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ABSTRACT 

In many intelligence agencies, the processing of data into usable information ready for 

analysis poses a significant bottleneck. Typically, much more data is available than what 

can be processed in the limited time available for processing. 

We formulate the problem faced by an intelligence collection unit, when 

processing incoming raw information for delivery to intelligence analysts, as an 

exploration-exploitation problem: the processor has to choose between exploring for new 

sources of relevant information and exploiting known sources.     

To address the exploration-exploitation problem, we develop a mathematical 

model of the processor’s knowledge and examine algorithms that allow the processor to 

maximize the discovery of relevant data given a time limit. We derive insights on the 

performance of different algorithms using a simulated case study. 
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EXECUTIVE SUMMARY 

One of the key stages in producing intelligence is Processing and Exploitation. Within 

this stage, the collected raw data is transformed into usable information. In modern 

intelligence agencies, one of the main obstacles in the Processing and Exploitation stage 

is the abundance of information, which makes differentiating between relevant and 

irrelevant information a difficult task. Due to time constraints, an intelligence processor 

of collected raw data, called henceforth  a collector, cannot process all the collected 

intelligence items and therefore some screening procedure is needed. In this research we 

address the information selection problem: Which intelligence items should the collector 

screen in order to maximize the expected amount of relevant information screened? 

The information selection problem can be seen as a part of a broader class of 

problems called exploration-exploitation problems. In an exploration-exploitation 

problem one has to repeatedly choose between several alternatives, and faces the tradeoff 

between exploring (investigating new alternatives) and exploiting (utilizing familiar 

alternatives). The information selection problem has unique characteristics, making it a 

relatively difficult exploration-exploitation problem. Specifically, intelligence sources are 

dependent; the information gained from the screening process of one source can be used 

to better estimate the relevance value of other sources.  

 In order to handle the information selection problem, we develop a mathematical 

model of the information screening process. The model handles a situation in which a 

collector faces a pool of intercepted conversations, which he needs to screen. We 

explored several selection algorithms that would allow the collector to detect as many 

relevant information items as possible. Based on the mathematical model, we constructed 

a simulation of the screening process. We then examined the performances of several 

selection algorithms, using a scenario based on the terrorist network behind the U.S. 

embassy attack in Tanzania in 2007.   

The main contributions of the thesis are the mathematical model of the screening 

process, the selection algorithms and several important insights detailed below:  



 xviii

 Simple selection algorithms, which we examined, performed much better than 

anticipated. We anticipated that a simple greedy algorithm and another basic 

algorithm called “Softmax” would perform much worse than more advanced 

algorithms. However, the performance of these algorithms was quite well 

compared to the advanced algorithms. We speculate that the dependencies 

among the alternatives are the main reason for that performance.  

 The algorithms which showed the best performance are an algorithm based on 

the Knowledge-Gradient policy and an intuitive heuristic for screening the 

conversations. The Knowledge-Gradient policy is an exploration method in 

which one chooses the alternative that is most likely to change its beliefs 

regarding the value of the different alternatives. 

 The mean number of conversations between the different persons is a 

significant factor in the performance of the algorithms. When the mean 

number of conversations is small, there is no significant difference between 

the performances of the different algorithms. 
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I. BACKGROUND AND PROBLEM DESCRIPTION 

A. INTELLIGENCE PROCESSING 

1. The Intelligence Cycle 

According to the DoD dictionary, Intelligence is defined as1: “The product 

resulting from the collection, processing, integration, evaluation, analysis, and 

interpretation of available information concerning foreign nations, hostile or potentially 

hostile forces or elements, or areas of actual or potential operations.” However, 

Intelligence can also be described as a process (Johnson, 2007). This process is 

commonly represented by the Intelligence Cycle (Hulnick, 2006). Although Hulnick 

criticizes this model, he states that “no concept is more deeply enriched in the literature 

[of Intelligence studies] than that of the intelligence cycle.”  

The intelligence cycle consists of five stages (CIA, 1999): (1) Planning and 

Directing/Needs; (2) Collection; (3) Processing and Exploitation; (4) Analysis and 

production; (5) Dissemination. First, during the planning and directing stage, the 

intelligence requirements of the policymakers are established. Then, at the collection 

stage, the raw data is gathered. Richelson (Richelson, 2007) provides a summary of 

different means employed to gather that data. The raw data is then converted into a usable 

format during the processing and exploitation stage. The data is therefore transformed 

into information. The information can be divided into pieces called intelligence items. 

The analysis and production stage consists of the integration and evaluation of the data, 

and preparation of the intelligence product. After those products are disseminated, new 

intelligence requirements are established, and the cycle starts again from stage (1). 

In this thesis we focus on the processing stage. As mentioned above, within that 

stage raw data is being transformed into usable information. This is a complicated stage, 

and the CIA consumer’s guide to intelligence (CIA, 1999) states that: “A substantial 

portion of U.S. intelligence resources is devoted to processing and exploitation.” The 

transformation of the raw data might require decryption and decoding, translating the 

                                                 
1 See DoD dictionary at http://www.dtic.mil/doctrine/dod_dictionary/data/i/4850.html. 
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data, transforming the data for computer processing, storage and retrieval, adding 

background information to make the data more comprehensible, etc. Some of those 

processes can be done automatically. However, “only the human mind can add the 

discernment and knowledge that makes sense of it [the information]” (Hedley, 2007).  

2.  Data Overload  

The problem of information abundance in the modern age is described by Hedley 

(Hedley, 2007). A few decades ago, the main challenge for the intelligence community 

used to be having too little data. Nowadays, this is no longer the case. The challenge lies 

in “the sheer volume of information available,” as “data multiply with dizzying speed.” 

Therefore, “selecting and validating it [the data] loom ever larger as problems for 

analysts today” (Hedley, 2007). 

Examples for the effect this problem has on the intelligence products can be found 

in the research of Gill (Gill, 2007) who claims that data overload is one of the reasons for 

the intelligence failures in both 9/11 and the lack of predicted weapons of mass 

destruction in Iraq. He states that “fundamental are the problems of overload and 

complexity. The very sophistication of modern information-gathering systems produces 

the problem of overload.” As another example, Whaley (Whaley, 1974) argues that one 

of the causes for the Pearl Harbor and Barbarossa strategic surprises is inability to handle 

large amounts of data. 

Therefore, after the raw data is transformed into usable information it needs to be 

classified as relevant or irrelevant. This classification occurs within the processing stage 

(stage [3]) before the analysis stage (stage [4]). The selection of data is a complicated 

problem, since it requires a human involvement. Even though computerized tools that can 

automatically screen the data exist, these tools are not sophisticated enough to replace a 

human operator.  

The personnel responsible for the selection of data are referred to within their 

organizations as analysts. However, it is important to distinguish them from the personnel 

who participate in the analysis and production stage (stage 4 in the intelligence cycle), 
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who are also referred to as analysts. We will therefore refer to the personnel performing 

the screening of the information as collectors, since the processing stage is usually 

conducted by data collection agencies. 

3. The Information Selection Problem 

Due to time constraints, the entire glut of information available cannot be 

screened. The collector needs to focus only on a small portion of it. However, it is 

difficult to accurately know in advance which portions of the available information 

contain relevant information. Only along the screening process, the collector can 

determine the probability that a certain portion of the glut of information is relevant.  

The different information sources might be correlated. For example, if the 

collector discovers that person A has relevant information, and knows that person A is a 

coworker of person B, then the probability that person B also has relevant information is 

increased. Although this feature allows the collector to better allocate his time, this 

possible inference greatly complicates the problem. 

Within this research, we focus on a scenario in which the collector needs to screen 

intelligence items from several available correlated sources. Those sources may be 

intercepted communication links, for example. Due to time constraints of the collector, he 

cannot screen all the intelligence items. We assume that the collector chooses which 

intelligence items to screen according to his assessment regarding the different sources, 

i.e., which sources are more likely to contain relevant information. The assessment of the 

different sources changes as the collector accumulates knowledge from the screened 

items and thus receives feedback regarding the relevance of the information. 

Following the above discussion, the information selection problem is defined as 

follows: Which intelligence items should the collector screen in order to maximize the 

expected amount of relevant information screened?  
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B. SIMILAR PROBLEMS 

In this section we review several classes of problems similar to the information 

selection problem. We first discuss the applicability of operations research methods for 

studying intelligence problems, and  then we focus on some relevant classes of computer 

science and operations research problems. 

1. Operations Research and Intelligence 

The applicability of operations research (OR) methods for intelligence is reviewed 

by Kaplan (Kaplan, 2011), who explains what OR is, shows some key OR methods, and 

discusses the applicability of those methods for intelligence analysis. However, the 

applications proposed in his article are meant mainly for the analysis and production 

stage (stage [4]) in the intelligence cycle, not for the processing stage. Other applications 

for the analysis stage include employing OR methods for the analysis of social networks, 

as in (Lindelauf, 2008). 

Many articles suggests employing OR methods to assist collection co-ordination 

and intelligence requirements management (CCIRM) (Desimone et al., 2002). Those 

articles discuss different methods for optimal allocation of sensors (Preece et al., 2008), 

as well as higher level resource allocation analysis for interdicting a nuclear program of a 

hostile state (Skorch, 2004). 

Costica also models the selection and classification of data before delivering the 

information for analysis (Costica, 2010), as our research. However, Costica focuses on 

modeling the error rate of the screening process, and does not handle the problem of 

choosing what data to screen. 

2.  Information Retrieval 

Information retrieval (IR) is defined as “finding material (usually documents) of 

an unstructured nature (usually text) that satisfies an information need from within large 

collections (usually stored on computers)” (Manning et al., 2008). Although it can be 

applied into small scale problems such as finding a book in the library, its usual 

application is the retrieval of documents from a web-based storage, as is the case when 
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one enters a query search in Google. Many different algorithms handle this problem 

(Langville et al., 2005, for example), which becomes more and more important as the 

Internet evolves. 

The IR problem and the information selection problem share some similar 

characteristics. First, in both problems one needs to retrieve relevant information from a 

large variety of possibilities. Second, both problems have a dynamic nature, as the 

algorithms for solving the IR problem depend on feedback regarding the relevance of the 

already retrieved information. Third, the sources in both problems are correlated. The 

correlation in the web is due to the existence of hyperlinks between web documents. 

Several algorithms for solving the IR problem take those hyperlinks into account 

(Langville et al., 2005). 

However, there are substantial differences between these two problems. First, the 

IR problem handles data in a much larger scale, as Google, for example, searches through 

billions of possibilities. Second, in the information selection problem the collector 

receives immediate feedback on his choices that allow him to immediately adapt his 

assessments, unlike the IR problem. 

The similarities between the problems suggest that we might attempt to employ 

methods used for solving the IR problem to solve the information selection problem. 

Although that approach might be useful, due to the differences between the two problems 

we decided to derive our methods from algorithms that treat other types of problems, 

more intuitively similar to our problem: ranking and selection problems and exploration-

exploitation problems. 

3.  Ranking and Selection 

The Ranking and Selection (R&S) problem can be regarded as “selecting the best 

design among a finite number of choices, where the performance of each design must be 

estimated with some uncertainty through stochastic sampling” (Fu et al., 2002). In other 

words, one is faced with several alternatives, and needs to sample them in order to 

determine which the best one is. Each sampling of an alternative might produce several 
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possible results. Specifically, for the information selection problem, an alternative can be 

regarded as an information source, and sampling as screening information and checking 

whether it is relevant or not. 

Fu et al. suggest different methods to handle the ranking and selection problem 

(Fu et al., 2002). However, facing correlations between the different alternatives, only 

Frazier et al. (Frazier et al., 2010) suggest a method that takes those correlations into 

account. Frazier et al. state that “to our knowledge no work has been done within the 

R&S literature to exploit the dependence inherent in our prior belief about the value of 

related alternatives.” We use the algorithm suggested in that article, the knowledge 

gradient policy to solve the information selection problem, as shown in Chapter III. 

4. Exploration-Exploitation 

Due to  time and resource constraints, the collector faces a tradeoff between 1) 

relying on sources he is already familiar with and knows that they would produce a 

certain amount of relevant information, and 2) attempting to explore new sources, which 

might prove to be better or worse than the familiar sources. In the literature, the tradeoff 

between exploring (investigating new sources) and exploiting (utilizing familiar sources) 

is called the exploration-exploitation problem (Cohen et al., 2007). A common example 

for the exploration-exploitation problem is the multi-armed bandit problem (Berry et al., 

1985). In this problem, a gambler has several levers that he can pull. Each pull returns a 

reward according to a distribution unknown to the gambler. The goal of the gambler is to 

maximize the sum of the reward accumulated from pulling the levers over time.  

Although similar to the R&S problem, the objectives of the two problems are 

different. While the objective in the exploration-exploitation problem is to maximize the 

overall reward derived from choosing the different alternatives, the objective in the R&S 

problem is to find the best option. In a way, the R&S problem focuses only on the 

exploration portion of the exploration-exploitation problem, and does not take into 

account rewards that might be accumulated during the sampling process. Since the 
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objective of the collector in the information selection problem mentioned above is to get 

as much relevant information as possible, the problem can be regarded as an exploration-

exploitation problem. 

Berry et al. provide a survey of methods that address the exploration-exploitation 

problem (Berry et al., 1985). A useful solution for this problem is the use of Gittins 

Index, which offers a way to assign value for each alternative and choose the alternative 

with the best value (Gittins et al., 2011). Given certain assumptions, this is proven to be 

the optimal policy. However, these assumptions do not necessarily hold for our problem. 

These key assumption, which do not hold in our information selection problem are:  1) 

the alternatives have to be independent, the sources in our problem may not be 

independent; 2) infinite horizon, i.e., there is no strict time constraint, while in our 

problem the number of intelligence items is finite; 3) monotone decreasing value of the 

rewards, while in our problem the value of intelligence is not discounted. Tokic (Tokic, 

2010) suggests more “flexible” algorithms, that we will use in our research. 

C. CHAPTER OUTLINE 

The thesis has five chapters. Following Chapter I, in Chapter II we propose a 

mathematical model for the information screening process. Chapter III provides several 

possible algorithms to handle the information selection problem. In Chapter IV we 

describe a simulation and a specific scenario, both used to examine the performance of 

the algorithms mentioned in Chapter III. Chapter V shows a comparison of the algorithms 

performance. In Chapter VI we summarize the research and propose possible model 

extensions and future research directions. 
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II. THE MODEL 

In this chapter we further describe the information selection problem shown in 

Chapter I, scoping it and stating our main assumptions. Then, we propose a mathematical 

model to represent this problem. 

A. THE PROBLEM 

1. The Communication Network 

We consider a screening process where an intelligence collector (in short, 

collector) faces a pool of records, documenting the content of a certain communication 

network during a given time period. The nodes in this network may be phone numbers, e-

mail addresses, fax numbers, etc. We assume that the network remains stationary 

throughout the screening process – no nodes are added or removed, and no new records 

are added to the pool. 

Each record in the pool describes a conversation between two nodes. In order to 

get the content of the conversation, the collector needs to allocate time for screening it 

(listen to it, read it, etc.). We ignore the possibility of using automatic tools used for 

extracting information from such conversations, and assume that the collector has to go 

over the conversation himself.  

Prior to screening a conversation, the collector only knows which two nodes 

participate in the conversation, without any knowledge about the content of the 

conversation. The collector might have some knowledge about the identity of a person 

behind a certain node—his names, his role in the organization, etc. The way the collector 

uses this knowledge is explained later on. 

2.  Screening a Conversation 

At any given moment, the collector has access to the entire pool of records, and 

can screen whichever conversation that he chooses. The collector tries to determine 

which conversations contain relevant information. Information is relevant only if it is 

useful for an analyst in the Analysis and Production stage (stage four in the intelligence 
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cycle, as explained in Chapter I). Since we focus on the Processing stage, the question 

which information is considered relevant is beyond our scope of research. We therefore 

simply assume that the distinction between relevant and irrelevant conversations is well-

defined. We assume that all the relevant conversations in the pool have the same 

operational value. 

After screening a conversation between i and j , the collector knows for certain 

whether it is relevant or irrelevant (i.e., we assume there are no errors in determining the 

relevance of a conversation). Using Bayes theorem, the collector can then update his 

beliefs regarding the probability that any conversation between i and j is relevant. 

3.  The Relevance Value of a Node 

In order to assess the probability that a conversation between two given nodes is 

relevant (prior to screening it) the collector can use two types of information. First, he 

can rely on past screenings of conversations between these two nodes, and see how many 

of them were relevant. Second, he can rely on the information he has about the identity of 

the nodes participating in the conversation. This information might include the access a 

person has to relevant information, his tendency to discuss such matters through the 

communication channel, etc. We aggregate that information into a relevance value 

assigned to each node. That relevance value is a categorical variable, indicating the 

likelihood that a conversation involving the node will be relevant.  

After screening a conversation between i and j , the collector can use Bayes 

theorem to update his beliefs regarding the relevance values of nodes i and j . In 

addition, the collector can then update his beliefs regarding the relevance values of other 

nodes in the network. The collector can do that based on his assumptions regarding the 

connections between persons in the network. For example, a person with a relevance 

value x might be likely to contact persons with a relevance value y . Specifically, we 

assume homophily in the network (McPherson et al., 2001): Persons with high relevance 

value are more likely to be engaged in conversations with each other, as they might work 

with each other, share information with each other, etc. The homophily assumption might 
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not always hold. However, the model can be easily adjusted for other types of 

connections between the persons in the network.  

Therefore, after screening a conversation, the collector can update his assessment 

regarding the relevance value of other nodes. Then, the collector can update his beliefs 

regarding the probability that a conversation between other nodes is relevant. That 

updating process is explained later on. 

4.  Direct Information on the Relevance Values 

The previous section showed how the collector can infer the relevance value of a 

node according to the relevance of the screened conversations. However, the collector 

might also have direct information on the relevance values of the nodes. For example, 

one of the persons participating in a conversation might mention his role in the 

organization in which he works.  

We assume that screening a conversation might result in gaining direct 

information regarding the relevance values of the participating nodes. Based on the 

gained information, the collector can update his beliefs regarding the relevance values of 

the nodes. For simplicity, we assume that after the collector gains such direct 

information, he knows with certainty the exact relevance value of a node. This 

assumption might seem strong, but it can be relaxed (as shown in Chapter VI). We 

therefore consider two situations: either a node is fully identified or it is unidentified. If 

the node is identified, then the relevance category is known to the collector with 

certainty. If the node is unidentified then the collector only knows the relevance category 

with probability. 

Therefore, there are two possible outcomes from screening a conversation: 1) 

determining whether that particular conversation is relevant; 2) gaining information on 

the  relevance value of a node participating in the conversation. 
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B. THE MATHEMATICAL MODEL 

1. The Network 

The communication network is represented by a graph. The nodes in the graph are 

simply the nodes of the communication network, were N represents the number of the 

nodes. Two nodes are connected by an edge if and only if there is at least one 

conversation between them in the pool. The number of conversations between two nodes 

is denoted by ijn . 

As mentioned before, each node i  has a relevance value id  which assumes a 

discrete set of possible values. In addition, every edge ( , )i j is assigned with a parameter

[0,1]ijp  , indicating the probability that a given conversation between i and j is 

relevant. The collector does not know with certainty the values of ijp and might not know 

with certainty the values of id  , as will be explained in the next section. We assume that

ijp remains constant throughout the entire screening process, and that given the value of 

ijp the conversations between i and j are independent. Therefore, the number of relevant 

conversations between i and j follows a Binomial distribution with the parameters ijn

and ijp , and each conversation k can be represented by a Bernoulli random variable, ( )k
ijS  

whose value is 1 if the k th conversation between i and j is relevant, and 0 if it is not. In 

practice, the assumption that the variables (1) (2), ,...ij ijS S are independent given the value 

of
 ijP does not always hold. For example, the conversations following a relevant 

conversation might be more likely to be relevant. However, we still use that assumption 

as it significantly simplifies the model. 

2.  The Collector 

Since the collector has access to the entire network, he obviously knows the graph 

topology, i.e., the nodes and the edges, and the number of conversations ijn associated 

with each edge. However, he doesn’t necessarily know the parameters id , which he 

gradually identifies throughout the screening process, and he will never know the exact 
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value of any ijp . He therefore has to estimate those parameters using the random 

variables iD whose values are the relevance values for the nodes, and ijP whose values are 

the probability that a conversation between i and j is relevant. iD is therefore a discrete 

random variable, while ijP is a continuous random variable and its values vary between 0 

to 1. 

There are two ways the PMF of the iD  s is updated: 

1. “Sudden revelation” following a screening of a conversation – one or two 

nodes participating in this conversations become identified, and their PMF 

becomes a deterministic distribution. The PMF of the rest of the nodes is 

updated according to the conditional probabilities Pr( | )i jD D , which are 

assumed to be fixed and known. This option represents a situation in which 

the content of the conversation provides specific information which enables 

the collector to determine exactly the relevance value. A node can only 

become identified after a sudden revelation occurs. 

2. “Regular update” according the relevance of the conversation. After 

determining the relevance of the conversations, the PMFs of unidentified 

nodes in the graph are updated using Bayes rule. 

As mentioned before, the collector might have some knowledge about the 

relevance variables iD , derived from the content of the conversations. Even though in 

real life a collector might gradually gather information about a node, we assume that all 

the information is gathered in one instance, in one conversation: the relevance value of a 

node is either identified or unidentified. The random variable iD is identified if and only if 

exists a value id  such that Pr( ) 1i iD d  . When the iD  is unidentified, the collector has 

no direct information about its relevance value, and he can only assess its distribution 

according to the values or distributions of its neighbors. When a node becomes identified, 

its distribution collapses into one value. The way in which a relevance variable is 

identified would be described in the next section.  
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We assume that every ijP  
is dependent on iD and jD , since the relevance values 

indicate how likely are the nodes to be involved in a relevant conversation. We also 

assume that ijP  
is conditionally independent of all the other random variables (except, of 

course, ( )k
ijS ) given iD and jD . The conditional probability Pr( | , )ij i i j jP t D d D d    

can be derived, for example, from statistics over previous screening processes.  

While the different random variables iD are dependent, we assume that they 

satisfy the Markov Property, i.e., given the relevance values of the nodes adjacent to i ,

iD  is independent of all other jD  in the network. We assume that the collector has a 

prior joint distribution over the set of all the unidentified iD , and therefore, in particular, 

he knows the conditional probabilities between any two iD and jD . That prior joint 

distribution is updated throughout the screening process. 

3.  Screening the Conversations 

The collector has resources constraints represented by T , an integer indicating the 

total number of conversations the collector can screen. Clearly
( , )

ij
i j

n T , i.e., the 

collector cannot screen all the conversations. We assume that screening each 

conversation requires the same amount of resources.  

As stated before, screening a conversation between i and j  can result in one or 

two of the following outcomes: 1) Determining that the conversation is either relevant or 

irrelevant; 2) The variable iD or jD involved in the conversation is identified. We assume 

the collector has no errors. 

If both relevance values are already identified, the probability that a conversation 

between i and j  is  relevant is simply Pr( 1)ij ijS p  . Since the collector doesn’t know 

ijp , he can estimate it using the equation: 

1 1
( ) ( )

0 0

Pr( 1) Pr( ) Pr( 1| ) Pr( )k k
ij ij ij ij ij

t t

S P p S P p dp P p pdp
 

         ( )ijP            (2.1)  
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where the distribution of ijP depends on the relevance values id and jd and the number of 

relevant and irrelevant conversations between i and j which have already been screened.  

After screening a conversation, the collector can update the distribution of ijP

using Bayes theorem,  as will be explained in the next section. If at least one of the nodes 

i and j is unidentified, there is a probability that an unidentified relevance value will be 

identified, denoted by c . We assume that c is independent of whether the conversation is 

relevant or not. The value of c might depend on the relevance value of the node ( id ) but 

for simplicity we assume that the value of c is the same for all relevance values. We 

assume that c  remains constant throughout the screening process. If both nodes i and j

are unidentified, we assume that each one of them is identified with probabilityc

independently. We assume that the value of c is known to the collector, as it can be easily 

deduced from statistics on other screening processes that already took place. The 

probability to identify a node is independent of the probability that the conversation is 

relevant. 

The collector tries to find a policy for choosing which conversation to screen at 

each iteration, in order to maximize R , the number of identified relevant conversations. 

Other possible goals, such as identifying as many relevance values as possible, are 

beyond the scope of this research. 
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4.  Model Parameters - Summary 

Symbol Type Meaning 

N  Parameter Number of nodes in the graph  

ijn  Parameter Number of conversations between i and j  

id  Parameter Relevance value of i  

ijp  Parameter Probability that a conversation between i and j is relevant 

iD  Variable A random variable used to estimate the relevance value of i  

ijP  Variable A random variable used to estimate the probability that a 

conversation between i and j is relevant 

( )k
ijS  Variable The relevance of the k th conversation between i and j  

T  Parameter The maximal number of conversations the collector can screen 

c  Parameter The probability that an unidentified relevance value is identified 

R Variable The number of relevant conversations the collector has identified 

Table 1.   Summary of the model parameters 

5.  Model Assumptions – Summary 

 Two nodes in the network are considered connected if and only if there is 

at least one conversation between them ( 1ijn  ). 

 The collector has access to any conversation in the network. 

 The relevance of a node can be represented by the categorical value id . 

 The different ijp and id remain constant throughout the screening process. 

 The conditional probability Pr( | , )ij ij i i j jP p D d D d   is the same for 

all ( , )i j and is known to the collector. 
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 Every ijP is conditionally independent of all the other variables (except 

( )k
ijS ) given the values of ,i jD D . Every iD is independent of the other 

relevance values given the values of its neighbors. 

 The collector has a prior distribution over all the iD in the graph. 

 All the conversations in the graph have the same value, and require the 

same amount of resources to screen. 

 The relevance values of the nodes are either identified or unidentified. An 

unidentified node can only be identified if the collector listens to a 

conversation in which it participates. The probability to identify a 

relevance value remains constant, and is independent of everything else. 

 The collector has no false-positive or false-negative errors. 

C. THE UPDATING PROCESS 

Screening a conversation might result in updating the distribution of one or more 

of the variables in the model, according to Bayes theory. We now describe the updating 

process after screening a conversation. We consider two possible situations prior to the 

screening: 1) Both nodes participating in the conversation are already identified, 2)  At 

least one of the nodes is unidentified. First we consider the case where the two nodes are 

identified. 

1.  Updating When the Two Nodes are already Identified before the 
Screening  

As mentioned before, if the nodes i and j are identified, then ijP is independent of 

all the other variables (other than ( )k
ijS ). Therefore, the result of screening a conversation 

between i and j would only result in updating the distribution of ijP ; it will not affect the 

PMF of the unidentified nodes 

We assume that each ijP has a probability distribution that belongs to the same 

family of distributions, with parameters determined by the values of 
iD and jD . The 
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family of distributions is chosen so as to allow a convenient way of updating the 

probabilities throughout the screening process. Specifically, we wish that the prior 

probability distribution of ijP and its posterior distribution will belong to the same family 

of probability distributions, that is, we seek a conjugate distribution. The Beta 

distribution satisfies this property with respect to the Bernoulli likelihood functions 

[George at al., 1993] and its support is between 0 and 1, as desired. Therefore, we assume 

that for any ( , )i j  
the probability distribution of ijP given the values of

 iD and jD is a Beta 

distribution.  

The PDF of ijP , given the relevance values ,i i j jD d D d  , is: 

( , ) 1 ( , ) 1(1 )
( , )

( ( , ), ( , ))

i j i j

ij

d d d d

P i i j j
i j i j

t t
f t D d D d

B d d d d

 

 

 
  

 
where ( ( , ), ( , ))i j i jB d d d d   

is the Beta 

function and ( , ), ( , )i j i jd d d d  are the shape parameters whose values depend on the 

values of
 iD and jD . 

  

The posterior of any Beta random variable ( , )X Beta   with respect to a 

Bernoulli likelihood function is ( 1, )Beta   if a success is observed, and
 

( , 1)Beta   

if a failure is observed. Therefore, given ,i i j jD d D d   and the outcome (1)
ijS  of the 

conversation , the posterior probabilities are:  

( , ) ( , ) 1
(1) (1 )

( | 1, , )
( ( , ) 1, ( , ))

i j i j

ij

d d d d

P ij i i j j
i j i j

t t
f t S D d D d

B d d d d

 

 


   

 , 

( , ) 1 ( , )
(1) (1 )

( | 0, , )
( ( , ), ( , ) 1)

i j i j

ij

d d d d

P ij i i j j
i j i j

t t
f t S D d D d

B d d d d

 

 

 
   

       (2.2) 

and generally:

( , ) 1 ( , ) 1
(1) ( )

1

(1 )
( | ,..., , , )

( ( , ) , ( , ) )

i j ij i j ij

ij

d d s d d f
k

P ij ij k i i j j
i j ij i j ij

t t
f t S x S x D d D d

B d d s d d f

 

 

   
    

   
(2.3)   

 

 



 19

where ijs is the number of  screened relevant conversations between i
 
and j , and ijf is the  

number of screened irrelevant conversations (recall that the screening process is error-

free) . 

Since the expected value of a Beta distribution with the parameters ,  is 


 
 

then based on equation (2.1), the posterior probability that the k-th  conversation between 

i and j is relevant given that 
1 1 1 1

(1) ( 1)
1 1,...,

k k

k
i j i j kS x S x

 


   is: 

1 1 1 1

( ) (1) ( 1)
1 1

( , )
Pr( 1| ,..., )

( , ) ( , )k k

i j ijk k
ij i j i j k

i j ij i j ij

d d s
S S x S x

d d s d d f


  





   

  
   (2.4) 

where the number of relevant and irrelevant conversations, ijs and ijf , is determined 

according to the values of 
1 1 1 1

(1) ( 1)
1 1,...,

k k

k
i j k i j kS x S x

 


   . 

This completes the updating process when both nodes are identified. If at least 

one of the nodes is unidentified, the updating process is more complicated, and requires 

the use of graphical models. We therefore start by providing some background about 

factors and graphical models.  

2.  Hammersley-Clifford Theorem 

A graph of random variables is a graph in which nodes represent random 

variables, and edges represent dependencies between the random variables. Such graph 

holds the Markov property if every node is independent of all the other nodes in the graph 

given the values of its neighbors. In our model, the graph of the iD have the same 

topology as the network graph, as if nodes i and j in the network graph are connected, 

their relevance values iD and jD are dependent. As mentioned before, this graph also 

holds the Markov property. 

Hammersley-Clifford theorem (Hammersley and Clifford, 1971) states that if a 

graph of random variables holds the Markov property and the joint probability 

distribution of the random variables is strictly positive, then the joint distribution of all 
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the nodes in the graph can be represented by a normalized product of factors. In our 

model, the joint distribution of the relevance values can be represented by: 

 1 1

1
Pr({ }) Pr( ,..., ) ( )i N N c

c C

D D d D d D
z




           (2.6)  

where C  is the set of cliques in the graph of the relevance values, ( )cD is a factor of the 

random variables in clique c  and z  is a normalization factor. The product of the factors 

can be represented by a graphical model. We start by showing what factors are, and then 

explain what a graphical model is. 

3.  Factors 

A factor represents dependencies between a set of random variables. It can be 

represented by a table, assigning each realization of the random variables a certain value. 

For example, a factor of binary random variables ,X Y  (denoted by ( , )X Y ) might be 

represented by Table 1. 

X Y Value
0 0 2 
0 1 5 
1 0 20 
1 1 10 

Table 2.   Representation of a factor 

In this example, if the value of X  is 0, the value of Y is more likely to be 1 (as 5 

is larger than 2); if the value of Y is 1, the value of X  is more likely to be 1 (since 10 is 

larger than 5); etc. It is important to notice that a factor is not necessarily a representation 

of joint or conditional probability (it is often not normalized). In many cases, deriving the 

joint probabilities requires more than one factor (Koller & Friedman, 2010).  

Basic operations with factors include reducing a factor given the value of one of 

its variables. For example, if the value of X is set to 1, the representation of the reduced 

factor ( 1, )X Y  is shown in Table 3. 
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Y Value
0 20 
1 10 

Table 3.   Representation of a reduced factor 

Another operation is marginalizing a factor over a certain variable, by eliminating 

the column of that variable and then summing up the identical rows. For example, the 

representation of the marginalized factor ( )X Y is shown in Table 4. 

Y Value
0 22 
1 15 

Table 4.   Representation of a marginalized factor 

We can also multiply factors, by creating a new factor containing all the variables 

of the factors. The values of this new factor are the multiplication of the appropriate 

values of the old factors. For example, the result of multiplying two factors is shown in 

Table 5. 

X Y Value  Y Z Value
 0 0 2  0 0 3 
0 1 5  0 1 8 
1 0 20  1 0 2 
1 1 10  1 1 5 

 

X Y Z Value
0 0 0 6 
0 0 1 16 
0 1 0 10 
0 1 1 25 
1 0 0 60 
1 0 1 160 
1 1 0 20 
1 1 1 50 

Table 5.   Up: two factors. Down: the product of the two factors 
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4.  Graphical Models 

A graphical model is a representation of dependencies amongst random variables. 

In our case, we use a graphical model called Markov Random Field (MRF). An MRF is 

an undirected graph whose nodes are factors, and there is an edge between two factors if 

and only if those factors share at least one random variable in common. For example, the 

factors 1 2( , ),X X 2 3( , )X X are connected. If there is only one factor in the product, it 

is proportional to the joint distribution of the nodes in the factor. However, this is not 

necessarily true if there is more than one factor. 

We can use an MRF to determine the distribution of a subset of the relevance 

values (for example, the joint distribution of two relevance values ( , )i jD D ). We 

construct an MRF whose factors are { ( )}cD (equation (2.6)) which represent the 

different cliques in the network. Then, we use a method called variable elimination 

(Koller et Friedman, 2010). Variable elimination is an algorithm used to determine the 

joint distribution of a subset of the variables (“output variables”), given the assigned 

values of some of the other variables (“fixed variables”). In our case, if we want to 

determine the joint distribution of the variables 
1
, ...,

ki iD D , the input for the algorithm 

would be the identified relevance values, and the output would be a factor 
1

( ,..., )
ki iD D .  

The first step in the algorithm is reducing all the factors which contain fixed 

variables (the way to reduce a factor is shown in the previous section). Then, at each 

iteration a random variable X ,which is neither a fixed nor an output variable is chosen. 

Then, X is eliminated by multiplying all the factors containing X and marginalizing the 

outcome over X . The process is repeated until only the output variables are left. The 

outcome of the algorithm does not depend on the order in which the variables are 

eliminated. However, since the run-time of the algorithm is determined by the order, 

several algorithms exist to choose an order which would minimize the run-time. 
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Figure 1.   A graph to illustrate the variable elimination method 

For example, suppose that given the graph in Figure 1, we wish to determine the 

joint distribution of 3 4( , )D D . We start when we know the factors of the cliques in the 

graph, 1 2 3 3 4 5 5 6( , , ), ( , , ), ( , )D D D D D D D D   . Suppose that the value of 1 1D d was 

identified. We therefore need to eliminate the random variables 2 5 6, ,D D D  (the order of 

the elimination does not affect the outcome, but affects the run-time of the algorithm): 

1) The initial MRF is: 1 2 3 3 4 5 5 6( , , ), ( , , ), ( , )D D D D D D D D    

2) We then reduce the factor 1 2 3( , , )D D D containing the identified relevance 

value 1D , and replace it with the reduced factor 1 2 3 2 3( , , ) ( , )D D D D D  . 

The MRF after reducing 1D is: 2 3 3 4 5 5 6( , ), ( , , ), ( , )D D D D D D D    

3) To eliminate 5D , we multiply the factors containing 5D , such that 

3 4 5 5 6 3 4 5 6( , , ) ( , ) ( , , , )D D D D D D D D D    and after marginalizing over 5D  

we get: 3 4 6( , , )D D D . The MRF is now 2 3 3 4 6( , ), ( , , )D D D D D  . 

4) To eliminate 6D we marginalize over 3 4 6( , , )D D D to get 3 4( , )D D . The 

MRF is now 2 3 3 4( , ), ( , )D D D D  . 

D3 D1 

D4 

D5 D6 

D2 
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5) To eliminate 2D we simply marginalize over 2 3( , )D D to get 2( )D . The 

MRF is now 3 3 4( ), ( , )D D D  . 

6) We then multiply 3 3 4 3 4( ) ( , ) ( , )D D D D D    , and after normalizing it, 

3 4( , )D D  represents the joint distribution of 3 4( , )D D . 

5.  Updating According to the Relevance of the Conversation 

According to equation (2.4), in order to determine the distribution of ijP , we need 

to know the joint distribution of ( , )i jD D and the number of relevant and irrelevant 

conversation between i and j . The collector therefore needs to update all joint 

distributions ( , )i jD D for every edge ( , )i j which contains at least one unidentified node. 

We start by ignoring the possibility that some of the nodes are identified, and we 

incorporate it into the updating process in section 6. 

We begin with examining the simple case of updating the joint distribution of  

( , )i jD D  after determining the relevance of a conversation between i and j , in the k th 

round.  

The collector therefore knows that: 
1 1 1 1

(1) ( 1) ( )
1 1,..., ,

k k

k k
i j i j k ij kS x S x S x

 


   , 

where 1,..., {0,1}kx x  . Using Bayes rule: 

1 1

(1) ( )
1Pr( , | ,..., )k

i i j j i j ij kD d D d S x S x    

1 1 1 1

1 1 1 1

( ) (1) ( 1)
1 1 ( 1)

( ) (1) ( 1)
1 1

Pr( | , , ,..., )
Pr ( , )

Pr( | ,..., )
k k

k k

k k
ij k i i j j i j i j k k

i i j jk k
ij k i j i j k

S x D d D d S x S x
D d D d

S x S x S x
 

 


 




    
 

  
(2.7) 

where 
1 1 1 1

( 1) (1) ( 1)
1 1Pr ( , ) Pr( , | ,..., )

k k

k k
i i j j i i j j i j i j kD d D d D d D d S x S x

 

 
      .  

Based on equation (2.4), we know that:  

1 1 1 1

( )
( ) (1) ( 1)

1 1 ( ) ( )

( , )
Pr( 1| , , ,..., )

( , ) ( , )k k

k
i j ijk k

ij i i j j i j i j k k k
i j ij i j ij

d d s
S D d D d S x S x

d d s d d f


  





     

  

1 1 1 1

( )
( ) (1) ( 1)

1 1 ( ) ( )

( , )
Pr( 0 | , , ,..., )

( , ) ( , )k k

k
i j ijk k

ij i i j j i j i j k k k
i j ij i j ij

d d f
S D d D d S x S x

d d s d d f


  





     

  



 25

where ( )k
ijs and ( )k

ijf are the number of successes and failures amongst the screened 

conversation between i and j in the k th round. Therefore, expression (2.7) can be 

rewritten as: 
( )

( ) ( )
( ) ( ) ( 1)

( )
( 1)

( ) ( )
,

( , )

( , ) ( , )
Pr ( , | 1) Pr ( , )

( , )
Pr ( , )

( , ) ( , )
i j

k
i j ij

k k
i j ij i j ijk k k

i i j j ij i i j jk
i j ijk

i i j j k k
d d i j ij i j ij

d d s

d d s d d f
D d D d S D d D d

d d s
D d D d

d d s d d f


 


 






  

     


 
  

( ) ( ) ( 1)

( 1)

,

( , )

( , ) ( , )
Pr ( , | 0) Pr ( , )

( , )
Pr ( , )

( , ) ( , )
i j

i j ij

i j ij i j ijk k k
i i j j ij i i j j

i j ijk
i i j j

d d i j ij i j ij

d d f

d d s d d f
D d D d S D d D d

d d f
D d D d

d d s d d f


 


 






  

     


 
  

 (2.8) 

We now address the more complicated problem of updating a joint distribution of 

two nodes, based on the relevance of a conversation between two other nodes. We update 

( ,i jD D ) after screening a conversation between nodes ki and kj , where ki and kj might 

be different than i and j . In order to do that, we will use a Graphical Model (shown in 

the previous section). According to the definition of conditional probability, and equation 

(2.6): 

1 1

1 1

(1) ( )
1 1 1

(1) ( )
1 1 1 1 1

( )(1)

( , )

Pr( ,..., , ,..., )

Pr( ,..., | ,..., ) Pr( ,..., )

1
( ) Pr( ,..., | , )

'

k k

k k

ij

k
N N i j i j k

k
i j i j k N N N N

ord kord
c ij ij i j

c C i j

D d D d S x S x

S x S x D d D d D d D d

D S S D D
z




    

      

 
 (2.9) 

where 
( )(1)Pr( ,..., | , )ijord kord

ij ij i jS S D D is the joint distribution of all the conversations 

between i and j which were screened during the first k rounds. ( )ord l is the round in 

which the l th conversation was screened. The constant 'z is used for normalization. 

We can represent this joint distribution by adding to the MRF of the clique factors 

( )cD  (shown in the previous section) and the factors 
( )(1)( ,..., )ijord kord

ij ij ijS S
 
which 

represent the joint probability 
( )(1)Pr( ,..., | , )ijord kord

ij ij i jS S D D , for all edge ( , )i j which 

were sampled at least once during the first k  rounds. As the number of conversations 

increases, the size of those factors grows exponentially. However, using the chain rule:  
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( )(1)
(1) ( )

(1) (2) (1)
(1) (2) (1)

Pr( ,..., | , )

Pr( | , ) Pr( | , , ) ...

ij

ij

ord kord
ij ord ij ord k i i j j

ord ord ord
ij ord i i j j ij ord ij ord i i j j

S x S x D d D d

S x D d D d S x S x D d D d

    

       

 
( ) ( 1)(1)

( ) (1) ( 1)... Pr( | ,..., , , )ij ij

ij ij

ord k ord kord
ij ord k ij ord ij ord k i i j jS x S x S x D d D d

     

 

(2.10) 

Each product in this multiplication can be easily calculated, using equation 2.7. 

Using Variable Elimination, we can use the new MRF to calculate the joint 

distribution of every couple ( , )i jD D . The next section provides an illustration of this 

process. 

6.  Updating when Several Nodes in the Graph are Identified  

Suppose that several nodes in the graph, without loss of generality 1,..., mD D , are 

identified, i.e., 1 1,..., m mD d D d  with probability of 1. Kohler et Friedman show a 

variation of the variable elimination algorithm (Kohler et Friedman, 2010) which can be 

used to determine the following expression: 

1 1

(1) ( )
1 1 1Pr( , | ,..., , ,..., )

k k

k
i i j j i j i j k m mD d D d S x S x D d D d          (2.11) 

According to this method, a new MRF is constructed by reducing each factor in the 

original MRF which contains any of the random variables 1,..., mD D . Then, the variable 

elimination algorithm is used on the new MRF to determine the posterior joint probability 

of ( , )i jD D .  

7.  Example 

We now show an example for the updating process. Since the graph in this 

example is very simple, one might use simple Bayesian updating. However, in more 

complicated graphs this might not be the case. Suppose we have the following graph in 

which each node has a relevance value of either 0 or 1, represented by the factor    (the 

factor happened to be normalized, although this is not necessary): 
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D1 D2 D3 Value
0 0 0 0.2 
0 0 1 0.1 
0 1 0 0.1 
0 1 1 0.1 
1 0 0 0.1 
1 0 1 0.1 
1 1 0 0.1 
1 1 1 0.2 

Figure 2.   A graph and the factor   representing the dependencies in the graph. The 
graph and the factor are used to illustrate the updating process.  

We wish to find the joint distribution of 2 3( , )D D after screening two 

conversations between nodes 1 and 2, given that (0,0) 0.5, (0,1) (1,0) 0.75,    

(1,1) 1  and 1   (regardless of the relevance values). The prior distribution 

(0)
2 3( , )P D D is obtained by calculating the marginalized factor 

1
|D , as shown in Table 6. 

 

D2 D3 Value
0 0 0.3 
0 1 0.2 
1 0 0.2 
1 1 0.3 

Table 6.   The prior distribution of the factor 

According to Table 6, we know that 2 3Pr( 1) Pr( 1) 0.5D D    . 

Suppose the first conversation is relevant. Then, we add to the graph the factor 

(1) (1)
12 12( 1)S   (the factor is not normalized). The rows in which (1)

12 0S  were omitted, 

since their value is zero. The factor is represented by Table 7. 

 

 

D2 

D1 

D3 
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D1 D2 
(1)

12S  Value 

 0 0 1 (0,0) 0.5 1

(0,0) (0,0) 1.5 3


 

 


 

0 1 1 (0,1) 0.75 3

(0,1) (0,1) 1.75 7


 

 


1 0 1 (1,0) 0.75 3

(1,0) (1,0) 1.75 7


 

 


1 1 1 (1,1) 1

(1,1) (1,1) 2


 




 

Table 7.   The factor after adding the fixed variable (1)
12S  

Then, we perform variable elimination, by eliminating first (1)
12S and then 1D . 

Clearly, the values of (1) (1)
12 12( 1)S  do not change when we eliminate (1)

12S . For the 

second stage, we start by multiplying the factors (1)
12

(1)
12 |

S
 and  . 
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D1 D2 D3 Value 
0 0 0 0.0667
0 0 1 0.033 
0 1 0 0.043 
0 1 1 0.043 
1 0 0 0.043 
1 0 1 0.043 
1 1 0 0.05 
1 1 1 0.01 

Table 8.   A multiplication of the two factors 

Then, after marginalizing the factor by 1D and normalizing the result, we get a 

new factor. 

D2 D3 Value
 0 0 0.26 
 0 1 0.18 
1 0 0.22 
1 1 0.34 

Table 9.   The updated factor given that the first conversation is relevant 

Based on Table 9, 2Pr( 1) 0.56D   and 3Pr( 1) 0.52D   . As expected, both 

probabilities are larger than the prior, and the probability of node 2 is larger than that of 

node 3. We can calculate this joint distribution using Bayes rule, as follows: 

1

(1)
(1) 12 2 2 3 3

2 2 3 3 12 2 2 3 3(1)
12

(1)
12 1 1 2 2 1 1 2 2 3 3

2 2 3 3(1)
12

Pr( 1| , )
Pr( , | 1) Pr( , )

Pr( 1)

Pr( 1| , ) Pr( | , )

Pr( , )
Pr( 1)

d

S D d D d
D d D d S D d D d

S

S D d D d D d D d D d

D d D d
S

  
      



     
  



  

We would then get the exact same joint distribution. 

Now, suppose the second conversation between 1 and 2 is irrelevant. We then 

construct an MRF with the factor  and a new factor, (2) (1) (2)
12 12 12( 1, 0)S S   . 
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D1 D2 
(1)

12S  (2)
12S  Value 

 0 0 1 0 1 (0,0) 1

3 (0,0) 1 (0,0) 7.5


 


 

 

0 1 1 0 3 (0,1) 3

7 (0,1) 1 (0,1) 19.25


 


 

 

1 0 1 0 3 (1,0) 3

7 (1,0) 1 (1,0) 19.25


 


 

 

1 1 1 0 1 (1,1) 1

2 (1,1) 1 (1,1) 6


 


 

 

Table 10.   The factor given that the second conversation was irrelevant 

The variable elimination is very similar to the one performed in the previous 

iteration. We start by eliminating (1)
12S and (2)

12S , which does not change the values of the 

factors. Then we multiply (1) ( 2)
12 12

(2)
12 ,

|
S S

 and  . 

 

D1 D2 D3 Value 
0 0 0 0.0266
0 0 1 0.0133
0 1 0 0.0156
0 1 1 0.0156
1 0 0 0.0156
1 0 1 0.0156
1 1 0 0.0166
1 1 1 0.0333

Table 11.   The updated factor (not normalized) 

After marginalizing over 1D , the normalized result is shown in Table 12. 

 

D2 D3 Value
 0 0 0.28 
 0 1 0.19 
1 0 0.21 
1 1 0.32 

Table 12.   The updated joint distribution given one relevant and one irrelevant 
conversations. 
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Based on this joint distribution, 2Pr( 1) 0.53D   and 3Pr( 1) 0.51D   . As 

expected, this is a decrease regarding the previous values, where the highest decrease is 

for 2D . This result can also be achieved by calculating the following expression:  

1

(2) (1)
(1) (2) 12 12 2 2 3 3

2 2 3 3 12 12 2 2 3 3(2) (1)
12 12

(2) (1) (1)
12 12 1 1 2 2 12 1 1 2 2 1 1 2 2 3 3

(2)
12 1

Pr( 0, 1| , )
Pr( , | 1, 0) Pr( , )

Pr( 0, 1)

Pr( 0 | 1, , ) Pr( 1| , ) Pr( | , )

Pr( 0 |
d

S S D d D d
D d D d S S D d D d

S S

S S D d D d S D d D d D d D d D d

S S

   
       

 

         





(1) (1)

2 12

2 2 3 3

1) Pr( 1)

Pr( , )

S

D d D d


 

  

 

Now, we choose to screen a conversation between nodes 1 and 3, and find out that 

the conversation is relevant. The new MRF will include the factors  , 

(2) (1) (2)
12 12 12( 1, 0)S S   and a new factor (3) (3)

13 13( 1)S  . 

 

D1 D2 
(3)

13S  Value 

 0 0 1 (0,0) 0.5 1

(0,0) (0,0) 1.5 3


 

 


 

0 1 1 (0,1) 0.75 3

(0,1) (0,1) 1.75 7


 

 


1 0 1 (1,0) 0.75 3

(1,0) (1,0) 1.75 7


 

 


1 1 1 (1,1) 1

(1,1) (1,1) 2


 




 

Table 13.   The factor givent a relevant conversation from a different edge 

Performing variable elimination, we start by eliminating (1)
12S , (2)

12S  and (3)
13S , 

without changing the values. Then, as before, we multiply the three fators, and 

marginalize the product by 1D .The normalized new factor which represents (3)
2 3Pr ( , )D D  

is shown in Table 14. 
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D2 D3 Value
 0 0 0.24 
 0 1 0.21 
1 0 0.19 
1 1 0.36 

Table 14.   The updated distribution 

The marginal probabilities are 2Pr( 1) 0.55D   and 3Pr( 1) 0.57D   , as 

expected both values are higher, but this time the value for 3D is higher than the value for 

2D . The joint distribution can be calculated (and the results would be the same) using the 

expression: 

(3) (2) (1)
(1) (2) (3) 13 12 12 2 2 3 3

2 2 3 3 12 12 13 2 2 3 3(3) (2) (1)
13 12 12

(3) (2) (1) (1)
13 1 1 3 3 12 12 1 1 2 2 12

Pr( 1, 0, 1| , )
Pr( , | 1, 0, 1) Pr( , )

Pr( 1, 0, 1)

Pr( 1| , ) Pr( 0 | 1, , ) Pr( 1

S S S D d D d
D d D d S S S D d D d

S S S

S D d D d S S D d D d S

    
        

  

       
 1

1 1 2 2 1 1 2 2 3 3

(2) (1) (1)
12 12 12

2 2 3 3

| , ) Pr( | , )

Pr( 0 | 1) Pr( 1)

Pr( , )

d

D d D d D d D d D d

S S S

D d D d

    


  
  



 

Last, suppose the collector screens another conversation between nodes 1 and 3, 

the conversation turns out to be irrelevant, but based on the content of the conversation 

the collector determines that 1 1D  (i.e., node 1 was identified). As before, we start with 

the factors  , (2) (1) (2)
12 12 12( 1, 0)S S   and (4) (3) (4)

13 13 13( 1, 0)S S   , represented by 

Table 15. 

 

D1 D2 
(3)

13S  (4)
13S  Value 

 0 0 1 0 1 (0,0) 1

3 (0,0) 1 (0,0) 7.5


 


 

 

0 1 1 0 3 (0,1) 3

7 (0,1) 1 (0,1) 19.25


 


 

 

1 0 1 0 3 (1,0) 3

7 (1,0) 1 (1,0) 19.25


 


 

 

1 1 1 0 1 (1,1) 1

2 (1,1) 1 (1,1) 6


 


 

 

Table 15.   The factor given an irrelevant conversation from a different edge 
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Then, all factors are reduced given that 1 1D  . The resulting factors are shown in 

Table 16. 

 

D1 D2 
(3)

13S  (4)
13S  Value 

1 0 1 0 3 (1,0) 3

7 (1,0) 1 (1,0) 19.25


 


 

 

1 1 1 0 1 (1,1) 1

2 (1,1) 1 (1,1) 6


 


 

 

 

D1 D2 
(1)

12S  (2)
12S  Value 

1 0 1 0 3 (1,0) 3

7 (1,0) 1 (1,0) 19.25


 


 

 

1 1 1 0 1 (1,1) 1

2 (1,1) 1 (1,1) 6


 


 

 

 

D1 D2 D3 Value
1 0 0 0.1 
1 0 1 0.1 
1 1 0 0.1 
1 1 1 0.2 

Table 16.   The three remaining factors 

Now, after eliminating 
(1) (2) (3) (4)

12 12 13 13, , ,S S S S , multiplying the remaining factors 

and eliminating 1D , the normalized result would be: 

 

D2 D3 Value
0 0 0.18 
0 1 0.2 
1 0 0.2 
1 1 0.42 

Table 17.   The updated factor 
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As expected, now both nodes have the same probability to have a relevance value 

of 1, 2 3Pr( 1) Pr( 1) 0.62D D    , higher than the prior probability because of the 

identification of node 1.  
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III. ALGORITHMS AND HEURISTICS 

In this chapter we propose several algorithms and heuristics to address the 

information selection problem described in Chapter I and modeled in Chapter II. Each 

algorithm employs a different strategy for choosing conversations for screening, in order 

to maximize the expected number of relevant conversations screened. The performance 

of these algorithms and heuristics is described in the next chapter.  

A. THE OPTIMAL STRATEGY 

Theoretically, the optimal strategy which maximizes the expected number of 

relevant conversations can be obtained using Partially Observable Markov Decision 

Process (Cassandra et al., 1994; Boutilier, 2002), as will be explained next. The following 

analysis is similar to that shown by Frazier et al. (Frazier et al., 2009).  

We first need to distinguish between the state of the world and the belief 

regarding this state. The state of the world is a vector of the values ,i ijd p , where id  is the 

true relevance value of node i and ijp is the probability that a conversation between i and

j is relevant. Formally, the state of the world is denoted by ( , ),w d p  where 

11( ,..., ), ( ,..., )
M M MN i j i jd d d p p p  . According to our assumptions (stated in chapter II) 

the state of the world does not change. As mentioned in chapter II, the collector does not 

know what the state of the world is. The collector only has a probability distribution over 

possible states of the world, and he updates this distribution throughout the screening 

process as new knowledge is gained through the screening of the conversations.  

We can therefore define the state of the collector as the information gained by the 

collector throughout the screening process. The state of the collector is represented by a 

vector of the number of relevant and irrelevant conversations screened from each edge, 

and the identified relevance values. As shown in the updating process section (in Chapter 

II), with the prior joint distribution, this information is sufficient for updating the joint 

probability distribution of the relevance values ( 1 1Pr( ,..., )N ND x D x  ). Therefore, the 
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information is also sufficient to describe the joint density function of the different ijP . 

Formally, the state of the collector is the tuple ( ) ( ) ( ) ( )( , , )k k k kr s f d , where: 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1( ,..., ), ( ,..., ), ( ,..., )

M M M M

k k k k k k k k k
i j i j i j i j Ns s s f f f d d d   .  

As defined in Chapter II, ( ) ( ),k k
ij ijs f are the numbers of relevant and irrelevant 

conversations screened from edge ( , )i j during the first k rounds. ( )k
id is a categorical 

parameter, whose value is ( )k
i id d if the relevance value has been identified during the 

first k rounds, and ( ) " "k
id null otherwise. We now define actions, strategies, rewards 

and transition probabilities. An action is simply screening a conversation between i and 

j . Therefore, each action can be represented by the tuple ( , )i j , and the set of possible 

actions at round k is all the edges which still have unscreened conversations. Formally, 

the set of possible actions is ( ) ( )( ) {( , ) | 0}k k
ijA r i j n   where ( )k

ijn is the number of 

unscreened conversations between i and j at the k th round. We can therefore define a 

strategy   as a rule for choosing an action given a state r. The strategy takes into account 

the state of the collector, not the state of the world . The collector receives a reward of 1 

if a relevant conversation is screened and 0 otherwise. 

Given a state ( )kr , if the chosen action in the (k+1)th round is to screen a 

conversation from edge ( , )i j , then state ( )kr might change in the following ways:  

1) The number of relevant and irrelevant conversations from edge ( , )i j  in state ( 1)kr 

can be either ( 1, )ij ijs f or ( , 1)ij ijs f  , with probability ijp and 1 ijp ,respectively. 

2) If the relevance value of one of the nodes is still unidentified, w.l.o.g. i (i.e., 

( )' " "k
id null ), then the relevance value id might be identified by screening the 

conversation, and as a result ( 1)' k
i id d  , with probability c ,  defined in Chapter II. 
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3) If both relevance values are unidentified, then only one of them is identified, with 

probability (1 )c c . The probability that both nodes are identified  is 2c  and the 

probability that none of them are identified is 2(1 )c . 

The transition probabilities clearly depend on the state of the world w . Since the 

probabilities that a conversation is relevant and the probability that the relevance value is 

identified are independent, the transition probabilities ( 1) ( )Pr( | , , ( , ))k kr r w i j is the 

product of ijp or (1 )ijp with either 21, , (1 ), , (1 )c c c c c  or 2(1 )c . We can therefore 

calculate the transition probability, i.e the probability that state ( )kr would change into 

state ( 1)kr   following screening a conversation between i and j :   

( 1) ( ) ( 1) ( ) ( )Pr( | , ( , )) Pr( | , , ( , )) Pr( | )k k k k k

w

r r i j r r w i j w r dw  
    

(3.1) 

The expression ( )Pr( | )kw r is obtained using equation (2.11) 

Since the collector has only an estimate of the state of the world, we cannot use 

the conventional Bellman equation (Bellman, 1957) to determine the optimal policy. 

However, this problem can be formulated as a POMDP – partially observable Markov 

decision process (Cassandra et al., 1994). A POMDP problem includes the state of the 

world w , and a belief state ( )b w , the estimated probability that the state of the world is 

w . The value function of a belief state b  represents the expected reward if the optimal 

strategy (according to belief state b ) is employed. It is determined using the recursive 

formula (Cassandra et al., 1994): 

( ) ( 1)

'

( ) max{ ( ) ( , ) ( , , ') ( ')}n n

a
w b

V b b w R a w b a b V b   
   

 (3.2) 

where a is an action, ( , )R a w is the expected reward given the state of the world w if 

action a was chosen, and ( , , ') Pr( ' | , , ) ( )
w

b a b b b a w b w  is the transition probability 

from belief state b to 'b given that action a was chosen.  

We can translate the notations in equation 3.2 into our model’s terminology in the 

following manner: 
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 In both cases, the state of the world is denoted by w , although in our case 

w is continuous. 

 As mentioned before, an action a is screening a conversation between i

and j . 

 The belief state ( )b w is represented by the probability 
( )Pr( | )kw r . 

 The reward ( , )R a w is the expected value of ( )k
ijS . Since that expected 

value is equal to the probability that the conversation is relevant, that 

expected value is simply ijp .  

  The transition probability ( , , ')b a b can be substituted with the transition 

probability ( 1) ( )Pr( | , ( , ))k kr r i j  in expression (3.1). 

In the last round, the collector will simply choose the conversation with the 

highest probability to be relevant. Formally, the future value of the last round, given the 

state of collector ( 1)Tr  is simply ( 1) ( 1) ( )

( , )
( ) max{ [ ]}T T T

ij
i j

V r S    . We can therefore use 

equation (3.2) recursively to calculate the future value in a given iteration and a state of 

the collector. 

 
To determine which conversation should be chosen in each iteration, we can use 

equation (3.2), where the expression ( ) ( , )
w

b w R a w is substituted by ( )Pr( | )k
ij ij

w

w r p dp

which equals (according to equation (2.8)) ( )[ ]k
ijS . We therefore end up with the 

following equation to determine the best edge from which a conversation should be 

screened: 

( 1)

( 1) ( 1) ( ) ( 1) ( 1)

( , )
( *, *) arg max{ [ ] Pr( | , ( , )) ( )}

k

k k k k k
ij

i j r

i j S r r i j V r


      
   

(3.3) 

Therefore, the strategy which chooses a conversation according to equation (3.3) 

is the optimal strategy. 
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Although we can theoretically determine the optimal strategy, for more than a few 

iterations this method is impractical, since the required number of calculations grows 

exponentially with the number of iterations. We therefore examine different approximate 

algorithms to provide us with a strategy as close to optimal as possible.  

B. ALGORITHMS AND HEURISTICS 

In this section we describe the different algorithms that we examine in Chapter V. 

We start by describing two basic approaches that are mentioned in the literature (Daw at 

al, 2006; Tokic, 2010) as common algorithms for handling the exploitation-exploration 

problem: Softmax and  -greedy.   

1.  Basic Algorithms  

The following two basic algorithms provide a baseline for comparison with more 

advanced algorithms developed in this chapter. Both algorithms run for a fixed number of 

iterations, and in each iteration choose one conversation to be screened. We define an 

alternative as an edge from which a conversation might be chosen, in other words, each 

edge with unscreened conversations is an alternative. The  -greedy algorithm 

determines in each iteration whether to choose an alternative according to an exploitation 

criterion or an exploration criterion (explained below). The Softmax algorithm does not 

make this clear distinction—in each iteration it assigns weights to the different 

alternatives and chooses randomly according to the weights, thus combining exploration 

and exploitation.  

a.  Softmax 

At each iteration the Softmax algorithms (Thrun, 1992) chooses one of 

several alternatives. A chosen alternative a is expected to produce a reward av . In our 

context, the alternatives are edges with unscreened conversations, and the expected 

reward is [ ]ijP . In each iteration an alternative with a higher expected reward (i.e., 

higher [ ])ijP  is more likely to be chosen. However, there is still a probability that 

alternatives with lower expected rewards are chosen. 
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The algorithm assigns each alternative a specific weight between 0 and 1 , 

which is designated as the probability that the alternative is chosen. The weights are 

assigned based on the expected rewards according to the Bolzman distribution formula: 

a

a

v

T

a v

T

a

e
w

e




. T is a positive parameter called temperature (Daw at al., 2006). For small 

values of T , the weight of variables with high expected value is very large and they will 

almost always be chosen.  For large values of T , all variables have about the same 

weight.  

b.  -Greedy 

In the  -greedy algorithm (Barton at al., 1998), each round an exploration 

approach is chosen with a probability of epsilon, and an exploitation approach otherwise. 

The purpose of exploration is to get more information on the different possible 

alternatives. Specifically, in the  -greedy algorithm, exploration means choosing an 

alternative at random out of all the possible alternatives (i.e., out of all the edges with at 

least one unscreened conversation). Exploitation, however, means choosing an alternative 

which would maximize the expected reward. Specifically, in the following algorithms 

exploitation means choosing at random from some well-defined subset of top 

alternatives, i.e., alternatives with high values. The value of an alternative in our case (an 

edge) is [ ]ijE S .  

The value of   might be constant, or a function of the number of 

iterations left for the algorithm (Tokic, 2010). For example,   can be chosen to be 

( ) (1 )
t

t
T

   where T is the total number of rounds (given at the beginning of the 

process), t  is the current iteration, and  is a scaling parameter. The larger  is the faster 

the function decreases, and   is 1 at the beginning of the process and 0 at the end. 

Therefore, exploration is more likely during the first iterations, while exploitation is more 

likely during the last rounds. 
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c.  Pure Exploitation 

One intuitive approach is to examine a greedy algorithm that always 

chooses a conversation from the edge with the highest expected probability to be a 

relevant conversation, i.e., the highest [ ]ijP . In other words, this algorithm ignores 

exploration, and always chooses a conversation according to the exploitation criterion. 

We will use this naïve approach as a baseline for comparison with the other algorithms. 

d.  Exploration-First Heuristic 

Before addressing more complicated algorithms, we describe some naïve 

heuristics for solving the problem that are intuitively appealing and therefore might be 

employed by a collector. One such heuristic is to start with an exploration period, i.e., the 

purpose for choosing the first conversations is to gain information on the different 

alternatives, and then continue with an exploitation period, in which the goal in each 

iteration is to maximize the expected probability that the chosen conversation is relevant.  

During the exploration period, the collector can use different exploration 

methods, such as the knowledge gradient policy and the wide exploration policy, both 

described later. During the exploitation period, the collector either always chooses the 

best alternative, i.e., the edge with the highest [ ]ijP , or chooses according to the 

Softmax algorithm. 

e.  A Naïve Exploration Method – Wide Exploration  

An intuitive way for exploring the graph is to sample as many different 

edges as possible, rather than further evaluate the already sampled edges. Given an 

integer B , the collector would choose to explore the edge with the highest expected 

value, as long as it has been chosen less than B times so far. 

2.  Advanced Algorithms 

 a.   -Greedy VDBE-Bolzman 

The Value-Difference-Based-Exploration (VDBE) algorithm presented by 

Tokic (Tokic, 2010) is a modification of the  -greedy algorithm, with a different 
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decision rule for determining whether to explore or to exploit. The algorithm assumes 

that an exploration criterion is more likely to be chosen when there is a low certainty 

regarding the expected values of the alternatives, and an exploitation criterion is applied 

otherwise. As mentioned before, an alternative is an edge from which a conversation 

might be screened, and the expected value of an alternative is [ ]ijP . There is a low 

certainty regarding the expected values, if the expected values rapidly change after 

screening a conversation. Therefore,  is determined according to the amount of change 

in the expected value of the chosen alternative. 

In order to accommodate that,   is being updated according to the 

formula: 

( 1) ( )

( 1) ( )

( 1) ( )1
(1 )

1

k k
i i

k k
i i

v v

k k

v v

e

e





   





 



 


  



        (3.4)  

where i is the chosen alternative in the k th round, and ( 1) ( )k k
i iv v  is the change in the 

expected reward of alternative i  (defined earlier as the expectation of the respective ijP ). 

The parameter is a positive constant called inverse sensitivity. The smaller is, the 

larger the impact a change in the expectation has on the value of epsilon.  is another 

scaling parameter, which the way to determine it is explained later. The value of (0) is 

set to be 1. In our model terminology, ( 1) ( ) ( 1) ( )[ ] [ ]k k k k
i i ij ijv v E P E P    .  

b.  The Knowledge-Gradient Policy 

Frazier et al. (Frazier et al., 2009) propose a solution for the following 

ranking and selection (R&S) problem. A decision maker is presented with several 

actions, each of which returns a random reward. The rewards are correlated and the 

decision maker’s problem is to select the best action, i.e., the action with the highest 

average reward. Specifically, after alternative i  is chosen, it produces rewards according 

to a Gaussian distribution whose mean and standard error are i  and i  respectively. The 

standard errors are known to the decision maker, but the means are unknown. However, it 
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is known that the different i  are drawn according to one multivariate normal Gaussian 

distribution whose parameters are unknown. The different i  are therefore correlated, and 

information about one of them provides information on the distribution of the others. The 

goal of the decision maker is to assess which action has the maximal i . In order to do 

that, several rounds of exploration are allowed in which the different actions are sampled 

and evaluated.  

In our terminology, Frazier et al. focus only on the exploration phase. 

They propose an algorithm that samples the different alternatives, and eventually 

determines what alternative has the highest expected value. They propose the 

Knowledge-Gradient (KG) policy to solve the problem, and show that it is the best 

myopic strategy possible (although non-myopic strategies might prove better).  

The symbol ( )kb denotes the belief state of the decision maker in the k th 

iteration (defined in Section A), i.e., its assessment of the different i . Based on ( )kb , the 

expected value of the best alternative is denoted by ( ) ( )
max |k kb . Following the sampling 

of an alternative a  and observing the reward r from choosing it, the belief state of the 

decision maker changes into ( 1) | ,kb r a , resulting with ( 1) ( )
max | , ,k kb a r  . Since the 

decision maker has an assessment regarding the distribution of r , he can estimate 

( 1)
max[ | ]k a  for each alternative. According to the KG-policy, he chooses the alternative 

according to: ( 1) ( )
max maxarg max{ [ | ] }k k

a
a   . In other words, he chooses the alternative 

that is expected to change the most the maximal expected reward. We will now show the 

adaptation of this algorithm to our model.  

There are two main differences between the model provided by Frazier et 

al. and our model. First, the parameters in Frazier’s model have a joint multivariate 

normal distribution, while our parameters are also correlated, but in a way determined by 

the network structure of the conversation records. Second, Frazier et al. focus only on the 

exploration stage. They ignore the rewards gathered during the exploration portion. In our 

model, there is no clear distinction between an “exploration phase” and “exploitation 
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phase.”  Instead, the collector simply collects the maximum number of relevant 

conversations given his time constraint.  Thus, any separation between “exploration” and 

“exploitation” is purely algorithmic and does not originate in the problem statement. 

Despite those differences, we can still use the KG policy as an exploration method.  

Given a state of the collector ( )kr (defined in section A), the collector 

estimates the value of [ ]ijP  for every ( , )i j . Suppose that from the kth iteration onward, 

the collector chooses conversations based solely on the different values of [ ]ijP  (without 

updating them), regardless of the outcomes of the following rounds. A greedy strategy 

would be to screen conversations from the edge with the highest [ ]ijP  until it has no 

more conversations, then screen conversations from the edge with the second highest 

[ ]ijP , and so on. The future value of a state ( )kr , denoted by ( ) ( )( )k kQ r , is the expected 

number of relevant conversations given the greedy strategy.  

The future value is therefore the number of relevant conversations the 

collector expects to screen from the k th iteration onward, given ( )kr . Now, suppose that 

on the (k+1)th iteration the collector screens a conversation between i and j , determines 

( 1) ( ) ( 1)| ,k k k
ijr r S  and only then employs the aforementioned greedy strategy. The 

expected number of relevant conversations screened from the k th iteration onward 

would then be: ( 1) ( 1) ( 1)( )k k k
ijS Q r   . Then, the expression 

( ) ( 1) ( 1) ( 1) ( ) ( )( ) ( )k k k k k k
ij ijS Q r Q r      describes the change in the total expected reward 

from the k th round onward following the screening of a conversation between i and j . 

Taking an expectation, the expression becomes: 

( 1)

( ) ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( )[ ] [ ] [ ( ) ( )] Pr( | , ( , ))
k

k k k k k k k k
ij ij

r

S Q r Q r r r i j


                 (3.6) 

The expression ( 1) ( )Pr( | , ( , ))k kr r i j is calculated according to equation (3.1).  
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According to the KG policy, the collector would choose at each iteration 

the edge with the highest expected change: ( )

( , )
( *, *) arg max{ [ ]}k

ij
i j

i j    . For the last two 

rounds, the KG is the optimal policy. 
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IV. ANALYSIS 

A. SIMULATION DESCRIPTION 

1. Overview 

In order to test and compare the performance of the different algorithms and 

heuristics described in Chapter III, we have constructed a simulation of the screening 

process. We now show an overview of the way the simulation represents the state of the 

world and the state of the collector. 

The network representing the state of the world consists of: 

 A graph representing the communication network.  

 The number of conversations ijn between any two nodes (i,j) in the graph.  

 The relevance value 
id  assigned to each node i , where 

id = 0 if the node is 

irrelevant, and the probability ijp that a conversation between nodes i and j

is relevant  for each edge ( ,i j ).  

The collector’s knowledge and beliefs regarding the state of the world are: 

 The collector knows the network’s topology and the number ijn  of 

conversations between each pair of  nodes (i,j). 

 The collector does not know the true values  
id  

and
 ijp , and therefore 

estimates them using the random variables ,i ijD P . He has a prior joint 

probability distribution representing his belief
 
regarding the different iD . 

Based on that prior distribution and the conditional probabilities 

Pr( | , )ij i jP D D known to him, he has a prior distribution of the ijP . 
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 The collector updates the probability distributions of  and i ijD P based on 

the observed relevance of the screened conversations. He keeps track of 

the number of relevant and irrelevant conversations screened from each 

edge, and the identified relevance values that may be revealed during the 

screening process. 

The main stages of the simulation are: 

 Stage 1: Creating a graph representing of the network; 

 Stage 2: Determining the prior joint distributions of  and i ijD P ; 

 Stage 3: Setting the fixed values of the parameters id
 
and

 ijp ;  

 Stage 4: Implementing a certain screening algorithm 

o Selecting an edge for screening, 

o Determining the outcome of the screening (based on the  ijp

,values determined in Stage 3), 

o Updating the state of the collector knowledge accordingly.  

2. Stage 1 – Constructing the Network Graph 

a.  Main Assumptions 

 We define a set of nodes in the graph that consists of nodes representing 

relevant persons in the network (those with id >0), and nodes representing 

irrelevant persons ( id = 0).  

 The edges between two nodes, each representing a relevant person, are 

given as  input, that is…. The other edges (between nodes where at least 

one is irrelevant ( id = 0)), are determined randomly. The number of 

conversations associated with a certain edge is determined by a Poisson 

distribution. The mean of the Poisson distribution is given as a parameter, 

and this value is the same for all edges. 
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b.  Stage Description 

We construct a graph in which each node represents a person, and there is 

an edge between two nodes if and only if there has been at least one conversation 

between the two respective persons.  

The nodes in the network are divided into nodes representing relevant 

persons and nodes representing irrelevant persons. The total number of nodes is N . The 

set of edges between relevant persons is given. Edges connecting nodes representing 

irrelevant persons with either relevant or irrelevant persons are added randomly, as in an 

Erdos-Renyi graph (Erdos at Renyi, 1959): For each irrelevant node i , and another node 

j (either relevant or irrelevant) there is a predetermined probability that nodes i and j  

are connected.  

After the edges are set, the number of conversations between two 

connected nodes i and j , ijn , is determined by a number drawn from a Poisson 

distribution with a given mean, plus 1. The extra conversation added to the drawn number 

guarantees that there is at least one conversation for each edge.  

c.  Example 

Given a graph representing connections between six relevant persons – 

 

  
  
 
 
 

 

Figure 3.   An example of a network 

After adding nodes representing four irrelevant persons, adding randomly 

generated edges, and determining ijn based on a Poisson distribution with mean 10, the 

resulted graph is shown in Figure 4.  
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Figure 4.   An example of a network with dummy nodes 

3.  Stage 2 – Determining the Distributions of the Random Variables 

a.  Main Assumptions 

 Neighboring nodes are more likely to have similar relevance values.  

 The probability distributions of the relevance values (i.e., Pr( )i iD d ) are 

strictly positive, i.e., Pr( ) 0i iD d  for every , ii d . This is a condition for 

Hammersely-Clifford theorem.  

 The relevance value of a node ( iD ) is independent of the relevance values 

of other nodes in the graph, given the relevance values of its neighbors. 

Therefore, the joint distribution of the relevance values can be represented 

by a product of joint distributions of the cliques in the network. 

 Given relevance values
 ,i jd d  of two adjacent nodes (here ,i jd d  represent 

any values of the random variables ,i jD D ,- not necessarily the true 

relevance values drawn in Stage 3 below) the probability distribution of  

ijP is
 
a Beta distribution with the parameters ( , ), ( , )i j i jd d d d  . 
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b.  Stage Description 

In order to apply the updating process described in Chapter II, we need to: 

 Identify the cliques in the graph constructed in stage 1. 

 Determine the clique factors
 ( )cD . 

 Determine the functions ( , ), ( , )i j i jd d d d  , which determine the 

conditional probabilities Pr( | , )ij i i j jP D d D d  . 

 
(1) Identifying the Cliques in the Graph. As mentioned in 

Chapter II, in order to determine the joint distribution of the iD and the ijP we rely on 

Clifford-Hemersley theorem. To use that theorem we first need to determine the cliques 

in the graph constructed in Stage 1. The cliques of the graph are found according to Bron-

Kerbosch algorithm (Bron et Kerbosch, 1973). For example, the cliques in the graph 

depicted in Figure 2 are: {1,6,9}, {6,7}, {2,6}, {2,3,8}, {1,3}, {3,10}, 

{3,4,5},{3,5,8},{9,10}. 

(2) Clique Factors. As mentioned in Chapter II, we assume 

homophility in the network, that is, people with a high relevance value are more likely to 

be engaged in a conversation with other people of this type. Likewise, we assume that 

irrelevant people are more likely to communicate with other irrelevant people. Therefore, 

the relevance values of neighboring nodes are likely to be similar. 

Let us assume we have a clique with m  nodes and the relevance 

value of each node in the clique is one of l  possible values. Then, the relevance values of 

the nodes have ml
 
possible realizations, where each realization is an m -dimensional 

vector. Given a realization
1( ,..., )my y y , we can define a weight to represent how 

different are the values of the realization from each other: 2

1

( ) ( ) 1
m

i
i

w y y y


   , where 

1

1
( )

m

i
i

y y
m 

  is the average of the different relevance values in the realization. One is 

added to avoid dividing by zero later on. If the values of a realization
1( ,..., )my y y are 
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close to each other, the weight of y would be low. If there is a significant variability 

among some of these values, the weight of y will be high. According to our homophily 

assumption, the higher the weight of a realization, the less likely it is to happen. We 

assign each realization a value ( )v y representing how likely the realization is. The higher 

the value, the higher the probability that the relevance values of the node are indeed 

1,..., my y . The value assigned for each realization is
 ( ) (1/ ( )) pv y w y  

where p is a 

positive scaling parameter. When p equals zero, all realizations have the same 

probability, and when p is very large the probability of high- weight realizations is close 

to zero.  

(3) Determining the Beta distributions. The probability 

distribution of ijP depends on the relevance values of nodes i  and j . As described in 

Chapter II and mentioned above,, for given relevance values ,i jd d the distribution of ijP is 

determined according to a Beta distribution with parameters ( , ) and ( , )i j i jd d d d  . We 

assume that the higher the relevance values of the nodes i and j , the higher the 

probability that a conversation between i and j is relevant ( ijP ). The mean value of  ijP  is 

( , )

( , ) ( , )
i j

i j i j

d d

d d d d


 

(the mean value of a Beta distribution). Therefore, if ( , )i jd d

remains constant, then the higher ( , )i jd d the higher the mean value of ijP .We therefore 

assume here that while ( , )i jd d  
is an explicit function of

 and i jd d ,

 

( , )i jd d  is 

constant. That is, 
( 0.5) ( 0.5)

( , )
2(max{ } 0.5)

q q
i j

i j q
i

i

d d
d d

d


  



, and ( , )i jd d  , where q is a 

scaling parameter. The value 0.5 is added to the relevance values to make sure that 

( , ) 0i jd d  . If q is very high, then when
 ,i jd d are low,

 Pr( )ijP t approaches zero for 

0t  . If q is close to zero, then ijP is independent of ,i jd d . The function ( , )i jd d was 

chosen to be a monotone increasing function such that (max{ }, max{ }) 1i jd d  . The 

mean value of ijP  
is therefore [ | max{ }] 0.5ij i j iP D D d    .  
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(4) Initializing the Prior Joint Probabilities of ( , )i jD D . As 

mentioned in Chapter III, in order to determine the probability distributions of ijP , ( )k
ijS

 

we need to know: 

 The joint distribution of ( , )i jD D ;
 

 The number of relevant and irrelevant conversations on edge ( ,i j ) 

 The Graphical model of the clique factors { ( )}cD  

Therefore, at the end of this stage, a Markov Random Field (MRF), 

composed of the Clique factors, is constructed. Based on this MRF, the simulation uses 

variable elimination to determine the joint distributions of ( , )i jD D . Those joint 

distributions are updated during the screening process. Finally, a table is constructed to 

keep track of the relevant and irrelevant conversations screened at each edge.  

c.  Example 

The Graphical Model for the graph shown in Figure 4 includes the factors:  

(1,6,9), (6,7) , (2,6) ,  (2,3,8),  (1,3),  (3,10), (3, 4,5) , (3,5,8), (9,10)         , 

corresponding to the nine cliques identified in the graph. 

Given the clique (2,3), and assuming that there are t three possible 

relevance values – 0,1 and 2, and both scaling parameters p and q  equal 1, Table 18 

shows the values of the factor 
2 3( , )D D , and the values of the parameter for the Beta 

distribution. 
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2D   3D  
Weight 
( ( ))w y  

Value 
( ( ))v y   value of   

0  0 1 0.157895 0.2 

0  1 1.5 0.105263 0.4 

0  2 3 0.052632 0.6 

1  0 1.5 0.105263 0.4 

1  1 1 0.157895 0.6 

1  2 1.5 0.105263 0.8 

2  0 3 0.052632 0.6 

2  1 1.5 0.105263 0.8 

2  2 1 0.157895 1 

Table 18.   An example of the alpha function 

4.  Stage 3 – Drawing the Fixed Values 

a.  Key Assumptions 

The fixed values ,ij ijp d  are randomly drawn from the joint distributions 

of the random variables ,ij iP D known to the collector. 

 b.  Stage Description 

The fixed values id , for each node representing a relevant person, are 

assigned sequentially, based on the MRF determined in the previous section. . For each 

node i , which represents a relevant person, we use variable elimination to derive from 

the MRF the probability distribution of iD . The value id is drawn from that distribution. 

Then, the MRF is marginalized according to the result, as shown in Chapter II. We keep a 

copy of the original MRF, which the collector uses as the initial prior distribution. The id

for all the irrelevant values are then set to 0. 

Then, each parameter ijp  is specified based on a value drawn from the 

Beta distribution determined by id  and jd . The actual value of the 'ijp s are also unknown 

to the collector.   
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c.  Example 

The fixed relevance values jd and the probabilities of relevant 

conversations ijp  in the graph shown in Figure 4 were drawn by the simulation, and the 

results are shown in Figure 5. 

 

Figure 5.   the graph and the probabilities ( ijp ) 

5.  Stage 4 – Screening a Conversation 

Different algorithms (presented in Chapter III) are used to choose the sequence of 

edges from which conversations are screened. Once a conversation on an edge ( *, *)i j , 

still containing conversations, is chosen, the outcome of this conversation—relevant or 

irrelevant—is determined by drawing from a Bernoulli distribution with parameter * *i jp . 

Then, the values of * * * * * *, ,i j i j i jn s f are updated according to the outcome of the screening, 

the joint distribution of each pair ( , )i jD D is updated accordingly (as shown in Chapter 

II), as well as the estimate of ijP . The total number of relevant conversations ( R ) is 

updated at the end of each iteration. 
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6.  Summary of the Simulation Parameters and Variables 

a.  Input Parameters Entered into the Simulation 

 

Parameter Symbol Stage

Total number of nodes in the network N  1 
A graph of the relevant nodes ( 0)id  in the network G  1 

Probability that two nodes will be connected --- 1 
Mean number of conversations between two connected nodes --- 1 
Scaling parameter to determine the joint distribution of the relevance 
values in each clique  

p  2 

Scaling parameter to determine the distribution of ijP given the 

relevance values of i and j  

q  2 

The beta parameter for the Beta distribution    3 
The probability that the relevance value of the node is identified after 
screening a conversation 

c  4 

Number of iterations of the simulation = number of conversations to 
be screened 

T  4 

Table 19.   The input parameters entered into the simulation 

 

b.  Parameters Determined by the Simulation 

Parameters Type Symbol Stage 

All the edges in the network Linked List --- 1 
Cliques in the network Linked List --- 1 
The function ( , )i jd d , used for determining 

the alpha parameter for the Beta distribution 

Table ( , )i jd d  2 

True relevance value of node i Integer 
id  3 

True probability that a conversation between i
and j is relevant 

Real 
Number 

ijp  3 

Table 20.   Parameters determined by the simulation 
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c.  Variables Used in the Simulation 

Variable Type Symbol Stage

Number of unscreened conversations between 
nodes i and j  

Integer ijn  1 

List of Factors representing the cliques in the 
graph, the MRF used for the updating process 

Factor List { ( )}cD  2 

Number of relevant and irrelevant conversations  
screened between nodes i and j  

Table { },{ }ij ijs f  2,4 

The updated joint distribution of ( , )i jD D for 

each edge ( , )i j  

Factor List { ( , }i jD D  
2 

The expected probability that a conversation 
between nodes i and j is relevant following the 
screening of k conversations on that edge. 

Array ( ){ [ ]}k
ijS  4 

Total number of relevant conversations 
screened  

Integer R  4 

Table 21.   variables used in the simulation, i.e., parameters that change throughout the 
simulation run 

7.  Run Time Considerations 

The run-time of the variable-elimination process might be very long. It is 

especially long when the graph is dense or when the average size of the cliques is 

relatively large. This affects the run-time of the algorithms, as after listening to a 

conversation, all the edge factors ( , )i jD D need to be updated (unless the relevance 

values of both nodes are known).  

There are alternative approximate algorithms to overcome this problem (Kohler at 

Friedman, 2010). However, we decided instead to use the variable elimination algorithm 

with two modifications: 

 A partial updating of the network. After listening to a conversation 

between ( , )i j , we only update edges containing neighbors of i and j . 

The justification for this modification is that the change in the expected 

value of , , , ,l kP l k i j  is usually very small. In addition, those other edges 

might be updated later on, when edges adjacent to them are chosen.  
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 A recursive use of the variable elimination algorithm. After screening a 

conversation, we need to update several joint distributions. If we perform 

the variable elimination algorithm sequentially, we would do unnecessary 

repetitions of calculations. We therefore use a recursive algorithm to avoid 

those repetitions.  

B. THE ANALYSIS METHOD 

1. Overview 

In order to illustrate our model and examine the algorithms described in chapter 

III, we examine a case study. We construct a network whose topology is based on a 

terrorist organization in Tanzania (CSAOS, 2007). Due to lack of real-life data, we 

choose input parameters which would represent a plausible terrorist network, and would 

allow us to illustrate the performance of different algorithms. We then change some of 

the parameters and see how it affects the performance of those algorithms (shown in 

Chapter V). 

2.  The Network Graph 

The network of 17  terrorists behind the 1998 United States embassy bombing in 

Tanzania, is depicted in Figure 6  (CSAOS, 2007). 

 

Figure 6.   Network of the terrorists in charge of the U.S. embassy bombing in 
Tanzania 
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We added to this network 17 “dummy nodes,” representing people connected to 

the terrorists but not directly involved in the terrorist attack. As explained in section A.2, 

we added edges randomly among the dummy nodes and between them and the real nodes 

in the network. The resulting network is shown in Figure 7. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.   The network with dummy nodes 

Red nodes represent the terrorists, and blue nodes are the randomly added dummy 

nodes. We chose the parameter 0.05p  as the probability that a blue node is connected 

to any other node in the graph. As a result, some blue node are disconnected (21, 25), 
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some are connected to 3 or more nodes (18, 22, 31) and the others are connected to one or 

two other nodes. The choice of this parameter is rather arbitrary, and different values 

might have been chosen. 

3.  Case Study Parameters 

The chosen input parameters for the simulation are shown in Table 22.  

Parameter Symbol Value 

Total number of nodes in the network N  34 
A graph of the relevant nodes ( 0)id  in the network G  Shown in 

Figure 6 
Probability that two nodes are connected --- 0.05 
Mean number of conversations between two connected 
nodes 

--- 100 

Scaling parameter to determine the joint distribution of the 
relevance values in each clique 

p 1 

Scaling parameter to determine the distribution of ijP given 

the relevance values of i and j  

q 3 

The beta parameter for the Beta distribution  1 
Number of iterations for the simulation / number of 
conversations to be screened 

T 300 

Table 22.   Parameters values for the case study 

The number of iterations (T   300) is a compromise between the run time and 

the ability to differentiate the different algorithms. With a lower number of iterations, the 

run time of the simulation is shorter. On the other hand, the higher the number of 

iterations, the easier it is to differentiate between the different algorithms. We therefore 

chose the value of 300 as an appropriate compromise. Then, the mean number of 

conversations (100) was chosen so that the simulation would illustrate how the 

algorithms handle the possibility that an edge would have no more conversations to 

screen. In Chapter V we change the mean number of conversations and examine how the 

results change. 

The choice of the probability that two nodes are connected (0.05) and the total 

number of nodes in the network ( N  = 34) are limited by the requirement for a reasonable 
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run time of the simulation. For higher value of these parameters, the run time of the 

variable elimination algorithm would be much longer. Some methods to overcome this 

obstacle are mentioned in Chapter VI. 

The value of p , the scaling parameter ( p  1) is set to represent homophility in 

the network while maintain some level of randomness for the relevance values. The 

scaling parameter q is set to be 3, so there would be a strong correlation between the 

relevance values ,i jd d  and the respective parameter ijp . 

The value of beta ( 1  ) determines that there are only a few edges with a high 

value of ijp (over 0.65) while the values of the other ijp  is significantly lower. The 

results given different values of the beta parameter are shown in chapter V. 

As a result, the “state of the world” of the case study, i.e., the values of ,ij in d and 

ijp , is shown in Table 23. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

id  1 2 2 2 1 2 1 1 1 1 1 1 

Node 13 14 15 16 17 18 19 20 21 22 23 24 

id  1 2 1 1 0 0 0 0 0 0 0 0 

Node 25 26 27 28 29 30 31 32 33 34   

id  0 0 0 0 0 0 0 0 0 0   

 

Edge (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) 

ijn  98 100 107 122 113 98 110 104 96 

ijp  0.85 0.64 0.31 0.04 0.51 0.20 0.51 0.91 0.03 

Edge (4,5) (4,6) (5,7) (5,8) (6,13) (7,8) (7,13) (7,10) (8,10) 

ijn  91 109 97 100 117 120 101 99 98 
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ijp  0.0005 0.58 0.006 0 0.11 0.16 0.0001 0.005 0.69 

Edge (8,9) (8,11) (8,13) (8,14) (10,11) (10,12) (13,14) (13,15) (13,16) 

ijn  103 92 102 97 93 99 102 100 107 

ijp  0.071 0.06 0.0002 0.03 0.0007 0.001 0.8 0.08 0.27 

Edge (14,15) (14,16) (18,33) (18,17) (18,5) (18,10) (19,14) (20,23) (20,1) 

ijn  104 102 97 98 94 97 105 101 105 

ijp  0.58 0.28 0 0.004 0.007 0.18 0.16 0 0.0001 

Edge (22,24) (22,32) (26,9) (27,3) (27,9) (28,4) (28,10) (29,30) (31,3) 

ijn  90 99 103 91 103 113 99 101 100 

ijp  0 0 0 0.22 0.05 0.076 0.004 0 0.21 

Edge (31,4) (31,6) (34,22) (34,1)      

ijn  100 91 99 100      

ijp  0.58 0.064 0.003 0.003      

Table 23.   The values of ijn and ijp (i.e., the number of conversations in each edge and the 

probability that a conversation is relevant) 
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The graph in Figure 8 shows the network, where the thickness of the edges 

represent the likelihood of a relevant conversation. 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 8.   The values of the ijp   
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C. THE ALGORITHMS STUDIED AND COMPARED 

1.  The Algorithms 

Utilizing the “Tanzania” case study, we analyze and compare five algorithms 

described and discussed  in Chapter III.  

 Pure Exploitation (PE): A greedy algorithm which chooses each iteration the 

conversation with the highest likelihood to be relevant. 

 Softmax: An algorithm which assigns each edge with a weight according to 

the probability that a conversation from that edge is relevant, and chooses 

randomly based on those weights. The algorithm is described in Chapter III. 

 Modified VDBE (VDBE): This algorithm is based on the  -greedy Value-

Difference-Based-Exploration algorithm, described in Chapter III. According 

to the original algorithm, each iteration the collector chooses whether to 

explore or to exploit. When the collector explores, he chooses a random edge. 

When he exploits, he chooses an edge the set of edges with the highest value 

of [ ]ijP . The probability to explore is , where the value of   is updated 

throughout the screening process in response to the results. The rate in which 

epsilon changes depends on the differences in the values of [ ]ijP  from 

iteration to iteration: the higher the changes in [ ]ijP , the lower the decay rate 

of epsilon, and the collector will more likely choose to explore. 

This algorithm was originally designed to choose between uncorrelated 

alternatives. When the alternatives are correlated, the random exploration 

proves ineffective, as it ignores the collector’s assessment regarding 

alternatives which have not been examined yet. We therefore modified the 

original algorithm, and instead of a random exploration use the Softmax 

Algorithm when the collector chooses to explore. The parameter of the 

Softmax algorithm (the temperature) is relatively high (0.25), so the collector 

would tend to explore different alternatives.  
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 Wide-Exploration-First (WEF): This algorithm combines the Exploration-

First heuristic and the wide exploration method, both mentioned in chapter III. 

According to this algorithm, during the first iterations (the exploration period) 

the edges are chosen according to the wide exploration heuristic (explained in 

Chapter III) – choosing different edges such that each edge is sampled less 

than a predetermined number of times. Then, during the exploitation period, 

edges are chosen according to the Softmax algorithm whose parameter is 

relatively low (0.05), so the collector would prefer exploitation over 

exploration.   

 Knowledge-Gradient-Exploration-First (KGEF): This algorithm is similar to 

the WEF algorithm, except for a different exploration policy. In this 

algorithm, during the exploration period the edges are chosen according to the 

Knowledge Gradient (KG) policy. According to this policy, each round the 

collector chooses an edge which is most likely to change his assessment of 

which edges should he choose during the next rounds. 

2.  Choosing the Parameters for the Algorithms 

In order to determine the optimal values of the parameters for an algorithm, we 

can try a variety of different values until the optimal values are found (e.g. [Tokic, 

2010]). Instead, we only examine several possible values for each parameter, and thus 

have a rough estimation of what the optimal value of each parameter is. We believe that 

this method of choosing the parameters is sufficient considering the desired level of 

accuracy.  

 Pure Exploitation: No parameters. 

 Softmax: The algorithm has one parameter, called the temperature. The 

temperature parameter determines how much the collector focuses on high 

value alternatives (i.e., edges with a high value of [ ]ijP ).  
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The weights assigned to each edge are 

( , )

ij

ij

v

T

ij v

T

i j

e
w

e




where T is the 

temperature and [ ]ij ijv P  . Therefore, to estimate the desired value of T , 

one can examine the ratio 

high

ave

v

T

v

T

e

e

where

 

highv is a typical high value of [ ]ijP  (in 

our case study, it is about 0.8) and avev is the average expected value of the 

unscreened node (in our case study, about 0.2). The graph in Figure 9 shows 

how the temperature parameter affects this ratio. For example, when 0.05T   

it will almost always choose edges with higher [ ]ijP . When 0.25T  , it is 

more likely to choose edges with a high [ ]ijP , but is still likely to choose 

other edges as well. 

 

 

Figure 9.   The effect of the temperature parameter in the Softmax algorithm on the 
ratio between weight of a high-value edge and average-value edge  
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Based on the graph in Figure 9, we compared several values for the 

temperature parameter (0.05, 0.08, 0.1, 0.12, 0.15) and 0.08 is proved to be 

the optimal choice. Interestingly, in this region even slight changes in the 

parameter (of about 0.02–0.03) have a significant effect on the outcome (a 

difference of 10–20 screened conversations). 

 Modified VDBE: The modified VDBE algorithm has four parameters. Epsilon 

is determined by the expression 

( 1) ( )

( 1) ( )

( 1) ( )1
(1 )

1

k k
i i

k k
i i

v v

k k

v v

e

e





   





 



 


  



(equation 

3.4) and therefore depends on the parameters  and  . For the exploitation 

criterion, the algorithm chooses randomly between a set of edges with the 

highest value of [ ]ijP . The size of this set is the third parameter. For the 

exploration, we need a temperature parameter for the Softmax algorithm. 

The set size for the exploitation is likely to be a small integer, and setting the 

size to 1 (i.e., always choosing the best alternative) proved to provide the best 

results. According to Figure 14, we chose the temperature of the Softmax to 

be 0.25, to ensure that different edges are chosen. 

Choosing  and   proved to be relatively complicated. Both those 

parameters determine the decay rate of epsilon. The  parameter is the decay 

rate of epsilon given that the system is stable, i.e., when there are very few 

changes in the values of the [ ]ijP . This is in a way an upper bound on the 

actual decay rate. The  parameter (called the sensitivity parameter [Tokic, 

2010]) determines how much changes in the values of [ ]ijP  reduce the total 

decay rate. Since the typical changes of the values before reaching a stable 

state can be estimated (in our case study they are about 0.1–0.15), we can 

estimate the expected decay with and without changes in the values of [ ]ijP . 

For example, for 0.02  and 0.3  , the decay of epsilon when the values 

do not change and when they do change  is shown in Figure 10. 
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Figure 10.   The decay rate of epsilon when the values of [ ]ijP  change and when they 

remain about the same, given that 0.02  and 0.3  . 

Tokic suggests that  would be set to be one over the number of alternatives 

[Tokic, 2010]. However, this number proved to be too low. By changing the 

parameters, we can actually set the algorithm to be pure exploitation or 

Softmax. When 1  and  is very large, the decay rate is very high, and 

therefore the algorithm would almost immediately starts exploitation, as in the 

PE algorithm. When  is close to zero, the value of epsilon remains constant, 

and think the initial value of epsilon is one, the algorithm would always 

choose to explore. Since during the exploration iterations the algorithm 

chooses the edges according to the Softmax algorithm, the algorithm is then 

effectively equivalent to Softmax. To avoid these possibilities, we limited  to 

be between 0.02 and 0.2. After examining different values for  (0.02, 0.06, 

0.1, 0.15) and for  (0.1, 0.2, 0.3, 0.4, 0.5), the optimal values proved to be 

1  and 0.4  . 
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 Wide Exploration First: This algorithm has three parameters: the number of 

exploration rounds at the beginning, the maximal number of conversations to 

be screened from the same edge during the exploration phase ( ), and the 

temperature parameter for the Softmax algorithm during the exploitation 

phase. 

The setting of the  parameter is derived from the tradeoff between exploring 

as many edges as possible, and being able to determine which edges are 

better. The higher  is the more conversations are screened from the edges. 

Therefore, if  is high, at the end of the exploration phase the collector has a 

better assessment of the true values of ijp  for the edges he has sampled. 

The temperature parameter is set to be 0.05, to ensure the choice of edges with 

a high value of [ ]ijP . We examined several options for the number of 

exploration rounds (20, 30, 40) and the maximal number of conversations (1, 

2, 3) and 20 exploration rounds with up to three conversations from each edge 

seemed to be the optimal choice. 

In a real life scenario, the collector can simply choose along the way when to 

stop exploring and start exploiting, based on the results so far. 

 KG-Exploration First: This algorithm has two parameters, the number of 

exploration rounds and the temperature parameter for the Softmax algorithm. 

As with the WEF algorithm, the temperature parameter is set to be 0.05. After 

examining several choices for the number of exploration rounds (20, 30, 40, 

50), the value of 40 seems to be the optimal choice. 
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3.  The Parameters Values 

The values of the parameters for the algorithms are summarized in Table 24. 

 

The algorithm: The parameters:  

Pure Exploitation None 

Softmax Temperature – 0.08 

KG-VDBE  - 0.1 

 - 0.4 

# top edges form which the algorithm chooses to exploit – 1 

WEF # rounds of exploration (i.e length of the exploration stage) 

– 20 

# of samples from each edge (B) - 3 

Temperature for exploitation stage – 0.05 

KGEF # rounds of exploration (i.e length of the exploration stage) 

– 40 

Temperature for exploitation stage – 0.05 

Table 24.   The chosen values of the parameters for each algorithm 
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V. RESULTS 

A. ALGORITHMS ILLUSTRATION 

Before analyzing the overall performance of the different algorithms mentioned in 

Chapter IV, we illustrate the behavior of each algorithm based on a single run of the 

simulation described in Chapter IV. The single run is chosen randomly. For each 

algorithm, we examine in each iteration (i.e., selection of an edge in the network) the 

accumulated number of relevant conversations the algorithm has already found. In 

addition, we examine in each iteration the difference * *
( , )

max{ }ij i j
i j

p p , where ( *, *)i j is the 

chosen edge. In other words, we examine the distance between the true ijp value of the 

chosen edge and the edge with the highest value of ijp  among those edges whose 

conversations have not been exhausted.  

1. Pure Exploitation (PE) 

 

Figure 11.   The accumulated number of relevant conversations, based on a single run of 
the PE algorithm. 
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Figure 12.   The distance between the ijp of the chosen edge and the maximal possible at 

each iteration, based on a single run of the PE algorithm. 

The PE algorithm is a simple greedy algorithm, which chooses each iteration the 

edge with the highest expected probability to produce a relevant conversation. Figure 12 

shows how the algorithm spends several iterations sampling different edges, and then 

focuses on a single edge. After about 100 iterations, when there are no more 

conversations to be screened from an edge, the algorithm starts searching again. The 

chosen edge can be very close to the optimal, as between the 150th  and 250th  iterations, 

or sub-optimal (i.e., an edge whose value of ijp is significantly lower than the maximal 

possible) as between the 20th and 120th iterations and during the last 50 iterations.   
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2.  Softmax 

 

Figure 13.   The accumulated number of relevant conversations, based on a single run of 
the Softmax algorithm. 

 

Figure 14.   The distance between the ijp of the chosen edge and the maximal possible at 

each iteration, based on a single run of the Softmax algorithm. 

Similarly to the PE algorithm, the Softmax algorithm spends several iterations 

examining different edges, and then focuses on a specific edge. Specifically, based on 

Figure 13, between the 30th and 140th iterations, the algorithm focuses on the optimal 

edge (distance 0), after it runs out of conversations it spends a few iterations searching, 

and then chooses again the optimal edge. However, unlike the PE algorithm, even after 
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focusing on one edge the algorithm occasionally examines other edges. The rate in which 

other edges are examined depends on the value of ijp for the chosen edge: during the last 

40 iterations when the chosen edge is sub-optimal (i.e., the ijp of the chosen edge is 

significantly lower than the maximal possible), the algorithm examines other edges more 

often. 

3.  VDBE  

 

Figure 15.   The accumulated number of relevant conversations, based on a single run of 
the VDBE algorithm. 

 

 

Figure 16.   The distance between the ijp of the chosen edge and the maximal possible at 

each iteration, based on a single run of the VDBE algorithm. 
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As can be seen in Figure 16, the VDBE algorithm alternates between focusing on 

one edge (exploitation) and exploring different edges (explorations), as the Softmax 

algorithm. However, the rate in which the VDBE algorithm explores other edges greatly 

depends on the number of iterations, and as that number increases the algorithm almost 

only exploits. As the distance increases from the 270th rounds onward (i.e., the chosen 

edge is sub-optimal), the algorithm starts occasionally exploring. The exploration leads 

the algorithm to divert from the sub-optimal edge it chooses and focus on the optimal 

edge during the last 30 iterations.  

4.  KGEF 

 

Figure 17.   The accumulated number of relevant conversations, based on a single run of 
the KGEF algorithm. 
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Figure 18.   The distance between the ijp of the chosen edge and the maximal possible at 

each iteration, based on a single run of the KGEF algorithm. 

Based on Figure 18, the GK algorithm spends the first iterations exploring 

different edges. Then, for 200 iterations its performance is really close to optimal. 

However, After 200 iterations the algorithm starts searching for other edges, and 

eventually focuses on a sub-optimal edge, which explains why after 200 iterations the 

curve in Figure 17 increases in a much slower rate. Although this is not always the case, 

many times the algorithm indeed focuses initially on an edge which is close to the 

optimal one, but later focuses on a sub-optimal edge. A possible explanation is that the 

KG policy provides one or two edges which are very close to the optimal value, but does 

not show which the next best edges are. 
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5.  WEF 

 

Figure 19.   The accumulated number of relevant conversations, based on a single run of 
the WEF algorithm. 

 

Figure 20.   The distance between the ijp of the chosen edge and the maximal possible at 

each iteration, based on a single run of the KGEF algorithm. 

Based on Figure 20, during the first 20 iterations, the WEF algorithm explores 

different edges. Then, during the exploitation stage, it focuses on a relatively close to 

optimal edge until it runs out of conversations (after about 100 iterations), samples 

different edges for several iterations and then focuses on another edge. 
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B. CASE STUDY RESULTS 

The following analysis of the case study presented in Chapter IV is based on 150 

runs of each of the five algorithms (presented in the previous section).  

1.  Overall Comparison 

Figure 21 shows the average number of relevant conversations detected by each 

algorithm. The algorithms are compared to a so called “perfect” algorithm, in which the 

ijp are known, and at each iteration the edge with the highest value of ijp  is chosen. The 

error bars are calculated according to the 95% confidence interval 

0.025 0.025[ , ]
s s

x z x z
n n

  , where x is the sample mean, 0.025z is a constant derived from 

the standard normal distribution and equals 1.96, s is the standard deviation of the sample 

(shown in Figure 22) and n is the sample size (in our case, 150n  ) (Devore, 2009).  

 

  

Figure 21.   Average number of relevant conversations after 300 iterations, based on 150 
runs of each algorithm. 
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It seems that although the PE algorithm has the worst performance, it still performs 

relatively well, as the difference between it and the algorithms is not very large (about 15 

relevant conversations, less than 10% of the number of conversations). Figure 21 shows 

that the performance of the VDBE algorithm is worse than the performance of the 

Softmax, WEF and KGEF algorithms. There is no clear distinction (given 95% 

confidence) between the VDBE and the PE algorithms. As for the other three algorithms, 

Softmax, WEF and KGEF, there is no clear distinction between their performances 

(given 95% confidence).  

 

  

Figure 22.   The standard deviation of each algorithm 

Although the difference in the average number of conversations is relatively 

small, the difference in the standard deviation is much higher (as seen in Figure 22). The 

PE algorithm has the largest standard deviation, which is expected as the PE algorithm 

tends to focus relatively quickly on one edge until there are no more conversations to 

screen from this edge. Therefore, the performance of the PE algorithm greatly depends on 

whether the choice of the edge is optimal or sub-optimal. Softmax has the smallest 

standard deviation. 
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2.  The Behavior of each Algorithm 

We can gain insights regarding the behavior of the algorithms by examining not 

only the final outcome, but their performance throughout the process. For each iteration 

k , we take the average over all the runs of the difference ( 1) ( )k kR R  , where ( )kR is the 

number of relevant conversations accumulated by the k th iteration. That average is a 

number between 0 and 1, and represents the rate in which relevant conversations are 

accumulated in the k th iteration. The average is denoted by ( )kp , as for a very large 

number of runs it would equal the average over the ijp  of the chosen edge in each 

iteration. We will compare the algorithms by examining the value of ( )kp  in each 

iteration. For convenience, we separate the comparison into two. Using the Perfect and 

PE algorithms as a baseline, we compare Softmax with VDBE (Figure 23), and WEF 

with KGEF (Figure 24). 

 

 

Figure 23.   The average number of relevant conversations in each iteration for the PE, 
Softmax and VDBE algorithms. 
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Figure 24.   The average number of relevant conversations in each iteration for the PE, 
KGEF and WEF algorithms.  

a.  The PE Algorithm 

Figures 23 and 24 show that during the first 20 iterations the PE algorithm 

has a higher value of ( )kp , but as this value remains constant until the 100th  iteration, the 

value of ( )kp for the other algorithms increases and all of them but the VDBE surpass it. 

It seems that the PE algorithm tends to focus relatively quickly on a single edge, but this 

edge might be sub-optimal (i.e., with a relatively low value of ijp ). The other algorithms 

require more time before focusing on a single edge, but then they tend to focus on an 

edge with a higher value of ijp . Around the 100th and 200th  iterations, the value of ( )kp

drops abruptly, and stabilizes again after about 10–20 iterations. The reason is probably 

that the mean number of conversations to be screened from each edge is 100, and the 

drop happens after an edge runs out of conversations.  

b.  The Softmax Algorithm 

Figure 23 shows that the value of ( )kp for this algorithm increases during 

the first 50 rounds. The value is then relatively high compared to PE and VDBE, 

although it is less than the value for WEF and KGEF. From that point onward, the value 
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gradually decreases, with a relatively steep descent after 100 iterations, probably for the 

same reason mentioned above for the PE algorithm (an edge ran out of conversations). 

c.  The VDBE Algorithm 

According to Figure 23, the algorithm has a similar behavior to the 

Softmax algorithm: the value of ( )kp gradually increases during the first 50–70 iterations, 

and then gradually decreases. Compared to the Softmax algorithm, the value of ( )kp after 

50–70 iterations is relatively low and similar to that of the PE algorithm. However, its 

decrease is much more gradual, and therefore that difference becomes less and less 

significant from the 120th  iteration onward. 

d.  The KGEF Algorithm 

Figure 24 shows that the value of ( )kp  for the KGEF algorithm gradually 

increases during the first 40 iterations, until it reaches a very high value (very close to 

0.9, the ijp with highest value) at the end of the exploitation iterations of the algorithm. 

However, the value of ( )kp decreases at the 120th  and 220th  iterations, and during the 

last 80 iterations reaches about the same value as the ( )kp of the PE algorithm. 

e.  The WEF Algorithm  

Figure 24 shows that the WEF algorithm has a similar behavior to the 

KGEF algorithm, as both has a relatively low value of ( )kp during the first 30–50 

iterations, then the value becomes relatively high (close to 0.9), and gradually decreases. 

The difference between KGEF and WEF is that during the first 30 iterations, while the 

value of ( )kp for the KGEF gradually increases as the algorithm focuses on the optimal 

choices, the value of ( )kp for the WEF algorithm remains relatively low, as the algorithm 

explores more and more different edges. The WEF algorithm compensates on that, as the 

decrease of ( )kp is slower. As can be seen in Figure 24, between the 200th  and 250th  

iteration the performance of the WEF algorithm is better than that of the KGEF 

algorithm. 
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C. CHANGING THE SIMULATION PARAMETERS 

We now describe how changing some of the simulation parameters mentioned in 

Chapter IV affects the performance of the different algorithms. 

1.  Mean Number of Conversations  

The original mean number of conversations in each edge ( ijn ) is 100. We now 

show how changing this number while keeping the other values constant affects the 

performance of the algorithm. To do that, we checked what happens when the mean 

number is reduced to 30, or increased to 350 (effectively meaning that each edge cannot 

be exhausted). 

For each variation, we reexamined the chosen values of the algorithm parameters. 

As in Chapter IV, we selected several possible values for the parameters of each 

algorithm. We then compared the results given each possible value, and chose the 

parameters which resulted in the best results. The new chosen values are shown in 

Table 25. 

The 

algorithm: 

The parameters:  Mean = 

100 

Mean = 

350 

Mean = 

30 

Pure 

Exploitation 

None    

Softmax Temperature  0.08 0.08 0.05 

KG-VDBE   0.1 0.1 0.15 

  0.4 0.4 0.4 

WEF # iterations of exploration  20 30 20 

# of samples from each edge 

(B) 

3 3 3 

KGEF # iterations of exploration   40 30 30 

Table 25.   The chosen parameters for the algorithms, given different mean number of 
conversations per edge. 
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There are very few changes when increasing the mean number to 350. However, 

when decreasing the mean number of conversations to 30, the parameters are changed as 

to prefer exploitation over exploration: The temperature in the Softmax parameter 

reduces from 0.08 to 0.05, and thus the algorithm tends towards focusing on edges with a 

high value of [ ]ijP ; The parameter  in the VDBE algorithm increases from 0.1 to 0.15, 

and therefore the algorithm tends to exploit more (as explained in Chapter IV); The 

number of exploration iterations for the KGEF algorithm decreases from 40 to 30. The 

reason for that tendency is that exploration provides the collector with information about 

other edges in the network. This information, however, becomes less valuable when the 

mean number of relevant conversations decreases. 

 

 

Figure 25.   Accumulated number of detected relevant conversations after using each 
algorithm, given a different mean number of conversations; The distinction 

between the algorithm is better as the mean number of relevant 
conversations increases. 
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Figure 26.   Standard deviation of the different algorithms, given different mean number 
of conversations; the difference between the algorithms is more significant 

as the mean number of relevant conversations increases. 

The results are summarized in Figures 25 and 26. As expected, the higher the 

mean number of conversations, the better the results. When the mean number of 

conversations is 30, there are no significant differences (with 95% confidence) between 

the number of relevant conversations screened using each algorithm. In addition, the 

standard deviations of the algorithms are almost the same. When the mean is 350, the 

algorithms WEF and KGEF perform significantly better than PE, Softmax and VDBE. A 

more significant difference is with the standard deviations: PE has a very large standard 

deviation, then VDBE, followed by KGEF, Softmax and WEF. The WEF algorithm 

maintains a relatively low standard deviation. 
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Figure 27.   The value of ( )kp for the algorithms PE, Softmax and VDBE with a mean of 
350 conversations. 

 

Figure 28.   The value of ( )kp for the algorithms PE, KGEF and WEF with a mean of 
350 conversations. 
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Figure 29.   The value of ( )kp for the algorithms PE, Softmax and VDBE with a mean of 
30 conversations. 

 

Figure 30.   The value of ( )kp for the algorithms PE, KGEF and WEF with a mean of 30 
conversations. 
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As in the previous section, we now compare the value of ( )kp for each algorithm. 

Figures 27 and 28 show the value of ( )kp when the mean number of conversations is 350. 

Those graphs are useful, as they show how fast and how accurate do the algorithms find 

the optimal edge. PE, for example, finds an edge very quickly but usually the edge it 

finds is a sub-optimal one. Both Softmax and VDBE have a similar accuracy, better than 

that of PE. Interestingly, they reach about the same level of accuracy as PE after 50 

iterations, but then they keep gradually improving during the next 50 iterations as they 

get closer to the optimal edge. Both KGEF and WEF are very accurate (reach a ( )kp of 

almost 0.9). The KG algorithm gets gradually closer and closer to the optimal edge, while 

the WEF algorithm has a very low value of ( )kp during the exploration iterations, but then 

the value of ( )kp abruptly increases as the algorithm switches to exploitation. 

When the mean number of conversations is 30, after 60 iterations all the 

algorithms perform pretty much the same. This is probably the reason why there is no 

significant change in the total number of relevant conversations and the standard 

deviation, as seen in Figures 25, 26. In addition, their value of ( )kp is close to that of the 

perfect algorithm.  

2.  Graph Topology 

The graph in our analysis is created by adding dummy nodes to the terrorist 

network shown in Figure 7 of Chapter IV, and then adding edges randomly. Now, instead 

of the terrorist network in Figure 7 we use networks with different topologies. We 

maintain the same number of nodes in the network, and randomly add nodes and edges in 

the same way we did before (described in Chapter IV). We replace the terrorist network 

with a network composed of four separate cliques (each clique the size of four), and a 

network in which all the terrorists are forming a single line, i.e., the i th terrorist is 

connected to the ( 1)i  th and the ( 1)i  th terrorists. We refer to the graphs as clique 

graph and line graph. The resulting graphs, after adding nodes and randomly adding 

edges, are shown in Figure 31.  
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As in the previous section, we examine different possible values for the 

algorithms parameters, and choose the algorithms which produced the best results. The 

results are shown in the Table 26.  
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Figure 31.   Up – the graph based on a terrorist network of four cliques (cliques graph). 
Down – the graph based on a terrorist network shaped as a single line (line 

graph). 
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The 

algorithm: 

The parameters:  Original 

Graph 

Cliques 

Graph 

Line 

Graph 

Pure 

Exploitation 

None    

Softmax Temperature  0.08 0.08 0.12 

KG-VDBE   0.1 0.15 0.05 

  0.4 0.3 0.3 

WEF # iterations of exploration  20 30 30 

# of samples from each edge 

(B) 

3 3 2 

KGEF # iterations of exploration   40 30 50 

Table 26.   The algorithms parameters values given different graph topologies. 

Table 26 shows that for the line graph, all the algorithms tend more towards 

exploration: the temperature parameter in Softmax is higher (0.12 instead of 0.08), the 

delta for the VDBE algorithm is significantly lower (0.05 instead of 0.1), and more 

exploration iterations are needed for both the WEF and KGEF algorithms (30 instead of 

20 and 50 instead of 40).   
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Figure 32.   Comparison between the average number of relevant conversations 
screened by the algorithms, given different graph topologies.  

 

Figure 33.   Comparison between the standard deviation of the algorithms, given 
different graph topologies. 

The results are summarized in Figures 32 and 33. In both clique graph and line 

graph, PE has the worst performance (with 95% confidence). We start by examining the 

way the parameter ( )kp changes throughout the screening process. With the normal graph 
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(Figures 23, 24) the value of ( )kp for all algorithms during the last 50 iterations is almost 

the same, i.e., all algorithms perform the same as the PE algorithm. However, given the 

cliques graph (Figures 34, 35), all algorithms perform better than the PE algorithm 

throughout the entire screening process. The Softmax algorithm performs a little better 

than the VDBE algorithm at the beginning of the process, but after about 100 iterations 

their performance is pretty much the same. Interestingly, after the 50th  iteration the WEF 

algorithm performs much better than the KGEF. In comparison, based on the normal 

graph after the 50th iteration the WEF and KGEF performed pretty much the same.  

 Given the line graph (Figures 35, 36), all algorithms perform better than the PE 

algorithm throughout the entire screening process. Generally, although the algorithms 

required a modification of their parameters, they all performed relatively well and 

showed a similar performance as to that shown in Figures 23 and 24 (the behavior given 

the normal graph). 

 

 

Figure 34.   The value of ( )kp throughout the screening process for the algorithms PE, 
Softmax and VDBE, given a cliques graph 
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Figure 35.   The value of ( )kp throughout the screening process for the algorithms PE, 
KGEF and WEF, given a cliques graph 

 

Figure 36.   The value of ( )kp throughout the screening process for the algorithms PE, 
Softmax and VDBE, given a line graph 
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Figure 37.   The value of ( )kp throughout the screening process for the algorithms PE, 
KGEF and WEF, given a line graph 

D.  ANALYSIS CONCLUSIONS 

The analysis in Chapter V provides us with some insights regarding the 

performance of the different algorithms for the information selection problem proposed 

in this thesis. 

1.  Different Stages of the Screening Process 

Based on Figures 23 and 24 we can divide the screening process into several main 

stages: The initial search after high value edges (i.e., edges with a high value of )ijp , and 

stages in which the algorithms focus on a single edge. Between focusing on different 

edges, there may be short periods in which the algorithm searches again for new edges. 

For the PE, Softmax and VDBE algorithms, the length of the initial search stage 

may vary, and during that stage the average number of relevant conversations screened in 

each iteration (represented by the parameter ( )kp shown earlier in this chapter) gradually 

increases. For the KGEF and WEF algorithms, the length of the initial search period is 

fixed, and the value of ( )kp during this stage remains relatively low. The value of ( )kp for 
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the KGEF algorithm slightly increases during the initial search stage, unlike the value of 

( )kp for the WEF algorithm which remains relatively constant. 

There is a significant difference between the average value of ijp for the first edge 

the algorithms focus on, and that of the edges the algorithm focus on later. Considering 

the first edge, the WEF and KGEF algorithms have a clear advantage over the other 

algorithms, as they tend to choose an edge whose value of ijp is very close to the 

maximal possible. However, this advantage decreases as the number of iterations 

increases. Figures 23 and 24 show how the value of ijp of the chosen edge gradually 

decreases between the first, second and third edges chosen, for all algorithms. For the 

third edge chosen, there is almost no difference between PE and the other algorithms.  

The main conclusion is that the algorithms Softmax, VDBE, KGEF and WEF 

managed to identify one or two edges with a relatively high value of ijp , but were usually 

unable to identify a third edge with this property. Changing the parameters of the VDBE, 

Softmax, KGEF and WEF algorithms to prefer exploration over exploitation should 

improve the ability of the algorithms to identify more edges with a high value of ijp , but 

would increase the length of the initial search period and might therefore decrease the 

total number of screened conversations.  

2.  Performance of the Different Algorithms 

a.  The PE Algorithm 

The PE algorithm showed the worse results compared to the other 

algorithms: a relatively low number of relevant conversations screened, and a 

significantly higher standard deviation (compared to the other algorithms). However, the 

PE algorithm still managed to achieve a ( )kp of 0.7–0.8 (as shown in Figure 23) after a 

relative short initial search period, which is rather impressive as there are only five edges 

with a value of ijp above 0.65, and only two with a value larger than 0.8 out of almost 

fifty possible edges. In addition, the difference between the total screened number of 

conversations between the algorithms (as shown in Figure 21) was relatively small (less 
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than 10 relevant screened conversations). We therefore believe that the dependencies 

between the different edges have improved the performance of the PE algorithm. More 

generally, the correlation results in a preference towards exploitation. The reason is that 

due to the correlation, information regarding other alternatives can also be gained during 

the exploitation iterations and not only during the exploration iterations. 

b.  The Softmax Algorithm 

Despite the fact that the Softmax algorithm is relatively simple, it has 

shown relatively nice results: It reached a comparatively large total number of relevant 

screened conversations in different scenarios (as shown in Figures 24, 34 and 39) and a 

very small standard deviation (as shown in Figure 22).   

c.  The VDBE Algorithm 

The VDBE algorithm performed worse than expected. Tokic (Tokic, 

2010) shows that the VDBE algorithm performs significantly better than Softmax. 

However, in our analysis the Softmax algorithm performed as well or better than the 

VDBE algorithm (as shown in Figures 21, 25 and 32). This can be explained by the 

correlation between the alternatives in our model. That correlation allows us to explore 

more efficiently, and the VDBE algorithm fails to take that into account. Another 

disadvantage of the algorithm is that it requires several input parameters, and it is 

relatively difficult to determine their optimal values (as explained in Chapter IV). 

d.  The KGEF Algorithm 

The KGEF algorithm has several advantages. After a relatively small 

number of iterations (compared to the WEF algorithm, for example) it manages to 

identify and edge whose value of ijp is close to the maximal possible. In addition, the KG 

policy requires no parameters, which is a clear advantage from a practical point of view. 

The main disadvantage of this algorithm is that it fails to identify more than one or two 

edges with a high value of .ijp   
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e.  The WEF Algorithm 

As the KGEF algorithm, the WEF algorithm also manages to identify an 

edge with a very high value of ijp  after the initial search period. In different scenarios, it 

also showed a very small standard deviation (compared to the KGEF algorithm, for 

example). Since this algorithm is based on intuitive heuristics which might be employed 

by a real-life collector, the results of our analysis show that those intuitive heuristics 

might result in very good results.  

3.  Factors Affecting the Performance of the Algorithms 

 The mean number of relevant conversations clearly affects the performance of the 

algorithms, as seen in Figures 25 and 26. The difference between the algorithms 

performance was much more significant with a higher mean number of relevant 

conversations, and there was almost no difference between them when the mean number 

of conversations was 30 instead of 100. This result shows that exploration is only 

important when the collector is able to take advantage of the gained information. 

 The topology of the graph also affects the results, and might require changing 

some of the parameters–when we used the line graph, the algorithm parameters where 

modified to give preference to exploration. Further research is needed to draw more 

general conclusions regarding the way the topology affects the performance of the 

different algorithms. However, the algorithms behavior remains relatively consistent 

despite the changes in the graph topology. That outcome reassures us that our results 

would still be valid for different networks, aside from the case study we examined. 
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VI. CONCLUSION 

In this chapter we summarize the results of our study, show possible extensions of 

the model, and propose several future research directions. 

A. SUMMARY AND MAIN CONCLUSIONS 

The collectors in the Processing and Exploitation stage (the third stage in the 

intelligence cycle) face the information selection problem: Which intelligence items to 

screen in order to maximize the expected amount of relevant information gained. 

To handle this problem, we constructed a mathematical model of the intelligence 

items screening process, as manifested in the screening of intercepted conversations from 

a communication network (see Chapter II). This mathematical model is one of the main 

contributions of this research, mainly due to the lack of mathematical models for 

intelligence processes in the current (open) literature (see Chapter I). The model is fairly 

robust, and thus can be used to further analyze the Processing and Exploitation stage, 

beyond the specific problem presented in this research. Possible extensions of the model, 

and further research directions are presented later on in this chapter. 

Based on this mathematical model, we examined several possible algorithms to 

handle the information selection problem. The algorithms are presented in Chapter III. To 

analyze the performance of these algorithms, we constructed a simulation of the 

screening process, as presented in Chapter IV. Using the simulation, we examined the 

performance of the algorithms given a specific scenario, based on the terrorist network 

responsible to the U.S. embassy bombing in Tanzania in 2007.  

Our analysis, presented in Chapter V, provides some key insights on the 

information selection problem: 

 Simple algorithms, both a simple greedy algorithm (PE) and Softmax, 

performed much better than anticipated. We assume that the dependencies 

among the alternatives are the main reason for that performance. 
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 The algorithms which consistently showed a good performance (even after 

changing some of the simulation parameters) are the WEF, an intuitive 

heuristic which can be easily employed in practice by a collector, and 

KGEF, an algorithm based on the Knowledge-Gradient policy.  

 The mean number of conversations in each edge is a significant factor that 

affects the performance of the algorithms. When the mean number of 

conversations is small, there is no significant difference between the 

performance of the simple greedy algorithm and that of the other, more 

sophisticated and complex, algorithms. 

B. POSSIBLE EXTENSIONS OF THE MODEL 

We now propose several possible ways in which the assumptions of the model 

can be relaxed. The order in which the extensions are shown is in accordance with their 

complexity: We start with extensions which only require few changes in the model, and 

move on to more complicated extensions. 

1. Prior Knowledge of the Collector 

Our model assumes a prior Uniform distribution over the different possible 

relevance values. A general distribution, representing a prior knowledge of the relevance 

values, can be easily used instead. 

2. Identified and Unidentified Relevance Conversations 

In Chapter II, we list several assumptions regarding identifying the relevance 

values of the nodes: 

 The relevance values of the nodes are either identified or unidentified. An 

unidentified node can only become identified if the collector listens to a 

conversation in which it participates.  

 The probability of identifying the relevance value is fixed ( c ), and is 

independent of the relevance value itself ( id ). 
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 If both nodes in the conversation are unidentified, then the probabilities of 

identifying the relevance value of the nodes are independent of each other. 

The following relaxations of the assumptions require only minor changes in the 

model: 

 A node might be identified by listening to conversations which do not 

include that node. This relaxation represents the possibility that in a 

conversation a person might provide information about another person. 

We can therefore assign a probability 'c  that the relevance value of a 

certain node i  is identified in the conversation. We might adjust this 

assumption so that only neighbors of the nodes participating in a 

conversation can be identified.  

 The probability to identify node i  might depend on its unknown relevance 

value id , i.e., instead of a constant c we can use the function ( )ic d . 

 If both nodes in a conversation are unidentified, the probabilities to identify them 

might not be independent. All those changes only affect the way the simulation 

determines whether a node is identified or not. It only affects algorithms which take the 

possibility of identifying a node into account: amongst the algorithms listed in Chapter 

III, only the KGEF algorithm would be affected. 

A more complex change would be a relaxation of the assumption that a node is 

either identified or unidentified. In our model, when the node is unidentified its relevance 

value is estimated using a certain probability distribution. However, based on information 

from the content of the conversations (e.g. the profession of the person represented by the 

node), the node might be identified and then the collector knows its relevance value ( id ). 

Instead, we might argue that the exact relevance value always remains unknown. 

Information gathered from the content of the conversations will then only change the 

probability distribution over the possible relevance values (i.e., the distribution of the  
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random variable iD ). In order to take that change into account, one needs to define how 

exactly relevant information might affect the probability distribution of the random 

variable iD . 

3.  Conversations with Different Values 

We assume that a conversation might be either relevant or irrelevant. Therefore, 

all the relevant conversations in our model have the same operational value. However, 

some relevant conversations might be more valuable than others. In our model 

terminology, the random variables ( )k
ijS  (which represent the relevance of a conversation 

screened between nodes i and j in the k th iteration) might have several possible values, 

not just zero and one.  

To allow different values of conversations in our model, we need to define the 

density functions of the random variable ( )k
ijS , and the way it depends on the relevance 

values of the nodes. In our model, we made sure that the parameters of the random 

variables ( )k
ijS are drawn from a conjugate prior distribution, in our case a Beta 

distribution (as explained in Chapter II). Generally, the distribution from which the 

parameters are drawn does not have to be a conjugate prior. However, having a conjugate 

prior distribution simplifies the model, as keeping track of the distribution during the 

updating process becomes much easier. In our model, for example, without a conjugate 

prior distribution we would have needed to keep track of the entire distribution of the 

different ijP , a distribution which constantly changes throughout the updating process. 

However, we only need to keep track of the discrete functions ( , ), ( , )i j i jd d d d  , and 

this suffices to determine the distributions of the ijP .  

Fink (Fink, 1997) suggests several possible conjugate functions. Suppose, for 

example, that instead of a Bernoulli random variable ( )k
ijS we want to use a Binomial 

random variables with the a known set of integers {0,1,…, m } as possible values, and an  
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unknown parameter ijp . Then, according to Fink, a Beta distribution (as used in our 

current model) is a possible conjugate distribution from which the values of ijp can be 

drawn. 

This modification would affect the model and the updating process, but all the 

different algorithms mentioned in Chapter III can still be used with no significant 

changes. 

4.  Time Dependent Conversation Values 

We assume that: 1) the collector faces a strict time constraint, i.e., he can screen 

no more than T conversations; 2) the value of the information gained is independent on 

the time in which it is gained. However, there are scenarios in which the earlier the 

information is gained the more valuable it is. For example, if the information is needed to 

support some operational activity. Many exploration-exploitation models (e.g. Tokic, 

2010, Frazier et al., 2010 and Gittins et al., 2011) encompass this by multiplying the 

reward of an alternative (in our case, the value of the conversation) with some discount 

factor k , where  is a constant between zero and one, and k is the number of iterations. 

The value of a conversation in the k th iteration is therefore: ( )k k
ijS . 

The updating process can be modified relatively easily. If the value of a 

conversation in the k th round is v , then ( )k
ij k

v
S


 , and the updating process can be 

performed accordingly. However, some of the algorithms in Chapter III need to be 

modified. The algorithms Pure Exploitation, Softmax, VDBE and the Wide Search policy 

would remain the same. The Exploration First algorithm would remain the same, but the 

optimal number of exploration rounds might vary, depends on the discount factor  . The 

Knowledge Gradient policy is needed to change, where the “future value” described in 

chapter III is replaced with the maximal [ ]ijP  (as in Frazier et al., (Frazier et al., 2010)).  

In addition, if we remove the strict time constraint of only T conversations, it is 

possible to include some form of the Gittins indices (Gittins et al., 2011) in the 

algorithms. The Gittins indices policy requires an infinite time horizon, a constant 
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discount factor   and independence between the alternatives (Gittins et al., 2011). 

Although generally the alternatives are dependent, after the relevance values of the nodes 

i and j are identified, the conversations from the edge ( , )i j are independent of the other 

nodes and edges. Therefore, if exploitation is only performed on conversations between 

nodes whose relevance value are identified, then the assumptions for using the Gittins 

indices hold.  

5.  Decreasing Value of Conversations from the Same Edge 

A main reason to screen information from multiple sources is that the information 

from the same source might repeat itself. One way to model that is to multiply the value 

of a conversation between i and j  with a discount factor ijk , where  is a discount 

factor and ijk is the number of screened conversations between nodes i and j .  

If the value of a conversation in the k th round is v , then ( )

ij

k
ij k

v
S


 , and the 

updating process can be performed accordingly. In each one of the algorithms, the 

conversations in each iteration should be chosen based on ( )[ ]k
ijS  instead of [ ]ijP .   

6. Using the Model for a Large Scale Network 

We only used a relatively small scale network. The reason is that performing the 

variable elimination method (explained in Chapter II) for a large graph requires a very 

long time. In order to use the model for a large-scale network, we need an inference 

method that would replace the variable elimination method. Kohler and Friedman show 

approximate inference methods that can be applied instead of the variable elimination 

method (Kohler and Friedman, 2010). Those methods require significant changes in the 

updating process, as they do not use factors as representations of the joint distributions. 

However, no changes are required for the algorithms in Chapter III.   
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C. FUTURE RESEARCH 

1.  Broad Experiments 

Our analysis methodology in Chapter IV and Chapter V allows us to recieve 

insights regarding the information selection problem and the different algorithms 

examined. However, our analysis does not enable us to provide general answers to 

general questions. For example, we cannot thoroughly answer the question how the 

network topology affects the performance of the algorithms, although we have some 

insights regarding that questions (as mentioned in section A). In order to draw such 

general conclusions, our model can be used as a basis for a more broad experiment than 

the one shown in Chapter V (for example, examine many randomly generated graph 

topologies instead of the three examples shown in Chapter V). Therefore, a future 

research direction is to use our model in order to draw general conclusions about the 

Processing stage. 

2.  Advanced Algorithms 

Another future direction would be to create better algorithms to solve the 

problem. Our problem concentrated on examining the performance of known algorithms 

and intuitive heuristics. A further research might be more focused on improving the 

existing algorithms, or developing new algorithms to handle the information selection 

problem. Our analysis on Chapter V can be provide a better understanding of the existing 

algorithms and heuristics, and therefore be a starting point for the development of 

advanced algorithms. 

3.  Real-World Data 

The values of the simulation parameters we used (shown in Chapter IV) is not 

based on real-world data. Real-world data would allow determining more realistic values 

for the different parameters. The modifications in the previous section might also be used 

to turn the model into more realistic. 
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4.  Further Modifications of the Model 

We now propose several extensions of the model. Unlike the extensions 

mentioned in the previous section, those extensions require a reformulation of the 

problem. 

a. Screening Conversations with Different Lengths 

One of our assumptions is that screening every conversation requires the 

same amount of time. Therefore, the time constraint T is an integer describing the 

number of conversations the collector can screen. However, different conversations might 

require different amount of time to screen (depends, for example, on the length of the 

conversations). In addition, the probability that a conversation is relevant might depend 

on the time needed to screen it. 

Currently, choosing a conversation mostly depends on the expected 

probability that the conversation is relevant ( [ ]ijP ). With different screening times, the 

length of the conversation is another criterion that needs to be taken into account. That 

problem resembles a dynamic and stochastic knapsack problem (Kleywegt et al., 1998). 

Therefore, significant changes in the algorithms and further research are required to solve 

this problem.  

b.  Including Errors in the Model 

Costica (Costica, 2010) analyzes errors in determining whether a 

conversation is relevant or irrelevant. However, his analysis does not take into account 

the information selection problem we presented. In our analysis we ignore the possibility 

of errors in the screening process. Such errors might include: 

 Errors in determining that a conversation is relevant or irrelevant (either 

false-positive or false-negative errors). 

 Errors in identifying the relevance values of the nodes. 

 Errors in the prior joint distribution: the parameters ,i ijd p are drawn from 

a different prior joint distribution than the distribution of the collector. 
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To include the possibility of errors in the model significant changes in the 

model and in the algorithms may be required. That analysis is beyond the scope of this 

research, and further research is needed. 

  



 108

THIS PAGE INTENTIONALLY LEFT BLANK 



 109

LIST OF REFERENCES 

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.  

Berry, D. A., & Fristedt, B. (1985). Bandit Problems. Michigan: Chapman and Hall.  

Boutilier, C. (2002), “A POMDP formulation of preference elicitation problems,” in 
Proceedings of the National Conference on Artificial Intelligence, Edmonton, AB 
239–246.  

Bron, C., & Kerbosch, J. (1973), “Algorithm 457: Finding all cliques of an undirected 
graph,” Commun. ACM (ACM) 16(9): 575–577. 

Cassandra, A., Kaelbling, L., & Littman, M. (1994). “Acting optimally in partially 
observable stochastic domains,” in Proceedings of the Twelfth National 
Conference on Artificial Intelligence, (AAAI) Seattle, WA. 

Central Intelligence Agency. (1999). Consumer’s guide to Intelligence. 

Cohen, J., McClure, S., & Yu, A. (2007). “Should I stay or should I go? How the human 
brain manages the trade-off between exploitation and exploration,” Philosophical 
Transactions, 362, 933–942. 

Costica, Y. (2010). Optimizing classification in intelligence processing (master’s thesis). 
Operations Research department, Naval Postgraduate School, Monterey, CA. 

Daw, N. D., O’Doherty, J. P., Seymour, B., Dayan, P., & Dolan, R. J. (2006). “Cortical 
substrates for exploratory decisions in humans,” Nature 441, 876–879. 

Desimone, R., & Charles, D. (2002). “Towards an ontology for intelligence analysis and 
collection management,” in Proc 2nd International Conference on Knowledge 
Systems for Coalition Operations (KSCO 2002), 2002, 26–32. 

Devore, J. L. (2009). Probability and statistics for engineering and the sciences (7th ed.). 
Boston: Duxbury Press. 

Erdos, P., & Renyi, A. (1959). “On Random Graphs,” Publicationes Mathematicae 6, 
290–297. 

Fink, D. (1997). “A compendium of conjugate priors,” Technical Report, 1997. 

Frazier, P., Powell, W., & Dayanik, S. (2009). “The Knowledge-Gradient Policy for 
Correlated Normal Beliefs,” INFORMS journal on Computing, 21(4), Fall 2009, 
591–613.  



 110

Fu, M. C., Hu, J. Q., Chen, C. H., & Xiong, X. (2007). “Simulation allocation for 
determining the best design in the presence of correlated sampling,” INFORMS 
Journal on Computing 19(1), Winter 2007, 101–111. 

George, E., Makov, U., & Smith, F. (1993). “Conjugate Likelihood Distributions,” 
Scandinavian Journal of Statistics, 20(2), 1993, 147–156. 

Gill, P. (2007). “Sorting the wood from the trees,” in: Johnson, L.K., Strategic 
Intelligence: understanding the hidden side of government, Praeger, 2007. 

Gittins, J., Glazebrook, K., & Weber, R. (2011). Multi-Armed Bandit Allocation Indices, 
Wiley. 

Hammersley, J. M., & Clifford, P. (1971). “Markov Fields on Finite Graphs and 
Lattices.” Unpublished. 

Hedley, J. H. (2007). “Analysis for strategic intelligenc,” in Johnson, L.K., Strategic 
Intelligence: understanding the hidden side of government. Santa Barbara, CA: 
Praeger. 

Hulnick, A. S. (2006). “What’s wrong with the Intelligence Cycle?” Intelligence and 
National Security, 21(6), 959–979. 

Johnson, L. K. (2007). Handbook of intelligence studies. New York: Routledge. 

Kaplan, E. H. (2011), “Operations research and intelligence analysis,” in: Fischhoff B. 
and Chauvin C., Intelligence analysis: behavioral and social scientific 
foundations, NAP, Washington, D.C. 2011. 

Kleywegt, A. J., & Papastavrou J.D. (1998). “The dynamic and stochastic knapsack 
problem,” Operations Research, 46, 17–35. 

Koller, D., & Friedman, N. (2010). Probabilistic Graphical Models, MIT press. 

Langville, A., & Meyer, C. (2005). “A survey of eigenvector methods for web 
information retrieval,” SIAM review, 47(1), 135–161. 

Lindelauf, R., Borm, P., & Hamers, H. (2008). “On Heterogeneous Covert Networks,” 
CentER Discussion Paper Series, 46, April.  

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information 
Retrieval. Cambridge University Press.  

McPherson, M., Smith-Lovin, L., & Cook, J. (2001). “Birds of a Feather: Homophility in 
social networks,” Annu. Rev. Social, 27, 415–44. 

 



 111

Preece, A., Pizzocaro, D., Borowiecki, K., de Mel, G., Gomez, M., Vasconcelos, W.,   
Bar-Noy, A., Johnson, M. P., La Porta, T., Rowaihy, H., Pearson, & G., Pham, T.  
(2008).  “Reasoning and resource allocation for sensor-mission assignment in a 
coalition context,” in sub. To Milcom 08, July 2008. 

Richelson, J. T. (2007). “The technical collection of intelligence,” in Johnson, L.K., 
Handbook of intelligence studies, 105–117. New York: Routledge. 

Skroch, E. M. (2004). How to optimally interdict a belligerent project to develop a 
nuclear weapon (master’s thesis). Operations Research department, Naval 
Postgraduate School, Monterey, CA. 

 Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. 
Cambridge, MA: MIT Press. 

Thrun, S. B. (1992). “The role of exploration in learning control” in Handbook of 
intelligent control: Neural, fuzzy, and adaptive approaches (eds. D. A. White & 
D. A. Sofge), 527–559. Florence, KY: Van Nostrand Reinhold. 

Tokic, M. (2010). “Adaptive epsilon-Greedy Exploration in Reinforcement Learning 
Based on Value Difference.”  In Proceedings of KI 2010. 203–210. 

Whaley, B. (1974). Codeword Barbarossa. Cambridge, MA: MIT Press. 



 112

THIS PAGE INTENTIONALLY LEFT BLANK 



 113

INITIAL DISTRIBUTION LIST 

1.  Defense Technical Information Center 
Ft. Belvoir, Virginia 
 

2.   Dudley Knox Library 
Naval Postgraduate School 
Monterey, California 
 

3.   Professor Moshe Kress 
 Department of Operations Research 

Naval Postgraduate School 
Monterey, California 
 

4.   Professor Nedialko Dimitrov 
 Department of Operations Research 

Naval Postgraduate School 
Monterey, California 
 

5.   Professor Michael Atkinson 
 Department of Operations Research 

Naval Postgraduate School 
Monterey, California 
 

6.   Yeo Tat Soon 
 Director, Temasek Defense Systems Institute (TDSI) 

National University of Singapore 
Singapore 
 

7.   Ms Tan Lai Poh 
 Temasek Defense Systems Institute (TDSI) 

National University of Singapore 
Singapore 
 
 


