0] + "

holdDataOneB[2] +
"\n Time: " + holdDataOneB [4]

holdDataTwoB[1]+ "

Updated"* " on " +

+ "\n") ;

holdDataTwoB[1]+ "

Updated"+ " on " +

+"\n");

holdDataTwoB[1]+ "

Updated"* " on " +

+"\n");

holdDataTwoB[1]+ "

Updated"* " on " +

+"\n");

}
hydRuptureReceive.copyStatus(hydRuptureTwo);

if (holdObject instanceof AirRupture){
airRuptureReceive = (AirRupture)holdObject;
holdDataOneB = airRuptureReceive.getData();
holdDataTwoB = airRuptureTwo.getData();
reportTextArea.append(reportNumber + ": "+ »\n» +

,this is " + holdDataOneB[1]+"\""+
"\n "+ holdDataOneB[0] + "

holdDataOneB[2] +
"\n Time: " + holdDataOneB[4]

}
airRuptureReceive.copyStatus(airRuptureTwo)

if (holdObject instanceof HotRun){
hotRunReceive = (HotRun)holdObject;
holdDataOneB = hotRunReceive.getData();
holdDataTwoB = hotRunTwo.getData();
reportTextArea.append(reportNumber + ": "+ "\»n +

,this is " + holdDataOneB[l]+"\""+
"\n "+ holdDataOneB[0] + "

holdDataOneB[2] +
"\n Time: " + holdDataOneB[4]

}
hotRunReceive.copyStatus(hotRunTwo);

if (holdObject instanceof FastLeak){
fastLeakReceive = (FastLeak)holdObject;
holdDataOneB = fastLeakReceive.getDataO;
holdDataTwoB = fastLeakTwo.getData();
reportTextArea.append(reportNumber + ": "+ «\"n +

,this is " + holdDataOneB[l]+"\»"+
"\n "+ holdDataOneB[0] + "

holdDataOneB[2] +
"\n Time: " + holdDataOneB[4]

}
fastLeakReceive.copyStatus(fastLeakTwo);

if (holdObject instanceof SlowLeak){
slowLeakReceive = (SlowLeak)holdObject;
holdDataOneB = slowLeakReceive.getData();
holdDataTwoB = slowLeakTwo.getData();
reportTextArea.append(reportNumber + ": "+ "\n" +

,this is " + holdDataOneB[l]+"\""+
°\n "+ holdDataOneB[0] + "

holdDataOneB[2] +
"\n Time: " + holdDataOneB[4]

}
slowLeakReceive.copyStatus(slowLeakTwo)

if (holdObject instanceof StmRupture){
stmRuptureReceive = (StmRupture)holdObject;
holdDataOneB = stmRuptureReceive.getData();
holdDataTwoB = stmRuptureTwo.getData();

143

holdDataTwoB[1]+ "

Updated"+ " on " +

+"\n");

reportTextArea.append(reportNumber + ": "+ "\"" +
,this is " + holdDataOneB[l]+"\n"+

"\n "+ holdDataOneB[0] + "
holdDataOneB[2] +

"\n Time: " + holdData0neB[4]

}
stmRuptureReceive.copyStatus(stmRuptureTwo);

holdDataTwoB[1]+

Updated"* " on "

+"\n");

if (holdObject instanceof RxScram){
rxScramReceive = (RxScram)holdObject;
holdDataOneB = rxScramReceive.getData();
holdDataTwoB = rxScramTwo.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

,this is " + holdDataOneB[1]+"\""+
"\n "+ holdDataOneB[0] + "

holdDataOneB[2] +
"\n Time: " + holdDataOneB[4]

rxScramReceive.copyStatus(rxScramTwo);
}
if (holdObject instanceof RadSpill){

radSpillReceive = (RadSpill)holdObject;
holdDataOneB = radSpillReceive.getData();
holdDataTwoB = radSpillTwo.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

,this is " + holdDataOneB[l]+"\""+
"\n "+ holdDataOneB[0] + "

Updated"+ " on " + holdDataOneB[2] +
" \n Time:

holdDataTwoB[1]+

+"\n");
+ holdDataOneB[4]

radSpillReceive.copyStatus(radSpillTwo);

}

catch(Exception e){
e.printStackTrace() ;
System.out.printlnt"Exception occured in commThreadTwo");

}

/ * *
* CommunicateThree inner class that defines communication of ship objects

private class CommunicateThree implements Runnable{

int portNumber = 5000;
MulticastSocket socket;
InetAddress address;
PostOffice po = new PostOffice();
String multicastAddressCasualty= "228.7.5.6";//Default
long time = System.currentTimeMillis();
Date date = new Date(time);
String threadName;
//For Receive
int reportNumber = 0;
Object holdObject = new Object();
String holdDataOneC[] = new String[6];
String holdDataTwoC[] = new String[6];
ShipStatus ssReceive = new ShipStatus(true);
Engineeringstatus esReceive = new Engineeringstatus(true)
CompartmentRigs crReceive = new CompartmentRigs(true);
ShipAtmospheres saReceive = new ShipAtmospheres(true);

-144

" CommunicateOne() - contructor, with String input address

* @param mcAddress'- allows to set multicast address for this thread

public CommunicateThree(String mcAddress){

multicastAddressCasualty = mcAddress;
}

* Cycles through a while loop and receives multicast packets, determines its
type, and updates the listener gui

*
* ©return void
*/
public void run()

{

try
{

socket = new MulticastSocket(portNumber);
address = InetAddress.getByName(multicastAddressCasualty);
socket.joinGroup(address);
threadName = "Ship on " + multicastAddressCasualty.toStringO;
Thread.currentThread().setName(threadName),-

while(true){

holdObject = po.receiveMulticastPacket(socket,address);
reportNumber = reportNumber +1;

if (holdObject instanceof ShipStatus){
ssReceive = (ShipStatus)holdObject;
holdDataOneC = ssReceive.getData();
holdDataTwoC = ssThree.getData();
reportTextArea.append(reportNumber + ": "+ «\«" +

,this is " + holdDataOneC[l]+"\""+
"\n "+ holdDataOneC[0] + "

Updated"* " on " + holdDataOneC[2] +
"\n Time: " + holdDataOneC[4]

+"\n");
if (ssThree.ssGui.doUpdate == true){//If the pause

button is not pressed allow updates.
ssReceive.copyStatus(ssThree);//Copies only the

casualty specifics, not owner, etc.

holdDataTwoC[1]+

}
}
if (holdObject instanceof Engineeringstatus){

esReceive = (Engineeringstatus)holdObject;
holdDataOneC = esReceive.getData();
holdDataTwoC = esThree. getData () ,-
reportTextArea.append(reportNumber + ": "+ »\"" +

holdDataTwoC[1]+ " ,this is " + holdDataOneC[1]+"\""+
"\n "+ holdDataOneC[0] + "

holdDataOneC[2] +
"\n Time: " + holdDataOneC[4]

Updated"+ " on

+"\n");
esReceive.copyStatus(esThree);

}
if (holdObject instanceof CompartmentRigs){

crReceive = (CompartmentRigs)holdObject;
holdDataOneC = crReceive.getData();

-145-

holdDataTwoC[1]+

Updated"+ " on "

+"\nn);

holdDataTwoC[1]+

Updated"+ " on "

+"\n");

holdDataTwoC = crThree.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

,this is " + holdDataOneC[l]+"\""+
"\n "+ holdDataOneC[0] + "

holdData0neC[2] +
"\n Time: " + holdDataOneC[4]

}
crReceive.copyStatus(crThree);

if (holdObject instanceof ShipAtmospheres){
saReceive = (ShipAtmospheres(holdObject;
holdDataOneC = saReceive.getDataO ;
holdDataTwoC = saThree.getData();
reportTextArea.append(reportNumber + ": "+ "\"" +

, this is " + holdDataOneC[l] + "\"" +
"\n -+ holdDataOneC[0] + "

holdDataOneC[2] +
"\n Time: " + holdDataOneC[4]

saReceive.copyStatus(saThree);

}

catch(Exception e){
e.printStackTrace();
System.out.println("Exception occured in shipThread");

}

/ **
* stopO - not implemented, but called if run as an applet in a browser
*
* ©return void
*/

public void stopO {}

♦Destroy the applet, cleanup of threads and of casualties and ship threads
*©return void
*/

public void destroy() {
casualtyOne.destroy();
casualtyTwo.destroy();
shipThree.destroy();

}

* Set the prefences used in the server gui
*
*@return void
*/

private void setGUIPreferences(){

//Set Preferences For GUI
//Level "this"
this.setEnabled(true);
this.setName("Monitor Panel");
this.setSize(new Dimension(1010, 775));
this.getContentPane().setLayout(null);

-146

this.getContentPaneO.setBackground(new Java.awt.Color(220,220,220));//Very
Light Gray

this.getContentPaneO.setVisible(true);

reportPanel.setLayout(new BorderLayout());
reportPanel.setForeground(new Java.awt.Color(59, 80, 153));
reportPanel.setFont(new Font("Dialog",Font.BOLD,12));
reportPanel.setMinimumSize(new Dimension(5, 5));

reportJSP.setHorizontalScrollBarPolicy(reportJSP.HORIZONTAL_SCROLLBAR_NEVER) ;

subPanel.setForeground(new Java.awt.Color(59, 80, 153));
subPanel.setFont(new Font("Dialog",Font.BOLD,12));
subPanel.setMinimumSize(new Dimension(0, 0)) ;
subPanel.setLayout(new BorderLayout());

//Panel One
//Level 1
casualtyTabPaneA.setTabPlacement(JTabbedPane.LEFT);
casualtyTabPaneA.setForeground(new Java.awt.Color(59, 80, 153));
casualtyTabPaneA.setFont(new Font("Dialog",Font.BOLD,12));
casualtyTabPaneA.setMinimumSize(new Dimension(5, 5));

//Panel Two
//Level 1
casualtyTabPaneB.setTabPlacement(JTabbedPane.RIGHT);
casualtyTabPaneB.setForeground(new Java.awt.Color(59, 80, 153));
casualtyTabPaneB.setFont(new Font("Dialog",Font.BOLD,12));
casualtyTabPaneB.setMinimumSize(new Dimension(5, 5));

//Panel Center
//Level 1
casualtyTabPaneC.setTabPlacement(JTabbedPane.BOTTOM);
casualtyTabPaneC.setForeground(new Java.awt.Color(59, 80, 153));
casualtyTabPaneC.setFont(new Font("Dialog",Font.BOLD,12));
casualtyTabPaneC.setMinimumSize(new Dimension(5, 5)) ;

/ * *
* add the gui components to the server interface
*
* ©return void
*/

private void addGuiComponents(){

//Adding GUI components
//Level this

//Panel One
//Level 1

//casualtyTabPaneA.add(fireOne.fireGui, "Fire");
casualtyTabPaneA.add(fireOne.fireGui,"Fire");
casualtyTabPaneA.add(floodingOne.floodingGui, "Flooding") ,
casualtyTabPaneA.add(hydRuptureOne.hrGui, "Hyd Rupture");
casualtyTabPaneA.add(airRuptureOne.arGui, "Air Rupture");
casualtyTabPaneA.add(hotRunOne.hrGui, "Hot Run");
casualtyTabPaneA.add(fastLeakOne.flGui, "Fast Leak");
casualtyTabPaneA.add(slowLeakOne.slGui, "Slow Leak");
casualtyTabPaneA.add(stmRuptureOne.srGui, "Stm Rupture");

147

casualtyTabPaneA.add(rxScramOne.rsGui, "Rx Scram");
casualtyTabPaneA.add(radSpillOne.rsGui, "Rad Spill");

//Panel Two
//Level 1
casualtyTabPaneB.add(fireTwo.fireGui, "Fire");
casualtyTabPaneB.add(floodingTwo.floodingGui, "Flooding");
casualtyTabPaneB.add(hydRuptureTwo.hrGui, "Hyd Rupture");
casualtyTabPaneB.add(airRuptureTwo.arGui, "Air Rupture");
casualtyTabPaneB.add(hotRunTwo.hrGui, "Hot Run");
casualtyTabPaneB.add(fastLeakTwo.flGui, "Fast Leak");
casualtyTabPaneB.add(slowLeakTwo.slGui, "Slow Leak");
casualtyTabPaneB.add(stmRuptureTwo.srGui, "Stm Rupture");
casualtyTabPaneB.add(rxScramTwo.rsGui, "Rx Scram");
casualtyTabPaneB.add(radSpillTwo.rsGui, "Rad Spill");

//Panel Center
//Level 1
casualtyTabPaneC.add(ssThree.ssGui, "Ship");
casualtyTabPaneC.add(esThree.esGui, "Engineering");
casualtyTabPaneC.add(crThree.crGui, "Rig Status");
casualtyTabPaneC.add(saThree.saGui, "Atmospheres");

//SplitPanes
reportPanel.add(new JLabel(" Station Reports and Ship Control

Messages"), BorderLayout.NORTH);
reportPanel.add(reportJSP, BorderLayout.CENTER);

//subPanel.add(new JLabel("SWIPNet"), BorderLayout.NORTH);
subPanel.add(sub,BorderLayout.CENTER);

splitPaneMiddle = new JSplitPanet
JSplitPane.VERTICAL_SPLIT,true,reportPanel,casualtyTabPaneC);

splitPaneMiddle.setOneTouchExpandable(true);
splitPaneMiddle.setDividerSize(10);
splitPaneMiddle.setBorder(null);

splitPaneCaslandMiddle= new JSplitPane(
JSplitPane.HORIZONTAL_SPLIT,true,casualtyTabPaneA,splitPaneMiddle) ;

splitPaneCaslandMiddle.setOneTouchExpandable(true);
splitPaneCaslandMiddle.setDividerSize(10);
splitPaneCaslandMiddle.setBorder(null);

splitPaneAllBottom= new JSplitPane(
JSplitPane.HORIZONTAL_SPLIT,true,splitPaneCaslandMiddle,casualtyTabPaneB)

splitPaneAllBottom.setOneTouchExpandable(true) ;
splitPaneAllBottom.setDividerSize(10);
splitPaneAllBottom.setBorder(null) ;

splitPaneAll = new JSplitPane(
JSplitPane.VERTICAL_SPLIT,true,subPanel,splitPaneAllBottom);

splitPaneAll.setOneTouchExpandable(true);
splitPaneAll.setDividerSize(10);

splitPaneMiddle.setSize(1050, 900) ;
splitPaneCaslandMiddle.setSize(1050, 900) ;
splitPaneAllBottom.setSize(1050,900);
splitPaneAll.setSize(1050,900);

this.getContentPaneO.add(splitPaneAll);
splitPaneMiddle.setDividerLocation(0);
splitPaneCaslandMiddle.setDividerLocation(0);
splitPaneAllBottom.setDividerLocation(0);
splitPaneAll.setDividerLocation(0);

148-

public void setDivider(){

for (int ix = 0; ix <= 665; ix++){
this.splitPaneAllBottom.setDividerLocation(ix) ;
ix++;
ix++;
try {
Thread.sleep(1);

}
catch(Exception e){
System.out.printing"Problem with Divider Setting");

}
}
for (int ix = 0; ix <= 170; ix++){

this.splitPaneMiddle.setDividerLocation(ix);
ix++;
ix++ ;
try {
Thread.sleep(1);

}
catch(Exception e){
System.out.println("Problem with Divider Setting");

}
}

for (int ix = 0; ix <= 365; ix++){
this.splitPaneCaslandMiddle.setDividerLocation(ix);
ix++;
ix++ ;
try {
Thread.sleep(1);

}
catch(Exception e){
System.out.println("Problem with Divider Setting");

}
}

for (int ix = 0; ix <= 235; ix++){
this.splitPaneAll.setDividerLocation(ix);
ix++ ;
try {
Thread.sleep(1);

}
catch(Exception e){

System.out.println("Problem with Divider Setting");
}

}

* Entry Point, used to intialize the applet as an application, allows
program to function as

* an applet or an application
*
*@param args[] An array of methods from the command line arguments
*©return void
*/

public static void main(String[] args) {
Server applet = new Server(args);
applet.isStandalone = true;
JFrame frame = new JFrame();

-149-

frame.setTitle(args[0] + ", Casualty Traffic on " + args[l] + " and " +
args[2] + - Ship Traffic on " + args[3]);

frame.getContentPane().add(applet, BorderLayout.CENTER);

//Exit process on window close
frame.addWindowListener(
new WindowAdapter(){

public void windowClosing(WindowEvent e)
{
System.exit(0);

}
}

);

applet.init();//initialize call
applet.start();//start call

try{
Dimension d = Toolkit.getDefaultToolkit().getScreenSizeO;
frame.setLocation(5, 5);
frame.setSize(1060,960);//990,720
frame.setVisible(true);

}
catch(Exception e){

}

applet.setDivider();

}
// static initializer for setting look & feel
static {

try {
UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName ()

}
catch (Exception e) {}

}

)

}//end server

-150-

Package: swipNetdcObjects
Class: Fire
package swipNet.dcObjects;

import swipNet.gui.*;
import java.io.*;
import java.util.*;

/* *
* A Damage Control casualty object that holds information within strings that
* can be directly sent over the network for Fire casualties; The fire object
* is fully implemented and fully documented.<p>
*
* ©author LT William G. Wilkins
* ©version 1.0
*/

public class Fire extends Object implements Serializable{

/**Since network sends bytes you must know how to cast
* the object when received on the other side. This number is read on
* the other side , and casted appropriately
*/

protected static int typeOfObject = 1;

static int version = 1;
static String type = new String ("FIRE");

String ownerName = new String("default");
public String multicastAddressOfOwner = new String ("default") ,-
String machineName = new String("default");
String timeSent = new String ("default");
String messageToSend = new String("None");

String dccCasLoc = new StringO;// Strings used to send the information
String dccShipRigForFire = new StringO;
String dccAtmWiLimits = new String() ;

String sceneMic = new String();
String sceneAsstRgd = new StringO;
String scenelnjuredPersonel = new StringO;
String sceneDamageEquipment = new String();
String sceneStatusOfFire = new String();

String obaCrewMember = new String();
String obaTimeRemaining = new StringO;

String hoseRRHoses = new String();
String hoseFRHoses = new StringO;

/ **
*Fire class contains its own firegui for convienence and grouping, but it

*is not actually sent on the Network.
*/
public FireGui fireGui;

/**
* Constructor
*

*/
public FireO {}

* This constructor allows the class to be used for Client or Server.

-151-

* Their GUIs are different; Fire class then passes it to its FireGui, that
* actually uses it.
* @param isServer if true, initialize as a Server, if not then display as
* a Client
*/

public Fire(boolean isServer) {
fireGui = new FireGui(isServer);

}

/** This constructor allows casting to the appropriate object depending on
* its type; The DatalnputStream should be read in the SAME order that
* toBytes places them onto the ByteArrayOutputStream, ORDER Counts.
*
* ©param aBuffer[] a byte array used to read from
*/

public Fire(byte aBuffer[])
{

ByteArraylnputStream bis = new ByteArraylnputStream(aBuffer);
DatalnputStream dis = new DatalnputStream(bis);

try
{
typeOfObject = dis.readlnt();
version = dis.readlnt();
type = dis.readUTFO;
ownerName = dis.readUTF();
multicastAddressOfOwner = dis.readUTF();
machineName = dis.readUTF();
timeSent = dis.readUTF();
messageToSend = dis.readUTF();

dccCasLoc = dis.readUTFO;
dccShipRigForFire = dis.readUTF();
dccAtmWiLimits= dis.readUTF();

sceneMic= dis.readUTF();
sceneAsstRqd= dis.readUTF();
sceneInjuredPersonel= dis.readUTF();
sceneDamageEguipment= dis.readUTF();
sceneStatusOfFire= dis.readUTF();

obaCrewMember= dis.readUTFO;
obaTimeRemaining= dis.readUTF();

hoseRRHoses= dis.readUTF();
hoseFRHoses= dis. readUTF () ,-

}
catch(Exception e)
{
System.out.println("Exception occured in Fire(byte[])");

}

}

/**
* This method converts or writes all instance varibles within the fire
* object to a stream to allow a byte buffer to be sent on the network,
* again ORDER Counts
* ©return byte[] a byte array
*/

public byte[] toBytes()
{

-152

ByteArrayOutputStream bos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(bos);

try
{
dos.writelntttypeOfObject);
dos.writelnt(version);
dos.writeUTF(type);

dos.writeUTF(ownerName);
dos.writeUTF(multicastAddressOfOwner);
dos.writeUTF(machineName);
dos.writeUTF(timeSent);
dos.writeUTF(messageToSend);

dos.writeUTF(dccCasLoc);
dos.writeUTF(dccShipRigForFire);
dos.writeUTF(dccAtmWiLimits);
dos.writeUTF(sceneMic);
dos.writeUTF(sceneAsstRqd);
dos.writeUTF(scenelnjuredPersonel);
dos.writeUTF(sceneDamageEguipment);
dos.writeUTF(sceneStatusOfFire);
dos.writeUTF(obaCrewMember);
dos.writeUTF(obaTimeRemaining);
dos.writeUTF(hoseRRHoses);
dos.writeUTF(hoseFRHoses);

}
catch(IOException ioe)
{
System.out.println("IOException - Unable to convert Fire Object to

Bytes");
return null;

}

return bos.toByteArray();
}

/**
* Retreives the generic ownership data of each fire object
*
* ©return holdString a String array with each value filled
*/

public String[] getData(){

String holdString[] = new String[6];

holdString[0] = type;
holdStringil] = ownerName;
holdString[2] = multicastAddressOfOwner;
holdString[3] = machineName;
holdString[4] = timeSent;
holdString[5] = messageToSend;

return holdString;

/**
*Takes the Strings from the callers Fire object and copies to its matching
* text field
*@param fire the object that you want to fill with received fire data
*
*@return void
*/

public void copyStatus(Fire fire){

153

fire.fireGui.dccCasLocTF.setText(dccCasLoc);
fire.fireGui.dccShipRigForFireTF.setText(dccShipRigForFire);
fire.fireGui.dccAtmWiLimitsTF.setText(dccAtmWiLimits);
fire.fireGui.sceneMicTF.setText(sceneMic);
fire.fireGui.sceneAsstRqdTF.setText(sceneAsstRgd);
fire.fireGui.scenelnjuredPersonelTF.setText(scenelnjuredPersonel);
fire.fireGui.sceneDamageEquipmentTF.setText(sceneDamageEquipment);
fire.fireGui.sceneStatusOfFireTF.setText(sceneStatusOfFire);
fire.fireGui.obaCrewMemberTF.setText(obaCrewMember);
fire.fireGui.obaTimeRemainingTF.setText(obaTimeRemaining);
fire.fireGui.hoseRRHosesTF.setText(hoseRRHoses);
fire.fireGui.hoseFRHosesTF.setText(hoseFRHoses);
fire.fireGui.dccCasLocTF.setText(dccCasLoc);
fire.fireGui.dccCasLocTF.setText(dccCasLoc);
fire.fireGui.dccCasLocTF.setText(dccCasLoc);

/ * *
* Set the ownerName and multicast address
*
* iparam A ownerName, like DCC
* @param B mulitcast you are sending on

*/
public void setOwner (String A, String B){

ownerName = A;
multicastAddressOfOwner = B;

* Set other pertinant object data
*
* @param A IP address and domain name of the computer thats using object
* @param B timeSent stamp
* @param C any message to add during send
* ©return void

*/
public void setData (String A, String B, String C){

machineName = A;
timeSent = B;
messageToSend = C;

/* *
*When called takes the current Combo Box settings and copies it to its
♦corresponding String.
*
* ©return void
*/
public void setStatusFromGui(){

dccCasLoc = (String)fireGui.dccCasLocCB.getSelectedItem();
dccShipRigForFire =

(String)fireGui.dccShipRigForFireCB.getSelectedItem();
dccAtmWiLimits =(String)fireGui.dccAtmWiLimitsCB.getSelectedltem ()
sceneMic = (String)fireGui.sceneMicCB.getSelectedltem();
sceneAsstRqd = (String)fireGui.sceneAsstRqdCB.getSelectedItem();
scenelnjuredPersonel =

(String)fireGui.scenelnjuredPersonelCB.getSelectedltern();

154

sceneDamageEquipment =
(String) f ireGui. sceneDamageEquipmentCB. getSelectedltem () ,-

sceneStatusOfFire=(String)fireGui.sceneStatusOfFireCB.getSelectedltem();
obaCrewMember = (String)fireGui.obaCrewMemberCB.getSelectedltemO
obaTimeRemaining =

(String)fireGui.obaTimeRemainingCB.getSelectedltern();
hoseRRHoses = (String)fireGui.hoseRRHosesCB.getSelectedltern();
hoseFRHoses = (String)fireGui.hoseFRHosesCB.getSelectedltem();

}

}//End Fire Class

155-

Package: swipNetgui
Class: FireGui
package swipNet.gui;

import java.awt.*;
import j ava.awt.event.*;
import javax.swing.*;
import swipNet.utility.Initialize;

/**
♦Graphical user interface(gui) that shows either Server or Client components
* and represents the data contained within it matching dc or ship object;
* gui isolated by itself to allow easier editing<p>
* @author LT William G. Wilkins
* ©version 1.0
*/

public class FireGui extends JPanel {
BorderLayout borderLayoutl = new BorderLayout();
/**
* Create a Server interface(if true) and Client iinterface (if false)
*/

protected boolean isServer = true;
/ * *
* used with toggle button to pause the listener so the interface can be

read without continual updating
*/

public boolean doUpdate = true;

* provides set of Strings used to initialize Combo Boxes
*/

Initialize initCB = new Initialize();

//New Gui Components - Client
//Level 1
public JTabbedPane innerTabPane = new JTabbedPane();
/* *
* For the Client - status displays
*/

public JTextArea directLinkTextArea = new JTextArea(250,180);
public JScrollPane dLinkJSP= new JScrollPane(directLinkTextArea);

/**
* For the Client - sned button
*/

public JButton jButton = new JButtonO;
/* *
* For the Server/Listener - pause feature
*/

public JToggleButton jTButton = new JToggleButton();

* Identification of Name and multicast channel listening on
*/

public JTextField host = new JTextField();
//Level 2
public JPanel jDCCPanel = new JPanel();
public JPanel jScenePanel = new JPanel();
public JPanel jHosePanel = new JPanel();
public JPanel jOBAPanel = new JPanel();

//Level 3
public JLabel clLabell = new JLabeK);

-156

public JLabel srLabel2 = new JLabeK);
public JLabel atmLabel3 = new JLabeK);
public JLabel micLabel4 = new JLabeK);
public JLabel asstLabel5 = new JLabel();
public JLabel ipLabel6 = new JLabeK);
public JLabel deLabel7 = new JLabel();
public JLabel sofLabel8 = new JLabeK);
public JLabel cmLabel9 = new JLabeK);
public JLabel trLabellO = new JLabel(),-
public JLabel rrLabellll = new JLabeK);
public JLabel frLabell2 = new JLabeK) ;

//For Client GUI and Populate from Initialize Class
public JComboBox dccCasLocCB = new JComboBox(initCB.dccCasLocArray);
public JComboBox dccShipRigForFireCB = new

JComboBox(initCB.dccShipRigForFireArray);
public JComboBox dccAtmWiLimitsCB = new

JComboBox(initCB.dccAtmWiLimitsArray);
public JComboBox sceneMicCB = new JComboBox(initCB.sceneMicArray);
public JComboBox sceneAsstRqdCB = new JComboBox(initCB.sceneAsstRqdArray);
public JComboBox scenelnjuredPersonelCB = new

JComboBox(initCB.scenelnjuredPersonelArray);
public JComboBox sceneDamageEquipmentCB = new

JComboBox(initCB.sceneDamageEguipmentArray);
public JComboBox sceneStatusOfFireCB = new

JComboBox(initCB.sceneStatusOfFireArray);
public JComboBox obaCrewMemberCB = new

JComboBox(initCB.obaCrewMemberArray);
public JComboBox obaTimeRemainingCB = new

JComboBox(initCB.obaTimeRemainingArray);
public JComboBox hoseRRHosesCB = new JComboBox(initCB.hoseRRHosesArray);
public JComboBox hoseFRHosesCB = new JComboBox(initCB.hoseFRHosesArray);

//For Server GUI
public JTextField dccCasLocTF = new JTextFieldt);
public JTextField dccShipRigForFireTF = new JTextField();
public JTextField dccAtmWiLimitsTF = new JTextFieldt);
public JTextField sceneMicTF = new JTextFieldt);
public JTextField sceneAsstRqdTF = new JTextField();
public JTextField scenelnjuredPersonelTF = new JTextField();
public JTextField sceneDamageEquipmentTF = new JTextFieldt);
public JTextField sceneStatusOfFireTF = new JTextFieldt);
public JTextField obaCrewMemberTF = new JTextFieldt);
public JTextField obaTimeRemainingTF = new JTextField();
public JTextField hoseRRHosesTF = new JTextFieldt);
public JTextField hoseFRHosesTF = new JTextFieldt);

/**
* Constructor - jblnitt) nested, within try{}
*
*/

public FireGuiO {
try {

jblnitt);
}
catch(Exception ex) {

ex.printStackTracet);
}

}

/•*

* Firet) Constructor, allows this class to be used for Client or Server;
* Their GUIs are different.
* @param isServer if true, initialize as a Server, if not then display as a

Client

-157

*/
public FireGui(boolean isServer) {

try {
this.isServer = isServer;
jblnitO ;

}
catch(Exception ex) {

ex.printStackTrace();
}

}

/**
* jblnitO used within JBuilder, to allow GUI Designing
*
* ©return void
*
*/

void jblnitO throws Exception {

this.setLayout(borderLayoutl);

//Set GUI Preferences
//Level Top 1
this.setFont(new java.awt.Font("Dialog", 1, 12));
this.setAlignmentX((float) 0.0);
this.setAlignmentY((float) 5.0);
this.setLayout(null) ;

//Level 2
innerTabPane.setBackground(Color.lightGray);
innerTabPane.setFont(new java.awt-Font("Dialog", 1, 12));
innerTabPane.setAlignmentY((float) 2.0);
innerTabPane.setPreferredSize(new Dimension(220, 180));
innerTabPane.setRequestFocusEnabled(false) ;
innerTabPane.setBounds(new Rectangle(10, 13, 252, 442));

dLinkJSP.setBounds(new Rectangle(10, 500, 260, 160));

host.setBounds(new Rectangle(7, 460, 180, 30));
jButton.setBounds(new Rectangle(190, 460, 80, 30));
jTButton.setBounds(new Rectangle(190, 460, 80, 30));

//Level 3
jDCCPanel.setLayout(null);
jDCCPanel.setBackground(new java.awt.Color(221, 255, 235));
jDCCPanel.setPreferredSize(new Dimension(250, 190));
jScenePanel.setLayout(null);
jScenePanel.setBackground(new java.awt.Color(192, 192, 239))
jHosePanel.setLayout(null);
jHosePanel.setBackground(new java.awt.Color(255, 223, 192));
jHosePanel.setFont(new java.awt.Font("Dialog", 0, 9));
jOBAPanel.setLayout(null) ;
jOBAPanel.setBackground(new java.awt.Color(192, 175, 191));

//Level 4
clLabell.setText("Casualty Location");
clLabe11.setBounds(new Rectangle(19, 29, 121, 23));
srLabel2.setText("Ship Rigged for Fire?");
srLabel2.setBounds(new Rectangle(18, 91, 125, 17));
atmLabel3.setToolTipText("");
atmLabel3.setText("Atmosphere within Limits of:");
atmLabel3.setBounds(new Rectangle(18, 151, 168, 14));
micLabel4.setText("Man In Charge at Scene is:");
micLabel4.setBounds(new Rectangle(15, 38, 170, 17));

-158-

asstLabel5.setText("Scene Assistance Rqd?");
asstLabel5.setBounds(new Rectangle(16, 103, 159, 15));
ipLabel6.setText("Injured Personnel?");
ipLabel6.setBounds(new Rectangle(16, 164, 155, 17));
deLabel7.setText("Damaged Equipment?");
deLabel?.setBounds(new Rectangle(17, 231, 154, 15));
sofLabel8.setText("Status of Fire is:");
sofLabel8.setBounds(new Rectangle(17, 298, 151, 15));
cmLabel9.setText("OBA Crew Member: ") ;
cmLabel9.setBounds(new Rectangle(11, 60, 137, 18));
trLabellO.setText("Time Remaining:");
trLabellO.setBounds(new Rectangle(81, 130, 151, 17))
rrLabellll.setText("Rapid Reponse Hose Team:");
rrLabellll.setBounds(new Rectangle(13, 56, 165, 19))
frLabell2.setText("Fast Response Hose Team:");
frLabell2.setBounds(new Rectangle(14, 133, 157, 16))

//For Client GUI
dccCasLocCB.setEditable(true) »-//Allows edit contents
dccShipRigForFireCB.setEditable(true);
dccAtmWiLimitsCB.setEditable(true) ;
sceneMicCB.setEditable(true);
sceneAsstRqdCB.setEditable(true);
scenelnjuredPersonelCB.setEditable(true);
sceneDamageEquipmentCB.setEditable(true) ;
sceneStatusOfFireCB.setEditable(true);
obaCrewMemberCB.setEditable(true);
obaTimeRemainingCB.setEditable(true);
hoseRRHosesCB.setEditable(true);
hoseFRHosesCB.setEditable(true);
dccCasLocCB.setBounds(new Rectangle(19, 55, 212, 26));
dccShipRigForFireCB.setBounds(new Rectangle(19, 114, 211, 27));
dccAtmWiLimitsCB.setBounds(new Rectangle(19, 173, 212, 30));
sceneMicCB.setBounds(new Rectangle(14, 59, 222, 30));
sceneAsstRqdCB.setBounds(new Rectangle(14, 121, 220, 33));
scenelnjuredPersonelCB.setBounds(new Rectangle(14, 187, 219, 32))
sceneDamageEquipmentCB.setBounds(new Rectangle(15, 250, 216, 36))
sceneStatusOfFireCB.setBounds(new Rectangle(15, 316, 215, 34));
obaCrewMemberCB.setBounds(new Rectangle(11, 81, 228, 34));
obaTimeRemainingCB.setBounds(new Rectangle(78, 151, 158, 35));
hoseRRHosesCB.setBounds(new Rectangle(13, 84, 212, 36));
hoseFRHosesCB.setBounds(new Rectangle(14, 153, 210, 34));

//For Server GUI
dccCasLocTF.setBounds(new Rectangle(19, 55, 212, 26));
dccShipRLgForFireTF.setBounds(new Rectangle(19, 114, 211, 27));
dccAtmWiLimitsTF.setBounds(new Rectangle(19, 173, 212, 30));
sceneMicTF.setBounds(new Rectangle(14, 59, 222, 30));
sceneAsstRqdTF.setBounds(new Rectangle(14, 121, 220, 33));
scenelnjuredPersonelTF.setBounds(new Rectangle(14, 187, 219, 32))
sceneDamageEquipmentTF.setBounds(new Rectangle(15, 250, 216, 36))
sceneStatusOfFireTF.setBounds(new Rectangle(15, 316, 215, 34));
obaCrewMemberTF.setBounds(new Rectangle(11, 81, 228, 34));
obaTimeRemainingTF.setBounds(new Rectangle(78, 151, 158, 35));
hoseRRHosesTF.setBounds(new Rectangle(13, 84, 212, 36));
hoseFRHosesTF.setBounds(new Rectangle(14, 153, 210, 34));

//Add GUI Components
//Level 2
this.add(innerTabPane, nul1);

//this.add(jButton, null);
this.add(host,null) ;

//Level 3
innerTabPane.add(j DCCPanel, "DCC");

159

innerTabPane.add(j ScenePanel, "Scene"),
innerTabPane.add(j OBAPanel, "OBA");
innerTabPane.add(jHosePanel, "HOSE");

//Level 4
jDCCPanel.add(clLabell, null);
jDCCPanel.add(srLabel2, null);
jDCCPanel.add(atmLabel3, null);
jScenePanel.add(micLabel4/ null);
jScenePanel.add(sofLabel8, null);
jScenePanel.add(deLabel7, null);
jScenePanel.add(asstLabel5, null);
jScenePanel.add(ipLabel6, null);
j OBAPane1.add(trLabe110, nu11);
j OBAPane 1. add (cmLabe 19, nu 11) ,-
jHosePanel.add(rrLabellll, null);
jHosePanel.add(frLabell2, null);

r
* Creates different guis depending if a Server or Client

*/
if (isServer == true) {

//For Server GUI
jTButton.setText("Pause");

this.add(jTButton, null);

jDCCPanel.addtdccCasLocTF, null);
jDCCPanel.add(dccShipRigForFireTF, null);
jDCCPanel.add(dccAtmWiLimitsTF, null);
jScenePanel.add(sceneMicTF, null);
jScenePanel.add(sceneAsstRqdTF, null);
jScenePanel.add(sceneInjuredPersonelTF, null);
jScenePanel.add(sceneDamageEquipmentTF, null);
jScenePanel.add(sceneStatusOfFireTF, null);
j OBAPanel.add(obaCrewMemberTF, nul1);
jOBAPanel.add(obaTimeRemainingTF, null);
jHosePanel.add(hoseRRHosesTF, null);
jHosePanel.add(hoseFRHosesTF, null);

jTButton.addltemListener(//Listener for the Pause feature
new ItemListener() {
public void itemStateChanged(ItemEvent e)
{

try {//Put Desire Action Here

if (e.getItemSelectable()==jTButton){

if (e.getStateChangeO ==
ItemEvent.SELECTED){

doUpdate = false;
jTButton.setText("unPause");

}
else{

doUpdate =true;
jTButton.setText("Pause");

}//end else
}//end outer if

}//end try-
catch (Exception ex){
ex.printStackTraceO ;

}
}});//end inner class and method call

-160

}
else {

//For Client GUI
jButton.setText("Send");
this.add(jButton, null);
this.add(dLinkJSP, null);
jDCCPanel.add(dccCasLocCB, null);
jDCCPanel.add(dccShipRigForFireCB, null);
jDCCPanel.add(dccAtmWiLimitsCB, null);
jScenePanel.add(sceneMicCB, null);
jScenePanel.add(sceneAsstRqdCB, null);
jScenePanel.add(sceneInjuredPersonelCB, null);
j ScenePanel.add(sceneDamageEguipmentCB, nul1);
jScenePanel.add(sceneStatusOfFireCB, null);
j OBAPane1.add(obaCrewMemberCB, nul1);
jOBAPanel.add(obaTimeRemainingCB, null);
jHosePanel.add(hoseRRHosesCB, null);
jHosePanel.add(hoseFRHosesCB, null);

}
}

}//End Fire GUI

-161

Package: swipNet.shipObjects
Class: ShipStatus

package swipNet.shipObjects;

import java.io.*;
import java.util.*;
import swipNet.gui.*;

/**
* A ship object that holds information within strings that can
* be directly sent over the network for ShipAtmospheres parameters<p>

* ©author LT William G. Wilkins
* ©version 1.0
*/

public class ShipStatus extends Object implements Serializable{

static int typeOfObject = 20;
static int version = 1;
static String type = new String ("SHIPSTATUS");

String ownerName = new String("default");
public String multicastAddressOfOwner = new String("default");//Fix With

Function Call
String machineName = new String("default");
String timeSent = new String ("default");
String messageToSend = new String("None");

String j = new String("Test");

public ShipStatusGui ssGui;

/**ShipStatus Constructor
*
*/

public ShipStatus() {}

public ShipStatus(boolean isServer) {
ssGui = new ShipStatusGui(isServer);

}

/** This constructor allows casting to the appropriate object depending on
* its type. It should read in the same order that the toBytes places
* onto the ByteArrayOutputStream.
*/

public ShipStatus(byte aBufferf])
{

ByteArraylnputStream bis = new ByteArraylnputStream(aBuffer) ;
DatalnputStream dis = new DatalnputStream(bis);

try
{

162

typeOfObject = dis.readlnt();
version = dis.readlnt();
type = dis.readUTF();
ownerName = dis.readUTF();
multicastAddressOfOwner = dis.readUTF();
machineName = dis.readUTF();
timeSent = dis.readUTF();
messageToSend = dis.readUTFO ;
j = dis.readUTF();

}
catch(Exception e)
{
System.out.println("Exception occured in (byte[])");

}

/** toBytes method converts all instance varibles within the object to a
* stream to allow a byte buffer to be sent on the network
*/

public byte[] toBytes()
{
ByteArrayOutputStream bos = new ByteArrayOutputStreamO ;
DataOutputStream dos = new DataOutputStream(bos);

try
{
dos.writeInt(typeOfObject);
dos.writelnt(version);
dos.writeUTF(type);

dos.writeUTF(ownerName);
dos.writeUTF(multicastAddressOfOwner);
dos.writeUTF(machineName);
dos.writeUTF(timeSent) ;
dos.writeUTF(messageToSend);

dos.writeUTF(j) ;

}
catch(IOException ioe)
{
System.out.println("IOException - Unable to convert Fire Object to

Bytes");
return null;

}

return bos.toByteArray();
}

public String[] getData(){

String holdString[] = new String[6];

holdStringtO] = type;
holdString[l] = ownerName;
holdString[2] = multicastAddressOfOwner;
holdString[3] = machineName;
holdString[4] = timeSent;
holdString[5] = messageToSend;

163

return holdString;

public void copyStatus(ShipStatus ss){

ss.ssGui.jTFcurrentOp.setText(j) ;

}

public void setOwner (String A, String B){

ownerName = A;
multicastAddressOfOwner = B;

}

public void setData (String A, String B, String C){

machineName = A;
timeSent = B;
messageToSend = C;

public void setStatusFromGui(){

j = (String)ssGui.jCBcurrentOp.getSelectedItem(]

-164

Class: EngineeringStatus

package swipNet.shipObjects;

import j ava.io.*;
import java.util.*;
import swipNet.gui.*;

/**
* A ship object that holds information within strings that can
* be directly sent over the network for EngineeringStatus parameters<p>
*
* ©author LT William G. Wilkins
* ©version 1.0
*/

public class EngineeringStatus extends Object implements Serializable{

static int typeOfObject = 21;
static int version = 1;
static String type = new String ("ENGINEERINGSTATUS");

String ownerName = new String("default") ;
public String multicastAddressOfOwner = new String("default");//Fix With

Function Call
String machineName = new String("default");
String timeSent = new String ("default");
String messageToSend = new String("None");

String jRxPower = new StringO;
String jPumpLineup = new StringO;
String jLoopLineup = new StringO;

String jSteamPower = new StringO;
String jCurrentBell = new StringO;
String jMaxBell = new StringO;

String jElectricLineup = new StringO;
String jDischargeRate = new StringO;
String jAmpsRemain = new StringO;

public EngineeringStatusGui esGui;

/**Fire Constructor
*
*/

public EngineeringStatus() {}

public EngineeringStatus(boolean isServer) {
esGui = new EngineeringStatusGui(isServer) ;

}

/** This constructor allows casting to the appropriate object depending on
the

* its type. It should read in the same order that the toBytes places
* onto the ByteArrayOutputStream.

-165

public Engineeringstatus (byte aBufferU)
{

ByteArraylnputStream bis = new ByteArraylnputStream(aBuffer);
DatalnputStream dis = new DatalnputStream(bis);

try
{
typeOfObject = dis.readlnt();
version = dis.readlnt();
type = dis.readUTFO;
ownerName = dis.readUTF();
multicastAddressOf Owner = dis.readUTFO;
machineName = dis.readUTFO;
timeSent = dis.readUTF();
messageToSend = dis.readUTFO;

j RxPower = dis.readUTF();
j PumpLineup = dis.readUTF();
jLoopLineup = dis:readUTF0;

j SteamPower = dis.readUTF();
jCurrentBeil = dis.readUTFO;
jMaxBell = dis.readUTFO;

jElectricLineup = dis.readUTFO;
jDischargeRate = dis.readUTFO;
jAmpsRemain = dis.readUTF();

}
catch(Exception e)
{
System.out.printlnt"Exception occured in (byte[])n);

}

/** toBytes method converts all instance varibles within the object to a
* stream to allow a byte buffer to be sent on the network
*/

public byte[] toBytes()
{
ByteArrayOutputStream bos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(bos);

try
{
dos.writelnt(typeOfObject);
dos.writelnt(version);
dos.wri teUTF(type);

dos .writeUTF (ownerName) ,-
dos.writeUTF(multicastAddressOfOwner);
dos.writeUTF(machineName);
dos.writeUTF(timeSent);
dos.writeUTF(messageToSend) ;

dos.writeUTF(jRxPower);
dos.writeUTF(jPumpLineup);
dos.writeUTF(jLoopLineup);

-166-

dos.writeUTF(jSteamPower) ;
dos.writeUTF(jCurrentBell);
dos.writeUTF(jMaxBell);

dos.writeUTF(jElectricLineup);
dos. writeUTF(jDischargeRate);
dos.writeUTF(jAmpsRemain);

}
catch(IOException ioe)
{
System.out.printin("IOException - Unable to convert Fire Object to

Bytes");
return null;

}

return bos.toByteArray();
}

public String[] getData(){

String holdStringU = new. String[6] ;

holdString[0] = type;
holdStringil] = ownerName;
holdString[2] = multicastAddressOfOwner;
holdString[3] = machineName;
holdString[4] = timeSent;
holdString[5] = messageToSend;

return holdString;

public void copyStatus(Engineeringstatus es){

es.esGui.jRxPowerTF.setText(jRxPower);
es.esGui.j PumpLineupTF.setText(j PumpLineup);
es.esGui.jLoopLineupTF.setText(jLoopLineup);

es.esGui.j SteamPowerTF.setText(j SteamPower);
es.esGui.jCurrentBellTF.setText(jCurrentBell);
es.esGui.jMaxBellTF.setText(jMaxBell);

es.esGui.jElectricLineupTF.setText(jElectricLineup);
es.esGui.jDischargeRateTF.setText(jDischargeRate);
es.esGui.jAmpsRemainTF.setText(jAmpsRemain);

public void setOwner (String A, String B){

ownerName = A;
multicastAddressOfOwner = B;

}

public void setData (String A, String B, String C){

-167-

machineName = A;
timeSent = B;
messageToSend = C;

public void setStatusFromGui(){

jRxPower = (String)esGui.jRxPowerCB.getSelectedItem() ;
jPumpLineup = (String)esGui.jPumpLineupCB.getSelectedltem() ;
jLoopLineup =(String)esGui.jLoopLineupCB.getSelectedltem() ;

jSteamPower = (String)esGui.jSteamPowerCB.getSelectedltem();
jCurrentBell = (String)esGui.jCurrentBellCB.getSelectedltem();
jMaxBell = (String)esGui.jMaxBellCB.getSelectedltem(),-

jElectricLineup = (String)esGui.jElectricLineupCB.getSelectedItem();
jDischargeRate=(String)esGui.jDischargeRateCB.getSelectedltem() ;
jAmpsRemain = (String)esGui.jAmpsRemainCB.getSelectedltem();

-168-

Class: CompartmentRigs

package swipNet.shipObj ects;

import java.io.*;
import java.util.*;
import swipNet.gui.*;

/ * *
* A ship object that holds information within strings that can
* be directly sent over the network for CompartmentRigs parameters<p>
*
* ©author LT William G. Wilkins
* ©version 1.0
*/

public class CompartmentRigs extends Object implements Serializable{

static int typeOfObject = 22;
static int version = 1;
static String type = new String ("COMPARTMENTRIGS");

String ownerName = new String("default");
public String multicastAddressOfOwner = new String("default");//Fix With

Function Call
String machineName = new String("default");
String timeSent = new String ("default");
String messageToSend = new String("None");

String jMainStringl = new String();String jMainString2 = new
String () ; String jMainString3 = new StringO;

String jMainString4 = new String();String jMainString5 = new
String (); String jMainString6 = new StringO;

String jMainString7 = new String();

String jFireStringl = new String (); String jFireString2 = new String
();String jFireString3 = new String ();

String jFireString4 = new String ();String jFireString5 = new String
();String jFireString6 = new String ();

String jFireString7 = new String ();String jFireString8 = new String
();String jFireString9 = new String ();

String jFireStringlO = new String ();String jFireStringll = new String
();String jFireStringl2 = new String ();

String jFireStringl3 = new String ();String jFireStringl4 = new String ();

String jFloodingStringl = new String ();String jFloodingString2 = new
String (),-String jFloodingString3 = new String ();

String jFloodingString4 = new String ();String jFloodingString5 = new
String ();String jFloodingString6 = new String ();

String jFloodingString7 = new String ();String jFloodingString8 = new
String ();String jFloodingString9 = new String ();

String jFloodingStringlO = new String ();String jFloodingStringll = new
String ();String jFloodingStringl2 = new String ();

String jFloodingStringl3 = new String ();String jFloodingStringl4 = new
String ();

String jSnorkelStringl = new String ();String jSnorkelString2 = new String
();String jSnorkelString3 = new String ();

String jSnorkelString4 = new String ();String jSnorkelString5 = new String
();String jSnorkelString6 = new String ();

-169

String jSnorkelString7 = new String ();String jSnorkelString8 = new String
();String jSnorkelString9 = new String ();

String jSnorkelStringlO = new String ();String jSnorkelStringll = new
String ();String jSnorkelStringl2 = new String ();

String jSnorkelStringl3 = new String ();String jSnorkelStringl4 = new
String ();

String jVent
String ();String

String jVent
String ();String

String jVent
String ();String

String jVent
String ();String

String jVent
String () ;

.ilateStringl = new
• jVentilateString3
ilateString4 = new
jVentilateString6

ilateString7 = new
jVentilateString9

.ilateStringlO = new
• jVentilateStringl2
ilateString!3 = new

String () f ();String jVentilateString2 =
new String ();

String (),-String jVentilateString5 =
= new String {);
String ();String jVentilateString8
= new String ();
String ();String jVentilateStringll
= new String ();
String ();String jVentilateString!4 = new

new

new

new

new

String jToxicGasStringl = new String ();String jToxicGasString2 =
String ();String jToxicGasString3 = new String ();

String jToxicGasString4 = new String ();String jToxicGasString5 =
String ();String jToxicGasString6 = new String ();

String jToxicGasString7 = new String ();String jToxicGasString8 =
String ();String jToxicGasString9 = new String ();

String jToxicGasStringlO = new String ();String jToxicGasStringll
String ();String jToxicGasStringl2 = new String ();

String jToxicGasStringl3 = new String ();String jToxicGasStringl4
String ();

= new

String jREStringl = new String ();String jREString2 = new String ();String
jREString3 = new String ();

String jREString4 = new String ();String jREString5 = new String ();String
jREString6 = new String ();

String jREString7 = new String ();String jREString8 = new String ();String
jREString9 = new String ();

String jREStringlO = new String ();String jREStringll = new String
();String jREStringl2 = new String ();

String jREString!3 = new String ();String jREStringl4 = new String ();

String
();String

String
();String

String
();String

String
();String

String

jDiveStringl ;
jDiveString3 =
jDiveString4 =
jDiveString6 =
jDiveString7 :

jDiveString9 =
jDiveStringlO

jDiveStringl2 :
jDiveStringl3

= new String ();String jDiveString2 = new String
new String ()

;String jDiveString5 = new String = new String ()
new String ()

: new String ()
new String (),
= new String ();String jDiveStringll

: new String ();
= new String ();String jDiveStringl4 = new String ()

;String jDiveString8 = new String

new String

public CompartmentRigsGui crGui;

/**Fire Constructor

*/
public CompartmentRigs() {}

public CompartmentRigs(boolean isServer) {
crGui = new CompartmentRigsGui(isServer);

-170-

/** This constructor allows casting to the appropriate object depending on
the

* its type. It should read in the same order that the toBytes places
* onto the ByteArrayOutputStream.
*/

public CompartmentRigs(byte aBuffer[])
{

ByteArraylnputStream bis = new ByteArraylnputStream(aBuffer);
DatalnputStream dis = new DatalnputStream(bis);

try
{
typeOfObject =•dis.readlnt();
version = dis.readlntO;
type = dis.readUTFO;
ownerName = dis.readUTFO;
multicastAddressOf Owner = dis.readUTFO;
machineName = dis.readUTFO;
timeSent = dis. readUTF () ,-
messageToSend = dis.readUTFO;

jMainStringl = dis.readUTFO;jMainString2 = dis.readUTF();jMainString3
= dis.readUTFO ;

jMainString4 = dis.readUTF();jMainString5 = dis.readUTF();jMainString6
= dis.readUTFO ;

jMainString7 = dis.readUTFO;

jFireStringl = dis.readUTF();jFireString2 = dis.readUTF();jFireString3
= dis.readUTFO ;

jFireString4 = dis.readUTF();jFireString5 = dis.readUTF();jFireString6
= dis.readUTF();

jFireString7 = dis.readUTF();jFireString8 = dis.readUTF();jFireString9
= dis.readUTFO ;

jFireStringlO = dis.readUTFO;jFireStringll =
dis.readUTF();jFireStringl2 = dis.readUTF();

jFireStringl3 = dis.readUTFO ;jFireStringl4 = dis.readUTFO;

jFloodingStringl = dis.readUTF0;jFloodingString2 =
dis.readUTF();jFloodingString3 = dis.readUTF();

jFloodingString4 = dis.readUTF();jFloodingString5 =
dis.readUTFO ;jFloodingString6 = dis.readUTFO;

jFloodingString7 = dis.readUTFO;jFloodingString8 =
dis.readUTFO ;jFloodingString9 = dis.readUTFO;

jFloodingStringlO = dis.readUTFO;jFloodingStringll =
dis.readUTF();jFloodingStringl2 = dis.readUTF();

jFloodingStringl3 = dis.readUTF();jFloodingStringl4 = dis.readUTFO;

jSnorkelStringl = dis.readUTFO;jSnorkelString2 =
dis.readUTF();j SnorkelString3 = dis.readUTF();

jSnorkelString4 = dis.readUTFO;jSnorkelString5 =
dis.readUTF();j SnorkelString6 = dis.readUTF();

jSnorkelString7 = dis.readUTFO;jSnorkelString8 =
dis.readUTF();j SnorkelString9 = dis.readUTF();

jSnorkelStringlO = dis.readUTF();jSnorkelStringll =
dis.readUTF();j SnorkelStringl2 = dis.readUTF();

jSnorkelStringl3 = dis.readUTFO ; jSnorkelStringl4 = dis.readUTFO;

-171

jVentilateStringl = dis.readUTF();jVentilateString2 =
dis.readUTFO;jVentilateString3 = dis.readUTFO;

jVentilateString4 = dis.readUTF();jVentilateString5 =
dis.readUTF();jVentilateString6 = dis.readUTF();

jVentilateString7 = dis.readUTF();jVentilateString8 =
dis.readUTF();jVentilateString9 = dis.readUTF();

jVentilateStringlO = dis.readUTF();jVentilateStringll =
dis.readUTF();jVentilateStringl2 = dis.readUTF();

jVentilateStringl3 = dis.readUTF();jVentilateStringl4 = dis.readUTFO;

jToxicGasStringl = dis.readUTF();jToxicGasString2 =
dis.readUTF();jToxicGasString3 = dis.readUTF();

jToxicGasString4 = dis.readUTF();jToxicGasString5 =
dis.readUTFO;jToxicGasString6 = dis.readUTFO;

jToxicGasString7 = dis.readUTF();jToxicGasString8 =
dis.readUTF();jToxicGasString9 = dis.readUTF();

jToxicGasStringlO = dis.readUTFO;jToxicGasStringll =
dis.readUTFO ;jToxicGasStringl2 = dis.readUTFO;

jToxicGasStringl3 = dis.readUTFO;jToxicGasStringl4 = dis.readUTFO;

jREStringl = dis.readUTF();jREString2 = dis.readUTFO;jREString3 =
dis.readUTFO ;

jREString4 = dis.readUTFO;jREString5 = dis.readUTFO;jREString6 =
dis.readUTFO ;

jREString7 = dis.readUTF();jREString8 = dis.readUTF();jREString9 =
dis.readUTF<);

jREStringlO = dis.readUTFO;jREStringll = dis.readUTF();jREStringl2 =
dis.readUTFO ;

jREStringl3 = dis.readUTF();jREStringl4 = dis.readUTFO;

jDiveStringl = dis.readUTF();jDiveString2 = dis.readUTF();jDiveString3
= dis.readUTF();

jDiveString4 = dis.readUTF();jDiveString5 = dis.readUTF();jDiveString6
= dis.readUTF();

jDiveString7 = dis.readUTF();jDiveString8 = dis.readUTF();jDiveString9
= dis.readUTF();

jDiveStringlO = dis.readUTF();jDiveStringll =
dis.readUTF();jDiveStringl2 = dis.readUTF();

jDiveStringl3 = dis.readUTF0;jDiveStringl4 = dis.readUTFO;

}
catch(Exception e)
{
System.out.println("Exception occured in (byte[])n);

}

/** toBytes method converts all instance varibles within the object to a
* stream to allow a byte buffer to be sent on the network
*/

public byte[] toBytes()
{
ByteArrayOutputStream bos = new ByteArrayOutputStreamO ;
DataOutputStream dos = new DataOutputStream(bos);

try
{
dos.writelnt(typeOfObject);
dos.writelnt(version);
dos.writeUTF(type);

172-

dos.writeUTF(ownerName);
dos.writeUTF(multicastAddressOfOwner);
dos.writeUTF(machineName),-
dos.writeUTF(timeSent);
dos.writeUTF(messageToSend);

dos .writeUTF (jMainStringl) ; dos .writeUTF (jMainString2) ;dos .writeUTF (jMainString3
);

dos.writeUTF{ jMainString4) ;dos.writeUTF(jMainString5) ;dos.writeUTF(jMainString6
);

dos.writeUTF(jMainString7);

dos. writeUTF (jFireStringl) ; dos .writeUTF (jFireString2) ; dos. writeUTF (jFireString3
);

dos. writeUTF(jFireString4);dos.writeUTF(jFireString5);dos.writeUTF(jFireString6
);

dos.writeUTF(jFireString7) ;dos.writeUTF(jFireString8) ; dos. writeUTF (jFireString9
);

dos .writeUTF(jFireStringl0);dos.writeUTF(jFireStringll);dos.writeUTF(jFireStrin
gl2);

dos.writeUTF(jFireStringl3);dos.writeUTF(jFireStringl4);

dos.writeUTF(jFloodingStringl);dos.writeUTF(jFloodingString2);dos.writeUTF(jFlo
odingString3);

dos.writeUTF(jFloodingString4);dos. writeUTF(jFloodingString5);dos.writeUTF(jFlo
odingString6);

dos.writeUTF(j FloodingString7);dos.writeUTF(j FloodingString8);dos.writeUTF(j Flo
odingString9);

dos. writeUTF(jFloodingStringlO);dos.writeUTF(jFloodingStringll);dos.writeUTF(jF
loodingStringl2);

dos.writeUTF(jFloodingStringl3);dos.writeUTF(jFloodingStringl4) ;

dos .writeUTF(j SnorkelStringl);dos.writeUTF(j SnorkelString2);dos.writeUTF(jSnork
elString3);

dos . writeUTF(j SnorkelString4);dos. writeUTF(j SnorkelString5);dos.writeUTF(j Snork
elString6);

dos .writeUTF (j SnorkelString7) ; dos .writeUTF (j SnorkelString8) ; dos .writeUTF (j Snork
elString9);

dos.writeUTF(jSnorkelStringlO);dos.writeUTF(jSnorkelStringll) ;dos.writeUTF(jSno
rkelStringl2);

dos. writeUTF (j SnorkelStringl3) ,- dos. writeUTF (j SnorkelStringl4) ;

dos.writeUTF(jVentilateStringl) ; dos .writeUTF (jVentilateString2) ; dos. writeUTF (jV
entilateString3) ;

dos . writeUTF (jVentilateString4) ;dos .writeUTF (jVentilateString5) ; dos .writeUTF (jV
entilateString6) ;

dos. writeUTF (jVentilateString7) ; dos .writeUTF (jVentilateString8) ; dos. writeUTF (jV
entilateString9) ;

173

dos.writeUTF(jVentilateStringlO);dos.writeUTF(jVentilateStringll);dos.writeUTF (
jVentilateStringl2);

dos.writeUTF(jVentilateStringl3);dos.writeUTF(jVentilateStringl4);

dos.writeUTF(jToxicGasStringl);dos.writeUTF(jToxicGasString2);dos.writeUTF(jTox
icGasString3);

dos.writeUTF(jToxicGasString4);dos.writeUTF(jToxicGasString5);dos.writeUTF(jTox
icGasString6);

dos.writeUTF(jToxicGasString7);dos.writeUTF(jToxicGasString8);dos.writeUTF(jTox
icGasString9);

dos.writeUTF(j ToxicGasStringlO);dos.writeUTF(j ToxicGasStringll);dos.writeUTF (j T
oxicGasStringl2);

dos.writeUTF(jToxicGasStringl3) ;dos.writeUTF(jToxicGasStringl4);

dos.writeUTF(jREStringl);dos.writeUTF(jREString2);dos .writeUTF(jREString3);

dos.writeUTF(jREString4);dos.writeUTF(jREString5);dos.writeUTF(jREStringö);

dos.writeUTF(jREString7);dos.writeUTF(jREString8);dos.writeUTF(jREString9);

dos.writeUTF(jREStringlO);dos.writeUTF(jREStringll);dos.writeUTF(jREStringl2) ;
dos.writeUTF(jREStringl3);dos.writeUTF(jREStringl4);

dos.writeUTF(jDiveStringl);dos.writeUTF(jDiveString2);dos.writeUTF(jDiveString3
);

dos.writeUTF(jDiveString4);dos.writeUTF(jDiveString5);dos.writeUTF(jDiveString6
) ;

dos.writeUTF(jDiveString7);dos.writeUTF(jDiveString8);dos.writeUTF(jDiveString9
);

dos.writeUTF(jDiveStringlO);dos.writeUTF(jDiveStringll);dos.writeUTF(jDiveStrin
gl2) ;

dos.writeUTF (jDiveString!3) ,-dos .writeUTF (jDiveStringl4) ;

}
catch(IOException ioe)
{
System.out.printin("IOException - Unable to convert Fire Object to

Bytes");
return null;

}

return bos.toByteArray();
}

public String[] getData(){

String holdStringf] = new String[6];

holdString[0] = type;
holdStringfl] = ownerName;
holdString[2] = multicastAddressOfOwner;
holdString[3] = machineName;
holdString[4] = timeSent;

-174

holdString[5] = messageToSend;

return holdString;

public void copyStatus(CompartmentRigs cr){

if(jMainStringl.equalsIgnoreCase("true")
){cr.crGui.jMainPanel.fire.setSelected(true);}

else{cr.crGui.jMainPanel.fire.setSelected(false);}

i f(jMainString2.equalsIgnoreCase("true")){cr.crGui.jMainPanel.flooding.setSelec
ted(true);}

else{cr.crGui.jMainPanel.flooding.setSelected(false);}

if(jMainString3.equalsIgnoreCase("true")){cr.crGui. jMainPanel.snorkel.setSelect
ed(true);}

else{cr.crGui.jMainPanel.snorkel.setSelected(false);}

if(jMainString4.equalsIgnoreCase("true")){cr.crGui.jMainPanel.ventilate.setSele
cted(true);}

else{cr.crGui.jMainPanel.ventilate.setSelected(false);}

if (jMainString5.equalsIgnoreCase ("true")) {cr.crGui. jMainPanel. toxicGas. setSelec
ted(true);}

else{cr.crGui.jMainPanel.toxicGas.setSelected(false);}

if(jMainString6.equalsIgnoreCase("true")){cr.crGui.jMainPanel.rfre.setSelected (
true);}

else{cr.crGui.jMainPanel.rfre.setSelected(false);}

if(jMainString7.equalsIgnoreCase("true")){cr.crGui.jMainPanel.dive.setSelected (
true);}

else{cr.crGui.jMainPanel.dive.setSelected(false);}

if(jFireStringl.equalsIgnoreCase("true")
){cr.crGui.jFirePanel.cses.setSelected(true);}

else{cr.crGui.j FirePanel.cses.setSelected(false);}

if(jFireString2.equalsIgnoreCase("true")){cr.crGui.jFirePanel.control.setSelect
ed(true);}

else{cr.crGui.jFirePanel.control.setSelected(false);}

if(jFireString3.equalsIgnoreCase("true")){cr.crGui.jFirePanel.nav.setSelected (t
rue);}

else{cr.crGui.jFirePanel.nav.setSelected(false);}

if (jFireString4 . equalsIgnoreCase (" true")) {cr. crGui. jFirePanel. f cml. setSelected (
true);)

else{cr.crGui.j FirePanel.fcml.setSelected(false);}

i f(j FireString5.equalsIgnoreCase("true")){cr.crGui.j FirePanel.tr.setSelected (tr
ue);}

else{cr.crGui.j FirePanel.tr.setSelected(false);}

i f(j FireString6.equalsIgnoreCase("true")){cr.crGui.jFirePanel.amr.setSelected (t
rue);}

else{cr.crGui.jFirePanel.amr.setSelected(false);}

if(j FireString7.equalsIgnoreCase("true")){cr.crGui.j FirePanel.erul.setSelected (
true);}

else{cr.crGui.j FirePanel.erul.setSelected(false);}

175-

i f(j FireString8.equalsIgnoreCase("true")){cr.crGui.j FirePanel.erml.setSelected(
true);}

else{cr.crGui.jFirePanel.erml.setSelected(false);}

if(jFireString9.equalsIgnoreCase("true")){cr.crGui.jFirePanel.erf.setSelected(t
rue);}

else{cr.crGui.jFirePanel.erf.setSelected (false);)

if(jFireStringlO.equalsIgnoreCase("true")){cr.crGui.jFirePanel.tglo.setSelected
(true) ;}

else{cr.crGui.j FirePanel.tglo.setSelected(false) ; }

if(jFireStringll.equalsIgnoreCase("true")){cr.crGui.jFirePanel.cb.setSelected(t
rue);}

else{cr.crGui.jFirePanel.cb.setSelected(false) ;)

if(jFireStringl2.equalsIgnoreCase("true")){cr.crGui.jFirePanel.msw.setSelected(
true);}

else{cr.crGui.jFirePanel.msw.setSelected(false);}

if(j FireStringl3.equalsIgnoreCase("true")){cr.crGui.jFirePanel.sa.setSelected(t
rue);}

else{cr.crGui.jFirePanel.sa.setSelected(false);}

if(jFireStringl4.equalsIgnoreCase("true")){cr.crGui.jFirePanel.totalRig.setSele
cted(true);}

else{cr.crGui.j FirePanel.totalRig.setSelected(false);}

if(jFloodingStringl.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.cses.sets
elected(true);}

else{cr.crGui.jFloodingPanel.cses.setSelected(false);}

if(jFloodingString2.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.control.s
etSelected(true);}

else{cr.crGui.j FloodingPanel.control.setSelected(false);}

if(jFloodingString3.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.nav.setSe
lected(true);}

else{cr.crGui.j FloodingPanel.nav.setSelected(false);}

if(jFloodingString4.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.fcml.setS
elected(true);}

else{cr.crGui.jFloodingPanel.fcml.setSelected(false);}

if(jFloodingString5.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.tr.setSel
ected(true);}

else{cr.crGui.jFloodingPanel.tr.setSelected(false);}

if(jFloodingString6.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.amr.setSe
lected(true);}

else{cr.crGui.jFloodingPanel.amr.setSelected(false) ; }

if(jFloodingString7.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.erul.sets
elected(true);}

else{cr.crGui.j FloodingPanel.erul.setSelected(false);}

if(jFloodingString8.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.erml.sets
elected(true);}

else{cr.crGui.j FloodingPanel.erml.setSelected(false);}

if(jFloodingString9.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.erf.setSe
lected(true);}

else{cr.crGui.j FloodingPanel.erf.setSelected(false);}

-176

i f(j FloodingStringlO.equalsIgnoreCase("true")){cr.crGui.j FloodingPanel.tglo.set
Selected(true);}

else{cr.crGui.jFloodingPanel.tglo.setSelected(false);}

if(jFloodingStringll.equalsIgnoreCase("true")){cr.crGui.jFloodingPanel.cb.setSe
lected(true);}

else{cr.crGui.j FloodingPanel.cb.setSelected(false);}

if(j FloodingStringl2.equalsIgnoreCase("true")){cr.crGui.j FloodingPanel.msw.sets
elected(true);}

else{cr.crGui.j FloodingPanel.msw.setSelected(false);}

if(j FloodingStringl3.equalsIgnoreCase("true")){cr.crGui.j FloodingPanel.sa.setSe
lected(true);}

else{cr.crGui.j FloodingPanel.sa.setSelected(false);}

i f(j FloodingStringl4.equalsIgnoreCase("true")){cr.crGui.j FloodingPanel.totalRig
.setSelected(true);}

else{cr.crGui.j FloodingPanel.totalRig.setSelected(false);}

i f(j SnorkelStringl.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.cses.setSel
ected(true);}

else{cr.crGui.j SnorkelPanel.cses.setSelected(false);}

if(jSnorkelString2.equalsIgnoreCase("true")){cr.crGui.jSnorkelPanel.control.set
Selected(true);}

else{cr.crGui.j SnorkelPanel.control.setSelected(false);}

if(jSnorkelString3.equalsIgnoreCase("true")){cr.crGui.jSnorkelPanel.nav.setSele
cted(true);}

else{cr.crGui.j SnorkelPanel.nav.setSelected(false);}

if(j SnorkelString4.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.fcml.setSel
ected(true);}

else{cr.crGui.jSnorkelPanel.fcml.setSelected(false);}

if(jSnorkelString5.equalsIgnoreCase("true")){cr.crGui.jSnorkelPanel.tr.setSelec
ted(true);}

else{cr.crGui.j SnorkelPanel.tr.setSelected(false);}

if(j SnorkelString6.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.amr.setSele
cted(true);}

else{cr.crGui.j SnorkelPanel.amr.setSelected(false);}

if(j SnorkelString7.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.erul.setSel
ected(true);}

else{cr.crGui.j SnorkelPanel.erul.setSelected(false);}

i f(j SnorkelString8.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.erml.setSel
ected(true);}

else{cr.crGui.j SnorkelPanel.erml.setSelected(false);}

i f(j SnorkelString9.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.erf.setSele
cted(true);}

else{cr.crGui.j SnorkelPanel.erf.setSelected(false);}

if(j SnorkelStringlO.equalsIgnoreCase("true")){cr.crGui.j SnorkelPanel.tglo.setSe
lected(true);}

else{cr.crGui.j SnorkelPanel.tglo.setSelected(false);}

if(jSnorkelStringll.equalsIgnoreCase("true")){cr.crGui.jSnorkelPanel.cb.setSele
cted(true);}

else{cr.crGui.j SnorkelPanel.cb.setSelected(false);}

-177-

if(jSnorkelStringl2.egualsIgnoreCase("true")){cr.crGui.jSnorkelPanel.msw.setSel
ected(true);}

else{cr.crGui.jSnorkelPanel.msw.setSelected(false);}

i f(j SnorkelStringl3.egualsIgnoreCase(n true")){cr.crGui.j SnorkelPanel.sa.setSele
cted(true);}

else{cr.crGui.j SnorkelPanel.sa.setSelected(false);}

if(j SnorkelStringl4.egualsIgnoreCase("true")){cr.crGui.j SnorkelPanel.totalRig.s
etSelected(true);}

else{cr.crGui.j SnorkelPanel.totalRig.setSelected(false);}

if(j VentilateStringl.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.cses.se
tSelected(true);}

else{cr.crGui.jVentilatePanel.cses.setSelected(false);}

if(jVentilateString2.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.control
.setSelected(true);}

else{cr.crGui.jVentilatePanel.control.setSelected(false);}

if(jVentilateString3.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.nav.set
Selected(true);}

else{cr.crGui.jVentilatePanel.nav.setSelected(false);}

if(jVentilateString4.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.fcml.se
tSelected(true);}

else{cr.crGui.jVentilatePanel.fcml.setSelected(false);}

if(jVentilateString5.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.tr.sets
elected(true);}

else{cr.crGui.jVentilatePanel.tr.setSelected(false);}

if(jVentilateString6.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.amr.set
Selected(true);}

else{cr.crGui.jVentilatePanel.amr.setSelected(false);}

if(jVentilateString7.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.erul.se
tSelected(true);}

else{cr.crGui.jVentilatePanel.erul.setSelected(false);}

if(jVentilateString8.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.erml.se
tSelected(true);}

else{cr.crGui.jVentilatePanel.erml.setSelected(false);}

if(jVentilateString9.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.erf.set
Selected(true);}

else{cr.crGui.jVentilatePanel.erf.setSelected(false);}

if(jVentilateStringlO.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.tglo.s
etSelected(true);}

else{cr.crGui.jVentilatePanel.tglo.setSelected(false);}

if(jVentilateStringll.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.cb.set
Selected(true);}

else{cr.crGui.jVentilatePanel.cb.setSelected(false);}

if(jVentilateStringl2.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.msw.se
tSelected(true);}

else{cr.crGui.jVentilatePanel.msw.setSelected(false);}

if(j VentilateStringl3.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.sa.set
Selected(true);}

else{cr.crGui.jVentilatePanel.sa.setSelected(false);}

-178-

if(jVentilateStringl4.egualsIgnoreCase("true")){cr.crGui.jVentilatePanel.totalR
ig.setSelected(true);}

else{cr.crGui.jVentilatePanel.totalRig.setSelected(false);}

if(jToxicGasStringl.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.cses.setS
elected(true);}

else{cr.crGui.JToxicGasPanel.cses.setSelected(false) ; }

if(jToxicGasString2.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.control.s
etSelected(true);}

else{cr.crGui.JToxicGasPanel.control.setSelected(false);}

if(jToxicGasString3.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.nav.setSe
lected(true);}

else{cr.crGui.JToxicGasPanel.nav.setSelected(false) ;}

if(jToxicGasString4.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.fcml.sets
elected(true);}

else{cr.crGui.jToxicGasPanel.fcml.setSelected(false);}

if(jToxicGasString5.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.tr.setSel
ected(true);}

else{cr.crGui.JToxicGasPanel.tr.setSelected(false);}

if(jToxicGasString6.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.amr.setSe
lected(true);}

else{cr.crGui.jToxicGasPanel.amr.setSelected(false);}

if(jToxicGasString7.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.erul.sets
elected(true);}

else{cr.crGui.JToxicGasPanel.erul.setSelected(false);}

if(j ToxicGasString8.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.erml.sets
elected(true);}

else{cr.crGui.JToxicGasPanel.erml .setSelected(false);}

if(jToxicGasString9.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.erf.setSe
lected(true);}

else{cr.crGui.j ToxicGasPanel.erf.setSelected(false);}

if(jToxicGasStringlO.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.tglo.set
Selected(true);}

else{cr.crGui.jToxicGasPanel.tglo.setSelected(false);}

if(jToxicGasStringll.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.cb.setSe
lected(true);}

else{cr.crGui.jToxicGasPanel.cb.setSelected(false);}

if(jToxicGasStringl2.equalsIgnoreCase("true")){cr.crGui.jToxicGasPanel.msw.sets
elected(true);}

else{cr.crGui.j ToxicGasPanel.msw.setSelected(false); }

if(jToxicGasStringl3.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.sa.setSe
lected(true);}

else{cr.crGui.JToxicGasPanel.sa.setSelected(false);}

if(jToxicGasStringl4.equalsIgnoreCase("true")){cr.crGui.JToxicGasPanel.totalRig
.setSelected(true);}

else{cr.crGui.JToxicGasPanel.totalRig.setSelected(false);}

if(jREStringl.equalsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.cses.s
etSelected(true);}

else{cr.crGui.jReducedElectricalPanel.cses.setSelected(false);}

179-

if(jREString2.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.contro
l.setSelected(true);}

else{cr.crGui.jReducedElectricalPanel.control.setSelected(false);}

if(jREString3.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.nav.se
tSelected(true);}

else{cr.crGui.jReducedElectricalPanel.nav.setSelected(false);}

if(jREString4.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.fcml.s
etSelected(true);}

else{cr.crGui.jReducedElectricalPanel.fcml.setSelected(false);}

i f(jREString5.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.tr.set
Selected(true);}

else{cr.crGui.jReducedElectricalPanel.tr.setSelected(false);}

i f(jREString6.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.amr.se
tSelected(true);}

else{cr.crGui.j ReducedElectricalPanel.amr.setSelected(false);}

if(jREString7.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.erul.s
etSelected(true);}

else{cr.crGui.jReducedElectricalPanel.erul.setSelected(false);}

if(jREString8.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.erml.s
etSelected(true);}

else{cr.crGui.jReducedElectricalPanel.erml.setSelected(false);}

if(jREString9.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.erf.se
tSelected(true);}

else{cr.crGui.jReducedElectricalPanel.erf.setSelected(false);}

if(jREStringlO.egualsIgnoreCase(- true")){cr.crGui.jReducedElectricalPanel.tglo.
setSelected(true);}

else{cr.crGui.jReducedElectricalPanel.tglo.setSelected(false);}

if(jREStringll.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.cb.se
tSelected(true);}

else{cr.crGui.jReducedElectricalPanel.cb.setSelected(false);}

if(jREStringl2.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel. msw.s
etSelected(true);}

else{cr.crGui.jReducedElectricalPanel.msw.setSelected(false);}

if(jREStringl3.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.sa.se
tSelected(true);}

else{cr.crGui.jReducedElectricalPanel.sa.setSelected(false);}

if(jREStringl4.egualsIgnoreCase("true")){cr.crGui.jReducedElectricalPanel.total
Rig.setSelected(true);}

else{cr.crGui.jReducedElectricalPanel.totalRig.setSelected(false);}

if(jDiveStringl.egualsIgnoreCase("true")){cr.crGui.jDivePanel.cses.setSelected (
true);}

else{cr.crGui.jDivePanel.cses.setSelected(false);}

if(jDiveString2.egualsIgnoreCase("true")){cr.crGui.jDivePanel.control.setSelect
ed(true);}

else{cr.crGui.jDivePanel.control.setSelected(false);}

if(jDiveString3.egualsIgnoreCase("true")){cr.crGui.jDivePanel.nav.setSelected(t
rue);}

else {cr.crGui.jDivePanel.nav.setSelected(false);}

180-

if(jDiveString4.egualsIgnoreCase("true")){cr.crGui.jDivePanel.fcml.setSelected (
true);}

else{cr.crGui.jDivePanel.fcml.setSelected(false);}

if(jDiveString5.egualsIgnoreCase("true")){cr.crGui.jDivePanel.tr.setSelected (tr
ue);}

else{cr.crGui.jDivePanel.tr.setSelected(false);}

if(jDiveString6.egualsIgnoreCase("true")){cr.crGui.jDivePanel.amr.setSelected (t
rue);}

else{cr.crGui.jDivePanel.amr.setSelected(false);}

if(jDiveString7.egualsIgnoreCase("true")){cr.crGui.jDivePanel.erul.setSelected (
true);}

else{cr.crGui.jDivePanel.erul.setSelected(false);}

if(jDiveString8.egualsIgnoreCase("true")){cr.crGui.jDivePanel.erml.setSelected (
true);}

else{cr. crGui . jDivePanel. erml. setSelected (false) ;■}

if(jDiveString9.egualsIgnoreCase("true")){cr.crGui.jDivePanel.erf.setSelected (t
rue);}

else{cr.crGui.jDivePanel.erf.setSelected(false);}

if(jDiveStringlO.egualsIgnoreCase("true")){cr.crGui.jDivePanel.tglo.setSelected
(true);}

else{cr.crGui.jDivePanel.tglo.setSelected(false);}

if(jDiveStringll.egualsIgnoreCase("true")){cr.crGui.jDivePanel.cb.setSelected (t
rue);}

else{cr.crGui.jDivePanel.cb.setSelected(false);}

if(jDiveStringl2.egualsIgnoreCase("true")){cr.crGui.jDivePanel.msw.setSelected (
true);}

else{cr.crGui.jDivePanel.msw.setSelected(false);}

if(jDiveStringl3.egualsIgnoreCase("true")){cr.crGui.jDivePanel.sa.setSelected (t
rue);}

else{cr.crGui.j DivePanel.sa.setSelected(false);}

if(jDiveStringl4.egualsIgnoreCase("true")){cr.crGui.jDivePanel.totalRig.setSele
cted(true);}

else{cr.crGui.jDivePanel.totalRig.setSelected(false);}

public void setOwner (String A, String B){

ownerName = A;
multicastAddressOfOwner = B;

}

public void setData (String A, String B, String C){

machineName = A;
timeSent = B;
messageToSend = C;

181-

public void setStatusFromGui(){

if(crGui.jMainPanel.fire.isSelected() == true){jMainStringl = "true";}
else{jMainStringl = "false";}
if(crGui.jMainPanel.flooding.isSelectedO == true){jMainString2 =

" true";}
else{jMainString2 = "false";}
if(crGui.jMainPanel.snorkel.isSelectedO == true){jMainString3 =

"true";}
else{jMainString3 = "false";}
if(crGui.jMainPanel.ventilate.isSelectedO == true){jMainString4 =

"true";}
else{jMainString4 = "false";}
if(crGui.jMainPanel.toxicGas.isSelectedO == true){jMainString5 =

" true";}
else{jMainString5 = "false";}
if(crGui.jMainPanel.rfre.isSelectedO == true){jMainString6 = "true";}
else{jMainString6 = "false";}
if(crGui.jMainPanel.dive.isSelectedO == true){jMainString7 = "true";}
else{jMainString7 = "false";}

if(crGui.jFirePanel.cses.isSelectedO == true){jFireStringl = "true";}
else{jFireStringl = "false";}
if(crGui.jFirePanel.control.isSelectedO == true){jFireString2 =

"true";}
else{jFireString2 = "false";}
if(crGui.jFirePanel.nav.isSelectedO == true){jFireString3 = "true";}
else{jFireString3 = "false";}
if(crGui.jFirePanel.fcml.isSelectedO == true){jFireString4 = "true";}
else{jFireString4 = "false";}
if(crGui.jFirePanel.tr.isSelectedO == true){jFireString5 = "true";}
else{jFireString5 = "false";}
if(crGui.jFirePanel.amr.isSelectedO == true){jFireString6 = "true";}
else{jFireString6 = "false";}
if(crGui.jFirePanel.erul.isSelectedO == true){jFireString7 = "true";}
else{jFireString7 = "false";}
if(crGui.jFirePanel.erml.isSelectedO == true){jFireString8 = "true";}
else{jFireString8 = "false";}
if(crGui.jFirePanel.erf.isSelectedO == true){jFireString9 = "true";}
else{jFireString9 = "false";}
if(crGui.jFirePanel.tglo.isSelectedO == true){jFireStringlO = "true";}
else{jFireStringlO = "false";}
if(crGui.jFirePanel.cb.isSelectedO == true){jFireStringll = "true";}
else{jFireStringll = "false";}
if(crGui.jFirePanel.msw.isSelectedO == true){jFireStringl2 = "true";}
else{jFireStringl2 = "false";}
if(crGui.jFirePanel.sa.isSelectedO == true){jFireStringl3 = "true";}
else{jFireStringl3 = "false";}
if(crGui.jFirePanel.totalRig.isSelectedO == true){jFireStringl4 =

"true";}
else{jFireStringl4 = "false";}

if(crGui.jFloodingPanel.cses.isSelectedO == true){jFloodingStringl =
"true";}

else{JFloodingStringl = "false";}
if(crGui.jFloodingPanel.control.isSelectedO == true){jFloodingString2

= "true";}
else{jFloodingString2 = "false";}
if(crGui.jFloodingPanel.nav.isSelectedO == true){jFloodingString3 =

"true";}
else{jFloodingString3 = "false";}

182

if(crGui.jFloodingPanel.fcml.isSelected() == true){jFloodingString4 =
"true";}

else{jFloodingString4 = "false";}
if(crGui.jFloodingPanel.tr.isSelectedO == true){jFloodingString5 =

"true";}
else{jFloodingString5 = "false";}
if(crGui.jFloodingPanel.amr.isSelectedO == true){jFloodingString6 =

"true"; }
else{jFloodingString6 = "false";}
if(crGui.jFloodingPanel.erul.isSelectedO == true){jFloodingString7 =

"true";}
else{jFloodingString7 = "false";}
if(crGui.jFloodingPanel.erml.isSelectedO == true){jFloodingString8 =

"true";}
else{jFloodingString8 = "false";}
if(crGui.jFloodingPanel.erf.isSelectedO == true){jFloodingString9 =

"true";}
else{jFloodingString9 = "false";}
if(crGui.jFloodingPanel.tglo.isSelectedO == true){jFloodingStringlO

"true";}
else{jFloodingStringlO = "false";}
if(crGui.jFloodingPanel.cb.isSelectedO == true){jFloodingStringll =

"true";}
else{jFloodingStringll = "false";}
if(crGui.jFloodingPanel.msw.isSelectedO == true){jFloodingStringl2 =

"true";}
else{jFloodingStringl2 = "false";}
if(crGui.jFloodingPanel.sa.isSelectedO == true){jFloodingStringl3 =

"true"; }
else{jFloodingStringl3 = "false";}
if(crGui.jFloodingPanel.totalRig.isSelected() ==

true){jFloodingStringl4 = "true";}
else{jFloodingStringl4 = "false";}

if(crGui.jSnorkelPanel.cses.isSelectedO == true){jSnorkelStringl =
"true";}

else{jSnorkelStringl = "false";}
if(crGui.jSnorkelPanel.control.isSelectedO == true){jSnorkelString2

"true";}
else{jSnorkelString2 = "false";}
if(crGui.jSnorkelPanel.nav.isSelectedO == true){jSnorkelString3 =

"true";}
else{jSnorkelString3 = "false";}
if(crGui.jSnorkelPanel.fcml.isSelectedO == true){jSnorkelString4 =

"true";}
else{jSnorkelString4 = "false";}
if(crGui.jSnorkelPanel.tr.isSelectedO == true){jSnorkelString5 =

"true";}
else{jSnorkelString5 = "false";}
if(crGui.jSnorkelPanel.amr.isSelectedO == true){jSnorkelString6 =

"true";}
else{jSnorkelString6 = "false";}
if(crGui.jSnorkelPanel.erul.isSelectedO == true){jSnorkelString7 =

"true";} .
else{jSnorkelString7 = "false";}
if(crGui.jSnorkelPanel.erml.isSelectedO == true){jSnorkelString8 =

"true";}
else{jSnorkelString8 = "false";}
if(crGui.jSnorkelPanel.erf.isSelectedO == true){jSnorkelString9 =

"true";}
else{jSnorkelString9 = "false";}
if(crGui.jSnorkelPanel.tglo.isSelectedO == true){jSnorkelStringl0 =

"true";}
else{jSnorkelStringlO = "false";}
if(crGui.jSnorkelPanel.cb.isSelectedO == true){jSnorkelStringll =

"true";}
else{jSnorkelStringll = "false";}

183

if(crGui.jSnorkelPanel.msw.isSelectedO == true){jSnorkelStringl2 =
"true";}

else{jSnorkelStringl2 = "false";}
if(crGui.jSnorkelPanel.sa.isSelectedO == true){jSnorkelStringl3 =

"true";}
else{jSnorkelStringl3 = "false";}
if(crGui.jSnorkelPanel.totalRig.isSelected() == true){jSnorkelStringl4

= "true";}
else{jSnorkelStringl4 = "false";}

if(crGui.jVentilatePanel.cses.isSelectedO == true){jVentilateStringl =
"true";}

else{jVentilateStringl = "false";}
if(crGui.jVentilatePanel.control.isSelected() ==

true){jVentilateString2 = "true";}
else{jVentilateString2 = "false";}
if(crGui.jVentilatePanel.nav.isSelected() == true){jVentilateString3 =

"true";}
else{jVentilateString3 = "false";}
if(crGui.jVentilatePanel.fcml.isSelected() == true){jVentilateString4 =

"true";}
else{jVentilateString4 = "false";}
if(crGui.jVentilatePanel.tr.isSelected() == true){jVentilateString5 =

"true";}
else{jVentilateString5 = "false";}
if(crGui.jVentilatePanel.amr.isSelected() == true){jVentilateString6 =

"true";}
else{jVentilateString6 = "false";}
if(crGui.jVentilatePanel.erul.isSelected() == true){jVentilateString7 =

"true";}
else{jVentilateString7 = "false";}
if(crGui.jVentilatePanel.erml.isSelected() == true){ jVentilateString8 =

"true";}
else{jVentilateString8 = "false";}
if(crGui.jVentilatePanel.erf.isSelected() == true){jVentilateString9 =

"true";}
else{jVentilateString9 = "false";}
if(crGui.jVentilatePanel.tglo.isSelected() == true){jVentilateStringlO

_ „true„.}
else{JVentilateStringlO = "false";}
if(crGui.jVentilatePanel.cb.isSelected() == true){jVentilateStringll =

"true";}
else{jVentilateStringll = "false";}
if(crGui.jVentilatePanel.msw.isSelected() == true){jVentilateStringl2 =

"true";}
else{jVentilateStringl2 = "false";}
if(crGui.jVentilatePanel.sa.isSelected() == true){jVentilateStringl3 =

"true";}
else{jVentilateStringl3 = "false";}
if(crGui.jVentilatePanel.totalRig.isSelected() ==

true){jVentilateStringl4 = "true";}
else{jVentilateStringl4 = "false";}

if(crGui.jToxicGasPanel.cses.isSelected() == true){JToxicGasStringl =
"true";}

else{JToxicGasStringl = "false";}
if(crGui.jToxicGasPanel.control.isSelected() == true){jToxicGasString2

= "true";}
else{jToxicGasString2 = "false";}
if(crGui.JToxicGasPanel.nav.isSelectedO == true){jToxicGasString3 =

"true";}
else{jToxicGasString3 = "false";}
if(crGui.JToxicGasPanel.fcml.isSelectedO == true){jToxicGasString4 =

"true";}
else{jToxicGasString4 = "false";}
if(crGui.jToxicGasPanel.tr.isSelectedO == true){jToxicGasString5 =

"true";}

-184

else{jToxicGasString5 = "false";}
if(crGui.jToxicGasPanel.amr.isSelected() == true){jToxicGasString6 =

"true";}
else{jToxicGasString6 = "false";}
if(crGui.jToxicGasPanel.erul.isSelected() == true){jToxicGasString7 =

"true";}
else{jToxicGasString7 = "false";}
if(crGui.JToxicGasPanel.erml.isSelectedO == true){jToxicGasString8 =

"true";}
else{jToxicGasString8 = "false";}
if(crGui.JToxicGasPanel.erf.isSelectedO == true){jToxicGasString9 =

"true";}
else{jToxicGasString9 = "false";}
if(crGui.JToxicGasPanel.tglo.isSelectedO == true){jToxicGasStringlO =

"true";}
else{JToxicGasStringlO = "false";}
if(crGui.JToxicGasPanel.cb.isSelectedO == true){jToxicGasStringll =

"true";}
else{JToxicGasStringll = "false";}
if(crGui.JToxicGasPanel.msw.isSelectedO == true){jToxicGasStringl2 =

"true";}
else{jToxicGasStringl2 = "false";}
if(crGui.JToxicGasPanel.sa.isSelectedO == true){jToxicGasStringl3 =

"true";}
else{jToxicGasStringl3 = "false";}
if(crGui.JToxicGasPanel.totalRig.isSelected() ==

true){jToxicGasStringl4 = "true";}
else{jToxicGasStringl4 = "false";}

if(crGui.jReducedElectricalPanel.cses.isSelected() == true){jREStringl
= "true";}

else{jREStringl = "false";}
if(crGui.jReducedElectricalPanel.control.isSelected() ==

true){jREString2 = "true";}
else{jREString2 = "false";}
if(crGui.JReducedElectricalPanel.nav.isSelected() == true){jREString3 =

"true";}
else{jREString3 = "false";}
if(crGui.JReducedElectricalPanel.fcml.isSelected() == true){jREString4

= "true";}
else{jREString4 = "false";}
if(crGui.jReducedElectricalPanel.tr.isSelected() == true){jREString5 =

"true";}
else{jREString5 = "false";}
if(crGui.jReducedElectricalPanel.amr.isSelected() == true){jREString6 =

"true";}
else{jREString6 = "false";}
if(crGui.JReducedElectricalPanel.erul.isSelected() == true){jREString7

= "true";}
else{jREString7 = "false";}
if(crGui.JReducedElectricalPanel.erml.isSelectedO == true){jREString8

= "true";}
else{jREString8 = "false";}
if(crGui.JReducedElectricalPanel.erf.isSelected() == true){jREString9 =

"true";}
else{jREString9 = "false";}
if(crGui.JReducedElectricalPanel.tglo.isSelectedO == true){jREStringlO

= "true";}
else{JREStringlO = "false";}
if(crGui.jReducedElectricalPanel.cb.isSelectedO == true){jREStringll =

"true";}
else{jREStringll = "false";}
if(crGui.JReducedElectricalPanel.msw.isSelectedO == true){jREStringl2

= "true";}
else{jREStringl2 = "false";}
if(crGui.jReducedElectricalPanel.sa.isSelectedO == true){jREStringl3 =

"true";}

185

e'lse{jREStringl3 = "false";}
if(crGui.jReducedElectricalPanel.totalRig.isSelected() ==

true){jREStringl4 = "true";}
else{jREStringl4 = "false";}

if(crGui.jDivePanel.cses.isSelected() == true){jDiveStringl = "true";}
else{jDiveStringl = "false";}
if(crGui.jDivePanel.control.isSelected() == true){jDiveString2 =

"true";}
else{jDiveString2 = "false";}
if(crGui.jDivePanel.nav.isSelected() == true){jDiveString3 = "true";}
else{jDiveString3 = "false";}
if(crGui.jDivePanel.fcml.isSelected() == true){jDiveString4 = "true";}
else{jDiveString4 = "false";}
if(crGui.jDivePanel.tr.isSelected() == true){jDiveString5 = "true";}
else{jDiveString5 = "false";}
if(crGui.jDivePanel.amr.isSelected() == true){jDiveString6 = "true";}
else{jDiveString6 = "false";}
if(crGui.jDivePanel.erul.isSelected() == true){jDiveString7 = "true";}
else{jDiveString7 = "false";}
if(crGui.jDivePanel.erml.isSelected() == true){jDiveString8 = "true";}
else{jDiveString8 = "false";}
if(crGui.jDivePanel.erf.isSelected() == true){jDiveString9 = "true";}
else{jDiveString9 = "false";}
if(crGui.jDivePanel.tglo.isSelected() == true){jDiveStringlO = "true";}
else{jDiveStringlO = "false";}
if(crGui.jDivePanel.cb.isSelected() == true){jDiveStringll = "true";}
else{jDiveStringll = "false";}
if(crGui.jDivePanel.msw.isSelected() == true){jDiveStringl2 = "true";}
else{jDiveStringl2 = "false";}
if(crGui.jDivePanel.sa.isSelected() == true){jDiveStringl3 = "true";}
else{jDiveStringl3 = "false";}
if(crGui.jDivePanel.totalRig.isSelected() == true){jDiveStringl4 =

"true";}
else{jDiveStringl4 = "false";}

-186

Class: Ship Atmospheres

package swipNet.shipObjects;

import java.io.*;
import java.util.*;
import swipNet.gui.*;

/**
* A ship object that holds information within strings that can
* be directly sent over the network for ShipAtmospheres parameters<p>
*
* ©author LT William G. Wilkins
* ©version 1.0
*/

public class ShipAtmospheres extends Object implements Serializable{

static int typeOfObject = 23;
static int version = 1;
static String type = new String ("SHIPATMOSPHERES");

String ownerName = new String("default");
public String multicastAddressOfOwner = new String("default");//Fix With

Function Call
String machineName = new String("default");
String timeSent = new String ("default");
String messageToSend = new String("None");

String mainStringl = new String();String mainString2 = new String();String
mainString3 = new String();

String mainString4 = new String();String mainString5 = new String();String
mainString6 = new String();

String fcStringl = new String();String fcString2 = new String();String
fcString3 = new String();

String fcString4 = new String();String fcString5 = new String();String
fcString6 = new String();

String fcString7 = new String();String fcString8 = new String();String
fcString9 = new String();

String erStringl = new String();String erString2 = new String();String
erString3 = new StringO;

String erString4 = new String();String erString5 = new String();String
erString6 = new StringO ;

String erString7 = new String();String erString8 = new String();String
erString9 = new StringO;

public ShipAtmospheresGui saGui;

/**Fire Constructor
*
*/

public ShipAtmospheres() {}

public ShipAtmospheres(boolean isServer) {
saGui = new ShipAtmospheresGui(isServer);

}

187-

/** This constructor allows casting to the appropriate object depending on
the

* its type. It should read in the same order that the toBytes places
* onto the ByteArrayOutputStream.
*/

public ShipAtmospheres(byte aBuffer[])
{

ByteArraylnputStream bis = new ByteArrayInputStream(aBuffer);
DatalnputStream dis = new DatalnputStream(bis);

try
{
typeOfObj ect = dis.readlnt();
version = dis .readlnt () ,-
type = dis.readUTFO;
ownerName = dis.readUTFO;
multicastAddressOfOwner = dis.readUTFO;
machineName = dis.readUTFO;
timeSent = dis.readUTFO;
messageToSend = dis.readUTFO;

mainStringl = dis.readUTF();mainString2 = dis.readUTF();mainString3 =
dis.readUTFO ;

mainString4 = dis.readUTF();mainString5 = dis .readUTF () ,-mainString6 =
dis.readUTFO ;

fcStringl = dis.readUTF();fcString2 = dis.readUTF();fcString3 =
dis.readUTF();

fcString4 = dis.readUTF();fcString5 = dis.readUTF();fcString6 =
dis.readUTFO ;

fcString7 = dis.readUTF();fcString8 = dis.readUTF();fcString9 =
dis.readUTF();

erStringl = dis.readUTFO;erString2 = dis.readUTF();erString3 =
dis.readUTF();

erString4 = dis.readUTF();erString5 = dis.readUTF();erString6 =
dis.readUTF();

erString7 = dis . readUTF (); erString8 = dis.readUTFO ,-erString9 =
dis.readUTFO ;

}
catch(Exception e)
{
System.out.printlnt"Exception occured in (byte[])");

}

/** toBytes method converts all instance varibles within the object to a
* stream to allow a byte buffer to be sent on the network
*/

public byte[] toBytes()
{
ByteArrayOutputStream bos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(bos);

try

-188-

{
dos.writelnt(typeOfObject);
dos.writelnt(version);
dos.writeUTF(type);

dos.wri teUTF(ownerName);
dos.writeUTF(multicastAddressOfOwner) ;
dos.writeUTF(machineName);
dos.writeUTF(timeSent);
dos.writeUTF(messageToSend);

dos.writeUTF(mainStringl);dos.writeUTF(mainString2) ;dos.writeUTF(mainString3) ,-

dos.writeUTF(mainString4);dos.writeUTF(mainString5);dos.writeUTF(mainString6);

dos.writeUTF(fcStringl);dos.writeUTF(fcString2);dos.writeUTF(fcString3);

dos. writeUTF(fcString4);dos.writeUTF(fcString5);dos.writeUTF(fcString6);

dos.writeUTF(fcString7);dos.writeUTF(fcString8);dos.writeUTF(fcString9);

dos.writeUTF(erStringl);dos.writeUTF(erString2);dos.writeUTF(erString3);

dos.writeUTF(erString4);dos.writeUTF(erString5);dos.writeUTF(erString6);

dos.writeUTF(erString7);dos. writeUTF(erString8);dos.writeUTF(erString9);
}
catch(IOException ioe)
{
System.out.println("IOException - Unable to convert Fire Object to

Bytes");
return null;

}

return bos.toByteArray();
}

public String!] getData(){

String holdStringf] = new String[6],•

holdString[0] = type;
holdStringfl] = ownerName;
holdString[2] = multicastAddressOfOwner;
holdString[3] = machineName;
holdString[4] = timeSent;
holdString[5] = messageToSend;

return holdString;

public void copyStatus(ShipAtmospheres sa) {

if (mainStringl.egualsIgnoreCase("true")){sa.saGui.jMainPanel.limitOnehFCCB.sets
elected(true);}

else{sa.saGui.jMainPanel.limitOnehFCCB.setSelected(false);}

189

if(mainString2.egualsIgnoreCase("true")){sa.saGui. jMainPanel.limit24hFCCB.setSe
lected(true);}

else{sa.saGui.jMainPanel.limit24hFCCB.setSelected(false);}

if(mainstring3.egualsIgnoreCase("true")){sa.saGui. jMainPanel.limit90dFCCB.setSe
lected(true);}

else{sa.saGui.jMainPanel.Iimit9OdFCCB.setSelected(false);}

if(mainString4.egualsIgnoreCase("true")){sa.saGui.jMainPanel.limitOnehERCB.sets
elected(true);}

else{sa.saGui.jMainPanel.limitOnehERCB.setSelected(false);}

if(mainString5.egualsIgnoreCase("true")){sa.saGui. jMainPanel.limit24hERCB.setSe
lected(true);}

else{sa.saGui.jMainPanel.limit24hERCB.setSelected(false);}

if(mainString6.egualsIgnoreCase("true")){sa.saGui.jMainPanel.limit90dERCB.setSe
lected(true);}

else{sa.saGui.jMainPanel.Iimit9 OdERCB.setSelected(false);}

sa.saGui.jFCPanel.o2TF.setText(fcStringl) ;
sa.saGui.j FCPanel.co2TF.setText(fcString2);
sa.saGui.jFCPanel.rll4TF.setText(fcString3);
sa.saGui.jFCPanel.h2TF.setText(fcString4);
sa.saGui.j FCPanel.coTF.setText(fcString5);
sa.saGui.j FCPanel.ottoTF.setText(fcString6);

if(fcString7.egualsIgnoreCase("true")){sa.saGui.jFCPanel.limitOnehCB.setSelecte
d(true);}

else{sa.saGui.jFCPanel.limitOnehCB.setSelected(false);}

if(fcString8.egualsIgnoreCase("true")){sa.saGui.jFCPanel.limit24hCB.setSelected
(true);}

else{sa.saGui.j FCPanel.limit24hCB.setSelected(false);}

if(fcString9.egualsIgnoreCase("true")){sa.saGui.j FCPanel.limit90dCB.setSelected
(true);}

else{sa.saGui.jFCPanel.limit90dCB.setSelected(false);}

sa.saGui.jERPanel.o2TF.setText(erStringl);
sa.saGui.jERPanel.co2TF.setText(erString2);
sa.saGui.jERPanel.rll4TF.setText(erString3);
sa.saGui.j ERPanel.h2TF.setText(erString4);
sa.saGui.jERPanel.coTF.setText(erString5);
sa.saGui.jERPanel.ottoTF.setText(erString6);

if(erString7.egualsIgnoreCase("true")){sa.saGui.jERPanel.limitOnehCB.setSelecte
d(true);}

else{sa.saGui.jERPanel.limitOnehCB.setSelected(false);}

if(erString8.egualsIgnoreCase("true")){sa.saGui.jERPanel.limit24hCB.setSelected
(true);}

else{sa.saGui.jERPanel.limit24hCB.setSelected(false);}

if(erString9.egualsIgnoreCase("true")){sa.saGui.jERPanel.limit90dCB.setSelected
(true);}

else{sa.saGui.jERPanel.limit90dCB.setSelected(false);}

}

public void setOwner (String A, String B){

ownerName = A;

-190-

multicastAddressOfOwner = B;

}

public void setData (String A, String B, String C){

machineName = A;
timeSent = B;
messageToSend = C;

}

public void setStatusFromGui(){

if(saGui.jMainPanel.limitOnehFCCB.isSelected() == true){mainStringl
"true"

'true"

■true"

'true"

"true";

'true"

"true";}

"true";}

"true";}

"true";}

"true";}

else{mainStringl = "false";}
if(saGui.jMainPanel.limit24hFCCB.isSelected()

else{mainString2 = "false";}
if(saGui.jMainPanel.limit90dFCCB.isSelected()

true){mainString2

true){mainString3

else{mainString3 = "false";}
if(saGui.jMainPanel.limitOnehERCB.isSelected() == true){mainString4

else{mainString4 = "false";}
if(saGui.jMainPanel.limit24hERCB.isSelected() == true){mainString5 =

else{mainString5 = "false";}
if(saGui.jMainPanel.Iimit9 OdERCB.isSelected() true){mainString6 =

else{mainString6 'false";}

fcStringl = saGui.jFCPanel.o2TF.getText();
fcString2 = saGui.jFCPanel.co2TF.getText();
fcString3 = saGui.jFCPanel.rll4TF.getText();
fcString4 = saGui.jFCPanel.h2TF.getText();
fcString5 = saGui.jFCPanel.coTF.getText();
fcString6 = saGui.jFCPanel.ottoTF.getText();
if(saGui.jFCPanel.limitOnehCB.isSelected() == true){fcString7

true){fcString8 =
else{fcString7 = "false";}
if(saGui.jFCPanel.limit24hCB.isSelected()

else{fcString8 = "false";}
if(saGui.jFCPanel.limit90dCB.isSelected() == true){fcString9

else{fcString9 = "false";}

erStringl = saGui.jERPanel.o2TF.getText();
erString2 = saGui.jERPanel.co2TF.getText();
erString3 = saGui.jERPanel.rll4TF.getText();
erString4 = saGui.jERPanel.h2TF.getText();
erString5 = saGui.jERPanel.coTF.getText();
erString6 = saGui.jERPanel.ottoTF.getText()
if(saGui.jERPanel.limitOnehCB.isSelected() true){erString7 =

else{erString7 = "false";}
if(saGui.jERPanel.limit24hCB.isSelected() == true){erString8

else{erString8 = "false";}
if(saGui.jERPanel.limit90dCB.isSelected() == true){erString9

"true";}

else{erString9= "false";} }}

191

Package: swipNetutility
Class: PostOffice

package swipNet.utility;

import java.io.* ;
import java.net.*;
import swipNet.dcObjects.*;
import swipNet.shipObjects.*;
import swipNet.utility.*;

♦Responsible for sending and receiving of streams on designated network
* multicast addresses <p>
* ©author LT William G. Wilkins
* ©version 1.0
*/

public class PostOffice extends Object
{

/♦♦Constructor - Default
*
*/

public PostOffice() {}

* This method takes Objects like Fire, ShipStatus, etc, a Datagram (or
* multicast) Packet by using that object toBytes() method;
* It assumes that a the Socket has already joined a multicast Address
* @param typeObject the object you want to send, can be fire, flooding etc
* ©param socket the socket that was created within its caller
* ©param address the IP address of caller
*
* ©return void
*/

public void sendMulticastPacket(Object typeObject, MulticastSocket socket,
InetAddress address){

DatagramPacket packetSend;
byte buffer[] = null;
try{

if (typeObject instanceof Initialize){//0
Initialize initializeSend = new Initialize()
initializeSend = (Initialize)typeObject;
buffer = initializeSend.toBytes() ;

}
if (typeObject instanceof Fire){//l

Fire fireSend = new Fire();
fireSend = (Fire)typeObject,-
buffer = fireSend.toBytes();

}
if (typeObject instanceof Flooding){//2

Flooding floodingSend = new Flooding();
floodingSend = (Flooding)typeObject;
buffer = floodingSend.toBytes();

}

if (typeObject instanceof HydRupture){//3
HydRupture hydRuptureSend = new HydRupture();
hydRuptureSend = (HydRupture)typeObject;
buffer = hydRuptureSend.toBytes();

192

if (typeObject instanceof AirRupture){//4
AirRupture airRuptureSend = new AirRupture();
airRuptureSend = (AirRupture)typeObject;
buffer = airRuptureSend.toBytes();

}
if (typeObject instanceof HotRun){//5

HotRun hotRunSend = new HotRun();
hotRunSend = (HotRun)typeObject;
buffer = hotRunSend.toBytes() ;

}
if (typeObject instanceof FastLeak){//6

FastLeak fastLeakSend = new FastLeak();
fastLeakSend = (FastLeak)typeObject;
buffer = fastLeakSend.toBytes();

}

if (typeObject instanceof SlowLeak){//7
SlowLeak slowLeakSend = new SlowLeak();
slowLeakSend = (SlowLeak)typeObject;
buffer = slowLeakSend.toBytes();

}

if (typeObject instanceof StmRupture){//8
StmRupture stmRuptureSend = new StmRupture();
stmRuptureSend = (StmRupture)typeObject;
buffer = stmRuptureSend.toBytes();

}
if (typeObject instanceof RxScram){//9

RxScram rxScramSend = new RxScram();
rxScramSend = (RxScram)typeObject;
buffer = rxScramSend.toBytes();

}
if (typeObject instanceof RadSpill){//10

RadSpill radSpillSend = new RadSpill();
radSpillSend = (RadSpill)typeObject;
buffer = radSpillSend.toBytes();

}
if (typeObject instanceof ShipStatus){//20

ShipStatus shipStatusSend = new ShipStatus();
shipStatusSend = (ShipStatus)typeObject;
buffer = shipStatusSend.toBytes() ;

}
if (typeObject instanceof Engineeringstatus){//21

Engineeringstatus engineeringStatusSend = new
Engineeringstatus();

engineeringStatusSend = (Engineeringstatus)typeObject;
buffer = engineeringStatusSend.toBytes();

}
if (typeObject instanceof CompartmentRigs){//22

CompartmentRigs compartmentRigsSend = new CompartmentRigs ();
compartmentRigsSend = (CompartmentRigs) typeObject ,-
buffer = compartmentRigsSend.toBytes();

}
if (typeObject instanceof ShipAtmospheres){//23

ShipAtmospheres shipAtmospheresSend = new ShipAtmospheres();
shipAtmospheresSend = (ShipAtmospheres)typeObject;
buffer = shipAtmospheresSend.toBytes();

}

packetSend = new DatagramPacket(buffer, buffer.length, address,
socket.getLocalPort()) ,-

socket.send(packetSend) ;
}
catch(Exception e){

System.out.println(e);

193-

System.out.println("Exception occured in postOffice -
sendMulticastPacket") ;

}
}

/**This method receives an Objects like Fire, ShipStaus, etc and converts it
* to the approriate object so the caller can use "instanceof" to determine
* the correct object
* @param socket created by caller
* ©param address IP address of caller
*■ ©return holdObject the object that was received in generic form, use

instanceof to convert
*/

public Object receiveMulticastPacket(MulticastSocket socket, InetAddress
address){

DatagramPacket packetReceive;
byte receiveBuffer[] = new byte[1500];
packetReceive = new DatagramPacket(receiveBuffer,

receiveBuffer.length);
Object holdObject = new ObjectO;

try{
socket, receive (packetReceive) ,-
/** Must receive the Packet data and call factory to determine what

type of object it is receiving since a cannot directly cast
* a byte[] array to the appropriate casualty object
*/

holdObject = PostOffice.factory(packetReceive.getData0);
}
catch(Exception e){
System.out.printlnt"Exception occured in PostOffice -

receiveMulticastPacket");
}
return holdObject;

}

/** This method accepts a byte[] array and looks at the first int value to
* determine what to cast the object to. Each casualty or ship object like
* Fire, ShipStatus etc. has an instance variable (typeOfDCObject) which is

♦always ordered First. This Method returns an Object that holds the disguised
*DC casualty or ship object

*
* ©param ba[] the byte array used as the source for conversion
* ©return holdObject the object that was received in generic form
*/

public static Object factory (byte ba[]){

ByteArraylnputStream bis = new ByteArraylnputStream(ba);
DatalnputStream dis = new DatalnputStream(bis);
int determineTheTypeOfObject = -1;
Object holdObject = new ObjectO;

try{
determineTheTypeOfObject = dis.readlnt();// looks at first int to see

type of casualty object

/* *
* Convert to the appropriate Object: Fire, Flooding etc.
*
*/

switch (determineTheTypeOfObject){

case 0:
holdObject = new Initialize (ba);
break;

194

}
}

case 1:
holdObject = new Fire (ba);
break;

case 2:
holdObject = new Flooding (ba);
break;

case 3:
holdObject = new HydRupture (ba) ,-
break;

case 4:
holdObject = new AirRupture (ba) ;
break;

case 5:
holdObject = new HotRun (ba) ;
break;

case 6:
holdObject = new FastLeak (ba) ;
break;

case 7:
holdObject = new SlowLeak (ba) ;
break;

case 8:
holdObject = new StmRupture(ba);
break;

case 9:
holdObject = new RxScram (ba);
break;

case 10:
holdObject = new RadSpill (ba);
break;

case 20:
holdObject = new ShipStatus (ba) ;
break;

case 21:
holdObject = new Engineeringstatus(ba);
break;

case 22:
holdObject = new CorapartmentRigs (ba);
break;

case 23:
holdObject = new ShipAtmospheres (ba);
break;

default:
System.out.printlnCInvalid Factory Conversion");
break;

}
}
catch (IOException ioe){

System.out.println("iOException occured in PostOffice - Factory")
}
return holdObject;

-195

Class: Initialize
package swipNet.utility;

import java.io.*;
import java.util.*;

/ * *
*A class that holds information for Initializing all objects, isolated to its
* own class to allow for future development with a initializing database and
* allow reuse of its String arrat components <p>
*
* ©author LT William G. Wilkins
* ©version 1.0
*/

public class Initialize extends Object implements Serializable{

static int typeOfDCObject = 0;
static int version = 1;
static String type = new String ("INITIALIZE");

String ownerName = new String("default");
public String multicastAddressOfOwner = new String("default");
String machineName = new String("default");
String timeSent = new String ("default");
String messageToSend = new String("None");

public String [] dccCasLocArray;
public String [] dccShipRigForFireArray =
{"No","Yes - All Spaces"};

public String [] dccAtmWiLimitsArray =
{"No limits Met","w/i 90 day Limit","w/i 24 HR Limit","w/i 1 HR Limit"};

public String [] sceneMicArray;

public String [] sceneAsstRqdArray =
{"NONE","5 Personnel to Scene","3 Personnel to Scene","1 Personnel to

Scene"};

public String [] scenelnjuredPersonelArray;

public String [] sceneDamageEguipmentArray =
{"NONE","Electrical SwitchBoard Damage","Pump Damage","Rx Spill"};

public String [] sceneStatusOfFireArray =
{"Not Determined","Out Of Control","Spreading to Upper Level","Spreading to

Lower Level",
"Spreading to Adjacent Compartment","Still Burning","Under

Control","Contained",
"Fire is Out","No Hotspots","Reflash Watch Stationed w/ C02","Reflash Watch

Stationed w/ C02",
"Reflash Watch Stationed w/ Hose","Reflash Watch Stationed w/ PKP","Reflash

Watch Stationed w/ AFFF"};

public String [] obaCrewMemberArray;

public String [] obaTimeRemainingArray =
{"30 Min","20 Min","15 Min","10 Min","5 Min - EXIT NOW","3 Min","2 Min","l

Min","0 Min"};

public String [] hoseRRHosesArray;
public String {] hoseFRHosesArray;

196-

String [] crewList =
{"NONE","XO","ENG","WEPS","NAV","LT MUGGLEWORTH","LT JONES","LT DWYER",
"LTjg INDELOCATO","ETC SMITH","EMC FOSTER","MMC ALEMAN","EMI Black",
"MMl Hardy","MM2 Harris","MM3 Ericson","ET1 Bolton","ST1 Johns","ST2

Sounds",
"ST3 Blair","SN Dart","SN Rine","SA Pohine","SR Dair","SR Tubster"};

String [] shipCompartments =
{"UNKNOWN","DCC","DC FWD","DC AFT","CSES","CONTROL","NAV

CENTER","FCML","CREWS MESS",
"TORPEDO ROOM","AMR","MANUEVERING", "ERUL","ERML","ERF","TGLO BAY","COND.

BAY","MSW BAY","SHAFT ALLEY"};

public String []
multicastChoices={"228.7.5.4\"228.7.5.5",»228.7.5.6","228.7.5.7","228.7.5.8","
228.7.5.9"};

public String [] rxPowerArray =
{"0%","5%","10%","15%","20%","25%","35%","45%","50%","75%","100%"};
public String [] pumpLineupArray =
{"2S/2S","2F/2F","IS/IS","2S/0","2F/0","1S/0"};
public String [] loopLineupArray =
{"2 Loop", "1 Loop"};
public String [] steamPowerArray =
{"0%","5%","10%","15%","20%","25%","35%","45%","50%","75%","100%"};
public String [] currentBellArray =
{"Al/3", "A2/3", "AI", "All", "AIII","Bl/3", "B2/3", "BF","BE"};
public String [] maxBellArray =
{"Al/3", "A2/3", "AI", "All", "AIII","Bl/3", "B2/3", "BF","BE"};
public String [] electricLineupArray =
{"NFPLU", "HPLU", "FPLU w/ MG Sec", "HPBCLU"};
public String [] dischargeRateArray =
{"0 Amps/Hr", "100 Amps/Hr", "200 Amps/Hr", "500 Amps/Hr", "1000 Amps/Hr",

"2000 Amps/Hr", "3000 Amps/Hr", "5000 Amps/Hr"};
public String [] ampsRemainArray =
{"5000", "3000", "2000", "1000", "500", "200", "100","0"};

public String [] currentOpArray =
{"Normal Patrol", "Coming to PD", "Ship Drills", "Engineering Drills", "Rig

for Deep",
"Rig for Ultra Quiet", "Preparing to Dive", "Preparing to Surface",

"Surface Runs"};

/♦♦Constructor - initialzes components that use similiar data, like crews
List

*

*/

public Initialize() {

dccCasLocArray = shipCompartments;
sceneMicArray = crewList;
scenelnjuredPersonelArray = crewList;
obaCrewMemberArray = crewList;
hoseRRHosesArray = shipCompartments;
hoseFRHosesArray = shipCompartments;

}

/** This constructor allows casting to the appropriate object depending on
* its type. It should read in the same order that the toBytes places
* onto the ByteArrayOutputStream.
*/

197

public Initialize(byte aBuffer[])
{

ByteArraylnputStream bis = new ByteArraylnputStream(aBuffer) ;
DatalnputStream dis = new DatalnputStream(bis);

try
{
typeOfDCObject = dis. readlnt () ;
version = dis.readlnt() ;
type = dis.readUTFO;

ownerName = dis.readUTF();
multicastAddressOfOwner = dis.readUTFO;
machineName = dis.readUTFO;
timeSent = dis.readUTFO;
messageToSend = dis.readUTFO;

}
catch(Exception e)
{
System.out.println("Exception occured in (byte[])");

}

/** toBytes method converts all instance varibles within the object to a
* stream to allow a byte buffer to be sent on the network
*/

public bytef] toBytes0
{
ByteArrayOutputStream bos = new ByteArrayOutputStream() ;
DataOutputStream dos = new DataOutputStream(bos);

try
{
dos.writelnt(typeOfDCObject);
dos.writelnt(version);
dos.writeUTF(type);

dos.writeUTF(ownerName);
dos.writeUTF(multicastAddressOfOwner);
dos.writeUTF(machineName);
dos.writeUTF(timeSent);
dos.writeUTF(messageToSend);

}
catch(IOException ioe)
{
System.out.println("IOException - Unable to convert Object to Bytes")
return null;

}

}
return bos.toByteArray();

public String[] getData(){

String holdString[] = new String[6];

-198-

holdStringtO] = type;
holdStringil] = ownerName;
holdString[2] = multicastAddressOfOwner;
holdString[3] = niachineName ;
holdString[4] = timeSent;
holdString[5] = messageToSend;

return holdString;

}

public void setOwner (String A, String B){

ownerName = A;
multicastAddressOfOwner = B;

public void setData (String A, String B, String C){

machineName = A;
timeSent = B;
messageToSend = C;

}

private void initializeArrays(){

}

-199

Class: JDBCBridge

package swipNet.utility;

import java.sql.*;//Driver is ids.sgl.IDSDriver//Archive is jdkl2drv.zip
import ids.sgl.*;
import java.util.*;

*Developed for communications with a database, not implemented yet <p>
*Some of JDBCBridge code used from [Sayat99]
* ©Modified By LT William G. Wilkins
* ©version 1.0
*/

public class JDBCBridge {

Connection theConnection = null; // the JDBC bridge
DatabaseMetaData theDBMetaData = null;
Statement theStatement = null;
ResultSet theResultSet = null;
ResultSetMetaData theMetaData = null;
String theStatus;

public JDBCBridge(String status) {
theStatus = status;

}

public void openConnection() throws SQLException
{

try
{

Driver drv =
(Driver)Class.forName("ids.sql.IDSDriver").newlnstance();

String url="jdbc:ids://131.120.27.79:12/conn?dsn='SWIPNetDB''

Connection theConnection = drv.connect(url, null);

//Download the database attributes and create a result set.
theDBMetaData = theConnection.getMetaData();
theStatement = theConnection.createStatement();
theResultSet = null;
theMetaData = null;

theStatus = "Status: OK";

}
catch (SQLException sgl){

handleError(sgl);
}
catch (Exception e){

e.printStackTrace();
}

}

public void closeConnection() throws SQLException
{

try
{

200

if (theConnection != null) {theConnection.close();}
}
catch (SQLException sql) { handleError(sql); }

}

public void executeQuery(String sql) throws SQLException
{

//String sql = "SELECT * FROM SWIPNetDB";

if (theResultSet !=null) {theResultSet.close();}

theResultSet = theStatement.executeQuery(sql);

if (theResultSet != null) {theMetaData = theResultSet.getMetaData(

);}

out a Row

}

String K;
String W;
String C;
String M;
M = theMetaData.getTableName(1);
DCCPanelTextArea.append(M + "\n");
M = theMetaData.getColumnName(2);
DCCPanelTextArea.append(M + "\n");

while (theResultSet.next()) {

K = theResultSet.getString("Kids");
W = theResultSet.getString("Wife");
C = theResultSet.getString("Cars");

DCCPanelTextArea.append(K +" "+ W + " " + C + " ");//Prints

DCCPanelTextArea.append("\n");
System.out.println(M + K + W);

public int executeUpdate(String sql) throws SQLException
{

if (theResultSet != null) {theResultSet.close();}
theResultSet = null;
theMetaData = null;
int result = theStatement.executeUpdate(sql);
return result;

}

public String dumpResult() throws SQLException
{

String result = "";
try
{

int column_count = theMetaData.getColumnCount();
while (theResultSet.next())
{

boolean first = true;
for (int i = 1; i <= column_count; i++)
{

if (!first) result += ", ";
result += theResultSet.getString(i);
first = false;

}
result += "\n";

}
}
catch (SQLException sql) { handleError(sql); }
return result;

201

}
// inserts the fields in order
String getFieldList(String [] fields)
{

String result = " (";
boolean first = true;
for (int i = 0; i < fields.length; i++)
{

if (!first) result += ", ";
first = false;
result += fields[i];

}
result += ") ";
return result;

}

String getValueList(String [] values, boolean [] isQuoted)
{

String result = "VALUES (";
boolean first = true;
for (int i = 0; i < values.length; i++)
{

if (!first) result += ", ";
first = false;
String value = values[i];
if (isQuoted[i])
{

result += "'";

// double any embedded single quotes
int j ;
while ((j = value.indexOf('\ ")) >= 0)
{

if (j > 0)
■ {

result += value.substring(0, j);
}
result += "''";
if (value.length() > j +1)
{

value = value.substring(j + 1);
}
else
{

value = "";
}

}
result += value + "'";

}
else
{

result += value;
}

}
result += ") ";
return result;

>

String getNonNullString(int col(throws SQLException
{

return nonNull(theResultSet.getString(col));
}

String nonNull(String s)
{

if (s != null) return s;
return "";

202

}

// Handles errors that arrise from SQL misrep.
public void handleError(Throwable t) throws SQLException
{

//theStatus.setText("Error: " + t.getMessage()) ;
theStatus = "Error: " + t.getMessage();
t.printStackTrace();
throw new SQLException(t.getMessage());

}

203

THIS PAGE INTENTIONALLY LEFT BLANK

204

LIST OF REFERENCES

[Debus 98] Feasibility Analysis for a Submarine Wireless Computer Network
Using Commercial Off The Shelf Components by LT Steven M. Debus, MS Thesis,
Naval Postgraduate School, Monterey, CA, (September 1998).

[Roemhildt99] Analysis and Vulnerabilities of Spread Spectrum Wireless Local
Area Networks on Surface and Sub-Surface Combatants by Mark W. Roemhildt, MS
Thesis, Naval Postgraduate School, Monterey, CA, (September, 1999).

[Rothenhaus99] Distributed Software Applications in Java for Portable
Processors Operating on a Wireless LAN by Kurt J. Rothenhaus, MS Thesis, Naval
Postgraduate School, Monterey, CA, (September 1999).

[Matthews99] Analysis of Radio Frequency Components for Shipboard Wireless
Networks by Mark M. Matthews, MS Thesis, Naval Postgraduate School, Monterey, CA,
(December 1999).

[Sayat99] Damage Control and Log Taking Java Applications for Shipboard
Wireless LANs by Hanceri Sayat, MS Thesis, Naval Postgraduate School, Monterey, CA,
(December 1999).

[McConnelOO] Testing and Evaluation of Shipboard Wireless Network
Components by Richard J. McConnell, MS Thesis, Naval Postgraduate School,
Monterey, CA, (March 2000).

[KuroseOl] Kurose, James and Ross, Keith, Computer Networking: A Top
Down Approach Featuring The Internet, Addison-Wesley Publishing Company,
Massachusetts, 2001.

[MinasiOO] Minasi, Mark, Anderson, Christa, Smith, Brian, and Toombs, Doug,
Mastering Windows 2000 Server, Sybex, San Francisco, 2000.

[BianchiOO] Bianchi, Giuseppe, Performance Analysis of the IEEE 802.11
Distributed Coordination Function, IEEE Journal on Selected Areas in
Communication, vol.18, no. 3,2000.

[IDS00] IDS Software, IDS Server Users Guide, www.idssoftware.com, 2000,
pg. 84-88.

[Mangione98] Mangione, Carmine Performance tests show Java as fast as
C++, http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf-2.html, JavaWorld.

-205

[Hughes97] Hughes, Merlin, Shoffher, Michael, and Hamner, Derek, Java
Network Programming, 2nd edition, Manning, Inc, Greenwich, 1997.

[MahmoudOO] Mahmoud, Qusay H., Distributed Programming with Java,
Manning, Inc, Greenwich, 2000.

[DCConcepts96] Damage Control (DC) Concepts For the New Attack
Submarine (NSSN), American Systems Corporation, Rhode Island, December 1996,
Unclassified.

[MorrisonOO] Morrison, Mine and Morrison, Mike, A Guide to Oracle 8,
Course Technologies, Cambridge, 2000.

[SunOl] Sun Technologies, The JDBC™ API Universal Data Access for the
Enterprise, http:// java.sun.com/ products/ jdbc/ datasheethtml, 2001.

[White99] White, Seth, Fisher, Maydene, Cattell, Rick, Hamilton, Graham and
Hapner, Mark, JDBC API Tutorial and Reference, Second Edition, Addison-Wesley,
1999.

[Balter99] Baiter, Alison, Mastering Microsoft Access 2000 Development,
SAMS, Indianapolis, 46290,1999.

[Sadiku95] Sadiku, Matthew and Uyas, Mohammad, Simulation of Local Area
Networks, CRC Press, Inc, Boca Raton, 1995.

[Quinn97] Quinn, Liam, and Russell, Richard, Fast Ethernet, Wiley Computer
Publishing, Inc, New York, 1997.

[Hammond86] Hammond, Joseph and O'Reilly, Peter, Performance Analysis of
Local Computer Networks, Addison-Wesley Publishing Company, Massachusetts,
1986.

[Tanenbaum96] Tanenbaum, Andrew, Computer Networks, Prentice Hall, New
Jersey, 1996.

[GuideOO] OPNET Technologies, Wireless LAN (IEEE 802.11) Model Guide,
http://www.opnet.corn/productsAibrary/WLAN_Model_Guide.pdf, 2000.

[Stallings97] Stallings, William, Data and Computer Communications,
Prentice Hall, New Jersey, 1997.

206-

[Jain91] Jain, Raj, The Art of Computer Systems Performance Analysis,
Techniques for Experimental Design, Measurement, Simulation, and Modeling, Chapter
2, pg. 22-25, John Wiley & Sons, Inc, New York, 1991.

[PetersonOO] Peterson, Larry and Davie, Bruce, Computer Networks: A
Systems Approach, Morgan Kaufman Publishers, California, 2000.

[ProductsOO] Alcatel, Inc, Enterprise Internetworking Products and Solutions
Manual, 2000.

207-

THIS PAGE INTENTIONALLY LEFT BLANK

-208

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5121

Professor Xiaoping Yun, Code EC/YX
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Professor C. Thomas Wu, Code CS/Wq.
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5121

Mr. Steve Lose
Program Executive Officer, Submarines
PMS450E
Washington Navy Yard
1333 Isaac Hull Ave. S.E.
Washington DC 20376

Mr. Gary Lacombe..
171 Branch Hill Rd
Preston, CT 06365

8. LTWiUiamG.WilkinsJr.
2946 Matthew Lane
Lawrenceville, GA 30044

-209-

