
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2011-12

Implementation of autonomous navigation and

mapping using a laser line scanner on a tactical

unmanned aerial vehicle

Ardhaoui, Mejdi Ben.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/10728

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

IMPLEMENTATION OF AUTONOMOUS NAVIGATION
AND MAPPING USING A LASER LINE SCANNER ON A

TACTICAL UNMANNED AERIAL VEHICLE

by

Mejdi Ben Ardhaoui

December 2011

Thesis Advisor: Timothy H. Chung
Second Reader: Duane Davis

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

OMB No. 0704–0188 REPORT DOCUMENTATION PAGE Form Approved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
16–12–2011 Master’s Thesis
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Implementation of Autonomous Navigation and Mapping using a Laser
Line Scanner on a Tactical Unmanned Aerial Vehicle

6. AUTHOR(S)

Mejdi Ben Ardhaoui

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Postgraduate School
Monterey, CA 93943

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Department of the Navy 11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol number. NA.
14. ABSTRACT

The objective of this thesis is to investigate greater levels of autonomy in unmanned vehicles. This is accomplished by
reviewing past literature about the developing of components of software architecture that are necessary for unmanned systems
to achieve greater autonomy.
The thesis presents implementation studies of existing sensor-based robotic navigation and mapping algorithms in both
software and hardware, including a laser range finder, on a quadrotor unmanned aerial vehicle platform for real-time obstacle
detection and avoidance.
This effort is intended to lay the groundwork to begin critical evaluation of the strengths and weaknesses of the MOOS-IVP
autonomy architecture and provide insight into what is necessary to achieve greater levels of intelligent autonomy in current
and future unmanned systems.
15. SUBJECT TERMS

Artificial Intelligence, Obstacle Avoidance, Potential Field, Occupancy Grid, Quadrotor, MOOS-IvP

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF

PAGES
19b. TELEPHONE NUMBER (include area code)

Unclassified Unclassified Unclassified UU 85

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
i Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF AUTONOMOUS NAVIGATION AND MAPPING USING A
LASER LINE SCANNER ON A TACTICAL UNMANNED AERIAL VEHICLE

Mejdi Ben Ardhaoui
Captain, Tunisian Army

B.S. Management, Tunisian Military Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2011

Author: Mejdi Ben Ardhaoui

Approved by: Timothy H. Chung
Thesis Advisor

Duane Davis
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The objective of this thesis is to investigate greater levels of autonomy in unmanned vehicles.
This is accomplished by reviewing past literature about the developing of components of soft-
ware architecture that are necessary for unmanned systems to achieve greater autonomy.
The thesis presents implementation studies of existing sensor-based robotic navigation and map-
ping algorithms in both software and hardware, including a laser range finder, on a quadrotor
unmanned aerial vehicle platform for real-time obstacle detection and avoidance.
This effort is intended to lay the groundwork to begin critical evaluation of the strengths and
weaknesses of the MOOS-IVP autonomy architecture and provide insight into what is necessary
to achieve greater levels of intelligent autonomy in current and future unmanned systems.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

1.1 Introduction . . 1
1.2 Background . 3
1.3 Outline of Thesis . 7

2 Formulation 9

2.1 Mission Description 9

2.2 Mapping Using Occupancy Grids . 10
2.3 Potential Field Navigation 14

3 Hardware Experiments 17

3.1 Equipment 17
3.2 Software . . 24

4 Design, Analysis, and Results 27

4.1 Methods 27
4.2 Simulation Results . 30
4.3 Physical Robot Tests . 33

5 Conclusions 41

5.1 Discussions . 41
5.2 Future Work . 42

References 43

Appendices 47

A C++ CODE for the LASER 47

vii

A.1 Modified C++ code for the Hokuyo LIDAR Sensor 47
A.2 Script for Capturing Laser Data. . 49

B MATLAB Code (Occupancy Grid) 51

C MATLAB Code (Potential Field) 59

Initial Distribution List 69

viii

List of Figures

Figure 1.1 Conventional UAV . 5

Figure 1.2 Non-Conventional UAV . 6

Figure 2.1 NPS Center for Autonomous Vehicle Research (CAVR) 9

Figure 2.2 The regions of space observed by an ultrasonic sensor. From: [19] . . . 10

Figure 2.3 Obstacle Represented in a Grid . 11

Figure 3.1 Quadrotor Architecture . 17

Figure 3.2 Quadrotor’s motions description. From: [24] 18

Figure 3.3 Hokuyo URG-04LX. From: [26] . 19

Figure 3.4 Sample Data Representation . 20

Figure 3.5 How to read Data from Hokuyo . 21

Figure 3.6 The Xbee RF module used in this project [27]. 22

Figure 3.7 Ubisense. From [28] . 23

Figure 3.8 A Typical MOOS Communication Setup proposed by Paul Newman [30] 24

Figure 3.9 MOOS Communication Setup Needed for the Project 25

Figure 4.1 Proposed hardware and software architecture 28

Figure 4.2 Real Data From Sensors . 30

Figure 4.3 Real Data From Sensors . 31

Figure 4.4 Obstacle Detection . 31

ix

Figure 4.5 Updating Grid Probability . 32

Figure 4.6 Path and Map Generated by the Potential Field Functions 32

Figure 4.7 Definition of parameters for transformations between rotated coordinate
frames. 33

Figure 4.8 Coordinate transformation of laser scan points for different robot heading
angles. 34

Figure 4.9 Coordinate transformation from local to global coordinates for the spe-
cial case of a robot located at (xR,yR) = (posn(1),posn(2)) with heading
θ = π

2 . 35

Figure 4.10 Map Building and Potential Field Process Flowchart 36

Figure 4.11 A typical configuration block for iMatlab 37

Figure 4.12 Proposed configuration for MOOSDB integrating navigation and map-
ping algorithms . 38

Figure 4.13 Illustration of the pitfalls of local minima in potential fields 39

x

List of Tables

Table 3.1 Ascending Technologies Pelican quadrotor specifications [25] 19

Table 3.2 Hokuyo URG-04LX Lase specifications [26] 20

Table 3.3 XBee-PRO Serial RF (802.15.4) module – Technical Specifications [27] 23

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgements

I would like to thank my advisor Timothy Chung for his time and patience as I worked through
this thesis. His guidance and insights were invaluable. I would also like to thank Duane Davis
who greatly helped me with fixing my code.

Also I would like to express my sincere appreciation to Aurelio Monarrez who helped me
working with the quadrotor platform.

Most of all I need to thank my Daughters, Sayma and Eya, whose love and support made this
possible.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:

Introduction

1.1 Introduction
In this thesis work we are interested in implementing and demonstrating appropriate path-
planning and obstacle-avoidance algorithms using a unmanned aerial vehicle (UAV) platform
in order to accomplish a simple military-type scenario. The UAV is tasked with a mission to
autonomously transit from a known launch site to a given target location. Onboard sensors
play the most important role in providing mission-environment information to avoid obstacles
encountered during the mission.

The platform of interest is the quadrotor UAV, which is a rotorcraft equipped with four powered
rotors laid up symmetrically around its center. Quadrotors are considered an ideal solution for
many tactical applications. Because of the low platform footprint and weight, relatively simple
mechanical design and control, hover capability and slow speeds, this platform became very
popular to fit several applications needed for both military and civilian missions, especially for
surveillance and indoor navigation.

UAVs in general have gained popularity for surveillance and reconnaissance missions to provide
situational awareness to ground-based military units and to use onboard sensors to identify or
intercept objects which represent a threat to the safety of military and civilian personnel. The
majority of UAVs are controlled by human operators from ground control stations (GCSs) using
radio frequency (RF). Moreover, UAVs also have the capability to provide precise and real-
time information to an on-scene operator with high resolution images from cameras and other
capable sensors. This can help inform a commander in making appropriate safety decisions for
his unit.

1.1.1 Motivation
During the last several years, the Tunisian Army has identified border security as a high prior-
ity. The diverse terrain features of the western border separating Tunisia and Algeria, for ex-
ample, significantly increase the difficulty of conducting patrolling missions using conventional
approaches. Nowadays, borders are physically protected by mounted and dismounted border
patrol agents, which presents both a strain on limited resources as well as a risk to personnel.

1

Despite the large presence of national agents, we still fear that terrorists, drug smugglers, and
arms dealers can exploit existing gaps and vulnerabilities of the borders. For example, in 2007,
Tunisia announced that it had killed twelve and captured fifteen Islamic extremists, six of whom
had arrived from Algeria [1].

The desire to use UAVs is fueled by the need to increase situational awareness and remote
sensing capabilities for such border protection missions. UAVs have attracted major defense
and security research interest during the last decade. When there is a need to acquire aerial
surveillance and intelligence in challenging environments, such as dense forests, tunnels or
caves, or when the situation makes using a manned aircraft impractical, UAVs presently are the
best solution for keeping human life and expensive aircraft out of risk. UAVs, equipped with
a camera and additional sensors for navigation, can be hastily deployed to gather information,
especially where signals from satellites are either unavailable (e.g., area is not covered or cost
is prohibitive) or unusable due to low signal strength.

In this thesis, we hope to develop a better understanding of the new techniques used in surveil-
lance and reconnaissance. UAVs offer major advantages over traditional methods, not only in
terms of performance, but also increasingly because of their lower relative cost. UAVs have
been used by many countries, and it has been shown that they can provide more precise infor-
mation than other stand-off intelligence sources. In war, most decisions are made in a short
frame of time. The accuracy of information gathered is very important in decision making. No
one wants to kill innocent people because of lack of information, while on the other hand, no
one wants to take the risk of bypassing an opportunity to stop an enemy.

1.1.2 Research Questions
As can be seen from various reported experiments, onboard sensors represent the quadrotor’s
source for information gathered from the environment. The quadrotor needs this information
to navigate and perform its mission. The first question one must ask is: what are the minimum
quality requirements that one must impose on sensors to obtain an accurate navigation system?

We must also consider cost. If UAVs are believed to be useful for border security, what are the
potential cost implications of UAVs for future Ministry of Defense budgets?

The last question concerns the feasibility of using different autonomy software architectures.
This research evaluates the MOOS-IvP architecture, and attempts to determine if this archi-
tecture provides the best solution for developing and implementing the algorithms needed for

2

navigation and control.

Questions 1 and 2 will be answered in Chapter 3. Question 3 is addressed in the experiments
with results presented in Chapter 4, and the answer will be discussed in Chapter 5.

1.2 Background
1.2.1 Related Work
Signficant work has been done developing various control methodologies for the quadrotor
aerial robotic platform. A research group at Stanford University, the Stanford Testbed of Au-
tonomous Rotorcraft for Multi Agent Control (STARMAC), is using a quadrotor to study new
multi-agent algorithms to avoid collision and obstacles. Others, including Hanford et al. [2],
have tried to build low-cost experimental testbeds that use quadrotors for a variety of research
interests.

Numerous efforts have investigated control of quadrotor platforms, ranging from simple tra-
jectories to dynamically challenging acrobatic maneuvers, using various control methodolo-
gies. For example, Bouabdallah et al. [3] compared the stability performance of quadrotors
for proportional-integral-derivative (PID) and linear quadratic (LQ) techniques. Chen et al. [4]
derived combined model-based predictive controllers for quadrotors, one based on a lineariza-
tion feedback controller concept and the other based on the back-stepping controller. Johnson
and DeBitetto [5] present a guidance system which generates position, heading, and velocity
commands based on the current state of the UAV, as reported by the navigation system and a
waypoint list. The guidance system commands a straight-line course between waypoints.

Higher level autonomy for unmanned systems is also an active area of research for aerial plat-
forms, although much of the previous works focus on helicopter-based platforms. Koo and his
colleagues [6, 7] developed a hierarchical hybrid control structure to govern a UAV in its mis-
sion to search for, investigate, and locate objects in an unknown environment. The hierarchical
architecture consists of four layers: the strategic, tactical, and trajectory planners, as well as the
regulation layer. The strategic planner coordinates missions with cooperating UAVs and creates
a sequence of waypoints for the tactical planner. The tactical planner can land, search an area,
approach a waypoint, avoid collision, and inspect objects on the ground. Additionally, it over-
rules the strategic planner for safety reasons. The trajectory planner decomposes commanded
behavior into a sequence of primitive maneuvers, guarantees safe and smooth transitions, and
assigns an appropriate sequence of height commands to the regulation layer to execute.

3

Kottmann [8] designed a trajectory generator which converts flight maneuvers on an abstract
level into waypoints that must be contained in the trajectory. In a further step of refinement,
the generator splits the routes between waypoints into several segments of constant velocity
or constant acceleration. After this, the ground station uploads the segments to the helicopter
onboard system for execution.

Lai et al. [9] present a hierarchical flight control system containing three tiers: the navigation,
path, and stabilizing layers. The navigation manager controls the mission and commands a
series of locations to the path controller. When the path controller reaches a location, it switches
its destination to the next location. The stabilizing controller applies the nominal values from
the path controller for both attitude and height to the helicopter.

Kim et al. [10, 11] designed a hierarchical flight control system which allows a group of UAVs
and Unmanned Ground Vehicles (UGVs) to cooperate. The flight management system em-
ploys three strategy planners to solve specific missions. The first strategy planner implements
the simple waypoint navigation of a predefined course. The second strategy planner operates
a pursuit-evasion game where pursuers capture evaders in a given grid field. The third strat-
egy planner executes flight-speed position tracking, where an UAV pursues a moving ground
vehicle.

Williams [12] developed his own open source project called Vicacopter, incorporating two ways
of autonomous control: waypoint following and programmable missions. For waypoint follow-
ing, the ground station uploads a sequence of waypoints to the helicopter. After the helicopter
reaches a location, it heads for the next location. For programmable missions, the ground station
uploads a series of control commands to the helicopter for execution.

The MOOS-IVP portion of this work expands previous work done in Unmanned Underwater
Vehicles (UUVs). In their seminal paper entitled Nested Autonomy with MOOS-IvP for Interac-

tive Ocean Observatories, Michael Benjamin and his co-authors describe the relation between
the MOOSDB (Mission Oriented Operating Suite-Database) and the behavior-based autonomy
system which implemented by the IVP Helm (Interval Programming) [13].

1.2.2 Different Type of Quadrotors
The first quadrotor vehicle was built in 1907 by two French scientists [14]. The challenge was
to make the machine lift itself off the ground using its own power and pilot itself.

4

In 1920, Eienne Oemichen built a quadrotor machine with eight additional rotors for control
and propulsion. To offset the overweight, he used a hydrogen balloon to provide additional lift
and stability. In 1924 he made a successful flight without the balloon [14].

Conventional UAVs
Conventional UAVs are the most used in military missions, some of which are illustrated in
Figure 1.1. These unmanned systems have been used in many missions lately, and have demon-
strated that they can be very reliable and more efficient than other manned aircraft.

Quadrotors

Fixed-wing

Rotor and Tail Boom

Figure 1.1: Conventional UAV

5

Non-Conventional UAVs

Even though non-conventional UAV systems are not used in current military contexts, they still
have a role to play in many current scientific research efforts. Their low speed compared to
conventional UAV represent an handicap for any military mission, however, nano-UAV’s have
the potential to be useful in spying missions.

iSTAR UAV: Ducted Fan

Non-Conventional UAVs : Airship

Insects-size: nano –UAV

Figure 1.2: Non-Conventional UAV

6

1.2.3 Why The Quadrotor?
As previously mentioned, the usefulness of unmanned vehicles stems from the ability to avoid
placing human life in dangerous situations. Modern UAVs are controlled by both autopilots and
human controllers in ground stations. These characteristics allow them to fly either under their
own control or to be remotely operated. Rotor-wing aircraft grant some major advantages over
fixed-wing aircraft because of their ability to be launched without requiring a runway and also
their ability to hover in a given place. A recent result reported in [15] is a 13.6 cm helicopter
capable of hovering for three minutes, demonstrating the miniaturization of unmanned aerial
vehicles. Compared to fixed-wing aircraft, the quadrotor can be commanded to go anywhere
and examine targets in unlimited detail. That is why this kind of UAV is considered ideal for
many information gathering applications in military contexts.

The primary concession of quadrotors is their relatively short endurance. Operational time is
restricted to less than half an hour and, because of payload limitations, the option to mount
a spare power supply is not available. Although the simplicity of the mechanical design is
considered to be an advantage, especially for maintenance, it has a drawback in terms of on-
station time and mission duration.

1.2.4 Contribution
This thesis adds to work done previously in developing obstacle avoidance and map-building
algorithms using MOOS-IvP modules. MOOS-IvP is an open source software architecture for
autonomous systems that has been used by many students conducting research with unmanned
underwater vehicles [13]. Development of algorithms for application to different UAV plat-
forms leveraging existing controller and/or driver software will enhance the usability of these
unmanned systems.

1.3 Outline of Thesis
The thesis consists of five chapters. The first chapter covers the main idea behind this thesis,
the purpose of the study, and background information about UAVs and their use. In the second
chapter, a description of the goal is given, and then an overview of obstacle avoidance and how
to model map building using grid occupancy is also discussed. In Chapter III, an overview of
the hardware used for this project is described in detail, and an introduction to MOOS-IvP and
its tools is presented.

The fourth chapter covers details on design of the experiments, the results obtained from both

7

simulation and real-world implementations, and techniques used to perform the task. An algo-
rithm for obstacles avoidance and map building is proposed. The last chapter summarizes the
results, pointing out possible future work.

8

CHAPTER 2:

Formulation

2.1 Mission Description
There are several well known approaches for obstacle avoidance and path planning. Most of
the proposed techniques are suitable for outdoor operation, while only a few of them have
been designed for indoor environments. For our project, we are more interested in developing
algorithms for autonomously flying a quadrotor inside the Naval Postgraduate School’s Center
for Autonomous Systems (Figure 2.1). This will be done by adapting techniques which have
been successfully tested on Underwater Unmanned Vehicles.

Figure 2.1: NPS Center for Autonomous Vehicle Research (CAVR)

Obstacle avoidance, which refers to the methodologies of shaping the robot’s path to overcome
unexpected obstacles, is one of the most challenging issues to the successful application of robot
systems.

To avoid obstacles during a given mission, we first need to know where these obstacles are
located, and we then avoid them by combining sensorial data and motion control strategies. A

9

common strategy used for such problems is to build a map of the robot’s environment using
an Occupancy Grid algorithm, and then apply a potential field technique to drive the quadrotor
from a starting point to the goal. These two approaches will be discussed in the following
sections.

2.2 Mapping Using Occupancy Grids
2.2.1 Basic Sensor Model
The occupancy grid known as Evidence Grid-Based Map building was introduced by Moravec
and Elfes [16], [17]. A two dimensional grid is so far the most used in the field of mobile
robotics, and each square of the grid is called a cell. Each individual cell represents the status
of the working space, which can either be empty or occupied by the obstacle. Such maps are
very useful for robotic applications. Robots need to know their environment in order to perform
a specific task, such as navigation, path planning, localization and collision avoidance [18].

For a given range-finding sensor, such as a laser line scanner, with maximum range R and
sensor beam half-width β , the model can be decomposed into a number of sectors labeled I-IV,
as illustrated in Figure 2.2 and presented by [19]. .

Figure 2.2: The regions of space observed by an ultrasonic sensor. From: [19]

A model for the occupancy of cells in a grid is Region I is the region associated with the laser
reading. Region II represents an empty area where nothing is detected by the range reading.
Region III is the area covered by the laser beam, but remain unknown whether it is occupied

10

or not because of the occlusion described in chapter IV. Finally, Region IV is outside the beam
area and does not represent any interest.

For a given measurement reading a range of s, the given sensor model provides probabilistic
expressions for reasoning about the occupancy of each cell in the occupancy map. As illustrated
in Figure 2.3, the relevant parameters for reasoning about the highlighted (black outlined) cell
include r, which is the distance of the grid element from the sensor location, and α , the angle
of the grid element relative to the sensor center beam.

Figure 2.3: Obstacle Represented in a Grid

For a measurement s that fall in region I, the likelihood that the measurement was due to an
actual obstacle present at that range and its complement can be computed by:

P(s|Occupied) =
(R−r

R)+(β−α

β
)β

2
∗Maxoccupied

P(s|Empty) = 1−P(s|Occupied)

where Maxoccupied is due to the assumption that a reading of “Occupied” is never completely
reliable [19].

Similarly, for a range measurement in region II, the probabilities can be computed according to

11

the model:

P(s|Empty) =
(R−r

R)+(β−α

β
)β

2
P(s|Occupied) = 1−P(s|Empty)

Because of the occlusion, we assume that the probability of occupancy in region III is 50%
occupied and 50% unoccupied. Region IV is not of interest.

2.2.2 Theoretical Review of Bayesian Rules
Let H = {Occupied,Empty} be a binary random variable. The probability of H is 0 <=

P(H) <= 1. If P(H) is known, its complement, P(notH), also denoted P(¬H), can be com-
puted simply by P(¬H) = 1−P(H).

These probabilities only provide us with prior information, and they are assumed independent
from the sensor reading. For the robot we need a function to compute the probability of elements
in the map (i.e., at location [i][j] in the grid) based on the sensor reading(s) and whether the
state of this element is either “Occupied” or “Empty.” Then we can compute P(H|s), which
represents the probability that the hypothesis (either “Occupied” or “Empty”) given a particular
sensor reading(s).

Note, however, the sensor model provides only the likelihood probability P(s|H). To derive the
posterior probability P(H|s), we use Bayes’ rule [20]. As a review, if we consider A and B as
two events, such that P(A)> 0 and P(B)> 0, then P(A|B) is the conditional probability of event
A given event B, such that:

P(A|B) = P(A
⋂

B)
P(B)

(2.1)

where P(A
⋂

B) is the probability of intersection set of A and B, also known as the joint proba-
bility of A and B.

From Equation 2.1 we can write:

P(A
⋂

B) = P(A|B)P(B) = P(B|A)P(A)

12

The law of total probability is given by :

P(A) = ∑
i∈I

P(Bi)P(A|Bi) (2.2)

where P(Bi)> 0, and Bi∩B j = /0 for (i 6= j, i, j ∈ I ⊆ {1,2,3, ...,n}), where n is the cardinality
of set I.

Recalling the set union identity, A=
⋃

i∈I(A∪B), the total probability (Equation 2.2) generalized
from the equations above can be expressed as:

P(B j|A) =
P(A|B j)P(B j)

∑i∈I P(Bi)P(A|Bi)
(2.3)

where P(Bi|A) is called the posterior probability, P(A|B j) is called the likelihood, and P(B j) is
the prior probability. The denominator term, ∑i∈I P(Bi)P(A|Bi) is also given a name, namely
the evidence.

Thus, it is now possible to compute the posterior probability, that is, P(H|s), using the sensor
likelihood probability, P(s|H), via Bayes’ rule:

P(H|s) = P(s|H)P(H)

P(H)P(s|H)+P(¬H)P(s|¬H)

For example, if the hypothesis H in question is “Occupied,” the above expression becomes:

P(Occupied|s) = P(s|Occupied)P(Occupied)
P(Occupied)P(s|Occupied)+P(Empty)P(s|Empty)

.

2.2.3 Updating the Occupancy Map with Bayes’ Rule

Initially, all the grid map cells have to be initialized with a probability of 0.5 to reflect un-
certainty in occupancy of the cells. When we get an observation from the sensor, the new
probabilities are computed according to Bayes’ Rule, and the prior probability P(H) is replaced
with the new posterior probability value. Values above 0.5 indicate that cells are probably oc-
cupied; otherwise cells are probably empty. Every time the sensor platform moves, the grid
cells within the occupancy map are continuously updated with values computed using the new
measurements from the sensor.

13

Even though the Bayesian update approach is considered to be more accurate than perhaps its
more naı̈ve binary sensor models, the computational cost for map building is very high, which
is worsened by a higher frequency of updating [21]. To avoid such problem, it is recommended
not to do the computation on the onboard PC.

2.3 Potential Field Navigation

2.3.1 General structure
The artificial potential fields for a robot were first proposed by Khatib [22] and has been studied
extensively since its inception. In this formulation where the mobile robot seeks to navigate to
a goal location, the robot is considered a particle in the configuration space which is subjected
to an artificial potential field U(qqq), where qqq is the (vector) state of the robot (typically, for a
mobile point robot in the plane, qqq = (x,y)T). At each iteration, the artificial force F(qqq) induced
by the potential field indicates the most promising direction. The following equations follow
the notation and construction presented in [23].

The potential field is defined as the sum of an attractive potential Uatt pushing the robot toward
the goal and a repulsive potential Urep pushing the robot away from obstacles.

U(qqq) =Uatt(qqq)+Urep(qqq). (2.4)

Consider the force vector experienced by the particle to be the negative gradient (i.e., direction
of steepest descent) of the potential field.

FFF(q) =−∇∇∇U(q) = −∇∇∇Uatt−∇∇∇Urep

=

(
∂U
∂x

,
∂U
∂y

)T
∣∣∣∣∣
qqq

, for q ∈ R2,

where ∇∇∇U is the gradient vector of U evaluated at the robot position. Equivalently, the force is
defined as the sum of the two attractive and repulsive force vectors, Fatt and Frep, respectively,
i.e.,

FFF(qqq) = FFFatt(qqq)+FFFrep(qqq). (2.5)

14

2.3.2 Attractive Potential Field

The attractive field may be simply defined as a parabolic form:

Uatt(q) =
1
2

ζ ρ
2goal(q) (2.6)

with ζ a positive scalar and ρ goal(qqq) is the distance from qqq to goal.

The function Uatt is assumed nonnegative and reaches its minimum at qqqgoal where ∇∇∇Uatt(qqqgoal)=

0. Since FFFatt is differentiable everywhere in the configuration space, the attractive force can be
defined as the following:

FFFatt(qqq) =−∇∇∇Uatt(q) =−ζ ρgoal(q)∇∇∇ρgoal(q) =−ζ (qqq−qqqgoal)

Another possible form of Uatt is conical:

Uatt(q) = ζ ρgoal(q) (2.7)

In this case, we will have then a force of type:

Uatt(q) =−ζ5ρgoal(q) =−ζ
q−qgoal
‖q−qgoal‖

(2.8)

The advantage of the conical shape is that the force is constant on the space configuration.
Moreover, it does not tend to infinity when the robot moves away from the goal. However, it is
not null at the goal location, qqqgoal .

The most commonly used form of potential field function proposed by Khatib, which is known
by the gradient form, is defined as the following:

Uatt(qqq) =
1
2

ζ d2 (2.9)

where d = |qqq−qqqatt |. Recall that qqq is the current position of the robot, qqqatt is the position of
an attraction point (e.g., the goal), and ζ is an adjustable scaling constant. The corresponding
force function is :

FFFatt(qqq) =−∇∇∇Uatt =−ζ (qqq−qqq0) (2.10)

15

2.3.3 Repulsive Potential Field
The repulsive potential is used to create a potential boundary around obstacles that cannot be
crossed by the robot. In addition, we do not want this potential to affect the movement of the
robot when it is sufficiently far from the obstacles. We denote d = |qqq−qqq0| to represent the
distance between the robot and the obstacle in question. The formula proposed by Khatib is
given:

Urep(q) =

{
1
2η(1

d −
1
d0
)2 if d < d0,

0 if d > d0,

where qqq is the robot position and qqq0 is the obstacle position. Recall that d0 is the influence
distance of the force, and η is an adjustable constant.

So then we have the corresponding repulsive force function:

FFFrep(qqq) =

{
η

(
1
d −

1
d0

)
(qqq−qqq0)

d3 if d < d0,

0 if d > d0,

2.3.4 Path Planning
After defining the potential forces, it is sufficient to perform gradient descent to reach the goal.
The gradient descent consists simply of following the direction indicated by the force F, by
moving in this direction with one step of lenght δi. For example, with q=(x,y), we have:

x(qi+1) = x(qi)+δi
∂U

∂x(x,y)
(2.11)

y(qi+1) = y(qi)+δi
∂U

∂y(x,y)
(2.12)

If we have a path to the goal, when we reach a distance less than δi from the qgoal , the algorithm
should stop and return ”goal reached.”

16

CHAPTER 3:

Hardware Experiments

3.1 Equipment
3.1.1 Quadrotor
The following picture shows the prototype UAV control system developed in this thesis.

Figure 3.1: Quadrotor Architecture

In this project, we use the commercially available Ascending Technology Pelican quadrotor.
The Pelican consists of a well-modeled platform with four rotors. In order to eliminate the need
for a tail rotor, like in standard helicopter structure, the rotors were designed to rotate in a cross
configuration. In other words, the front and rear rotors rotate counter-clockwise, while the left
and the right ones rotate clockwise, as shown in Figure 3.2. Moreover, to give more stability to
the quadrotor, the rotors have fixed-pitch blades and their air flows are oriented downwards. The
quadrotor was chosen because it is considerably easier to manage than conventional helicopters.
Another advantage of using quadrotor design is that they are typically motorized by batteries

17

instead of a gas engine, which is convenient for certain missions where noise caused by the
engine can decrease the chances of surprising the enemy. However, as a drawback, batteries
allow shorter flying time. Nevertheless, the quadrotors are petite in size, can be used for indoors
experiments, and are a valuable research and potentially tactical platform.

Figure 3.2: Quadrotor’s motions description. From: [24]

The following paragraph describes how to compute the variables roll, pitch and yaw.

Let Vi and Ti be the torque and thrust for ith rotor, and l denotes the distance of the rotor from
the center of mass. Then the total thrust, denoted u1, is given by:

u1 = (T1 +T2 +T3 +T4) (3.1)

In addition to the total thrust, the rotation angles of roll, pitch, and yaw can also be controlled
by inputs u2, u3, and u4, respectively, using differential thrust:

• The roll angle, φ , is achieved by increasing or decreasing the left and right rotor speed
via control u2 = l(T4−T3)

• The pitch angle, θ , is provided by increasing or decreasing the front and back rotor speeds
via control u3 = l(T1−T2)

• The yaw angle, ψ , is obtained from the torque resulting from the subtraction of the
counter-clockwise (front and back) from the clockwise (left and right) speeds, i.e., with
control input u4 = (u3 +u4−u1−u2).

Table 3.1 summarizes some global characteristics of the Pelican platform.

18

Flight Performance General and Technical Data
Cruise speed 36 km/h Sensor board (platform) AutoPilot V2
Max. speed 50 km/h Dimensions 50cm×50cm×20cm
Max. wind speed 36 km/h Weight of vehicle (ready to fly) 750 g
Usual operating altitude 50 m Number of propellers 4
Max. payload(g) 500g Propeller size 10 in
Max. flight time 25 min Max flight time at max payload 12-15 min
Launch Type VTOL LiPo Battery voltage, capacity 11.1 V (6000 mAh)
GPS, Compass Included Programmable processor Included
Safe landing mode include Serial port interface Included

Table 3.1: Ascending Technologies Pelican quadrotor specifications [25]

3.1.2 Laser Scanner

Figure 3.3: Hokuyo URG-04LX. From: [26]

For path planning and obstacle detection within an unknown working space, laser scanners
are a commonly used solution for mobile robotic applications. Most previous work in the
robots field has been done with laser scanners, including those manufactured by Hokuyo. The
Hokuyo lasers are relatively expensive compared to other sensors, but given their weight, power,
resolution, and integration benefits, these small sensors are significantly easier to connect and
to mount on the quadrotor platform.

For this work, a Hokuyo URG-04LX unit is used for area scanning. The light source of the
sensor is an infrared laser of wavelength 785nm with a Class 1 laser safety rating. The scan
area is a 240o field of view with maximum sensing range of 4m. The resolution of the scanner
is 360o/1024 ticks which is approximately 0.36o such that the total number of scan points is
683. Therefore, if we multiply the number of intervals (683-1) by the angular resolution (0.36o)
we get 240o. Table 3.2 summarizes some general characteristics of the URG-04LX.

19

Specifications
Voltage 5.0 V ± 5 %
Current 0.5 A (Rush current 0.8 A)
Detection Range 0.02 m to approximately 4 m
Laser wavelength 785 nm, Class 1
Scan angle 240o

Scan time 100 ms/scan (10.0 Hz)
Resolution 1 mm
Weight 141 gm (5.0 oz)
Interface USB 2.0, RS232
Angular Resolution 0.36o

Table 3.2: Hokuyo URG-04LX Lase specifications [26]

The URG-04LX laser scanner comes with a library of software written in C and C++ that
provide the ability to communicate and capture data from the sensor. For this thesis, the source
code was modified to suit the logging and analysis needs of this project, and can be found in
Appendix A.

The following picture shows sample data that was captured in the Autonomous Systems Lab.

0 0 0 2.789 2.789 2.789 0 0 0 0 3.524 3.524

Scan point

1

Scan point
N

Min Angle
-90

Max Angle
+90

Angular resolution

Figure 3.4: Sample Data Representation

Caption:

• 0 is max range.

• non zero (e.g., 2.789) means obstacle at range in meters.

• N is total number of scan points.

The data returned from the laser range finding sensor consists of an array of tuples whose
elements are beam intensity values and range values for a single scan. These scans occur at a

20

frequency of 10 Hz. Also, for a given beam, if no obstacle is detected within the maximum
sensor range, that scan point is given a value of zero, which can be used for filtering the data
during processing. During each of these scans, the UAV position must also be recorded to
recover and register the location of obstacles in the global coordinate frame versus the local
(body-fixed) relative coordinate frame. With a known UAV pose (i.e., position and orientation)
and the laser scan data, a digital surface model (DSM) or terrain map can also be obtained, e.g.,
see Figure 3.5, which has been studied in previous works. Looking at the figure above, the laser
data can be transformed to the global frame using the following equations:

x = xr +ρ ∗ cos(θ)

y = yr

z = zr−ρ ∗ sin(θ)

where ρ is the distance measured by the laser scanner and θ is the angle. The robot, or UAV,
position is denoted by xr, yr, and zr. Using these relationships, a plot showing the DSM can be
obtained.

θ

ρ

4m 4m

4m

Figure 3.5: How to read Data from Hokuyo

21

3.1.3 Digi XBee Wireless RF Modules
XBee and XBee-PRO 802.15.4 OEM RF modules, illustrated in Figure 3.6 are embedded so-
lutions providing wireless end-point connectivity to devices. These modules use the IEEE
802.15.4 networking protocol for fast point-to-multipoint or peer-to-peer networking. They
are designed for high-throughput applications requiring low latency and predictable communi-
cation timing [27].

Figure 3.6: The Xbee RF module used in this project [27].

XBee are very small in size and can be used for any project where we need to interconnect
and communicate between components via wireless network. The XBee models are known to
have limited input and output pins. Moreover, the XBee units does not support analog output
or allow access to other integrated capabilities. For example, if we want to control the speed
of a motor, we need to have additional electronic components, e.g., a pulse-width modulation
breakout board.

Though this limitation prevents standalone operations for embedded systems, for the purpose
of this study, the required capability is to be able to communicate between the onboard sensor
on the quadrotor and the laptop which is running most of the code.

22

Specifications
Indoor/Urban Range Up to 300 ft. (90 m), up to 200 ft (60 m) int’l variant
Outdoor RF line-of-sight Range Up to 1 mile (1600 m), up to 2500 ft (750 m) int’l variant
Supported Network Topologies Point-to-point, Point-to-multipoint, Peer-to-peer, and Mesh
Operating Frequency Band ISM 2.4 GHz

Table 3.3: XBee-PRO Serial RF (802.15.4) module – Technical Specifications [27]

3.1.4 Ubisense Location Solution
Where GPS does not work, such as inside structures or tunnel environments, alternate methods
for obtaining robot positioning is necessary, as knowledge of the robot location (and orientation)
are essential to constructing maps and navigation within them. One technology available in the
Unmanned Systems Laboratory (see Figure 2.1) is the Ubisense system, which uses radio fre-
quency beacons and sensors to provide position information. Characterization of the Ubisense
position estimates and tracking performance is beyond the scope of this thesis, but the reader is
referred to ongoing efforts to evaluate this system for use with quadrotor and other mobile robot
platforms.

Figure 3.7: Ubisense. From [28]

Ubisense uses a Combined Angle-of-Arrival and Time-Difference-of-Arrival approach, imple-
mented in proprietary software. In order to have a higher accuracy, Ubisense gathers more
readings from each sensor (depicted in Figure 3.7) and allows for a graphical display and the
simulation of the effects of configuration changes [28]. Though not explicitly utilized in this
thesis, the Ubisense hardware may be a useful tool for providing robot localization information
in future experiments.

23

3.2 Software
The simulation of both the hardware and the algorithms necessary for navigation and mapping
was developed in MATLAB (as described further in Chapter 4), with the intention of making
use of the iMatlab interface [30] to MOOS. The implementation of the models described in
this thesis are included in the appendices1. The remainder of this section provides an overview
of the MOOS-IvP autonomy software architecture for eventual integration with the presented
models.

3.2.1 Mission Oriented Operating Suite
The Mission Oriented Operating Suite (MOOS) [29] was developed at MIT by Paul Newman in
2001. It comprises open source C++ modules that provides autonomy for a number of robotic
platforms. Originally, MOOS was developed to support operations for autonomous marine
vehicles, and its first use was for the Bluen Odyssey III vehicle owned by MIT.

The following schematic presents a typical MOOS communication configuration proposed by
Newman [29].

Figure 3.8: A Typical MOOS Communication Setup proposed by Paul Newman [30]

1The associated software can also be found online at http://faculty.nps.edu/thchung.

24

Note the module naming convention, where a module preceded by a “p” means it is a process,
and one preceded by an “i” represents that it is associated with an instrument. Because most of
the modules shown in this graph were developed to work with unmanned underwater vehicles,
we will not use them for this project.

For our project, however, MOOS is utilized to implement a set of low level functions required
for a quadrotor to fly. One advantage of MOOS is its subscription-based database system. In
other words, users can run many processes with only one message interface. Additionally,
MOOS is a modular architecture which makes it easier for programming and updating the
project by adding other pieces of code. For a multi-group project, members can work inde-
pendently without even knowing what the others are working on. Instead, additional modules
relevant to the project include software to interface with the quadrotor and laser sensor as well
as the algorithms for potential field navigation and occupancy grid-based mapping. Figure 3.9
illustrates the required modules for our navigation and mapping project.

Figure 3.9: MOOS Communication Setup Needed for the Project

Another advantage of MOOS is that the software comes with a set of mission parameters in
a standard format. This enables users to just change out settings according to their projects
without needing to rewrite every function. After we have made all the necessary changes and

25

added the new modules, MOOS can be rebuilt simply by executing the build-moos.sh script.

3.2.2 Interval Programming, IvP
Interval Programming (IvP) is a mathematical programming model for multi-objective opti-
mization [31]. In the IvP model, each objective function is a piecewise linear function. The
IvP model and algorithms are included in the IvP Helm software as the method for representing
and reconciling the output of helm behaviors. The term interval programming was inspired by
the mathematical programming models of linear programming (LP) and integer programming
(IP). The pseudo-acronym IvP was chosen simply in this spirit (and to avoid acronym clash-
ing). For more information on how to use MOOS-IvP, the reader is referred to the MOOS-IvP
documentation [31].

26

CHAPTER 4:

Design, Analysis, and Results

4.1 Methods
The broad scope of this project involved both hardware and software development, and this
thesis represents initial efforts to implement and integration the various system components.

4.1.1 Architecture Design
Because of the rapid development time frame, it was easier to prototype the implementation of
the hardware using MATLAB as a simulator and interface for the experiments instead of using
simulation from the MOOS-IvP software. MATLAB also contains common linear algebra and
image-processing functions which helped to develop test cases and evaluate results with much
less effort. With MATLAB we can quickly generate plots and visualize the simulations to help
us understand the behavior of the quadrotor in a given scenario. Using MATLAB exclusively
throughout the project, may not be recommended for operational settings, as it is a higher level
scripting language which has potential performance limitations, e.g., slow runtime speeds, and
potential hardware interface challenges.

Figure 4.1describes the designed hardware and software architecture, for which this work has
prepared the foundation. The color-coded links between boxes represents how hardware com-
ponents are going to communicate with each other and with the software modules.

27

 Wired WiFi Software

 The MOSS modules inside this box cannot be added to the Quadrotor’s software

UBsense
Receiver

GCS Quadrotor

Auto Pilote UBsense
Tx

Laser Line
Scanner

ZigBee

ZigBee

ZigBee

ZigBee

MOOS Laser
Line

MOOS
UBsense

MOOS Map
Builder

MOOS
Obstacles
Avoidance MOOS

Quadrotor

MOOS
iMarineSim

MOOS
pMarineViewer

Figure 4.1: Proposed hardware and software architecture for navigation and mapping using the laser
line scanner and the quadrotor UAV.

4.1.2 Wireless Communication Integration Tests
In order to ensure that the XBee wireless modules are working, a simple test is to send a chunk
of data from both sides of the wireless channel. If the transmitted and received data are the
same, with no extra letters or digits added, then a successful connection between the two XBee
modules has been established.

If developing in the UNIX-based environment, it is recommended that you use cutecom soft-
ware1 to communicate with the devices, as it is very straightforward and easy to use. The only
required information is the name of the device. To do that, one can simply execute the command
dmesg in a terminal window to display the name of the device to which it was attached. The

1Available at http://cutecom.sourceforge.net/

28

following illustrative message gives an idea of how to access the name of the serial port:

[###] usb 6-2: FTDI USB Serial Device converter now attached to ttyUSB0

In this case, in cutecom we should enter the device name as /dev/ttyUSB0.

If you are using Windows, we recommend using HyperTerminal. As we did in UNIX, we need
to know to which serial communications port the XBee was connected. Under “My computer,”
select “Manage” and then “Device Manager.” You should see under Ports something like “USB
Serial Port(COM4).” This means that your device was attached to port COM4. So when you
use HyperTerminal, you should choose COM4 to open the connection with the device. After
that, we need to have the same setup on both sides (i.e., Baud Rate and Parity). Before you can
send data, you must make sure that the connection between the XBees is working perfectly. We
first need to configure the hardware. Usually, the Xbees come with a software called X-CTU for
configuration. Suppose you send “VVVVVV,” but you receive “VxobVxobVxob.” This means
that there is a problem in your setup or maybe a conflict with USB’s version. After you solve
this problem, you can start sending your data to the XBee. A simple shell script (provided in
Appendix A) can be used to redirect the data from the laser to the XBee.

29

4.2 Simulation Results
4.2.1 Data Collection
To have a better understanding of the sensor’s data, it was necessary to gather large amounts of
sensor data from various situations. According to the manual for the sensor, the maximum range
that can be reached is about 4 meters, but the experiments proved that 5 meters are reachable,
especially when we use the sensors indoors. Moreover, windows represent a trap for sensors.
From a distance of three meters, sensors do not get any returns from a window. Even though
this error can be corrected at a closer distance, the results from the potential field computations
will be wrong and could result in a waste of time in navigating from a given start point to the
goal.

Figure 4.2: Real Data From Sensors

4.2.2 Occlusion
Occlusion is defined by the shape of the obstacle and the position of the sensor facing the
obstacle at that time. Occlusion can be a problem if the mission consists of not just finding
goals, but also building a real map for the environment’s mission. To solve this problem, the
sensor has to face the obstacle from all sides. Figure 4.3 gives an idea how the shapes can be
interpreted differently.

30

(a)First reading (b) real obstacle (c) real word

Figure 4.3: Real Data From Sensors

4.2.3 Occupancy Grid
The Occupancy Grid algorithm as described in Chapter II, consists of updating the probability
of occupancy every time we observe a hit from the sensor. The snapshots depicted in Figure
4.4 and Figure 4.5, taken from simulated data, show how an obstacle can be detected. This
simulation was performed in a known environment where the obstacles were plotted with values
equal to one. The MATLAB code can be found in Annex B.

Figure 4.4: Obstacle Detection

As we can see from Figure 4.4, an area of the grid darkens when an an obstacle is detected and
lightens when the observation returns a low probability of occupancy. After several runs, the
map should look like Figure 4.5.

31

Figure 4.5: Updating Grid Probability

4.2.4 Potential Field
The MATLAB picture shown in Figure 4.6 displays a potential field plot indicating, first, how
a quadrotor can react to repulsion forces generated by the obstacles and, second, how the at-
traction forces push the quadrotor toward the goal even as it avoids obstacles encountered in its
path.

Figure 4.6: Path and Map Generated by the Potential Field Functions

32

4.3 Physical Robot Tests
Most of the experiments have been done in the Autonomous System Lab. The first experiment
was conducted by driving the quadrotor using a cart. This step was very important in evaluating
the results from the map-building process. This section highlights a number of initial component
efforts in order to prepare for integrated testing.

4.3.1 Converting between Local and Global Coordinate Frames
Preliminary laser data processing tasks includes conversion from relative local coordinates (due
to range and bearing measurements) of the obstacles to global coordinates in order to ensure an
appropriately rectified map reflecting the real world.

Coordinate transformations in the plane require a rotation and translation of the robot frame
to/from the global reference frame. Consider first the case where the quadrotor is located at
(xR,yR) = (0,0), i.e., both the local and global coordinate frames overlap at the origin, but with
some heading θ , as shown in Figure 4.7 below.

M

P

r = range

θ

φ

Y

X

Y

X

Figure 4.7: Definition of parameters for transformations between rotated coordinate frames.

Given the local robot coordinate system, denoted by axes x,y (as opposed to the global frame
with axes x′,y′), a laser range finder provides a relative range and bearing measurement, namely

33

ρ and φ , respectively. The scan point (labeled point M in Figure 4.7) represents a possible
obstacle at that location.

Then, recalling the rotation, θ , between frames, the coordinates of the scan point can be repre-
sented in both local and global reference frames as:

x = ρ cos(φ) (local) ⇐⇒ x′ = ρ cos(φ −θ) (global)

y = ρ sin(φ) (local) ⇐⇒ y′ = ρ sin(φ −θ) (global)

As mentioned previously, for simplicity in modeling, assume the sensor scan spans 180o starting
at −π

2 to π

2 . Then the angle to the minimum angle, i.e., the first scan point, requires an offset of
−π

2 . The following examples show the results for different heading angles as special cases.

Figure 4.8: Coordinate transformation of laser scan points for different robot heading angles.

In the more general case where the quadrotor is located at a global position xR,yR with orien-
tation θ , the conversion between local and global coordinates must account for this translation
when computing the location of the scan point in question. In other words, the following ex-
pressions represent the appropriate transformation:

x = ρ cos(φ) (local) ⇐⇒ x′ = xR +ρ cos(φ −θ) (global)

y = ρ sin(φ) (local) ⇐⇒ y′ = yR +ρ sin(φ −θ) (global)

Figure 4.9 illustrates an example case with a heading of θ = π

2 , where again the range and
bearing to the scan point M are denoted ρ and φ .

34

Figure 4.9: Coordinate transformation from local to global coordinates for the special case of a robot
located at (xR,yR) = (posn(1),posn(2)) with heading θ = π

2 .

4.3.2 Map Building and Potential Field Process Flowchart
The graph below shows how the MATLAB scripts are executed and explains which script is
called and the order in which the scripts are called. The order of execution is very important
because, for example, if GETDATA does not work for some reason, then the whole process will
fail to execute. The scripts were not designed to catch errors and return a detailed message to
help users. We will leave this for a future work.

4.3.3 How to Call MATLAB Scripts from MOOS
This section describes the procedure for integrating algorithms, e.g., those developed in MAT-
LAB, into the MOOS autonomy software architecture.

Installation of MOOS-IvP software
The MOOS-IvP autonomy software is available at http://www.moos-ivp.org, the source
for which which can be downloaded from a version-controlled software server. Two steps
are indispensable to building MOOS-IvP, and they have to be executed in order. First, the
MOOS tree must be built by executing build-moos.sh script. Then, by executing the script
build-ivp.sh, the IvP directory will be built automatically and the project should be ready to
run [31]. The main processes that must we are concerned with are: On Startup(), Connect
to Server(), Iterate(), and On New Mail().

35

 Initiate Map
Occupancy Grid

Get Data
Ranges From sensors

Get Positions
User Input (x, y, heading)

Update Map
change value to one for

obstacles

Exit Repeat?
N Y

Plot Obstacles
Show Map

Compute
Potential Forces

Figure 4.10: Map Building and Potential Field Process Flowchart

Running MATLAB with MOOSDB

MOOS code can be called from inside MATLAB using the open-source software project, iMat-
lab [30]. iMatlab allows MATLAB’s script to connect the MOOSDB either to receive or to
send variables needed for the project. To send data from the matlab script, we have to use the

36

following iMatlab syntax:

>> iMatlab(MOOS MAIL TX ,VARNAME,VARVAL),

where, for example, VARNAME=pitch, VARVAL=15.

Figure 4.11 below shows a typical configuration for iMatlab.

Figure 4.11: A typical configuration block for iMatlab

Integrating Potential Field and Occupancy Grid Mapping Algorithms into MOOSDB

The concept of how the potential field navigation and occupancy grid mapping processes should
be connected to MOOSDB is illustrated in Figure 4.12. Taking advantage of iMatlab, the
MATLAB-based implementations presented in this thesis can easily and transparently receive
and send data with other processes running within the MOOS project.

When the sensor detects an obstacle in its range, this data will be used by the occupancy-grid
process to build the map and also by the potential-field process to compute the new heading. The
new heading will be translated to either yaw, pitch or roll. When this new value gets published,
the iAutopilot process will give an order to the quadrotor to change direction. Actually, the
check-mail process is in charge to listen and detect any changes occurring during the mission.

37

MOOSD

iAutopilot

Yaw

Pitch

iUbisense

Xpos

Ypos

iMatlab

CheckMail

Pot_field

Occ_grid

iHokuyo

Figure 4.12: Proposed configuration for MOOSDB integrating navigation and mapping algorithms
via iMatlab and hardware, e.g., laser scanner (Hokuyo), aerial platform (quadrotor), and localization
system (UBisense).

4.3.4 Results

Despite successful preliminary investigations in simulation, our first attempt to build a map
was not successful. A number of error phenomena were observed. For example, upon further
analysis, there were repeatedly relatively large offsets between the real location of obstacles and
their location as represented in the occupancy grid-based map.

Several factors could have caused these errors. The main factor was the grid size and resolution.
To reduce the computational load, we fixed the size of the grid to a 140×140 square arena
(i.e., 19,600 cells), such that each cell represented a 10cm×10cm spatial block. Since the data
collected from the sensor were on the order of millimeters due to the precision of the laser
sensor, the shape of the obstacle within the map was limited by the coarse resolution. This
resulted in a representation that was somewhat different than the shape of the real obstacle.

Another contributing factor to errors in the map was the imperfect knowledge of the vehicle
position and orientation at the time we captured the image. Since no positioning system, such
as the Ubisense, was available, rough pose estimates were measured by hand and aligned ap-
proximately with laser scan data.

38

A remaining problem is related to well-known limitations of the potential field algorithm,
which, due to its gradient-based approach, can suffer from getting trapped in local minima
of the potential field. An illustration of such a trapping scenario for potential field-based navi-
gation is provided in Figure 4.13, showing how a vehicle can get trapped and fail to escape from
the local minimum.

Figure 4.13: Illustration taken from [32] showing the pitfalls of local minima in potential field-based
algorithms for mobile robot navigation.

The first problem is trivial and can be addressed by changing the grid size or by using software
other than Matlab. This will allow implementation of a larger grid without being penalized in
runtime cost.

Since we had to simulate the coordinates for the quadrator, instead of using the real position
from the Ubisense (because the lack of time), we cannot be sure that the error we had will
cause a real problem when we use GPS or Ubisense to navigate. We will leave this for future
work to be tested and fixed. The last problem is very trivial and can be addressed easily. There
are several approaches proposed to avoid this problem. A very simple implementation is to
set up a series of repulsive forces with zero radius positioned at newly visited positions. As
time progresses, the repulsive force decreases and the recently visited locations become more
repulsive than positions visited a longer time ago. [33]

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

CHAPTER 5:

Conclusions

5.1 Discussions
This thesis presented an implementation study of sensor-based robot algorithms for probabilistic
mapping of an indoor environment and collision-free navigation to a goal within that environ-
ment. The former task was addressed by generating an occupancy grid-based map using models
of a laser line scanner sensor to detect obstacles, and both binary or Bayesian sensor updates
to the map were investigated. Discretization of the given area provided cells in space which
reflected the presence or absence of an obstacle in each cell. These types of probabilistic maps
possess several advantages over static counterparts, including the ability to refine the maps in
the presence of uncertainty. Additionally, if obstacles are dynamically moving in the workspace,
the use of sensor-based methods such as presented in this thesis allow for appropriately inter-
preting newly obstructed locations while clearing previously occupied ones.

The field of robot motion planning is diverse and can be categorized coarsely into a few gen-
eral approaches, including roadmap, cell decomposition, sampling, and potential field algo-
rithms [34]. For this thesis’ initial implementation, we selected Artificial Potential Field algo-
rithms. A potential function is assigned to each obstacle detected using a model of the laser
rangefinding sensor. Using the computed force to guide the motion of the robot, this approach
allows us to derive a collision-free path to the goal. Though mathematically elegant, a number
of implementation challenges were faced due to the need to address practical considerations. On
the other hand, it will ultimately be easier to implement this algorithm within the MOOS-IvP
architecture since it straightforwardly outputs a new desired heading which can be translated
easily to pitch, roll and/or yaw controls to be sent to the quadrotor platform. If the new desired
heading does not deviate significantly from the previous one, then the robot may just keep going
forward without changing direction. If a new heading is computed, the nature of the quadrotor
platform allows for easy translation of these deviations to motor commands.

In summary, this thesis can be considered an initial effort to contribute to a larger systems
project involving the quadrotor unmanned aerial vehicle. The primary contributions are to ex-
plore and implement common robot algorithms for building a probabilistic map using an occu-
pancy grid approach and also for avoiding obstacles using a potential field technique. Parallel

41

efforts by other researchers have developed flight control software, also in MATLAB, capable
of sending and receiving information from the quadrotor’s autopilot. This code can control the
pitch, yaw, roll and thrust of the quadrotor executing a waypoint following mission. This thesis
provides complementary and higher-level capabilities, given the autonomy necessary to com-
pute new headings based on the navigation and mapping algorithms. Though beyond the scope
of this investigation, the ultimate objective is to provide a robust integration of these parallel
capabilities.

5.2 Future Work
There are numerous issues to be addressed and various extensions to be pursued, but this thesis
can serve as both an initial proof of concept and a foundation for the implementation efforts
necessary.

Recall that the main goal of this thesis was to provide the quadrotor a method to navigate in a
two-dimensional environment. However, given the intrinsic three-dimensional nature of aerial
robot platforms, restriction to the plane can be too limiting. For example, the shortest path
to the goal may merit having the quadrotor fly above and over an obstacle instead of driving
around it. Such tradeoffs cannot be explored nor accomplished if we just limit our computation
to a two-dimensional grid. My recommendation is to convert this code to a three-dimensional
structure, coupled with sensor fusion algorithms [35], to improve the fidelity of perception by
increasing the observation opportunities and operational realism of the navigation mission.

Another avenue for future work is to improve the occupancy grid-based mapping algorithm
to reduce the computational burden, so as to be executable on embedded systems onboard the
quadrotor. Enhancements with new data structures and software engineering can leverage the
lessons learned in this thesis to realize this recommendation.

42

REFERENCES

[1] C. S. Smith, “Tunisia is feared to be a new base for Islamists - Africa & Middle East -
International Herald Tribune,” 2007.

[2] S. D. Hanford, L. N. Long, and J. F. Horn, “A Small Semi-Autonomous Rotary-Wing
Unmanned Air Vehicle (UAV),” 2003 AIAA Atmospheric Flight Mechanics Conference

Exhibit, no. September, pp. 1–10, 2005.

[3] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control techniques applied to an
indoor micro quadrotor,” 2004 IEEERSJ International Conference on Intelligent Robots

and Systems IROS IEEE Cat No04CH37566, vol. 3, pp. 2451–2456, 2004.

[4] M. Chen and M. Huzmezan, “A combined MBPC/2 dof H controller for a quad rotor
UAV,” in AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2003.

[5] E. Johnson and P. DeBitetto, “Modeling and simulation for small autonomous helicopter
development,” AIAA Modeling and Simulation Technologies, pp. 1–11, 1997.

[6] F. Hoffmann, T. J. Koo, and O. Shakernia, “Evolutionary Design of a Helicopter
Autopilot,” in 3rd OnLine World Conference on Soft Computing WSC 3, 1998, pp. 1–18.
[Online]. Available: http://eprints.kfupm.edu.sa/38404/

[7] T. J. Koo, F. Ho, H. Shim, B. Sinopoli, and S. Sastry, “Hybrid Control Of An Autonomous
Helicopter,” Control, pp. 285–290, 1998.

[8] M. Kottmann, “Software for Model Helicopter Flight Control Technical Report Nr 314,”
Language, no. March, 1999.

[9] G. Lai, K. Fregene, and D. Wang, “A control structure for autonomous model helicopter
navigation,” V. . In canadian Conference on Electrical and Computer Engineering, Ed.,
Portoroz,Slowenien, pp. 103–107.

[10] H. J. Kim, D. H. Shim, and S. Sastry, “Flying robots: modeling, control and decision
making,” Proceedings 2002 IEEE International Conference on Robotics and Automation

Cat No02CH37292, no. May, pp. 66–71, 2002.

[11] H. Kim, “A flight control system for aerial robots: algorithms and experiments,” Control

Engineering Practice, vol. 11, no. 12, pp. 1389–1400, 2003.

43

[12] A. Williams, “Vicacopter autopilot.” [Online]. Available: http://coptershyna.sourceforge.
net/

[13] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested Autonomy for
Unmanned Marine Vehicles with MOOS-IvP,” Journal of Field Robotics, 2010.

[14] J. G. Leishman, “A History of Helicopter Flight,” 2000. [Online]. Available:
http://terpconnect.umd.edu/∼leishman/Aero/history.html

[15] W. Wang and G. Song, “Autonomous Control for Micro-Flying Robot,” Design, pp. 2906–
2911, 2006.

[16] M. C. Martin and H. Moravec, “Robot Evidence Grids,” 1996.

[17] A. Elfes, “Occupancy Grids: A Stochastic Spatial Representation for Active Robot Per-
ception,” in Autonomous Mobile Robots, S. S. Iyengar and A. Elfes, Eds. IEEE Computer
Society Press; . Los Alamitos, California, 1991, pp. 60–70.

[18] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278–288, 1991.

[19] R. R. Murphy, Introduction to AI Robotics. MIT Press, 2000, vol. 401.

[20] Eugene Lukacs, Probability And Mathematical Statistics. New York: Academic Press,
1972.

[21] John X. Liu, New Developments in Robotics Research. Nova Publishers, 2005.

[22] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” The

International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[23] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT
Press, 2005, vol. 12, no. 3.

[24] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “A Prototype of an
Autonomous Controller for a Quadrotor UAV,” in European Control Conference, 2007,
pp. 1–8.

[25] Asctec, “solutions for EDUCATION - RESEARCH - UNIVERSITIES,” City, vol. 49, no.
April 2011, 2012.

44

[26] Hokuyo, “Hokuyo URG-04LX Laser,” pp. 80 301–80 301, 2011.

[27] “Xbee.” [Online]. Available: http://www.digi.com/

[28] “UBisense.” [Online]. Available: http://www.ubisense.net/en/rtls-solutions/

[29] Paul M. Newman, “MOOS-IvP.”

[30] P. Newman, “MOOS Meets Matlab iMatlab,” pp. 1–4, 2009.

[31] M. R. Benjamin, H. Schmidt, J. J. Leonard, H. Release, and P. Newman, “Computer Sci-
ence and Artificial Intelligence Laboratory Technical Report An Overview of MOOS-IvP
and a Users Guide to the IvP Helm - Release 4 . 2 . 1 An Overview of MOOS-IvP and a
Users Guide to,” Artificial Intelligence, 2011.

[32] X. Yun and K.-c. Tan, “A wall-following method for escaping local minima in potential
field based motion planning,” 1997 8th International Conference on Advanced Robotics.

Proceedings. ICAR’97, pp. 421–426, 1997.

[33] M. A. Goodrich, “Potential Fields Tutorial,” pp. 1–9.

[34] G. Varadhan, “A Simple Algorithm for Complete Motion Planning of Translating Polyhe-
dral Robots,” The International Journal of Robotics Research, vol. 24, no. 11, pp. 983–
995, Nov. 2005.

[35] S. B. Lazarus, P. Silson, A. Tsourdos, R. Zbikowski, and B. A. White, “Multiple sensor
fusion for 3D navigation for unmanned autonomous vehicles,” Control Automation MED

2010 18th Mediterranean Conference on, pp. 1182–1187, 2010.

[36] L. Hokuyo Automatic Co., “Driver for Hokuyo,” 2008. [Online]. Available:
http://www.hokuyo-aut.jp/02sensor/07scanner/download/index.html

[37] Nps, “Nps Wiki.” [Online]. Available: https://wiki.nps.edu/display/∼thchung/Home

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

APPENDIX A:

C++ CODE for the LASER

A.1 Modified C++ code for the Hokuyo LIDAR Sensor
The driver for Hokuyo (URG) can be downloaded from here [36].

/∗ !
\ example mdCaptureSample . cpp

\ b r i e f Sample t o g e t d a t a u s i n g MD command

\ a u t h o r S a t o f u m i KAMIMURA

\m o d i f i e d by Mejdi Ben Ardhaoui

$ Id : mdCaptureSample . cpp 1683 2010−02−10 1 0 : 2 8 : 0 5 Z s a t o f u m i $
∗ /

i n c l u d e ” U r g C t r l . h ”
i n c l u d e ” d e l a y . h ”
i n c l u d e ” t i c k s . h ”
i n c l u d e <c s t d l i b >

i n c l u d e <c s t d i o >

u s i n g namespace qrk ;
u s i n g namespace s t d ;

/ / ! main
i n t main (i n t a rgc , c h a r ∗ a rgv [])
{
i f d e f WINDOWS OS

c o n s t c h a r d e v i c e [] = ”COM3” ;
e l s e

c o n s t c h a r d e v i c e [] = ” / dev / ttyACM0” ;
e n d i f

U r g C t r l u rg ;
i f (! u rg . c o n n e c t (d e v i c e)) {

p r i n t f (” U r g C t r l : : c o n n e c t : %s\n ” , u rg . what ()) ;
e x i t (1) ;

}

i f 1
/ / S e t t o MD mode t o a c q u i r e d a t a
urg . se tCap tu reMode (AutoCap tu re) ;

47

e l s e
/ / Mode t o g e t d i s t a n c e d a t a and i n t e n s i t y d a t a
urg . se tCap tu reMode (I n t e n s i t y C a p t u r e) ;
u rg . s e t C a p t u r e S k i p L i n e s (2) ;

e n d i f
i n t scan msec = urg . scanMsec () ;

i f 0
/ / S e t r a n g e o f a c q u i s i t i o n from t h e c e n t e r t o l e f t 90 d e g r e e .
/ / S e t r a n g e o f a c q u i s t i o n from c e n t e r t o r i g h t t o 90 d e g r e e .
/ / So In t o t a l i t w i l l be 180 d e g r e e .
c o n s t d ou b l e rad90 = 9 0 . 0 ∗ M PI / 1 8 0 . 0 ;
u rg . s e t C a p t u r e R a n g e (urg . r a d 2 i n d e x (− r ad90) , u rg . r a d 2 i n d e x (rad90)) ;

e n d i f

i n t p r e t i m e s t a m p = t i c k s () ;

/ / Data i s a c q u i r e d c o n t i n u o u s l y u s i n g MD command
/ / b u t o u t p u t s d a t a o f s p e c i f i e d number o f t i m e s .
enum { Captu reTimes = 1} ;
u rg . s e t C a p t u r e T i m e s (Cap tu reTimes) ;
f o r (i n t i = 0 ; i < Captu reTimes ;) {

l ong t imes t amp = 0 ;
v e c t o r<long> d a t a ;

/ / Get d a t a
i n t n = urg . c a p t u r e (da t a , &t imes t amp) ;
i f (n <= 0) {

d e l a y (scan msec) ;
c o n t i n u e ;

}
i f 1

f o r (i n t j = 9 0 ; j < n−90; ++ j) {

p r i n t f (” %4.3 f \n ” , d a t a [j] / 1 0 0 0 . 0) ;
/ / We d i v i d e by 1000 t o g e t r e s u l t s i n m e t e r s

}

e n d i f
++ i ;

}

i f d e f MSC
g e t c h a r () ;

e n d i f

r e t u r n 0 ;
}

48

A.2 Script for Capturing Laser Data
The following script allows to send the data captured to the Xbee instead of sending it to the
standard output.

! / b i n / sh
s t t y −F / dev / ttyUSB0 57600
w h i l e [1]
do

. / mdCaptureSample > / dev / ttyUSB0
I f we want t o keep a copy of d a t a c a p t u r e d we
have t o add t h e f o l l o w i n g l i n e which save t h e
l a s t L a s e r r e a d i n g .
cp l a s e r D a t a . t x t . . / . . / . . / L a s e r / l a s e r D a t a . t x t

done

Some notes:

• The > is used to redirect the data captured from the laser to the XBee attached to ttyUSB0

• The argument 57600 means we communicate in both transmitting and receiving across
the serial port with a baud rate of 57600 bits per second

• mydatacapture is the name of the modified laser driver code which calls other programs
to extract data from the laser

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

APPENDIX B:

MATLAB Code (Occupancy Grid)

The goal of this code is to represent a map of the environment as an array of cells. Each
cell holds a probability value which indicates if that cell is occupied or not. All source files,
including this MATLAB code, is available online1.

% C r e a t e d By Michae l A. Goodr ich
% Modi f i ed By Mejdi Ben Ardhaoui
%+++%
% G lob a l V a r i a b l e s %
%+++%

LabDim = 140 ; % World Dimension (Square)
OBS SIZE = 1 0 ; % O b s t a c l e s S i z e
Q u a d r o t o r = OBS SIZE / 4 ; % Q u a d r o t o r S i z e
Sensor Range = OBS SIZE ; % S ens o r Range
NObst = 6 ; % Number o f O b s t a c l e s i n t h i s World
v e l = 4 ; % V e l o c i t y i n u n i t s p e r sample .
d t = 0 . 1 ; % How o f t e n t h e Quadro to r ’ s p o s i t i o n i s u p d a t e d .
r i = 1 0 ; c i = 3 0 ; % I n t i a l ROW and COLUMN on t h e wor ld g r i d

% mat r ix , where t h e p a t h i s t o b e g i n
r f = 130 ; c f = 120 ; % F i n a l ROW and COLUMN on t h e wor ld g r i d

% mat r ix , where t h e p a t h i s t o end
t h e t a = a t a n 2 (r f−r i , c f−c i) ; % I n i t i a l d i r e c t i o n o f t h e Q u a d r o t o r
Del = 1 0 ; % T o l e r a n c e d i s t a n c e from t h e Goal

%+++%
% CREATE PROBABILITY GRID %
%+++%

% I n i t i a l i z e t h e p r o b a b i l i t y t o 0 . 5 0
p = .50∗ ones (LabDim , LabDim) ;

% P l o t t h e p r o b a b i l i t y t h a t a g r i d l o c a t i o n i s o c c u p i e d by an o b s t a c l e a s
% a pseudo− i n t e n s i t y −− d a r k e r c o l o r s i n d i c a t e t h a t t h e g r i d l o c a t i o n i s
% more l i k e l y t o be o c c u p i e d .

Gr idHandle = z e r o s (LabDim , LabDim) ;
c l f ; c l o s e a l l ;
ho ld on ;
a x i s ([0 LabDim 0 LabDim]) ;

d i s p (’ C l i c k t o s e l e c t s t a r t i n g p o s i t i o n ’) ;
[c i , r i] = g i n p u t (1) ;
% TODO check i f t h e s t a r t p o i n t i s w i t h i n t h e o b s t a c l e b o u n d a r i e s

1All source code is available online at http://faculty.nps.edu/thchung under Resources, Software.

51

t e x t (c i , r i , ’ S t a r t ’ , ’ F o n t S i z e ’ , 1 0) ;
d i s p (’ C l i c k t o s e l e c t g o a l p o s i t i o n ’) ;
[cf , r f] = g i n p u t (1) ;
% TODO check i f t h e s t a r t p o i n t i s w i t h i n t h e o b s t a c l e b o u n d a r i e s
t e x t (cf , r f , ’ Goal ’ , ’ F o n t S i z e ’ , 1 0) ;

% Re−compute t h e i n i t i a l t h e t a
t h e t a = a t a n 2 (r f−r i , c f−c i) ; % I n i t i a l d i r e c t i o n o f t h e Q u a d r o t o r

f o r i =1 : LabDim
f o r j =1 : LabDim

Gr idHandle (i , j) = p l o t (i , j , ’ . ’) ;
s e t (Gr idHandle (i , j) , ’ c o l o r ’ ,[1−p (i , j) ,1−p (i , j) ,1−p (i , j)] , . . .
’ Marke rS ize ’ , 5 , ’ EraseMode ’ , ’ normal ’) ;

end ;
end ;
ho ld o f f ;
s e t (gca , ’ D a t a A s p e c t R a t i o ’ , [1 , 1 , 1]) ;
a x i s ([0 , 1 4 0 , 0 , 1 4 0]) ;

%+++%
% L i k e l i h o o d s AND D e f i n i t i o n s %
%+++%
% The two p o s s i b l e s t a t e s f o r each c e l l : o c c u p i e d and u n o c c u p i e d . For each%
% c e l l , t h e r e a r e t h r e e p o s s i b l e o b s e r v a t i o n s : h i t , no−h i t , and no %
% o b s e r v a t i o n . We w i l l on ly use t h e h i t o r miss o b s e r v a t i o n s . %
% p (O= h i t | S= o c c u p i e d) = ” T r u e H i t ” %
% p (O= h i t | S= u n o c c u p i e d) = ” Fa l seAla rm ” %
% p (O=no−h i t | S= o c c u p i e d) = ” M i s s e d D e t e c t i o n ” = 1−T r u e H i t %
% p (O=no−h i t | S= u n o c c u p i e d) = ” TrueMiss ” = 1−Fa l seAla rm %
%+++%

%The p r o b a b i l i t y t h a t an o c c u p i e d c e l l i s d e t e c t e d as a h i t by t h e o b s e r v e r .
T r u e H i t = 0 . 9 8 ;

%The p r o b a b i l i t y t h a t an u n o c c u p i e d c e l l i s d e t e c t e d as a h i t .
Fa l seAla rm = 0 . 0 6 ;

%+++%
% PLACE OBSTACLES For KOWN WORLD %
%+++%
Obst1 = [2 0 , 2 0] ;
Obst2 = [4 5 , 5] ;
Obst3 = [2 8 , 4 0] ;
Obst4 = [8 0 , 5 8] ;
Obst5 = [1 0 5 , 9 2] ;
Obst6 = [9 0 , 1 2 0] ;

%=======================
% P l o t t h e o b s t a c l e s
%=======================
x v e r t i c e s =[Obst1 (1 , 1) , Obst1 (1 , 1) , Obst1 (1 , 1) + OBS SIZE , Obst1 (1 , 1) + OBS SIZE] ;

52

y v e r t i c e s =[Obst1 (1 , 2) , Obst1 (1 , 2) + OBS SIZE , Obst1 (1 , 2) + OBS SIZE , Obst1 (1 , 2)] ;
p a t c h (x v e r t i c e s , y v e r t i c e s , ’ r ’) ;

%−−

% Find t h e c e n t e r o f o b s t 1
x1= round ((Obst1 (1 , 1) + Obst1 (1 , 1) + OBS SIZE) / 2) ;
y1= round ((Obst1 (1 , 2) + OBS SIZE+Obst1 (1 , 2)) / 2) ;
%−−
x v e r t i c e s =[Obst2 (1 , 1) , Obst2 (1 , 1) , Obst2 (1 , 1) + OBS SIZE , Obst2 (1 , 1) + OBS SIZE] ;
y v e r t i c e s =[Obst2 (1 , 2) , Obst2 (1 , 2) + OBS SIZE , Obst2 (1 , 2) + OBS SIZE , Obst2 (1 , 2)] ;
p a t c h (x v e r t i c e s , y v e r t i c e s , ’ r ’) ;

%−−
% Find t h e c e n t e r o f o b s t 2
x2= round ((Obst2 (1 , 1) + Obst2 (1 , 1) + OBS SIZE) / 2) ;
y2= round ((Obst2 (1 , 2) + OBS SIZE+Obst2 (1 , 2)) / 2) ;
%−−
x v e r t i c e s =[Obst3 (1 , 1) , Obst3 (1 , 1) , Obst3 (1 , 1) + OBS SIZE , Obst3 (1 , 1) + OBS SIZE] ;
y v e r t i c e s =[Obst3 (1 , 2) , Obst3 (1 , 2) + OBS SIZE , Obst3 (1 , 2) + OBS SIZE , Obst3 (1 , 2)] ;
p a t c h (x v e r t i c e s , y v e r t i c e s , ’ r ’) ;

%−−
% Find t h e c e n t e r o f o b s t 3
x3= round ((Obst3 (1 , 1) + Obst3 (1 , 1) + OBS SIZE) / 2) ;
y3= round ((Obst3 (1 , 2) + OBS SIZE+Obst3 (1 , 2)) / 2) ;
%−−
x v e r t i c e s =[Obst4 (1 , 1) , Obst4 (1 , 1) , Obst4 (1 , 1) + OBS SIZE , Obst4 (1 , 1) + OBS SIZE] ;
y v e r t i c e s =[Obst4 (1 , 2) , Obst4 (1 , 2) + OBS SIZE , Obst4 (1 , 2) + OBS SIZE , Obst4 (1 , 2)] ;
p a t c h (x v e r t i c e s , y v e r t i c e s , ’ r ’) ;

%−−
% Find t h e c e n t e r o f o b s t 4
x4= round ((Obst4 (1 , 1) + Obst4 (1 , 1) + OBS SIZE) / 2) ;
y4= round ((Obst4 (1 , 2) + OBS SIZE+Obst4 (1 , 2)) / 2) ;
%−−
x v e r t i c e s =[Obst5 (1 , 1) , Obst5 (1 , 1) , Obst5 (1 , 1) + OBS SIZE , Obst5 (1 , 1) + OBS SIZE] ;
y v e r t i c e s =[Obst5 (1 , 2) , Obst5 (1 , 2) + OBS SIZE , Obst5 (1 , 2) + OBS SIZE , Obst5 (1 , 2)] ;
p a t c h (x v e r t i c e s , y v e r t i c e s , ’ r ’) ;

%−−
% Find t h e c e n t e r o f o b s t 5
x5= round ((Obst5 (1 , 1) + Obst5 (1 , 1) + OBS SIZE) / 2) ;
y5= round ((Obst5 (1 , 2) + OBS SIZE+Obst5 (1 , 2)) / 2) ;
%−−
x v e r t i c e s =[Obst6 (1 , 1) , Obst6 (1 , 1) , Obst6 (1 , 1) + OBS SIZE , Obst6 (1 , 1) + OBS SIZE] ;
y v e r t i c e s =[Obst6 (1 , 2) , Obst6 (1 , 2) + OBS SIZE , Obst6 (1 , 2) + OBS SIZE , Obst6 (1 , 2)] ;
p a t c h (x v e r t i c e s , y v e r t i c e s , ’ r ’) ;

%−−
% Find t h e c e n t e r o f o b s t 6
x6= round ((Obst6 (1 , 1) + Obst6 (1 , 1) + OBS SIZE) / 2) ;
y6= round ((Obst6 (1 , 2) + OBS SIZE+Obst6 (1 , 2)) / 2) ;
%−−
s e t (gca , ’ D a t a A s p e c t R a t i o ’ , [1 , 1 , 1]) ;
a x i s ([1 , 1 4 0 , 1 , 1 4 0]) ;

53

t i t l e (’ Occupancy Gr id ’) ;
x l a b e l (’ x ’) ; y l a b e l (’ y ’) ;
drawnow ;
f i g u r e (1) ;

%+++%
% CREATE GROUND TRUTH OCCUPANCY GRID FOR KNOWN WORLD %
%+++%

Occupied = z e r o s (LabDim , LabDim) ;
f o r i =1 : LabDim

f o r j =1 : LabDim
i f ((i>=Obst1 (1 , 1) & i<=Obst1 (1 , 1) + OBS SIZE) & (j>=Obst1 (1 , 2) . . .

& j<=Obst1 (1 , 2) + OBS SIZE))
Occupied (i , j) = 1 ;

end ;
i f ((i>=Obst2 (1 , 1) & i<=Obst2 (1 , 1) + OBS SIZE) & (j>=Obst2 (1 , 2) . . .

& j<=Obst2 (1 , 2) + OBS SIZE))
Occupied (i , j) = 1 ;

end ;
i f ((i>=Obst3 (1 , 1) & i<=Obst3 (1 , 1) + OBS SIZE) & (j>=Obst3 (1 , 2) . . .

& j<=Obst3 (1 , 2) + OBS SIZE))
Occupied (i , j) = 1 ;

end ;
i f ((i>=Obst4 (1 , 1) & i<=Obst4 (1 , 1) + OBS SIZE) & (j>=Obst4 (1 , 2) . . .

& j<=Obst4 (1 , 2) + OBS SIZE))
Occupied (i , j) = 1 ;

end ;
i f ((i>=Obst5 (1 , 1) & i<=Obst5 (1 , 1) + OBS SIZE) & (j>=Obst5 (1 , 2) . . .

& j<=Obst5 (1 , 2) + OBS SIZE))
Occupied (i , j) = 1 ;

end ;
i f ((i>=Obst6 (1 , 1) & i<=Obst6 (1 , 1) + OBS SIZE) & (j>=Obst6 (1 , 2) . . .

& j<=Obst6 (1 , 2) + OBS SIZE))
Occupied (i , j) = 1 ;

end ;
end ;

end ;

%+++%
% CREATE A Q u a d r o t o r %
%+++%

x v e r t i c e s = [−Sensor Range + c i , Senso r Range + c i , Senso r Range + c i , . . .
−Sensor Range + c i] ;

y v e r t i c e s = [−Sensor Range + r i ,−Sensor Range + r i , Senso r Range + r i , . . .
Senso r Range + r i] ;

s e n s o r = p a t c h (x v e r t i c e s , y v e r t i c e s , [. 9 , . 9 , . 9]) ;
x v e r t i c e s = [−Q u a d r o t o r + c i , Q u a d r o t o r + c i , Q u a d r o t o r + c i ,−Q u a d r o t o r + c i] ;
y v e r t i c e s = [−Q u a d r o t o r + r i ,−Q u a d r o t o r + r i , Q u a d r o t o r + r i , Q u a d r o t o r + r i] ;
r o b o t = p a t c h (x v e r t i c e s , y v e r t i c e s , ’ms ’) ;

%+++%

54

% SIMULATION %
%+++%

f o r SimLen =0:5000 % For a s i m u l a t i o n l e n g t h o f 5000 sample s o r Goal r e a c h

%%%
% OBSERVATION MODEL %
%%%

% G e n e r a t e a s e r i e s o f r e a d i n g s f o r t h e r o b o t based on t h e l o c a t i o n s o f
% o b s t a c l e s . The l o c a t i o n o f t h e c e n t e r o f t h e r o b o t , and t h e r e f o r e t h e
% c e n t e r o f t h e s e n s o r , i s g i v e n by RobotX and RobotY .

RobotX = round ((max (x v e r t i c e s)+ min (x v e r t i c e s)) / 2) ;
RobotY = round ((max (y v e r t i c e s)+ min (y v e r t i c e s)) / 2) ;
% TODO change t h e s e n s o r model
% A z e r o means n o t h i n g d e t e c t e d
O b s e r v a t i o n = z e r o s (2∗ Sensor Range , 2∗ Sensor Range) ;
f o r i =1:2∗ Sensor Range

f o r j =1:2∗ Sensor Range
SensorX= i +RobotX−Sensor Range ;
SensorY= j +RobotY−Sensor Range ;
i f (SensorX <=0) | (SensorY <=0) | (SensorX>LabDim) | . . .

(SensorY>LabDim)
c o n t i n u e ;

end ;
i f (Occupied (SensorX , SensorY)==1)
i f (r and (1 ,1)<= T r u e H i t)

O b s e r v a t i o n (i , j) = 1 ;
end ;

end ;
i f (Occupied (SensorX , SensorY)==0)

i f (r and (1 , 1) <= Fa l seAla rm)
O b s e r v a t i o n (i , j) = 1 ;

end ;
end ;

%+++%
% UPDATE PROBABILITIES USING BAYES RULE %
%+++%
% For each c e l l i n t h e g r i d , u p d a t e t h e p r o b a b i l i t y o f i t be %
% i t be o c c u p i e d u s i n g Bayes r u l e g i v e n t h e o b s e r v a t i o n %
%+++%

% I f we o b s e r v e a h i t ===>
i f O b s e r v a t i o n (i , j) == 1

C e l l O c c = T r u e H i t ∗ p (SensorX , SensorY) ;
% p (SensorX , SensorY) i s t h e p r o b a b i l i t y t h a t a c e l l i s o c c u p i e d

Ce l l Unocc = Fa l seAla rm ∗ (1−p (SensorX , SensorY)) ;
% 1−p (SensorX , SensorY) i s t h e p r o b a b i l i t y t h a t
% a c e l l i s u n o c c u p i e d

55

% Normal ize
p (SensorX , SensorY) = C e l l O c c / (C e l l O c c + Ce l l Unocc) ;

% I f do n o t o b s e r v e a h i t ===>
e l s e

C e l l O c c = (1−T r u e H i t) ∗ p (SensorX , SensorY) ;
% p (SensorX , SensorY) i s t h e p r o b a b i l i t y t h a t a c e l l i s o c c u p i e d

% R e c a l l t h a t (1−T r u e H i t) i s t h e M i s s e d D e t e c t i o n l i k e l i h o o d

Ce l l Unocc = (1−Fa l seAla rm) ∗ (1−p (SensorX , SensorY)) ;
% 1−p (SensorX , SensorY) i s t h e prob t h a t a c e l l i s u n o c c u p i e d

% (1−Fa l seAla rm) i s t h e TrueMiss l i k e l i h o o d

% Normal i ze
p (SensorX , SensorY) = C e l l O c c / (C e l l O c c + Ce l l Unocc) ;

end ;

% Update i n t e n s i t y t o r e f l e c t p r o b a b i l i t y t h a t a c e l l i s o c c u p i e d .
% Darker c o l o r s mean h i g h e r p r o b a b i l i t i e s

s e t (Gr idHandle (SensorX , SensorY) , ’ c o l o r ’ , . . .
[1−p (SensorX , SensorY) ,1−p (SensorX , SensorY) ,1−p (SensorX , SensorY)]) ;

end ;
end ;

%+++%
% ROBOT MOVEMENT MODEL %
%+++%

%==
% R e t r i e v e t h e c o o r d i n a t e s t h a t d e f i n e t h e r o b o t
%==

x v e r t i c e s = g e t (r o b o t , ’ XData ’) ;
y v e r t i c e s = g e t (r o b o t , ’ YData ’) ;
s e n s o r x v e r t i c e s = g e t (s e n s o r , ’ XData ’) ;
s e n s o r y v e r t i c e s = g e t (s e n s o r , ’ YData ’) ;

%============================
% I f w i t h i n wor ld b o u n d a r i e s
%============================

i f ((min (x v e r t i c e s + v e l ∗ cos (t h e t a)) >1) & (max (x v e r t i c e s + . . .
v e l ∗ cos (t h e t a))<LabDim−Sensor Range))
x v e r t i c e s = x v e r t i c e s + v e l ∗ cos (t h e t a) ;
s e n s o r x v e r t i c e s = s e n s o r x v e r t i c e s + v e l ∗ cos (t h e t a) ;

e l s e t h e t a = p i / 2 ;
end ;

i f ((min (y v e r t i c e s + v e l ∗ s i n (t h e t a)) >1) & (max (y v e r t i c e s + . . .

56

v e l ∗ s i n (t h e t a))<LabDim−Sensor Range))
y v e r t i c e s = y v e r t i c e s + v e l ∗ s i n (t h e t a) ;
s e n s o r y v e r t i c e s = s e n s o r y v e r t i c e s + v e l ∗ s i n (t h e t a) ;

e l s e t h e t a = p i / 2 ;
end ;

%==
% Stop r o b o t i f i t i s w i t h i n D e a l t a t o l e r a n c e box of g o a l
%==
i f ((abs (RobotX − c f) <= Del) && (abs (RobotY − r f) <= Del))

b r e a k ;
end ;
s e t (r o b o t , ’ XData ’ , x v e r t i c e s , ’ YData ’ , y v e r t i c e s) ;
s e t (s e n s o r , ’ XData ’ , s e n s o r x v e r t i c e s , ’ YData ’ , s e n s o r y v e r t i c e s) ;
drawnow ;

end ;

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX C:

MATLAB Code (Potential Field)

The following script1 was created to capture data from the XBee wireless module and inserted
into an array data structure.

% C r e a t e d by Mejdi Ben Ardhaoui
% Modi f i ed by P r o f e s s o r Timothy Chung

%+++%
% GetData .m %
%+++%

%c l o s e a l l ;
% C r e a t e S e r i a l P o r t
s = s e r i a l (’COM4’ , ’ BaudRate ’ , 57600 , ’ D a t a B i t s ’ , 8 , ’ P a r i t y ’ , ’ none ’ , . . .

’ S t o p B i t s ’ , 1 , ’ F lowCon t ro l ’ , ’ none ’) ;
d i s p (’ Opening C o n n e c t i o n t o Q u a d r o t o r ’)

% Open p o r t t o s t a r t d a t a t r a n s f e r
fopen (s) ;

% C r e a t e an a r r a y (B u f f e r)
a = [] ;

% T o t a l number o f beams used
N=546;

% loop t h r o u g h t h e beams and s t o r e d a t a
f o r i = 1 : 1 : 5 4 6% (N˜ = 0)
a =[a ; f g e t l (s)] ;
end ;

% Conver t s t r i n g a r r a y t o number a r r a y
r a n g e s = s t r2num (a) ;

f c l o s e (s) ;
d e l e t e (s) ;
c l e a r s

1All source code is available online at http://faculty.nps.edu/thchung under Resources, Software.

59

The following script is used to compute the angle between a given beam and an obstacle detected
by this beam.

%+++%
% Compute angle .m %
%+++%
f u n c t i o n a n g l e r e p = c o m p u t e a n g l e s (posn)

% R e s o l u t i o n : Number o f beams d i v i d e d by 180 d e g r e e s
t = 0 . 0 0 5 7 6 ;

% I n i t i a l i z e t h e t a i n g l o b a l c o o r d i n a t e s
t h e t a =posn (3)− p i / 2 ;

% Compute a n g l e s between e v e r y o b s t a c l e s and t h e c e n t e r o f t h e Robot
f o r i =1:546

a n g l e r e p (i)= t h e t a +(i −1)∗ t ;
end

r e t u r n ;

Every time we get a range return different from zero, we update the map by changing the value
at this position from zero to one. One will be interpreted as an obstacle in the other scripts.

%+++%
% UpdateMap .m %
%+++%
f u n c t i o n map=updateMap (posn , r anges , mylab , map)
t = 0 . 0 0 5 7 6 ;
t h e t a =posn (3)− p i / 2 ;
r a n g e s = round (10∗ r a n g e s) ;
f o r i = 1 : 1 : 5 4 6

X(i)= round (posn (1) + r a n g e s (i)∗ cos ((i ∗ t)− t h e t a)) ;
Y(i)= round (posn (2) + r a n g e s (i)∗ s i n ((i ∗ t)− t h e t a)) ;

i f r a n g e s (i) ˜ = 0
% T e s t B o r d e r s l i m i t s
i f (X(i)<=0) | | (Y(i)<=0) | | (X(i)>mylab) | | (Y(i)>mylab)

b r e a k ;
end ; %Don ’ t do a n y t h i n g o u t s i d e t h e wor ld b o u n d a r i e s
map (X,Y) = 1 ;

end
end
r e t u r n ;

60

This script will change coordinates from Local to Global coordinates.

%+++%
% ComputePosn .m %
%+++%
f u n c t i o n [X,Y]= ComputePosn (posn , r anges , mylab)
t = 0 . 0 0 5 7 6 ;
t h e t a =posn (3)− p i / 2 ;
r a n g e s =10∗ r a n g e s ;
f o r i =1:546

i f r a n g e s (i) ˜ = 0
X(i)= posn (1) + r a n g e s (i)∗ cos (((i)∗ t)− t h e t a) ;
Y(i)= posn (2) + r a n g e s (i)∗ s i n (((i)∗ t)− t h e t a) ;

% T e s t B o r d e r s l i m i t s
i f (X(i)<=0) | | (Y(i)<=0) | | (X(i)>mylab) | | (Y(i)>mylab)

b r e a k ;
end

e l s e
X(i)= posn (1) ;
Y(i)= posn (2) ;

end

end
r e t u r n ;

61

The following script will draw and visualize the Robot and the sensor.

%+++%
% rob .m %
%+++%
f u n c t i o n [obs p t sX , o b s p t s Y] = rob (posn , r a n g e s)
r a d =5;
c l f ;
ho ld o f f ;
mylab =140;
map= z e r o s (mylab , mylab) ;
a x i s ([0 mylab 0 mylab]) ;
a x i s xy
ho ld on ;

%draw a l i t t l e c i r c l e f o r t h e r o b o t
angs = 0 : p i / 1 0 : 2∗ p i ;
x = posn (1) + r a d ∗ cos (angs) ;
y = posn (2) + r a d ∗ s i n (angs) ;
f i l l (x , y , ’ b ’) ;

%posn (3) = deg2rad (posn (3)) ;

%Draw l i n e i n d i r e c t i o n o f h e a d i n g
% l i n e from c e n t e r o f r o b o t t o h e a d i n g d i r e c t i o n
h l i n e = l i n e ([posn (1) , posn (1) + (r a d)∗ cos (posn (3))] , [posn (2) , . . .

posn (2) + (r a d)∗ s i n (posn (3))]) ;
s e t (h l i n e , ’ Co lo r ’ , ’ b l a c k ’ , ’ LineWidth ’ , 2)
r a n g e s = round (10∗ r a n g e s) ;
r a n g e s ((r a n g e s ==0)) = max (r a n g e s) ;

t = 0 . 0 0 5 7 6 ;
t h e t a =posn (3)− p i / 2 ;
f o r i = 1 : 1 : 5 4 6

X(i)= round (posn (1) + r a n g e s (i)∗ cos (t h e t a + i ∗ t)) ;
Y(i)= round (posn (2) + r a n g e s (i)∗ s i n (t h e t a + i ∗ t)) ;
%p l o t (X, Y, ’ g . ’) ;
i f r a n g e s (i) ˜ = 0

% T e s t B o r d e r s l i m i t s
i f X(i)<=0

X(i) = 0 ;
end
i f Y(i)<=0

Y(i) = 0 ;
end

i f X(i)>mylab
X(i)= mylab ;

end
i f Y(i)>mylab

Y(i)= mylab ;
end

% b r e a k ;

62

% end ; %Don ’ t do a n y t h i n g o u t s i d e t h e wor ld b o u n d a r i e s
p l o t (X, Y, ’ g . ’) ;

end
h l i n e = l i n e ([posn (1) , posn (1) + r a n g e s (i)∗ cos (t h e t a + i ∗ t)] , . . .

[posn (2) , posn (2) + r a n g e s (i)∗ s i n (t h e t a + i ∗ t)]) ;
s e t (h l i n e , ’ Co lo r ’ , ’ r e d ’)

%Draw l i n e i n d i r e c t i o n o f h e a d i n g
% l i n e from c e n t e r o f r o b o t t o h e a d i n g d i r e c t i o n
h l i n e = l i n e ([posn (1) , posn (1) + (r a d)∗ cos (posn (3))] , [posn (2) , . . .

posn (2) + (r a d)∗ s i n (posn (3))]) ;
s e t (h l i n e , ’ Co lo r ’ , ’ b l a c k ’ , ’ LineWidth ’ , 2)

%TODO draw an ar row showing t h e r e s u l t a n t f o r c e
end

% Dete rmine c o o r d i n a t e l o c a t i o n s f o r where scan p o i n t s h i t o b s t a c l e s
% (l e s s t h a n 90% of max r a n g e)
o b s p t s X = X(ranges< 0 .90∗max (r a n g e s)) ;
o b s p t s Y = Y(ranges< 0 .90∗max (r a n g e s)) ;

63

In order to determine the new heading, we first need to compute the repulsive and attractive
forces. The resultant of these forces represent the new heading for the robot at this position.

%+++%
% c o m p u t e f o r c e .m %
%+++%
f u n c t i o n [SumFrepX , SumFrepY , SumFattX , SumFattY]= c o m p u t e f o r c e (Xgoal , Ygoal . . .

, posn , r anges , X, Y, a n g l e r e p)
% r a n g e s (i) : d i s t a n c e from t h e r o b o t p o s i t i o n t o t h e o b s t a c l e (i)
% d0 : t h e i n f l u e n c e d i s t a n c e o f t h e f o r c e
% n : a d j u s t a b l e c o n s t a n t f o r t h e r e p u l s i v e f o r c e s .
% Frep (i) : R e p u l s i v e f o r c e from o b s t a c l e (i)
% posn (1) : X p o s t i o n o f t h e r o b o t
% posn (2) : Y p o s t i o n o f t h e r o b o t
% X(i) : X p o s t i o n o f an o b s t a c l e (i)
% Y(i) : Y p o s t i o n o f an o b s t a c l e (i)
% t h e t a (i) : a n g l e from r o b o t p o s i t i o n t o o b s t a c l e (i)
% Xgoal : Goal X c o o r d i n a t e
% Ygoal : Goal Y c o o r d i n a t e
% k : A d j u s t a b l e c o n s t a n t f o r t h e a t t r a c t i o n f o r c e
% a n g l e a t t : a n g l e between Goal and c u r r e n t p o s i t i o n o f t h e r o b o t
%++
% I n i t i a l i z e v a r i a b l e s
%++
k =3;
n = 0 . 0 5 ;
d0 =1;
%++
%compute a n g l e t o g o a l
%++
d e l t a X =Xgoal−posn (1) ;
d e l t a Y =Ygoal−posn (2) ;
D i s t 2 G o a l = s q r t ((d e l t a X) ˆ 2 + (d e l t a Y) ˆ 2) ;
a n g l e a t t = a t a n 2 (de l t aY , d e l t a X) ;

%++
Frep = [0 ; 0] ;
F a t t = [0 ; 0] ;
f o r i =1:546

i f ((r a n g e s (i) ˜ = 0) && (r a n g e s (i)<=d0))

%R e p u l s i v e F o r c e s

FrepX (i)= n∗ cos (a n g l e r e p (i)) ;
FrepY (i)= n∗ s i n (a n g l e r e p (i)) ;

%A t t r a c t i v e F o r c e s

Fa t tX (i)= k∗ cos (a n g l e a t t) ;
Fa t tY (i)= k∗ s i n (a n g l e a t t) ;

end
end
SumFrepX=−sum (FrepX) ;

64

SumFrepY=−sum (FrepY) ;
SumFattX=sum (Fa t tX) ;
SumFattY=sum (Fa t tY) ;
end

65

This is the main code for the project. This script will call all the scripts above in order to:

- draw the map and plot obstacles.

- drive the robot from a given start point to the goal

%+++%
% mapBuildNew .m %
%+++%
c l c ; c l o s e a l l ; c l e a r ;

% D ef in e r o b o t t r a j e c t o r y d a t a s t r u c t u r e
p o s n h i s t = [] ;
o b s p t s h i s t = [] ;

% INITIALIZE MAP
ho ld o f f ;
mylab =140;
map= z e r o s (mylab , mylab) ;
a x i s ([0 mylab 0 mylab]) ;
a x i s xy
ho ld on ;
Xgoal = i n p u t (’ I n p u t Goal X p o s i t i o n : ’) ;
Ygoal = i n p u t (’ I n p u t Goal Y p o s i t i o n : ’) ;
% LOOP UNTIL EXITED
w h i l e (t r u e)

% ASK FOR USER INPUT
% E i t h e r r o b o t p o s i t i o n

posn x = i n p u t (’ I n p u t r o b o t X p o s i t i o n : ’) ;
posn y = i n p u t (’ I n p u t r o b o t Y p o s i t i o n : ’) ;
p o s n t h = i n p u t (’ I n p u t r o b o t THETA h e a d i n g i n Rad ians : ’) ;
posn =[posn x , posn y , p o s n t h] ;

% Update h i s t o r y o f r o b o t p o s i t i o n
p o s n h i s t = [p o s n h i s t ; posn] ;

% GET LASER DATA
% R e t u r n s v a r i a b l e : r a n g e s ([5 4 6 x1] v e c t o r o f r a n g e d a t a)

GetData

% Compute X p o s i t i o n and Y p o s i t i o n f o r o b s t a c l e s
[X,Y]= ComputePosn (posn , r anges , mylab) ;

% POPULATE AND UPDATE MAP
% Updates v a r i a b l e ’map ’ wi th 1 / 0 occupancy l o c a t i o n s

map=updateMap (posn , r anges , mylab , map) ;

% PLOT MAP, ROBOT
[obs p t sX , o b s p t s Y] = rob (posn , r a n g e s) ;

66

o b s p t s h i s t = [o b s p t s h i s t ; obs p t sX ’ , obs p t sY ’] ;

% Compute Angles t o O b s t a c l e s
a n g l e r e p = c o m p u t e a n g l e s (posn) ;

% Compute F o r c e s
[SumFrepX , SumFrepY , SumFattX , SumFattY]= c o m p u t e f o r c e (Xgoal , Ygoal , . . .

posn , r anges , X, Y, a n g l e r e p) ;
Fx=SumFrepX+SumFattX ;
Fy=SumFrepY+SumFattY ;

%N a v i g a t i o n
posn (1) = posn (1) + Fx ∗ . 0 0 5 ;
posn (2) = posn (2) + Fy ∗ . 0 0 5 ;
posn (3) = a t a n 2 (Ygoal−posn (2) , Xgoal−posn (1)) ;
f i g u r e (1)

% CHECK IF EXIT
% Check i f c o m p l e t e

d e c i s i o n = i n p u t (’ C o n t in u e wi th n e x t r o b o t l o c a t i o n ? Y/N: ’ , ’ s ’) ;
i f (s t r c mp (d e c i s i o n , ’N’))

b r e a k ;
end

end % end w h i l e (t r u e)

% Outpu t r o b o t t r a j e c t o r y
p o s n h i s t
ho ld on ;

% P l o t a l l o b s t a c l e h i t s
p l o t (o b s p t s h i s t (: , 1) , o b s p t s h i s t (: , 2) , ’ go ’) ;

% P l o t r o b o t t r a j e c t o r y on f i g u r e
p l o t (p o s n h i s t (: , 1) , p o s n h i s t (: , 2) , ’ b.− ’) ;

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Timothy H. Chung, Ph.D.
Naval Postgraduate School
Monterey, California

4. CDR Duane Davis, USN, Ph.D.
Naval Postgraduate School
Monterey, California

69

