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ABSTRACT

The purpose of this work is to determine the necessity of a near real time ocean
modeling capability such as the Naval Oceanographic Office’s (NAVOCEANO)
Modular Ocean Data Assimilation System (MODAS) model in shallow water (such as
the Yellow Sea) mine hunting applications using the Navy’s Comprehensive Acoustic
Simulation System/Gaussian Ray Bundle (CASS/GRAB) model. Sound speed profiles
inputted into the CASS/GRAB were calculated from observational (MOODS) and
climatological (GDEM) data sets fc;r different seasons and regions of four different
bottom types (sand, gravel, mud, and rock). The CASS/GRAB mode! outputs were
compared to the outputs from corresponding MODAS data sets. The results of the
comparisons demonstrated in many cases a significant acoustic difference between the
alternate profiles. These results demonstrated that there is a need for a predictive
modeling capability such as MODAS to address the Mine Warfare (MIW) needs in the
Yellow Sea region. There were some weaknesses detected in the profiles the MODAS
model produces in the Yellow Sea, which must be resolved before it can reliably address

the MIW needs in that region.
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I. INTRODUCTION

During the “Cold War” the United States Navy focused most of its research and
development efforts on weapon systems, sensors, and counter measures that were
extremely effective in destroying and countering the Soviet Navy in “blue water” (deep
water regions beginning at the 100 m mark and greater) conflicts. After the Cold War the
United States did not realize how unprepared its forces were to operate in the “littoral”
(shallow waters defined as beginning at the 100 meter mark and below) until its was
forced to gradually increase its operations in the Persian Gulf, since the Gulf War.
Unfortunately, the U.S. Navy suffered three major ship casualties as a result of mines
before significant funding went into the research and development for weapon systems,

sensors, and countermeasures that are effective in the littoral.

The sensors on ships and weapons torpedoes during the Cold War were designed
for the acoustically range independent environments characteristic of “Blue Water”
regions. These sensors are highly capable of long-range detections in deep waters but are
virtually blind even at short-range scenarios. These sensors are not designed for the
acoustically range dependent environment of the littoral. The source of interfering noise

for acoustic sensors in the littoral is reverberation from the sea surface and sea bottom.

The major threats in the littoral are diesel submarines and sea mines. The
combination of improvements in noise reducing technology and the development of Air
Independent Propulsion (AIP) technology have made diesel submarines very difficult to

detect in both the littoral and blue waters. After a weapon platform has detected its




targets, the sensors on torpedoes designed for blue water operations are not designed to

acquire a target in a reverberation-crippling environment.

Even though sea mines are not as sophisticated a weapons system as torpedoes,
they have been number one cause of U.S. Naval casualties since the end of World War I
Sea mines are a relatively cheap weapons system that‘ can be easily obtained by any
nation in mass quantities. In addition, Sea mines do not require an expensive and
sophisticated weapons platform for deployment; they can be easily deployed by small
watercraft. There are several types of mines, which are classified by their mode of
activation and their placement in the water column. The simplest of sea mines are
floating contact mines. These mines are usually detected visually and cleared by
minesweepers and Explosive Ordnance Disposal (EOD) units. A more complex type of
mines are influence mines. These mines have different mechanisms for activation, such
as magnetic and acoustic actuators. Influence mines are much more difficult to counter
since they are either tethered to the sea bottom at various depths or lie on the sea bottom.
Since these types of mines are situated below the sea surface, mine hunting sonars are
required for detection. The problems that are related to sonar detection of a target in the
littoral are compounded when the target is a sea mine due to the low target strengths of
Sea mines. The low target strengths of sea mines require the use of sensors with
frequencies higher than those sonars used for submarine detection. Bottom mines create
a much more difficult detection problem for the mine hunter. Operators of mine hunting
systems must perform the timely process of classifying all objects that closely fit the
dimensions of a Bottom mine and later evaluate these objects in closer detail with higher

resolution sensors.




In recent years, the U.S. Navy has focused much of its research and development
efforts in designing high frequency sensors and corresponding acoustic models to
overcome the threat in the littoral. The Comprehensive Acoustic Simulation System
(CASS) using the Gaussian Ray Bundle (GRAB) model is an acoustic model approved
by the U.S. Navy to predict the performance of active ocean acoustic systems that operate
in the 600 Hz to 100 kHz frequency range. Developed in 1993 by the Naval Undersea
Warfare Center Division Newport, this model is capable of modeling all the components
of passive and bistatic signal excess in range-dependent environments. The
CASS/GRAB has successfully modeled torpedo acoustic performance in shallow water
experiments off the coast of Southern California and Cape Cod, and is currently being

developed to simulate mine wai'fare systems performance in the fleet (Aidala et al. 1998).

The CASS/GRAB model is valuable tool for the AN/SQQ-32 mine hunting
detection and classification sonar. The performance of this model, as in all models, is
determined by the accuracy of its inputs such as sea surface conditions, bathymetry,

bottom type, and sound speed profiles.

The AN/SQQ-32 (Figure 1) is a variable depth mine hunting detection and
classification sonar for the Avenger (MCM-1) and Osprey (MHC-51) Surface Mine
Countermeasures (SMCM) ships. The AN/SQQ-32’s main components are a multi-
channel detection sonar assembly and near-photographic resolution classification sonar
assembly. The system has multiple operating frequencies and obtains acoustic data from
two independent acoustic search and classification arrays that maximize volumetric
coverage. Its multiple-ping processor enables it to detect mine-like objects in the high
reverberation environment of the littoral. Additionally, its multiple operating frequency

3




capability allows it to operate in both deep and shallow waters. The lower operating
frequencies allow the system to detect mine-like objects at longer ranges in shallow
waters. The classification sonar system’s near-photograph resolution and the systems
computer aided target classification system decreases the time required for mine

searching operations by reducing false target reporting.

Figure 1. The AN/SQQ-32 Mine Hunting Sonar System (From Raytheon Electronic
Systems Naval & Maritime Integrated Systems 2000).
NAVOCEANO constructs various environmental databases for Mine Warfare

(MIW) applications; these databases are used by the MIW Environmental Decision
4




Library (MEDAL). One‘ of these databases is the “Provinced” (user derived) profiles.
This climatological database consists of spatial provinces that define an average of
several alternate temperature, salinity, and sound profiles for a shallow water region on a
monthly basis. Provinced profiles are derived from the MOODS database using the
Naval Interactive Data Analysis System (NIDAS) software. It has been found that the
Generalized Digital Environmental Model (GDEM) climatology (consisting of an
average profile at grid point) is often inadequate to define the vertical features of shallow
water profiles for MIW applications. Also, due to the high temporal variability in
shallow water, the average profile seldom occurs, thus a better depiction is to include
“alternate profiles” which can occur as often as the average. NAVOCEANO has
developed the Modular Ocean Data Assimilation System (MODAS) model to meet these
needs.

To determine if the MODAS model meets the MIW needs in shallow water
regions, a comparison with historical observational (MOODS) and climatological
(GDEM) profiles in an acoustic model is required. If there is a significant acoustic
difference of CASS/GRAB outputs between using MOODS and MODAS or using
GDEM and MODAS, then there is a need for a predictive modeling capability such as
MODAS. If there is no significant difference, then MODAS is not required to address
the MIW needs in these regions and the NAVOCEANO province profile products
derived from MOODS are sufficient.

In this thesis, an input file that simulates the parameters of the AN/SQQ-32 mine

hunting sonar was used to generate acoustic data. The input file was created by Ruth E.




Keenan of the Science Applications International Corporation and was created replacing
any sensitive parameters of the AN/SQQ-32 sonar with generalized sonar parameters.
The outline of this thesis is as follows: A description of the Yellow Sea geological
and oceanographic environments is given in Chapter II. A depiction of the
oceanographic data sets used for the study and the Navy’s Interactive Data Analysis
System (NIDAS) are given in Chapters IIl and IV. The CASS/GRAB model is described
in Chapter V. Seasonal variability of acoustic transmission and the severe weather
effects on the acoustic transmission are investigated in Chapters VI and VII. The
sensitivity study on the hydrographic data input (MOODS, GDEM, and MODAS) is
given in Chapter VIII. The comparison is given during four seasons and four regions of
different bottom iypes (rock, gravel, sand, and mud). The uncertainty propagation from
the hydrographic input data into the CASS/GRAB model out put is discussed in Chapter

IX. In Chapter X, the conclusions are presented.




IL. ENVIRONMENT OF THE YELLOW SEA

A. GEOLOGY AND STRUCTURE

The Yellow Sea is a semi-enclosed basin situated between China and the Korean
peninsula with the Bohai Sea to the northwest and the East China Sea to the south. The
Yellow Sea is a large shallow water basin covering an area of approximately 295,000
km?. The water depth over most of the area is less than 50 m (Figure 2). Four major
fresh water run-offs flow into the Yellow Sea: the Yangtze River to the southwest, the
Yellow River and Liao River to the north, and the Han River to the east (Chu et al.

1997a).

Due to large tidal ranges and heavy sedimentation from river outflows, most of
the coasts surrounding the Yellow Sea contain numerous shoals and troughs extending
from the shores. The bottom sediment types are finer along the coast of China and much
coarser along the shelf and the coast of the Korean peninsula. The bottom sediment of
the central and western regions of the Yellow Sea consists primarily of mud and the
eastern region is primarily sand. The mud sedimentation in the central and northwestern
regions of the Yellow Sea is due to thé runoff from the great rivers of China (Shepard

1973).

Four regions with different bottom types were selected for the acoustic model
runs in this study (Figure 3). The first region consists of a Rock Bottom type and is
located in the north-central Yellow Sea at 37°-37.5°N, 123°-123.8°E. The second region
consists of a Gravel Bottom type and is located in the northern Yellow Sea at 38.4°-39°
N, 122°-123° E. The third region consists of a Sand Bottom type and is located in the

southeastern Yellow Sea at 35.5%-36.5°N, 124.5°-126.2°E. The fourth region consists of
7




a Mud Bottom type and is located in the south-central Yellow Sea at 35°-36.5° N, 123°-

124.5°E. The bottom sediment composition parameters are listed in Table 1.
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Figure 2. Bottom Topography of the Yellow Sea and the surrounding regions. The data
was obtained from the U.S. Naval Oceanographic Office DBDBS world bathymetry
database. Depths are in meters. (From Chu et al. 1997a).
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Figure 3. Yellow Sea Bottom sediment chart (From Ninno and Emery 1961).
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Bottom Sediment | Bulk Grain Long (32 Char) Density | Sound Speed Wave
Composition Size Index Name gm/cm’ Ratio Number
Ratio

BOULDER -9 Rough Rock 2.5 2.5 0.0137

ROCK -7 Rock 2.5 2.5 0.0137

GRAVEL -3 Gravel, Cobble or Pebble 2.5 1.8 0.0137
-1 Sandy Gravel 2.492 1.337 0.01705

-0.5 Very Coarse Sand 2.401 1.3067 0.01667

0.0 Muddy Sandy Gravel 2.314 1.2778 0.01630

0.5 Coarse Sand 2.231 1.2503 0.01638

1.0 Gravelly Muddy Sand 2.151 1.2241 0.01645

SAND 1.5 Sand or Medium Sand 1.845 1.1782 0.01624
2.0 Muddy Gravel 1.615 1.1396 0.01610

2.5 Silty Sand or Fine Sand 1.451 1.1073 0.01602

3.0 Muddy Sand 1.339 1.0800 0.01728

3.5 Very Fine Sand 1.268 1.0568 0.01875

4.0 Clayey Sand 1.224 1.0364 0.02019

4.5 Coarse Silt 1.195 1.0179 0.02158

5.0 Sandy Silt 1.169 0.9999 0.01261

5.5 Medium Silt 1.149 0.9885 0.00676

SILT 6.0 Silt 1.149 0.9873 0.00386
6.5 Fine Silt 1.148 0.9861 0.00306

MUD 7.0 Sandy Clay 1.147 0.9849 0.00242
7.5 Very Fine Silt 1.147 0.9837 0.00194

8.0 Silty Clay 1.146 0.9824 0.00163

CLAY 9.0 Clay 1.145 0.9800 0.00148
10.0 1.145 0.9800 0.00148

Table 1. APL/UW TR9407 Geo-acoustic parameters associated with bulk grain size
index used by the CASS/GRAB model. Sand is the default value for CASS/GRAB
(From NAVOCEANO 1999).

B. OCEANOGRAPHY

The four seasons in the Yellow Sea are defined as follows: the winter months run
from January through March; the spring months run from April through June; the

summer months run from July through September; and the fall months run from October

through December. The Siberian high-pressure system during the winter monsoon

season brings very cold northwest winds through the Yellow Sea region. During this

period, the jet stream is located south of the Yellow Sea and the polar front is located
north of the Philippines. At the beginning of the winter season the mean wind speed is 6

m/s and the sea air temperature (SAT) falls in the range of 0° to 8° C, whereas the sea
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surface temperature (SST) is usually 2° to 6° C warmer causing the Yellow Sea to lose
heat to the atmosphere during this time period. The winter monsoon winds peak with a
maximum of 35 m/s in the central Yellow Sea, and 28 m/s mean through out the entire
region (Chu et al. 1997a). These winds cause the formation of a southward sea level
gradient that force bottom water to flow northward. These cold/strong winter monsoon
winds cause mechanical forcing due to the strong wind stress and thermal forcing
resulting from the upward buoyancy flux at the air-ocean interface caused by the cold
SAT. The combined action of the mechanical and thermal forcing causes the mixed layeli

to drop to its deepest point during the winter season.

The transition into the spring season begins in late March when air temperatures
are an average of 5° C warmer than the previous month due to a rapid weakening of the
Siberian high that progress through out the months of March and April. By the end of the
first month of spring, the atmospheric polar front has transited northward into Korea
followed by warm and humid air masses into the Yellow Sea region. This transition
brings about an average increase in the SST of 10° C during the spring. Spring in the
Yellow Sea is also characterized by highly variable winds, cloud cover, and precipitation
due to a numerous number of front driven events transiting through the region (Chu et al.

1997a).

The transition into the summer season begins in late May and early June where
an atmospheric low-pressure system, generated north of the Yellow Sea, called the
Manchurian Low moves west over Manchurié in late June. The movement of this low-
pressure system sets up circulation of the southwest monsoon in the Yellow Sea during
the summer months. During this period, the jet stream is located south of Korea and the

11




polar front is located south of the Japanese Islands of Kyushu and Shikoku. In July, the
atmospheric low-pressure system in the north, in conjunction with an atmospheric high-
pressure system located in the southeast called the Bonin High, generates warm and
humid southerly winds over the Yellow Sea region. The warm air from these southerly
winds increases the SAT over the Yellow Sea during the summer months to a range of
24° to 26° C, approximately 1.5° to 2° C warmer than the SST. Although there is a high
weather activity in the Yellow Sea during the summer monsoon season, the mean wind
speed throughout the region only ranges from 3 to 4 m/s. During the summer months,
there is also a stronger downward net radiation and this effect, combined with the warmer
air, causes a downward heat flux that reduces the depth of the mixed layer (Chu et al.
1997a, b). The summer season is also usually characterized by Tropical Cyclones that
transit through the region, moving in a northwest direction from the East China Sea into
the southern Yellow Sea and into China. Occasionally, a tropical cyclone will transit in a

northerly direction from the East China Sea and throughout the Yellow Sea.

October marks the beginning of the fall season in the Yellow Sea. In October, the
warm southerly winds of the summer monsoon begin to subside in the region and the

SAT and SST begin to gradually transition to those of the winter season.

The two main characteristic temperature profiles of the Yellow Sea are during the
winter and the summer months. In the winter months, the temperature profiles
throughout the region are characterized as isothermal (Figure 4a). In the summer months,
the temperature profiles throughout the region are characterized by a multi-layer profile

consisting of a mixed layer, a thermocline, and a deep layer (Figure 4b).
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III. OCEANOGRAPHIC DATA SETS

A. MASTER OCEANOGRAPHIC OBSERVATIONAL DATA SET (MOODS)

Master Oceanographic Observation Data Set (MOODS) is the observational
database of the Navy and contains all available oceanographic profile data. MOODS
currently contains over 5.8 million observations worldwide dating back to 1920
(NAVOCEANO 2000). MOODS is a collection of ocean data observed worldwide
consisting of temperature-only profiles, temperature and salinity profiles, sound speed
profiles, and surface temperature data. The biggest limitation of MOODS is its irreéular
distribution over time and space. Since observational data is collected from numerous
sources during times of opportunity, the locations and timés these observations are made
vary greatly. Thus, the density of observations made in common shipping lanes is much
greater than those made outside of the shipping lanes. In the case of the Yellow Sea,
there are a very limited number of observations made off the coast of China. In addition,
the number of observations are much more sparse during the fall and winter months as
compared with the spring and summer months. Another limitation is the high variability
of the data’s vertical resolution and quality due to the numerous types of instruments ﬁ,sed
for sampling as well as the level of expertise of the sampler.

Due to the numerous sources and the tremendous quantity of samples that are
incorporated into MOODS by NAVOCEANO, the data must be systematically evaluated
to remove erroneous profiles. The errors usually contained in MOODS are profiles with
observations obviously misplaced by location or season, duplicate profiles, and profiles
with large peaks (temperatures higher than 35° C and lower than —2° C do not match the

characteristics of surrounding profiles) (Chu et al. 1997b). The Naval Interactive Data
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Analysis System (NIDAS) computer software was used to simplify the task of removing
erroneous profiles and creating MOODS data sets for evaluation by the CASS/GRAB

model.

B. GENERALIZED DIGITAL ENVIRONMENT MODEL (GDEM)

The Generalized Digital Environmental Model (GDEM) is climatology data that
has been generated by the Naval Oceanographic Office since 1975. Climatological data
is data that has Been obtained ﬁom taking the mean of data of temperature and salinity
profiles from a period of many decades. GDEM is created from all available sources of
temperature and salinity profile data available globally, with MOODS being the primary

input. Before incorporating MOODS into GDEM, erroneous profiles are removed as

described earlier.

GDEM is gridded data in the form of a four dimensional digital model (latitude,
longitude, depth, and time). The gridded data is generated in three resolutions; 30°, 20°,
and 10’ latitude-longitude grids and 3, 6, and 12-month time intervals. The Global
GDEM data set, which covers much of the globe, is generated with a 30’ resoluti_on;
Regions that are operationally important to the United States Navy are generated with
higher horizontal resolutions of 20’ and 10°. These regions predominantly consist of
shallow water regions like the Mediterranean, the Yellow Sea, and the Persian Gulf
(Figure 3). NAVOCEANO has combined all these different types of resolution GDEM
into a single database called GDEM V (GDEM Variable resolution) to allow for the
highest resolution and most updated GDEM data sets to be available to the fleet.

The higher 10-minute horizontal resolution GDEM also contains a higher vertical

resolution. This GDEM is created using a separate process based more on water mass
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called the Shallow Water Data Models (SWDMs) that produces the Shallow Water Data
Base (SWDB) climatology. In addition, GDEM does not extend beyond 100 meters in
depth whereas SWDMs extends out to 50 meters. For shallow water depths (< 200 m),
the SWDB climatology is used and in depths greater than 500 m, Global GDEM is used.
The complete 10-minute horizontal resolution GDEM climatology is formed by blending
Global GDEM and the SWDB with a weighted average between 200 and 500 m. This
GDEM is blended into adjacent GDEM of 20 and 30-minute resolution to produce a

seamless transition of gridded data (NAVOCEANO 2000).
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Figure 5. GDEM Coverage and Horizontal Resolutions (From NAVOCEANO 2000).

The gridded GDEM data is created by fitting each MOODS profile to a
determined set of analytical curves that represent the mean vertical distributions of

temperature and salinity for grid squares. These analytical curves are generated by
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averaging the coefficients of the mathematical expressions for the curves found for
individual profiles. There are different set of analytical curves that correspond to
shallow, mid-depth and deep-depths regions. Each of the corresponding sets of analytical
curves is chosen to minimize the number of parameters required to generate a smooth
mean profile over the range. Discontinuities in the profiles’ vertical gradients are
prqvented by choosing conditions that match through the depth range transitions. This
process results in a climatological data set that is both horizontally and vertically
continuous. In addition, temperature and salinity profiles are generated separately to
allow the data to be checked for stable densities and to enable the utilization of the large

database from expendable bathythermographs (XBT) observations (Teague et al. 1990).

C. MODULAR OCEAN DATA ASSIMILATION SYSTEM (MODAS)

MODAS, recently developed at the Naval Research Laboratory (NRL), uses a
modular approach to generate three-dimensional gridded fields of temperature and
salinity. Its data assimilation capabilities may be applied to a wide range of input data,
including randomly located in-situ, satellite, and climatological data. Available
measurements from any or all of these sources are incorporated iﬁto a three-dimensional,

smoothly gridded output field of temperature and salinity.

MODAS’ primary outputs are temperature and salinity fields that may be used to
calculate three-dimensional sound speed fields. The sound speed field, in turn, may be
used to drive acoustic performance prediction scenarios, including simulations, tactical
decision aids, and other capabilities. Other derived fields, which may be generated and
examined by the user, include two-dimensional and three-dimensional quantities such as

geostrophic currents, mixed layer depths, sonic layer depth, deep sound channel axis
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depth, depth excess, and critical depth. These are employed in a wide variety of naval

applications and TDAs.

The most current version of MODAS in use is MODAS 2.1, (which has so far and
will continued to be referred as MODAS in this paper) a second generation MODAS.
The first generation MODAS was MODAS 1.0 which was accepted in the Navy’s OAML
in November 1995. MODAS 1.0 was initially designed to perform deep-water analyses
that produced outputs that supported deep-water anti-submarine warfare operations.
However, MODAS 1.0 was constrained by depth because its climatological data was the
original NAVOCEANO GDEM, which did not extend beyond depths of less than 100
meters. The capabilities of MODAS 1.0 were increased when GDEM was initially
augmented with SWDB, but at the time, SWDB was limited to the northern hemisphere.
The Levitus global database, which has less horizontal resolution than GDEM, was used
as a second source for the first guess field in MODAS 1.0, but its horizontal resolution
was not sufficient for an accurate application in MODAS 1.0. In addition to a lack of
vertical resolution, GDEM and Levitus lacked some of the statistical descriptors that
made them inadequate for the optimum interpolation analysis of observations like XBT

profiles and satellite Multi-Channel Sea Surface Temperature Sensor (MCSSTS) data.

Second generation MODAS (MODAS 2.0) was created to overcome the
limitations of MODAS 1.0. One of the major implementations was the development of
MODAS internal ocean climatology (Static MODAS climatology) for both deep and
shallow-depths. Static MODAS climatology is produced using MOODS as in GDEM but
with some improvements. Static MODAS climatology covers the ocean globally to a
minimum depth of 5 meters and has variable-horizontal resolution from 7.5-minute to 60-
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minute resolution. ~Static MODAS climatology also contains important statistical
descriptors required for optimum analysis of observations that include bi-monthly means
of temperature, coefficients for calculation of salinity from temperature, standard
deviations of temperature and salinity, and coefficients for several models relating
temperature and mixed layer depth to surface temperature and steric height anomaly. In
addition, in MODAS 1.0 some of the algorithms for processing and for performing
interpolations designed for speed and efficiency in deep waters with the cost of making
some weak assumptions about the topography. This shortcut method extended all
observational profiles to a common depth, even if the depth was well below the ocean
bottom depth, by splicing onto climatology. The error introduced using this shortcut
method is amplified when this method is applied to shallow water fegions. MODAS 2.0
does not use this shortcut method; instead it performs optimum interpolation analysis for
each depth above the ocean bottom separately. The optimum interpolation algorithms
used in MODAS 2.0 increases speed of the analysis by using a method commonly used in
meteorological systems called the “volume’ technique. The capability to use satellite
altimetry was another function implemented into MODAS 2.0. Using optimum
interpolation algorithms, these SSHs are gridded and used with gridded SST and
climatological algorithms and databases to produce three-dimensional temperature and

salinity grids (Fox et al. 2000).

MODAS 2.0 was updated to version 2.1 with changes implemented to correct
specific problems identified during several fleet exercises. One of the major

implementations was the redevelopment of the global database to incorporate higher
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resolutions in near shore regions to produce outputs that are more realistic (Fox et al.

2000).

MODAS has two modes of usage; Static MODAS and Dynamic MODAS. As
discussed earlier, Static MODAS climatology is an internal climatology used as
MODAS’ first guess field. The other mode is referred to as Dynamic MODAS
climatology, in which MODAS combines locally observed and remote sensed ocean data
with climatological informaﬁon to produce a near real time gridded three-dimensional
analysis field of the ocean temperature and salinity structure as an output. Grids of
MODAS climatological statistics range from 30-minute resolution in the open ocean to
15-minute resolution in shallow waters and 7.5-minute resolution near the coasts in .
shallow water regions.

The MODAS model operates in the following manner; the MODAS two-
dimensional SST field uses the analysis from previous days field as the first guess, while
the MODAS’ two-dimensional SSH field uses a large-scale weighted average of 35 days
of altimeter data as a first guess. The deviations calculated from the first guess field and
the new observations are interpolated to produce a field of deviations from the first guess.
Next, a final two-dimensional analysis is calculated by adding the field of deviations
from the first guess to the first guess field. When the model performs an optimum
interpolation for the first time it uses the Static MODAS climatology for the SST first
guess field and zero for the SSH first guess field. Every data after the first optimum
interpolation it uses previous day’s first guess field for SST and a large-scale weighted
average is used for SSH. Synthetic profiles are generated at each location based on the

last observation made at that location. If the remotely obtained SST and SSH for a
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location do not differ from the climatological data for that location, then climatology is
used for that profile. Likewise, if the remotely obtained SST and SSH for a location
differ from the climatological data for that location then the deviation at each depth are
estimated. Adding these estimated deviations to the climatology produces the synthetic
temperature profile. Finally, the synthetic temperature profile is used to produce a
synthetic salinity profile by using the climatological femperature and salinity relationship

at that location (Fox et al. 2000a).

In shallow water regions, it was found that generally the altimetry is not accurate
enough to use, due to additional problems with orbit error and other corrections that
increased the error level near land. NAVOCEANO's initial solution was to produce a file
that was a highly smoothed version of the bathymetry with spéciﬁed parameters to use in
controlling the use of the altimetry. This solution turned out to be insufficient, based on
comparisons to all the MOODS profiles that have been acquired since January 1, 1993, so
a simple graphic was produced that NAVOCEANO can use to determine when to turn on

or off altimetry.

Studies have shown that MODAS performs well when observational SSH (i-e.
data from XBTs) is used and when the 'raw' altimeter data (the data right under a track
before it's been turned into a complete grid of data) is used. In water depths less than 150
meters, altimetry is turned off and the synthetics are based solely on the SST grid.
Deeper than 400 meters, the synthetics are”computed using both SST and SSH. In
between those two depths, two synthetics are produced, one using SST only and one
using SST plus SSH. Then those two estimates of the synthetics are averaged together

using weights based on the water depth. At 150 meters, the 'temperature-only-synthetic'
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is weighted 1.0 and the 'SST + SSH synthetic' is weighted 0.0. At 500 meters, the 'SST
only' synthetic gets a 0.0 weight and the 'SST + SSH' synthetic gets a 1.0 weight. At 325
meters (the midpoint between 150 and 400 meters), the two synthetics are each weighted
0.5 each. So there is the linearly tapered weighting that estimates the synthetic based on

the 'SST synthetic' and the 'SST + SSH synthetic' (Fox, Personnel Communication).

In the Yellow Sea, the MODAS model is operated in the degraded mode of SST
and MODAS climatology only mode. The correction of altimetry for use in shallow

water regions will be the best improvement to MODAS so far.
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IV. NAVAL INTERACTIVE DATA ANALYSIS SYSTEM
(NIDAS)

A. MODEL DESCRIPTION
The NIDAS software provides NAVOCEANO with an interactive capability for

several types of oceanographic, metrological, and satellite defined data to create three-
dimensional gridded fields of temperature, salinity, and sbund speed profiles constructed
from a combination of provinced data and gridded data. NAVOCEANO uses NIDAS to
construct the environmental database called Provinced Profiles, which is used by
MEDAL. Province Profiles is a climatological database derived from the MOODS
database that consists of spatial provinces that define an average and several alternate
temperature, salinity, and sound speed profiles for a shallow water region on a monthly

basis (Mississippi State Center of Air Sea Technology 1997).

The original NIDAS software is a UNIX based software requiring the use of
graphics license, thus its use was limited to facilities with UNIX systems that had the
proper graphic license. In an effort to expand and facilitate the use of the NIDAS
software, a JAVA based version of NIDAS was created for Windows NT operating
systems in August of 2000. This version was NIDAS 5.1 developed by Clifton Abbot at
Mississippi State Center of Air Sea Technology, Stennis Space Center. NIDAS 5.1a was
used in this thesis and the release of version 51.b is expected sometime this year. NIDAS
5.1b will fix some of the bugs contained in the earlier versions and will have increased

capabilities, such as a printing function.
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B. CREATING AND COMPARING REGIONAL AND SEASONAL MODAS,
MOODS, AND GDEM DATA SETS USING NIDAS

All data sets used in this thesis are unclassified. The unclassified MODAS data
sets used were obtained from Mr. Dan Fox of NAVOCEANO via a public ftp site. The
MODAS data sets were obtained in a NIDAS compatible binary format called “Master
format’. The MOODS and GDEM data sets were also obtained from NAVOCEANO on
CD-ROM. The MOODS and GDEM data sets were not in the Master format and were

converted into the Master format using a FORTRAN code.

The NIDAS software allows all desired data sets for a predefined project area to
be displayed all at once by overlaying the various profiles in different colors in the same
analysis window. The user can select to view plots of salinity versus depth, temperature
versus depth, sound speed versus depth, etc., for all the profiles in a data set in the
analysis window. The analysis window allows the user to view all the data available

from a data set for a project area as points on a two-dimensional geographical map. This

function is especially useful in analyzing MOODS data sets since it is non-gridded

observational data, thus was the limiting factor of the three data sets in selecting regions
of different bottom types. The two-dimensional geographical map in the analysis was
used to help select regions with sufficient MOODS observational profiles for comparison

with the MODAS data sets.

The analysis window in NIDAS also has a function known as the “polygon
function” that allows the user to select a region within the two-dimensional geographical
map of the project area for analysis by drawing a polygon around the desired region.

After a polygon has been created for a region, the profiles for that region are
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automatically highlighted for analysis in all of the plots in the analysis window. The user
can then choose to view and edit the data for all the profiles in the polygon to create a
user defined data set. This created data set can then be saved as an export file in three
different formats, “Master”, “CASTAR”, and “Text”, for use with oceanographic and

acoustic models.

In this study, the polygon function was used to visually analyze and create data
sets of different regions that were defined by bottom type. The three data sets were
overlaid in the analysis window using different colors and their salinity, temperature, and
sound speed profiles were visually analyzed for each month at the four different regions
selected for this study. The data sets for MODAS, MOODS, and GDEM for the four
different months (February, May, August, and November, which represent mid-season
for the four seasons) and for the selected regions were created using the polygon

function.

The results of all the visual comparisons made for the MODAS, MOODS, and
GDEM profiles for all four seasons were for the most part similar. This comes to no
surprise since the MODAS climatology data and GDEM are derived directly from
MOODS. The main differences were that the MODAS and GDEM profiles had smc;oﬂl
transitions, while MOODS had sharp transitions from the mixed layers to the thermocline
and from the thermocline to the sub layer. This tended to weaken the gradient of the
thermocline and surface ducts when they were present. The differences in transitions are
due to the higher vertical resolutions contained in both MODAS AND GDEM and the
averaging involved in the development of the MODAS climatology and GDEM from the
MOODS observations. Another difference was found in the temperature and speed

27




profiles during the winter mainly between MODAS and MOODS. The difference is
evident near the bottom: Many MODAS profiles in February show the increase of
temperature with depth (downward positive gradient), however, all the MOODS profiles
(observational) show the isothermal pattern. The profiles with such a difference were
most found in the shelf of the southern Yellow Sea and northern East China Sea. This
location falls in the southern portion of the mud region uﬁed in this study. This difference
may be due to a lack of observational data in that region when the MODAS climatology
was created, but it cannot be determined with certainty without a study of the MODAS
climatology which was not available during this study. During the winter months, the
near bottom positive gradient was also present in some of the GDEM profiles but the
gradients were not as strong as those found in MODAS. In addition, the near bottom
gradients were not isolated to just one region; they were also found in the other regions

used in this study.

The data sets for MODAS and GDEM were created using the polygon function
without editing. The MOODS data sets were also created using the polygon function but
were edited to remove erroneous profiles as described earlier. All the data sets were
saved as export files in the “CASTAR” format. The CASTAR format was chosen
because most of the data for each profile can viewed as text and this format is easier to

manipulate with MATLAB to create input files for the CASS/GRAB model.
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V. COMPREHENSIVE ACOUSTIC SIMULATION SYSTEM/
GAUSSIAN RAY BUNDLE (CASS/GRAB)

A. MODEL DESCRIPTION

CASS/GRAB is an active and passive range dependent propagation,
reverberation, and signal excess acoustic model that has been accepted as the Navy’s
standard model. The GRAB model’s main function is to calculate eigenrays in range-
dependent environments in the frequency band 600 Hz to 100 kHz and to use the
eigenrays to calculate propagation loss. The CASS model is the range dependent
improvement of the Generic Sonar model (GSM). CASS performs range independent
monostatic and bistatic active signal excess calculations. The CASS model incorporates
the GRAB eigenfay model as ‘a subset (Figure 4). CASS uses a driver that calls the
GRAB eigenray model to compute eigenrays and propagation loss (Keenan 1998).

In the GRAB model, the travel time, source angle, target angle, and phase of the
ray bundles are equal to those values for the classic ray path. The main difference
between the GRAB model and a classic ray path is that the amplitude of the Gaussian ray
bundles is global, affecting all depths to some degree, whereas classic ray path
amplitudes are local. GRAB calculates amplitude globally by distributing the amplitudes

according to the Gaussian equation

ﬂv,OI_‘v2 2
¥, =—ﬁ—=7;—;—;——;exp{— OS[(Z—ZV)/O'V] },

where the I'| represents losses due to volume attenuation and boundary interaction, ¢, =
(0.5)(max(Az,4n))) defines the effective standard deviation of the Gaussian width, and
By is a factor that depends only on the source and is chosen so that the energy within a
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Comprehensive Acoustic
System Simulation

Propagation Model 1: FAME

Propagation Model 2: GRAB
Gaussian Ray Bundle OAML GRAB v1.0

Environmental Interpolations
Environmental Model Interpolations
Surface and Bottom Forward Loss
Volume Attenuation
Sound Speed Algorithms Calt GRAB

Propagation Model 3: COLOSSUS
Propagation Model 4: AMOS equations
Backscatter Models
Reverberation
Noise Models
Signal to Noise
Signal Excess
Graphic Displays
System Parameters (Beamforming)

Figure 6. CASS/GRAB Overview (From Keenan et al. 1999).

geometric-acoustic ray tube equals the energy within a Gaussian ray bundle. The

variable z, is the depth along the V™ test ray at range 7, z is the target depth, p; is the

horizontal slowness, Az is the change in ray depth at constant range due to a change in
source angle, and X is the wavelength. The selection of the effective standard deviation
oy is the weakest component in providing a firm theoretical basis for the GRAB model.

The closer the test ray is to the target, the larger the contribution it has to the final power

weighted eigenray. These test rays are called ray bundles since they distribute some
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energy to each depth. GRAB classifies each ray group into a ray family. GRAB version
1.0 defines a ray family as ray groups that have a similar number of surface and bottom
bounces. Under caustic conditions there will be ray bundles with surface and bottom
depth differences greater than and less than zero within each ray family and GRAB
computes an eigenray for each group. Thus, GRAB computes up to two weighted
averaged ray groups for each ray family. GRAB does not store all the eigenrays it
calculates; instead, it performs a user accessible eigenray tolerance test to determine if
eigenrays are too weak to be stored in the eigenray file. GRAB then computes the
random or coherent propagation loss from the eigenrays stored in the eigenray file and

stores in them in separate pressure files (Aidala et al. 1998).

CASS computes range dependent reverberation for monostatic and bistatic
trénsrnitter to target and target to receiver scenarios. Reverberation is calculated in the
time domain centered at the receiver. It accounts for all possible combinations of signal
eigenray paths, sums them all up at a given range, and selects the peak signal to noise/
reverberation level to determine signal excess (Keenan 1998).

B. MINE WARFARE SCENARIOS

The high environmental variability and strong multi-path interactions encountered
in the littoral make acoustic modeling very difficult. In these shallow water regions,
accurate arrival structure information is required to model the performance of high
frequency acoustic systems. Other Navy range-dependent acoustic models such as the
Navy’s PE (Parabolic Equation) model are inadequate because they become
computationally intensive above several kilohertz. The GRAB eigenray model produces

the required arrival structure needed for systems applications in the littoral zone. This
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capability makes the CASS/GRAB a very effective tool for modeling the performance
high frequency acoustic systems in the littoral. In addition, the CASS/GRAB model has
successfully modeled torpedo reverberation data in 1994 in shallow water, range
dependent environments at the NUWC Southern California (SOCAL) and Cape Cod

torpedo exercise areas.
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VI. SEASONAL VARIABILITY OF ACOUSTIC TRANSMISSION

A. GDEM SEASONAL VARIABILITY FOR SOUND SPEED PROFILES

The annual mean for the GDEM sound speed profiles for the four regions selected
for this study were calculated and plotted against each of the monthly profiles to examine
seasonal variability of the GDEM sound speed profiles. One specific location

representing one sound speed profile was selected for each region.

The first location is a small region with a Rock Bottom type located in the mid-
eastern Yellow Sea (Region 1). The sound speed profile for the annual mean at this
location has a negative sound speed gradient from the surface to the bottom, thus having.
the characteristic of a thermocline that extends through the water column (Figures 7 and
8). The winter months of January through March contain sound speed profiles that are
relatively isothermal with a slight positive gradient. In the first month of spring, April,
the sound speed gradient begins to become negative and take the form of a thermocline
very similar to the annual mean by the month of May. The sound speed gradient
continues to become more negative from June to the summer month of August. Then in
September, the sound speed gradient becomes less negaﬁve. In the fall month of
November, a mixed layer with a surface duct is generated and by December, the sound

speed profile has returned to the isothermal conditions of winter.

The second location is a small region with a Gravel Bottom type located in the
northeastern Yellow Sea (Region 2). The sound speed profiles for the annual mean and
for each of the 12 months closely reflect those at the first location (Figure 9). The most
significant difference between the two locations is that the isothermal layer during the
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winter months in Region 2 falls below 1460 m/s and the isothermal layer in Region 1

does not fall below 1465 m/s. The difference is accounted for the fact that Region 2 is

located further north in the Yellow Sea.

Sound Speed (m/s)
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o
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Figure 7. Generic sound speed profiles (From Jensen et al. 2000).
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Figure 8. Monthly and annual mean sound speed comparison for Rock Bottom for all 12
months.
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Figure 9. Monthly and annual mean sound speed comparison for Gravel Bottom for all
12 months.
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The third location is a region with a Sand Bottom type, (the predominant bottom
type for most of the western coast of the Korean peninsula) located in the southeastern
Yellow Sea (Region 3). Again, the sound speed profiles for the annual mean and for each

of the 12 months closely reflect those in Region 1 (Figure 10).

The fourth location is a region with a Mud Bottom type, (the predominant bottom
type for most of the central and eastern Yellow Sea) located in the south-central Yellow
Sea (Region 4). The sound speed profiles for the annual mean and the winter, spring, and
summer months are very similar to those of Region 1 (Figure 11). During the fall months\
in this region, a mixed layer is present that extends to a depth of approximately 30
meters. A surface duct is present in the mixed layer of the November and December
profiles. In addition, a deep isothermal layer is present at a depth of approximately 50

meters in the October and November profiles.
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Sound Speed versus Depth (Sand Bottom)
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Figure 10. Monthly and Annual Mean Sound Speed comparison for Sand Bottom for all

12 months.
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B. GDEM SEASONAL VARIABILITY FOR SIGNAL EXCESS

As described earlier, the environmental effects on the performance of the
AN/SQQ-32 mine hunting sonar system is being simulated by the CASS/GRAB model.
This system is a variable depth high frequency sonar system, which allows the user to
place the sonar at various positions in the water column to optimize the detection of
either Moored or Bottom mines (Figure 10). In complimenting the AN/SQQ-32 mine
hunting sonar system concept, two source depths were chosen for this study. The first
source depth chosen was a depth of 25 feet, which places the source at the depth of a
moored mine positioned for the hull depth of a large war ship. This depth also places the

source within the mixed layer or surface duct to increase detection range if either are

present.

Figure 12. AN/SQQ-32 Concept.
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The second source depth chosen was 125 feet for bottom depths greater than 135
feet, 75 feet for bottom depths between 135 feet and 85 feet, 50 feet for bottom depths
between 85 and 55 feet, and no second source depth was chosen if the bottom depth was
less than 55 feet. These depths usually place the source within or below the thermocline
in order to optimize detection ranges. In addition, a moderate wind speed of 5 knots and
an intermediate receiver tilt angle of 8 ° were used as inputs for all of the CASS/GRAB

model runs in this study.

The maximum detection ranges were determined at both source depths for each
month at the four different bottom type locations. In a range dependent environment
such as the shallow waters of the Yellow Sea, the detection threshold is reverberation
limited. Reverberation from a Rock Bottom is the highest of the four bottom types,
followed by a Gravel Bottom, Sand Bottom, and Mud Bottom. Therefore, maximum

detection ranges are very dependent on bottom type and bottom depths.

The maximum detection ranges for Region 1 were relatively short due to the high
level of bottom reverberation generated by the Rock Bottom (Figure 13). The maximum
detection ranges for a source depth of 25 feet and a target at a depth of 26 feet were
approximately 160 yards for the months of January, February, March, and December, and
were approximately 120 yards for the remaining months. The reduction in the detection
ranges can be attributed to the shifting of sound propagation towards the sea bottom by
the ther_mocline present during those months, thus causing a decrease in the sound
propagating in the upper water column and an increase in reverberation from the sea

bottom. There were no detections for any of the months for a target located on the
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bottom due to the high level of reverberation and possibly the relatively large distance

between the source and the ocean bottom (Figure 14 and 15).
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Figure 13. Monthly maximum detection ranges for a Rock Bottom at two source and
target depths.

There were no detections for any of the months for a target at a depth of 26 feet
and a source depth of 125 feet. This is due to placing the source further away from a
target in the upper water column and placing it closer to the sea floor thus generating a
higher level of bottom reverberation. The maximum detection ranges for a target on the
bottom and a source depth of 125 feet were approximately 55 yards for the months of
January, February, March, April, and December, and approximately 35 yards for the
remaining months. The decrease in the detection ranges from May through November is
due to the source situated under the main thermocline, ce}using the sound propagation to
be trapped between the main thermocline and thé bottom, thus generating a high level of

reverberation from the sea floor (Figure 16-17).
40




SOUND SPEED (KNM/S)
1.4401.46851.49501.5151.5400.00

Ray Trace +/-5 degrees by 1 degreco

RANGE (KYD)
0.25 o.80 0.75

4

Nale]

as 85

110 110

135 135
~ ~
[ F
L 180 L 1eo
4 ~w
I 18s I 1es
F F
L =10 L 210
u u
Q =as 0 =2as
280 280
288 285
a310 2310
2335 2335
3B0o 380
a385 28S
410 410
0.00 o.25
10
E
35
8o
as
110
135
~
b
L teso
w
I 185 =
b
L 210 E
L .. E
N 23s

20 £
285 3

a.

RANGE (KYD)
0.50 0.75 1.00

b.
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25 ft. a. Ray Trace and b. Signal Excess Contour.
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Figure 17. August GDEM for a Rock Bottom at 37.5 N 123.0 E and a Source Depth =
125 ft. a. Ray Trace and b. Signal Excess Contour.
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The maximum detection ranges for Region 2 were also relatively short due to the
high level of bottom reverberation generated by the Gravel Bottom (Figure 20). The
maximum detection ranges for a source depth of 25 feet and a target depth of 26 feet
were approximately 250 yards for the months of January, February, March, October,
November, and December, approximately 150 yards for the months of April, May, and
June, and approximately 225 yards for the months of August and September. An
interesting feature can be seen for the month of July, which has a detection range of over
1000 yards. This dramatic increase in the detection range can be attributed to the large
negative gradient of the thermocline which focuses the sound propagation towards a point -
in the sea bottom producing a Bottom Bounce that forms a caustic at the convergence
zone (Figure 18-20). As before, the decreases in detection ranges during some of the
spring and summer months are attributed to the thermocline. Again, there were no
detections for any of the months for a target located on the bottom due to the high level of
reverberation and the relatively large distance between the source and the ocean bottom
(Figure 21 and 22). The maximum detection ranges for a target at a depth of 26 feet and
a source depth of 125 feet were approximately 80 yards for the months of January,
February, March, and December, and approximately 120 yards for the remaining months.
Again, these very small detection ranges can be contributed to the higher level of
reverberation the receiver is exposed to by lowering it closer to the bottom ocean bottom.
In this scenario, the increase in the detecﬁon ranges for the months of April through
November may be attributed to the thermocline shifting sound propagation into the sea
bottom and generating a bottom bounce, thus directing sound propagation towards the

target in the upper water column. There were no detections for a target at the bottom for
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source depth of 125 feet. This may be due to the water depth at this location being

deeper than in Region 1 by 20 meters, thus causing the receiver to be to far away from a

bottom target to detect through the strong bottom reverberation (Figure 23 and 24).
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Caustic formed by Down Bending cuased |r=y Trace +/-5 depree= by 1 degres

by strong Thermocline gradient
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Figure 20. July GDEM for a Gravel Bottom at 38.5 N 123.0 E and a Source Depth

ft. a. Ray Trace and b. Signal Excess Contour.
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Figure 21. February GDEM for a Gravel Bottom at 38.5 N 123.0 E and a Source Depth =
25 ft. a. Ray Trace and b. Signal Excess Contour.
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Ray Trace +/-5 degrees by 1 degras
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Figure 22. June GDEM for a Gravel Bottom at 38.5 N 123.0 E and a Source Depth 25
ft. a. Ray Trace and b. Signal Excess Contour.
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Ray Truce +/-5 degress by 1 degrew
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Figure 23. February GDEM for a Gravel Bottom at 38.5 N 123.0 E and a Source Depth =

125 ft. a. Ray Trace and b. Signal Excess Contour.
