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ABSTRACT 

The future of U.S. Naval Operations can be described by a simple system of 

requirements and constraints.  Increasing the diversity and scope of mission 

requirements, while being constrained by decreasing budget resources, requires some 

form of equalization to maintain a constant rate of successful mission fulfillment. The 

solution to this system can be found in unmanned vehicle development.  The most recent 

revision of the Navy Unmanned Undersea Vehicle (UUV) Master Plan outlined the need 

to develop a cost-effective, flexible program by maximizing modularity and commonality 

of UUVs.  This thesis investigates the convergence of three main areas of UUV 

development; mission flexibility, modular control systems, and hardware in-the-loop 

testing and analysis.  This work also evaluates the feasibility of a potential solution to 

support those objectives. 

Hardware-in-the-loop simulation and testing of embedded systems is a proven 

method for effectively testing complex systems, helping to reduce the risks of developing 

or deploying an ineffective costly system.  An innovative glider design by the University 

of Toulon, France is the subject of this study.  Unlike most rigid-hull gliders, the scalable 

free-flood volume of this vehicle holds the promise of carrying significant payload as 

long as overall buoyancy remains neutral.  The research and development described in 

this thesis utilizes an existing planning and simulation tool, combined with an improved 

low-cost embedded-system robot controller, to test and evaluate a new free-flood, long-

range gliding underwater vehicle.  This proposed solution utilizes both open-source 

hardware and software solutions to design a prototype gliding underwater vehicle.  

Further work is needed to demonstrate the efficiency and effectiveness of this design. 
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I. INTRODUCTION 

A. OVERVIEW  

This thesis is a continuation of ongoing research at the University of Toulon 

France and the Naval Postgraduate School into a notional long-range unmanned 

underwater gliding vehicle previously published under the name SeaDiver.  This type of 

gliding vehicle has several characteristics inherent in its design that set it apart from other 

gliding unman underwater vehicles (UUVs).  Use of a wing cross-section as the hull form 

permits construction of larger vehicles which might carry significantly larger science 

payloads if neutral buoyancy is maintained. 

Gliding UUVs are on the forefront of research in the UUV field.  Their ability to 

perform long-range missions efficiently to collect oceanographic data from a much larger 

sample area than is possible from a manned research vessel is what makes such vehicles 

so desirable.  However, the primary limitation for most gliding UUVs is inherent in the 

hull design.  Most have rigid pressurized hulls, with a fixed volume and limited payload 

capability.  The payload usually includes oceanographic sensors for data collection, and 

the vehicle is designed around a specific payload or mission.  As the size and payload 

requirements change, so must the vehicle size, and therefore many of the vehicle 

dynamics change as well.  Such changes often require a completely new vehicle design, 

making most glider designs inflexible and tightly optimized to a single mission.   

Gliding UUVs are characterized by four common features:  

 Buoyancy driven propulsion systems that use volume change to create vertical 

lift, and some sort of wing shape to convert that to forward motion.   

 Sawtooth pattern of vertical motion.   

 Relatively slow speeds.  

 Long duration due to low power consumption for propulsion.   

The initial appeal of this vehicle type (besides the long duration of operation) is 

the sawtooth-vertical motion pattern.  This type of pattern is excellent for collecting 

ocean profile information, as it can sample the entire range of desired depths. (Davis, 

Eriksen, & Jones, 2003)   
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The majority of gliding vehicle designs being tested today adopt the cylindrical 

body type that houses the buoyancy system, often adding long narrow wings to convert 

depth changes into forward motion.  This thesis reports on research that aims to prove 

there is a new vehicle design that can be scaled up or down in size, carry much larger 

payloads than typical gliding vehicles, and accomplish this wider range of missions 

economically.   

 

B. PROBLEM STATEMENT 

The design of a low-cost gliding unmanned underwater vehicle was outlined in 

the technical document by Gassier et al., “Implementing a Low-Cost Long-Range 

Unmanned Underwater Vehicle: the SeaDiver Glider” conducted at NPS.  (Dumonteil, 

Gassier, & Rebollo, 2006)  The implementation left the challenge of building an 

electrically economical, suitably powerful control system to support long-range tactical 

operations as future work.  Sun Microsystems has recently released the Java SunSPOT, a 

versatile Java-based microcontroller that presents itself as a viable option to suitably 

control the gliding underwater vehicle. SunSPOT control might also provide the needed 

interfaces and functionality to integrate the physical vehicle in the simulation, testing, and 

analysis process. 

 

C. MOTIVATION 

An extensive amount of research has gone into designing the notional SeaDiver 

gliding vehicle, as well as designing and running simulations to assess its ability to 

perform tactical missions.  However, the simulations that were created and populated 

with notional parameters and test results were inconclusive due to lack of actual test 

results from a physical model.  Motivations for this research are to create the physical 

model, to build a suitable control system to close the loop in testing and evaluation of this 

notional design, and to evaluate the Sun Microsystems SunSPOTs suitability and 

effectiveness as an economic vehicle-control solution. 

This research addresses the following questions: 

 Can Java SunSPOT technology be effectively employed to control and 
support long-range glider operation? 
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 Does the control system support expandability in communication and 
guidance to support open-ocean employment? 

 Is the long-range glider an economical option for employment in open-ocean 
situations? 

 

D. OBJECTIVES 

This thesis focuses on developing and evaluating a suitable physical model of a 

notional gliding vehicle, and building the interfaces necessary to directly link to existing 

open-source NPS simulation software, in order to capitalize on the benefits of the use of 

simulation in the development of unmanned vehicles.  The primary objective of this 

research is to evaluate an emerging micro-controller technology, the Sun SPOT from Sun 

Microsystems, assessing its ability to control a prototype gliding underwater vehicle, as 

well as to provide the functionality needed to interface with existing simulation software 

to achieve true physical model in-the-loop testing and analysis capabilities for future 

vehicle designs. 

The innovative vehicle design is based on previous research conducted at ISITV 

in Toulon France and NPS, and critical performance characteristics unique to this type of 

gliding underwater vehicle are examined.  The mechanical and electrical systems 

required for vehicle operation are identified by subsystem, further decomposed to the 

component level, and their purpose and control requirements described in detail.  As 

these systems are identified, development of the control architecture is accomplished by 

breaking down critical tasks and control requirements, while simultaneously evaluating 

the Sun SPOTs ability to execute those tasks. 

 

E. THESIS ORGANIZATION 

Chapter II reviews previous research conducted on this fundamentally different 

vehicle design, as well as research on more conventional gliding-vehicle technologies.  

Chapter III reviews previously conducted research and simulation development based on 

notional characteristics of the SeaDiver glider.   The Autonomous Underwater Vehicle 

Workbench (AUVW) simulation software and the necessary interface requirements to 

integrate the physical model is also reviewed.  Simulations and scenarios were previously 
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developed for the SeaDiver glider, and both might benefit greatly by determining correct 

response parameters from the physical model. Chapter IV describes several performance 

characteristics that must be taken into consideration when developing a vehicle prototype, 

a control system, and integrating each into the applicable simulation system.  These 

concepts must be taken into consideration during every step of the development, testing, 

and analysis process.   Chapter V outlines in detail the various individual systems and 

hardware characteristics of the vehicle, as well as discoveries made as candidate systems 

were being evaluated for implementation.  Chapter VI completely describes the control- 

system development process and prototype control system operation.  Chapter VII 

describes preliminary design and considerations for a test tank configuration, including 

interface considerations that have not yet been implemented.  Chapter VII reports thesis 

conclusions and recommendations for future work. 

 



5 

II. BACKGROUND AND RELATED WORK 

A. INTRODUCTION 

The purpose of this chapter is to present the background for previous research 

conducted related to the SeaDiver glider, as well as to present an overview of related 

work in the field of gliding underwater vehicles. Projects that are currently employing the 

Sun SPOT as a control system are also examined. 

 

B. BACKGROUND 

This thesis began as a continuation of research conducted at the NPS by a team of 

visiting fifth-year French engineering students from University of Toulon 

ISITV(L'Institut des Sciences de l'Ingénieur de Toulon et du Var) in Toulon, France.  The 

research entitled “Implementing A Low-Cost Long-Range Unmanned Underwater 

Vehicle:  The SeaDiver Glider” by David Gassier,  Jerome Rebollo, Romain Dumonteil,  

(Dumonteil, Gassier, & Rebollo, 2006)  supervised by NPS’s Dr. Don Brutzman, and 

ISITV Professor Didier Leandri, was completed in January of 2007 and unfortunately 

vehicle construction was never completed due to design shortfalls and budget limitations.  

There was also independent thesis research conducted at NPS simulating candidate 

missions for the glider, awaiting actual test data to validate projected performance 

characteristics. (Seguin, 2007) 

 

C. NAVY UNMANNED UNDERSEA VEHICLE (UUV) MASTER PLAN 

The Navy UUV Master Plan was originally published in April 2000 and an update 

was  published in November of 2004 at the request of the Deputy Assistant Secretary of 

the Navy and OPNAV N77 (Submarine Warfare Division).  The plan recommends 

missions, technologies, and programmatic recommendations for the future use of UUVs 

to support the Sea Power 21 initiative.  Of the many conclusions and recommendations, 

the section of the plan most related to this thesis research is the call for commonality and 

modularity in UUV design.  The plan recommends designing UUVs that share common 

core components such as control, navigation, sensor, and communication systems, as well 

as developing vehicles that support flexible configuration changes, such as adding new 
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payloads.  The SeaDiver II Glider UUV investigated in this research presents itself as a 

potential solution to the need for vehicles supporting mission flexibility, and also 

evaluates a completely open-source control system option.  ( Naval Undersea Warfare 

Center, 2004)  

 

D. SEADIVER GLIDER 

There are a number of long-range gliding underwater vehicles designed and 

currently deployed.  The uniqueness of the SeaDiver glider comes not only from its 

ability to conduct efficient long-range operations, but the scalability inherent in its 

design.  When the payload requirements change for many of the current gliding vehicles, 

or something needs to be added, a current capability is lost, or the entire design must 

change and a new vehicle be constructed.  Due to their design, they do not support 

scalable size or much mission flexibility.  The SeaDiver glider, modeled after the airfoil 

shape, promotes rescaling the body size to accommodate various payload sizes without 

changing the remainder of the control and sensor system.  This is possible when vehicle 

plus payload displacement remains neutrally buoyant.  The most valuable property of the 

airfoil shape is that when scaled up or down consistently in all dimensions, its 

hydrodynamic behavior remains virtually unchanged. (Dumonteil, Gassier, & Rebollo, 

2006)   
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Work from the technical paper was continued by the supervising Professor from 

ISITV in Toulon France, is referred to throughout this thesis as SeaDiver glider, and is 

shown in Figure 1. 

 

 

 
Figure 1.   SeaDiver Glider. (2007) 

 

E. BLUEFIN ROBOTICS 

Bluefin Robotics  was formed from a core team of the Autonomous Underwater 

Vehicles Laboratory at the Massachusetts Institute of Technology.  Bluefin is currently 

conducting research and development of a gliding underwater vehicle.  The Bluefin 

Glider – SPRAY, is a buoyancy driven gliding underwater vehicle that utilizes a 

hydraulic pump to control its ascent and descent.   
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In water depths up to 1,500 meters, SPRAY is capable of traveling over 4,000 

kilometers, over a period of approximately 6 months.   The SPRAY gliding vehicle 

shown in Figure 2, is of the more common cyclindrical pressurized hull design.(BlueFin 

Robotics, 2008) 

 

 

 

Figure 2.   Bluefin Robotics-SPRAY Glider. (from BlueFin Robotics, 2008) 
 

F. XRAY FLYING WING GLIDER 

The XRay glider shown in Figure 3 is considered a high-performance undersea 

robotic vehicle that was developed in partnership between the Marine Physical Lab at 

Scripps Institution of Oceanography and The University of Washington Applied Physics 

Laboratory. The XRay glider employs a wing design that has a high lift-to-drag ratio.  

This wing design provides the ability to travel long distances efficiently as well as travel 

at higher speeds than existing gliders.  

 

 

 

 

 

 

In July–September 2006, the XRay glider participated in its first at-sea test 

experiments in Monterey Bay. Vehicle specifications and test results have not been made 

available. (University of Washington, 2006) 
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Figure 3.   XRay Flying Wing glider.  (from University of Washington, 2006) 

 

G. RELATED PROJECTS UTILIZING SUN SPOT DEVICES 

There are a number of projects utilizing the wireless sensor capabilities of Sun 

SPOT devices and employing the device as a robot controller.   The two projects 

described below are current projects most closely related to this research. 

 

1. Autonomous Light Air Vessels (ALAV) 

The ALAV research emphasis is on autonomous and flocking behavior in a 

wirelessly-networked environment, yet is an early demonstration of the autonomous 

control capability of the Sun SPOT device.  The ALAVs shown below operating in a 

warehouse are helium-filled vessels propelled by electric fan motors.  Each vessel is 

controlled by a single Sun SPOT device to control the motors, communicate with other 

vessels, and monitor signal strength from the wireless radio to determine proximity to 

other vessels.   

The vehicles are designed to behave in specific ways, yet are autonomous in their 

decision making process for locating and maneuvering towards other vessels. Figure 4 

shows three ALAV baloons during operaton.  (Berk & Mitter, 2006)   
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Figure 4.   ALAVs operating autonomously.  (from Berk & Mitter, 2006) 

 

2. TrackBot 

The TrackBot shown in Figure 5 is a robot platform developed by Systronix 

Corporation specifically for university-level education and research.  The platform 

employs eight different sensor modules that provide object avoidance, beaconing, 

navigation and communication, and a single Java Sun SPOT device as a robot controller.  

This project is of specific interest as research is currently being conducted at NPS 

utilizing this platform in the modernization of a large-scale expeditionary warfare 

demonstrator.  Also of importance is the demonstrated capability of the Sun SPOT device 

to read multiple sensors, make decisions based on those inputs, and actuate multiple 

motor controllers. 

 
Figure 5.   TrackBot robot platform.  (from Systronics, 2008)  
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H. SOLAR POWERED AUTONOMOUS UNDERWATER VEHICLE (SAUV) 

The Solar Powered Autonomous Underwater Vehicle (SAUV) project was 

developed by Falmouth Scientific Incorporated, in cooperation with the Autonomous 

Undersea Systems Institute (AUSI) and Technology Systems Incorporated (TSI) to meet 

the expanding requirements of AUVs to perform long-range missions and station keeping 

duties.   The SAUV shown in Figure 6  is powered by an electric thrust motor.   The 

SAUV operates at depths up to 500 meters and cruises at a speed of 1 knot with a 

maximum speed of 3 knots.  The vehicle contains a battery system that provides 

approximately 1500 watt hours of stored energy.  This battery system allows for deep 

water operation between charging cycles.  The SAUV is normally programmed to 

perform deep operations at night, and charging operations during daylight hours.  The 

solar panel provides 18 volt system power with a maximum power output of 85 watts. 

This project is of particular interest to this research since the addition of a solar-

panel to the top of the SeaDiver II glider might increase the mission duration and expand 

the possibilities for payload options with higher power requirements. A near-surfacce 

SAUV is shown in Figure 6.  (Jalbert, Baker, Duchesney, Pietryka, & Dalton, 2003)  

  

 
Figure 6.   Solar-powered Autonomous Underwater Vehicle (SAUV). (from Jalbert, 

Baker, Duchesney, Pietryka, & Dalton, 2003) 
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I. SUMMARY 

This chapter discussed the background of the previous research conducted related 

to the SeaDiver glider, as well as present an overview of related work in the field of 

gliding underwater vehicles, and projects that are currently employing the Sun SPOT as a 

control system. 
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III. SIMULATION ENVIRONMENT 

A. INTRODUCTION 

A major motivation of this thesis was to continue development of the SeaDiver 

gliding vehicle.  Another motivation is to evaluate the Sun SPOT as a viable option to 

control the glider, and interface with existing simulation systems for testing and 

evaluation.  This chapter describes the previous mission simulations that have been 

created, and the simulation software that needs to be developed for the control system 

interfaces with for mission rehearsal, replay, and any real-time control considerations. 

 

B. SEGUIN SIMULATIONS 

Thesis research was conducted to assess the effectiveness of glider vehicles at the 

Naval Postgraduate School and the results published in March of 2007 by John M. 

Seguin.  Simulations were created using open-source simulations tools SIMKIT, VISKIT, 

and AUV Workbench all produced by NPS.  The simulations examined candidate 

missions of tactical interest based on the notional SeaDiver glider.  The results of 

Seguins’ thesis research were promising but not conclusive enough to prove the ability of 

the SeaDiver glider to conduct tactical missions because many of the vehicle parameters 

and performance data were only estimates.  (Seguin, 2007).  Nevertheless the vehicle 

design, if validated, is expected to have significant tactical potential if deployable. 

 
C. THE AUTONOMOUS UNDERWATER VEHICLE WORKBENCH 

(AUVW) 

AUV Workbench is an open-source mission planning, rehearsal, and replay 

software package for autonomous vehicles, developed and managed at NPS, and can be 

downloaded  along with all associated documentation from  

https://savage.nps.edu/AuvWorkbench.  The software enables the user to create a mission 

profile based on a specific vehicle model and its actual physical characteristics.  
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Once the software has been downloaded and installed, a simple mission can be 

created based on the SeaDiver vehicle. There is a placeholder vehicle profile in AUVW 

for the SeaDiver glider.  The properties for the vehicle were modified from the ARIES 

UUV model that already existed. (Dumonteil, Gassier, & Rebollo, 2006)  Figure 7 shows 

the 2 dimensional (2D) X-Y plot of a basic dive-rise straight line mission.  

 

 
Figure 7.   Screen shot of 2D mission planning for basic dive-rise test mission. 

 

Once a mission is created, the mission profile can be exported in the Autonomous 

Vehicle Command Language (AVCL) file format.  The AVCL file is an Extensible 

Markup Language (XML) based format that includes all aspects of the mission and 

vehicle information.   
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The AVCL file includes a section on mission preparation, and is followed by 

mission results.  (Davis, 2006) The mission preparation portion of the basic mission 

described is shown in Figure 8.   

 

 
Figure 8.   Example glider mission recorded as AVCL output file generated by 

AUVW. 
 

A parser must be created to extract the critical mission information in a format 

best suited for import to the Sun SPOT. Since the controller is programmed in Java, 

parsing functionality might be programmed directly into the controller.   

Actual mission data can also be imported in AVCL, or a number of other data 

formats for conversion, for 3D mission replay and analysis.  The capability to generate a 

Hyper Text Markup Language (HTML) based mission report is currently being added. 

(Davis & Brutzman, 2005)   

A major motivation of this thesis research was to find a suitable control system to 

support closing the loop between the virtual and real world.  The initial intention was to 

create a basic mission in AUVW and develop a method for exporting the mission profile 

either in AVCL format for parsing in the control system, or integrate a parser into 

AUVW to facilitate exporting mission information directly to the Sun SPOT.  It was 

discovered that neither of the communication protocols supported by the Sun SPOT 
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support file transfer to and from the Sun SPOT wirelessly.  The only support there is for 

storing a data file in the Sun SPOT is to include it in the project folder when the 

controller software project is built and deployed to the Sun SPOT.  There is however, 

API support for modifying an included data file once it has been deployed.  It is 

recommended as the control system is refined, a mission update and modification 

interface gets developed to update mission profiles via wireless protocol.  These missions 

are best described using AVCL. 

This same process could be applied in reverse and employed once longer-range 

communication capability is added in order to export mission results and other data to the 

base station.  Initially an interface could be developed in Java for testing, but ideally the 

replay functionality needs to be added to AUVW, and eventually get expanded to include 

real-time vehicle control. 

 

D. SUMMARY 

This chapter briefly described previous thesis research based on the notional 

vehicle that should be revisited once a suitable physical model in-the-loop environment 

has been established to refine vehicle parameters, and re-ran to establish vehicle mission 

capabilities.   An overview of the AUV Workbench software suite, and recommendations 

for interface with a fully developed control system to establish a robust link between the 

virtual environment and the physical model was also provided. 
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IV. GLIDING VEHICLE DESIGN CONSIDERATIONS 

A. INTRODUCTION 

 This chapter describes various design elements to be taken into consideration 

when developing a gliding underwater vehicle of this type.  Much of the information was 

gathered during collaboration sessions with our French colleagues at ISITV based on 

findings during their initial period of research.   

 

B. BEHAVIOR CONSIDERATIONS 

Although it has been discovered that one unique feature of gliding type 

underwater vehicles is that many behavioral type rules are applicable to almost all glider 

types, the findings reported here are conservatively considered as applicable to the 

SeaDiver II. Energy in propeller-driven vehicles is inherent to the vehicle at the 

beginning of the mission, and can be employed for maneuver immediately.  This is not 

the case in gliding vehicles.  The energy in gliding type vehicles is not available until 

vertical lift has first been achieved, and then converted to forward motion by the wing 

shape.  Until this has been achieved, there is no vehicle stability or control.  Once 

forward motion has been achieved, that energy level must be managed constantly to 

capitalize on the efficiency needed for long-range operations.  Energy management must 

be carefully analyzed as it relates to velocity. 

With speed averaging perhaps 1.5 knots, gliding vehicles are considered to be 

“slow.”  This is not necessarily a limitation by design, as increasing the dive angle of any 

gliding vehicle will naturally increase the forward velocity.  Due to the wing shape, and 

the dependence on it to convert lift to forward motion, this increase in velocity creates 

extra drag and therefore reduces vehicle efficiency.  Careful planning of turns and other 

directional maneuvers is needed to maintain optimum efficiency.  Each type of gliding 

underwater vehicle has relatively similar behavior, but the description that follows are 

findings specific to SeaDiver II and thus need to be carefully analyzed in control system 

development. 

The dive-rise-turn cycle is shown in Figure 9 illustrates the typical vertical-

sawtooth travel pattern.  As the vehicle begins to dive, it is recommended the dive pitch 
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initially be set for approximately a 20 degree downward angle, then allow for the 

efficiency sensor system described in Chapter 5 to determine the most efficient angle to 

dive.  If a turn is anticipated, the efficiency sensor system should be over ridden, and 

buoyancy reduced to increase the dive angle to gain forward momentum and build energy 

to power through the turn.  For example, if the optimum speed is 1.2 knots, the angle 

should be temporarily increased to build speed to 1.5, or 1.6 knots.  The amount the dive 

angle should be increased will need to be accurately determined as vehicle is tested.  The 

dive-rise-turn cycle shown below in Figure 9 is compressed to illustrate the entire cycle.  

The actual dive and rise angles are much shallower.   

 

Heading 
Change

Heading 
Change

Heading 
Change

No Turn Zone No Turn Zone

No Turn Zone No Turn Zone  
Figure 9.   Dive-Rise-Turn Management Sequence. 

 
Executing turns reduces efficiency and uses a much greater amount of energy than 

linear travel.  It is recommended that heading changes are made in 20 to 30 degree 

increments per dive or rise cycle to avoid bleeding off too much energy and speed.  This 

is also the case when the vehicle is transitioning from a dive to rise cycle, or vice versa.  

The boxes in Figure 9 that highlight the vehicle transition points should be considered 

“no turn” zones, and the vehicle should be level and stable through these zones, with the 

boundaries limited by the optimum operating speed.  Once the vehicle has achieved this 

speed, a single increment of the turn should be executed, and timed with the dive cycle to 

ensure the vehicle returns to a stable state at the optimum speed to execute the transition 

back to the rise cycle.  Figure 9 depicts the requisite number of dive and rise iterations for 

executing a ninety degree turn. (Leandri, 2008) 
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C. VEHICLE BODY 

The body design of this type glider is a free flood design.  The inherent 

advantages to this type of vehicle design is that varying the payload size does not affect 

vehicle design parameters, and when building the body, the challenge of trying to 

maintain watertight integrity is not an issue.  Due to the shape of the vehicle, there are a 

substantial number of sharply angled seams that would normally be difficult to maintain a 

seal at any pressure.  The free flood design also eliminates any need to take hull pressure 

into design consideration, therefore enabling the builder to use a number of inexpensive 

materials for body construction.  The SeaDiver II is constructed mainly of plywood and 

fiberglass, and since the pressure is equalized both inside and outside the hull, it remains 

effective at any depth. 

Another design consideration that was discovered via trial and error was the 

overall length of the body.  When the vehicle length is anything less than 1.5 Meters, the 

vehicle body is extremely unstable.  

Ideally the vehicle body should be no less than 2 meters in length, and the 

remaining dimensions scaled to match.  There has been no evidence to suggest that there 

is a maximum possible vehicle length.  The dimensions of the successfully tested ISITV 

version of the SeaDiver are shown in Figure 10. 

 

 
Figure 10.   SeaDiver II overall dimensions. 
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D. BOUYANCY  

When developing the buoyancy system for this underwater vehicle, the first 

determination that must be made is the mission of the vehicle, and maximum required 

depth of the operating environment.   It was discovered by the ISITV team that for depths 

greater than 100 meters, any ballast systems should be hydraulic and oil based, vice 

pneumatic and air-based, since the latter tends to act less accurately at greater depths.  It 

is recommended for simplicity of design that the initial prototype vehicle employ a 

pneumatic air-based ballast system.  Another  factor that must be taken into account is the 

operating pressure of any pumps.  The two piston type pumps described in Chapter 5 to 

be employed as a trim ballast system are limited to approximately 60 meters.  It is also 

recommended that once a successful tank test of a ballast system has been achieved, all 

rubber or plastic tubing be replaced by flexible copper tubing and fittings to eliminate any 

possible malfunction due to increased pressure collapsing the transfer lines. 

 

E. SUMMARY 

This chapter provided an overview of three functional areas in which special 

consideration must be taken when developing a gliding vehicle of this type.  Vehicle 

behavior and energy considerations were discussed, as well as special considerations to 

be taken when constructing the vehicle body, and then developing a suitable buoyancy 

system. 
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V. VEHICLE CONSTRUCTION AND DEVELOPMENT 

A. INTRODUCTION 

This chapter describes the origination of the SeaDiver gliding vehicle design, 

construction of hardware components, and the evolution of the vehicle throughout the 

research period.   It begins with findings made when exploring buoyancy solutions and 

work conducted while attempting to construct the original vehicle.  Also described in 

detail are the various systems that were employed, or were investigated as potential 

options for employment, based on the model turned over to NPS by the team at ISITV. 

 
B. VEHICLE DESIGN 

The uniqueness of the SeaDiver Glider resides in its physical design.  As shown 

in Related Work Chapter II, there are numerous vehicles employing the buoyancy-driven 

gliding design to achieve efficient long-range operations.  These vehicles are expensive 

to build, and require major redesign in the event the intended mission or payload requires 

a major change.  The SeaDiver glider body is constructed from low-cost materials.  As 

the vehicle size requirements increase, only the body must be reconstructed as long as 

payload buoyancy remains relatively neutral.  This feature results in flexible and 

economic modifications despite major mission changes. 

 

1. Original Design 

The original SeaDiver Glider design, as described in  (Dumonteil, Gassier, & 

Rebollo, 2006) never actually came to fruition.  Many design considerations were 

described in detail, some with different variations.  Due to budget and time constraints, 

system-level testing and final vehicle construction were not completed. 

 

2. Status at Project Takeover 

The original SeaDiver parts and framework were recovered from the NPS AUV 

lab.  There was a primitive framework, and numerous parts, but the Glider was nowhere 

near assembled or operational.  When taking over the original attempt at the vehicle, a lab 

station was established, and the focus of research became trying to assemble the original 

vehicle based on the technical document.  There were no systems intact as described in 
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the paper, and many of the concepts had not been proven.  This slowed progress 

significantly, as the author had no previous experience in underwater vehicle design.   

The design of the vehicle body is described in great detail in the original technical 

report and is illustrated below in Figure 11. The body dimensions were based off of a 

predetermined airfoil design ratio.  The vehicle body is based on an airfoil that is 

symmetrical, has no camber, and has a 22% thickness to chord length ratio, meaning it is 

22% as thick as it is long. (Dumonteil, Gassier, & Rebollo, 2006) 

 

 
 

Figure 11.   Airfoil Shape of the SeaDiver Glider.  (from Dumonteil, Gassier, & 
Rebollo, 2006) 

 
The initial attempt at the vehicle body is shown in Figure 12.  The dimensions 

were in accordance with the original design as:  

Length: 1.60m (63”) 

Width: 0.80m (31.5”) 

 

 
Figure 12.   Gassier vehicle body. 
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The first design challenge was to identify a suitable buoyancy solution for the 

vehicle.  There were multiple possible solutions outlined in the technical report, but no 

conclusive system level testing had been performed or documented.   

Rudimentary testing began using a potable water compression tank that was 

included in the parts inventory recovered from the lab.  

 The compression tank is normally employed to prevent potable and irrigation 

well pumps from losing suction pressure.  This is accomplished by forcing an internal 

bladder full of water as it compresses the air in the tank as shown  in Figure 13. 

 
 

Figure 13.   Expansion tank increasing buoyancy by displacing water with compressed 
air.  (from Dumonteil, Gassier, & Rebollo, 2006) 

 

The initial description recommended using a reversible air pump to cycle air from 

a compression tank, forcing the water out of the tank to allow the vehicle to rise, and thus 

cycling the air from the expansion tank back to a separate compression tank to draw in 

water and complete the dive cycle.  This approach is illustrated in Figure 14.   

M a i n  B a l l a s t  T a n k

S e c o n d a r y  C o m p r e s s i o n  
T a n k

A i r  P u m p

S o l e n o i d

 
Figure 14.   Pneumatic air-based buoyancy system. 
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Our first attempt at developing a suitable buoyancy system was based on a 

variation of this theory.  Instead of using an air pump to cycle air between two tanks, our 

theory was that the air portion of the tank might be pressurized, and a submersible water 

pump might then pump the tank full of water to submerge, with a solenoid valve 

maintaining the water in the ballast tank.  Similarly for the rise command, the solenoid 

valve might simply open and allow the water to escape as shown in Figure 15.  As the air 

pressure in the tank increased, it forces the water back through the pump, thus reducing 

pump motor cycles from one to two, and greatly increasing electrical efficiency. 

 

M a in  B a lla s t T a n k

W a te r P u m p

S o le n o id

A ir W a te r

 
Figure 15.   Water pump-based experimental buoyancy system. 

 

The first test of this theory was conducted by obtaining a basic submersible pond 

pump from a hardware store and connecting it directly to the expansion tank as shown 

below in Figure 16. 

 
Figure 16.   Submersible pump attached to expansion tank. 
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A standard yard waste container was filled with water, and the pump connected to 

outlet power.  This might not have been a suitable pump to employ in the glider, but was 

an economical proof of concept.  The initial expansion tank pressure was set to 5 pounds 

per square inch (psi) to allow the pump to quickly overcome the pressure and fill the tank 

with water, causing submersion.  Power was applied to the pump, and the tank gradually 

fell to the bottom of the test tank.  Due to a lack of solenoid valve to maintain the water 

in the expansion tank, when pump power was removed, the air was allowed to expand 

and forced the water from the tank, and the ballast tank returned to the surface. 

The next step was to begin researching technical specifications to determine if this 

method might be able to perform at the desired depths, and also learn what air pressure 

would be required in the tank to be able to force the water back out.  This then creates a 

requirement for a suitable pump capable of overcoming that air pressure to fill the tank 

and allow the vehicle to submerge.  Not having the suitable background, an initial 

consultation was made with a hydraulic engineer to discuss possible options.    As 

discussed below, research and investigation into the buoyancy system, and this vehicle 

design was suspended after reviewing findings made by our colleagues in France. 

 

3. ISITV Glider 

In trying to establish a more concrete starting point, the second supervisor of the 

original design work was contacted at the University in Toulon France.  Professor Didier 

Leandri had also been continuing research on the SeaDiver glider design, and had made 

substantial findings and progress. 

Upon hearing that research on the SeaDiver glider was starting again at NPS, 

Professor Leandri extended an invitation to visit his lab at ISITV in Toulon to share 

findings and foster the research relationship between ISITV and NPS.  When visiting the 

lab at ISITV, NPS provided demonstrations of the updated AUV Workbench software,  

and the newly available Java Sun SPOT.  The remainder of the visit was spent taking 

measurements, and sharing research findings with lab personnel.   

Professor Leandri and his team had made substantial progress and conducted 

extensive testing on the original design, making a number of discoveries regarding the 

original design that had failed during test and evaluation.  The most substantial of these 
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findings was the instability found in the original vehicle length.  The original design 

called for a vehicle dimension of 1.6 meters.  It was found that at this length, the glider 

performed erratically and was impossible to stabilize.  The length dimension was 

increased to 2 meters, and this changed provided the needed stability to maneuver.  As 

the vehicle design is based on the scalable airfoil design, this modification also changed 

the other dimensions proportionally. 

The ISITV research team also found that although they had a “suitable” control 

system in a 386 Mhz Processor, programmed in machine language, to capitalize on the 

versatility and functionality of the glider design, a more robust system was required.  

Machine language is not suitable for a flexible mission-oriented robot controller. 

The vehicle speed through water was found to be 1.2 knots, and this value is used 

for the remainder of our design considerations. 

By the end of the four day visit, Professor Leandri had determined that our 

ambition to continue progress in this important area of research warranted providing the 

existing vehicle his team had been working on to NPS to continue.  Documentation began 

on the systems and parts that were available to continue progress while awaiting 

shipment of the vehicle to NPS.   

The hull is shown in Figure 17 and the dimensions of the glider body are as 

follows: 

 Length:  2 meters   

 Width:   1.05 meters 

 Height: 50 centimeters 

 Rear fins: 58 cm (H)  21cm (W)  ~ 2.5cm thick 
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Body construction is primarily out of plywood, and at the time of measurement, 

the control fins were not installed, but are estimated to be 10 inches long and resemble 

surfboard fins.   

 

Figure 17.   SeaDiver II hull. 
 

C. VEHICLE CONTROLLER 

Assessment of the original SeaDiver design by NPS and the ISITV lab found that 

this type of vehicle lacked an electrically and economically efficient control system to 

support long-range operations, especially if the vehicle was to be considered for long-

term tactical employment.  Only summary technical specifications of the original 

proposed controller were available, and we were unable to obtain any of the original code 

for the control system.  We were also unable to obtain the original test and operational 

code from the team at ISITV, since the controller had been removed and repurposed to 

continue testing on another project.  This loss made the design of a new suitable control 

system more challenging since there was not a system to duplicate.   

From the limited information provided, initial research was unable at first to find 

a suitable solution for a control system.  The ISITV team employed a 386 Mhz Processor 

based controller that lacked the needed robustness, and was found to be cumbersome to 

update software and mission profiles.  The replacement solution evaluated by this 

research is the employment of the Sun Microsystems Java-based Sun SPOT (Small 

Programmable Object Technology). 
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1. Sun SPOT 

Sun Microsystems started Project Sun SPOT in late 2004 to perform wireless 

sensor technology research and development, while also developing a hardware platform 

to test a small flexible Java Virtual Machine (JVM) named Squawk.  The Sun SPOT 

devices shown in Figure 18 were a product of this research, and were released to the 

public late in 2006.  The Sun SPOT is a small-footprint wireless-capable sensor platform.  

 

 
Figure 18.   Free range Sun SPOT and base station. 

 
The Sun SPOT main processor is an Atmel AT91RM9200 system on a chip 

(SOC) integrated circuit.  The unit incorporates the ARM920T ARM Thumb processor, 

based on the v4T ARM architecture.  The main processor resides on the main board, but 

the majority of the functionality of the Sun SPOT resides in the connected daughter 

board.  The Sun SPOT is shipped with the eDemo board, and although there are 

schematics and API support for a number of additional function-specific boards, none are 

currently being produced.  The eDemo board contains an Atmega88 processor, a small 

amount of flash memory, light and temperature sensors, a 3-Axis accelerometer, eight tri-

color light emitting diodes (LEDs), and two momentary pushbutton switches. 

Of primary interest to this research is the 3-axis accelerometer and the general 

purpose input output (GPIO) pins.  All are accessible from provided libraries included in 

the Sun SPOT software development kit (SDK).   

The GPIO pins are located on the top of the Sun SPOT via a 20 pin connector.  

The pinout for the connector is as shown  in Figure 19. 
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Figure 19.   Sun SPOT top connector. (from Sun Microsystems Inc., 2007) 

 

As depicted in Figure 19, there are four GPIO pins that can be configured as 

either input or output pins.  These pins have a three volt maximum output and utilize the 

Universal Asynchronous Receive Transmit (UART) protocol which governs serial 

communication.  Pins D0 and D1 can be configured via software as UART receive and 

transmit lines respectively, and D2 and D3 can be configured as I2C-DATA and I2C 

Clock respectively.  H0 through H3 are considered high output pins, and the high output 

voltage is set by a voltage between 4.5 and 18 volts being connected to the Sun SPOT via 

pin 9 (Vh).  Pins A0 through A3 utilize the analog to digital conversion capabilities of the 

processor and accept analog signals from 0 to 10 Volts.   

As previously noted, the eDemo board also contains a 3-axis accelerometer.  The 

accelerometer is an ST Microsystems 3-Axis 2G/6G Inertial Sensor.  The accelerometer 

outputs three voltages that are converted and available to the programmer via the 

software API.     

  

D. BUOYANCY CONTROL 

Besides providing the basic rise and dive functionality, buoyancy can also used to 

control the roll angle of the vehicle attitude.  The current design accomplishes this via 

two separate systems, but further refinement may reveal a method to combine the two for 

increased efficiency.   

 

1. Main Ballast 

The main ballast system consists of a pump and associated plumbing to transfer 

air or oil between a compression bladder and an expansion bladder.  The two system 
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components are depicted in Figure 20.  In the ISITV vehicle, the interconnecting tubing 

was common garden hose, but the recommendation was made by ISITV that this tubing 

was not really suitable for great depths since the resulting water pressure in the free-flood 

hull would tend to compress the tubing and restrict flow.  Instead, these hoses need to be 

replaced by copper tubing or steel jacketed hoses. 

 
Figure 20.   Expansion bladder for main ballast and associated tubing. 

 

Figure 20 shows the expansion bladder that is placed in the forward end of the 

vehicle.  The tubing connects the expansion bladder to the main ballast pump, and then to 

the compression bladder shown in Figure 21. 

 
Figure 21.   Compression bladder for main ballast. 

 

As air or oil is pumped from the expansion bladder at the forward end of the 

vehicle, the bladder deflates making the vehicle less buoyant, and the dive process 

begins.  Likewise, when the process is reversed, and the air or oil is pumped from the 
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smaller compression bladder to the expansion bladder, the vehicle nose becomes more 

buoyant resulting in the rise portion of the cycle. 

The pump that was employed in the ISITV vehicle is shown below.  Actual 

technical documentation for the pump was unable to be located, and other than the 12 

volt input required, no further information was able to be retrieved from the nameplate 

shown in Figure 22.   

 

 
Figure 22.   Main Ballast Pump. 

 

The solenoids used in the main ballast system in the ISTV vehicle are 

manufactured by Danfoss Corporation in Denmark and are shown in Figure 23.   

As with the ballast pump, the printed technical documentation was unable to be 

located, so the following specifications are provided from the information plate on the 

device: 

 Part #:  018F6856 

 Voltage: 12 Volts DC 

 Power:  20 Watts 
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Figure 23.   Ballast System Solenoids. 

 
2. Trim Ballast 

Vehicle trim is accomplished using two piston-type positive-displacement water 

pumps made by Robbe Modellsport Corporation shown in Figure 24.  The trim ballast 

pumps are placed in the vehicle on both the port and starboard side and can be controlled 

independently.  Alternatively, to reduce the number of controller pins required, each 

might be operated in tandem by inverting the control line signal from one to control the 

other.  

One precaution to take into consideration when utilizing this option for trim 

ballast is that these pumps are only rated to 60 meters in depth.  If the vehicle mission 

profile is to exceed this depth, the current equipment for this air-based ballast system will 

not be suitable. 

 
Figure 24.   Trim Ballast Piston Tank 
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E. NAVIGATION 

Glider navigation between waypoints is accomplished via a system comprised of 

separate devices to provide the initial surfaced location, heading and depth.  Once an 

accurate global positioning system (GPS) fix is no longer available due to submersion, 

the control system must rely on the remaining sensors to gather information for dead-

reckoning estimation of position until returning to the surface and obtaining another fix. 

 

1. Location 

When the vehicle is being initiated, and is in suitable range of the surface, it is 

desirable to acquire an accurate GPS fix to determine vehicle position, and correct for 

navigational errors accumulated in the dead-reckoning process.  When investigating 

suitable GPS units, a unit was needed that had low power consumption and a separate 

low-profile antenna module for mounting on top of the vehicle without impacting 

hydrodynamic performance.  The final requirement was to find a GPS receiver able to 

communicate via universal asynchronous receiver/transmitter (UART), connected via 

designated Sun SPOT input/output pins D1 and D0.   

 The device selected for testing and evaluation that met all requirements is the ET-

202 GPS Receiver Engine Board produced by USGlobalSat™ and purchased through 

SparkFun Electronics.  Multiple views are shown in Figure 25. 

 
Figure 25.   ET-202 GPS Receiver Engine Board.  (from SparkFun) 

 

The GPS Engine board is based on SiRF© GPS architecture and utilizes their 

StarII high-performance and low-power consumption chip set.  Specifications for this 

GPS receiver are shown below in Figure 26. 
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Figure 26.   GPS device characteristics. (From USGlobalSat) 
 

The system utilizes a remotely placed 3 volt active antenna that requires a 

supplied adapter to connect to the MicroMate Connector (MMCX) on the GPS receiver 

board.   

The antenna acquired was from SparkFun electronics and is a 3 Volts Magnetic 

Mount Active GPS Antenna Manufactured by ONSHINE and is shown below in Figure 

27. 

 
Figure 27.   Surface Mount GPS Antenna. (from SparkFun) 
 

In accordance with the provided Sun SPOT technical documentation, solder 

connections were made between the GPS engine board serial UART pins and the UART 

pins on the top connector of the Sun SPOT.  By default the GPS engine transmits the 

NMEA sentence data at 4800 bits per second, so the Sun SPOT test code was set to 
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initialize the UART to the same data rate.  A simple test function was written to read data 

from the UART receive pins on the Sun SPOT and output the information to the system 

console for evaluation.   

The antenna was connected, associated power provided as shown in Figure 28,  

and placed in an open location with unobstructed access to sattelite signals. 

(USGlobalSat) 
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Figure 28.   Sun SPOT and GPS Receiver Board connection diagram. 

 

The first attempt at reading data from the GPS engine board was unsuccessful so 

troubleshooting began to determine whether the problem was due to the GPS board, or 

the Sun SPOT.   

A message was posted on the Sun SPOT developers technical forum at 

https://www.sunspotworld.com/   forums that included the test function.  The reply from 

Sun indicated that the code appeared to be correct, and further recommended a loop back 

connection be made between the Sun SPOT transmit and receive pins to ensure it could 

read data from the external interface.  The test code was modifed to transmit ASCII 

characters and then receive and print them to the system screen.  The loop-back test was 

successful.   Test code is saved in AUVW version control, and listed in Appendix E.  

Further investigation into postings made to the technical forums revealed that a large 

number of developers had been encountering the same difficulties communicating via 
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UART with the Sun SPOT.  A significant amount of research time was devoted to the 

troubleshooting process.  Sun followed up with an admission that as the UART API was 

a recent capability addition to the library that there were still a number of issues that 

affect communication at standard data rates, adding that corrections were being made to 

fix the Sun SPOT UART code.   This code became available in September 2008 in the 

developer release of the Blue SDK Version, as this thesis reached completion.  Initial 

tests using the revised Blue distribution proved successful.  

 
2. Heading 

Accurate vehicle heading information is critical to vehicle navigation.  Although 

the internal gyroscope on the Sun SPOT may be used to detect changes in heading 

utilizing that data in the dead-reckoning process, initial heading information must first be 

obtained.  The ISITV glider utilizes three 3-axis gyroscope to provide inertial navigation 

information.  While the investigation into possible options continues, for testing and 

evaluation purposes the heading value in the Sun SPOT controller is set to zero, and the 

Z-Axis accelerometer output is used to track heading changes.    

 

3. Depth, Pitch, and Roll 

Depth information is gathered by three piezoresistive transmitters placed on the 

underside of the vehicle.  Two sensors are placed port and starboard on the forward end, 

and one at the center of the aft end.  Three sensors not only provide redundancy, but can 

also be used to collect and confirm vehicle attitude information to be compared to 

gyroscope data for error checking.   The differential in the forward two sensors can 

provide vehicle roll information, while the differential from forward to aft can be used to 

estimate vehicle pitch.  Test results by the French team confirmed the viability of this 

approach. 

The conversion of the difference in depth from each sensor can be derived using 

simple trigonometry for right triangles.  As shown in Figure 29, the distance between the 

aft depth sensor, and the corresponding midpoint between the two forward sensors, is 

substituted into the equation for the sin of a triangle as the hypotenuse.   
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The difference in depth value between the forward and aft sensors is similarly 

applied as the side opposite  angle theta. The result is the vehicle pitch. The same 

derivation is easily applied to the port and starboard sensors to compute roll information. 

 
Figure 29.   Pitch determination utilizing depth-sensor readings, from midpoint 

between forward sensors and aft sensor. 
 

 

 
Figure 30.   Roll determination utilizing depth-sensor readings, measured between port 

and starboard forward sensors (shown using dotted lines). 

 

One of the transmitters is shown in Figure 31.  It is manufactured by Keller-

Druck, a European manufacturer of precision depth sensors and transmitters.  

Specifications are as follows: 

 Type:  PA-23S/80565.55 

 Range:  0-30 bar 

 Output: 0-5 Volts linear 

 Vcc:  8-28 Volts DC 
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Figure 31.   Keller-Druck Piezoresistive Depth Transmitter. 
 

The initial challenge in using these sensors (and a number of other sensors) is that 

the output is a 0 to 5 volt range, and the input to the Sun SPOT GPIO pins is limited to 

3.2 volts.  A possible solution to overcome this difference is to create a linear resistive 

voltage divider network between the sensor output and the Sun SPOT input pin.  As the 

sensors have not arrived, a substitute voltage is created and adjusted by utilizing a simple 

variable potentiometer to simulate depth changes by varying the input voltage to the Sun 

SPOT analog to digital GPIO pin A1.  The connections are shown in Figure 42. 

 

F. DIRECTIONAL CONTROL 

Although the trim ballast might be utilized to assist in turning, heading changes 

and corrections are made utilizing two servo-driven control planes located on the aft 

portion of the vehicle on the port and starboard sides.  The control planes might be 

configured to utilize a single control signal from the Sun SPOT with that signal inverted 

so that the plane movements oppose each other. Since independent plane control is likely 

desired to also assist in pitch changes, two control signals will likely be needed. 

  

G. DATA STORAGE 

The Sun SPOT has a built in flash memory with a 4 megabyte (MB) capacity.  

This memory is also used to store deployed applications and program data, therefore 

making it inadequate for the storage of any sort of data collected, or extensive mission 

profile information, thus an external data storage solution is also necessary.  There are 

two potential options, one of which was investigated in this research. The second is 

newly emerging  and definitely warrants further investigation 
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1. Universal Data Logging Device 

The method that was investigated in this research was to utilize a small footprint 

Secure Digital (SD) data storage device used in many electronic cameras.  These devices 

are inexpensive and store large amounts of data (available up to 1 giga-byte).  The device 

selected was the Logomatic V1.0 Universal Data Logging Device produced by SparkFun 

Electronics Corporation and is shown in Figure 32.  

It was chosen due to the simplicity of operation, low cost ($60), and simple 

Universal Asynchronous Receiver Transmitter interface (UART). 

 
Figure 32.   Universal Data Logger holding SD memory card. From (Sparkfun) 

 

In accordance with the technical documentation the SD card was formatted to the 

FAT-16 file format on a personal computer prior to initialization of the device.  Solder 

connections were made between the transmit and receive pins of the data logger to the 

corresponding D0 and D1 pins of the Sun SPOT.  Ground and power connections were 

made in accordance with the specifications. 

The same loopback test code that was utilized to troubleshoot the connection to 

the GPS engine board was modified to simply write data to the logging device, and 

deployed to the Sun SPOT, this code was later reduced to the same loopback test code 

listed in Appendix E.  Note that the latest release Sun SPOT SDK Blue version has 

completely changed the UART interface and this code may no longer function.  The 

logging device was initialized and all visual indications were normal.  After a period of 

two minutes, the logging device was stopped, and the SD card inserted into the laptop for 

inspection of the log files.   As expected, the device had created the appropriate log file, 

but there was no data present.  Inspection of the process utilizing a logic probe indicated 

data bits were being transmitted from the Sun SPOT.  The data rate was changed on both 
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the Sun SPOT and the logging device, and after multiple attempts, and a significant 

amount of time troubleshooting, logging data via UART on the Sun SPOT remained 

unsuccessful.  It appears that the inability to log data at this point may be attributed to the 

same deficiencies in the UART interface as encountered when trying to communicate 

with the GPS engine board.  The Sun SPOT libraries provide an API for reading and 

writing to SD memory, but it was written to specifically support the eFlash board. 

 

2. eFlash 

An external independently produced alternative to the SD data logger described 

above is now emerging.  Sun Microsystems developed a number of experimental 

daughter boards with more specific functionality that replace the eDemo board on the 

Sun SPOT.  One of these boards is an SD flash drive.  A major advantage to utilizing this 

type of device is that the software interface provided in the Sun SPOT SDK was written 

specifically to support this device,  hopefully eliminating the existing difficulties 

communicating with devices serially via UART.  Although this requires its own 

dedicated remote Sun SPOT for operation, the radio communication and unused 

processing resources might also be capitalized on to assist in other control functions.  

Initial review of the API and documentation also support this approach as a better option 

than the Universal Data Logger, since it supports any data type desired, as where the Data 

Logger is limited to ASCII text. 

Another potential advantage to utilizing this device for data storage is that Sun 

Microsystems recently released the hardware schematics and device software open 

source, making utilization of these devices a more economical and robust option.  (Sun 

Microsystems, 2008)  Sun Microsystems elected not to produce these devices, and no 

other manufacturer is currently producing them.   Time and resource constraints inhibited 

our ability to produce a complete configuration for further testing and evaluation.  

 

H. COMMUNICATION 

Another inherent feature of the Sun SPOT that presents a robust solution to 

existing shortfalls in UUV development is the built in wireless communication 

functionality.  A problem that currently plagues vehicle testing and operation is the need 
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to remove the vehicle from the wet environment and open it up to make even minor 

changes to the control software, or vehicle mission profile.  Waterproof and pressure-

tight connectors exist for communicating with the controller through the vehicle body, 

but evaluation of those connectors by the ISITV team revealed that they are often 

expensive, and can degrade rapidly in an ocean environment.  These connectors also 

mandate the addition of leak-detection systems, adding further overhead to an already 

complex engineering task. 

 The Sun SPOT wireless network communication system uses an integrated radio 

transceiver, is IEEE 802.15.4 compliant, and operates in the 2.4GHz to 2.4835GHz 

range.  This enables communication to host applications running on a personal computer 

via the wireless base station, or between remote Sun SPOTS.  There are two different 

communication protocols provided in the API that support either radio datagram, or 

connection oriented communication.  Sun SPOTS also possess the capability to act as 

wireless hop relay points as a routing protocol is also provided.  This 

communicationfeature supports code deployment, data collection and dissemination, and 

provides several robust solutions to current communication limitations. (Sun 

Microsystems Inc., 2007).   

 In the early stages of vehicle development and testing, the wireless 

communication feature can be exploited to make code changes, collect performance data, 

and inject virtual sensor data without removing the vehicle from the test tank and 

apparatus.  In an open-ocean operating environment, wireless links might be used to 

communicate with the vehicle when surfaced to collect data and update mission-profile 

instructions.   Conceivably the wireless protocol might also be exploited for inter-vehicle 

communication supporting multiple vehicle operations, but surface rendezvous is a 

prerequisite step.   

 The wireless communication antenna is an inverted-F antenna printed on the top 

layer of the Sun SPOT main board.  Initial testing and evaluation in an unobstructed 

environment revealed the maximum line of sight range for reliable communication was 

approximately 30 meters.  This is not a problem within the vehicle for inter-controller 

communication, but presents a number of challenges for external communication.  Since 

the controllers are housed in a metal dry box, an external antenna is a necessity.  Along 
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with the need for the external antenna, an amplification solution will also be required to 

increase the vehicle communication range to support operations at sea.  The Sun SPOT 

documentation states that certification does not allow an external antenna to be connected 

to the Sun SPOT. 

 

I. POWER 

When developing a gliding underwater vehicle to support long range autonomous 

operations, power management and monitoring are paramount.  The Sun SPOT is an 

electrically efficient controller option, that minimally taxes the main electrical supply.  

For testing and evaluation purposes, the Sun SPOT internal power management was 

evaluated as a separate system from main vehicle power. 

 

1. Sun SPOT Power 

 The power circuit onboard the Sun SPOT charges the battery, regulates the power 

to the main board, eDemo sensor board, and regulates power during deep-sleep 

operations.  The power controller also measures the battery voltage, the battery charge 

current and discharge current, Vcc voltage, Vcore voltage, Vext external voltage, and 

USB voltage Vusb.  The Sun SPOT continuously monitors these voltages and indicates 

any deviation from the acceptable ranges on the power status light emitting diode on the 

front of the device.  These voltage levels and status are also available to the controller 

program via the API.  This is not only a valuable attribute for system monitoring during 

normal operation, but can also provide invaluable testing and evaluation data to 

determine vehicle duration before conducting open-ocean missions.  As the entire system 

has not been constructed, and all devices connected that might affect Sun SPOT power 

consumption are not yet connected, accurate efficiency and duration data could not be 

obtained. (Sun Microsystems Inc., 2007) 

 

2. System Power and Monitoring Requirements 

The vehicle power is supplied by 12 Volt batteries that supply power to the 

controller as well as all sensors and actuators.  No power budget has been estimated.   
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Monitoring the power status not only provides important information about 

vehicle duration during testing, but remains a critical task during normal operation, since 

a power failure might prevent the vehicle from surfacing and result in a total loss.  The 

current design utilizes a power controller and monitoring device that monitors battery 

voltage and current.  This information must be provided to the controller for monitoring 

and logging.  The design specifications of such a device are unknown at this time, but it 

remains advisable to investigate into the possibility of setting a threshold in the system 

power controller redundant to that in the Sun SPOT to trigger a separate emergency- 

surface system in the event of power system failure. 

As vehicle refinement progresses, consideration needs to be given to adding solar 

charging capability in the form of a flexible solar mat affixed to the top of the vehicle.  A 

suitable product would have to be found that can withstand the saltwater environment, 

and testing needs to be performed to determine if enough light could be collected from a 

hover position and depth to keep the vehicle undetectable from the surface. Broached 

operation may also work satisfactorily as evidenced by the SAUV described in Chapter 

II. (Jalbert, Baker, Duchesney, Pietryka, & Dalton, 2003) 

 
J. EMERGENCY SURFACE 

1. System Description 

The vehicle design that tested with positive results by the ISITV team included an 

uninflated personal flotation device in the body of the vehicle.  When the processor 

experiences any number of emergency conditions, or a lack of sufficient power remaining 

to re-inflate the ballast, a solenoid might then actuate inflating the personnel flotation 

device, increasing the buoyancy and forcing the vehicle to the surface.  Another option to 

consider could be to develop a relay attached to the power management system that 

activates the emergency surface system if the monitored battery power level drops below 

a predetermined threshold.  Desert Star Systems also provides a low-cost solution that 

can be triggered by an external sonar transponder. (Desert Star Systems, 2008) 
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K. CONTROL SYSTEM CONNECTION 

The number of sensors and actuators that are needed to control the vehicle 

requires that the control system be comprised of at least two Sun SPOTs.  

Communication between the two Sun SPOTs is accomplished utilizing the wireless 

functionality due to the limited number of UART capable GPIO pins (two per Sun 

SPOT).   

Since the GPS and an external memory solution both require the use of the UART 

pins, this does not leave enough communication capable pins to physically connect the 

devices.  An overall control system input/output (I/O) diagram is shown in Figure 33. 
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Figure 33.   Master I/O diagram for Sun SPOT control system 

 

L. SUMMARY 

This chapter described in detail each individual component and system required 

for successful vehicle operation along with detailed testing and evaluation information 

for newly acquired systems that were selected for interface with the Sun SPOT.   
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VI. CONTROL SYSTEM DEVELOPMENT 

A.  INTRODUCTION 

This chapter describes the software development environment, process 

framework, and controller implementation.  It begins with an introduction to the selection 

of the Sun SPOT for evaluation, a detailed description of the software development 

environment, then outlines in a sense-decide-act organization, providing the interfaces for 

each system investigated in chapter V.  The chapter concludes with a detailed description 

of the prototype control system used for bench testing, and an alternative control system 

device configuration. 

 

B. SUN SPOT AS A CONTROL SYSTEM 

In traditional control system development, system requirements are developed and 

control processes are formulated for programming while being constrained by the actual 

controller capabilities.  Due to the unfamiliarity with the Sun SPOT as a controller, and 

not having an existing control system to duplicate or replace, system requirements and 

processes for the vehicle were being developed at the same time that controller 

capabilities and limitations were being investigated.   

The Sun SPOT was chosen for evaluation as a controller due to many of the 

features that come with the eDemo board.  The built in sensors, inherent communication 

capability, and input output functionality all accessible to the programmer via function 

calls written in Java are all very attractive features in control system development.  As the 

Sun SPOT was in its infancy when selected for evaluation, there were a number of 

shortcomings and revisions from Sun Microsystems, as well as a steep learning curve due 

to the uniqueness of the technology.   

 

C. SUN SPOT SOFTWARE DEVELOPMENT KIT (SDK) 

1. Description 

The Sun SPOT Software Development Kit (SDK) that was initially distributed 

with the first release (Green V 1.0) was simply a package of libraries and plug-ins for the 

NetBeans integrated development environment (IDE).  With the second release (Orange 
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V 2.0), the Spot Manager Console shown in the screenshot in Figure 34 was made 

available for download.  The SPOT manager has been upgraded and revised multiple 

times, but remains an excellent interface for Sun SPOT devices as well as downloading 

updates to the documentation and SDK. 

 
 

Figure 34.   Sun SPOT Manager. 
 
The ability to develop, test, and evaluate operation of the Sun SPOT device using 

a laptop or personal computer is a major advantage of this approach.  As software 

development continues, advanced reliability engineering can be accomplished using the 

Java language that is not possible using lower-level processor-specific programming 

languages. 

 

2. Configuration 

As the Sun SPOT was in its infancy when research began, there were a number of 

short duration upgrades to the SDK.  The Sun SPOT Manager Tool above made it much 

easier to download and install updates, but there were still a number of misalignments 

and disconnects in the SDK installation process.  A number of weeks were spent trying to 

establish an installation configuration that would satisfactorily enable building and 

deploying the demonstration code to a Sun SPOT.  A final compilation of the installation 
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process collected from multiple resources and tested is included as Appendix A.  The 

final configuration made operational was the Purple (Version 3) SDK running on the 

NetBeans 6.1 IDE.   

Almost two months were spent trying to configure the IDE and the SDK to even 

successfully deploy and execute the provided demonstration software.  The most basic 

demonstration piece of code, the “Air Text” demo was the first, and virtually only demo 

that compiled and executed without issue.  Unfortunately this led to a false sense of 

security about the stability of the development environment.   

 

3. System 

The original configuration was only compatible with the Windows XP operating 

system.  Originally there was not driver support for the Sun SPOT to operate on 

Microsoft Windows Vista.  Through trial and error, and collaboration on the Sun SPOT 

forums, a change to the driver information file, and its location made it possible to 

continue development using a Dell XPS M1330, running the Windows Vista operating 

system with no service pack upgrades.  The information file modification process is 

included in the set-up procedure in Appendix A. 

 

4. Challenges 

There were a number of challenges just establishing a stable software 

development environment.  Through the first three upgrades to the SDK, there were 

several items that were not validated before the SDK was released.  There were several 

issues with libraries in the demo code, and in the plug-in for the NetBeans IDE that were 

not correctly linked.  At this point in time, there was no venue for submitting bug reports 

to Sun with the exception of the Tech Forums.  For many of the items reported, fixes 

were found by independent developers, and Sun acknowledged that they would try and 

fix the bugs before the next release.  A number of problems were encountered that were 

due to the newly deployed Microsoft Vista operating system. 

Another challenge in the beginning stages of evaluating the Sun SPOT for 

employment was that there were hardware functions that were advertised on the Sun 

SPOT eDemo board,  but the software interfaces had not been written yet.  Many of the 
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software interfaces have been updated, but several of them (such as the UART 

functionality) still have function bugs and problems awaiting resolution. 

 
D. OVERALL CONTROL STRUCTURE 

The basic overall control framework for the system controller is based on a 

continuous sense-decide-act loop.  The sensors are polled continuously collecting 

information about the vehicles attitude and status.  Processes are executed using this 

information, and based on the next location information, decisions are then made, and 

any necessary action taken to guide the vehicle towards the next waypoint.  For clarity, 

each block in below in the Figure is described separately.  The overall system 

configuration will be described in more detail later in this chapter.  Figure 35 shows the 

sense-decide-act process the control system was modeled after.  As described in chapter 

5, the largest of vehicle I/O requirements require the use of two devices.  The sense 

function is performed by one Sun SPOT device, while the decide and act functions are 

performed on the other.   

 

SENSE
(SENSORS)

ACT
(ACTUATORS)

DECIDE
(PROCESSES)

 
Figure 35.   Sense-Decide-Act Process. 

 

E. SENSE 

The following sensor data collection framework should all be accomplished on a 

single Sun SPOT device, and for descriptive purposes will be referred to as the “Sense” 

SPOT.  The sensors must all be polled at  regular time intervals and information stored in 
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a sensor record object.  The information collected includes depth, pitch, roll, flow, power 

status, and acceleration data from the Sun SPOTs built-in 3-axis accelerometer.   

This information needs to be kept for at least three iterations to allow for dead-

reckoning and delta calculations.  At a less-frequent time interval, the data is logged to 

the recorder for post mission analysis.   

Depth Sensor #1

Depth Sensor #2

Depth Sensor #3

Flow Sensor #1

Flow Sensor #3

Heading / GPS

Accelerometer

Power Monitor LOG DATA

 
Figure 36.   Sense Framework. 

 

Based on the number and types of sensors assumed in Chapter V, a proposed 

device interconnection diagram is shown below. 
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Figure 37.   Sense Device Interconnection. 
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1. Depth  

The depth-sensor values are checked by accessing the digital to analog pins on the 

eDemo board.  The pressure from the three sensors described in Chapter V should be 

stored as three separate values for comparison.  The single forward depth-sensor value is 

necessary for navigation, but can also be compared to the aft two sensors to establish 

vehicle pitch information, similarly the aft two compared to establish roll as described in 

Figures 29 and 30 in Chapter V.  This same information can also be gathered from the 

accelerometer inherent to the Sun SPOT, and values compared to establish relative error.  

As stated in the hardware interface description, the sensors are 5 volt sensors, and the Sun 

SPOT is limited to 3.3 Volts, so some scaling needs to be taken care of by the hardware 

voltage divider, in addition to software scale conversions.   

 

2. Accelerometer 

Pitch and roll information is gathered by accessing the onboard accelerometer 

pitch function for the X –axis and Y- axis.  The origin and axis layout for the sun SPOT 

is depicted in the Figure 38 below.  The orientation of the X, Y and Z axes follow the 

right-hand rule (RHR), corresponding to thumb, forefinger, and middle finger 

respectively.  Acceleration information on all three axis must be collected for dead 

reckoning between waypoints.  Velocity is calculated using the acceleration data from the 

onboard accelerometers, and the time interval.  This may require additional gyro input for 

more accurate operation. 

 
Figure 38.   Right-hand rule orientation of X, Y, and Z Accelerometer Axes.  (adapted 

from Sun Microsystems Inc., 2007) 
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3. Flow Sensors 

Two flow sensors will be placed on the top and bottom of the vehicle at its 

thickest dimension to measure water motion past the hull .  This sensor information will 

be read in via the GPIO interface and compared for vehicle efficiency calculation and 

correction.  The vehicle is operating at optimum efficiency when water flow is equally 

distributed above and below the vehicle.  If the flow over the top of the vehicle is greater 

than below the vehicle, or vice versa, the desired pitch angle can be adjusted via 

buoyancy correction.  This information can also be used when executing turns, or during 

dive-cycle transitions, to help improve vehicle dynamic stability. 

 

4. Heading and GPS 

The initial heading can be programmed in at vehicle launch, but such 

prerequisites are difficult to achieve in practice.  A suitable electronic compass has not 

yet been found to interface with the Sun SPOT.  Once the heading is established, 

variations from that initial value will be computed via delta calculations from the 

accelerometer data.  The potential problem with this method, despite claims made by 

individual developers, the way the Sun SPOT processes the accelerometer data makes it 

prone to errors.  Such reliability of measurement must be corrected. 

The initial surface location is ideally be taken by a GPS fix.  This information 

needs to be saved and used for calculations until the GPS signal was lost, the navigation 

controller can then set a Boolean flag indicating the change in status, and revert to dead-

reckoning using the embedded accelerometer sensors. 

 

5. Power 

The internal power status of the Sun SPOT is monitored by using the inherent 

functions provided for in the power controller API.  The battery monitor circuit for the 

main vehicle batteries will provide an input to be accessed through the GPIO pins on the 

main spot board.  Once initial processing requirements have been determined, further 

control of power consumption may be possible to improve vehicle endurance. 
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6. Data Logging 

As described in Chapter V a suitable external data logging solution is necessary,  

since the internal memory capacity of the Sun SPOT is not sufficient for the requisite 

amount of data collected.  Due to the limitation of only one available UART set per Sun 

SPOT device, it is not possible to connect the GPS and a memory storage device to a 

single device.  It is therefore recommended that the sensor data be passed to the “Decide” 

Sun SPOT device.  Since decision making will be its primary function, it is recommended 

the eDemo board be replaced with the eFlash board described in Chapter V. 

It is recommended an object is created for each polling cycle with variables for 

each sensor value, and a time-stamp and stored in a record class.  The initial code 

framework for this record structure is included in Appendix D, but has not yet been 

implemented.  This information should be passed to the “Decide” Sun SPOT via radio-

stream data connection, and stored in an array of at least three records for decision 

making, as well as permanently logged in the storage device. 

 

F. DECIDE 

The decision making component of the system is representative of the Central 

Processing Unit (CPU) in a traditional consolidated control system.  In this control 

system design, it is implemented on a separate Sun SPOT device, and passes information 

to and from the “Sense” device, and the “Act” device.  The “Decide” device, as in a 

traditional CPU, is responsible for the initialization process, as well as continuous 

iterations of the mission execution process as depicted below in Figure 39.   

Conceptual processes were developed in the system design phase, but cannot be 

completely refined into functional controller code until vehicle construction is complete 

and hardware system parameters established. 
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Figure 39.   Mission Execution Cycle. 

 

1. Initialization  

When the vehicle is initially launched, all systems must be initialized, and a 

sensor check should be conducted, as well as a communication check between controlling 

devices and the base station.  

 In the event there is a discrepancy, the dive mode should immediately be disabled 

to prevent inadvertent mission execution, the process should be aborted, and error 

message sent back to the base station.  The initial process flow is depicted below in 

Figure 40. 

 
Figure 40.   Conceptual controller initialization process flow. 
 

2. Mission Execution 

The basic conceptual mission execution process flow is depicted in Figure 41.  As 

with the system initialization, the flow for this process is a simple representation of the 



54 

cycle, and each element must be iteratively refined as actual vehicle systems are 

developed.  Once the execution process has been initiated, consistent management of the 

sense, decide, act loop as well as monitoring for emergency situations is neccessary.  

Without many of the critical navigation and information systems having been selected 

and successfully tested, further refinement of these process flows will be necessary as 

vehicle development continues.  It is recommended that basic system level functionality 

be established, and each tested individually as the vehicle construction and testing cycle 

progresses.   
MISSION 

EXECUTION

RETRIEVE 
SENSOR DATA

COMPARE TO 
TARGET 

WAYPOINT

ESTABLISH 
CORRECTION

XMIT to “ACT”

STATUS 
CHECK

EMERGENCY 
SURFACE

 
Figure 41.   Conceptual basic mission execution flow. 

 

Inherent in UUVs is the possibility that in the event of major system failure, the 

UUV must inflate the ballast and return to the surface, or else the vehicle is lost.  Once an 

emergency situation from the sensing framework has been detected, a flag is set that 

overrides all other decision cycles, and the signal is sent to the “Act” device to 

emergency surface. 

 

G. ACT 

The functions in the Act process simply access the most recent correction values 

received from the “Decide” device, and send the necessary electrical signals to the 

actuators to perform the required attitude corrections.  As this is a continuous loop, the 

corrections will are checked while they are in progress.  This approach prevents sporadic 
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oscillations and over-correction.   This is another area that will require iterative 

refinement as the vehicle systems are assembled, and final actuator specifications are 

acquired.  The framework for the controller code has been established and is included in 

Appendix D.  The code framework should include the basic inter-device communication 

interface, and then based on which actuator is connected to which GPIO pin, the 

appropriate level should be set to high or low accordingly.  Based on the number and 

types of actuators assumed in Chapter V, a proposed device interconnection diagram is 

shown in Figure 42. 
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Figure 42.   “ACT” Device Interconnection 

 

A significant challenge that was discovered is the need for an electrical interface 

between the low power outputs of the Sun SPOT and the devices it controls.  The 

proposed devices from Chapter V all operate on 12 volts, and vehicle power from 

batteries is also 12 volts.  One proposed solution might be to research and identify relays 

that can be activated by 3 volt signal that switches the 12 volt actuation signals in a 

similar manner to that of a motor-controller.  Another solution that may be required is to 

use electronic logic gates and buffers to step the signal up to 5 volts to actuate relays.  

These relays are best be implemented on a board in the dry box with the controllers. 
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H. COMMUNICATION 

Due to the limitations of only one UART interface pair per Sun SPOT device, 

inter-control device communication needs to be established using the inherent wireless 

radio-stream capability of the Sun SPOT devices.  As these devices should all be located 

in the same dry box compartment, testing may need to be conducted to ensure there is no 

signal interference due to container construction material.  As stated in the 

communication section of Chapter V, a suitable external communication capability will 

be required to communicate status to the base station, as well as interface in a testing 

environment. 

 

I. PROTOTYPE CONTROL SYSTEM CONFIGURATION 

The previous sections in this chapter describe an overall control system 

framework design, and process flow considerations.  As in any system design, it is best to 

begin with basic functionality, and iteratively improve upon, and refine the prototype.  In 

evaluating the suitability of the Sun SPOT as a robot controller a smaller-scale system 

has been developed that proves the device’s ability to read a sensor value, collect vehicle 

attitude information, actuate an externally connected device, and output data for analysis.  

The system utilizes two Sun SPOT devices vice the three as described in previous 

sections of this chapter, a “Sense” device, and an “Act/Decide” device.  As the system is 

still in development, a section outlining alternative configuration considerations follows. 

The prototype control system is configured on an electronic prototyping 

breadboard to provide for reliable solder-less connections and is shown in Figure 43. 
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Figure 43.   Prototype control system test bench. 

 

The power supply to the test bench is a 6 volt, 800 milliamp power converter.  

This power source is not connected to the Sun SPOT devices, it simply provides power to 

the simulated sensor signal, and a stable system ground. 

A depth sensor is simulated by connecting a variable potentiometer between the 

positive lead of the power supply, and system ground and is used to vary the voltage 

between  0 and 7 volts on the output.  This output is connected to pin A1 on the “Sense” 

Sun SPOT device.   
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 Test bench power is also connected to the Vh pin on the “Act” device to provide 

the source voltage for the H0 through H3 output pins.  The system connection diagram is 

shown in Figure 44. 

 
Figure 44.   Prototype control system wiring connections. 

 
The “Sense” device reads the accelerometer data, temperature, and voltage 

applied to pin A1 as if was a connected depth sensor, and transmits that sensor data to the 

Act/Decide device via wireless datagram.  The operational code is included as Appendix 

B. 

The “Act/Decide” device receives the datagram packets, and lights one of the two 

LEDs to represent actuation of a main ballast pump, or trim ballast pumps as needed to 

maneuver the vehicle.  The LEDs are used to demonstrate the device controlling an 

actuator.  As described in chapter V, many of the pumps and actuators are 12 volt 

systems, but this 6 volt control signal can be applied to a suitable motor-controller device 

to control the higher voltage devices. 

As sensor data is collected by the “Act/Decide” device as received from the 

“Sense” device as well as its embedded sensors, it is output to the system console in 

NetBeans to demonstrate the ability to export the information.  Once a suitable data 

logging device is identified, completing the logger only requires minor additions to the 

code.   An example of the data output is included as Appendix F. 
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J. ALTERNATIVE CONTROL SYSTEM CONSIDERATIONS 

In the early stages of control system development discoveries were made 

suggesting possible alternative configurations for the number of Sun SPOT devices 

utilized.  The configuration shown in Figure 45 suggests a three device configuration 

where the sense and decide functionality is combined on a single device (#2), while 

device number three controls the actuators.  The remaining device is connected to the 

GPS device, and collecting that information is its sole purpose.  This configuration allows 

the navigation Sun SPOT to go into deep sleep mode while the vehicle is submerged.  If 

the power source for the GPS device was supplied from that Sun SPOT device, both 

devices can essentially hibernate for the majority of the mission duration potentially 

resulting in power savings that would lengthen mission endurance. 

 

 
Figure 45.   Alternative control system device configuration. 

 

K.  SUMMARY 

This chapter described the software development environment, process 

framework, and controller implementation.  The first section was an introduction to the 

selection of the Sun SPOT for evaluation, followed a detailed description of the software 

development environment.  The remainder of the chapter outlines in a sense, decide, act 

organization, the interface for each system investigated in Chapter V. The chapter 

concludes with a detailed description of the prototype control system used for bench 

testing, and an alternative control system device configuration. 
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VII. TESTING AND EVALUATION 

A. INTRODUCTION 

This chapter describes a possible test tank setup designed to thoroughly conduct 

vehicle testing in the tank environment before deploying the vehicle to sea, followed by a 

section on preliminary considerations for the division of virtual and actual signals to be 

interfaced for testing.   

 

B. TEST TANK SETUP 

A gliding vehicle presents a number of challenges not faced when testing 

propeller-driven vehicles.  Due to the nature of gliding vehicles, static testing could not 

be simply conducted in a wet tank without some additional considerations.  The first of 

these considerations is that the vehicle must begin a dive cycle to achieve forward 

motion, and the depth of the tank is not suitable for this to take place.  Therefore, for 

accurate parameters to be established in relation to vehicle buoyancy, there must be a 

way to measure the buoyant force allowing accurate prediction and simulation of dive 

and rise rates, and estimate of vehicle trajectory.   

The system depicted below was designed to be attached to the crane beam above 

the NPS test tank, allowing the vehicle to be tethered in a neutrally buoyant state 

approximately 6 to 8 inches below the water surface.  The vehicle is suspended from the 

overhead using plastic coated 1/8th inch wire rope with a 250 pound load rating.  The two 

force meters were inserted to measure the force of buoyancy during dive and rise cycles.  

As the meters will be utilized in a wet environment, the initial system employed two 

scales designed to weigh fish.  The scales are connected to the cables with eyelets and 

loopholes in the cable, and an inline type cable tension adjuster was placed in each 

section of the forward measurement cable.  The aft cable is a single piece that spans from 

the ceiling to a weight to be placed at the bottom of the tank, and connects to the vehicle 

through a screw in eyelet that allows the vehicle vertical motion in the water, but prevents 

forward and aft motion, as well as restricts vehicle heading changes.   
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All cables are connected to the vehicle at the centerline of the body, with the forward 

cables being placed at the center of buoyancy.  The cable and force meter system has 

been constructed and remains available in the NPS Unmanned Vehicle Systems Lab and 

is shown in Figure 46.  The Sun SPOT from glider transmits recorded results to base 

station.  Weight scales display measured changes in buoyant force. 

 

 
Figure 46.   Notional test tank design. 

 

C.   SENSORS AND SIGNALS 

All systems are intended to operate as on a regular mission, though some sensors 

without appropriate inputs need to be overridden by virtual signals.  Based on system 

characteristics as described in Chapters V and VI, a preliminary evaluation was 

conducted into which actual signals can be utilized, and which virtual signals need to be 

injected (or substituted) in the simulation software. 

 

1. Virtual Signals 

As the vehicle will never actually change depth, and forward motion will be 

restricted in the test tank environment the following virtual signals need to be substituted 

for actual: 

 Depth Sensors 
 Flow Sensors 
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2. Actual Signals 

The following actual signals are expected to be suitable for testing 

purposes and require communication of these values from the controller to the 

simulation software: 

 Pitch and Roll 
 Buoyant Force (from meters) 
 Battery Level 
 Buoyancy actuators 

 

D. VEHICLE INTERFACE 

Care should be taken when introducing test-interface code  and connections 

directly to the Sun SPOT.  As described in Chapters V and VI, once a reliable means to 

communicate externally to the vehicle has been established, the controller can be 

accessed wirelessly via the base station.  This type of interface is thought to be ideal, as 

external connectors to the control box are not necessary, and it supports the need for 

development of the software interface between AUV Workbench and the Sun SPOT for 

functional real-time operational requirements.  A recommendation for future research and 

development is to develop functionality in AUVW that controls communication directly 

to the Sun SPOT via the base station, completely closing the testing loop.  

 

E.   DATA COLLECTION AND ANALYSIS 

As vehicle and control system development were in progress, report generation 

functionality was created and added to AUVW.  AUVW already had the capability to 

take post mission results that had been converted to AVCL and replay the missions.  The 

report generator employs and XSLT style sheet to parse vehicle and planning data out the 

pre-mission set up file, and also parses the mission results and converts those to an 

HTML report for web based review.  The report generator is constantly being refined to 

include additional mission information, as well as 3D replay capability using X3D 

graphics.   

Not only might this be a powerful tool for review and analysis of test results, but 

as the vehicle communication system is refined, this might enable real-time review, 

replay, and possibly real-time control remotely via The Internet. 
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F. SUMMARY 

This chapter describes a possible test tank setup that was developed to thoroughly 

conduct vehicle testing in the tank environment before deploying the vehicle to sea, 

followed by a section on preliminary considerations for the division of virtual and actual 

signals to be interfaced for testing.  The chapter concludes with recommendations for 

interfacing with the vehicle, as well as considerations for testing and data analysis 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This research has examined and explained in detail the theory behind the vehicle 

and control system development of a free flood, fully scalable, low cost, long-range 

gliding underwater vehicle.  Conclusions  were drawn in three main areas.   

 

1. SeaDiver II Gliding Vehicle Development 

The main motivation for this research was to evaluate the Sun SPOT as a suitable 

controller for the physical model to be integrated with simulation software to conduct 

loop testing.  The research began by evaluating previous work, and continuing 

development of that model.  Through research conducted by the team at ISITV, the 

vehicle prototype provided many lessons learned, and items to be taken into 

consideration as vehicle development continues.  There were a number of logistic issues 

in recovering the vehicle from the French team, which caused significant delays. This 

thesis outlines the vehicle in enough detail that a new vehicle might be created utilizing 

locally obtainable parts.  Through this research it can be concluded that a vehicle design 

of this type warrants further development and refinement. 

 

2. Sun SPOT Development Environment 

The biggest challenge to conducting this research was investigating a new 

technology that underwent four major software development kit, and interface revisions 

during an eighteen month timeframe.  As the upgrades were released, there were a 

number of areas were due attention may not have been paid to documentation and 

interface integration.  Through this research, it has been discovered that the 

developmental instability will remain a challenge until a suitable development 

environment is established.  The steady delivery of revisions and an active development 

community remain promising assets for supporting continued work. 
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3. Control System Development Utilizing Sun SPOT Technology 

Control system development in parallel with physical vehicle development is a 

challenging process even when the capabilities and operating parameters of the control 

system are known.  Investigating a new controller technology while simultaneously 

developing vehicle systems, and the control framework in this research may not have 

been the most effective or efficient approach.  Challenges faced in the software 

development directly contributed to a number of unsuccessful attempts to continue 

vehicle system development to the inability to interface with devices external to the Sun 

SPOT.  It cannot be concluded that the Sun SPOT is an unsuitable option, however the 

developmental instability must be overcome before successful development can continue.  

Further testing, experience and software engineering is likely to help 

 

B. RECOMMENDATIONS FOR FUTURE WORK 

 

1. Finish Construction of SeaDiver II 

As stated in the conclusion above, the actual vehicle and subsystems must be 

successfully delivered, or construction of a new model must be completed before control 

system development can continue.  An itemized listing of parts on hand, and parts still 

required are included as Appendices G and H respectively. 

 

2. Continue Control System Development and Evaluation 

Once a complete vehicle, or subsystems thereof have been constructed, control 

system development and evaluation can continue.  This thesis provides the framework 

based on the progress made on vehicle development. 

 

3. Develop an External Communication Solution for Sun SPOT 

Although the Sun SPOT documentation states that Federal Communication 

Commission (FCC) constraints prohibit the addition of an external antenna to the device, 
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this area requires further research and development to ensure wireless communication 

between the vehicle and the base station.  Of note is that U.S, maritime, and international 

restrictions each differ. 

 

4. Develop Sun SPOT Interface Functionality In AUV Workbench 

It is recommended that once a stable control system has been developed, device 

communication and control functionality be integrated directly into the AUVW software 

suite.  

As this control system was being evaluated for the SeaDiver II gliding vehicle, the 

open source hardware and software of the control system, coupled with an open source 

planning and control suite might significantly impact the future of unmanned vehicle 

development. 

 

5.  Integrate Performance Data Into Previously Developed Simulations 

Once testing has been conducted and iterations of vehicle refinement continue, 

any vehicle parametric data discovered needs to be periodically entered into the 

mentioned simulations that have already been developed to continually check feasibility 

and continued system improvement. 

 

6. Conduct At Sea Testing of SeaDiver II 

This thesis described a robust test tank solution that should enable the vehicle to 

run a full mission in the test tank while continuously collecting performance data for 

refinement.  Once a full successful mission has been executed in the testing environment, 

the SeaDiver II should be iterated through a series of missions with increasing 

complexity. 
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APPENDIX A.  SDK CONFIGURATION 

Sun SPOT Development Environment Download and Set-up 
 

**VISTA NOTE: Turn off User Account Control to allow SDK installer to work 
properly: Start -> Control Panel -> User Accounts -> User Accounts -> Turn User 
Account Control on or off , reboot. (you can turn it back on if required after the sdk is 
installed) 

**Before Beginning: Recommend you check your java installs and ensure you 
have only one copy of the latest jdk and jre installed.  If this is not the case, use the 
UNINSTALL feature in control panel to clean directories. 

 
1.  Download and Install NetBeans IDE 6.1 

            http://www.netbeans.org/downloads/ 
                **Recommend downloading the latest Netbeans / JDK combo package. 
 

 

2. Installing Sun SPOT plugin 
 

Install Sun SPOT plugin into NetBeans. Download the Update Center from: 
http://www.sunspotworld.com/NB6/com-sun-sunspot-updatecenter.nbm   

This will save as a .zip file, so as you save, rename to .nbm. Now, in 
NetBeans, go to: 
 
1. Tools menu -> Plugin. 
2. Click on Downloaded tab. 
3. Click on Add Plugins button and select the file. Then, confirm the installation 
clicking on Install button and accept the license agreement. 
4. Finally, go to the Available Plugins tab, sort by category, and mark 
SunSPOTApplicationTemplate, SunSPOTHostApplicationTemplate and Sun 
SPOT Info, click on Install button and accept the license agreement. 
5.  Go to settings tab, select it to verify update center is installed. 
6. Go to available plug-ins tab and reload catalog. 
7. Sort by category 
8. You can now check that everything is installed going to Installed tab. 

 
 

3. Getting Sun SPOT SDK 3.0 (Purple Version) 
 

1. If you are not sure you have Ant installed on your system, download it 
from http://ant.apache.org/ and install it (unzip it to a directory named C:\ant).  
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2. Check and Set all the environment variables, to do this, Start -> 
Control Panel -> Enter "env" in the search box (no quotes) -> click "Edit the 
system environment variables". Click "Environment Variables, now in the upper 
section (user variables):  

 
New -> name: ANT_HOME, value: Path to your ant installation, say C:\ant  
New -> name: JAVA_HOME, value: Path to your java installation, say 
C:\Program Files\Java\jdk1.6.0_03  
 
EDIT the path variable so it includes the path to the bin directory of your Ant 
installation (for example: C:\SSH Secure Shell;C:\ant\bin) (use ; to separate) 

**Ensure ANT is in your root directory, as this is the only place the system 
checker will look.** 

 
 3.  Perform a complete system RESTART. 

 

4.  the Sun SPOT SDK.  Go to 
http://www.sunspotworld.com/SPOTManager/    Be sure you have at least JDK 
1.5 and at least Ant 1.6.5 installed and configured in your system.   If the system 
checker does not find your installation of Netbeans, that is fine, it is not 
necessary to pass the system check. 

 
 
**VISTA NOTE**Before the first time you plug a SPOT in, follow 

this:  Your OS will not recognize and automatically install the drivers.  Do this 
manually by pointing the system directly to the .inf file in the SDK directory, 
NOT the Windows.inf folder!  

 Check SunSPOT.inf in your SDK directory. Make sure it contains the 
line "include=mdmcpq.inf" so it looks as follows: 

 [SpotInstall]  
include=mdmcpq.inf  
CopyFiles=SpotCopyFiles  
AddReg=SpotAddReg 
 
4.  Spot Manager will do a system check, and download the latest SDK. 
 
 4.  Updating Demos And Sunspots 

1.  Open the Spot Manager using the icon that was installed on your 
desktop. 

 2.  Click on the preferences tab. 
 3. Select the “Beta Update Center” radio button. 
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 4.  Click the SDK tab. 
 5.  Click on the “Demos” Icon at bottom right.  This will download the 

latest demos. 
 6.  Verify that the latest demos to be installed, match the SDK you have 

installed (Purple) 
7.  This will create a folder called “Demos1” in your SDK directory 
(typically C:\Program files\sun\Sunspot\SDK)  This is because there 
already existed a Demos folder.  Delete the Demos folder, and rename 
the new Demos1 folder to just read Demos.  This will insure the links 
from the SunSpot console in NetBeans link to the most current Demos. 

  

Creating the Demo Application 
To  make the default demo application work.  In NETBEANS Go to: 

1.  File menu -> New Project 
2.  Select Java category, select Sun SPOT project and then click Next. 
3.  Leave the default project name and package and click Finish. 
4.  Open org.sunspotworld.StartApplication.java. You can see it extends MIDlet and 
already has some code. If you are familiar with Java ME, you will not have big problems. 
But, basically, Sun SPOT architecture is CLDC (Connected Limited Device Profile) 1.1 
and has IMP (Information Module Profile) in the top - which can be defined as a MIDP 
(Mobile Information Device Profile) without UI stuff. Also, it has some additional 
libraries and all this runs in a VM called Squawk, that is characterized by being most 
written in Java. So, StartApplication implements the abstract methods inherited from the 
MIDlet (startApp,pauseApp that Squawk never calls and destroyApp). It works in a sand 
box enviromnent. 
**You are likely to encounter an issue with the radio datagram library import if so ensure 
your classpath in properties look as follows: 
C:/Program Files/Sun/SunSPOT/sdk/lib/squawk_rt.jar;  
C:/Program Files/Sun/SunSPOT/sdk/lib/spotlib_host.jar;  
C:/Program Files/Sun/SunSPOT/sdk/lib/spotlib_common.jar;  
C:/Program Files/Sun/SunSPOT/sdk/lib/multihoplib_rt.jar;  
C:/Program Files/Sun/SunSPOT/sdk/lib/transducerlib_rt.jar;  
 
The startApp code basically gets an object reference to the singleton eDemo Board and 
then make its LED blink red for a quarter of second each second. As you, can see, the 
code is pretty high level and easy to understand. 
 

 
 

    protected void startApp() throws MIDletStateChangeException { 
 

        System.out.println("Hello, world"); 
 

        new BootloaderListener().start();   // monitor the USB (if connected) and recognize commands from 
host 

 
 
        long ourAddr = Spot.getInstance().getRadioPolicyManager().getIEEEAddress(); 

 

        System.out.println("Our radio address = " + IEEEAddress.toDottedHex(ourAddr)); 



72 

 
 
        ISwitch sw1 = EDemoBoard.getInstance().getSwitches()[EDemoBoard.SW1]; 

 

        leds[0].setRGB(100,0,0);                // set color to moderate red 
 

        while (sw1.isOpen()) {                  // done when switch is pressed 
 

            leds[0].setOn();                    // Blink LED 
 

            Utils.sleep(250);                   // wait 1/4 seconds 
 

            leds[0].setOff(); 
 

            Utils.sleep(1000);                  // wait 1 second 
 

        } 
 

        notifyDestroyed();                      // cause the MIDlet to exit 
 

    } 
 

 

Running the Demo Application in the emulator 
Put this application to run in the emulator. 
1. Right click the project and select Build. It will generate the jar in the 
/$PROJECT_HOME/suite/. If you have a spot device, you could send it directly by right 
clicking the project and selecting Build Project + Deploy to Sun SPOT , forgetting the 
next steps. 
2. Open the emulator (in the ToolManager, go to Solarium tab and then click in the 
Solarium button). Then, in the emulator, click on the Emulator menu -> New virtual 
SPOT, you will notice that a Sun SPOT will appear in the squared right area. 
3. Right click on the Sun SPOT picture, then click Specify application jar file... and select 
the application jar in /$PROJECT_HOME/suite/, which is the place that the application 
was built in step 5.1. 
4 . After that, click again on it, then Run MIDlet and StartApplication. Finally, you will 
see a red LED blinking. 
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APPENDIX B.  SENSE DEVICE CODE 

/* 
 * @author: Ron Hemmelgarn  
 * @date: 19 September 
 * @file: seaDiverSenseController 
 *. 
 *The purpose of this code is to act as the sense controller portion 
 * of a two part control system being developed to control the SeaDiverII  
 * gliding underwater vehcile being developed at the Naval Postgraduate School  
 * in Monterey California. 
 *  
 * This code was adapted and modified from portions of the Sun SPOT demo 
  * code as well as includes adaptaions made by Chris Fitzpatrick and Ken   
*Maroon. 
 * 
*Copyright (c) 1995-2008 held by the author(s).  All rights reserved. 
 
*Redistribution and use in source and binary forms, with or without 
*modification, are permitted provided that the following conditions 
*are met: 
 
    * Redistributions of source code must retain the above copyright 
      notice, this list of conditions and the following disclaimer. 
    * Redistributions in binary form must reproduce the above copyright 
      notice, this list of conditions and the following disclaimer 
      in the documentation and/or other materials provided with the 
      distribution. 
    * Neither the names of the Naval Postgraduate School (NPS) 
      Modeling Virtual Environments and Simulation (MOVES) Institute 
      (http://www.nps.edu and http://www.MovesInstitute.org) 
      nor the names of its contributors may be used to endorse or 
      promote products derived from this software without specific 
      prior written permission. 
 
*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
*"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
*LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
*FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
*COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
*INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
*BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
*LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
*POSSIBILITY OF SUCH DAMAGE. 
 
 *********************************************************************** 
 
 
 
 * Copyright (c) 2007 Sun Microsystems, Inc. 
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy 
 * of this software and associated documentation files (the "Software"), to 
 * deal in the Software without restriction, including without limitation the 
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 
 * sell copies of the Software, and to permit persons to whom the Software is 
 * furnished to do so, subject to the following conditions: 
 * 
 * The above copyright notice and this permission notice shall be included in 
 * all copies or substantial portions of the Software. 
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
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 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
 * DEALINGS IN THE SOFTWARE. 
 **/ 

package glider; 
 
 
import com.sun.spot.sensorboard.peripheral.IAccelerometer3D; 
import com.sun.spot.sensorboard.peripheral.ISwitch; 
import com.sun.spot.sensorboard.peripheral.ITriColorLED; 
import com.sun.spot.sensorboard.peripheral.LEDColor; 
import com.sun.spot.sensorboard.EDemoBoard; 
import java.io.*; 
import javax.microedition.io.Connector; 
import javax.microedition.io.Datagram; 
import javax.microedition.io.DatagramConnection; 
import javax.microedition.midlet.MIDletStateChangeException; 
import com.sun.spot.sensorboard.io.IScalarInput; 
import com.sun.spot.io.j2me.radiogram.RadiogramConnection; 
import com.sun.spot.util.Utils; 
 
 

public class seaDiverSenseController extends javax.microedition.midlet.MIDlet { 
 
    private ISwitch sw1,  sw2; 
    public ITriColorLED[] leds; 
    RadiogramConnection conn; 
    IAccelerometer3D accelerometer; 
    EDemoBoard eDemo; 
    boolean sw1IsClosed, sw2IsClosed; 
    int sendStatus = 0;  // Send Status 0 = Don't send and 1 = Send 
    int controlMotor = 2; 
    int accelerationLeftRight; 
    int accelerationForwardAft; 
    double depthValue; 
     
    protected void startApp() throws MIDletStateChangeException { 
 

   //Lights the 1st four Led's on the top of the SPOT to indicate initialization 
        leds = EDemoBoard.getInstance().getLEDs(); 
        for(int i=0;i<4;i++) 
        { 
            leds[i].setOn();    
            leds[i].setColor(LEDColor.RED);    
        } 

 //Lights the lasst four Led's on the top of the SPOT to indicate initialization         
        for(int i=4;i<8;i++) 
        { 
            leds[i].setOn();    
            leds[i].setColor(LEDColor.GREEN);    
        } 

//Initialze the accelerometer 
        accelerometer = EDemoBoard.getInstance().getAccelerometer(); 
        accelerationForwardAft = 0; 
        accelerationLeftRight = 0; 
        

//Start the sense and send cycle.  This is where the sensors will be polled 
//continuously 
//and their values broadcast to the decide/act controller. 

         
startSenseAndSendThread(); 

         
    } 
 

/** 
* The Sense and Send thread polls the sensors and sends the data each 500 ms 
*/ 

    synchronized public void startSenseAndSendThread() { 
        new Thread() { 
            public void run() { 
                // Create the wireless DatagramConnection 
                DatagramConnection dgConnection = null; 
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                Datagram dg = null; 
                 

try { 
// The Connection is a broadcast so we specify it in the creation string 

dgConnection = (DatagramConnection) 
Connector.open("radiogram://broadcast:37"); 

// Then, we ask for a datagram with the maximum size allowed 
 
dg = dgConnection.newDatagram(dgConnection.getMaximumLength()); 

                    }  
               

catch (IOException ex)  
{ 

      System.out.println("Could not open radiogram broadcastConnection"); 
      ex.printStackTrace(); 
      return; 
       } 
                 
                while(true){ 
                    try { 

//Reset the datagram connection 
                        dg.reset(); 

//Get an instance of A/D input pin A1 "SIMULATED DEPTH SENSOR" 
IScalarInput pinA1 = 
EDemoBoard.getInstance().getScalarInputs()[EDemoBoard.A1];                   

//write the reading to the datagram 
             dg.writeInt(pinA1.getValue()+1); 

//Get and write the accelerometer values to the datagram 
dg.writeUTF(""+accelerometer.getTiltY()+ ":"+ 
accelerometer.getTiltX()+":"+accelerometer.getTiltZ() ); 

//Send the datagram                         
                        dgConnection.send(dg);  
                        
 
                    } catch (IOException ex) { 
                        ex.printStackTrace(); 
                    } 
                    Utils.sleep(500); 
                } 
            } 
        }.start(); 
    } 
     
    protected void pauseApp() { 
    } 
     

    /** 
     * Called if the MIDlet is terminated by the system. 

* I.e. if startApp throws any exception other than 
*MIDletStateChangeException, 

     * if the isolate running the MIDlet is killed with Isolate.exit(), or 
     * if VM.stopVM() is called. 
     *  
     * It is not called if MIDlet.notifyDestroyed() was called. 
     * 
     * @param unconditional If true when this method is called, the MIDlet must 
     *    cleanup and release all resources. If false the MIDlet may throw 
     *    MIDletStateChangeException  to indicate it does not want to be 

*destroyed 
     *    at this time. 
     */ 

    protected void destroyApp(boolean unconditional) throws 
MIDletStateChangeException { 

    } 
     

} 
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APPENDIX C.  ACT/DECIDE CODE 

/*  
 * @author: Ron Hemmelgarn  
 * @date: 19 September 
 * @file: seaDiverActController 
 *. 
 *The purpose of this code is to act as the act controller portion 
 * of a two part control system being developed to control the SeaDiverII  
 * gliding underwater vehcile being developed at the Naval Postgraduate School  
 * in Monterey California. 
 *  
 * This code was adapted and modified from portions of the Sun SPOT demo 
 * code as well as includes adaptaions made by Chris Fitzpatrick and Ken Maroon. 
 * Copyright (c) 2007 Sun Microsystems, Inc. 
 * 
 *********************************************************************** 
* 
*Copyright (c) 1995-2008 held by the author(s).  All rights reserved. 
 
*Redistribution and use in source and binary forms, with or without 
*modification, are permitted provided that the following conditions 
*are met: 
 
    * Redistributions of source code must retain the above copyright 
      notice, this list of conditions and the following disclaimer. 
    * Redistributions in binary form must reproduce the above copyright 
      notice, this list of conditions and the following disclaimer 
      in the documentation and/or other materials provided with the 
      distribution. 
    * Neither the names of the Naval Postgraduate School (NPS) 
      Modeling Virtual Environments and Simulation (MOVES) Institute 
      (http://www.nps.edu and http://www.MovesInstitute.org) 
      nor the names of its contributors may be used to endorse or 
      promote products derived from this software without specific 
      prior written permission. 
 
*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
*"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
*LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
*FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
*COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
*INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
*BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
*LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
*POSSIBILITY OF SUCH DAMAGE. 
 
 *********************************************************************** 
 
 * Permission is hereby granted, free of charge, to any person obtaining a copy 
 * of this software and associated documentation files (the "Software"), to 
 * deal in the Software without restriction, including without limitation the 
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 
 * sell copies of the Software, and to permit persons to whom the Software is 
 * furnished to do so, subject to the following conditions: 
 * 
 * The above copyright notice and this permission notice shall be included in 
 * all copies or substantial portions of the Software. 
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
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 * DEALINGS IN THE SOFTWARE. 
 **/ 
package glider; 
 
import java.util.Date; 
import com.sun.spot.sensorboard.peripheral.IAccelerometer3D; 
import com.sun.spot.sensorboard.EDemoBoard; 
import com.sun.spot.sensorboard.peripheral.ISwitch; 
import com.sun.spot.sensorboard.peripheral.ITriColorLED; 
import com.sun.spot.sensorboard.peripheral.LEDColor; 
import com.sun.spot.peripheral.IPowerController; 
import com.sun.spot.sensorboard.io.IOutputPin; 
import com.sun.spot.peripheral.Spot; 
import java.io.*; 
import javax.microedition.io.Connector; 
import javax.microedition.io.Datagram; 
import javax.microedition.io.DatagramConnection; 
import javax.microedition.midlet.MIDletStateChangeException; 
import com.sun.spot.sensorboard.peripheral.ITemperatureInput; 
import com.sun.spot.io.j2me.radiogram.RadiogramConnection; 
import com.sun.spot.util.Utils; 
 
 
/**This class acts as the decide/act portion of the controller.  The Sensor data 
is received 
 * from the sense device via wireless radiodatagram.  The send fucntion has been 
left in for 
 * if and when a third controller is added. 
 **/ 
  
  
public class seaDiverActController extends javax.microedition.midlet.MIDlet { 
 
 
    public ITriColorLED[] leds; 
    RadiogramConnection conn; 
    IAccelerometer3D accelerometer; 
    boolean sw1IsClosed, sw2IsClosed; 
    int sendStatus = 0;  // Send Status 0 = Don't send and 1 = Send 
     public IOutputPin[] outPins ; 
    int controlMotor = 2; 
    int accelerationLeftRight; 
    int accelerationForeAft; 
    private IPowerController powerController; 
    public boolean missionStartFlag = false; 
    public ITemperatureInput thermometer = 
EDemoBoard.getInstance().getADCTemperature(); 
    protected void startApp() throws MIDletStateChangeException { 
 
        System.out.println("Sample System Output File"); 
        leds = EDemoBoard.getInstance().getLEDs(); 
//Start Mission 
        missionStartFlag = true; 
//Get instance of the output pins         
        outPins = EDemoBoard.getInstance().getOutputPins(); 
 
        accelerometer = EDemoBoard.getInstance().getAccelerometer(); 
        accelerationForeAft = 0; 
        accelerationLeftRight = 0; 
       powerController = Spot.getInstance().getPowerController(); 
        startReceiverThread(); 
 
    } 
 
    /** 
     * The receiver thread blocks on the receive function 
     * so you don't have to sleep between each receive. 
     */ 
    public void startReceiverThread() { 
        new Thread() { 
 
            public void run() { 
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                String tmp = null; 
                double startTime = 0.0; 
                double elapsedTime = 0.0;               
                 double vbatt =  0.0; 
                 
                
 
                RadiogramConnection dgConnection = null; 
                Datagram dg = null; 
 
                try { 
                    dgConnection = (RadiogramConnection) 
Connector.open("radiogram://:37"); 
                    // Then, we ask for a datagram with the maximum size allowed 
                    dg = 
dgConnection.newDatagram(dgConnection.getMaximumLength()); 
                } catch (IOException e) { 
                    System.out.println("Could not open radiogram receiver 
connection"); 
                    e.printStackTrace(); 
                    return; 
                } 
 
                while (true) { 
                    try { 
                         
 /****************************************************************** 
  * THIS PORTION OF THE CONTROL CODE IS RECEIVING SENSE DATA  
  * FROM THE SENSE CONTROLLER VIA WIRELESS DATA GRAM AND WRITING 
  * IT TO THE OUTPUT.  CURRENTLY IT IS TO SYSTEM CONSOLE, WRITE  
  * STATMENTS TO BE MODIFIED WHEN A RECORD CLASS IS CREATED FOR 
  * WRITING TO AN EXTERNAL MEMOR DEVICE. 
  ***************************************************************** 
  */                        
                        dg.reset(); 
                        dgConnection.receive(dg); 
                        char colon = 58; 
                        int heading = 0; 
                        int depth = dg.readInt(); 
                        tmp = dg.readUTF(); 
//TEST// System.out.println("Received: " + tmp + " from " + dg.getAddress()); 
                        String[] accelinfo = Utils.split(tmp, colon); 
//TEST//System.out.println(accelinfo[0]); 
//Parse the accelerometer   info from the datagram                       
                        double tily = Double.parseDouble(accelinfo[0]); 
                        double tilx = Double.parseDouble(accelinfo[1]); 
                        double tilz = Double.parseDouble(accelinfo[2]); 
                         
 
                         
                        // Returns [-90, 90], Convert angle to range [-3, 3] 
                        int tiltY = (int) Math.toDegrees(tily); 
                        int tiltX = (int) Math.toDegrees(tilx); 
                        int tiltz = (int) Math.toDegrees(tilz); 
                         
//Get heading information and estimate based on tilt value from Z axis                         
                        heading = heading - tiltz; 
                        if(heading<0){heading = 360 - heading;} 
                        if(heading>360){heading = heading -360;} 
/************************************************ 
 * Write the output to the system screen in lieu of a data file 
 *  
 **************************************************/                        
                        System.out.print("/Time:"+ new 

Date(powerController.getTime()));                       
//System.out.println("Tilt x:"+tilx); 

                        System.out.print("/Depth:"+depth);                  
                        System.out.print("/PITCH:"+tiltY); 
                        System.out.print("/ROLL:"+tiltX); 
                        System.out.print("/Heading:"+heading); 
                        System.out.print("/Temp:"+thermometer.getFahrenheit()); 
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                        System.out.println("/Power:" 
+powerController.getVbatt()+"mv"); 
/************************************************** 
 *THE FOLLOWING SECTION SETS THE LEDS ON THE SPOT 
 TO GIVE THE INDICATIONS THAT THE DATA IS BEING 
 RECEIVED CORRECTLY.  FOR TESTING AND EVALUATION 
 PURPOSES ONLY 
 ****************************************************/                         
                        int accelerationForeAft = -tiltY / 15; 
                       // Set max forward acceleration to -90 degrees 
                        if (accelerationForeAft < -3) { 
                            accelerationForeAft = -3; 
 
                        } 
 
                        // Set max reverse acceleration to 90 degrees 
                        if (accelerationForeAft > 3) { 
                            accelerationForeAft = 3; 
 
                        } 
 
 
                        leds[3 + accelerationForeAft].setColor(LEDColor.GREEN);    
// Set Speed/FWD & REV leds to GREEN  
                        leds[3 + accelerationForeAft].setOn();                     
// Turn on GREEN leds 
                        leds[4 + accelerationForeAft].setColor(LEDColor.GREEN);    
// Additional led lit to easily view fwd/rev movement 
                        leds[4 + accelerationForeAft].setOn(); 
                        Utils.sleep(50);                               // update 
20 times per second 
                        leds[3 + accelerationForeAft].setOff();                    
// Clear display 
                        leds[4 + accelerationForeAft].setOff(); 
 
 
 
                        // Returns [-90, 90], Convert angle to range [-3, 3] 
                        //int tiltX = (int) Math.toDegrees(tilx); 
                        int accelerationLeftRight = -tiltX / 15; 
 
                        // Set max turn direction to 90 degrees rotation left 
                        if (accelerationLeftRight < -3) { 
                            accelerationLeftRight = -3; 
                        } 
 
                        // Set max turn direction to 90 degrees rotation right 
                        if (accelerationLeftRight > 3) { 
                            accelerationLeftRight = 3; 
                        } 
 
                        leds[3 + accelerationLeftRight].setColor(LEDColor.RED);    
// Set direction leds to RED 
                        leds[3 + accelerationLeftRight].setOn();                   
// Turn on RED leds 
                        leds[4 + accelerationLeftRight].setColor(LEDColor.RED);    
// Additional led lit to easily view direction 
                        leds[4 + accelerationLeftRight].setOn(); 
                        Utils.sleep(50);                             // Update 

20 times per second 
                        leds[3 + accelerationLeftRight].setOff();                  
// Clear display 
                        leds[4 + accelerationLeftRight].setOff(); 
/******************************************* 
 * DECIDE WHAT TO DO WITH THE SENSOR INPUT  
 * BEING RECEIVED AND TAKE ACTION BY STARTING 
 * OR STOPPING BALLAST PUMP 
 *  
 *******************************************/ 
                         
                         
                        // Glider is level and stable 
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                        if (tiltY <-8 && tiltY < 8) { 
                        //if beginning of mission start ballast pump 
                            if(missionStartFlag) 
                            {outPins[EDemoBoard.H0].setHigh(); 
                            outPins[EDemoBoard.H1].setLow(); 
                            missionStartFlag = false; 
                            System.out.println("Glider is Level and Stable and 

mission starting ballast on");                         
                            } 
 
                        } 
 
                        // If Glider is diving  
                        if (tiltY > 22 && depth <900) { 
                            outPins[EDemoBoard.H0].setLow(); 
                            outPins[EDemoBoard.H1].setLow(); 
 
                            System.out.println("Glider is Diving, ballast off"); 
                        } 
                        if (tiltY > 22 && depth >900) { 
                            outPins[EDemoBoard.H0].setHigh(); 
                            outPins[EDemoBoard.H1].setLow(); 
 
                            System.out.println("Reached Max Depth, ballast on to 

rise"); 
                        } 
                        //  Rolling right  
                        if (tiltX < 10) { 
                            outPins[EDemoBoard.H0].setLow(); 
                            outPins[EDemoBoard.H1].setHigh(); 
 
                           System.out.println("Glider is rolling  over 10 to 

right, activate trim ballast."); 
                        } 
 
                        // turning left 
                        if ( tiltX > 10) { 
                            outPins[EDemoBoard.H0].setLow(); 
                            outPins[EDemoBoard.H1].setHigh(); 
 
                           System.out.println("Glider is rolling  over 10 to 

left, activate trim ballast."); 
                        } 
 
                        // Glider is Rising at correct pitch 
                        if (tiltY < -22 && depth > 10) { 
                            outPins[EDemoBoard.H0].setLow(); 
                            outPins[EDemoBoard.H1].setLow(); 
                            System.out.println("Glider is Rising ballast off"); 
                        } 
                        if ( depth < 10) { 
                            outPins[EDemoBoard.H0].setHigh(); 
                            outPins[EDemoBoard.H1].setLow(); 
                            System.out.println("Glider is at surface, ballast 

on, begin dive"); 
                        } 
 
                         
                       
 
                    } catch (IOException e) { 
                        //System.out.println("Nothing received"); 
                    } 
                } 
            } 
        }.start(); 
    } 
 
    /************************************************* 
     * THIS FUNCTION NOT CURRENTLY USED.  IF IN THE EVENT  
     * ANOTHER DEVICE IS ADDED TO THE CONTROL SYSTEM  
     * CONFIGURATION IT IS READY TO TRANSMIT DATA. 
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     *  
     * The sender thread sends a string each 500 ms 
     ***************************************************/ 
    synchronized public void startSenderThread() { 
        new Thread() { 
 
            public void run() { 
                // We create a DatagramConnection 
                DatagramConnection dgConnection = null; 
                Datagram dg = null; 
                try { 
                    // The Connection is a broadcast so we specify it in the 

creation string 
                    dgConnection = (DatagramConnection) 

Connector.open("radiogram://broadcast:37"); 
                    // Then, we ask for a datagram with the maximum size allowed 

                    dg = 
dgConnection.newDatagram(dgConnection.getMaximumLength()); 

                } catch (IOException ex) { 
                    System.out.println("Could not open radiogram broadcast 

connection"); 
                    ex.printStackTrace(); 
                    return; 
                } 
 
                while (true) { 
                    try { 
                        // We send the message (UTF encoded) 
                        dg.reset(); 
                        dg.writeDouble(accelerometer.getTiltY()); 
                        dg.writeDouble(accelerometer.getTiltX()); 
                        dg.writeUTF("" + accelerometer.getTiltY() + " " + 

accelerometer.getTiltX()); 
                        dgConnection.send(dg); 
                        System.out.println("Broadcast is going through"); 
                    } catch (IOException ex) { 
                        ex.printStackTrace(); 
                    } 
                    Utils.sleep(500); 
                } 
            } 
        }.start(); 
    } 
 
    protected void pauseApp() { 
    } 
 
    /** 
     * Called if the MIDlet is terminated by the system. 
     * I.e. if startApp throws any exception other than 

*MIDletStateChangeException, 
     * if the isolate running the MIDlet is killed with Isolate.exit(), or 
     * if VM.stopVM() is called. 
     *  
     * It is not called if MIDlet.notifyDestroyed() was called. 
     * 
     * @param unconditional If true when this method is called, the MIDlet must 
     *    cleanup and release all resources. If false the MIDlet may throw 
     *    MIDletStateChangeException  to indicate it does not want to be 

*destroyed 
     *    at this time. 
     */ 
    protected void destroyApp(boolean unconditional) throws 
MIDletStateChangeException { 
    } 
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APPENDIX D.  RECORD CLASS CODE 

/** 
 *This is the Record ClassSuggested Framework 
 * SeaDiver3 Gliding vehicle.  It creates an instance of the statusRecord      
 *which 
 * will be the container for the current status information. 
 * 
 * @author Ron Hemmelgarn 
 * @version 1.0.0 
 *  
 *********************************************************************** 
* 
*Copyright (c) 1995-2008 held by the author(s).  All rights reserved. 
 
*Redistribution and use in source and binary forms, with or without 
*modification, are permitted provided that the following conditions 
*are met: 
 
    * Redistributions of source code must retain the above copyright 
      notice, this list of conditions and the following disclaimer. 
    * Redistributions in binary form must reproduce the above copyright 
      notice, this list of conditions and the following disclaimer 
      in the documentation and/or other materials provided with the 
      distribution. 
    * Neither the names of the Naval Postgraduate School (NPS) 
      Modeling Virtual Environments and Simulation (MOVES) Institute 
      (http://www.nps.edu and http://www.MovesInstitute.org) 
      nor the names of its contributors may be used to endorse or 
      promote products derived from this software without specific 
      prior written permission. 
 
*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
*"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
*LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
*FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
*COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
*INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
*BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
*LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
*POSSIBILITY OF SUCH DAMAGE. 
 
 *********************************************************************** 

      
 */ 
 
package glider; 
 
/** 
 * 
 * @author Ron 
 */ 
import java.util.Date; 
import com.sun.spot.peripheral.Spot; 
import com.sun.spot.sensorboard.EDemoBoard; 
 
public class StatusRecord  
{   //VARIABLES 
    private String timeStamp; 
    private double currentLat; 
    private double currentLong; 
    private double targetLat; 
    private double targetLong; 
    private double heading; 
    private double depth; 
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    private double pitch; 
    private double rollAngle; 
    private char rollDirection; 
    private EDemoBoard eDemo; 
        //Constructor 
    public StatusRecord() 
    { 
 
    } 
    public double getCurrentLat() { 
        return currentLat; 
    } 
    public void setCurrentLat(double currentLat) { 
        this.currentLat = currentLat; 
    } 
    public double getCurrentLong() { 
        return currentLong; 
    } 
    public void setCurrentLong(double currentLong) { 
        this.currentLong = currentLong; 
    } 
    public double getDepth() { 
        return depth; 
    } 
    public void setDepth(double depth) { 
        this.depth = depth; 
    } 
    public double getHeading() { 
        return heading; 
    } 
    public void setHeading(double heading) { 
        this.heading = heading; 
    } 
    public double getPitch() { 
        return pitch; 
    } 
    public void setPitch(double pitch) { 
        this.pitch = pitch; 
    } 
    public double getRollAngle() { 
        return rollAngle; 
    } 
    public void setRollAngle(double rollAngle) { 
        this.rollAngle = rollAngle; 
    } 
    public char getRollDirection() { 
        return rollDirection; 
    } 
    public void setRollDirection(char rollDirection) { 
        this.rollDirection = rollDirection; 
    } 
    public double getTargetLat() { 
        return targetLat; 
    } 
    public void setTargetLat(double targetLat) { 
        this.targetLat = targetLat; 
    } 
    public double getTargetLong() { 
        return targetLong; 
    } 
    public void setTargetLong(double targetLong) { 
        this.targetLong = targetLong; 
    } 
    public String getTimeStamp() { 
        return timeStamp; 
    } 
    public void setTimeStamp(String timeStamp) { 
        this.timeStamp = timeStamp; 
    } 
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APPENDIX E.  UART LOOPBACK TEST CODE 

/**  
 * @author: Ron Hemmelgarn  
 * @date: 19 September 
 * @file: seaDiverActController 
 *. 
 *The purpose of this code is to act as a loopback test for 
 * testing the UART ability to send and receive. 
 * 
 */ 
 
package org.nps.auv; 
 
 
import com.sun.spot.sensorboard.EDemoBoard; 
import com.sun.spot.sensorboard.peripheral.ITriColorLED; 
import com.sun.spot.util.*; 
import java.io.*; 
import javax.microedition.midlet.MIDlet; 
import javax.microedition.midlet.MIDletStateChangeException; 
 
/** 
 * The startApp method of this class is called by the VM to start the 
 * application. 
 *  
 * The manifest specifies this class as MIDlet-1, which means it will 
 * be selected for execution. 
 */ 
public class StartApplication extends MIDlet { 
 
    private ITriColorLED [] leds = EDemoBoard.getInstance().getLEDs(); 
    public EDemoBoard demo; 
    protected void startApp() throws MIDletStateChangeException { 
        System.out.println("Hello, world"); 
              
        
        while (true) {  
            System.out.println(".");  
            demo.writeUART((byte) 'T');  
            Utils.sleep(1000);  
            try { 
                while (demo.availableUART() > 0) { 
                    try { 
                        System.out.print((char) demo.readUART()); 
                    } catch (IOException IO) { 
                        System.out.println(IO.getMessage()); 
                    } 
                } 
            } catch (IOException ex) { 
                ex.printStackTrace(); 
            } 
        }  
 
                          
    } 
 
    protected void pauseApp() { 
        // This is not currently called by the Squawk VM 
    } 
 
    /** 
     * Called if the MIDlet is terminated by the system. 
     * I.e. if startApp throws any exception othe 

*MIDletStateChangeException, 
* if the isolate running the MIDlet is killed with Isolate.exit(), 
or 

     * if VM.stopVM() is called. 
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     *  
     * It is not called if MIDlet.notifyDestroyed() was called. 
     * 
     * @param unconditional If true when this method is called, the 

*MIDlet must 
     *    cleanup and release all resources. If false the MIDlet may 

*throw 
     *    MIDletStateChangeException  to indicate it does not want to be 

*destroyed 
     *    at this time. 
     */ 

protected void destroyApp(boolean unconditional) throws 
MIDletStateChangeException { 

        for (int i = 0; i < 8; i++) { 
            leds[i].setOff(); 
        } 
    } 
} 
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APPENDIX F.  EXAMPLE OUTPUT DATA FILE 
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APPENDIX G.  PARTS ON HAND 

ITEM DESCRIPTION QUANTITY

**The following items were retrieved from the NPS AUV Lab**

Partially Completed SeaDiver Glider Carcass 1

Sheet of 1/16 inch thick platic sheeting  for cover 1 plus

AMTROL Therm‐X‐Trol Expansion Tank 1

ASCO red‐Hat Solenoids 3

TRUCK AIR 12 Volt Heavy duty air compressor 1

10.75 inch fins 2

8 inch fins 2

**The following items were sent via post by David Gaussier**

HS‐815BB Servos 2

3Volt GPS Antenna 1

Olimex PIC ICD2 Development Board 1

Electronic Ckt Board‐ UAV IMU 1

Multiple Level Switching  Power Supply 1

Batteries ‐ 6 Volt Yellow 2

PIC‐18F Microchip 2

PIC‐16F Microchip 3

Lithium Button Cells 2

Assorted Transistors Many

**The following items were provided by ISITV**

12 Volt Liquid Pumps 2

Piston Type Ballast Pumps 2

12 Volt Air Pump 1

Glider Hull 1

**The following items were purchased at NPS**

SparkFun SD Data Logger 1

1 Gbyte SD Card 2

ET‐302 GPS Engine Receiver Board 1

Java Sun SPOT Development Kit 1
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APPENDIX H.  ADDITIONAL PARTS REQUIRED 
 

ITEM DESCRIPTION QTY 
Inclinometer  (0-90°) (Center 

45°) 
3 

Accelerometers 
3+3 

 3 

Gyros 
Flow Sensors Piezoelectric 

sensors- Top 
and Bottom 

2 

Planes  2 
Batteries 12 Volt  7Ah ? 
Battery 
Controller 

Signals: Voltage, 
Discharge Rate. 
Fault on Low V. 

1 

Ballast System 
Controller 

  

Main Pump  1 
Secondary 
Pump 

 1 

Ballast Main and Trim 
being replaced 
by dual main 

2 Bag 

Pressure Tank  1 
Check Valves Check valves, 

not solenoids. 
2 

Locator 
Beacon 

Light 1 

Hydrophone Monitor Self 
Noise 

1 

CTD Payload 1 
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