
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2008-12

An application of Alloy to static analysis for secure

information flow and verification of software systems

Shaffer, Alan B.

Monterey, California. Naval Postgraduate School, 2008.

http://hdl.handle.net/10945/10320

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36703745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

AN APPLICATION OF ALLOY TO STATIC ANALYSIS
FOR SECURE INFORMATION FLOW AND
VERIFICATION OF SOFTWARE SYSTEMS

by

Alan B. Shaffer

December 2008

 Dissertation Supervisor: Mikhail Auguston

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the

time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE: An Application of Alloy to Static Analysis for Secure
Information Flow and Verification of Software Systems
6. AUTHOR(S) Alan B. Shaffer

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Within a multilevel secure (MLS) system, flaws in design and implementation can result in overt and covert channels, both of
which may be exploited by malicious software to cause unauthorized information flows. To address this problem, the use of
control dependency tracing has been explored to present a precise, formal definition for information flow. This work describes
a security Domain Model (DM), designed in the Alloy formal specification language, for conducting static analysis of
programs to identify illicit information flows, such as control dependency flaws and covert channel vulnerabilities. The model
includes a formal definition for trusted subjects, which are granted extraordinary privileges to perform system operations that
require relaxation of the mandatory access control (MAC) policy mechanisms imposed on normal subjects, but are trusted to
behave benignly and not to degrade system security. The DM defines the concepts of program state, information flow and
security policy rules, and specifies the behavior of a target program. The DM is compiled from a representation of the target
program, written in a specialized Implementation Modeling Language (IML), and a specification of the security policy written
in the Alloy language. The Alloy Analyzer tool is used to perform static analysis of the DM to detect potential security policy
violations in the target program. This approach demonstrates that it is possible to establish a framework for formally
representing a program implementation and for formalizing the security rules defined by a security policy, enabling the
verification of that program representation for adherence to the security policy.

15. NUMBER OF
PAGES

182

14. SUBJECT TERMS
Security domain model, static analysis, automated program verification, trusted subjects, covert
channels, dynamic slicing, specification language.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

AN APPLICATION OF ALLOY TO STATIC ANALYSIS FOR SECURE
INFORMATION FLOW AND VERIFICATION OF SOFTWARE SYSTEMS

Alan B. Shaffer

Commander, United States Navy
B.S., United States Naval Academy, 1986

M.S., Naval Postgraduate School, 1995

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 2008

Author: __
Alan B. Shaffer

Approved by:

________________________ _________________________
Mikhail Auguston Cynthia E. Irvine
Associate Professor of Professor of Computer Science
Computer Science,
Dissertation Supervisor

________________________ _________________________
Gurminder Singh Gordon H. Bradley
Professor of Computer Science Professor of Operations Research

Timothy E. Levin
Research Associate Professor of
Computer Science

Approved by: __
 Peter Denning, Chair, Department of Computer Science

Approved by: __
 Doug Moses, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Within a multilevel secure (MLS) system, flaws in design and implementation can

result in overt and covert channels, both of which may be exploited by malicious

software to cause unauthorized information flows. To address this problem, the use of

control dependency tracing has been explored to present a precise, formal definition for

information flow. This work describes a security Domain Model (DM), designed in the

Alloy formal specification language, for conducting static analysis of programs to

identify illicit information flows, such as control dependency flaws and covert channel

vulnerabilities. The model includes a formal definition for trusted subjects, which are

granted extraordinary privileges to perform system operations that require relaxation of

the mandatory access control (MAC) policy mechanisms imposed on normal subjects, but

are trusted to behave benignly and not to degrade system security. The DM defines the

concepts of program state, information flow and security policy rules, and specifies the

behavior of a target program. The DM is compiled from a representation of the target

program, written in a specialized Implementation Modeling Language (IML), and a

specification of the security policy written in the Alloy language. The Alloy Analyzer

tool is used to perform static analysis of the DM to detect potential security policy

violations in the target program. This approach demonstrates that it is possible to

establish a framework for formally representing a program implementation and for

formalizing the security rules defined by a security policy, enabling the verification of

that program representation for adherence to the security policy.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. HYPOTHESIS..1
B. INTRODUCTION AND MOTIVATION..1
C. CONTRIBUTIONS..4
D. DISSERTATION ORGANIZATION ..8

II. INFORMATION ASSURANCE PRINCIPLES ...11
A. INTRODUCTION..11
B. HIGH ASSURANCE COMPUTER SYSTEM EVALUATION11

1. Introduction..11
2. Trusted Computer Security Evaluation Criteria System

(TCSEC)..11
3. The Common Criteria ...12
4. The Trusted Computing Exemplar (TCX) Project.........................15

C. FORMAL SECURITY MODELS AND POLICIES..................................16
1. Introduction..16
2. Discretionary Access Control (DAC) Models..................................17

a. Access Matrix Models / Graham-Denning17
b. HRU Model ...18

3. Mandatory Access Control (MAC) Models.....................................19
a. Bell and LaPadula Model ...19
b. Biba Integrity Model ...21
c. Lattice Model...22
d. Clark/Wilson Model ..24
e. Noninterference ..25

4. Role Based Access Control (RBAC) Model27
5. Summary...29

D. COVERT CHANNELS ...30
E. DYNAMIC SLICING..32
F. INFORMATION FLOW AND CONTROL DEPENDENCIES34
G. TRUSTED SUBJECTS ...35
H. SUMMARY ..36

III. REVIEW OF RELATED WORK..37
A. INTRODUCTION..37
B. INFO FLOW TRACING AND COVERT CHANNEL ANALYSIS37
C. TRUSTED SUBJECT IMPLEMENTATION ..39
D. DYNAMIC SLICING FOR SECURITY TRACING.................................42
E. DOMAIN-SPECIFIC MODELING IN SECURITY..................................42
F. DYNAMIC SECURITY POLICY DEVELOPMENT44
G. SUMMARY ..45

IV. IMPLEMENTATION MODELING LANGUAGE..47
A. INTRODUCTION..47
B. IML SYNTAX ..47

viii

1. Lexical Concepts ..47
2. Assignment..48
3. Device Input/Output Statements ..49
4. File Random Access ...49
5. System Clock ..50
6. Program Control Statements ..51

C. SUMMARY ..51

V. THE SECURITY DM APPROACH ..53
A. INTRODUCTION..53
B. DM STRUCTURE ...53

1. Invariant Model ...55
2. Implementation Model ..62

C. DM-COMPILER..63
D. SUMMARY ..67

VI. EXAMPLE DM IMPLEMENTATIONS ..69
A. INTRODUCTION..69
B. EXAMPLE PROGRAMS ...69

1. Overt Control Dependency Flaw..69
2. Timing Covert Channel Resulting from Exploitation of System

Clock..71
3. Flow Violation Caused by a Trusted Subject Operation72
4. Trusted Subject Dual Violation – Information Flow Violation

and Overt Flaw...75
5. Storage Covert Channel Resulting from a Trusted Subject

Operation..76
C. TESTING RESULTS...78
D. SUMMARY ..80

VII. CONCLUSIONS AND FUTURE WORK...81
A. CONCLUSIONS ..81

1. Implementation Modeling Language (IML)82
2. Security Domain Model (DM)...82
3. DM-Compiler ...83

B. RECOMMENDATIONS FOR FUTURE WORK......................................83
1. Correctness of the DM...83
2. Formal Analysis of DM Artifacts ...84
3. IML Expansion ..84
4. Dynamic Security Policies ...84
5. Networked Analysis ...85
6. Model-Driven Software Development..86

LIST OF REFERENCES..87

APPENDIX A – DM-COMPILER RIGAL FILE ..95
RIGAL FILE – PARSER.RIG ...95
RIGAL FILE – GENERATE.RIG ...107

APPENDIX B.1 – GENERATED DM FOR BASE PROGRAM EXAMPLE 1115

ix

APPENDIX B.2 – GENERATED DM FOR BASE PROGRAM EXAMPLE 2123

APPENDIX B.3 – GENERATED DM FOR BASE PROGRAM EXAMPLE 3133

APPENDIX B.4 – GENERATED DM FOR BASE PROGRAM EXAMPLE 4141

APPENDIX B.5 – GENERATED DM FOR BASE PROGRAM EXAMPLE 5151

INITIAL DISTRIBUTION LIST ...163

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Domain Model approach to system security verification.6
Figure 2. Common Criteria development class (ADV) correspondences (from

Common Criteria, 2006). ...15
Figure 3. Lattice of Subsets for {x, y, z} (from Denning, 1976).23
Figure 4. Clark/Wilson Model of Integrity (from Neumann, 1998).24
Figure 5. RBAC Role Relationships (after Ferraiolo and Kuhn, 1992).29
Figure 6. Program Dependency Graph for Code Snippet (after Agrawal and

Horgan, 1990). ...33
Figure 7. Domain Model approach to system security verification.53
Figure 8. Alloy enumerated type for AccessLabel, and signature for the DM

Policy element ...56
Figure 9. Alloy signature for the DM Statement element ...57
Figure 10. Alloy enumerated type for the DM Stmt_type element..............................57
Figure 11. Alloy signature for the DM DirectFile element58
Figure 12. Alloy signatures for the DM Time and Clock elements...............................58
Figure 13. Alloy signature for the DM State element ...59
Figure 14. Alloy enumerated type for the DM Error element60
Figure 15. Alloy signature for the DM InitialState element61
Figure 16. Example Alloy signatures for Variable and Value elements63
Figure 17. Sample Base Program Statements, in IML Syntax..63
Figure 18. DM-Compiler Generated Alloy Signatures for Sample Base Program...........64
Figure 19. Alloy Predicate to Discover Overt Control Dependency Flaw........................70
Figure 20. Alloy Predicate to Discover Timing Covert Channel71
Figure 21. Alloy Function for Trusted Subject Filter..73
Figure 22. Alloy Predicate to Discover Illicit Information Flow......................................74
Figure 23. Alloy Predicate to Discover Storage Covert Channel......................................76
Figure 24. Direct File filled by storage channel SysHigh sender77
Figure 25. Alloy Analyzer Static Analysis Times for Increasing Base Program Sizes80

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Results of Alloy Analysis Testing ...79

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

Above all, I wish to thank Dr. Mikhail Auguston, my dissertation supervisor. His

endless encouragement and patient mentoring were vital to my completing this work. I

thank the other members of my committee for guiding my research, in particular Dr.

Cynthia Irvine and Tim Levin, who strengthened my work with their knowledge and

expertise in the field of computer security. I would also like to thank Dr. Dennis Volpano

for his suggested improvements to this paper, and Dr. Don Brutzman for his insightful

advice at certain key moments when I needed a bit of “course correction.”

For the past few years, I have had the good fortune of working alongside a

wonderful group of fellow doctoral students. Our monthly “breakfast club” meetings

were a source of true camaraderie, whether we were swapping war stories, telling bad

jokes, or just helping each other survive the world of academic research. Their friendship

and advice are truly appreciated.

I could not have reached this milestone without the love and support of my

family. While Ashley prepared for her own transition from high school to college and

Sam literally grew from young boy into young man, they dealt with a dad who (still!)

spent his evenings and Sunday afternoons doing schoolwork. Throughout all of this, they

never complained nor let me forget what is most important in my life. And to Sandra,

who supported me without exception, I can never thank enough. At the most challenging

moment, she offered the advice I needed most when she simply encouraged me to “get

this thing done!”

Finally, I dedicate this dissertation to the men and women of the U.S. Navy’s

ships, squadrons and stations. They do the hard work of the fleet, and I hope this and

future research can serve to make their jobs safer and more secure.

This material is based upon work supported by the Office of Naval Research, the

National Science Foundation under Grant Number CNS-0430566, with support from

DARPA ATO. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of the

National Science Foundation of DARPA ATO.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Working calmly will let you elaborate and extend things, but the
breakthroughs generally come only after great frustration and emotional
involvement.

 — Richard Hamming

A. HYPOTHESIS

In the development of secure systems, ensuring that the implementation of a

system is faithful to its stated security objectives is a process laden with difficulties and

challenges. It is possible, however, to establish a framework for formally representing a

program implementation and for formalizing the security rules defined by a security

policy. This enables the verification of that program representation for adherence to the

security objectives. Such a framework can be supportive of the Common Criteria

requirements for secure system development.

B. INTRODUCTION AND MOTIVATION

Widely accepted evaluation standards (Common Criteria, 2006; DoD TCSEC,

1985), and (NSA SKPP, 2007) require that high assurance secure systems be designed,

developed, verified, and tested using rigorous development processes. This evaluation

process must include demonstration of correct correspondence between system

representations at various levels of abstraction, such as security policy objectives,

security specifications, and program implementation. In addition, the National Institute

of Standards and Technology Source Code Security Analysis Tool Functional

Specification (NIST, 2007) requires that security analysis tools report weaknesses that

they identify using semantically meaningful names and identifying location within a

program, with an “acceptably low false positive rate.” This dissertation describes an

approach to analyzing programs for preservation of security properties through state

transitions, and advances the ability to analyze software for information flow by

describing automated techniques for information flow static analysis. Classic work on

secure information flow, including the use of lattice theory for ordering of security

 2

classes based on the dominance relationship and the idea of labeling state variables to

track such flows as a way to certify a program (Denning, 1976; Denning and Denning,

1977), and type systems for security analysis (Volpano et al., 1996), provide a foundation

for this research.

Formal security models are often based on an expression of properties such as

program secure state and state transitions (McLean, 1994). High assurance evaluation

standards (Common Criteria, 2006; DoD TCSEC, 1985) require a formal verification that

the state transitions resulting from program execution preserve the security properties

defined by a policy. Formal verification must also include advanced vulnerability

analysis of a system, during which covert channel analysis must be considered in order to

achieve successful evaluation of such systems at the highest levels of assurance

(Common Criteria, 2006). The approach described here analyzes programs for

preservation of specific security properties across state transitions. This dissertation

presents a precise, formal definition for an MLS security policy, and for various types of

information flow violations with respect to that policy, including examples of control

dependency flaws and covert channels, extending classic work in this area by Denning

and Denning (1977), and Volpano et al. (1996). A security domain-specific model is

described as a framework for conducting static analysis of abstract representations of

target program implementations (see Chapter VI).

Within a multilevel secure (MLS) system, trusted subjects may be granted

privileges to perform operations, in some cases within prescribed limits (Schell et al.,

1985; Schellhorn et al., 2000) not normally allowed for ordinary subjects controlled by

mandatory access control (MAC) policy enforcement mechanisms. Granting of such

privileges is predicated on the idea that trusted subjects will not conduct malicious

activity or degrade the system’s overall security. This dissertation presents a formal

definition for trusted subject behaviors, which depend upon a representation of

information flow during execution of a high-level language program, referred to as a

target program. It describes a security domain model to formally represent security

policy with respect to trusted subjects, trusted subject behaviors, information flow tracing

through program execution, various types of covert channels, and a means for conducting

 3

static analysis of target program implementations. In addition to trusted subjects and

security kernels, we also include the analysis of programs (see Section VI.2) comprising

interleaved statements of subjects with different labels. While this is not necessarily a

literal representation of an application program, it can be viewed as the sequential actions

that a trusted subject or security kernel takes in response to the interleaved requests of

different subjects.

Static analysis of non-trivial programs has been shown to be undecidable (Rice,

1953). Even heuristics for static analysis may be computationally challenging, for

example the problem of state explosion with model checkers (Clarke et al., 1986).

Jackson (2006) suggests a pragmatic approach to this dilemma, in the form of the Alloy

language small scope hypothesis, which conjectures that most flaws in models can be

revealed on small instances. In the approach described here, the Alloy Analyzer tool

(Alloy, 2008) is used to perform static analysis of an abstract representation of a target

program, referred to as a base program, to identify execution paths that might violate

security policy rules. Our work assumes the small scope hypothesis for information flow

tracing, and in the examples examined (see Section VI.C), a scope within the processing

power of current technology was sufficient. The impact of this decision is that our

approach is somewhat limited to evaluation of classes of programs for which proofs are

not required. We feel that, as a proof of concept of the ability of our approach to perform

automated static analysis, this is acceptable, and the work provides an important first step

toward future advances that may overcome this.

This dissertation research is being conducted under the auspices of the Naval

Postgraduate School’s (NPS) Center for Information Systems Security Studies and

Research (CISR) Trusted Computing Exemplar (TCX) project. The overarching goal of

the TCX project is to present a working example to demonstrate how trusted computing

systems and components could be constructed (Irvine et al., 2004; Nguyen et al., 2005).

The goals of the TCX project are directly supported by the Office of Naval Research, the

National Reconnaissance Office, and the National Science Foundation under grant CNS-

 4

0430566. Any opinions, findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the ONR or

the NSF.

C. CONTRIBUTIONS

This dissertation advances classic work in information flow tracing and static

analysis verification of high assurance systems by presenting a new framework for

automating the verification program representations for their adherence to a set of

security policy rules. The framework is based on a domain-specific model (DSM) for

security properties that supports static analysis of a representation of the target

implementation. Our research delivers the following contributions:

1. The Implementation Modeling Language (IML), a language that supports

basic information processing via assignment statements, conditional and loop statements,

read/write statements, file random access, and access to a system clock. The IML

facilitates static analysis of source code by providing a formalism that captures the

essence of imperative programming language paradigms, while ignoring non-essential

(for these purposes) elements, such as data type, inheritance, polymorphism, etc. In this

research, a target program refers to the high-level language program under examination;

the base program represents an IML abstraction of the target program and provides a

basis for analysis for adherence to a security policy. At this time, the verification of

correspondence of the base program to the target program is outside the scope of this

dissertation.

2. The security Domain Model (DM), represented as an Alloy (Jackson, 2006;

Alloy, 2008) specification, has a two-fold purpose in providing a model of program

behavior, as well as a model for describing security properties. The DM is a unified

representation of a base program and the intended information flow policy, including

restrictions on both overt and covert information flow. The DM comprises an Invariant

Model, which defines the logical structure for program state, information flow, and

security policy; and an Implementation Model, which specifies the semantics of the base

program.

 5

3. This research has formalized well-established security properties by defining

specific security rules in the DM framework. We have defined an information flow

security rule to verify that information flows within a program abide by a policy and do

not flow in an illicit manner. For example, a policy might authorize information to flow

from a Low source to a High destination, but not the reverse; the information flow

security rule will identify any program execution path that allows information to flow

illicitly from Low to High.

In our framework, we have also defined rules for detecting potential covert

channels in a program. In the context of the DM, we do this by formalizing the definition

of both a covert storage channel, using a shared information storage repository, and a

covert timing channel, based on access to an abstraction of the system clock. For each of

these covert channel classes, we define a security rule that identifies programs with

execution paths that may be vulnerable to either violation.

In addition to covert channels, we have formalized the concept of overt control

dependency flaws within a program. Using dynamic slicing techniques to track control

dependencies through execution of a program representation, the security rule identifies

execution paths with implicit control dependencies that violate the defined security

policy.

Finally, our model is expressive enough to support trusted subjects and their

behaviors. The DM defines a trusted subject through a special assignment operation that

abstracts the idea of trusted downgrading. The model allows trusted subject behaviors,

while ensuring that regular subjects cannot perform illicit activities during execution of a

program. We do this through verification of the described security rules.

4. We have implemented a prototype for static analysis of programs based on the

DM framework. This framework includes a specialized DM-Compiler, developed to

translate a base program written in IML into an Implementation Model and to integrate it

with the Invariant Model to form a complete DM specification to represent the original

target program. This prototype implementation architecture is depicted in Figure 1, and

will be explained in detail in Chapter V.

 6

5. Early results in this dissertation work were presented at several conferences

and workshops. Our paper presented at the ACM International Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’07) workshop

on Domain-Specific Modeling (Shaffer et al., 2007) demonstrated the ability of the DM

approach to detect illicit information flow violations. At the ACM Conference on

Programming Language Design and Implementation (PLDI) workshop on Programming

Languages and Analysis for Security (PLAS’08), we presented our work on analysis of

programs for detection of covert channels, and overt flaws based on control dependency

analysis (Shaffer et al., 2008). We presented our implementation of trusted subjects and

their behaviors at the Modeling Security Workshop in association with the ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems

(MODELS’08) (Shaffer et al., 2008). At the International Conference on Software

Engineering and Knowledge Engineering (SEKE’08) (Shaffer et al., 2008) we presented

a survey of our overall approach to static analysis using the DM, and have submitted a

comprehensive article discussing the final stage of our research for inclusion in the

Computers and Security Journal special issue on “Software Engineering and Secure

Systems” (Shaffer et al., 2008).

Figure 1. Domain Model approach to system security verification.

 7

In addition to these publications, we have built a Security Domain Model Project

website (http://cisr.nps.edu/projects/sdm.html) that provides discussion of the research,

with links to our papers, and example IML base programs with respective DM

specification code.

6. Relevance to Department of Defense (DoD). Highly secure systems are

significantly more expensive to build than typical IT systems. because a contributing

factor to these high costs is the need for formal verification, which requires a large

amount of effort by highly trained specialists. The contributions described in this work

advance the ability to automate a portion of the formal verification process. This

automation has two significant effects: it has the potential to reduce errors caused by

human mistakes in the verification process, making systems more secure; and it can

reduce the effort required for verification, making secure systems more affordable.

These techniques are applicable to the verification of a specific class of

components (target programs) in secure MLS systems, for which the DoD has projected

both a significant need and future support of extensive research and development (NSA

GIG, 2005). These components perform the following abstract function:

• Given a machine with two input ports (labeled HIGH and LOW) and two

output ports (also labeled HIGH and LOW), the machine processes inputs

and sends output only to the appropriate output port, where “appropriate”

is defined by the security policy.

The framework developed here supports automated static analysis to determine

whether the system component in question conforms to, or enforces, its security policy.

The framework does this by: (1) associating with each incoming datum an internal label

equal to the label of the input port, (2) modifying the internal label of a datum, if

necessary, as it is processed, and (3) detecting if a datum leaves the component through

an output port that is inappropriate with respect to the datum’s internal label and the

output port label.

Examples of such components are trusted subject programs, security kernels, and

separation kernels configured to enforce an MLS policy. Trusted subjects are often used

 8

in MLS systems as downgraders, multilevel switches, and for other critical functions that

make MLS systems useful and effective. Security kernels and separation kernels are the

foundation of most DoD systems that provide multilevel security. The DoD, working

with other government agencies, is researching systems for sharing information across

differing security levels, under the aegis of the Unified Cross Domain Management

Office (UCDMO) (Thuermer, 2007).

D. DISSERTATION ORGANIZATION

An outline for the remainder of this dissertation follows:

• Chapter II presents an overview of information assurance principles germane

to this dissertation research. Specific discussions include high assurance system

evaluation processes and standards, formal security models and policies, multilevel

secure (MLS) systems, information flow tracing, covert channels, trusted subjects, and an

introduction to dynamic security policies.

• Chapter III provides an analytical review of previous work related to the fields

of the dissertation, to include background research on security models and policies,

analysis of systems for illicit control dependencies and covert channels, implementation

of a trusted subject into secure systems, and development and implementation of systems

which implement dynamic security policies.

• Chapter IV presents the Implementation Modeling Language (IML),

developed as a specialized language for representing target program implementations as

base programs.

• Chapter V presents the Security Domain Model (DM) framework and an

associated approach to performing static analysis of base programs to verify their

adherence to security policy rules.

• Chapter VI presents several example base program test cases, each with

security vulnerabilities discoverable using the DM approach, and provides an analysis of

results of the testing.

 9

• Chapter VII presents conclusions of this research, and suggests areas of future

work.

• Appendices are included at the end of this dissertation to provide RIGAL

compiler construction language code for the DM-Compiler files, and several example

base programs with complete Alloy specifications for each associated Security DM.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. INFORMATION ASSURANCE PRINCIPLES

A. INTRODUCTION

This chapter discusses concepts and principles, within the information assurance

domain, germane to this research. It begins with an introduction to high assurance

system evaluation, and the established standards that govern this process. A discussion

of formal security models and policies follows this. Next, we introduce the concepts of

information flow through program execution, and control dependencies which can affect

such flows. The concepts of covert channel analysis, and trusted subjects and their

behaviors are then discussed. Finally, dynamic security policies are introduced, as an

area for future work in this research.

B. HIGH ASSURANCE COMPUTER SYSTEM EVALUATION

1. Introduction

The Common Criteria (CC) is a recognized International Organization for

Standardization (ISO) standard for evaluating computer systems against varying levels of

assurance. Initially published in January 1996, the CC essentially combined the older

and independent U.S., European and Canadian standards for system evaluation,

incorporating the best principles and tenets of each. While the CC was also intended to

replace the older Department of Defense (DoD) Trusted Computer Security Evaluation

Criteria System (TCSEC), the de facto U.S. standard since the mid 1980s, a few

proponents of the TCSEC continue to promote it as a superior standard. Thus, while the

CC is the official evaluation criteria used by the U.S. government and DoD, both

standards have their advocates within the security community.

2. Trusted Computer Security Evaluation Criteria System (TCSEC)

Developed by the DoD as part of the Rainbow Series of computer security

publications, the TCSEC (commonly referred to as “the Orange Book” because of the

color of its cover page) was initially drafted in 1983, and accepted in 1985 as the US

standard for computer systems assurance evaluation and classification (DoD TCSEC,

 12

1985). The TCSEC defined a range of hierarchical assurance levels, based upon the

effectiveness of security provided by and within a particular system being evaluated, such

that a given level includes all of the requirements of a lower level, and more. The

assurance levels increase from level D through level A, with the higher levels (C, B, A)

further divided into classes based on the specific protection characteristics provided.

These levels represent the assurance classification for a system, from one evaluated to

have minimal or no security capabilities (level D), up through one that has undergone

formal methods verification that its protection system and model are correct, and whose

implementation corresponds to the formal top-level specification (level A1).

The TCSEC required the identification of security properties such as those

identified by Bell and LaPadula (1973) in their security model of mandatory access

control, and was based heavily on the reference monitor concept for adjudicating

accesses of subjects to objects within an operating system (Anderson, 1972). Also, the

Orange Book focuses on operating system security, while the need clearly exists to

account for security of many other types of systems (in fact, other books in the Rainbow

Series were written specifically to address non-OS computer systems). These shortfalls,

coupled with the lack of an international standard, provided the impetus for development

of an encompassing standard for system security evaluation.

3. The Common Criteria

Schell (2001) defined four epochs spanning the history of scientific developments

in computer security, each one progressing beyond the previous toward better security

and more assured systems – that is, each epoch but the last. This final (and current)

epoch Schell defined as being one of a period of security decline, with the Common

Criteria as its hallmark. He pointed to the fact that, while the CC evaluates individual

products, the science of computer security should instead focus on evaluating entire

systems, which comprise multiple software and hardware products. Schell believed that

by making no distinction between system and subsystem evaluation, the CC limits us to

examining only isolated components of any system, never evaluating the system and its

IT environment in their entirety.

 13

Schell’s negative assessment notwithstanding, the CC represented a paradigm

shift in the security evaluation process, and has become the US and international standard

for the development of computer system security specifications. The CC allows

evaluation of a specific system (or product), or more generally, families of systems (or

products), by establishing security assurance criteria against which they can be measured.

The CC introduced the concept of a Protection Profile (PP) to describe the security

requirements of a category of products. A PP is typically written to define the

requirements for a class of system by some user community, and it generally defines the

requirements for both functionality and assurance of the system. A Security Target (ST),

on the other hand, is used to evaluate a specific system or product. An ST is often written

based on an existing PP for a like class or category of system, in order to define the

requirements of the target of evaluation (TOE) (Common Criteria, 2006).

The CC defines a number of assurance classes within which security criteria and

requirements are defined. Among the assurance classes are such topical areas as

development, life-cycle support, and testing, for example. These broad classes are

subdivided into families that further describe the unique objectives of the class. As an

example, the Development class (identified as “ADV”) contains a family called Security

Architecture (uniquely identified as “ADV_ARC”) whose objective is to allow “the

developer to provide a description of the security architecture of the TSF” (Common

Criteria, 2006). Finally, each family is defined by some number of hierarchically ordered

components, each of which describe the scope, depth and rigor required of a security

criterion, in order for the product to meet a particular assurance level.

The goal of the CC in defining assurance classes is to allow evaluators to measure

a system against the objectives described by the families of these classes. For this, the

CC defines Evaluation Assurance Levels (EALs) which “provide an increasing scale that

balances the level of assurance obtained with the cost and feasibility of acquiring that

degree of assurance” (Common Criteria, 2006). The CC EALs were written with the

intent that they correlate roughly to the TCSEC Orange Book grading levels, primarily so

 14

that earlier evaluated systems could remain relevant. Since the two systems evaluate

assurance in different ways, however, their respective grading levels should not be

regarded as equivalent.

For a system to achieve a given EAL, it must meet the security criteria for all of

the family components of that level. To be evaluated at the highest CC assurance level –

EAL7 – a computer system must undergo a more comprehensive analysis than that

required for lower assurance levels. This evaluation analysis must include formal

representation of system requirements, demonstration of formal correspondences, and

comprehensive testing of system components. In particular, the formal correspondences

must be demonstrated as mappings between the security policy model and the functional

specification of a system.

Further, a complete correspondence must be demonstrated between the system

security objectives and functional requirements, and between the functional specification

and functional requirements. In general, with respect to the implementation of the

system, a full mapping must be shown to exist between all levels of design description

and specification, as depicted in Figure 2. This formal correspondence must be proven

between all constructs of the system in order for a high-assurance system to be evaluated

at EAL7.

 15

Figure 2. Common Criteria development class (ADV) correspondences
(from Common Criteria, 2006).

4. The Trusted Computing Exemplar (TCX) Project

The Trusted Computing Exemplar (TCX) project is being conducted by the

Center for Information Systems Security Studies and Research’s (CISR) at the U.S.

Naval Postgraduate School (NPS) in Monterey, California. The goal of TCX is to

demonstrate in an openly distributed, worked example, how a trusted computing system

and its components can be built to meet high assurance evaluation criteria. Its specific

approach to meeting this goal is fourfold (Irvine et al., 2004):

 16

• Create a prototype framework for high-assurance system development

• Develop a trusted computing component as a reference

• Evaluate the component, through a third-party, against CC EAL7

• Provide a means for open distribution of all deliverables and artifacts

To date, the TCX project has achieved milestones in defining a high-assurance

development framework, and the design specification for a web-based dissemination

system (Levin et al., 2004; Nguyen et al., 2005). Its least privilege model has been

articulated, and features to support transitive trust have been described. The project has

created a working prototype and is developing design and implementation of the TCX

Least Privilege Separation Kernel (TCX-LPSK) as a trusted component. By developing a

framework of application mechanisms for specifying and verifying the mapping of higher

level security requirements for a system, this dissertation research directly supports the

goals of the TCX project.

C. FORMAL SECURITY MODELS AND POLICIES

1. Introduction

McLean (1994) stated that security models are “used to describe any formal

statement of a system’s confidentiality, availability, or integrity requirements.” Security

models provide a detailed and precise means of formally describing security policies, and

proving their validity. Since a system must not only be secure, but demonstrably so,

formal security models provide system designers with evidence that they are constructing

a self-consistent system, and with a foundation for further demonstration that the system

as implemented meets its specifications (Landwehr, 1981).

In a typical formal methods approach to security model development, a security

policy is initially translated from words into a mathematical model. From this, a formal

specification is created and shown to satisfy the mathematical model, deriving from the

original policy. To prove conformance to the policy, the specification must be

implemented and shown to be an accurate representation of the specification. This “chain

of correspondence” may not be sufficient, however, to ensure a secure system as various

 17

aspects of security may be outside the scope of the formal security policy model (for

example, physical security and good password hygiene).

While it would be difficult to provide an exhaustive review of every security

model that has ever been developed or proposed, we attempt to provide here a

representative overview of some well-known ones. This analysis will divide security

models into two logical categories: discretionary access control (DAC) models and

mandatory access control (MAC) models. Generally, DAC systems allow one user to

extend to other users or subjects his rights to the objects for which he controls access. In

DAC systems, the ability to modify access rights is subject to some set of rules which can

change during the course of system operation. Conversely, MAC systems attempt to

provide a global and persistent policy, where access control is fixed in a predetermined

state by a predefined set of rules and all modifications are relative to that established set

of allowed access rights.

2. Discretionary Access Control (DAC) Models

a. Access Matrix Models / Graham-Denning

In the context of computer operating systems, Lampson (1971) defined

protection as “all the mechanisms which control the access of a program to other things

in the system.” To describe how this control of access would occur, he developed the

concept of using matrices as a way to illustrate the access of subjects to objects within a

computer system.

An access matrix scheme is comprised of objects and subjects formed into

a matrix of allowed accesses. The objects can represent anything in the system that needs

to be protected, including files and processes. Subjects represent system entities that can

have access to objects. The access matrix scheme also includes a set of rights

representing the types of accesses which a subject may have to an object, for example

read, write, execute, or owner.

In general, an access matrix defines a cross-mapping between the objects

and subjects in a system. Cells in the matrix represent monitors that control access of a

particular subject to a particular object. A given access matrix reflects a security policy

 18

for the system. A “snapshot” of the current access matrix can be thought of as a specific

protection state of the system, and defines the access rights in that state; to modify or add

to the set of allowed accesses would require some transition into a new matrix, or

protection policy.

The Graham-Denning Model (1972) formalized the concept of using

access matrices for access control within operating systems. Their model defined basic

access rights of a system in terms of a set of eight allowable operations across subjects

and objects within that system. These operations permitted a subject x to create and

delete objects and subjects, and to read, grant, delete and transfer the access rights of

another subject s to an object o. The Graham-Denning model is generally considered to

be the first formal DAC scheme proposed and the first general access matrix model.

An access matrix is a static representation of a security system, and

corresponds to a set of access rights for a given security policy. Rules might be

established to define how subject-to-object access rights could be modified over time,

possibly allowing users the discretion to extend rights to other subjects. Changes to the

system from such rules would transition the system into a new state, essentially

representing a new security policy.

b. HRU Model

The Harrison-Ruzzo-Ullman (HRU) Model (Harrison et al., 1976) defined

authorization systems that allowed the modification of access rights, along with the

ability for creating and deleting subjects and objects within the system. It also introduced

a safety property: that access to an object within the system was impossible without the

concurrence of the owner of that object.

In reality, since an owner in a DAC system may extend rights to an object

that in turn may be given away without his knowledge, no protection system can be safe

by this definition. To solve this problem, the HRU model provided a weaker definition

that simply required a protection system to ensure that objects are kept “under control” by

their owner, meaning that the owner has some intuition as to whether his granting of a

right could lead to possible leakage of that right to an unauthorized subject in the system.

 19

Even this weaker definition of safety is too strict for all protection systems, since it is

generally undecidable whether, “given an initial access matrix, there is some sequence of

commands in which a particular generic right is entered at some place in the matrix

where it did not exist before.” They proved that, while an algorithm could be found to

show whether a given mono-operational system is unsafe for some generic right, it is not

possible to devise an algorithm to decide the safety of any generic protection system for

all of its possible configurations.

3. Mandatory Access Control (MAC) Models

Mandatory access control models are representative of multilevel systems in

which subjects and objects are hierarchically or partially ordered according to their

sensitivity levels, and the system ensures that data from objects higher, or non-

comparable, in the hierarchy is not available to subjects lower in the hierarchy. One of

the most common examples of a MAC structure is the military classification system.

a. Bell and LaPadula Model

The Bell and LaPadula (BLP) Model (Bell and LaPadula, 1973) can be

used to formally describe the enforcement of military policies associated with classified

information. At the heart of the BLP model is the concept that all objects in the system

are assigned a classification level based on their relative sensitivity, and all users are

similarly assigned a clearance level based on their job, rank, experience, etc. System

subjects (users) are granted access to objects (files, applications, resources, etc.) based on

the relationship between the clearance level they possess and the defined classification

level of the object.

The BLP Model defines the simple security (ss-) property, which states

that a subject at a given security level can only access objects assigned an equal or lower

classification level, commonly referred to as “read down”. Similarly, they define the

confinement (*-) property, which prevents sensitive information from being copied into

less sensitive objects by malicious software, by ensuring that a subject cannot write into

an object that is of a lower classification level; this rule prevents “write down”. These

 20

rules allow (and restrict) the flow of information across the multiple levels of the security

structure, thus the BLP model and its derivatives are popular information flow models.

The BLP model can be described by a set of rules governing the

relationship between objects and subjects, and the associated access functions over them.

Stated more formally these rules, or properties, provide the most common way of

representing the model:

• The simple security (ss-) property states that every “observe” access triple (subject,

object, read right) in the current access set b must have the property that the level of

the subject dominates the level of that object.

• The *-property states that, if a subject has simultaneous “observe” access to object O1

and “alter” access to object O2, then the level of O1 is dominated by the level of O2.

• The discretionary security (ds-) property states that, if (subject i, object j, attribute x)

is in the current access set b, then x is recorded in ij’th component of the access

matrix M.

As an example of the BLP model, suppose a system user has been

assigned a clearance level of “secret.” This means that the user possesses the access

rights to read documents that are classified at the secret level and lower while logged

onto the system at the secret level, and to write to secret and higher documents (although

the user would not have read access to higher classified documents in this system, in

order to write to them in a coherent manner).

The rigidly defined structure of the BLP model is both its strength for

protecting military classified information, and its most commonly highlighted weakness.

In particular, enforcement of the *-property does not allow an object to be downgraded to

a lower classification level. While this is a basic requirement of a practical MLS system,

the *-property prevents it. To address this shortcoming, Bell and LaPadula introduced

the idea of a trusted subject, which is one that can be trusted not to violate the intent of

the *-property. Critics have also pointed out that the BLP model could allow a malicious

user to simply request the system administrator to temporarily declassify a file, thus

allowing a low user to potentially read a high file. To address this criticism, Bell and

 21

LaPadula added the so-called tranquility property (Bell and LaPadula, 1976). The strong

tranquility property states that the security labels of objects can never change during

system operation, while the less stringent weak tranquility property stated that the labels

can never be changed in such a way that violates any of the other defined security

properties.

b. Biba Integrity Model

The BLP model was concerned only with confidentiality of objects.

While this was intended by design, a follow-on information flow model was developed

that specifically classified data according to integrity levels; here, integrity can be

thought of as the quality of the information, for example, stored in an object. The Biba

Integrity Model (Biba, 1977) can be thought of as complementary to the BLP model:

whereas BLP focuses on the sensitivity of objects, Biba defines its rules based on

maintaining their integrity. With the proliferation of digital data storage, there is good

reason for a policy that ensures that the near- and long-term integrity of data is

maintained.

The goal of the Biba model is to ensure that high integrity documents will

not be contaminated by lower integrity data. In doing this, Biba ensures that a subject is

only allowed to view objects of an equal or higher integrity level than itself. Under the

Biba model, individual integrity levels are defined for all subjects and objects in the

system. The higher the integrity level, the higher the level of confidence, reliability and

trustworthiness in that entity (this concept has nothing to do with an object’s inherent

sensitivity). The rules of the Biba model define a strict integrity policy which prevents

information flows from lower to higher integrity levels, and can be formalized by the

following axioms (note that the differences between these and the properties that define

the BLP model are symmetric):

• The simple integrity (si-) axiom states that a subject s can read from an object o iff the

integrity of the subject is dominated by that of the object; in other words, a subject

cannot read from an object of lesser integrity (“no read down”).

 22

• The integrity *-property axiom states that a subject s can have write access to an

object o iff the integrity of the subject dominates that of the object; in other words, a

subject cannot write data to a higher integrity level than its own (“no write up”).

While the concepts underlying the Biba model seem straightforward,

particularly when understood as the dual of BLP, Biba has been difficult to implement in

real-world systems. However, integrity policies have been investigated in some high

assurance systems, such as GEMSOS (Schell et al., 1985), which implemented Biba

controls using integrity labels. The general difficulty in implementing Biba lies in how

one defines integrity. Whereas the sensitivity level for subjects and objects can be

readily defined and assigned – one only need consider the military classification system

as a practical example of this – the same cannot be said for assigning integrity levels.

Establishing criteria for assignment of various integrity levels to subjects

and objects has proven difficult. What parameters should be taken into account when

assigning an integrity level to a user? Integrity for one class of users may be defined very

differently from that of another, for example the integrity of medical records is quite

different from that of the source code for a popular video game. In addition, Irvine and

Levin (2001; 2002) pointed out the “integrity problem” of a system based on its integrity

capacity. They showed that, in order to ensure the integrity of all its objects, a system is

practically limited to maintaining (modifying) only data whose integrity is as low as its

lowest integrity component. For implementation of integrity policies in high-assurance

systems, Schellhorn et al. (2000) have suggested using Common Criteria EAL levels, for

example, as integrity labels when storing applications to smart cards, however, this

requires that evaluation criteria for these applications must always be compatible.

c. Lattice Model

The Lattice Model is another in the class of mandatory access control

models, and is based on the idea of classes of objects being organized into a universally

bounded lattice. Developed by D. Denning (1976) as “a structure consisting of a finite

partially ordered set together with least upper and greatest lower bound operators on the

set,” her goal was to find a model with suitable restrictions such that its security would be

 23

not only decidable, but simply decidable. This would ensure a system with proven ability

not to leak information from an object at a high sensitive level to a subject at a lower

sensitivity level.

For her lattice model, Denning defines the flow operator “→” acting on a

pair of object classes X and Y, such that X→Y indicates that information is permitted to

flow from an object in X to one in Y. In this sense, “information flow” means that

information associated with one class affects the value of information associated with the

other. Figure 3 shows an example of a three-dimensional universally bounded lattice.

The lattice represents a set of properties {x, y, z} in a system, and establishes a

hierarchical dominance relationship among the set and its subsets. Information in one

object can only flow into another object if the second possesses at least the properties of

the first; that is if the second dominates the first. For example, an item of information

contained in class x could flow into {x, y} or into {x, z}, but could not flow into class {y,

z}. Similarly, information contained in class {y, z} could not flow into class {x, z}, since

y is not contained in the class {x, z}.

Figure 3. Lattice of Subsets for {x, y, z} (from Denning, 1976).

Objects within the lattice can be defined by any ordering, and the lattice

may be defined with categories non-comparable to one another in ordering objects. This

does not preclude, however, a lattice from being ordered by a combination of sensitivity

 24

or integrity, provided information flows were properly defined to ensure that the ss/si-

properties and the *-property were adhered to (Lunt et al., 1990).

d. Clark/Wilson Model

As with the previous examples of MAC models, the Clark/Wilson Model

(Clark and Wilson, 1987) is an information flow security model which, like the Biba

Model, ensures the integrity of objects. Clark and Wilson stated that prevention of

unauthorized disclosure of sensitive information, which is vitally important in military

security, is less important in commercial applications where integrity of information and

prevention of unauthorized data modification is paramount. Loss or corruption of a

company’s records and stored data through fraud or errors is often the gravest danger.

Figure 4. Clark/Wilson Model of Integrity (from Neumann, 1998).

 25

The C/W model addresses the flow of information by relying on software

application well-formed transactions (WFT), and separation of duties among users to

ensure that no single user can contaminate a data object through unauthorized changes.

WFTs ensure that no user can arbitrarily modify data, either maliciously or

unintentionally, and can only act in constrained ways that ensure data integrity. In

addition, strict logging of all user actions facilitates auditing the system for erroneous or

malicious transactions.

In addition, the C/W model further defines constrained data items (CDI)

as those objects requiring integrity; integrity verification procedures (IVP) as

applications procedures which provide confirmation that all data adheres to security

specifications on the system; and unconstrained data items (UDI) as those objects outside

the system that have yet to be verified for integrity.

Figure 4 provides a simple example of data object flow through a C/W

system. In this snapshot of the system, all CDIs have previously been verified for

integrity by an IVP, thus placing them in a valid state. Any proposed manipulation on a

CDI must be performed via a WFT, which will ensure the CDI’s return to a valid state.

Introduction of a new UDI into the system will require verification of its integrity through

an IVP before it can be reclassified a CDI and placed into a valid state.

Shockley (1988) showed how the C/W model could be partially

implemented as an MLS system, using BLP mechanisms, and Ge et al. (2004) showed

the implementation of the C/W model using a DBMS server. Since the C/W model relies

heavily on application procedures for its WFTs, these procedures must be proven valid

for all possible states. Otherwise, there is no assurance that a WFT returns a CDI to a

new valid state after the transaction.

e. Noninterference

Some approaches to secure information flow do not distinguish between

classes of covert channels, or between covert and overt flows for that matter. These

approaches rely on the concept of noninterference, which states that the actions of one

subject can have no effect on the output of a lower subject in a system. Goguen and

 26

Meseguer (1982) described a model wherein security policies are defined in terms of only

noninterference assertions, rather than by the combination of access control and covert

channel restrictions. In their research on security policies and models, they described

noninterference within a system in terms of information flows permitted between high

and low subjects. They explained that “one group of users, using a certain set of

commands, is noninterfering with another group of users if what the first group does with

those commands has no effect on what the second group can see.” Haigh and Young

(1987) further expanded the noninterference ideas of Goguen and Meseguer in follow-on

work.

The noninterference concept, when initially proposed, appeared to be a

logical description of confidentiality in the context of an MLS system, however,

problems were soon realized in implementing noninterference. In practice, high-level

data often has an effect on low-level data, such as the case where a highly classified file

is encrypted or declassified, and then transmitted over a low channel. An activity such as

this would represent a low user receiving information (declassified data) based on the

actions of a high user (the downgrader), and would not be allowed under the strict

definition of noninterference. In addition, noninterference had a significant shortcoming,

with respect to BLP, in that it did not prevent “read up” of high sensitivity objects by a

low sensitivity subject. While noninterference ensures that the actions of a high level

subject will not affect low level outputs in a system, it does nothing to prevent a low level

subject from somehow observing high level information, and then acting on that

information.

The access control models described above (the BLP Model, etc.) are used

in formal verification to prevent Low subjects from accessing High information, using a

two-part strategy: (1) by enforcing rules regarding how subjects may access objects; and

(2) by performing covert channel analysis to close remaining illicit flows. While

noninterference was ostensibly proposed as a way to define information flows, in practice

it was also seen as a better way to explain covert channels, since access control did not

adequately do this, and in fact, noninterference sought to unify the concepts of access

control and covert channel analysis.

 27

Noninterference with respect to security properties is often considered

limited by the refinement paradox, which states that a system’s abstract security

properties for information flow cannot be guaranteed to be preserved through refinement

to concrete implementation (McLean, 1990; 1996; Roscoe, 1995). Also, in their report

from the 2001 Computer Security Foundations Workshop, Ryan et al., (2001) stated that

noninterference, as a way to ascertain covert channels (due to algorithm or design flaws),

does not pass the necessary and sufficient test. A covert channel does not necessarily

imply the presence of interference on a practical level. That is, while interference is

sufficient to imply a covert channel, it may be so small as to be of no practical exploitable

use. The report stated, “in most noninterference models, a single bit of compromised

information is flagged as a security violation, even if one bit is all that is lost. To be

taken seriously, a noninterference violation should imply a more significant loss.” The

ability of noninterference to adequately contain information flows and covert channels, as

well as its overall validity as a security model, has been hotly debated in the computer

security field.

4. Role Based Access Control (RBAC) Model

RBAC security models represent a hybrid class of non-discretionary access

control security policies that were designed to provide for the security requirements of

non-military organizations. RBAC was developed at the National Institute of Standards

and Technology (NIST) to meet the needs of industry and civilian government

organizations, where the strict requirements of a military MAC policy do not address the

security needs for handling sensitive unclassified information (Ferraiolo and Kuhn, 1992;

Sandhu et al., 1996). This type of environment can be exemplified by a medical facility,

where personal patient information can often be extremely sensitive, although not

classified in a strict sense. In this type of environment, specific information should be

handled by only qualified classes of users, based on the sensitivity level of the

information. As an example, while medical charts and patient history are vital

information that doctors and nurses must access to effectively do their jobs, such data

need not (and should not) be made available to hospital administrative staff, who have no

such valid access requirement. The opposite would be true of financial information

 28

concerning a patient’s ability to pay for medical care services. In each case, the role of

the user represents the key factor in determining whether or not information should be

made available.

To address this type of security environment, an RBAC model grants access

rights to groups of users based on their role requirements, rather than providing rights to

users individually. Essentially, RBAC is a variation of an access matrix model, where

groups of subjects represent roles, and rights are assigned uniformly to the group, as

opposed to individual users (subjects). Each role defines a specific set of operations that

the individual acting in that role may perform, or in terms of access rights, the set of

objects a user has access to, based on his role.

The military classification system’s compartmentalization labels for classified

messages may be viewed as another application of RBAC. In addition to hierarchical

classification labels representing secrecy level, messages may also be tagged with a

compartment label, e.g., NUCLEAR, which can be viewed as analogous to a role. In this

scheme, users are granted access to messages with a particular compartment label

(assuming they also possess adequate clearance level), based on their job requirements.

At a later time based on changing job requirements, a user may be debriefed out of a

particular compartment, essentially losing this role, at which time that user would no

longer have access to messages with this compartment label.

 29

Figure 5. RBAC Role Relationships (after Ferraiolo and Kuhn, 1992).

Figure 5 shows a simple relationship between users, roles, and objects. In the

example, User4 is identified as possessing Role1, presumably by virtue of his job

description. Because he possesses this role, he implicitly has been granted access to

Object1. If at some time in the future User4 were to lose possession of Role1, he would

no longer have access to Object1 (note that this change would require no modification

whatsoever to Object1, nor to User5’s or User6’s access to it).

The RBAC model provides the means to readily support the principle of least

privilege at the granularity of the role or group. This principle states that a subject will

have access to only the objects needed to perform his or her job, and nothing more. In an

RBAC model, specific rights and privileges can be granted to an entire group based on

the required functionality of their role. The administrative strength of RBAC is that

privileges can be granted (or retracted) to the group as a whole, without the need for

manipulation of individual user rights.

5. Summary

This section has described well-known mandatory and discretionary access

control security models, intended to protect both confidentiality and integrity of

information. Because our research focuses on MLS systems, particularly systems

 30

managing military classification information, we have designed our approach using a Bell

and LaPadula type of security policy. As will be described later in this dissertation, the

BLP simple security and *-properties are formalized as security rules against which

programs are verified for security. However, our model can facilitate expanding the

security policy to capture integrity policies, for example by defining rules associated with

the Biba model, or by defining information “compartments” using RBAC-style roles to

adjudicate access.

D. COVERT CHANNELS

As defined in early research by Lampson (1973) and Kemmerer (1983), covert

channels use system properties not intended as communication channels as a way to

transfer information between system subjects. Such channels allow processes to take

advantage of communication channels to transfer information in a manner that violates a

security policy.

An operating system may virtualize a shared physical resource so that each

subject, or equivalence class of subjects, perceives that it has exclusive access to the

resource. A covert channel can result from the incomplete virtualization of a resource

such that some attribute of the resource remains shared, indirectly.

Schaefer et al., (1977) defined covert channels as being either storage or timing

channels. For both storage and timing channels, the sender and receiver (typically

subjects) must have the following capabilities (Kemmerer, 1983):

1. Indirect access to an attribute of a shared resource, which the sender can modify,

and the receiver can view. For example, the shared resource is the CPU, and the

attribute is its “busy” state; or the shared resource is the disk, and the attribute is

the location of the disk arm, or the attribute is the “full” state (Karger and Wray,

1991).

2. A means to initiate and synchronize their actions. The sender and receiver need

to know when to modify and observe the attribute, the importance of which

increases when they wish to transmit a stream of data.

 31

This dissertation research essentially distinguishes between a covert storage

channel and a covert timing channel by the means in which the receiver observes the

change in the attribute:

1. Storage – the receiver views an error message, or other information placed in its

address space by the system, for example if a storage disk is filled the receiver is

provided an error message to that effect.

2. Timing – the receiver views changes to the relative timing of “legal” events. For

example, if the sender’s activity makes the CPU busy, the receiver’s request to

execute an operation on the CPU will complete (event 1) after the expected time

of day occurs (event 2). Or, in the case of the disk arm attribute, depending on

where the sender has left the arm (by reading a sector near the inner or outer edge

of the disk), two disk sectors read by the receiver will occur in a different order

(events 1 and 2).

Goguen and Meseguer (1982) defined a point of interference between two

subjects as the point where the high subject interferes with the context of the low subject.

An exploitable covert channel can result in information flow in violation of the intended

security policy. The point of interference of a covert channel is considered an internal

resource of the system, as it is not directly accessible to subjects, as are exported

resources (NSA SKPP, 2007). Note that if a low subject can directly view the value of

an exported resource (such as a variable) that has been modified by a high subject, then

an overt flaw rather than a covert channel results.

In the case of a mandatory access control (MAC) policy, the covert channel

sender’s sensitivity level will be higher than the covert channel receiver’s sensitivity

level, with respect to confidentiality (Kemmerer, 1983). Thus, the determination of the

potential covert channels in a system depends not only on the policy in place, but also on

the implementation of that policy on a specific system (Gligor, 1993). Our approach here

considers both the security policy and its implementation. The criteria for a covert

channel described above enable one or more bits of information to be passed for each

interference event (log2(n) bits, where n is the number of possible states that the observer

 32

can differentiate in the shared resource, such as different amounts of delay). When the

interference event can be repeated in a cycle, or loop, a stream of data can be transmitted

through the channel, although additional synchronization between sender and receiver

may be required.

E. DYNAMIC SLICING

Integral to certain covert channels is the notion of data or control dependency.

Slicing algorithms are used as a means of tracing such dependencies between variables

and statements processed during program execution, traditionally for program debugging

purposes (Korel and Rilling, 1997). Slicing algorithms generate an executable subset of a

program, creating a subprogram whose behavior is the same as the original with respect

to some variable. They allow one to isolate the behavior of, and dependencies acting

upon, that variable.

Slicing algorithms are categorized as either dynamic or static, depending on

whether they take into account dependencies derived during one particular program

execution path (dynamic), or for all possible execution paths (static). Dynamic slicing

techniques generally analyze only the narrow portion of the code representing a single

execution path.

Since slicing techniques have been shown to be useful in tracking data and control

dependencies, they can also provide a means of detecting potential overt flaws based on

dependencies. As an example, consider the following code snippet:

(s1) Read_dev (SysHigh, v3);

(s2) Read_dev (SysHigh, v4);

(s3) if v3 >5 then

(s4) v1 := 0;

(s5) else if v4 = 5 then

(s6) v1 := 1;

(s7) else v1 := -1;

(s8) v2 := v1;

In the example above, it is clear that v2 depends on v1, based on the assignment

in (s8). Static slicing shows that v2can depend on both v3 (s3) and v4 (s5), since there

 33

is a dependency from each of these to v1. With dynamic slicing, however, not all

execution paths will result in the same control dependencies. When the conditional

expression in (s3) evaluates to true, the final value of v2 depends on v3 but not on v4,

since the else-block statements in (s5 – s7) are never executed.

Figure 6. Program Dependency Graph for Code Snippet
(after Agrawal and Horgan, 1990).

Figure 6 depicts the program dependency graph created by the execution of the

code snippet above. In the graph, the solid edges reflect direct data dependencies, and the

dashed edges reflect control dependencies. The bold nodes depict a dynamic slice with

respect to the assignment to variable v2 (s8) when the conditional in (s3) has evaluated to

true, in which case the assignment depends on statements (s4), (s3), and (s1). Access

labels of variables can be used to determine potential security violations, based on the

dependencies between these variables. For a finite number of paths within a given scope

of analysis, our framework performs static analysis of the DM by using dynamic slicing

to discard previous states that could not have contributed to an overt flaw, thus a

complete result is obtained without having to maintain a history of all preceding states.

 34

F. INFORMATION FLOW AND CONTROL DEPENDENCIES

With respect to information flows between objects in an MLS system, one

category of information flow error occurs when high sensitivity objects indirectly affect

information flow between objects at the same (lower) sensitivity level. Such errors are

based on unintended control flow dependencies (Denning, 1976). For example, during a

program execution, information being written from one variable to another, both of the

same classification level, might take place within a control structure that depends on a

higher classified variable, such as an if-else block. In this case, the higher classified if-

else control variable will create a implicit dependency over the information flow taking

place within the control structure, even though this flow is between two lower classified

variables. Our approach is capable of detecting this type of overt flaw caused by control

flow dependencies. We consider this to be overt, as the program must be processing on

behalf of a High or Low subject, and in either case, reading the High control variable and

writing to the Low variable should not ever be done on behalf of a single-level subject.

The approach used here for discovering flaws based on control dependencies

employs dynamic slicing analysis. Dependencies within a program are identified by

examining the chain of statements preceding a value assignment with respect to the

sensitivity labels of the variables in these statements. If the context of a previous

statement includes variables that are higher than the destination, then there is an overt

flaw.

The code snippet below provides an illustration of a control flow dependency that

constitutes an overt flaw. In the example, constant value1 is written out to a SysLow

external device (s3), depending on the SysHigh value read into variable v1 (s1).

(s1) Read_dev (SysHigh, v1);

(s2) if v1 > 0 then

(s3) Write_dev (SysLow, 1);

The Write_dev operation in (s3) depends on a SysHigh source (v1) in the if-block

(s2), therefore an information flow implicitly exists from v1 (at SysHigh) to the SysLow

device. Sabelfeld and Myers (2003) described information flows such as these, based on

control dependencies, as implicit flows.

 35

G. TRUSTED SUBJECTS

Users in a multilevel secure (MLS) environment are assigned a clearance level

based on the relative level of trust placed in them by security administrators. A user is

allowed to log into a system at any level that is at or below (dominated by) his assigned

clearance and a session at that level is created. Subjects that act on behalf of a given user

are labeled with an access class that is at the same level as the user’s session. A subject is

allowed to read information (objects) whose sensitivity level is up to the subject’s

sensitivity level (access class), and write to objects at or above its sensitivity level.

In contrast to this, a trusted subject is one that is allowed to read and write within

a range of access classes (Lunt et al., 1990), which limits the authority of the trusted

subject to “read-up” and “write-down” (Bell and LaPadula, 1973). Lunt et al. described

that MLS systems with trusted subjects defined this way do not require a separate access

control lattice or special rules specifically for their actions. As a result, a trusted subject

does not need to be given a privilege to bypass or violate the security rules.

Since trusted subjects are allowed to interact with (read and write) information

across access classes, they must be trusted not to abuse these special privileges. The

existence of trusted subjects is generally required for certain services provided in MLS

systems, such as login, information downgrading, and data backup utilities across

multiple access levels. MLS system administration may also require a trusted subject to

interact with and manage regular user accounts and information across multiple access

levels (Thomas and Sandhu, 1996). Such actions represent a good target for trusted

subject implementation, however the design principle (Levin et al., 2007) that trusted

subjects should be small and minimized within an MLS system is not always observed.

According to Steffan and Clow (1996), with respect to security policies, a trusted

subject should not move data between sensitivity levels, other than in constrained,

explicitly defined ways. The specification of a trusted subject must explicitly define how

it can do this. Levin et al., pointed out that trusted subjects do not violate the general

policy in place, but their behavior must be a defined part of a policy. Such a policy for

trusted subjects, referred to as a “relaxed MLS policy,” must be integrated with the

 36

general MLS policy, such that the resultant union of the two can allow trusted subjects to

effectively operate, while ensuring that non-trusted subjects cannot conduct malicious

activity. In a “downgrader” role, for example, a trusted subject may essentially change

the label of information from high to low by reading information from a SysHigh object

and moving it into another SysLow object.

Trusted subjects can be defined by their behaviors in an MLS system. Steffan and

Clow (1996) described examples of trusted subject actions, including the ability to

process information across multiple access control levels to view (read) a highly sensitive

document in order to comment (write) on its contents at a lower level, and the ability to

change the sensitivity label contents of a document file. In the latter case, they describe

that a trusted subject may regrade a classified document, temporarily overriding the

tranquility principle that a subject’s or object’s label will not change while being

referenced (Bell and LaPadula, 1973). Although some (Steffan and Clow, 1996) would

allow trusted subjects to relabel objects, this dissertation research maintains the

tranquility of object labels, abstracting the idea of downgrading information by changing

variable labels from the viewpoint of, that is, internal to the trusted subject. Allowing

movement of information within a range of access classes represents the trusted subject

actions we model in our DM approach.

H. SUMMARY

In this chapter, we have introduced several information assurance concepts

germane to the research presented here. The next chapter will expand these discussions

by presenting work in several areas related to this dissertation. Some of the work

presented is classic in nature and provides a foundation for this dissertation research; in

other cases, we present more recent work and contrast it to our research.

 37

III. REVIEW OF RELATED WORK

A. INTRODUCTION

Previous work related to this dissertation research is described below.

Discussions include information flow tracing, covert channels and their analysis, control

dependencies which may cause overt flaw in a program, system trusted subject

implementations, and dynamic security policies.

B. INFO FLOW TRACING AND COVERT CHANNEL ANALYSIS

Related work in modeling secure information flow and in covert channel analysis

is described below. We have extended previous work by integrating a language for

formally specifying an implementation with a framework for expressing security policies,

particularly with respect to covert channel rules and control dependency flaws.

Graham-Cumming and Sanders (1991) described system refinement from abstract

to concrete representation, with respect to security, where they defined security solely in

terms of noninterference. They used the unwinding theorem (Goguen and Meseguer,

1984; Haigh and Young, 1987) to describe refinement such that noninterference between

users in an abstract specification of the system could be preserved through more concrete

representations of the system, however the results of this work were limited to

noninterference. In contrast, our work describes implementation of a proof-of-concept

prototype system, where enforcement of a range of security properties is possible through

the use of security assertions that are explicitly checked during Alloy program analysis.

These abstract security properties are formalized through refinement as security rules

(Alloy assertions) in the base program representation of a target program. The semantics

of information flow are represented in the DM by the definition of access label ordering,

and through the compiler-generated transition predicate, unique to a particular target

program.

Volpano et al. (1996) furthered the language-based flow analysis work by

defining a linguistic type system for secure flow, and rigorously proving the soundness of

the core language with respect to noninterference. Well-typed programs are then

 38

guaranteed to be noninterfering, and thus secure by this definition. Sabelfeld and Myers

(2003) summarized subsequent work in their survey on language-based information flow

systems.

Other work in using sound type systems for secure information flow has focused

on areas such as: encryption and decryption of information, where flows from plaintext

(high secrecy) information to ciphertext (low secrecy) information must be addressed in

light of noninterference rules that would seem to prevent such interaction (Laud, 2003;

Smith and Alpizar, 2006); probabilistic noninterference, where probability distributions

are used to determine a likelihood of noninterference from high to low variables,

primarily for multi-threaded processes where scheduling is nondeterministic (Volpano

and Smith, 1999; Sabelfeld and Sands, 2000; Smith, 2006); and type inference, in which

the flow of information is automatically determined based on semantic analysis (Volpano

and Smith, 1997; Simonet, 2003; Deng and Smith, 2006). Eventually, Smith and Thober

(2007) enhanced the linguistic type system model of secure information flow such that

sensitivity labels need to be assigned only at I/O boundaries, while the labels of variables

and constants, as well as data information flow through a program’s execution, are

automatically derived relative to the I/O (device) labels.

In contrast, our work implements the DM-Compiler, which similarly tracks the

flow of data based on the input device label, but with no requirement to annotate the code

in any other way. Our work differs from the linguistic type system approach in that,

rather than constructing a type-safe language with which to write secure programs, we

apply abstract interpretation to the analysis of programs in order to detect potential

problems and otherwise demonstrate their security with respect to select security

properties. Our approach is based on exhaustive information flow tracing of all execution

paths in a program, to a certain length (determined by the model scope of Alloy). This

tracing is applied to both overt and covert channel static analysis using dynamic slicing

techniques, where appropriate, such that read-up as well as violations of noninterference

(von Oheimb, 2004) are detected. Additionally, we provide a compiler to generate a

 39

formal specification of a program. Although it yet lacks a formal soundness proof, the

DM-Compiler enables generation of formal logic that can be automatically analyzed

(using the DM) for secure information flows.

Other covert channel research has also focused on information flow analysis,

using the principles of Kemmerer’s SRM (1983). For example, the concept of network

covert channel analysis introduced detection methods based on in-depth IP packet

analysis as a way to differentiate covert channels from legitimate network traffic

(Padlipsky et al., 1978). Approaches such as these could potentially be incorporated into

the DM security rule assertions, as methods for detecting covert channels in base

programs within this domain.

C. TRUSTED SUBJECT IMPLEMENTATION

In his early work in trusted subject implementation, Wilson (1989) developed a

framework for running a trusted multi-level database management system (DBMS),

referred to as a “trusted subject,” to be hosted on any trusted operating system. This

work established a layered policy, with a general policy for the trusted computing base

(TCB) layer of the operating system, and a separate policy for the DBMS TCB layer.

The goal of this approach was to ensure no illicit disclosure of sensitive DB information

(secrecy), and to prevent illicit alteration of DB stored data (integrity). Their premise

was that, for a DBMS hosted on a known secure operating system, only the DBMS TCB

layer must be subjected to security analysis to ensure that it meets all access control

requirements. This concept provided “portability” of the DBMS trusted subject, and

negated the time and expense of testing every system on which the DBMS may be

targeted. Further, only the DBMS TCB layer need be checked for security when it is

operated on a new secure operating system. This work did not appear to outline a

traditional concrete security policy for trusted subjects, and only used them in the context

of a trusted DBMS. While the Wilson paper allowed modification of object tranquility as

a valid action for trusted subjects, we preserve object tranquility by allowing trusted

subjects to only modify variable labels during program execution.

 40

Landauer et al. (1989) introduced a formal model for managing trusted processes

by defining a state machine whose state space can be locked, or isolated, in order to allow

privileged actions to overlap, modeling the interleaving of trusted processes. The authors

described a trusted process as possessing special privileges to alter operating system

kernel access control decisions, or other security critical operations. They divided these

privileges into four basic types of trusted process actions which could be taken by trusted

users:

1. Change level of data;

2. Perform some integrity-critical functions;

3. Perform service on behalf of non-trusted client (kernel access); or,

4. Export processor information to some non-trusted process.

Additionally, they categorized three general security properties for trusted processes, as

components of a trusted security policy (Landauer et al., 1989):

1. Downgrade only at discretion of some privileged subject

2. Execute integrity-critical commands correctly

3. Execute all commands such that resultant state does not violate

noninterference (covert channel prevention)

This paper provided an in-depth mathematical analysis of the security policy derived

from trusted process principles, and is valuable as a source of background discussion on

security policy issues for trusted subjects.

Steffan and Clow (1996) defined a set of trusted process classes, to identify their

relative privileged status. These classes correspond to combinations of override

privileges in the areas of Tranquility (labels), MAC (content) and DAC (privileges). As

the class numbers increase, so do the privileges granted, and the risk associated with

using a trusted process in that class. In contrast to this paper, our work characterizes

trusted subjects without violating tranquility of object labels.

Thomas and Sandhu (1996) presented three architectures for trusted object-

oriented databases, based on: a kernel, a replicated DBMS, and a trusted subject

architecture. The last of these was the focus of their paper. Their architecture was

 41

composed of a session manager, which was trusted and running across multiple access

control layers; several message managers, which were untrusted and operated within a

single access control layer; and read/write service requests to the DB from a client. The

trusted session manager can always maintain a global snapshot of the system for a given

session, across all access control layers, to allow it to coordinate message requests and

scheduling. Clearly, the session manager must be a trusted subject for this architecture to

maintain security of messages across layers. As Wilson did in his paper (1989), this

work describes the implementation of a trusted subject architecture to support a DBMS.

They provided a thorough analysis of how the session manager (trusted subject) could

manage messages within the system with respect to security, as well as proofs of both

noninterference and confidentiality of the session manager. However, the paper did not

appear to focus on security policies for trusted subjects, or how separate policies could

effectively coexist.

Levin et al. (2006) discussed trusted subject actions within a security kernel

architecture. With respect to the principle of least privilege (Saltzer and Schroeder,

1975), they described how a trusted subject in a downgrader role must be able to perform

only the minimum required operations, namely, downgrading of labels in this case. Other

operations such as “dirty word search” (DWS) of a document for specific words or

phrases prior to downgrade, must be handled by other untrusted system processes to

prevent unintended or malicious consequences. They defined a framework for

performing filtering and downgrade of information, separating tasks between users and

processes, both untrusted and trusted. We believe our model is aligned with this

thinking, when one considers that if our trusted subject acts as a downgrader, the DM can

reflect a separate untrusted process in the target program that performs DWS. We

generalize this concept by allowing the trusted subject to modify variable labels based on

content or label information. In our model, the DWS might represent examination of a

highly classified document for specific references to some classified topic, with

subsequent removal of these references prior to downgrading the document. Alternately,

 42

the DWS could represent filtering of a document by its creation date, where downgrading

of the document will occur only if this information is older than some predetermined

date.

D. DYNAMIC SLICING FOR SECURITY TRACING

Previous work in implementing dynamic slicing algorithms for security property

tracing has included development of a tool for finding privacy violations in networked

environments, targeting spyware in networked applications (Kruger et al., 2004). The

approach uses dynamic slicing techniques to trace program execution, to search for data

dependencies that might illuminate privacy violations. When such dependencies are

found, they are specified using an event description language to capture event parameters,

values, etc. Their goal is to use these parameterized events as abstract inputs for an event

sequence language, as a means of generating a security policy. Based on the observed

privacy violations, a policy is written that will prevent the specific events that caused the

violations. Our suggested approach differs in its goal of analyzing a target program for

adherence to a specific policy, as opposed to some generated policy.

E. DOMAIN-SPECIFIC MODELING IN SECURITY

Research has been ongoing in applying domain-specific modeling (DSM) to

computer security applications, for example in modeling particular domains such as

sensor networks, using DSM principles. Our investigation has not found, however,

research in specifically using a security DSM framework for security analysis and

verification of programs, such as is the case in this dissertation research. Examples of

recent work in this area are discussed below.

Hanna et al. (2008) developed Slede, a framework for modeling and verifying

sensor network protocols. Their approach uses the nesC language for specifying network

embedded systems, and the Spin model checker for verifying network security protocols

modeled using nesC. While their work has parallels to ours, it differs significantly in that

its focus is on verification of security protocols, as opposed to verifying programs for

adherence to a security policy. It also differs in that it is targeted specifically to sensor

networks and not program implementations in general.

 43

Basin et al. (2006), in their model driven security approach to system

development, point out that software system design models are often disjoint from

security models, and their integration is not well understood or supported. Just as

automated synthesis of systems from a specification are thought of as a “holy grail” in the

software engineering world, the goal of model driven security is automated synthesis of

secure systems from functional and security specifications. Their approach uses UML to

express a security policy, called secureUML in their research. While secureUML

formalizes access control, with the concepts of subjects, objects, roles (their paper

illustrates an RBAC style security policy) and permissions, it does not perform

information flow tracing or analysis, as our approach does, and cannot perform covert

channel analysis, which we consider a vital aspect of our Security DM approach.

The Security Assertion Markup Language (SAML) was developed by the World

Wide Web Consortium (W3C, 2008) as a variant of the more general Extensible Markup

Language (XML) to specify security attributes of subjects (users) in a system, such as

identity, entitlements, etc. Using established standards for XML Signature and XML

Encryption (W3C, 2008), SAML was intended to provide a domain model for security,

primarily for business related applications. While SAML can be used to model, for

example, digital signatures, message encryption and integrity, and assertions for user

authentication, it currently cannot be used to model an access control policy, with

assertions for covert channel identification, and could not be applied to our research

approach.

The Alloy language has been used to model security requirements for secure

communications (Chen et al., 2006) where predicates were specified for secure message

confidentiality, integrity, authenticity and non-repudiation, as well as numerous

“obstacles to security”, such as eavesdropping or spoofing. The work was successful in

designing a general, reusable model for communication security properties, and differs

significantly from the research presented here, which analyzes models of program

representations for adherence to a specified security policy.

 44

F. DYNAMIC SECURITY POLICY DEVELOPMENT

Because programs typically interact with an external environment, all aspects of

that environment cannot be predicted at compile time. A dynamically secure system

must provide mechanisms for observing the environment during runtime, and allow for

security updates of the system in order to adapt to that environment (Zheng and Myers,

2004). A static policy cannot provide mechanisms for real-time updates in applications

where a change in environment might necessitate immediate enforcement of an updated

policy; such a situation requires a specifically dynamic security policy that can adapt to

changes in the environment surrounding the system.

A dynamic security policy can be defined as a program consisting of a set of

guards and actions that provide the logic to modify a system’s implementation in order to

change its operational parameters, and includes the necessary guards to enforce good

behavior and prevent misuse of the system (Naldurg et al., 2002). Dynamic policies

provide adaptive access control measures that can be responsive to time (temporal aspects

of the system), events (emergent situations or unanticipated actions in the environment),

perceived security risk, and operational needs.

The goal of Quality of Service (QoS), the ability of a distributed system to provide

sufficient and timely service to meet the desires of each of its users, is expanded to

Quality of Security Service (QoSS), with the vision of making security a constructive tool

for network management, rather than a performance inhibitor (Irvine and Levin, 2000;

Levin et al., 2006). A QoSS framework becomes a directing factor in the implementation

of a dynamic policy, employing variant mechanisms that make security decisions based

on changing network operating conditions, always working to maximize benefit to its

users (Irvine and Levin, 2000). Research in this area has included study in the

development of adaptive policies for management of databases (Ray, 2005), tools for

design and verification of dynamic policies (Janicke et al., 2005), and the manner in

which an adaptive policy should be implemented.

The DoD and National Security Agency (NSA) are currently developing the

Global Information Grid (GIG) (NSA GIG, 2004), which will provide the military with

 45

greater net-centric communications capability and flexibility by leveraging “information

technology and innovative network-centric concepts of operations to develop

increasingly capable joint forces.” The GIG will address limitations and inefficiencies

inherent in the military’s traditional specialized “stove-pipe” communications systems by

providing the ability to share information across networks of differing classification

levels, and across coalition networks.

Among the GIG’s information assurance goals are high assurance authentication,

multi-level security, and development of flexible, dynamic security policies. To that end,

the GIG program has introduced a new type of security policy known as Risk-Adaptive

Access Control (RAdAC). The RAdAC policy represents a confluence of MAC and

DAC, enforcing a need-to-know policy, with SAC (Situational Access Control), which

enforces a more adaptive need-to-share policy. RAdAC is described by a general rule

that “users may access information they are cleared and permitted to access, or when the

situational need is severe enough, as long as the risk of doing so is within tolerable

limits,” (NSA GIG, 2004). The RAdAC model would provide the flexibility to meet

need-to-share requirements, weighing potential risk against operational need, making

decisions to grant access based on:

• security risk in granting access (primarily a function of the user, the object

being accessed, the environment in which they exist, and historical allowed accesses)

• operational necessity for access

• any policy for a balance between the two in conflicting situations

G. SUMMARY

In this chapter, we have presented classic and recent related work in secure

information flow tracing, and specially the relationship of this to covert channel analysis

and noninterference properties. We have described research in the trusted subject

concept, and how others have chosen to implement trusted subject behaviors in a secure

system. Finally, we have described the DoD’s goal of finding solutions to implementing

dynamic security policies, particularly for military secure systems.

 46

The next chapters will introduce the approach presented in our work, beginning

with the Implementation Modeling Language (IML).

 47

IV. IMPLEMENTATION MODELING LANGUAGE

A. INTRODUCTION

The Implementation Modeling Language (IML) defines a specialized language

that presents some of the basic capabilities and constructs, with respect to security, of

high-level programming languages. The current IML enables the specification of

relatively simple programs written in some common programming language, such as Java

or C++. While future iterations of IML might handle more advanced language features

such as concurrency, inheritance, etc., this initial language description was motivated by

a requirement to represent essential security information flow properties in target

program implementations, balanced by the desire to limit complexity during

experimentation.

B. IML SYNTAX

The following describes syntax and statement constructs of the IML.

1. Lexical Concepts

A variable name is an identifier distinct from IML keywords and Alloy keywords.

No variable declarations are required.

The only assumption about values stored in variables is that they can be compared

for equality and inequality (<, =, >, <=, >= operators) with other variables, or with

constants. Variables can hold integer constants, but the value of a variable can be

interpreted also as a time value (see GetClock below). Constants are represented by

integers: -1, 0, 1, etc.

Statement constructs provided in IML include capabilities for assignment to a

variable, reading to and writing from a variable, accessing an I/O device’s flags and a

system clock, and basic control structures. Semicolons separate statements in IML.

 48

2. Assignment

Assignment statements propagate access labels from the right-hand side to the

left-hand side of the statement. For the current model, constants have a Low secrecy

access label by default.

variable := variable;

variable := constant;

The IML enables trusted subject behavior by providing a special trusted

assignment statement. This statement allows trusted subjects to modify the labels of

internal variables (“regarding”), while respecting the tranquility of external object labels.

The trusted assignment allows filtering of variable values based on existing content

and/or label. This filtering is analogous to a “dirty word search” of a document prior to

downgrading its classification level, to ensure that certain sensitive words are first filtered

from the document.

The trusted assignment statement allows a trusted subject to assign a value to a

destination variable, with an explicitly defined security label. When an IML base

program is translated, it is under the context that only a trusted subject may perform

trusted assignment. The trusted assignment syntax follows:

Assign destination from source as alt_source;
In this operation, the destination variable takes on a new data value

(destination_value’) from the source variable, however it does not automatically take the

source label as would normally be the case for an assignment statement in IML. Instead,

destination is explicitly assigned a new label (destination_label’) based on the source and

alt_source labels, as determined by a filter function that is automatically invoked with

each trusted assignment. In trusted assignment, source can be either a variable or

constant, and alt_source can be either a variable (in which case the access label currently

assigned to the value stored in this variable is used) or an explicitly defined access label.

The new content and access label of the destination variable (destination_value’

and destination_label’, respectively) are defined by the Alloy function tsFilter in the

DM Invariant Model (further discussed in section 4.1.1), as follows:

 49

(destination_value’, destination_label’) =

 tsFilter ((destination_value, destination_label),

 (source_value, source_label),

 (alt_source_value, alt_source_label))

This function specifies the behavior of trusted subjects in our model, and

examples are described in detail in Chapter VI.

3. Device Input/Output Statements

The IML statements Read_dev and Write_dev abstract the input from and

output to an external device at a specific access level. We make the simplifying

assumption that there are three external devices, each at high, medium and low secrecy

levels, respectively; the operation label (SysHigh, SysMid or SysLow) indicates which of

these devices is being read to or written from. For a Read_dev statement, the variable

is assigned the label of the device that is read from; for a Write_dev statement, source

may be either a variable or a constant.

Read_dev (label, variable);

Write_dev (label, source);

4. File Random Access

The IML abstracts the concept of random access to an indexed file, where (key,

value) pairs are used to store and retrieve information in a finite-sized repository. This

conceptual repository, referred to as a direct file, can be thought of as a database or

memory file and (for this model) is represented as a single-level store (there is no

distinction between persistent and volatile memory).

All subjects in the base program can access a single instance of the direct file,

according to their access label. Initially, all direct file slots have a SysLow access label,

and can be written to by any subject. Once a subject has stored a value into a keyed slot

using the PutDirectFile statement, that slot retains the label of the subject.

Subsequently, another (or the same) subject may read from this direct file slot using the

GetDirectFile statement, only if the subject’s label dominates that of the key slot.

 50

A given key slot can be overwritten an unlimited number of times by a subject with a

higher- or lower-labeled value, so the label of a given slot may change over time.

The direct file has a limited number of keyed slots, all of which have empty keys

and values at the start of program execution, and a given slot’s key value is determined

when it is first assigned a key/value pair. The direct file tracks the number of slots that

have been assigned a key, zero at the start of execution and incremented by one whenever

a key slot in the direct file is written to for the first time. The direct file capacity equates

to the number of key slots that can be allocated in the direct file.

When a PutDirectFile is executed for a given key for the first time, an

available key slot is allocated, the data is stored in the direct file, and a global Success

flag is set to 1; otherwise, if no key slot is available, the Success flag is set to 0, and no

data is stored. When all available slots have been allocated, the direct file is considered

filled, and a global Full flag is set to 1. The Success and Full flags are global state

variables maintained by the execution environment, and are internal resources that would

not be directly accessible in a high-level language. Their values could be inferred,

however, based on system errors seen by the user, and we abstract such system errors in

the IML by allowing direct examination of the flags in a base program.

The following statements are provided in the IML for storing and retrieving

values to/from the direct file. The label indicates the level of the subject performing the

operation; the key and source may be either variables or constants:

GetDirectFile (label, key, variable);

PutDirectFile (label, key, source);

5. System Clock
This statement stores the current clock value to a variable:

GetClock (variable);
We model only the time taken by file and external device accesses during

Read_dev/Write_dev and Get/PutDirectFile operations. These statements

may cause the CPU, or some other resource, to be busy such that some action visible to

another subject is delayed with respect to a reference clock (for simplicity, we model one

time source – the system clock).

 51

The clock value can be compared with other constants and variables, using the

Before operator:

(var1 Before var2)

6. Program Control Statements

A conditional expression is constructed from variables, constants, flags, and

operators =, >, <, >=, <=, Before, not, and, or. A statement may be any single

statement or block of statements (a sequence of statements is enclosed by braces). Two

forms of control statements are provided:

if condition then statement [else statement];

while condition do statement;

In the if-then-else statement, the else block is optional. The while-do

control statement repeats its body as long as the condition holds true.

The following statement signifies termination of a base program:

Stop;

C. SUMMARY

This chapter introduced the Implementation Modeling Language (IML). This

specialized language, developed as an integral part of the Domain Model (DM) concept,

provides a way to represent high-level language programs in a common modeling format,

to enable automated static analysis of a representation the program’s execution. The IML

provides all of the functionality necessary for program analysis of security properties,

particularly with regard to information flow analysis.

We next present the Security DM approach, which enables automated static

analysis of programs to verify them for adherence to a specifically defined security

policy.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

V. THE SECURITY DM APPROACH

A. INTRODUCTION

This chapter presents the Domain Model (DM) approach to security verification.

It provides discussions of the overall structure of the DM framework, including the

Invariant and Implementation Models, and the compilation process during which the

DM-Compiler is used to generate a complete DM, in Alloy notation, from a base program

written in the IML.

B. DM STRUCTURE

An overview of the Security Domain Model (DM) approach to program security

verification is depicted in Figure 7. The DM includes the definition of program state and

transitions between states, as well as security rules, specified as Alloy assertions,

representing the generic policy a program must conform to. The DM is composed of an

invariant and a variable section, derived from the security rules and a target

implementation, respectively.

Figure 7. Domain Model approach to system security verification.

While there are numerous model checker tools currently available, we chose to

use the Alloy specification language primarily because of its ability to represent program

 54

language abstractions simply and explore their semantics with a well-integrated analysis

tool. As Jackson (2006) points out, referring to his approach as “lightweight formal

methods,” Alloy models can be easily created and initially tested early in the

development process, and then incrementally expanded. He states that the goal of Alloy

was to “obtain the benefits of traditional formal methods at lower cost, without requiring

a big initial investment,” presumably in time and effort.

As do traditional model checkers, Alloy deals with finite models though it handles

them very differently. Model checkers typically build Kripke structures to represent the

states and transitions of a program execution. Such finite model structures have limits

not easily adjusted by the user during analysis. The Alloy Analyzer tool, however,

affords the ability to easily increase the depth of analysis for models as they are

developed and expanded. For our approach, Alloy and its Analyzer provide an ideally

suited tool for creating and analyzing target program abstractions.

As previously explained, a base program is an abstraction of a target program

implementation, and is written in IML notation. By analyzing a model of the program

rather than actual program code, security verification can focus on elements of

information flow such as I/O, access labels, direct file access, and timing (clock), while

ignoring other program details not pertinent to such analysis.

In the current prototype, translation of the base program from an implementation

is a manual step. Developing a separate compiler to translate a high-level language

program to IML is a difficult task, beyond the scope of this work. The possibility must be

considered that covert channels existing in the original program implementation may be

lost in the IML representation, and for now we depend on the knowledge of the manual

translator to avoid this problem.

Security rules, written as Alloy assertions, are derived from the security policy.

Such policies are typically written in natural language, and extraction of security rules is

a manual step in our approach. As currently implemented, the DM defines security rules,

which have as their basis the Bell and LaPadula (1973) security model, meaning that

information flows from High to Low secrecy levels are not allowed.

 55

After the base program and Invariant Model with security rules are defined, the

DM-Compiler compiles the base program from IML into state transition predicates,

written in Alloy notation, creating the DM Implementation Model. The DM-Compiler

combines this with the Invariant Model to complete the DM. The approach uses the

Alloy Analyzer tool (Alloy, 2008) for automated verification of the security rules,

defined in the DM as Alloy assertions, to find execution paths within the DM that might

violate the security policy or create covert channels. In essence, it creates an interpreter

for the specific base program, modeled by the DM.

1. Invariant Model

The Invariant Model specifies the conceptual framework of the DM with the

Alloy specification language. This section describes statement types and structure,

program execution state, direct file structure, and clock signature.

In the Alloy language, all atomic structures are modeled as sets and relations.

Sets are represented as unary relations; scalars are simply singleton sets. A set or relation

declaration can be constrained using several keywords indicating multiplicity: one

restricts sets to exactly one instance of a type; while lone restricts them to either zero or

one instance; and none refers to the empty set. The all quantifier must hold for all

instances of a type, and the disj quantifier specifies variables that are necessarily

disjoint from one another.

Alloy provides standard logical operators, for example negation (!), conjunction

(&&), disjunction (||), implication (=>), and bi-implication (<=>). Pairs (type-

>type) represent binary relations, and ‘+’ is the set union operator. The override

operator ‘++’ examines two sets of pairs and overwrites the pair in the first set with the

second whenever the first elements of the pairs match. The ‘^’ operator represents

transitive closure for binary relations.

The signature (sig) construct in Alloy, roughly synonymous with the class

declaration in object-oriented programming languages, defines a set of atoms (elements),

and any relations between them. Signatures with the abstract qualifier cannot have

 56

their own instances, and are used only to derive other signatures. For further details on

the Alloy language, see the website at (Alloy, 2008).

The signatures below describe program state, the initial state, and structures for

variables and values, which are extended in the DM-Compiler generated Implementation

Model (discussed in next Section). The Policy signature defines a partial ordering

between security access labels, representing a dominance relationship between the labels

(see Figure 8). For illustration purposes, the model defines an Alloy enumerated type,

AccessLabel with access labels SysLow, SysMid and SysHigh. The Policy

signature defines an ordering ord as the transitive closure between the three labels, as

well as the identity, or reflexive, relationship for each of the labels.

enum AccessLabel { SysHigh, SysMid, SysLow }

one sig Policy {

 ord: AccessLabel -> AccessLabel

}

{ord = ^((SysLow -> SysMid)

 + (SysMid -> SysHigh))

 + (iden & (AccessLabel -> AccessLabel))

}

Figure 8. Alloy enumerated type for AccessLabel,
and signature for the DM Policy element

The Statement abstract signature (see Figure 9) captures a single instance of a

given statement. For I/O (Read_dev/Write_dev) and direct file access statements, the

signature defines statement type, destination, source, key (for direct file only)

and subject_label attributes. The subject_label specifies the security label of

the calling subject for a particular statement; this label represents the access label of the

device, in the case of I/O statements. For assignment statements, only source and

destination attributes are defined. For conditional statements, the source attribute

 57

defines the set of control variables used in an if-then-else or while-do statement.

For GetClock statements, only the destination attribute is defined, while the Stop

statement defines no attributes.

sig Statement {

 type: Stmt_type,

 destination: lone Variable,

 source: set Variable + Value,

 source_label: lone (AccessLabel + Variable),

 key: lone (Variable + Value),

 subject_label: lone AccessLabel

}

Figure 9. Alloy signature for the DM Statement element

The Stmt_type enumerated type (see Figure 10) defines the different statement

types that can be used in a base program representation of a target program.

enum Stmt_type {

 Assign,

 Condition,

 Read_dev,

 Write_dev,

 GetDirectFile,

 PutDirectFile,

 GetClock,

 Stop

}

Figure 10. Alloy enumerated type for the DM Stmt_type element

The DirectFile signature (see Figure 11) defines key/value pairs

(keyContent) for each of its storage slots, and the current access label (keyLabel)

for each key slot value. The latter is used to track the label of the current value to ensure

that flows are valid during subsequent accesses of the value using GetDirectFile

 58

statements. The element last_written stores the label of the last subject that wrote

to the direct file, and is used when checking for potential covert storage channels

(discussed in detail later). The signature also defines the direct file max_slots size (set

to 2 for modeling purposes); note that Alloy provides the predefined type Int to

represent sets of integer atoms. Also, full and success are used as internal resource

system flags (essentially Booleans), as previously described in Chapter IV.

sig DirectFile {

 keyContent: Value -> lone Value,

 keyLabel: Value -> lone AccessLabel,

 last_written: lone AccessLabel,

 full: (const0 + const1),

 success: (const0 + const1),

 max_slots: Int

}

{ max_slots = 2

}

Figure 11. Alloy signature for the DM DirectFile element

sig Time {}

one sig Clock {

 before: Time -> Time,

 long_before: Time -> Time

}

{ long_before in before &&all t1: Time, t2: Time - t1 |

 ((t1->t2) in before <=> t2 in TO/nexts[t1]) &&

 ((t1->t2) in long_before <=> some t3: Time |

 (t3 in before[t1] && t3 in before.t2))

}

Figure 12. Alloy signatures for the DM Time and Clock elements

 59

The Clock signature (see Figure 12) provides an abstraction for program

execution time. The signature defines the concept of some event occurring at some time

before another event (before relation), which enables testing for the relative timing of

events during base program analysis. In this implementation, ‘TO’ is defined as a Time

ordering instance, using the Alloy library utility for ordering. The nexts function

returns a set of all next values in an ordering – in this case the next Time values after the

one in question. For example, the code below checks whether t2 is contained within the

set of time values that occur after t1.

sig State {

 stmt: Statement,

 vars: Variable -> one (Value + Time),

 access_label: Variable -> one AccessLabel,

 direct_file: DirectFile,

 current_clock: Time,

 prev_state: lone State,

 err_msg: lone Error,

 influenced_by: Variable -> State,

 last_cond_checked: set State,

}

{

 (err_msg = InfoFlow_error <=>

 not consistent_with_FlowPolicy [this]) &&

 (err_msg = Overt_flaw_detected <=>

 dependency_flaw_found[this]) &&

 (err_msg = Storage_channel_detected <=>

 storage_channel_found[this]) &&

 (err_msg = Timing_channel_detected <=>

 timing_channel_found[this])

}

Figure 13. Alloy signature for the DM State element

The State signature (see Figure 13) captures the current state of the system, and

the next base program statement (stmt) to be executed during static analysis. Its

elements include the type of statement to be executed, the current table of variable values,

 60

the access label for each value stored in vars (for information flow tracing), and a

snapshot of the current direct file; the flags full and success are contained within the

direct_file attribute. This signature also includes the current_clock value, the

previous state leading to the current state, and last_cond_checked, which identifies

a set of conditionals within which the current statement may be nested, enabling

dependencies from those conditionals to be propagated.

The influenced_by attribute is used for tracking control flow dependencies,

and is at the heart of the dynamic slicing algorithm used in this approach. It stores, for

each source variable in the current state, all of the previous states that have influenced

that variable. This attribute enables the Alloy Analyzer to narrow its focus in examining

previous states, thus reducing the search space necessary in determining control

dependencies. By storing variable/state pairs, we can enable the Analyzer to examine all

variable access labels from previous influencing states.

The State signature also defines specific error conditions, referred to as

err_msg in the signature. These errors represent security violations which might occur

during static analysis, and provide positive feedback that the Alloy Analyzer has

discovered an assertion counterexample and a potential violation. For modeling purposes

the State signature currently defines errors for illicit information flows (flows which

violate the Policy signature partial orderings), overt control dependency flaws, and

covert channels, to include both storage and timing channels, as defined in the Alloy

enumerated type Error (see Figure 14).

enum Error {

 InfoFlow_error,

 Overt_flaw_detected,

 Storage_channel_detected,

 Timing_channel_detected

}

Figure 14. Alloy enumerated type for the DM Error element

 61

In order to provide a starting state for static analysis of a base program, the DM

Invariant Model defines an initialization signature, called InitialState, which sets

appropriate values for the various elements of the State signature (see Figure 15).

one sig InitialState extends State {}

{

 vars = (Variable -> const0)

 access_label = (Variable -> SysLow)

 stmt = S1

 direct_file.full = const0

 direct_file.success = const1

 current_clock = TO/first[]

 prev_state = none

 err_msg = none

 last_cond_checked = none

 no influenced_by

 no direct_file.keyContent

 no direct_file.keyLabel

}

Figure 15. Alloy signature for the DM InitialState element

When analyzing a base program, the Alloy Analyzer performs an exhaustive

search of all execution paths up to a defined length, referred to as the scope, specifying

the upper limit of the size of the models considered. In fact, it performs symbolic

execution of all base program paths with length up to the defined scope. In the DM-

Compiler, the scope is generated heuristically based on the total number of statements in

a base program. For example, the resultant scope for a given base program will

encompass all of its control statements and I/O statements, and will be one more than the

number of statements in the program to ensure that the initial state is included in the

analysis. The heuristic addresses while-loop statements in a base program to a limited

extent, by increasing the scope to allow for a single iteration.

 62

The DM-Compiler scope heuristic ensures that all execution paths for

deterministic programs will be scrutinized, however, it cannot be assured of generating

execution paths for non-deterministic programs. For example, the Analyzer cannot

generate all possible execution paths for a program with a while-loop structure of

indeterminate length, thus a scope cannot be determined that will ensure all possible

paths are scrutinized.

The Invariant Model also includes the definition of security rules that must be

enforced by the DM security policy. These rules are specified as Alloy assertions, and

will be described further in Chapter VI.

2. Implementation Model

The DM Implementation Model is generated by the DM-Compiler from a base

program, and specifies the base program’s semantics in terms of statement signatures and

state transitions. Example base programs, and their resultant compiled Alloy models, are

presented in Section 5.

From the base program, the DM-Compiler generates Variable and Value

signatures, representing variable names and constant values used in the base program,

respectively. The Variable signatures reflect the variables defined in the base

program; similarly, the number and value of constants defined in the Value signature

depend on the number and value of unique constants explicitly present in the base

program (the constant 0 will always be added by default for initial variable values). To

represent the state space, additional constants may be needed to fill the intervals between

explicitly defined constants. The DM-Compiler defines an Alloy signature which

establishes a simple less-than relationship between the constant values, thus enabling the

comparison of values for equality and inequality from within the base program. Figure

16 shows example Variable and Value signatures generated by the DM-Compiler.

 63

one sig x1, x2, t1

 extends Variable {}

one sig const_minus_1, const0, const1, const2, const3

 extends Value {}

one sig LT {

 lt: Value -> Value }

{ lt = ^(

 (const_minus_1 -> const0)

 + (const0 -> const1)

 + (const1 -> const2)

 + (const2 -> const3))

}

Figure 16. Example Alloy signatures for Variable and Value elements

C. DM-COMPILER

The DM-Compiler compiles each base program statement into a separate Alloy

signature, based on the type of statement and associated variables and constants used.

Elements of the Statement signature not needed for a particular statement type are not

initialized. The base program in Figure 17 shows a simple signature sequence, translated

into IML, for an assignment statement (s2) nested within a conditional statement (s1).

(s1) if (x1 < 0) then

(s2) x2 := x1;

(s3) Stop;

Figure 17. Sample Base Program Statements, in IML Syntax

From the sample base program above, the DM-Compiler would generate the

sequence of Alloy Statement signatures shown in Figure 18.

 64

one sig s1 extends Statement {}

{ type = Condition

 source = x1

 destination = none

 key = none

}

one sig s2 extends Statement {}

{ type = Assign

 source = x1

 destination = x2

 key = none

}

one sig s3 extends Statement {}

{ type = Stop

 source = none

 destination = none

 key = none

}

Figure 18. DM-Compiler Generated Alloy Signatures for Sample Base Program

From these statement signatures, the DM-Compiler generates a transition

predicate representing the state transition trace for the base program execution. The

approach used to derive the transition predicate is based on compilation of the base

program statements, using the RIGAL compiler construction language (Auguston, 1990;

Auguston, 1991). During the compilation process, each base program statement is

translated into a set of Alloy statements that represent the transition from the present

execution state to the next state, following execution of the statement in question. The

transition predicate defines a frame condition (Borgida et al., 1995) for each statement,

capturing the semantics of the base program by specifying all possible sequences of

statement executions for the base program. The transition predicate also implements

dependency tracking within the execution path. Although we refer generally to the

 65

transition “predicate,” we represent this structure using an Alloy fact rather than a

pred (predicate), because a pred only holds when invoked, while a fact is assumed

to always hold.

The remainder of this section shows a representation of the state transition

predicate derived by the DM-Compiler for the base program in Figure 17. Note that for

each statement, pre represents a state before the statement (stmt) has been executed,

and post represents the state after statement execution.

fact trans {

 all post: State - InitialState |some pre: State |

For the conditional statement (s1), since no variable value assignments are made,

the variable table, access labels, direct file (including system flags), clock time value, and

influence_by table remain the same after execution:

(pre.stmt = s1 &&

 (post.vars = pre.vars &&

 post.access_label = pre.access_label &&

 post.direct_file = pre.direct_file &&

 post.current_clock = pre.current_clock &&

 post.influenced_by = pre.influenced_by &&

The last_cond_checked attribute is calculated to include all previous states

currently in last_cond_checked (excluding the current state, s1), plus the pre

state itself, in order to set the context of statements within the conditional:

post.last_cond_checked =

 {cond: pre.last_cond_checked |cond.stmt != s1 } + pre &&

Based on the outcome of the conditional check, the next statement to execute is

set to either the “then” branch (s2), or the “else” branch (s3) statement:

 (((pre.vars[x1]-> const0) in LT.lt) => post.stmt = s2

 else post.stmt = s3)

)

&& post.prev_state = pre

) ||

In the assignment statement (s2), the access label and value for the target variable

(x2) are set to those of the source variable (x1):

 66

(pre.stmt = s2 &&

 (post.vars = pre.vars

 ++ (x2 -> pre.vars[x1]) &&

 post.access_label = pre.access_label

 ++ (x2-> pre.access_label[x1]) &&

 post.stmt = s3 &&

The direct file (including system flags), clock value, and

last_cond_checked attribute all remain the same after execution of an assignment:

 post.direct_file = pre.direct_file &&

 post.current_clock = pre.current_clock &&

 post.last_cond_checked = pre.last_cond_checked &&

The influenced_by attribute is calculated based on the source variable

dependencies. Recall that influenced_by is declared within the State sig as the

relation (Variable->State), which is a set of pairings from variables to states. Alloy

treats sets and subsets the same when defining relations, thus the pairing of a variable to a

set of states (Variable->{State}), shown below, denotes a set of pairings from that

variable to each of the states ({Variable->State}). Jackson (2006, pp. 36-37) provides a

discussion of Alloy’s treatment of sets as relations.

In calculating influenced_by, first all previously recorded dependencies

(other than those for x2, the destination variable) are included:

post.influenced_by =

 {v: Variable, s: State | (v -> s) in pre.influenced_by && v != x2}

Second, dependencies for x1, the current assignment statement source variable,

are added as dependencies for x2:

 + (x2 -> pre.influenced_by [x1])

Next, from the current set of states defined in last_cond_checked, those

whose scope this assignment falls within are included. This captures dependencies from

any conditional within which the current statement may be nested; in this case base

program statement (s1):

 + (x2-> {cond: pre.last_cond_checked | cond.stmt = s1}

)

 67

Finally, when an assignment statement is nested within a conditional statement,

dependencies from the source variables participating in the conditional must be

included:

 + (x2 -> State.{cond: pre.last_cond_checked,

 infl: cond.influenced_by [cond.stmt.source] | cond.stmt = s1})

) && post.prev_state = pre

) ||

The transition predicate concludes with the Stop statement (s3). Since execution

terminates when this point is reached there is no need to assign values for the resultant

(post) state, other than setting the previous state for tracing continuity:

(pre.stmt = s3 &&

 post.prev_state = pre

)}

D. SUMMARY

This chapter has described the Security DM approach to static analysis and

verification of a program representation for adherence to a security policy –

specifically,rules associated with a security policy. Specifically, we described the

structure of the Security DM, and how it is generated based on a base program

representation of a target program, and a specific security policy.

In the next chapter, we present several base program examples for which the

Security DM approach is used to conduct static analysis for the presence of specific

security violations and adherence of the base program to a security policy.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

VI. EXAMPLE DM IMPLEMENTATIONS

A. INTRODUCTION

This chapter presents examples of program security vulnerabilities, discoverable

using the DM approach. The examples illustrate security rules – defined using Alloy

notation – for discovering direct information flow errors, indirect control dependency

flaws, and covert channels, based on regular and trusted subject actions. For each

example, a base program written in IML is presented to demonstrate a particular security

violation, and how the domain model approach can be used to find it.

The success of these examples shows the possibility of conducting automatic

analysis and verification of target programs. For specific program instantiations, we have

demonstrated the characterization of several classes of security flaws and successfully

analyzed example programs automatically for presence of these flaws. These results

indicate a direction for future research, to represent broader abstractions for automatically

detecting entire classes of security flaws in a target program.

Regarding the covert channel examples presented, each describes the transmission

of one bit of information, for conceptual purposes. More complex real-world examples

would involve such concepts as looping, synchronization, etc., to provide exploitable

covert channels with a stream of bits.

The complete Alloy models for these and other examples can be found on the

dissertation research website at http://cisr.nps.edu/projects/sdm.html.

B. EXAMPLE PROGRAMS

1. Overt Control Dependency Flaw

The first example illustrates an overt flaw based on a control flow dependency.

This example shows an exploitation scenario that culminates with an IML Write_dev

operation, where the variables written to the external device have been influenced by

values at a higher level than that of the device itself.

 70

The Alloy predicate in Figure 19 examines each execution state, and evaluates as

true whenever the state (current) is the result of a Write_dev statement, and the

value to be written out was influenced_by some previous state (pre) that had access

to a variable with a higher access_label than that of current state, that is, the flow

from the previous State to the current State is from SysHigh to SysLow.

pred dependency_flaw_found [current: State] {

let stm = current.stmt, pre = current.influenced_by[stm.source]| {

 stm.type = Write_dev &&

 stm.source in Variable &&

 not ((pre.access_label[pre.stmt.source] -> stm.subject_label)

 in Policy.ord)

 }

}

Figure 19. Alloy Predicate to Discover Overt Control Dependency Flaw

The following base program illustrates an example of this flaw. Initially, a

SysHigh value is read into variable x1 (s1). Based on the value of x1 (s2), new variable

x2 is assigned either ‘0’ (s3) or ‘1’ (s4). Variable x2 is then written to a SysLow device

(s5).

The violation occurs when x2 is written to a SysLow device, because its value has

been potentially influenced by a SysHigh value, specifically x1 when it was accessed in

(s2).

(s1) Read_dev (SysHigh, x1);

(s2) if x1 = 0 then

(s3) x2:= 0;

(s4) else x2:= 1;

(s5) Write_dev (SysLow, x2);

(s6) Stop;

The Alloy Analyzer detects this situation, and correctly reports an overt flaw by

tracing the control flow through statements (s1)(s2)(s3)(s5).

 71

2. Timing Covert Channel Resulting from Exploitation of System Clock

The second scenario describes a covert timing channel that occurs when a SysLow

subject executes two GetClock statements, and between them a SysHigh subject

prevents the SysLow subject from executing, through execution of a Read_dev/Write_dev

or direct file operation (rw state in the text). Thus, when the SysLow subject next runs, it

can examine the clock to detect this interference with its access to the CPU; these

channels are thus often called CPU channels. The Alloy assertion in Figure 20 detects

this potential covert timing channel, utilizing the system Clock element.

pred timing_channel_found [gc2: State] {

some disj rw, gc1: State | {

 (gc2 -> rw) in State_order.st_after &&

 (rw -> gc1) in State_order.st_after &&

 gc1.stmt.type = GetClock &&

 gc2.stmt.type = GetClock &&

 rw.stmt.type in (Read_dev + Write_dev +

 PutDirectFile + GetDirectFile) &&

 gc1.stmt.subject_label = gc2.stmt.subject_label &&

 not ((rw.stmt.subject_label -> gc2.stmt.subject_label)

 in Policy.ord)

 }

}

Figure 20. Alloy Predicate to Discover Timing Covert Channel

The base program below illustrates this timing channel. A SysHigh value is

initially read into variable x1 (s1). A SysLow subject then stores the current clock value

in t1 (s2). Based on a check of x1 (s3), its value is stored into the direct file at key slot

1 (s4). The SysLow subject again examines the clock, and stores its value into t2 (s5).

(s1) Read_dev (SysHigh, x1);

(s2) GetClock (SysLow, t1);

(s3) if x1 < 0 then

(s4) PutDirectFile (SysHigh, 1, x1);

(s5) GetClock (SysLow, t2);

 72

At this point (subsequent to execution of statement s5) an interference event has

occurred, which can be exploited as a timing covert channel by the SysLow subject, and

the Alloy Analyzer detects the violation, tracing execution flow through statements

(s1)(s2)(s3)(s4)(s5). The crux of this covert channel is that a SysLow subject, the covert

channel receiver, has been allowed to observe (by examining the clock) a change in some

internal resource (the CPU busy state), which was indirectly affected by the actions of a

SysHigh subject, the covert channel sender. The remaining statements illustrate how the

SysLow subject compares the two clock values (s6) to see whether the SysHigh subject

has interfered with it through performance of some operation, and writes either a ‘1’ or

‘0’ accordingly (s7 and s8).

(s6) if t1 Before t2 then

(s7) Write_dev (SysLow, 1);

(s8) else Write_dev (SysLow, 0);

(s9) Stop;

3. Flow Violation Caused by a Trusted Subject Operation

The third example illustrates a trusted subject regrade operation that, based on

allowed trusted subject behavior, leads to an information flow violation. In the example,

an attempt is made by a trusted subject to downgrade a destination variable label from

SysHigh to SysLow. Here, trusted subjects are allowed to perform downgrading of

information from SysHigh to SysMid. To support the policy, a tsFilter Alloy

function is defined in Figure 21 to ensure that any “downward” information flows are

allowed only from SysHigh to SysMid. The function takes as input parameters three

Values and three AccessLabels, specifically, the values and labels of the destination,

source and alt_source variables in the Trusted Assignment (see Chapter IV for IML

syntax of the trusted assignment statement), and returns as its result an instance of

Alloy signature FTuple, which the DM uses as the new (filtered) Value and

AccessLabel of destination (see Figure 21). In essence, the policy for trusted subject

behaviors is captured in the semantics of the tsFilter function, which may override

the normal value and label of the assignment destination parameters.

 73

For example purposes, the tsFilter function here returns the greater of

constant 0 and the source Value (source_val), and the higher of SysMid and the

alt_source AccessLabel (alt_src_label) when a downgrade is performed;

otherwise it returns alt_src_label for an upgrade or when the label is not changed.

As shown in the example tsFilter, it is not necessary to use all of the parameters

passed into the function to generate a resulting FTuple. Note that a different DM

Invariant Model might define a tsFilter function that would return different results

based on the specific input parameters, and thus define a different security policy for

trusted subject behaviors.

sig FTuple {

 val: Value,

 label: AccessLabel

}

fun tsFilter[dest_val, source_val, alt_src_val : Value,

 dest_label, source_label, alt_src_label: AccessLabel]:

 FTuple { { result: FTuple |

 {

//assign result.val to be the greater of source_val and 0

 result.val =

 (((source_val -> const0) in LT.lt)

 => const0

 else source_val)

//assign result.label to be the higher of SysMid and alt_src_label,

// when downgrade is executed; otherwise assign alt_src_label

 result.label =

 (((dest_label -> alt_src_label) in Policy.ord)

 => alt_src_label

 else SysMid)

 }

} }

Figure 21. Alloy Function for Trusted Subject Filter

 74

The base program example below demonstrates a security violation based on the

trusted subject filter and security policy. Initially, values are read into two variables with

security labels SysHigh and SysMid, respectively (s1 and s2). A trusted assignment

operation is then performed (s3), in which the data value stored in x2 is copied into

variable x1, and x1 is assigned a SysLow label. The trusted assignment statement

invokes the tsFilter function, which overrides the label assignment, from SysLow to

SysMid (as described above), resulting in destination variable x1 being assigned a higher

label (SysMid) than was intended (SysLow).

(s1) Read_dev (SysHigh, x1);

(s2) Read_dev (SysMid, x2);

(s3) Assign x1 from x2 as SysLow; //now x1 has the label SysMid

(s4) Write_dev (SysLow, x1);

(s5) Stop;

When the next statement (s4) attempts to write the value held in x1 to a SysLow

external device, an illicit flow results since x1 is labeled as SysMid. The Alloy Analyzer

detects this situation as a violation of the information flow security predicate in Figure

22, and correctly reports an illicit information flow, tracing execution through statements

(s1)(s2)(s3)(s4). The same base program, under a DM Invariant Model with a different

policy and filter function, would not necessarily result in this flow violation.

pred consistent_with_FlowPolicy [current: State] {

 let stm = current.stmt | {

 (stm.type in (Write_dev + PutDirectFile) &&

 stm.source in Variable)

 => (current.access_label[stm.source] -> stm.subject_label)

 in Policy.ord

 }

}

Figure 22. Alloy Predicate to Discover Illicit Information Flow

 75

4. Trusted Subject Dual Violation – Information Flow Violation and
Overt Flaw

The fourth example base program illustrates two different security violations that

may result from a trusted subject operation. In the program, a successful trusted subject

regrade creates an overt control dependency flaw, however when the trusted subject

regrade fails to occur, illegal information flow results. For purposes of this example, the

security policy and tsFilter function described above apply.

In the base program, values are initially read into three variables, with assigned

security labels SysHigh, SysMid and SysLow, respectively (s1 through s3). Depending on

the value stored in x1 (s4), a trusted assignment statement is performed (s5) in which the

value of x1 is modified to the greater of x2 and 0, and the label of x1 is downgraded to

that of x3, SysMid in this case. Since a regrade from SysHigh to SysMid is allowed by

the security policy (as reflected in the tsFilter function), x1 is assigned the SysMid label.

(s1) Read_dev (SysHigh, x1);

(s2) Read_dev (SysLow, x2);

(s3) Read_dev (SysMid, x3);

(s4) if x1 < 0 then {

(s5) Assign x1 from x2 as x3; //now x1 has the label SysMid

(s6) Write_dev (SysMid, x1); }

(s7) else Write_dev (SysMid, x1);

(s8) Stop;

The next statement (s6) attempts to write the value of x1, which is now labeled

SysMid, to a SysMid external device. However, since this operation occurs within the if-

block, it creates a control dependency from SysHigh (x1 label when it was examined in

s4) to SysMid, representing an overt access control flaw (in the SysHigh context, a write

to SysMid violates the security policy). Based on the Alloy security rule predicate (see

example in section 5.1), the Alloy Analyzer properly detects this violation, tracing

execution through statements (s1)(s2)(s3)(s4)(s5)(s6).

An additional violation occurs when the conditional check (s4) evaluates to false,

and the else-branch is executed. In this case, an attempt is made to write the value stored

in x1 (still assigned its original SysHigh label) to a SysMid external device (s7). Since

 76

this represents an overt illegal flow from SysHigh to SysMid, the Alloy Analyzer properly

identifies and reports the error, tracing execution through statements (s1)(s2)(s3)(s4)(s7).

5. Storage Covert Channel Resulting from a Trusted Subject Operation

The final example combines the concepts described in the previous ones by

showing how the execution of a trusted assignment could produce a covert storage

channel (Levin et al., 2006). This example demonstrates that, even with a consistent

security policy for trusted subjects, common data flow violations that are outside the

trusted subject’s allotted permissions may occur in a base program. Security violations,

such as covert channels or information flows in violation of the policy, may be

perpetrated by the illicit actions of regular subjects, regardless of the actions of a trusted

subject.

The DM formalizes the notion of covert channels with an Alloy security predicate

(see Figure 23) to identify a class of covert storage channel vulnerability in a base

program execution.

pred storage_channel_found [current: State] {

 let stm = current.stmt | {

 stm.type = PutDirectFile &&

 current.direct_file.full = const1 &&

 not (current.direct_file.last_written -> stm.subject_label)

 in Policy.ord

 }

}

Figure 23. Alloy Predicate to Discover Storage Covert Channel

In the example base program below, we assume a direct file with a maximum

capacity of two records, initially empty. To begin, SysLow values are read into variables

x1 and x2 (s1-s2). A trusted assignment is then performed (s3) in which x1 is assigned

the value of the greater of x2 and 0 (based on the tsFilter function described above),

and upgraded to a SysHigh label. At this point in execution, the value stored in x1 will

be 0 or greater. Next, the value of x1 is examined (s4). When this check evaluates to

 77

true, the values of x1 and x2 are stored into the direct file by the SysHigh sender,

resulting in the internal full direct file flag being set.

(s1) Read_dev (SysLow, x1);

(s2) Read_dev (SysLow, x2);

(s3) Assign x1 from x2 as SysHigh; //now x1 has the label SysHigh

(s4) if x1 > 1 then {

(s5) PutDirectFile (SysHigh, 1, x1);

(s6) PutDirectFile (SysHigh, 2, x2); }

Figure 24 graphically depicts the sequence of events that take place during

execution of the code sequence above. This execution results in the Direct File being

filled by the storage channel sender at SysHigh when the values stored in variables x1

and x2 are written as SysHigh labeled values to direct file key locations 1 and 2,

respectively. At this point, the direct file is full.

Figure 24. Direct File filled by storage channel SysHigh sender

The next sequence of program statements represents execution by a SysLow

covert channel receiver. When the SysLow subject attempts to store a value into the

direct file using a new key 3 (s7), the system issues a failure indication since the direct

file is full (note that in the translation to a base program, the internal system flag returned

as an error message to the program, translates to the explicit full flag, accessible in

 78

IML as in statement (s8)). Depending on the success or failure of the direct file store

(s8), whether or not the covert channel receiver found the direct file to be full, the SysLow

subject writes a constant ‘1’ or a ‘0’ to an external device (s9 & s10) to complete the

storage channel.

(s7) PutDirectFile (SysLow, 3, 1);

(s8) if full = True then

(s9) Write_dev (SysLow, 1);

(s10) else Write_dev (SysLow, 0);

(s11) Stop;

Because a higher-labeled subject caused the direct file to become full, the Alloy

Analyzer detects and reports this violation of the Alloy security predicate, tracing the

flow of execution through statements (s1)(s2)(s3)(s4)(s5)(s6)(s7). Although this

violation occurred subsequent to a trusted subject action (s3), the storage channel was not

precipitated by the trusted assignment, and the illicit actions of two regular subjects at

SysHigh and SysLow, acting in collusion to exploit the direct file, brought about the

security violation (a storage channel).

C. TESTING RESULTS

The base program examples presented above were evaluated using Alloy

Analyzer version 4.1.8, running under Mac OS X™ 10.5.4 on a 2.5 GHz Intel Core 2

Duo processor, with 2 GB of memory. In test runs, the Alloy Analyzer successfully

found valid counterexamples for violations of each security rule assertion described

above.

Test results are summarized in Table 1 below. The Analysis Size defines the size

of Alloy model instances considered (scope) during static analysis; Analysis Time

represents total time (ms), broken down into (time to build model, time to analyze and

find a counterexample):

 79

Security Violation Description Analysis Size,
scope

Analysis Time, ms
(build, analyze)

Overt control dependency flaw 7 688
(640, 48)

Timing covert channel 10 5891
(2771, 3120)

Information flow violation, resulting from
trusted subject operation 7 1516

(1277, 239)
Overt control dependency flaw, resulting
from trusted subject operation 9 3335

(2290, 1045)
Information flow violation, resulting from
trusted subject operation 9 2692

(2236, 456)
Storage covert channel, resulting from
trusted subject operation 12 48631

(9852, 38779)

Table 1. Results of Alloy Analysis Testing

With regard to the state explosion dilemma associated with most model checkers,

testing was conducted to study the effect of DM base program size on Alloy Analyzer

static analysis time. As discussed earlier, the Alloy Analyzer tool relies on the small

scope hypothesis to assert that any flaws in a model are found in relatively small

instances of that model. With this in mind, static analysis was performed on simple base

programs of steadily increasing size, with associated increasing analysis scope. Note that

in each example base program, a security flaw was intentionally implemented in order to

ensure that a counter-example could be discovered by the Alloy Analyzer.

Figure 25 shows the results of these test runs. The chart graphically depicts how,

with increasing base program size (measured as lines of IML code), the time taken for the

Alloy Analyzer tool to find a valid counter-example to one of the security assertions

increased with exponential growth. This result was not unexpected, given that the Alloy

model size for increasing DMs tends to grow exponentially during Alloy Analysis, and

even a relatively small scope can equate to a very large search space (Jackson, 2006).

With increasing architecture speeds, and efficiencies gained with new Alloy

improvements, perhaps the ability to test larger and larger base programs will become

possible.

 80

Figure 25. Alloy Analyzer Static Analysis Times for Increasing Base Program Sizes

D. SUMMARY

This chapter has demonstrated the feasibility of the Security DM approach to

program verification. We have demonstrated that this approach can be used successfully

to perform static analysis of a representation of a target program, and verify its adherence

to a security policy abstraction, represented by a set of formalized security rules.

We will next present conclusions from this work, and propose areas for future

advances in this research.

 81

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This dissertation has described the development of a security domain model for

representing high-level language programs and security policies, for both regular and

trusted subjects. The approach defines a formal Security Domain Model (DM) that

facilitates specification of a security policy (security rule assertions) and security

vulnerabilities (such as covert channels), and is independent of a particular program

implementation. Although encoding and checking static program semantics and

properties is not in itself revolutionary, this work is evolutionary in extending previous

work in the area of information flow tracking based on a precise, formal definition for

overt information flaws and covert channels.

The Security DM framework provides a means of conducting automated static

analysis of a program implementation within a finite scope of execution paths. Flow

control dependencies and related overt flaws are analyzed using dynamic slicing

techniques. Our model has the ability to identify security flaws such as covert channels,

as well as overt flaws in a program, which may allow illicit information flow control

dependencies. In addition, we provide special trusted behavior in our DM by

representing a trusted subject. Our implementation of a relatively small trusted subject is

in line with the Reference Monitor Concept principle that a reference validation

mechanism “must be small enough to be subject to analysis and tests” to ensure its

correctness (Anderson, 1972).

Using the Alloy Analyzer to perform static analysis of a base program, as

represented by an Alloy language DM, provides assurance that a counterexample to a

security rule will be found when one exists. This is true for analysis of deterministic

programs of a finite length, which are assured of terminating. For such programs, a scope

of analysis is calculated based on the number of statements in the program. This ensures

that all program statements, and by extension all execution states, are included in a

generated model of the program, thus Alloy Analyzer static analysis results in neither

 82

false negatives nor false positives within the defined scope of analysis. In the case of

false negatives, assuming a proper scope of analysis is chosen, every execution path is

examined thus if a security violation (as defined by an Alloy assertion) exists, it will be

reported. In the case of false positives, a violation will only be reported when the specific

conditions defined by a security assertion exist in some base program execution path.

Because a reported violation can be investigated in the wake of static analysis, false

positives would seem to be less egregious than false negatives.

We have shown through examples that the Security DM approach is able to

generate a unique specification for a target program representation (base program) and

security policy (security assertions), and automatically identify counterexamples for the

security assertions where they exist, to identify security violations in base program

representations of target programs. We base our conclusion in part on the small scope

hypothesis, and while it is just that – a hypothesis – previous work (Andoni et al., 2002)

has demonstrated its validity, and the effectiveness of systematic testing within a small

scope (as the Alloy Analyzer performs) as compared to larger scale testing of fewer

inputs, for refuting specification assertions.

This dissertation research has introduced several contributions that are integral to

the Security DM approach, reiterated below:

1. Implementation Modeling Language (IML)

The IML is a specialized language that supports basic information processing to

facilitate static analysis of a representation of high-level language source code, by

providing a formalism that captures the essence of imperative programming language

paradigms, while ignoring non-essential (for these purposes) elements.

2. Security Domain Model (DM)

The security Domain Model (DM), represented as an Alloy specification,

provides a model of a target program behavior, as well as a model for describing security

 83

properties. The DM is a unified representation of a base program representation of the

target program, and the intended information flow security policy, including restrictions

on both overt and covert information flow.

3. DM-Compiler

A specialized compiler was developed to translate a base program, written in

IML, into an Implementation Model, and then integrated with the Invariant Model to

form a complete DM specification to represent the original target program.

B. RECOMMENDATIONS FOR FUTURE WORK

In the wake of this dissertation work, a number of areas for further research have

been identified. These areas fall generally into two broad categories: formal analysis of

the DM and its artifacts, and expansion of the DM to facilitate more complex

programming constructs and to allow formalization of more advanced security policies.

1. Correctness of the DM

Currently, we define information flow not in theoretical terms, but in terms of

Security DM constructs. For example, we formalize an illicit flow in terms of the access

labels defined in a base program statement, and their relationship to labels associated

with variables currently in existence at some execution point. Through static analysis the

DM discovers violating flows, but how can we be assured that this static analysis is

correct? An important area for future research would be to address the correctness of the

DM with respect to a formal information flow property, such as noninterference.

In order to demonstrate correctness of the DM, we must identify an information

flow security property independent of the Security DM, and demonstrate that whenever

static analysis concludes that a program is secure, it is indeed secure in the sense that it

exhibits this property. For example, can it be shown that programs identified by the DM

as secure indeed satisfy the noninterference (or some other) property for deterministic

programs?

 84

2. Formal Analysis of DM Artifacts

Currently, extractions of base programs from target programs, and iteration of

security rules from a natural language security policy, are manual steps in our approach.

Future work can focus on formally analyzing the semantics of the IML and DM-

Compiler to ensure that the artifacts of each (the base program and implementation

model, respectively) are accurate abstractions of the original target implementation.

As Sabelfeld and Myers (2003) pointed out, information flow analysis should take

place “as close to the execution code as possible.” Formal analysis of this process of

extracting the base program from a target program to ensure an absolute correspondence

between the two will help achieve the goal of being “as close…as possible” to the target

program source code.

3. IML Expansion

The IML currently supports basic information processing using assignment

statements, conditional and loop statements, read/write statements, file random access,

and access to a system clock. In order to focus specifically on programming constructs

that support static analysis for information flow tracing, we essentially ignored more

advanced constructs, such as data type, inheritance, polymorphism, etc. To enable

modeling of a larger domain of high-level language constructs, and target program

examples, the IML can be extended greatly to capture these and other programming

language constructs.

4. Dynamic Security Policies

Future work could expand the DM to enable dynamic security policies (Levin et

al., 2006). This concept would allow the DM to support, for example, a sequence of

polices during program execution, and support the ability of a system to adapt to a

dynamically changing security environment (NSA GIG, 2004). This could be extended

by adding functionality for multiple trusted subjects, each potentially operating under

different trusted policy rules. By defining multiple filter functions within a DM Invariant

 85

Model, and modifying the IML syntax to support this, the model could represent separate

trusted subjects, each governed by a different policy as defined by its own filter function.

Traditional security models are aimed at ensuring a computer system is statically

secure by showing that, given a proven secure state of the system (typically the initial

state) and a secure transition from that state to another, the resultant state must be secure.

By extension, if all state transitions are secure, the entire system must be secure. Under a

dynamic security policy, however, a transition could take place which might not be

considered secure. For example, consider an uncleared user in the field who requires

immediate emergency access to a highly sensitive piece of information in order to

accomplish his mission. Once that sensitive object has been exposed to the uncleared

user, an unsecure transition has taken place leaving the system in an unsecure state, thus

the system is no longer secure.

However, in a dynamic policy sense, perhaps the system is still perfectly secure

despite the transition; the question is - how can this be modeled? Beyond that, can the

system be returned to a secure state without unjustifiably modifying the sensitivity level

of the user or information, that is, without raising the clearance level of the user or

declassifying the information, when neither might be appropriate? Alternatively, could

the policy be defined to automatically declassify the information after such an access, or

after a specified time period? If our example was modified to one where a malicious

uncleared user had accessed the same piece of sensitive data, clearly this should represent

an unsecure situation, but how does the system recognize this difference? These are

some of the questions that must be addressed in the definition of a dynamic security

policy.

5. Networked Analysis

Padlipsky et al. (1978) introduced the concept of network covert channel analysis

and introduced detection methods based on in-depth IP packet analysis as a way to

differentiate covert channels from legitimate network traffic. Approaches such as these

could potentially be incorporated into the DM security rule assertions, as methods for

detecting covert channels in base programs within this domain.

 86

6. Model-Driven Software Development

Future work in this research can focus on tailoring our approach toward the

model-driven software design process. It is understood that automation of the software

development cycle, such that resulting software systems fully conform to the Common

Criteria evaluation requirements, is not a trivial effort. We have focused specifically on

the Implementation Representation and Security Objectives stages of development

(Common Criteria, 2003), the base program and security policy assertions respectively,

devising an automated way to verify that the former adheres to the latter. A framework

to automate the actual production of these artifacts would be an ideal goal for future

development in this work.

 87

LIST OF REFERENCES

The Alloy Analyzer, http://alloy.mit.edu/. Accessed October 2008.

Agrawal, H., and Horgan, J. (1990). Dynamic program slicing. ACM SIGPLAN Notices,
25(6), 246-256.

Anderson, J. P. (1972). Computer Security Technology Planning Study, Technical Report
ESD-TR-73-51, Volumes I and II. NTIS document AD-758 206, ESD/AFSC,
Hanscom Air Force Base, Bedford, MA, USA.

Andoni, A., Daniliuc, D., Khurshid, S., and Marinov, D. (2002). Evaluating the “small
scope hypothesis.” Proceedings of the 29th ACM Symposium on the Principles of
Programming Languages (POPL’02).

Auguston M. (1990). Programming language RIGAL as a compiler writing tool, ACM
SIGPLAN Notices, 25(12), 61-69.

Auguston M. (1991). RIGAL - a programming language for compiler writing. Lecture
Notes in Computer Science, Springer Verlag, vol. 502, 529-564.

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model driven security: From uml models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15(1), 39-91.

Bell, D., LaPadula, L. (1973). Secure Computer Systems: Mathematical Foundations and
Model, MITRE Report. The MITRE Corp.

Bell, D., LaPadula, L. (1976). Secure Computer Systems: Unified Exposition and Multics
Interpretation, MITRE Report. The MITRE Corp.

Biba, K.J. (1977). Integrity Considerations for Secure Computer Systems. MITRE Corp.
Technical Report ESD-TR-76-372.

Borgida, A., Mylopoulos, J., and Reiter, R. (1995). On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering, 21(10), 785-798.
IEEE Press.

Chen, C., Grisham, P., Khurshid, S., and Perry, D. (2006). Design and validation of a
general security model with the alloy analyzer. Proceedings of the ACM
SIGSOFT First Alloy Workshop, 38-47.

Chou, S. (2005). An RBAC-Based access control model for object-oriented systems
offering dynamic aspect features. IEICE Transactions on Information Systems,
2143-2147.

 88

Clark, D., and Wilson, D. (1987). A Comparison of Commercial and Military Computer
Security Policies. Proceedings of the IEEE Symposium on Security and Privacy
(S&P'87), 184-194.

Common Criteria for Information Technology Security Evaluation, version 3.1.
Document number CCMB-2006-09-001. September 2006.

Corin, R., Durante, A., Etalle, S., and Hartel, P. (2003). A trace logic for local security
properties, International Workshop on Software Verification and Validation
(SVV’03). Mumbai, India.

Deng, Z., and Smith, G. (2006). Type inference and informative error reporting for secure
information flow. Proceedings of the 44th ACM Southeast Conference (pp. 543-
548). Melbourne, Florida.

Denning, D. E., and Denning, P. J. (1977). Certification of programs for secure
information flow. Communications of the ACM, 20(7), 504-512. ACM Press.

Denning, D. (1976). A Lattice Model of Secure Information Flow. Communications of
the ACM 19(5), 236-243.

Department of Defense Trusted Computer Security Evaluation Criteria, DOD 5200.28-
STD, National Computer Security Center, December 1985.

Ferraiolo, D., and Kuhn, R. (1992). Role-Based Access Control. Proceedings of the 15th
National Computer Security Conference, 554-563.

Ge, X., Polack, F., and Laleau R. (2004). Secure databases: an analysis of Clark-Wilson
model in a database environment. Proceedings of the 16th International
Conference on Advanced Information Systems Engineering (CAiSE’04), 7-11.

Gligor, V. (1993). A guide to understanding covert channel analysis of trusted systems.
Technical Rep. NCSC-TG-030, National Computer Security Center, Ft. Meade,
MD, USA.

Goguen, J., and Meseguer, J. (1982). Security Policies and Security Models. Proceedings
of the IEEE Symposium on Security and Privacy 1982, 11-20.

Graham, G., and Denning P. (1972). Protection: Principles and Practices. Proceedings of
the 1972 AFIPS Spring Joint Computer Conference, 417-429.

Graham-Cumming, J., and Sanders, J.W. (1991). On the refinement of noninterference.
Proceedings of the Computer Security Foundations Workshop IV (pp.35-42).

Haigh, J.T., and Young, W.D. (1987). Extending the noninterference version of MLS for
SAT. IEEE Transactions on Software Engineering, SE-13(2), 141-150.

 89

Hanna, Y., Rajan, H., and Zhang, W. (2008). A domain-sopecific verification framework
for sensor network security protocol implementations. Proceedings of the ACM
Conference on Wireless Network Security (WiSec’08).

Harrison, M., Ruzzo, W., and Ullman, J. (1976). Protection in Operating Systems.
Communications of the ACM, 19(8), 461-471.

Irvine, C., and Levin, T. (2000). Toward Quality of Security Service in a Resource
Management System Benefit Function. Proceedings of the 2000 Heterogeneous
Computing Workshop, 133-139.

Irvine, C., and Levin, T. (2000). Quality of Security Service. Proceedings of the New
Security Paradigms Workshop, 18-22.

Irvine, C., and Levin, T. (2001). Data Integrity Limitations in Highly Secure Systems.
Proceedings of the International System Security Engineering Association
Conference.

Irvine, C. and Levin, T. (2002). A cautionary note regarding the data integrity capacity of
certain secure systems. In M. Gertz, E. Guldentops, L. Strous (Eds.), Integrity,
Internal Control and Security in Information Systems, (3-25). Norwell, MA, USA:
Kluwer Academic Publishers.

Irvine, C. E., Levin, T. E., Nguyen, T. D., and Dinolt, G. W. (2004). The Trusted
Computing Exemplar Project, Proceedings of the 2004 IEEE Systems, Man and
Cybernetics Information Assurance Workshop (pp. 109-115). West Point, NY,
USA.

Jackson, D. (2006). Software Abstractions: Logic, Language, and Analysis. Cambridge,
MA, USA, London, England: MIT Press.

Janicke, H., Siewe, F., Jones, K., Cau, A., and Zedan H. (2005). Analysis and Run-time
Verification of Dynamic Security Policies. AAMAS’05 Workshop on Defence
Applications of Multi-Agent Systems.

Karger, P. and Wray, J. (1991). Storage channels in disk arm optimization. Proceedings
of the IEEE Symposium on Security and Privacy, 52-63.

Klein, G., and Huuck, R. (2005). High Assurance System Software, Proceedings of the
10th Australian Workshop on Safety Related Programmable Systems (SCS’05).
Sydney, Australia: Australian Computer Society, Inc.

Kruger, L., Wang, H., and Jha, S. (2004). Towards discovering and containing privacy
violations in software (Technical Report No. 1515). Madison, WI, USA:
University of Wisconsin-Madison.

 90

Lampson, B. (1971). Protection. Proceedings of the 5th Princeton Symposium on
Information Sciences and Systems, 437-443.

Landauer, J., Redmond, T., and Benzel, T. (1989). Formal policies for trusted processes,
Proceedings of the Second IEEE Computer Security Foundations Workshop
(CSFW’89) (pp. 31-40). Franconia, New Hampshire, USA: IEEE Computer
Society.

Landwehr, C. (1981). Formal Models for Computer Security. ACM Computing Surveys,
13(3), 247-278.

Laud, P. (2003). Handling encryption in analyses for secure information flow.
Proceedings 12th European Symposium on Programming, ESOP (pp. 159-173).

Levin, T., Irvine, C., and Nguyen, T. (2004). A Least Privilege Model of Static
Separation Kernels (Report No. NPS-CS-05-003). Monterey, CA: Naval
Postgraduate School.

Levin, T., Irvine, C., and Nguyen, T. (2006). Least Privilege in Separation Kernels.
Proceedings of the 2006 International Conference on Security and Cryptography,
355-362.

Levin, T., Irvine, C., and Spyropoulou, E. (2006). Quality of security service: Adaptive
security. Handbook of Information Security (H. Bidgoli, ed.), vol. 3, 1016–1025.
Hoboken, NJ: John Wiley and Sons.

Levin, T., Irvine, C., Weissman, C., and Nguyen, T. (2007). Analysis of three multilevel
security architectures. Proceedings of the 2007 ACM Workshop on Computer
Security Architecture, 37-46. ACM Press, New York, NY.

Lunt, T., Denning, D., Schell, R., Heckman, M., and Shockley, W. (1990). The seaview
security model. IEEE Transactions on Software Engineering, 16(6), 593-607.

McLean, J. (1990). Security models and information flow. Proceedings of the IEEE
Symposium of Security and Privacy, 180-189. IEEE Computer Society Press.

McLean, J. (1994). Security Models. Excerpt from Encyclopedia of Software
Engineering (ed. John Marciniak), Wiley Press.

McLean, J. (1996). A general theory of composition for a class of “probabilistic”
properties. IEEE Transactions on Software Engineering, 22(1), 53-67. IEEE Press

Naldurg, P., Campbell, R. H., and Mickunas, M. D. (2002). Developing Dynamic
Security Policies. Proceedings of the DARPA Active Networks Conference and
Exposition (DANCE'02), 204-215.

 91

National Institute of Standards and Technology. (2007). Source Code Security Analysis
Tool Functional Specification, Version 1.0 (NIST Special Publication No. 500-
268). Gaithersburg, MD: Black, P., Kass, M., and Koo, M.

National Security Agency IA Directorate. (2004). Global Information Grid Information
Assurance Reference Capability/Technology Roadmap, Version 1.0.

National Security Agency. (2007). U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness, Version 1.03.

Neumann, G. (1998). Consideration of the Chinese Wall and Clark-Wilson Security
Policy in the Internet Environment. Seminar Paper, Department of Information
Systems and Software Techniques, University of Essen, Germany.

Nguyen, T. D., Levin, T. E., and Irvine, C. E. (2005). TCX Project: High Assurance for
Secure Embedded Systems, 11th IEEE Real-Time Embedded Technology &
Applications Symposium (RTAS’05) (presented as Work-in-Progress). San
Francisco, CA, USA: IEEE Computer Society.

Padlipsky, M., Snow, D., and Karger, P. (1978). Limitations of end-to-end encryption in
secure computer networks. MITRE Technical Report, MTR-3592, Vol. I, May
1978 (ESD TR 78-158, DTIC AD A059221).

Ray, I. (2005). Applying Semantic Knowledge to Real-Time Update of Access Control
Policies. IEEE Transactions on Knowledge and Data Engineering, 17(6), 844-
858.

Ryan, P., McLean, J., Millen, J., and Gligor, V. (2001). Noninterference, who needs it?
Proceedings of the 14th IEEE Computer Security Foundations Worskshop
(CSFW’01), 237-238.

Sabelfeld, A., and Myers. A. (2003). Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 5-19. IEEE Press.

Sabelfeld, A., and Sands, D. (2000). Probabilistic noninterference for multi-threaded
programs. Proceedings of the IEEE Computer Security Foundations Workshop
(200-214).

Saltzer, J. and Schroeder, M. (1975). The protection of information in computer systems.
Proceedings of the IEEE, 63(9), 1278-1308.

Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-Based Access
Control Models. IEEE Computer, 29(2), 38-47.

Schaefer, M., Gold, B., Linde, R., & Scheid, J. (1977). Program confinement in
KVM/370. Proceedings of the 1977 Annual ACM Conference, 404-410. ACM
Press.

 92

Schell, R., Tao, T., and Heckman, M. (1985). Designing the GEMSOS Security Kernel
for Security and Performance. Proceedings of the 8th National Computer Security
Conference, 108 - 119.

Schell, R. (2001). Information Security: Science, Pseudoscience, and Flying Pigs, IEEE
17th Annual Computer Security Application Conference (ACSAC'01), 205-218.
IEEE Computer Society.

Schellhorn, G., Reif, W., Schairer, A., Karger, P. A., Austel, V., and Toll, D. (2000).
Verification of a Formal Security Model for Multiapplicative Smart Cards.
Proceedings of the 6th European Symposium on Research in Computer Security
(ESORICS’00), 17-36.

Security Domain Model Project website, http://cisr.nps.edu/projects/sdm.html. Accessed
October 2008.

Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2007). Toward a security domain
model for static analysis and verification of information systems. Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling, 160-171. Montreal,
Canada.

Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2008). A Security Domain Model to
Assess Software for Exploitable Covert Channels. Proceedings of the ACM
SIGPLAN Third Workshop on Programming Languages and Analysis for Security
(PLAS’08), 45-56. Tucson, Arizona.

Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2008). A Security Domain Model for
Implementing Trusted Subject Behaviors. Proceedings of Workshop on Modeling
and Security (MODELS’08), Toulouse, France, September 28, 2008, http://ceur-
ws.org/Vol-413.

Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2008). A Security Domain Model for
Static Analysis and Verification of Software Programs. Proceedings of the 20th
International Conference on Software Engineering & Knowledge Engineering
(SEKE’08), 673-678. San Francisco, California.

Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2008). A Security Domain Model for
Static Analysis and Verification of Software Systems. Manuscript submitted for
publication.

Shockley, W. (1988). Implementing The Clark/Wilson Integrity Policy Using Current
Technology. Proceedings of the 11th National Computer Security Conference, 29-
37.

 93

Simonet, V. (2003). Type inference with structural subtyping: A faithful formalization of
an efficient constraint solver. Proceedings of the Asian Symposium on
Programming Languages and Systems (APLAS'03), vol 2895 (pp. 283-302).
Beijing, China: Springer-Verlag.

Smith, G. (2006). Improved typings for probabilistic noninterference in a multi-threaded
language. Journal of Computer Security 14(6), 591-623.

Smith, G., and Alpizar, R. (2006). Secure information flow with random assignment and
encryption. Proceedings of the 4th ACM Workshop on Formal Methods in
Security (pp. 33-44). ACM Press.

Smith, S., and Thober, M. (2007). Improving usability of information flow security in
java. Proceedings of the 2007 Workshop on Programming Languages and
Analysis for Security (pp. 11-20). ACM Press, New York, NY.

Steffan, W., and Clow, J. (1996). Trusted process classes. Proceedings of the 19th
National Information Systems Security Conference.

Thomas, R., and Sandha, R. (1996). A trusted subject architecture for multilevel secure
object-oriented databases. IEEE Transactions on Knowledge and Data
Engineering, 8(1), 16-31.

Thuermer, K. (2007). Managing across domains. Military Information Technology Online
Edition, 11(6), August 2, 2007.

Volpano, D., and Smith, G. (1997). A type-based approach to program security.
Proceedings of the 7th International Joint Conference CAAP/FASE on Theory
and Practice of Software Development (TAPSOFT'97), 607–621. Springer

Volpano, D., and Smith, G. (1999). Probabilistic noninterference in a concurrent
language. Journal of Computer Security 7(2,3), 231–253.

Volpano, D., Smith, G., and Irvine, C. (1996). A sound type system for secure flow
analysis. Journal of Computer Security, 4(3), 167-187.

von Oheimb, D. (2004). Information flow control revisited: Noninfluence =
noninterference + nonleakage. Proceedings of the 9th European Symposium on
Research Computer Security(pp. 225-243). Sophia Antipolis, France.

Wilson, J. (1989). A security policy for an A1 DBMS (a trusted subject).Proceedings of
the 1989 IEEE Symposium on Security and Privacy, 116-125.

The World Wide Web Consortium (W3C), http://www.w3c.org/. Accessed October
2008.

Zheng, L., and Myers, A. (2004). Dynamic Security Labels and Noninterference.
Technical Report 2004-1924, Cornell University.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX A – DM-COMPILER RIGAL FILE

This appendix is provided to show the RIGAL compiler files used in defining the

DM-Compiler. Because of RIGAL file length limitations, the DM-Compiler is defined

using two files: parser.rig and generate.rig. Generally, the first file (parser.rig) parses a

source base program (filename.b file) and generates appropriate Alloy signatures for its

program statements. The first file then calls the second RIGAL file (generate.rig), which

generates the transition predicate for the source base program, defining the semantics of

its execution.

RIGAL FILE – PARSER.RIG

#main

-- Globals:

-- $variable_table: <* $Id: T *>
-- $constant_list: (. (* Number *) .)
-- $constant_ctr: Number
-- $stmt_num: Number
-- $while_ctr: Number
-- $program: (. (* stmt *) .)
-- $stmt_table: <* SNNN: atomic_stmt *>

 $Parm:= #PARM(T);
 $input_file := #IMPLODE($Parm [1] '.b');

 OPEN MSG ' '; -- for error messages

 $output_file := #IMPLODE($Parm [1] '.txt');
 OPEN GEN $output_file; -- generated Alloy part

 --call the C lexer
 $Lex:= #CALL_PAS(35 $input_file 'L+A-U-P-C+p-m+');

 MSG<< 'Base Model Generator v.1.0 input from' $input_file;
 MSG<< ' ' Total #LEN($Lex) tokens;

 $stmt_num := 0;
 $while_ctr := 0;
 $constant_list := (. 0 .); -- 0 always included

 -- do the parsing
 $program:= #ast($Lex);

 IF $program ->
 MSG<< 'Parsing completed';

 -- add next stmt references
 #add_next_stmt_ref($program);

 96

 #add_enclosing_cond_ref($program);

 -- start generation
 MSG<< 'Start generation';

 GEN<< '/********************************/';
 GEN<< '/** DM Implementation Model **/';
 GEN<< '/********************************/';

 -- generate the source code comment
 #show_program($program);

 -- generate statement signatures
 #gen_stmt_sigs($stmt_table);

 -- generate variable sigs
 #gen_variable_sigs($variable_table);

 -- generate constant sigs
 #gen_constant_sigs($constant_list);

 -- generate state transition predicate
 #gen_state_transition($stmt_table);

 -- generate run commands
 GEN<< '--------------------------';
 GEN<< 'run show for' #LEN($stmt_table) + $while_ctr + 1 'but'
#LEN($variable_table)*($constant_ctr) 'FTuple';
 GEN<< 'check verify_security for' #LEN($stmt_table) + $while_ctr +
1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple';
 GEN<< 'check verify_flow_policy for' #LEN($stmt_table) +
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple';
 GEN<< 'check verify_no_dependency_flaw for' #LEN($stmt_table) +
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple';
 GEN<< 'check verify_no_storage_channel for' #LEN($stmt_table) +
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple';
 GEN<< 'check verify_no_timing_channel for' #LEN($stmt_table) +
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple';

 MSG<< ' ' Total #LEN($stmt_table) statements;

 ELSIF T -> MSG<< 'Errors detected...'
 FI;

#ast
 (. (* $stmt_list !.:= #stmt [';'] *) .)
 /RETURN $stmt_list /

#stmt
 Read_dev '(' $al ',' $Id ')'
 /LAST #main $stmt_num +:= 1;
 LAST #main $variable_table ++:= <. $Id: T .>;
 RETURN <. type: Read_dev,
 stmt_num: COPY(LAST #main $stmt_num),
 destination: <. var: $Id .>,
 subject_label: $al
 .>/;;

 Write_dev '(' $al ',' $e:= #expr5 ')'

 97

 /LAST #main $stmt_num +:= 1;
 RETURN <. type: Write_dev,
 stmt_num: COPY(LAST #main $stmt_num),
 source: $e,
 subject_label: $al
 .>/;;

 GetDirectFile '(' $al ',' $e:= #expr5 ',' $Id2 ')'
 /LAST #main $stmt_num +:= 1;
 LAST #main $variable_table ++:= <. $Id2: T .>;
 RETURN <. type: GetDirectFile,
 stmt_num: COPY(LAST #main $stmt_num),
 key: $e,
 destination: <. var: $Id2 .>,
 subject_label: $al
 .>/;;

 PutDirectFile '(' $al ',' $e1:= #expr5 ',' $e2:= #expr5 ')'
 /LAST #main $stmt_num +:= 1;
 RETURN <. type: PutDirectFile,
 stmt_num: COPY(LAST #main $stmt_num),
 key: $e1,
 source: $e2,
 subject_label: $al
 .>/;;

 '{' (* $stmt_list !.:= #stmt * ';') [';'] '}'
 /RETURN <. type: block,
 stmt_list: $stmt_list,
 stmt_num: $stmt_list[1].stmt_num
 .>/;;

 'if' /LAST #main $stmt_num +:= 1;
 $stmt_num:= COPY(LAST #main $stmt_num)/
 $expr:= #expression 'then' $b1:= #stmt [';']
 ['else' $b2:= #stmt [';']]
 /RETURN <. type: if,
 cond: $expr,
 then_branch: $b1,
 else_branch: $b2,
 stmt_num: $stmt_num,
 var_set: $expr.var_set
 .>/;;

 'while' /LAST #main $stmt_num +:= 1;
 LAST #main $while_ctr +:= 1;
 $stmt_num:= COPY(LAST #main $stmt_num)/
 $expr:= #expression 'do' $b1:= #stmt
 /RETURN <. type: while,
 cond: $expr,
 body: $b1,
 stmt_num: $stmt_num,
 var_set: $expr.var_set
 .>/;;

 $Id1 ':' '=' $rhp:= #expr5
 /LAST #main $stmt_num +:= 1;
 LAST #main $variable_table ++:= <. $Id1: T .>;
 RETURN <. type: Assign,
 destination: <. var: $Id1 .>,
 source: $rhp,
 stmt_num: COPY(LAST #main $stmt_num) .>/;;

 98

 Assign $Id 'from' $e1:= #expr5 'as' $e2:= #expr5
 /LAST #main $stmt_num +:= 1;
 LAST #main $variable_table ++:= <. $Id: T .>;
 RETURN <. type: Assign,
 stmt_num: COPY(LAST #main $stmt_num),
 destination: <. var: $Id .>,
 source: $e1,
 source_label: $e2
 .>/;;

 Stop
 /LAST #main $stmt_num +:= 1;
 RETURN <. type: Stop,
 stmt_num: COPY(LAST #main $stmt_num)
 .>/;;

 GetClock '(' $al ',' $Id ')'
 /LAST #main $stmt_num +:= 1;
 LAST #main $variable_table ++:= <. $Id: T .>;
 RETURN <. type: GetClock,
 stmt_num: COPY(LAST #main $stmt_num),
 destination: <. var: $Id .>,
 subject_label: $al
 .>/;;

 V'($$<>'}') (* $x!.:= S'($$<>';') *)
 /MSG<< Syntax error in statement $x; FAIL/

#expression
-- an expression contains a set of variables
 $a1:= #expr2
 (* 'or' $a2:= #expr2
 /$a1:= <. arg1: $a1,
 arg2: $a2,
 op: 'or',
 var_set: $a1.var_set ++ $a2.var_set
 .>/ *)
 /RETURN $a1/

#expr2
 $a1:= #expr3
 (* 'and' $a2:= #expr3
 /$a1:= <. arg1: $a1,
 arg2: $a2,
 op: 'and',
 var_set: $a1.var_set ++ $a2.var_set
 .>/ *)
 /RETURN $a1/

#expr3
 'not' $a1:= #expr3
 /RETURN <. arg: $a1,
 op: 'not',
 var_set: $a1.var_set
 .>/;;

 '(' $a1:= #expression ')'
 /RETURN $a1/;;

 99

 $e:= #expr4
 /RETURN $e/

#expr4
 $a1:= #expr5
 (('>' '=' /$op:= '>='/) !
 ('<' '=' /$op:= '<='/) !
 $op:= ('>' ! '<' ! '='))
 $a2:= #expr5
 /RETURN <. arg1: $a1,
 arg2: $a2,
 op: $op,
 var_set: $a1.var_set ++ $a2.var_set
 .>/;;

 $Id1 $op:= (Before ! LongBefore) $Id2
 /RETURN <. arg1: <. var: $Id1 .>,
 arg2: <. var: $Id2 .>,
 op: $op,
 var_set: <. $Id1: T, $Id2: T .>
 .>/

#expr5

 $a1 := ('full' ! 'success')
 /RETURN <. flag: $a1 .>/;;

 $a1 := ('True' ! 'False')
 /RETURN <. bool: $a1 .>/;;

 $a1 := ('SysHigh' ! 'SysMid' ! 'SysLow')
 /RETURN <. src_label: $a1 .>/;;

 $Id
 /LAST #main $variable_table ++:= <. $Id: T .>;
 RETURN <. var: $Id,
 var_set: <. $Id: T .> .>/;;

 '0'
 /RETURN <. constant: (1-1) .>/;;

 $Num
 /IF NOT #member($Num LAST #main $constant_list) ->
 LAST #main $constant_list !.:= $Num
 FI;
 RETURN <. constant: $Num .>/

#member
 $x
 (. (* $y /IF $x = $y -> RETURN T FI/ *) .)

#show_program

 /$indent:= 0;
 GEN<< '-- The base program is below. Total of'
 LAST #main $stmt_num statements/
 (. (* #show_stmt *) .)

 100

#show_stmt

 <. type: block /GEN<] '{'/,
 stmt_list: (. (* #show_stmt *) .) /GEN<] '}'/
 .>;;

 <. stmt_num: $stmt_num .>
 /GEN<< @ '-- (s' $stmt_num ') ' #CHR(9);
 #tabs_indent(LAST #show_program $indent);
 FAIL/;;

 <. type: $t:= (Read_dev ! Write_dev ! GetClock),
 [destination: <. var: $Id .>],
 [source: (<. var: $Id .> ! <. constant: $Num .>)],
 subject_label: $al
 .>
 /IF $Id ->
 GEN<] $t '(' $al ', ' $Id ');'
 ELSIF T ->
 GEN<] $t '(' $al ', ' $Num ');'
 FI/;;

 <. type: $t:= (GetDirectFile ! PutDirectFile),
 key: (<. var: $Id .> ! <. constant: $Num .>),
 [destination: <. var: $Id2 .>],
 [source: (<. var: $Id2 .> ! <. constant: $Num2 .>)],
 subject_label: $al
 .>
 /IF $Id ->
 GEN<] $t '(' $al ', ' $Id ','
 ELSIF T ->
 GEN<] $t '(' $al ', ' $Num ','
 FI;
 IF $Id2 ->
 GEN<] $Id2 ');'
 ELSIF T ->
 GEN<] $Num2 ');'
 FI/;;

 <. type: if /GEN<] 'if';
 LAST #show_program $indent +:= 1/,
 cond: #show_expr /GEN<] ' then'/,
 then_branch: #show_stmt,
 [else_branch:
 / GEN<< @ '-- ' #CHR(9) #CHR(9) ;
 #tabs_indent(LAST #show_program $indent);
 GEN<]'else'/
 #show_stmt]
 .>
 /LAST #show_program $indent +:= -1/;;

 <. type: while /GEN<] 'while';
 LAST #show_program $indent +:= 1/,
 cond: #show_expr /GEN<] 'do'/,
 body: #show_stmt
 .>

 101

 /LAST #show_program $indent +:= -1/;;

 <. type: $t := Assign,
 destination: <. var: $Id .>,
 source: (<. var: $Id2 .> ! <. constant: $Num .>),
 [source_label: (<. var: $Id3 .> ! <. src_label: $sl .>)]
 .>
 /IF ($Id3 OR $sl) ->
 GEN<] $t $Id 'from';
 IF $Id2 ->
 GEN<] $Id2 'as'
 ELSIF T ->
 GEN<] $Num 'as'
 FI;
 IF $Id3 ->
 GEN<] $Id3 ';'
 ELSIF T ->
 GEN<] $sl ';'
 FI;
 ELSIF T ->
 GEN<] $Id ':=';
 IF $Id2 ->
 GEN<] $Id2 ';'
 ELSIF T ->
 GEN<] $Num ';'
 FI;
 FI/;;

 <. type: Stop .>
 /GEN<] 'Stop;'/;;

 $x /GEN<< '**** cannot show stmt' $x/

#show_expr

 <. flag: $f .>/GEN<] $f/;;

 <. bool: $b .>/GEN<] $b/;;

 <. src_label: $sl .>/GEN<] $sl/;;

 <. var: $Id .> /GEN<] $Id; RETURN T/;;

 <. constant: $Num .> /GEN<] $Num; RETURN T/;;

 <. arg1: /GEN<] '('/ #show_expr,
 op: $op /GEN<] $op/,
 arg2: #show_expr /GEN<] ')'/
 .>;;

 <. op: 'not' /GEN<] 'not ('/,
 arg: #show_expr /GEN<] ')'/
 .>;;

 $a /GEN<< cannot show expression $a/

 102

#tabs_indent
 $n
 /$x:= COPY($n);
 LOOP
 IF $x = 0 -> BREAK FI;
 GEN<] @ #CHR(9);
 $x +:= -1
 END/

-- add next stmt reference and create stmt Table

#add_next_stmt_ref
 $program
 /$n:= 1;
 FORALL $s IN $program DO
 $n +:=1;
 IF $n <= #LEN($program) ->
 $next_stmt:= $program[$n].stmt_num
 FI;
 #add_nextref_to_stmt($next_stmt $s)
 OD/

#add_nextref_to_stmt

 $next

 ($stmt:= <. type: (Read_dev ! Write_dev ! GetDirectFile !
PutDirectFile !
 Assign ! GetClock) .>
 /$stmt ++:= <. next: COPY($next) .>;
 LAST #main $stmt_table ++:= <. #IMPLODE(S $stmt.stmt_num):
$stmt .>/
 !

 $stmt:= <. type: Stop,
 stmt_num: $stmt_num .>
 /$stmt ++:= <. next: $stmt_num .>;
 LAST #main $stmt_table ++:= <. #IMPLODE(S $stmt.stmt_num):
$stmt .>/
 !

 $stmt:= <. type: if,
 then_branch: $then_branch,
 [else_branch: $else_branch]
 .>
 /
 #add_nextref_to_stmt(COPY($next) $then_branch);
 IF $else_branch ->
 #add_nextref_to_stmt(COPY($next) $else_branch);
 $stmt ++:= <. next_if_false: $else_branch.stmt_num .>
 ELSIF T ->
 $stmt ++:= <. next_if_false: COPY($next) .>
 FI;
 $stmt ++:= <. next_if_true: $then_branch.stmt_num .>;
 LAST #main $stmt_table ++:= <. #IMPLODE(S $stmt.stmt_num):
$stmt .>/

 !

 $stmt:= <. type: while,
 body: $body

 103

 .>
 /$stmt ++:= <. next_if_false: COPY($next),
 next_if_true: $body.stmt_num .>;
 #add_nextref_to_stmt(COPY($next) $body);
 LAST #main $stmt_table ++:= <. #IMPLODE(S $stmt.stmt_num):
$stmt .>/

 !
 $stmt:= <. type: block,
 stmt_list: $list
 .>
 /$stmt ++:= <. next: COPY($next) .>;
 $n:= 1;
 FORALL $s IN $list DO
 $n +:=1;
 IF $n <= #LEN($list) ->
 $next_stmt:= ($list[$n]).stmt_num
 FI;
 #add_nextref_to_stmt($next_stmt $s)
 OD;
 #add_nextref_to_stmt($next $list[-1])/
)

-- add reference to the enclosing if and while stmt
-- to each statement

#add_enclosing_cond_ref
 $program
 /FORALL $s IN $program DO
 #add_enclosing_refs_to_stmt(NULL $s)
 OD/

#add_enclosing_refs_to_stmt

 $enclosing_cond_list

 ($stmt:= <. type: if,
 stmt_num: $stmt_num,
 then_branch: $then_branch,
 [else_branch: $else_branch]
 .>
 /#add_enclosing_refs_to_stmt((. $stmt_num
.)!!$enclosing_cond_list $then_branch);
 IF $else_branch ->
 #add_enclosing_refs_to_stmt((. $stmt_num
.)!!$enclosing_cond_list $else_branch);
 FI;
 $stmt ++:= <. within_scope_of_cond: $enclosing_cond_list .>/

 !

 $stmt:= <. type: while,
 body: $body,
 stmt_num: $while_stmt_num
 .>
 /$stmt ++:= <. next_if_false: COPY($next),
 next_if_true: $body.stmt_num .>;
 #add_nextref_to_stmt(COPY($while_stmt_num) $body);

 104

 LAST #main $stmt_table ++:= <. #IMPLODE(S $stmt.stmt_num):
$stmt .>/

 !

 $stmt:= <. type: block,
 stmt_list: $list
 .>
 /FORALL $s IN $list DO
 #add_enclosing_refs_to_stmt($enclosing_cond_list $s)
 OD /

 !

 $stmt
 /$stmt ++:= <. within_scope_of_cond: $enclosing_cond_list .> /
)

#gen_stmt_sigs
 /GEN<<;
 GEN<< '-------------------------';
 GEN<< '/*** Statement sigs ***/';
 GEN<< '-------------------------';/
 <* $s: /GEN<< one sig $s extends Statement '{}';
 GEN<< '{'/
 #gen_stmt_sig
 /GEN<<'}';
 GEN<<;/
 *>

#gen_stmt_sig
 <. type: ((if ! while) /GEN<< #CHR(9) 'type = Condition'/ !
 $t /GEN<< #CHR(9) 'type =' $t/),
 [source:
 /GEN<< #CHR(9) 'source ='/ $source:= #atomic_expr],
 [destination:
 /GEN<< #CHR(9) 'destination ='/ $destination:= #atomic_expr],
 [source_label:
 /GEN<< #CHR(9) 'source_label ='/ $source_label:= #atomic_expr],
 [key:
 /GEN<< #CHR(9) 'key ='/ $key:= #atomic_expr],
 [var_set: /GEN<< #CHR(9) 'source ='; $plus:= ' '/
 <* $var: T /GEN<] $plus $var; $plus:= '+'/ *>],
 [subject_label: $al]
 .>
 /IF NOT ($source OR $var) -> GEN<< #CHR(9) 'source = none' FI;
 IF NOT $destination -> GEN<< #CHR(9) 'destination = none' FI;
 IF NOT $source_label -> GEN<< #CHR(9) 'source_label = none' FI;
 IF NOT $key -> GEN<< #CHR(9) 'key = none' FI;
 IF $t = Read_dev OR $t = Write_dev OR $t = GetDirectFile OR $t =
PutDirectFile
 OR $t = GetClock -> GEN<< #CHR(9) 'subject_label = ' $al
FI;
 /

#atomic_expr
 <. var: $Id .>/GEN<] $Id; RETURN T/;;
 <. constant: $Num .> /GEN<] @ const $Num; RETURN T/;;
 <. src_label: $sl .>/GEN<] $sl; RETURN T/;;

 105

--
#gen_variable_sigs
 /GEN<< '--------------------------------';
 GEN<< '/*** Variables & Constants ***/';
 GEN<< '--------------------------------';
 GEN<< enum Variable { ;
 GEN<< #CHR(9);
 $comma:= NULL/

 <* $Id: $a /GEN<] $comma @ $Id; $comma:= ','/ *>

 /GEN<< ' }'/

--
#gen_constant_sigs
 $const_list
 /$sorted:= #sort($const_list);
 $extended:= #extend($sorted);
 LAST #main $constant_ctr:= #LEN($extended);
 #gen_const($extended);
 #gen_LT_sig($extended)/

#sort
 $x
 /$i:= 1;
 LOOP --just Bubble Sort
 IF $i > (#LEN($x) - 1) -> BREAK FI;
 $j:= 1;
 LOOP
 IF $j > (#LEN($x) - $i) -> BREAK FI;
 IF $x[$j +1] < $x[$j] ->
 -- swap
 $t:= $x[$j +1]; $x[$j +1]:= $x[$j]; $x[$j]:= $t;
 FI;
 $j +:= 1
 END;
 $i +:=1
 END;
 RETURN $x/

#extend
-- extends list $x with number_of_vars constants
 $x
 /$var_count:= #LEN(LAST #main $variable_table);
 $res:= #const_interval($x[1]-$var_count-1 $var_count-1);
 $i:=1;
 LOOP
 IF $i >= #LEN($x) -> BREAK FI;
 IF ($x[$i+1] - $x[$i] - 1) > $var_count ->
 $res !!:= #const_interval($x[$i] $var_count)
 ELSIF T ->
 $res !!:= #const_interval($x[$i] ($x[$i+1] - $x[$i] - 1))
 FI;
 $i +:=1
 END;
 $res !!:= #const_interval($x[-1] $var_count);
 RETURN $res/

#const_interval

 106

-- returns list of $len+1 integers starting with $from
 $from $len
 /$i:= $from;
 LOOP
 IF $i >= ($from + $len +1) -> BREAK FI;
 $res !.:= COPY($i);
 $i := $i + 1
 END;
 RETURN $res/

#gen_const
 /GEN<<;
 GEN<< enum Value { ;
 GEN<< #CHR(9);
 $comma:= NULL;
 $c:=0/
 (. (* $e
 /IF $e >= 0 ->
 GEN<] @ $comma ' const' $e
 ELSIF T ->
 GEN<] @ $comma ' const_minus_' (-$e)
 FI;
 $c +:=1; IF $c MOD 4 = 0 -> GEN<< #CHR(9) FI;
 $comma:= ','/
 *) .)
 /GEN<< ' }'/

#gen_LT_sig
 $x
 /GEN<<;
 GEN<< one sig LT '{';
 GEN<] #CHR(9) 'lt: Value -> Value }';
 GEN<< '{ lt = ^(';
 $plus:= ' ';
 $i:=1;
 LOOP
 IF $i > #LEN($x) -1 -> BREAK FI;
 GEN<< #CHR(9) $plus '(';
 $e:= $x[$i];
 IF $e >= 0 ->
 GEN<] @ ' const' $e
 ELSIF T ->
 GEN<] @ ' const_minus_' (-$e)
 FI;
 GEN<] #CHR(9) ' -> ';
 $e:= $x[$i+1];
 IF $e >= 0 ->
 GEN<] @ ' const' $e
 ELSIF T ->
 GEN<] @ ' const_minus_' (-$e)
 FI;
 GEN<] ')';
 $plus := '+'; $i +:=1
 END;
 GEN<< ') }'/

--
%INCLUDE <path>/generate.rig

 107

RIGAL FILE – GENERATE.RIG

-- Generate state transition predicate

#gen_state_transition

 /GEN<<;
 GEN<< '------------------------------------';
 GEN<< '/*** State Transition Predicate ***/';
 GEN<< '------------------------------------';
 GEN<< fact trans '{';
 GEN<< #CHR(9) 'all st1: State - InitialState | some st: State |';
 $else:= NULL;
 /
 <* $stmt: /GEN<< #CHR(9) $separator;
 $separator:= ') or';
 GEN<<;
 GEN<< #CHR(9) '(st.stmt =' $stmt '&&';
 GEN<< #CHR(9) ' st1.prev_state = st &&'/
 #gen_stmt_clause
 *>
 /GEN<< #CHR(9) ')';
 GEN<< '}'/

#gen_stmt_clause

 <. type: $t:= Read_dev,
 destination: <. var: $Id .>,
 subject_label: $al,
 next: $next,
 [within_scope_of_cond: $enclosing_cond_list]
 .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) '(st1.access_label = st.access_label ++ ('
$Id '-> ' $al ') &&';
 GEN<< #CHR(9)#CHR(9) 'some n: Value | st1.vars = st.vars ++ ('
 $Id '-> n) &&';
 GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&';
 GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&';
 GEN<< #CHR(9)#CHR(9) 'st1.current_clock =
TO/next[st.current_clock] &&';
 GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked =
st.last_cond_checked &&';
 GEN<< #CHR(9)#CHR(9) 'st1.influenced_by =';
 GEN<<;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part A, copy all dependencies for
vars different from' $Id;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '{v: Variable, s: State | (v -> s) in
st.influenced_by && v!=' $Id '}';

 IF $enclosing_cond_list ->
 GEN<<;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part B, all states from
last_cond_checked';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- within which scope this
assignment belongs';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> {x:
st.last_cond_checked | x.stmt in';
 #print_enclosing_conditions($enclosing_cond_list);
 GEN<] '})';

 108

 GEN<<;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part C, copy dependencies for
all variables participating in';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- conditions within which scope
this assignment belongs';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> State.{ x:
st.last_cond_checked,';
 GEN<< #CHR(9)#CHR(9)#CHR(9)#CHR(9) 'y:
x.influenced_by[x.stmt.source] | x.stmt in';
 #print_enclosing_conditions($enclosing_cond_list);
 GEN<] #CHR(9)#CHR(9)#CHR(9) '})';
 FI;
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <.type: $t:= Write_dev,
 source: (<.constant: $c .> ! <. var: $Id .>),
 subject_label: $al,
 next: $next
 .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) '(st1.access_label = st.access_label &&';
 GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&';
 GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&';
 GEN<< #CHR(9)#CHR(9) 'st1.current_clock =
TO/next[st.current_clock] &&';
 GEN<< #CHR(9)#CHR(9) 'st1.influenced_by = st.influenced_by &&';
 GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked =
st.last_cond_checked';
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <.type: $t:= Assign,
 destination: <. var: $Id .>,
 source: (<.var: $Id2 .> ! <.constant: $c .>),
 [source_label: (<.var: $Id3 .> ! <.src_label: $sl .>)
],
 next: $next,
 [within_scope_of_cond: $enclosing_cond_list]
 .>
 /GEN<< #CHR(9)#CHR(9) '-- ';
 IF ($Id3 OR $sl) -> GEN<] 'Trusted';
 ELSIF T -> GEN<] 'Regular'; FI;
 GEN<] $t;
 IF ($Id3 OR $sl) ->
 GEN<< #CHR(9)#CHR(9) '(let xx = tsFilter[st.vars[' $Id '],
';
 IF $Id2 ->
 GEN<] @ 'st.vars[' $Id2 '], ';
 ELSIF T ->
 GEN<] @ 'const' $c ', ';
 FI;
 IF $Id3 ->
 GEN<] @ 'st.vars[' $Id3 '], ';
 ELSIF T ->
 GEN<] @ 'const0, ';
 FI;
 GEN<< #CHR(9)#CHR(9)#CHR(9) 'st.access_label[' $Id '], ';
 IF $Id2 ->
 GEN<] 'st.access_label[' $Id2 '], ';
 ELSIF T ->
 GEN<] 'SysLow, ';
 FI;

 109

 IF $Id3 ->
 GEN<] 'st.access_label[' $Id3 ']] | (';
 ELSIF T ->
 GEN<] $sl'] | (';
 FI;
 FI;
 IF ($Id3 OR $sl) ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) 'st1.vars = st.vars ++ (' $Id '->
xx.val) &&';
 GEN<< #CHR(9)#CHR(9)#CHR(9) 'st1.access_label =
st.access_label ++ (' $Id '-> xx.label)';
 GEN<< #CHR(9)#CHR(9)#CHR(9) ') &&';
 ELSIF $Id2 ->
 GEN<< #CHR(9)#CHR(9) '(st1.vars = st.vars ++ (' $Id '->
st.vars[' $Id2 ']) &&';
 GEN<< #CHR(9)#CHR(9) 'st1.access_label = st.access_label ++ ('
$Id '-> st.access_label[' $Id2 ']) &&';
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9) '(st1.vars = st.vars ++ (' $Id @ '->
const' $c ') &&';
 GEN<< #CHR(9)#CHR(9) 'st1.access_label = st.access_label ++ ('
$Id '-> SysLow) &&';
 FI;
 GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&';
 GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&';
 GEN<< #CHR(9)#CHR(9) 'st1.current_clock = st.current_clock &&';
 GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked =
st.last_cond_checked &&';
 GEN<< #CHR(9)#CHR(9) 'st1.influenced_by =';
 GEN<<;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part A, copy all dependencies for
vars different from' $Id;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '{v: Variable, s: State | (v -> s) in
st.influenced_by && v!=' $Id '}';
 GEN<<;
 IF $Id3 ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- and inherit all dependencies
of the source_label' $Id3;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> st.influenced_by['
$Id3 '])';
 ELSIF $Id2 ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- and inherit all dependencies
of the right-hand part' $Id2;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> st.influenced_by['
$Id2 '])';
 FI;

 IF $enclosing_cond_list ->
 GEN<<;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part B, all states from
last_cond_checked';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- within which scope this
assignment belongs';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> {x:
st.last_cond_checked | x.stmt in';
 #print_enclosing_conditions($enclosing_cond_list);
 GEN<] '})';
 GEN<<;
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part C, copy dependencies for
all variables participating in';
 GEN<< #CHR(9)#CHR(9)#CHR(9) '-- conditions within which scope
this assignment belongs';

 110

 GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> State.{ x:
st.last_cond_checked,';
 GEN<< #CHR(9)#CHR(9)#CHR(9)#CHR(9) 'y:
x.influenced_by[x.stmt.source] | x.stmt in';
 #print_enclosing_conditions($enclosing_cond_list);
 GEN<] ' })';
 FI;
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <. type: $t:= (if ! while),
 cond: $expr,
 next_if_false: $next_if_false,
 next_if_true: $next_if_true,
 stmt_num: $stmt_num
 .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) '(st1.access_label = st.access_label &&';
 GEN<< #CHR(9)#CHR(9) 'st1.vars = st.vars &&';
 GEN<< #CHR(9)#CHR(9) 'st1.current_clock = st.current_clock &&';
 GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&';
 GEN<< #CHR(9)#CHR(9) 'st1.influenced_by = st.influenced_by &&';
 GEN<< #CHR(9)#CHR(9) @ 'st1.last_cond_checked = {x:
st.last_cond_checked | x.stmt != s' $stmt_num '} + st &&';
 GEN<< #CHR(9)#CHR(9) '(';
 #gen_expr($expr);
 GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' => st1.stmt = s' $next_if_true;
 GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' else st1.stmt = s' $next_if_false
')';
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <.type: $t:= GetDirectFile,
 key: (<.var: $Id .> ! <.constant: $c .>),
 destination: <.var: $Id2 .>,
 subject_label: $al,
 next: $next
 .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) @ '(st1.stmt = s' $next ' &&';
 GEN<< #CHR(9)#CHR(9) ' st1.current_clock =
TO/next[st.current_clock] &&';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.keyContent =
st.direct_file.keyContent &&';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.keyLabel =
st.direct_file.keyLabel &&';
 GEN<< #CHR(9)#CHR(9) ' st1.last_cond_checked =
st.last_cond_checked &&';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.full =
st.direct_file.full &&';

 IF $Id ->
 GEN<< #CHR(9)#CHR(9) ' ((st.vars[' $Id '] in
st.direct_file.keyContent.Value) =>'
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9) @ ' ((const' $c ' in
st.direct_file.keyContent.Value) =>'
 FI;

 GEN<< #CHR(9)#CHR(9) ' -- the key is found';
 GEN<< #CHR(9)#CHR(9) ' (st1.access_label = st.access_label
++ (' $Id2 '-> ' $al ') &&';

 111

 GEN<< #CHR(9)#CHR(9) ' st1.vars = st.vars ++ ';
 IF $Id ->
 GEN<< #CHR(9)#CHR(9) ' (' $Id2 '->
st.direct_file.keyContent[st.vars[' $Id ']]) &&';
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9) @ ' (' $Id2 ' ->
st.direct_file.keyContent[const' $c ']) &&';
 FI;

 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.success = const1)';
 GEN<< #CHR(9)#CHR(9) ' else -- the key is not found';
 GEN<< #CHR(9)#CHR(9) ' (st1.vars = st.vars &&';
 GEN<< #CHR(9)#CHR(9) ' st1.access_label = st.access_label
&&';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.success = const0)';
 GEN<< #CHR(9)#CHR(9) ')';
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <.type: $t:= PutDirectFile,
 key: (<.var: $Id .> ! <.constant: $c .>),
 source: (<.var: $Id2 .> ! <.constant: $c2 .>),
 subject_label: $al,
 next: $next
 .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) @ '(st1.stmt = s' $next ' &&';
 GEN<< #CHR(9)#CHR(9) ' st1.current_clock =
TO/next[st.current_clock] &&';
 GEN<< #CHR(9)#CHR(9) ' st1.last_cond_checked =
st.last_cond_checked &&';
 GEN<< #CHR(9)#CHR(9) ' st1.vars = st.vars &&';
 GEN<< #CHR(9)#CHR(9) ' st1.access_label = st.access_label &&';

 IF $Id ->
 GEN<< #CHR(9)#CHR(9) ' ((st.vars[' $Id '] in
st.direct_file.keyContent.Value) =>'
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9) @ ' ((const' $c ' in
st.direct_file.keyContent.Value) =>'
 FI;

 GEN<< #CHR(9)#CHR(9) ' -- the key is found';
 GEN<< #CHR(9)#CHR(9) ' (st1.direct_file.success = const1
&&';

 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.keyContent =
st.direct_file.keyContent ++';
 IF $Id ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) ' (st.vars[' $Id '] ->
';
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' (const' $c ' -> ';
 FI;
 IF $Id2 ->
 GEN<] 'st.vars[' $Id2 ']) &&';
 ELSIF T ->
 GEN<] @ const $c2 ') &&';
 FI;

 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.keyLabel =
st.direct_file.keyLabel ++';
 IF $Id ->

 112

 GEN<< #CHR(9)#CHR(9)#CHR(9) ' (st.vars[' $Id '] ->
';
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' (const' $c ' -> ';
 FI;
 GEN<] $al ') &&';
 GEN<< #CHR(9)#CHR(9) ' -- since key already existed, full
remains the same';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.full =
st.direct_file.full';
 GEN<< #CHR(9)#CHR(9) ')';
 GEN<< #CHR(9)#CHR(9) ' else -- the key is not found';
 GEN<< #CHR(9)#CHR(9) ' (st.direct_file.full = const0 =>
-- Direct File not Full';

 GEN<< #CHR(9)#CHR(9) ' (st1.direct_file.keyContent =
st.direct_file.keyContent ++';
 IF $Id ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) ' (st.vars[' $Id '] ->
';
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' (const' $c ' -> ';
 FI;
 IF $Id2 ->
 GEN<] 'st.vars[' $Id2 ']) &&';
 ELSIF T ->
 GEN<] @ const $c2 ') &&';
 FI;

 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.keyLabel =
st.direct_file.keyLabel ++';
 IF $Id ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) ' (st.vars[' $Id '] ->
';
 ELSIF T ->
 GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' (const' $c ' -> ';
 FI;
 GEN<] $al ') &&';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.success = const1
&&';
 GEN<< #CHR(9)#CHR(9) ' -- if content limit reached, set
full to const1 (true)';
 GEN<< #CHR(9)#CHR(9) ' (#st1.direct_file.keyContent =
st1.direct_file.max_slots => ';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.full = const1
else st1.direct_file.full = const0)';
 GEN<< #CHR(9)#CHR(9) ')';
 GEN<< #CHR(9)#CHR(9) ' else -- Direct File is Full';
 GEN<< #CHR(9)#CHR(9) ' (st1.direct_file = st.direct_file
&&';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.success = const0
&&';
 GEN<< #CHR(9)#CHR(9) ' -- assign full to const1
(true)';
 GEN<< #CHR(9)#CHR(9) ' st1.direct_file.full = const1)';
 GEN<< #CHR(9)#CHR(9) ')';
 GEN<< #CHR(9)#CHR(9) ')';
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <.type: $t:= GetClock,
 destination: <.var: $Id .>,
 subject_label: $al,

 113

 next: $next .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) '(st1.access_label = st.access_label ++ ('
$Id '-> ' $al ') &&';
 GEN<< #CHR(9)#CHR(9) 'st1.vars = st.vars ++ (' $Id @ '->
st.current_clock) &&';
 GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&';
 GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&';
 GEN<< #CHR(9)#CHR(9) 'st1.current_clock = st.current_clock &&';
 GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked =
st.last_cond_checked';
 GEN<< #CHR(9)#CHR(9) ')'/;;

 <. type: $t:= Stop .>
 /GEN<< #CHR(9)#CHR(9) '-- ' $t;
 GEN<< #CHR(9)#CHR(9) '(st1.stmt = st.stmt)'/;;

 <. type: $t .> /GEN<< #CHR(9)#CHR(9) '******' stmt type $t not yet
implemented '******'/

#print_enclosing_conditions
 /$plus:= ' '/
 (. (* $c /GEN<] @ $plus 'S' $c; $plus:= '+'/ *) .)

#gen_expr

 <. flag: $f .>/GEN<] @ 'st.direct_file.'$f' '/;;

 <. bool: $b .>
 /IF $b = True ->
 GEN<] 'const1';
 ELSIF $b = False ->
 GEN<] 'const0';
 FI/;;

 <. var: $Id .>/GEN<] 'st.vars[' $Id ']'/;;

 <. constant: $Num .> /GEN<] @ const $Num/;;

 <. op: $op:= (or ! and ! '='),
 arg1: /GEN<] '('/ #gen_expr /GEN<] $op/,
 arg2: #gen_expr /GEN<] ')'/
 .> ;;

 <. op: '<',
 arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr,
 arg2: /GEN<] '->'/ #gen_expr
 .>
 /GEN<] ') in LT.lt)'/;;

 <. op: '>',
 arg2: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr,
 arg1: /GEN<] '->'/ #gen_expr
 .>
 /GEN<] ') in LT.lt)'/;;

 <. op: '<=',
 arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr,
 arg2: /GEN<] '->'/ #gen_expr /GEN<] ') in LT.lt or'/,

 114

 arg1: #gen_expr,
 arg2: /GEN<] '='/ #gen_expr /GEN<] ')'/
 .>;;

 <. op: '>=',
 arg2: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr,
 arg1: /GEN<] '->'/ #gen_expr /GEN<] ') in LT.lt or'/,
 arg1: #gen_expr,
 arg2: /GEN<] '='/ #gen_expr /GEN<] ')'/
 .>;;

 <. op: Before,
 arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr,
 arg2: /GEN<] '->'/ #gen_expr
 .>
 /GEN<] ') in Clock.before)'/;;

 <. op: LongBefore,
 arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr,
 arg2: /GEN<] '->'/ #gen_expr
 .>
 /GEN<] ') in Clock.long_before)'/;;

 <. op: 'not' /GEN<< #CHR(9) #CHR(9) #CHR(9) 'not ('/,
 arg: #gen_expr /GEN<] ')'/
 .>;;

 $e /GEN<< #CHR(9) '***' expression #show_expr($e) not implemented
'***'/

 115

APPENDIX B.1 – GENERATED DM FOR BASE PROGRAM
EXAMPLE 1

This appendix provides complete code for the overt control dependency flaw

example base program and resultant DM described in Chapter VI - “Example DM

Implementations.” The DM below is generated by the DM-Compiler from the following

base program:
(s1) Read_dev (SysHigh, x1);
(s2) if x1 = 0 then
(s3) x2:= 0;
(s4) else x2:= 1;
(s5) Write_dev (SysLow, x2);
(s6) Stop;

The Alloy specification for the DM follows:
/**/
module static_model
open util/ordering[Time] as TO
/**/

/**************************/
/** DM Invariant Model **/
/**************************/

sig Statement {
 type: Stmt_type,
 destination: lone Variable,
 source: set Variable + Value,
 source_label: lone (AccessLabel + Variable),
 key: lone (Variable + Value),
 subject_label: lone AccessLabel
}

enum Stmt_type {
 Assign, Condition,
 Read_dev, Write_dev,
 GetDirectFile, PutDirectFile,
 GetClock, Stop
}

-- define access labels based on security policy lattice
enum AccessLabel { SysHigh, SysMid, SysLow }

-- define a Policy signature to allow BLP-style info flows
one sig Policy {
 ord: AccessLabel -> AccessLabel
}
{ ord = ^((SysLow -> SysMid)
 + (SysMid -> SysHigh))
 + (iden & (AccessLabel -> AccessLabel))
}

 116

sig State {
 stmt: Statement, -- next stmt to execute
 vars: Variable -> one (Value + Time), -- variable table
 access_label: Variable -> one AccessLabel,
 direct_file: DirectFile, -- current snapshot
 current_clock: Time,
 prev_state: lone State,
 err_msg: lone Error,
 influenced_by: Variable -> State,
 last_cond_checked: set State,
}
{ -- define error conditions
 (err_msg = InfoFlow_error <=>
 not consistent_with_FlowPolicy [this]) &&
 (err_msg = Overt_flaw_detected <=>
 dependency_flaw_found[this]) &&
 (err_msg = Storage_channel_detected <=>
 storage_channel_found[this]) &&
 (err_msg = Timing_channel_detected <=>
 timing_channel_found[this])
}

-- Signature for error types
enum Error {
 InfoFlow_error,
 Overt_flaw_detected,
 Storage_channel_detected,
 Timing_channel_detected
}

-- Initialization of State signature: all variables initially have 0
-- value and SysLow label, and DirectFile is empty
one sig InitialState extends State {}
{
 vars = (Variable -> const0)
 access_label = (Variable -> SysLow)
 stmt = S1
 direct_file.full = const0
 direct_file.success =const1
 current_clock = TO/first[]
 prev_state = none
 err_msg = none
 last_cond_checked = none
 no influenced_by
 no direct_file.keyContent
 no direct_file.keyLabel
}

-- Sig establishes ordering of States in a program execution
one sig State_order {
 st_after: State -> State
}
{ st_after = ^ prev_state
}

-- a "Stop" State cannot precede another State
fact { all s: State | s.prev_state.stmt.type != Stop }

-- no two States can be identical
fact { no disj st1, st2: State |
 (st1.stmt = st2.stmt &&
 st1.prev_state = st2.prev_state &&

 117

 st1.vars = st2.vars &&
 st1.direct_file = st2.direct_file)
}

sig DirectFile {
 -- each key Value is assigned a content Value and AccessLabel
 keyContent: Value -> lone Value,
 keyLabel: Value -> lone AccessLabel,
 last_written: lone AccessLabel,
 full: (const0 + const1),
 success: (const0 + const1),
 max_slots: Int
}
{ max_slots = 2 -- capacity limited to 2 key locations
}

sig Time {}

one sig Clock {
 before: Time -> Time,
 long_before: Time -> Time
}
{ long_before in before &&
 all t1: Time, t2: Time - t1 |
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) &&
 ((t1->t2) in long_before <=> some t3: Time |
 (t3 in before[t1] && t3 in before.t2))
}

-- Alloy signature used for passing results of tsFilter function
sig FTuple {
 val: Value,
 label: AccessLabel
}

fact { all v: Value, a: AccessLabel | one f: FTuple |
 f.val=v && f.label=a }

-- Functions, Facts, Assertions and Predicates for info flow security
-- policy and security rules

-- The tsFilter function defines the semantics of the Trusted Subj
-- Assignment statement, by enabling a TS to act as a Content
-- or Label Filter.
-- Different invariant models may define different filter functions,
-- depending on the TS semantics that must be demonstrated.
fun tsFilter[dv, s1v, s2v: Value,
 da, s1a, s2a: AccessLabel]: FTuple {
{ result: FTuple | {
 result.val = (((s1v->const0) in LT.lt)
 => const0 else s1v)
 result.label = (((da->s2a) in Policy.ord)
 => s2a else
 (((s2a->SysMid) in Policy.ord)
 => SysMid else s2a)) }
} }

-- Security assertion to verify program abides by all security rules

 118

-- assert verify_security {
 all s: State |
 consistent_with_FlowPolicy [s] &&
 not dependency_flaw_found [s] &&
 not storage_channel_found [s] &&
 not timing_channel_found [s]
}

-- Define how statements abide by info flow policy
assert verify_flow_policy {
 all s: State | consistent_with_FlowPolicy[s] }

pred consistent_with_FlowPolicy [s: State] {
 let stm = s.stmt | {
 -- for Write_dev or PutDirectFile statement
 (stm.type in (Write_dev + PutDirectFile) &&
 stm.source in Variable)
 => ((s.access_label[stm.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no overt control dependency flaw found in current State

assert verify_no_dependency_flaw {
 all s: State | not dependency_flaw_found[s] }

-- Define conditions under which a control dependency flaw could
-- exist; checks for a Write, where source in the current state is
-- influenced_by State with higher label in required access.
-- Assertion uses dynamic slicing techniques.
pred dependency_flaw_found [s: State] {
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | {
 stm.type = Write_dev &&
 stm.source in Variable &&
 -- check if Write_dev source was influenced_by a var
 -- higher than subject
 not ((s1.access_label[s1.stmt.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no storage covert channels found in current State

assert verify_no_storage_channel {
 all s: State |
 not storage_channel_found[s] }

-- Define conditions under which a storage channel could exist icw
-- a PutDirectFile
pred storage_channel_found [s: State] {
 let stm = s.stmt | {
 stm.type = PutDirectFile &&
 s.direct_file.full = const1 &&
 -- check if direct file was last written by a higher subject
 not ((s.direct_file.last_written -> stm.subject_label)
 in Policy.ord)
 }
}

 119

-- Verify no timing covert channels found in current State

assert verify_no_timing_channel {
 all s: State | not timing_channel_found[s] }

-- Define conditions under which a timing channel could exist
pred timing_channel_found [gc2: State] {
 some disj rw, gc1: State | {
 (gc2 -> rw) in State_order.st_after &&
 (rw -> gc1) in State_order.st_after &&
 gc1.stmt.type = GetClock &&
 gc2.stmt.type = GetClock &&
 rw.stmt.type in (Read_dev + Write_dev
 + PutDirectFile + GetDirectFile) &&
 -- check if GetClocks are at same level
 gc1.stmt.subject_label = gc2.stmt.subject_label &&
 -- check if Read/Write/DirectFile operation at
 -- higher level than GetClock
 not ((rw.stmt.subject_label -> gc2.stmt.subject_label)
 in Policy.ord)
 }
}

-- Find a consistent instance of this model
pred show () {}

/********************************/
/** DM Implementation Model **/
/********************************/
-- The base program is below. Total of 6 statements
-- (S1) Read_dev (SysHigh , x1);
-- (S2) if (x1 = 0) then
-- (S3) x2 := 0 ;
-- else
-- (S4) x2 := 1 ;
-- (S5) Write_dev (SysLow , x2);
-- (S6) Stop;

/*** Statement sigs ***/

one sig S1 extends Statement {}
{
 type = Read_dev
 destination = x1
 source = none
 source_label = none
 key = none
 subject_label = SysHigh
}

one sig S3 extends Statement {}
{
 type = Assign
 source = const0
 destination = x2
 source_label = none
 key = none
}

one sig S4 extends Statement {}

 120

{
 type = Assign
 source = const1
 destination = x2
 source_label = none
 key = none
}

one sig S2 extends Statement {}
{
 type = Condition
 source = x1
 destination = none
 source_label = none
 key = none
}

one sig S5 extends Statement {}
{
 type = Write_dev
 source = x2
 destination = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S6 extends Statement {}
{
 type = Stop
 source = none
 destination = none
 source_label = none
 key = none
}

/*** Variables & Constants ***/

enum Variable {
 x1, x2
 }

enum Value {
 const_minus_3, const_minus_2, const0, const1
 , const2, const3
 }

one sig LT { lt: Value -> Value }
{ lt = ^(
 (const_minus_3 -> const_minus_2)
 + (const_minus_2 -> const0)
 + (const0 -> const1)
 + (const1 -> const2)
 + (const2 -> const3)
) }

/*** State Transition Predicate ***/

fact trans {
 all st1: State - InitialState | some st: State |

 121

 (st.stmt = S1 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x1 -> SysHigh) &&
 some n: Value | st1.vars = st.vars ++ (x1 -> n) &&
 st1.stmt = S2 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }
)
) or

 (st.stmt = S3 &&
 st1.prev_state = st &&
 -- Regular Assign
 (st1.vars = st.vars ++ (x2 -> const0) &&
 st1.access_label = st.access_label ++ (x2 -> SysLow) &&
 st1.stmt = S5 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x2
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x2 }

 -- Part B, all states from last_cond_checked
 -- within which scope this assignment belongs
 + (x2 -> {x: st.last_cond_checked | x.stmt in S2})

 -- Part C, copy dependencies for all variables
participating in
 -- conditions within which scope this assignment belongs
 + (x2 -> State.{ x: st.last_cond_checked,
 y: x.influenced_by[x.stmt.source] | x.stmt in S2 })
)
) or

 (st.stmt = S4 &&
 st1.prev_state = st &&
 -- Regular Assign
 (st1.vars = st.vars ++ (x2 -> const1) &&
 st1.access_label = st.access_label ++ (x2 -> SysLow) &&
 st1.stmt = S5 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x2
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x2 }

 -- Part B, all states from last_cond_checked

 122

 -- within which scope this assignment belongs
 + (x2 -> {x: st.last_cond_checked | x.stmt in S2})

 -- Part C, copy dependencies for all variables
participating in
 -- conditions within which scope this assignment belongs
 + (x2 -> State.{ x: st.last_cond_checked,
 y: x.influenced_by[x.stmt.source] | x.stmt in S2 })
)
) or

 (st.stmt = S2 &&
 st1.prev_state = st &&
 -- if
 (st1.access_label = st.access_label &&
 st1.vars = st.vars &&
 st1.current_clock = st.current_clock &&
 st1.direct_file = st.direct_file &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = {x: st.last_cond_checked | x.stmt !=
S2} + st &&
 ((st.vars[x1] = const0)
 => st1.stmt = S3
 else st1.stmt = S4)
)
) or

 (st.stmt = S5 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S6 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S6 &&
 st1.prev_state = st &&
 -- Stop
 (st1.stmt = st.stmt)
)
}

run show for 7 but 18 FTuple
check verify_security for 7 but 18 FTuple
check verify_flow_policy for 7 but 18 FTuple
check verify_no_dependency_flaw for 7 but 18 FTuple
check verify_no_storage_channel for 7 but 18 FTuple
check verify_no_timing_channel for 7 but 18 FTuple

 123

APPENDIX B.2 – GENERATED DM FOR BASE PROGRAM
EXAMPLE 2

This appendix provides complete code for the timing covert channel example base

program and resultant DM described in Chapter VI - “Example DM Implementations.”

The DM below is generated by the DM-Compiler from the following base program:
(s1) Read_dev (SysHigh, x1);
(s2) GetClock (SysLow, t1);
(s3) if x1 < 0 then
(s4) PutDirectFile (SysHigh, 1, x1);
(s5) GetClock(SysLow, t2);
(s6) if t1 Before t2 then
(s7) Write_dev (SysLow, 1);
(s8) else Write_dev (SysLow, 0);
(s9) Stop;

The Alloy specification for the DM follows:
/**/
module static_model
open util/ordering[Time] as TO
/**/

/**************************/
/** DM Invariant Model **/
/**************************/

sig Statement {
 type: Stmt_type,
 destination: lone Variable,
 source: set Variable + Value,
 source_label: lone (AccessLabel + Variable),
 key: lone (Variable + Value),
 subject_label: lone AccessLabel
}

enum Stmt_type {
 Assign, Condition,
 Read_dev, Write_dev,
 GetDirectFile, PutDirectFile,
 GetClock, Stop
}

-- define access labels based on security policy lattice
enum AccessLabel { SysHigh, SysMid, SysLow }

-- define a Policy signature to allow BLP-style info flows
one sig Policy {
 ord: AccessLabel -> AccessLabel
}
{ ord = ^((SysLow -> SysMid)
 + (SysMid -> SysHigh))
 + (iden & (AccessLabel -> AccessLabel))
}

 124

sig State {
 stmt: Statement, -- next stmt to execute
 vars: Variable -> one (Value + Time), -- variable table
 access_label: Variable -> one AccessLabel,
 direct_file: DirectFile, -- current snapshot
 current_clock: Time,
 prev_state: lone State,
 err_msg: lone Error,
 influenced_by: Variable -> State,
 last_cond_checked: set State,
}
{ -- define error conditions
 (err_msg = InfoFlow_error <=>
 not consistent_with_FlowPolicy [this]) &&
 (err_msg = Overt_flaw_detected <=>
 dependency_flaw_found[this]) &&
 (err_msg = Storage_channel_detected <=>
 storage_channel_found[this]) &&
 (err_msg = Timing_channel_detected <=>
 timing_channel_found[this])
}

-- Signature for error types
enum Error {
 InfoFlow_error,
 Overt_flaw_detected,
 Storage_channel_detected,
 Timing_channel_detected
}

-- Initialization of State signature: all variables initially have 0
-- value and SysLow label, and DirectFile is empty
one sig InitialState extends State {}
{
 vars = (Variable -> const0)
 access_label = (Variable -> SysLow)
 stmt = S1
 direct_file.full = const0
 direct_file.success =const1
 current_clock = TO/first[]
 prev_state = none
 err_msg = none
 last_cond_checked = none
 no influenced_by
 no direct_file.keyContent
 no direct_file.keyLabel
}

-- Sig establishes ordering of States in a program execution
one sig State_order {
 st_after: State -> State
}
{ st_after = ^ prev_state
}

-- a "Stop" State cannot precede another State
fact { all s: State | s.prev_state.stmt.type != Stop }

-- no two States can be identical
fact { no disj st1, st2: State |
 (st1.stmt = st2.stmt &&

 125

 st1.prev_state = st2.prev_state &&
 st1.vars = st2.vars &&
 st1.direct_file = st2.direct_file)
}

sig DirectFile {
 -- each key Value is assigned a content Value and AccessLabel
 keyContent: Value -> lone Value,
 keyLabel: Value -> lone AccessLabel,
 last_written: lone AccessLabel,
 full: (const0 + const1),
 success: (const0 + const1),
 max_slots: Int
}
{ max_slots = 2 -- capacity limited to 2 key locations
}

sig Time {}

one sig Clock {
 before: Time -> Time,
 long_before: Time -> Time
}
{ long_before in before &&
 all t1: Time, t2: Time - t1 |
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) &&
 ((t1->t2) in long_before <=> some t3: Time |
 (t3 in before[t1] && t3 in before.t2))
}

-- Alloy signature used for passing results of tsFilter function
sig FTuple {
 val: Value,
 label: AccessLabel
}

fact { all v: Value, a: AccessLabel | one f: FTuple |
 f.val=v && f.label=a }

-- Functions, Facts, Assertions and Predicates for info flow security
-- policy and security rules

-- The tsFilter function defines the semantics of the Trusted Subj
-- Assignment statement, by enabling a TS to act as a Content
-- or Label Filter.
-- Different invariant models may define different filter functions,
-- depending on the TS semantics that must be demonstrated.
fun tsFilter[dv, s1v, s2v: Value,
 da, s1a, s2a: AccessLabel]: FTuple {
{ result: FTuple | {
 result.val = (((s1v->const0) in LT.lt)
 => const0 else s1v)
 result.label = (((da->s2a) in Policy.ord)
 => s2a else
 (((s2a->SysMid) in Policy.ord)
 => SysMid else s2a)) }
} }

 126

-- Security assertion to verify program abides by all security rules
-- assert verify_security {
 all s: State |
 consistent_with_FlowPolicy [s] &&
 not dependency_flaw_found [s] &&
 not storage_channel_found [s] &&
 not timing_channel_found [s]
}

-- Define how statements abide by info flow policy
assert verify_flow_policy {
 all s: State | consistent_with_FlowPolicy[s] }

pred consistent_with_FlowPolicy [s: State] {
 let stm = s.stmt | {
 -- for Write_dev or PutDirectFile statement
 (stm.type in (Write_dev + PutDirectFile) &&
 stm.source in Variable)
 => ((s.access_label[stm.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no overt control dependency flaw found in current State

assert verify_no_dependency_flaw {
 all s: State | not dependency_flaw_found[s] }

-- Define conditions under which a control dependency flaw could
-- exist; checks for a Write, where source in the current state is
-- influenced_by State with higher label in required access.
-- Assertion uses dynamic slicing techniques.
pred dependency_flaw_found [s: State] {
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | {
 stm.type = Write_dev &&
 stm.source in Variable &&
 -- check if Write_dev source was influenced_by a var
 -- higher than subject
 not ((s1.access_label[s1.stmt.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no storage covert channels found in current State

assert verify_no_storage_channel {
 all s: State |
 not storage_channel_found[s] }

-- Define conditions under which a storage channel could exist icw
-- a PutDirectFile
pred storage_channel_found [s: State] {
 let stm = s.stmt | {
 stm.type = PutDirectFile &&
 s.direct_file.full = const1 &&
 -- check if direct file was last written by a higher subject
 not ((s.direct_file.last_written -> stm.subject_label)
 in Policy.ord)
 }
}

 127

-- Verify no timing covert channels found in current State

assert verify_no_timing_channel {
 all s: State | not timing_channel_found[s] }

-- Define conditions under which a timing channel could exist
pred timing_channel_found [gc2: State] {
 some disj rw, gc1: State | {
 (gc2 -> rw) in State_order.st_after &&
 (rw -> gc1) in State_order.st_after &&
 gc1.stmt.type = GetClock &&
 gc2.stmt.type = GetClock &&
 rw.stmt.type in (Read_dev + Write_dev
 + PutDirectFile + GetDirectFile) &&
 -- check if GetClocks are at same level
 gc1.stmt.subject_label = gc2.stmt.subject_label &&
 -- check if Read/Write/DirectFile operation at
 -- higher level than GetClock
 not ((rw.stmt.subject_label -> gc2.stmt.subject_label)
 in Policy.ord)
 }
}

-- Find a consistent instance of this model
pred show () {}

/********************************/
/** DM Implementation Model **/
/********************************/
-- The base program is below. Total of 9 statements
-- (S1) Read_dev (SysHigh , x1);
-- (S2) GetClock (SysLow , t1);
-- (S3) if (x1 < 0) then
-- (S4) PutDirectFile (SysHigh , 1 , x1);
-- (S5) GetClock (SysLow , t2);
-- (S6) if (t1 Before t2) then
-- (S7) Write_dev (SysLow , 1);
-- else
-- (S8) Write_dev (SysLow , 0);
-- (S9) Stop;

/*** Statement sigs ***/

one sig S1 extends Statement {}
{
 type = Read_dev
 destination = x1
 source = none
 source_label = none
 key = none
 subject_label = SysHigh
}

one sig S2 extends Statement {}
{
 type = GetClock
 destination = t1
 source = none
 source_label = none

 128

 key = none
 subject_label = SysLow
}

one sig S4 extends Statement {}
{
 type = PutDirectFile
 source = x1
 key = const1
 destination = none
 source_label = none
 subject_label = SysHigh
}

one sig S3 extends Statement {}
{
 type = Condition
 source = x1
 destination = none
 source_label = none
 key = none
}

one sig S5 extends Statement {}
{
 type = GetClock
 destination = t2
 source = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S7 extends Statement {}
{
 type = Write_dev
 source = const1
 destination = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S8 extends Statement {}
{
 type = Write_dev
 source = const0
 destination = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S6 extends Statement {}
{
 type = Condition
 source = t1 + t2
 destination = none
 source_label = none
 key = none
}

one sig S9 extends Statement {}

 129

{
 type = Stop
 source = none
 destination = none
 source_label = none
 key = none
}

/*** Variables & Constants ***/

enum Variable {
 x1, t1, t2
 }

enum Value {
 const_minus_4, const_minus_3, const_minus_2, const0
 , const1, const2, const3, const4

 }

one sig LT { lt: Value -> Value }
{ lt = ^(
 (const_minus_4 -> const_minus_3)
 + (const_minus_3 -> const_minus_2)
 + (const_minus_2 -> const0)
 + (const0 -> const1)
 + (const1 -> const2)
 + (const2 -> const3)
 + (const3 -> const4)
) }

/*** State Transition Predicate ***/

fact trans {
 all st1: State - InitialState | some st: State |

 (st.stmt = S1 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x1 -> SysHigh) &&
 some n: Value | st1.vars = st.vars ++ (x1 -> n) &&
 st1.stmt = S2 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }
)
) or

 (st.stmt = S2 &&
 st1.prev_state = st &&
 -- GetClock
 (st1.access_label = st.access_label ++ (t1 -> SysLow) &&
 st1.vars = st.vars ++ (t1 -> st.current_clock) &&
 st1.stmt = S3 &&
 st1.direct_file = st.direct_file &&

 130

 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S4 &&
 st1.prev_state = st &&
 -- PutDirectFile
 (st1.stmt = S5 &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.vars = st.vars &&
 st1.access_label = st.access_label &&
 ((const1 in st.direct_file.keyContent.Value) =>
 -- the key is found
 (st1.direct_file.success = const1 &&
 st1.direct_file.keyContent = st.direct_file.keyContent
++
 (const1 -> st.vars[x1]) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel ++
 (const1 -> SysHigh) &&
 -- since key already existed, full remains the same
 st1.direct_file.full = st.direct_file.full
)
 else -- the key is not found
 (st.direct_file.full = const0 => -- Direct File not
Full
 (st1.direct_file.keyContent =
st.direct_file.keyContent ++
 (const1 -> st.vars[x1]) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel
++
 (const1 -> SysHigh) &&
 st1.direct_file.success = const1 &&
 -- if content limit reached, set full to const1
(true)
 (#st1.direct_file.keyContent =
st1.direct_file.max_slots =>

 st1.direct_file.full = const1 else st1.direct_file.full =
const0)
)
 else -- Direct File is Full
 (st1.direct_file = st.direct_file &&
 st1.direct_file.success = const0 &&
 -- assign full to const1 (true)
 st1.direct_file.full = const1)
)
)
)
) or

 (st.stmt = S3 &&
 st1.prev_state = st &&
 -- if
 (st1.access_label = st.access_label &&
 st1.vars = st.vars &&
 st1.current_clock = st.current_clock &&
 st1.direct_file = st.direct_file &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = {x: st.last_cond_checked | x.stmt !=
S3} + st &&
 (

 131

 ((st.vars[x1] -> const0) in LT.lt)
 => st1.stmt = S4
 else st1.stmt = S5)
)
) or

 (st.stmt = S5 &&
 st1.prev_state = st &&
 -- GetClock
 (st1.access_label = st.access_label ++ (t2 -> SysLow) &&
 st1.vars = st.vars ++ (t2 -> st.current_clock) &&
 st1.stmt = S6 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S7 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S9 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S8 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S9 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S6 &&
 st1.prev_state = st &&
 -- if
 (st1.access_label = st.access_label &&
 st1.vars = st.vars &&
 st1.current_clock = st.current_clock &&
 st1.direct_file = st.direct_file &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = {x: st.last_cond_checked | x.stmt !=
S6} + st &&
 (
 ((st.vars[t1] -> st.vars[t2]) in Clock.before)
 => st1.stmt = S7
 else st1.stmt = S8)
)
) or

 (st.stmt = S9 &&
 st1.prev_state = st &&
 -- Stop
 (st1.stmt = st.stmt)

 132

)
}

run show for 10 but 32 FTuple
check verify_security for 10 but 32 FTuple
check verify_flow_policy for 10 but 32 FTuple
check verify_no_dependency_flaw for 10 but 32 FTuple
check verify_no_storage_channel for 10 but 32 FTuple
check verify_no_timing_channel for 10 but 32 FTuple

 133

APPENDIX B.3 – GENERATED DM FOR BASE PROGRAM
EXAMPLE 3

This appendix provides complete code for the trusted subject information flow

violation example base program and resultant DM described in Chapter VI - “Example

DM Implementations.” The DM below is generated by the DM-Compiler from the

following base program:
(s1) Read_dev (SysHigh, x1);
(s2) Read_dev (SysMid, x2);
(s3) Assign x1 from x2 as SysLow;
(s4) Write_dev (SysLow, x1);
(s5) Stop;

The Alloy specification for the DM follows:
/**/
module static_model
open util/ordering[Time] as TO
/**/

/**************************/
/** DM Invariant Model **/
/**************************/

sig Statement {
 type: Stmt_type,
 destination: lone Variable,
 source: set Variable + Value,
 source_label: lone (AccessLabel + Variable),
 key: lone (Variable + Value),
 subject_label: lone AccessLabel
}

enum Stmt_type {
 Assign, Condition,
 Read_dev, Write_dev,
 GetDirectFile, PutDirectFile,
 GetClock, Stop
}

-- define access labels based on security policy lattice
enum AccessLabel { SysHigh, SysMid, SysLow }

-- define a Policy signature to allow BLP-style info flows
one sig Policy {
 ord: AccessLabel -> AccessLabel
}
{ ord = ^((SysLow -> SysMid)
 + (SysMid -> SysHigh))
 + (iden & (AccessLabel -> AccessLabel))
}

sig State {

 134

 stmt: Statement, -- next stmt to execute
 vars: Variable -> one (Value + Time), -- variable table
 access_label: Variable -> one AccessLabel,
 direct_file: DirectFile, -- current snapshot
 current_clock: Time,
 prev_state: lone State,
 err_msg: lone Error,
 influenced_by: Variable -> State,
 last_cond_checked: set State,
}
{ -- define error conditions
 (err_msg = InfoFlow_error <=>
 not consistent_with_FlowPolicy [this]) &&
 (err_msg = Overt_flaw_detected <=>
 dependency_flaw_found[this]) &&
 (err_msg = Storage_channel_detected <=>
 storage_channel_found[this]) &&
 (err_msg = Timing_channel_detected <=>
 timing_channel_found[this])
}

-- Signature for error types
enum Error {
 InfoFlow_error,
 Overt_flaw_detected,
 Storage_channel_detected,
 Timing_channel_detected
}

-- Initialization of State signature: all variables initially have 0
-- value and SysLow label, and DirectFile is empty
one sig InitialState extends State {}
{
 vars = (Variable -> const0)
 access_label = (Variable -> SysLow)
 stmt = S1
 direct_file.full = const0
 direct_file.success =const1
 current_clock = TO/first[]
 prev_state = none
 err_msg = none
 last_cond_checked = none
 no influenced_by
 no direct_file.keyContent
 no direct_file.keyLabel
}

-- Sig establishes ordering of States in a program execution
one sig State_order {
 st_after: State -> State
}
{ st_after = ^ prev_state
}

-- a "Stop" State cannot precede another State
fact { all s: State | s.prev_state.stmt.type != Stop }

-- no two States can be identical
fact { no disj st1, st2: State |
 (st1.stmt = st2.stmt &&
 st1.prev_state = st2.prev_state &&
 st1.vars = st2.vars &&

 135

 st1.direct_file = st2.direct_file)
}

sig DirectFile {
 -- each key Value is assigned a content Value and AccessLabel
 keyContent: Value -> lone Value,
 keyLabel: Value -> lone AccessLabel,
 last_written: lone AccessLabel,
 full: (const0 + const1),
 success: (const0 + const1),
 max_slots: Int
}
{ max_slots = 2 -- capacity limited to 2 key locations
}

sig Time {}

one sig Clock {
 before: Time -> Time,
 long_before: Time -> Time
}
{ long_before in before &&
 all t1: Time, t2: Time - t1 |
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) &&
 ((t1->t2) in long_before <=> some t3: Time |
 (t3 in before[t1] && t3 in before.t2))
}

-- Alloy signature used for passing results of tsFilter function
sig FTuple {
 val: Value,
 label: AccessLabel
}

fact { all v: Value, a: AccessLabel | one f: FTuple |
 f.val=v && f.label=a }

-- Functions, Facts, Assertions and Predicates for info flow security
-- policy and security rules

-- The tsFilter function defines the semantics of the Trusted Subj
-- Assignment statement, by enabling a TS to act as a Content
-- or Label Filter.
-- Different invariant models may define different filter functions,
-- depending on the TS semantics that must be demonstrated.
fun tsFilter[dv, s1v, s2v: Value,
 da, s1a, s2a: AccessLabel]: FTuple {
{ result: FTuple | {
 result.val = (((s1v->const0) in LT.lt)
 => const0 else s1v)
 result.label = (((da->s2a) in Policy.ord)
 => s2a else
 (((s2a->SysMid) in Policy.ord)
 => SysMid else s2a)) }
} }

-- Security assertion to verify program abides by all security rules
-- assert verify_security {

 136

 all s: State |
 consistent_with_FlowPolicy [s] &&
 not dependency_flaw_found [s] &&
 not storage_channel_found [s] &&
 not timing_channel_found [s]
}

-- Define how statements abide by info flow policy
assert verify_flow_policy {
 all s: State | consistent_with_FlowPolicy[s] }

pred consistent_with_FlowPolicy [s: State] {
 let stm = s.stmt | {
 -- for Write_dev or PutDirectFile statement
 (stm.type in (Write_dev + PutDirectFile) &&
 stm.source in Variable)
 => ((s.access_label[stm.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no overt control dependency flaw found in current State

assert verify_no_dependency_flaw {
 all s: State | not dependency_flaw_found[s] }

-- Define conditions under which a control dependency flaw could
-- exist; checks for a Write, where source in the current state is
-- influenced_by State with higher label in required access.
-- Assertion uses dynamic slicing techniques.
pred dependency_flaw_found [s: State] {
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | {
 stm.type = Write_dev &&
 stm.source in Variable &&
 -- check if Write_dev source was influenced_by a var
 -- higher than subject
 not ((s1.access_label[s1.stmt.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no storage covert channels found in current State

assert verify_no_storage_channel {
 all s: State |
 not storage_channel_found[s] }

-- Define conditions under which a storage channel could exist icw
-- a PutDirectFile
pred storage_channel_found [s: State] {
 let stm = s.stmt | {
 stm.type = PutDirectFile &&
 s.direct_file.full = const1 &&
 -- check if direct file was last written by a higher subject
 not ((s.direct_file.last_written -> stm.subject_label)
 in Policy.ord)
 }
}

 137

-- Verify no timing covert channels found in current State

assert verify_no_timing_channel {
 all s: State | not timing_channel_found[s] }

-- Define conditions under which a timing channel could exist
pred timing_channel_found [gc2: State] {
 some disj rw, gc1: State | {
 (gc2 -> rw) in State_order.st_after &&
 (rw -> gc1) in State_order.st_after &&
 gc1.stmt.type = GetClock &&
 gc2.stmt.type = GetClock &&
 rw.stmt.type in (Read_dev + Write_dev
 + PutDirectFile + GetDirectFile) &&
 -- check if GetClocks are at same level
 gc1.stmt.subject_label = gc2.stmt.subject_label &&
 -- check if Read/Write/DirectFile operation at
 -- higher level than GetClock
 not ((rw.stmt.subject_label -> gc2.stmt.subject_label)
 in Policy.ord)
 }
}

-- Find a consistent instance of this model
pred show () {}

/********************************/
/** DM Implementation Model **/
/********************************/
-- The base program is below. Total of 5 statements
-- (S1) Read_dev (SysHigh , x1);
-- (S2) Read_dev (SysMid , x2);
-- (S3) Assign x1 from x2 as SysLow ;
-- (S4) Write_dev (SysLow , x1);
-- (S5) Stop;

/*** Statement sigs ***/

one sig S1 extends Statement {}
{
 type = Read_dev
 destination = x1
 source = none
 source_label = none
 key = none
 subject_label = SysHigh
}

one sig S2 extends Statement {}
{
 type = Read_dev
 destination = x2
 source = none
 source_label = none
 key = none
 subject_label = SysMid
}

one sig S3 extends Statement {}
{
 type = Assign

 138

 source = x2
 destination = x1
 source_label = SysLow
 key = none
}

one sig S4 extends Statement {}
{
 type = Write_dev
 source = x1
 destination = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S5 extends Statement {}
{
 type = Stop
 source = none
 destination = none
 source_label = none
 key = none
}

/*** Variables & Constants ***/

enum Variable {
 x1, x2
 }

enum Value {
 const_minus_3, const_minus_2, const0, const1
 , const2
 }

one sig LT { lt: Value -> Value }
{ lt = ^(
 (const_minus_3 -> const_minus_2)
 + (const_minus_2 -> const0)
 + (const0 -> const1)
 + (const1 -> const2)
) }

/*** State Transition Predicate ***/

fact trans {
 all st1: State - InitialState | some st: State |

 (st.stmt = S1 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x1 -> SysHigh) &&
 some n: Value | st1.vars = st.vars ++ (x1 -> n) &&
 st1.stmt = S2 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 139

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }
)
) or

 (st.stmt = S2 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x2 -> SysMid) &&
 some n: Value | st1.vars = st.vars ++ (x2 -> n) &&
 st1.stmt = S3 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x2
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x2 }
)
) or

 (st.stmt = S3 &&
 st1.prev_state = st &&
 -- Trusted Assign
 (let xx = tsFilter[st.vars[x1], st.vars[x2], const0,
 st.access_label[x1], st.access_label[x2], SysLow] |
(
 st1.vars = st.vars ++ (x1 -> xx.val) &&
 st1.access_label = st.access_label ++ (x1 -> xx.label)
) &&
 st1.stmt = S4 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }

 -- and inherit all dependencies of the right-hand part x2
 + (x1 -> st.influenced_by[x2])
)
) or

 (st.stmt = S4 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S5 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S5 &&
 st1.prev_state = st &&
 -- Stop
 (st1.stmt = st.stmt)

 140

)
}

run show for 6 but 15 FTuple
check verify_security for 6 but 15 FTuple
check verify_flow_policy for 6 but 15 FTuple
check verify_no_dependency_flaw for 6 but 15 FTuple
check verify_no_storage_channel for 6 but 15 FTuple
check verify_no_timing_channel for 6 but 15 FTuple

 141

APPENDIX B.4 – GENERATED DM FOR BASE PROGRAM
EXAMPLE 4

This appendix provides complete code for the trusted subject information flow

with overt dependency flaw violation example base program and resultant DM described

in Chapter VI - “Example DM Implementations.” The DM below is generated by the

DM-Compiler from the following base program:
(s1) Read_dev (SysHigh, x1);
(s2) Read_dev (SysLow, x2);
(s3) Read_dev (SysMid, x3);
(s4) if x1 < 0 then {
(s5) Assign x1 from x2 as x3;
(s6) Write_dev (SysMid, x1); }
(s7) else Write_dev (SysMid, x1);
(s8) Stop;

The Alloy specification for the DM follows:
/**/
module static_model
open util/ordering[Time] as TO
/**/

/**************************/
/** DM Invariant Model **/
/**************************/

sig Statement {
 type: Stmt_type,
 destination: lone Variable,
 source: set Variable + Value,
 source_label: lone (AccessLabel + Variable),
 key: lone (Variable + Value),
 subject_label: lone AccessLabel
}

enum Stmt_type {
 Assign, Condition,
 Read_dev, Write_dev,
 GetDirectFile, PutDirectFile,
 GetClock, Stop
}

-- define access labels based on security policy lattice
enum AccessLabel { SysHigh, SysMid, SysLow }

-- define a Policy signature to allow BLP-style info flows
one sig Policy {
 ord: AccessLabel -> AccessLabel
}
{ ord = ^((SysLow -> SysMid)
 + (SysMid -> SysHigh))
 + (iden & (AccessLabel -> AccessLabel))

 142

}

sig State {
 stmt: Statement, -- next stmt to execute
 vars: Variable -> one (Value + Time), -- variable table
 access_label: Variable -> one AccessLabel,
 direct_file: DirectFile, -- current snapshot
 current_clock: Time,
 prev_state: lone State,
 err_msg: lone Error,
 influenced_by: Variable -> State,
 last_cond_checked: set State,
}
{ -- define error conditions
 (err_msg = InfoFlow_error <=>
 not consistent_with_FlowPolicy [this]) &&
 (err_msg = Overt_flaw_detected <=>
 dependency_flaw_found[this]) &&
 (err_msg = Storage_channel_detected <=>
 storage_channel_found[this]) &&
 (err_msg = Timing_channel_detected <=>
 timing_channel_found[this])
}

-- Signature for error types
enum Error {
 InfoFlow_error,
 Overt_flaw_detected,
 Storage_channel_detected,
 Timing_channel_detected
}

-- Initialization of State signature: all variables initially have 0
-- value and SysLow label, and DirectFile is empty
one sig InitialState extends State {}
{
 vars = (Variable -> const0)
 access_label = (Variable -> SysLow)
 stmt = S1
 direct_file.full = const0
 direct_file.success =const1
 current_clock = TO/first[]
 prev_state = none
 err_msg = none
 last_cond_checked = none
 no influenced_by
 no direct_file.keyContent
 no direct_file.keyLabel
}

-- Sig establishes ordering of States in a program execution
one sig State_order {
 st_after: State -> State
}
{ st_after = ^ prev_state
}

-- a "Stop" State cannot precede another State
fact { all s: State | s.prev_state.stmt.type != Stop }

-- no two States can be identical
fact { no disj st1, st2: State |

 143

 (st1.stmt = st2.stmt &&
 st1.prev_state = st2.prev_state &&
 st1.vars = st2.vars &&
 st1.direct_file = st2.direct_file)
}

sig DirectFile {
 -- each key Value is assigned a content Value and AccessLabel
 keyContent: Value -> lone Value,
 keyLabel: Value -> lone AccessLabel,
 last_written: lone AccessLabel,
 full: (const0 + const1),
 success: (const0 + const1),
 max_slots: Int
}
{ max_slots = 2 -- capacity limited to 2 key locations
}

sig Time {}

one sig Clock {
 before: Time -> Time,
 long_before: Time -> Time
}
{ long_before in before &&
 all t1: Time, t2: Time - t1 |
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) &&
 ((t1->t2) in long_before <=> some t3: Time |
 (t3 in before[t1] && t3 in before.t2))
}

-- Alloy signature used for passing results of tsFilter function
sig FTuple {
 val: Value,
 label: AccessLabel
}

fact { all v: Value, a: AccessLabel | one f: FTuple |
 f.val=v && f.label=a }

-- Functions, Facts, Assertions and Predicates for info flow security
-- policy and security rules

-- The tsFilter function defines the semantics of the Trusted Subj
-- Assignment statement, by enabling a TS to act as a Content
-- or Label Filter.
-- Different invariant models may define different filter functions,
-- depending on the TS semantics that must be demonstrated.
fun tsFilter[dv, s1v, s2v: Value,
 da, s1a, s2a: AccessLabel]: FTuple {
{ result: FTuple | {
 result.val = (((s1v->const0) in LT.lt)
 => const0 else s1v)
 result.label = (((da->s2a) in Policy.ord)
 => s2a else
 (((s2a->SysMid) in Policy.ord)
 => SysMid else s2a)) }
} }

 144

-- Security assertion to verify program abides by all security rules
-- assert verify_security {
 all s: State |
 consistent_with_FlowPolicy [s] &&
 not dependency_flaw_found [s] &&
 not storage_channel_found [s] &&
 not timing_channel_found [s]
}

-- Define how statements abide by info flow policy
assert verify_flow_policy {
 all s: State | consistent_with_FlowPolicy[s] }

pred consistent_with_FlowPolicy [s: State] {
 let stm = s.stmt | {
 -- for Write_dev or PutDirectFile statement
 (stm.type in (Write_dev + PutDirectFile) &&
 stm.source in Variable)
 => ((s.access_label[stm.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no overt control dependency flaw found in current State

assert verify_no_dependency_flaw {
 all s: State | not dependency_flaw_found[s] }

-- Define conditions under which a control dependency flaw could
-- exist; checks for a Write, where source in the current state is
-- influenced_by State with higher label in required access.
-- Assertion uses dynamic slicing techniques.
pred dependency_flaw_found [s: State] {
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | {
 stm.type = Write_dev &&
 stm.source in Variable &&
 -- check if Write_dev source was influenced_by a var
 -- higher than subject
 not ((s1.access_label[s1.stmt.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no storage covert channels found in current State

assert verify_no_storage_channel {
 all s: State |
 not storage_channel_found[s] }

-- Define conditions under which a storage channel could exist icw
-- a PutDirectFile
pred storage_channel_found [s: State] {
 let stm = s.stmt | {
 stm.type = PutDirectFile &&
 s.direct_file.full = const1 &&
 -- check if direct file was last written by a higher subject
 not ((s.direct_file.last_written -> stm.subject_label)
 in Policy.ord)
 }

 145

}

-- Verify no timing covert channels found in current State

assert verify_no_timing_channel {
 all s: State | not timing_channel_found[s] }

-- Define conditions under which a timing channel could exist
pred timing_channel_found [gc2: State] {
 some disj rw, gc1: State | {
 (gc2 -> rw) in State_order.st_after &&
 (rw -> gc1) in State_order.st_after &&
 gc1.stmt.type = GetClock &&
 gc2.stmt.type = GetClock &&
 rw.stmt.type in (Read_dev + Write_dev
 + PutDirectFile + GetDirectFile) &&
 -- check if GetClocks are at same level
 gc1.stmt.subject_label = gc2.stmt.subject_label &&
 -- check if Read/Write/DirectFile operation at
 -- higher level than GetClock
 not ((rw.stmt.subject_label -> gc2.stmt.subject_label)
 in Policy.ord)
 }
}

-- Find a consistent instance of this model
pred show () {}

/********************************/
/** DM Implementation Model **/
/********************************/
-- The base program is below. Total of 8 statements
-- (S1) Read_dev (SysHigh , x1);
-- (S2) Read_dev (SysLow , x2);
-- (S3) Read_dev (SysMid , x3);
-- (S4) if (x1 < 0) then {
-- (S5) Assign x1 from x2 as x3 ;
-- (S6) Write_dev (SysMid , x1); }
-- else
-- (S7) Write_dev (SysMid , x1);
-- (S8) Stop;

/*** Statement sigs ***/

one sig S1 extends Statement {}
{
 type = Read_dev
 destination = x1
 source = none
 source_label = none
 key = none
 subject_label = SysHigh
}

one sig S2 extends Statement {}
{
 type = Read_dev
 destination = x2
 source = none
 source_label = none

 146

 key = none
 subject_label = SysLow
}

one sig S3 extends Statement {}
{
 type = Read_dev
 destination = x3
 source = none
 source_label = none
 key = none
 subject_label = SysMid
}

one sig S5 extends Statement {}
{
 type = Assign
 source = x2
 destination = x1
 source_label = x3
 key = none
}

one sig S6 extends Statement {}
{
 type = Write_dev
 source = x1
 destination = none
 source_label = none
 key = none
 subject_label = SysMid
}

one sig S7 extends Statement {}
{
 type = Write_dev
 source = x1
 destination = none
 source_label = none
 key = none
 subject_label = SysMid
}

one sig S4 extends Statement {}
{
 type = Condition
 source = x1
 destination = none
 source_label = none
 key = none
}

one sig S8 extends Statement {}
{
 type = Stop
 source = none
 destination = none
 source_label = none
 key = none
}

/*** Variables & Constants ***/

 147

enum Variable {
 x1, x2, x3
 }

enum Value {
 const_minus_4, const_minus_3, const_minus_2, const0
 , const1, const2, const3
 }

one sig LT { lt: Value -> Value }
{ lt = ^(
 (const_minus_4 -> const_minus_3)
 + (const_minus_3 -> const_minus_2)
 + (const_minus_2 -> const0)
 + (const0 -> const1)
 + (const1 -> const2)
 + (const2 -> const3)
) }

/*** State Transition Predicate ***/

fact trans {
 all st1: State - InitialState | some st: State |

 (st.stmt = S1 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x1 -> SysHigh) &&
 some n: Value | st1.vars = st.vars ++ (x1 -> n) &&
 st1.stmt = S2 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }
)
) or

 (st.stmt = S2 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x2 -> SysLow) &&
 some n: Value | st1.vars = st.vars ++ (x2 -> n) &&
 st1.stmt = S3 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x2
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x2 }
)
) or

 (st.stmt = S3 &&
 st1.prev_state = st &&

 148

 -- Read_dev
 (st1.access_label = st.access_label ++ (x3 -> SysMid) &&
 some n: Value | st1.vars = st.vars ++ (x3 -> n) &&
 st1.stmt = S4 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x3
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x3 }
)
) or

 (st.stmt = S5 &&
 st1.prev_state = st &&
 -- Trusted Assign
 (let xx = tsFilter[st.vars[x1], st.vars[x2], st.vars[x3],
 st.access_label[x1], st.access_label[x2],
st.access_label[x3]] | (

 st1.vars = st.vars ++ (x1 -> xx.val) &&
 st1.access_label = st.access_label ++ (x1 -> xx.label)
) &&
 st1.stmt = S6 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }

 -- and inherit all dependencies of the source_label x3
 + (x1 -> st.influenced_by[x3])

 -- Part B, all states from last_cond_checked
 -- within which scope this assignment belongs
 + (x1 -> {x: st.last_cond_checked | x.stmt in S4})

 -- Part C, copy dependencies for all variables
participating in
 -- conditions within which scope this assignment belongs
 + (x1 -> State.{ x: st.last_cond_checked,
 y: x.influenced_by[x.stmt.source] | x.stmt in S4 })
)
) or

 (st.stmt = S6 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S8 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S7 &&

 149

 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S8 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S4 &&
 st1.prev_state = st &&
 -- if
 (st1.access_label = st.access_label &&
 st1.vars = st.vars &&
 st1.current_clock = st.current_clock &&
 st1.direct_file = st.direct_file &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = {x: st.last_cond_checked | x.stmt !=
S4} + st &&
 (
 ((st.vars[x1] -> const0) in LT.lt)
 => st1.stmt = S5
 else st1.stmt = S7)
)
) or

 (st.stmt = S8 &&
 st1.prev_state = st &&
 -- Stop
 (st1.stmt = st.stmt)
)
}

run show for 9 but 28 FTuple
check verify_security for 9 but 28 FTuple
check verify_flow_policy for 9 but 28 FTuple
check verify_no_dependency_flaw for 9 but 28 FTuple
check verify_no_storage_channel for 9 but 28 FTuple
check verify_no_timing_channel for 9 but 28 FTuple

 150

THIS PAGE INTENTIONALLY LEFT BLANK

 151

APPENDIX B.5 – GENERATED DM FOR BASE PROGRAM
EXAMPLE 5

This appendix provides complete code for the trusted subject storage covert

channel violation example base program and resultant DM described in Chapter VI -

“Example DM Implementations.” The DM below is generated by the DM-Compiler

from the following base program:
(s1) Read_dev (SysLow, x1);
(s2) Read_dev (SysLow, x2);
(s3) Assign x1 from x2 as SysHigh;
(s4) if x1 > const_minus_1 then {
(s5) PutDirectFile (SysHigh, 1, x1);
(s6) PutDirectFile (SysHigh, 2, x2); }
(s7) PutDirectFile (SysLow, 3, 1);
(s8) if (full = True) then
(s9) Write_dev (SysLow, 1);
(s10) else Write_dev (SysLow, 0);
(s11) Stop;

The Alloy specification for the DM follows:
/**/
module static_model
open util/ordering[Time] as TO
/**/

/**************************/
/** DM Invariant Model **/
/**************************/

sig Statement {
 type: Stmt_type,
 destination: lone Variable,
 source: set Variable + Value,
 source_label: lone (AccessLabel + Variable),
 key: lone (Variable + Value),
 subject_label: lone AccessLabel
}

enum Stmt_type {
 Assign, Condition,
 Read_dev, Write_dev,
 GetDirectFile, PutDirectFile,
 GetClock, Stop
}

-- define access labels based on security policy lattice
enum AccessLabel { SysHigh, SysMid, SysLow }

-- define a Policy signature to allow BLP-style info flows
one sig Policy {
 ord: AccessLabel -> AccessLabel
}

 152

{ ord = ^((SysLow -> SysMid)
 + (SysMid -> SysHigh))
 + (iden & (AccessLabel -> AccessLabel))
}

sig State {
 stmt: Statement, -- next stmt to execute
 vars: Variable -> one (Value + Time), -- variable table
 access_label: Variable -> one AccessLabel,
 direct_file: DirectFile, -- current snapshot
 current_clock: Time,
 prev_state: lone State,
 err_msg: lone Error,
 influenced_by: Variable -> State,
 last_cond_checked: set State,
}
{ -- define error conditions
 (err_msg = InfoFlow_error <=>
 not consistent_with_FlowPolicy [this]) &&
 (err_msg = Overt_flaw_detected <=>
 dependency_flaw_found[this]) &&
 (err_msg = Storage_channel_detected <=>
 storage_channel_found[this]) &&
 (err_msg = Timing_channel_detected <=>
 timing_channel_found[this])
}

-- Signature for error types
enum Error {
 InfoFlow_error,
 Overt_flaw_detected,
 Storage_channel_detected,
 Timing_channel_detected
}

-- Initialization of State signature: all variables initially have 0
-- value and SysLow label, and DirectFile is empty
one sig InitialState extends State {}
{
 vars = (Variable -> const0)
 access_label = (Variable -> SysLow)
 stmt = S1
 direct_file.full = const0
 direct_file.success =const1
 current_clock = TO/first[]
 prev_state = none
 err_msg = none
 last_cond_checked = none
 no influenced_by
 no direct_file.keyContent
 no direct_file.keyLabel
}

-- Sig establishes ordering of States in a program execution
one sig State_order {
 st_after: State -> State
}
{ st_after = ^ prev_state
}

-- a "Stop" State cannot precede another State
fact { all s: State | s.prev_state.stmt.type != Stop }

 153

-- no two States can be identical
fact { no disj st1, st2: State |
 (st1.stmt = st2.stmt &&
 st1.prev_state = st2.prev_state &&
 st1.vars = st2.vars &&
 st1.direct_file = st2.direct_file)
}

sig DirectFile {
 -- each key Value is assigned a content Value and AccessLabel
 keyContent: Value -> lone Value,
 keyLabel: Value -> lone AccessLabel,
 last_written: lone AccessLabel,
 full: (const0 + const1),
 success: (const0 + const1),
 max_slots: Int
}
{ max_slots = 2 -- capacity limited to 2 key locations
}

sig Time {}

one sig Clock {
 before: Time -> Time,
 long_before: Time -> Time
}
{ long_before in before &&
 all t1: Time, t2: Time - t1 |
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) &&
 ((t1->t2) in long_before <=> some t3: Time |
 (t3 in before[t1] && t3 in before.t2))
}

-- Alloy signature used for passing results of tsFilter function
sig FTuple {
 val: Value,
 label: AccessLabel
}

fact { all v: Value, a: AccessLabel | one f: FTuple |
 f.val=v && f.label=a }

-- Functions, Facts, Assertions and Predicates for info flow security
-- policy and security rules

-- The tsFilter function defines the semantics of the Trusted Subj
-- Assignment statement, by enabling a TS to act as a Content
-- or Label Filter.
-- Different invariant models may define different filter functions,
-- depending on the TS semantics that must be demonstrated.
fun tsFilter[dv, s1v, s2v: Value,
 da, s1a, s2a: AccessLabel]: FTuple {
{ result: FTuple | {
 result.val = (((s1v->const0) in LT.lt)
 => const0 else s1v)
 result.label = (((da->s2a) in Policy.ord)
 => s2a else
 (((s2a->SysMid) in Policy.ord)

 154

 => SysMid else s2a)) }
} }

-- Security assertion to verify program abides by all security rules
-- assert verify_security {
 all s: State |
 consistent_with_FlowPolicy [s] &&
 not dependency_flaw_found [s] &&
 not storage_channel_found [s] &&
 not timing_channel_found [s]
}

-- Define how statements abide by info flow policy
assert verify_flow_policy {
 all s: State | consistent_with_FlowPolicy[s] }

pred consistent_with_FlowPolicy [s: State] {
 let stm = s.stmt | {
 -- for Write_dev or PutDirectFile statement
 (stm.type in (Write_dev + PutDirectFile) &&
 stm.source in Variable)
 => ((s.access_label[stm.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no overt control dependency flaw found in current State

assert verify_no_dependency_flaw {
 all s: State | not dependency_flaw_found[s] }

-- Define conditions under which a control dependency flaw could
-- exist; checks for a Write, where source in the current state is
-- influenced_by State with higher label in required access.
-- Assertion uses dynamic slicing techniques.
pred dependency_flaw_found [s: State] {
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | {
 stm.type = Write_dev &&
 stm.source in Variable &&
 -- check if Write_dev source was influenced_by a var
 -- higher than subject
 not ((s1.access_label[s1.stmt.source] -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no storage covert channels found in current State

assert verify_no_storage_channel {
 all s: State |
 not storage_channel_found[s] }

-- Define conditions under which a storage channel could exist icw
-- a PutDirectFile
pred storage_channel_found [s: State] {
 let stm = s.stmt | {
 stm.type = PutDirectFile &&
 s.direct_file.full = const1 &&
 -- check if direct file was last written by a higher subject

 155

 not ((s.direct_file.last_written -> stm.subject_label)
 in Policy.ord)
 }
}

-- Verify no timing covert channels found in current State

assert verify_no_timing_channel {
 all s: State | not timing_channel_found[s] }

-- Define conditions under which a timing channel could exist
pred timing_channel_found [gc2: State] {
 some disj rw, gc1: State | {
 (gc2 -> rw) in State_order.st_after &&
 (rw -> gc1) in State_order.st_after &&
 gc1.stmt.type = GetClock &&
 gc2.stmt.type = GetClock &&
 rw.stmt.type in (Read_dev + Write_dev
 + PutDirectFile + GetDirectFile) &&
 -- check if GetClocks are at same level
 gc1.stmt.subject_label = gc2.stmt.subject_label &&
 -- check if Read/Write/DirectFile operation at
 -- higher level than GetClock
 not ((rw.stmt.subject_label -> gc2.stmt.subject_label)
 in Policy.ord)
 }
}

-- Find a consistent instance of this model
pred show () {}

/********************************/
/** DM Implementation Model **/
/********************************/
-- The base program is below. Total of 11 statements
-- (S1) Read_dev (SysLow , x1);
-- (S2) Read_dev (SysLow , x2);
-- (S3) Assign x1 from x2 as SysHigh ;
-- (S4) if (x1 > const_minus_1) then {
-- (S5) PutDirectFile (SysHigh , 1 , x1);
-- (S6) PutDirectFile (SysHigh , 2 , x2); }
-- (S7) PutDirectFile (SysLow , 3 , 1);
-- (S8) if (full = True) then
-- (S9) Write_dev (SysLow , 1);
-- else
-- (S10) Write_dev (SysLow , 0);
-- (S11) Stop;

/*** Statement sigs ***/

one sig S1 extends Statement {}
{
 type = Read_dev
 destination = x1
 source = none
 source_label = none
 key = none
 subject_label = SysLow
}

 156

one sig S2 extends Statement {}
{
 type = Read_dev
 destination = x2
 source = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S3 extends Statement {}
{
 type = Assign
 source = x2
 destination = x1
 source_label = SysHigh
 key = none
}

one sig S5 extends Statement {}
{
 type = PutDirectFile
 source = x1
 key = const1
 destination = none
 source_label = none
 subject_label = SysHigh
}

one sig S6 extends Statement {}
{
 type = PutDirectFile
 source = x2
 key = const2
 destination = none
 source_label = none
 subject_label = SysHigh
}

one sig S4 extends Statement {}
{
 type = Condition
 source = x1 + const_minus_1
 destination = none
 source_label = none
 key = none
}

one sig S7 extends Statement {}
{
 type = PutDirectFile
 source = const1
 key = const3
 destination = none
 source_label = none
 subject_label = SysLow
}

one sig S9 extends Statement {}
{
 type = Write_dev
 source = const1
 destination = none

 157

 source_label = none
 key = none
 subject_label = SysLow
}

one sig S10 extends Statement {}
{
 type = Write_dev
 source = const0
 destination = none
 source_label = none
 key = none
 subject_label = SysLow
}

one sig S8 extends Statement {}
{
 type = Condition
 source = none
 destination = none
 source_label = none
 key = none
}

one sig S11 extends Statement {}
{
 type = Stop
 source = none
 destination = none
 source_label = none
 key = none
}

/*** Variables & Constants ***/

enum Variable {
 x1, x2, const_minus_1
 }

enum Value {
 const_minus_4, const_minus_3, const_minus_2, const0
 , const1, const2, const3, const4
 , const5, const6
 }

one sig LT { lt: Value -> Value }
{ lt = ^(
 (const_minus_4 -> const_minus_3)
 + (const_minus_3 -> const_minus_2)
 + (const_minus_2 -> const0)
 + (const0 -> const1)
 + (const1 -> const2)
 + (const2 -> const3)
 + (const3 -> const4)
 + (const4 -> const5)
 + (const5 -> const6)
) }

/*** State Transition Predicate ***/

fact trans {

 158

 all st1: State - InitialState | some st: State |

 (st.stmt = S1 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x1 -> SysLow) &&
 some n: Value | st1.vars = st.vars ++ (x1 -> n) &&
 st1.stmt = S2 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }
)
) or

 (st.stmt = S2 &&
 st1.prev_state = st &&
 -- Read_dev
 (st1.access_label = st.access_label ++ (x2 -> SysLow) &&
 some n: Value | st1.vars = st.vars ++ (x2 -> n) &&
 st1.stmt = S3 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x2
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x2 }
)
) or

 (st.stmt = S3 &&
 st1.prev_state = st &&
 -- Trusted Assign
 (let xx = tsFilter[st.vars[x1], st.vars[x2], const0,
 st.access_label[x1], st.access_label[x2], SysHigh]
| (
 st1.vars = st.vars ++ (x1 -> xx.val) &&
 st1.access_label = st.access_label ++ (x1 -> xx.label)
) &&
 st1.stmt = S4 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = st.current_clock &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.influenced_by =

 -- Part A, copy all dependencies for vars different from x1
 {v: Variable, s: State | (v -> s) in st.influenced_by &&
v!= x1 }

 -- and inherit all dependencies of the right-hand part x2
 + (x1 -> st.influenced_by[x2])
)
) or

 (st.stmt = S5 &&
 st1.prev_state = st &&

 159

 -- PutDirectFile
 (st1.stmt = S6 &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.vars = st.vars &&
 st1.access_label = st.access_label &&
 ((const1 in st.direct_file.keyContent.Value) =>
 -- the key is found
 (st1.direct_file.success = const1 &&
 st1.direct_file.keyContent = st.direct_file.keyContent
++
 (const1 -> st.vars[x1]) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel ++
 (const1 -> SysHigh) &&
 -- since key already existed, full remains the same
 st1.direct_file.full = st.direct_file.full
)
 else -- the key is not found
 (st.direct_file.full = const0 => -- Direct File not
Full
 (st1.direct_file.keyContent =
st.direct_file.keyContent ++
 (const1 -> st.vars[x1]) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel
++
 (const1 -> SysHigh) &&
 st1.direct_file.success = const1 &&
 -- if content limit reached, set full to const1
(true)
 (#st1.direct_file.keyContent =
st1.direct_file.max_slots =>

 st1.direct_file.full = const1 else st1.direct_file.full =
const0)
)
 else -- Direct File is Full
 (st1.direct_file = st.direct_file &&
 st1.direct_file.success = const0 &&
 -- assign full to const1 (true)
 st1.direct_file.full = const1)
)
)
)
) or

 (st.stmt = S6 &&
 st1.prev_state = st &&
 -- PutDirectFile
 (st1.stmt = S7 &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.vars = st.vars &&
 st1.access_label = st.access_label &&
 ((const2 in st.direct_file.keyContent.Value) =>
 -- the key is found
 (st1.direct_file.success = const1 &&
 st1.direct_file.keyContent = st.direct_file.keyContent
++
 (const2 -> st.vars[x2]) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel ++
 (const2 -> SysHigh) &&
 -- since key already existed, full remains the same
 st1.direct_file.full = st.direct_file.full

 160

)
 else -- the key is not found
 (st.direct_file.full = const0 => -- Direct File not
Full
 (st1.direct_file.keyContent =
st.direct_file.keyContent ++
 (const2 -> st.vars[x2]) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel
++
 (const2 -> SysHigh) &&
 st1.direct_file.success = const1 &&
 -- if content limit reached, set full to const1
(true)
 (#st1.direct_file.keyContent =
st1.direct_file.max_slots =>

 st1.direct_file.full = const1 else st1.direct_file.full =
const0)
)
 else -- Direct File is Full
 (st1.direct_file = st.direct_file &&
 st1.direct_file.success = const0 &&
 -- assign full to const1 (true)
 st1.direct_file.full = const1)
)
)
)
) or

 (st.stmt = S4 &&
 st1.prev_state = st &&
 -- if
 (st1.access_label = st.access_label &&
 st1.vars = st.vars &&
 st1.current_clock = st.current_clock &&
 st1.direct_file = st.direct_file &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = {x: st.last_cond_checked | x.stmt !=
S4} + st &&
 (
 ((st.vars[const_minus_1] -> st.vars[x1]) in LT.lt)
 => st1.stmt = S5
 else st1.stmt = S7)
)
) or

 (st.stmt = S7 &&
 st1.prev_state = st &&
 -- PutDirectFile
 (st1.stmt = S8 &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.last_cond_checked = st.last_cond_checked &&
 st1.vars = st.vars &&
 st1.access_label = st.access_label &&
 ((const3 in st.direct_file.keyContent.Value) =>
 -- the key is found
 (st1.direct_file.success = const1 &&
 st1.direct_file.keyContent = st.direct_file.keyContent
++
 (const3 -> const1) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel ++
 (const3 -> SysLow) &&
 -- since key already existed, full remains the same

 161

 st1.direct_file.full = st.direct_file.full
)
 else -- the key is not found
 (st.direct_file.full = const0 => -- Direct File not
Full
 (st1.direct_file.keyContent =
st.direct_file.keyContent ++
 (const3 -> const1) &&
 st1.direct_file.keyLabel = st.direct_file.keyLabel
++
 (const3 -> SysLow) &&
 st1.direct_file.success = const1 &&
 -- if content limit reached, set full to const1
(true)
 (#st1.direct_file.keyContent =
st1.direct_file.max_slots =>

 st1.direct_file.full = const1 else st1.direct_file.full =
const0)
)
 else -- Direct File is Full
 (st1.direct_file = st.direct_file &&
 st1.direct_file.success = const0 &&
 -- assign full to const1 (true)
 st1.direct_file.full = const1)
)
)
)
) or

 (st.stmt = S9 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S11 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S10 &&
 st1.prev_state = st &&
 -- Write_dev
 (st1.access_label = st.access_label &&
 st1.stmt = S11 &&
 st1.direct_file = st.direct_file &&
 st1.current_clock = TO/next[st.current_clock] &&
 st1.influenced_by = st.influenced_by &&
 st1.last_cond_checked = st.last_cond_checked
)
) or

 (st.stmt = S8 &&
 st1.prev_state = st &&
 -- if
 (st1.access_label = st.access_label &&
 st1.vars = st.vars &&
 st1.current_clock = st.current_clock &&
 st1.direct_file = st.direct_file &&
 st1.influenced_by = st.influenced_by &&

 162

 st1.last_cond_checked = {x: st.last_cond_checked | x.stmt !=
S8} + st &&
 ((st.direct_file.full = const1)
 => st1.stmt = S9
 else st1.stmt = S10)
)
) or

 (st.stmt = S11 &&
 st1.prev_state = st &&
 -- Stop
 (st1.stmt = st.stmt)
)
}

run show for 12 but 40 FTuple
check verify_security for 12 but 40 FTuple
check verify_flow_policy for 12 but 40 FTuple
check verify_no_dependency_flaw for 12 but 40 FTuple
check verify_no_storage_channel for 12 but 40 FTuple
check verify_no_timing_channel for 12 but 40 FTuple

 163

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA

4. Dr. Mikhail Auguston
Computer Science Department
Naval Postgraduate School
Monterey, CA

5. Dr. Cynthia Irvine
Computer Science Department
Naval Postgraduate School
Monterey, CA

6. Dr. Gurminder Singh
Computer Science Department
Naval Postgraduate School
Monterey, CA

7. Dr. Gordon Bradley
Operations Research Department
Naval Postgraduate School
Monterey, CA

8. Timothy Levin
Computer Science Department
Naval Postgraduate School
Monterey, CA

9. Dr. Dennis Volpano
Computer Science Department
Naval Postgraduate School
Monterey, CA

 164

10. Dr. Bret Michael

Computer Science Department
Naval Postgraduate School
Monterey, CA

11. CDR Alan B. Shaffer, USN
Computer Science Department
Naval Postgraduate School
Monterey, CA

12. Dr. Ralph Wachter
Office of Naval Research
Arlington, VA

13. Karl Levitt
National Science Foundation
Arlington, VA

14. Dr. John Monastra
National Reconnaissance Office
Chantilly, VA

15. Dr. Daniel Jackson
MIT Computer Science and AI Lab
The Strata Center
Cambridge, MA

16. Dr. Jin Song Dong
Computer Science Department, School of Computing
National University of Singapore
Singapore

