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ABSTRACT 

A key element of the U.S. Navy’s transition to an electric naval force is an 

Integrated Power System (IPS) that provides continuity of service to vital systems despite 

combat damage.  In order to meet subsequent survivability standards under a reduced 

manning constraint, the IPS system must include a fault tolerant control scheme, capable 

of achieving automated graceful degradation despite major disruptions involving 

cascading failures.  Toward this objective, online model-based residual generation 

techniques are proposed, which identify explicitly defined faults within a stochastic DC 

Zonal Electrical Distribution System (DC ZEDS).  Two novel polynomial approaches to 

the design of unknown input observers (UIO) are developed to estimate the partial state 

and, under certain conditions, the unknown input.  These methods are shown to apply to a 

larger class of systems compared to standard projection based approaches where the UIO 

rank condition is not satisfied.  It is shown that the partial-state estimate is sufficient to 

the computation of residuals for fault diagnosis, even in such cases where full-state 

estimation is not possible.  In order to reduce the complexity of the system, a modular 

approach to Fault Detection and Isolation (FDI) is presented.  Here, the innovations 

generated from a bank of Kalman filters (some of them UIOs) act as a structured residual 

set for the stochastic DC ZEDS subsystem modules and are shown to detect and isolate 

various classes of faults.  Certain mathematical models are also shown to effectively 

identify input/output consistency of systems in explicitly defined fault conditions.  

Numerical simulation results are based on the well-documented Office of Naval Research 

Control Challenge benchmark system, which represents a prototypical U.S. Navy 

shipboard IPS power distribution system. 
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EXECUTIVE SUMMARY 

The incorporation of an Integrated Power System (IPS) in the DDG 1000 

Destroyer represents a first step in a transformation to an Electric Naval Force [72].  

Moreover, the U.S. Navy is presently assessing alternative power and control system 

architectures for the Next Generation Integrated Power System (NGIPS) [395].  These 

systems must be survivable and increasingly capable of brokering propulsion and pulsed 

power demands while providing ships service power continuity to vital mission systems 

[91].  In an era of asymmetric warfare and reduced manning constraints, the NGIPS must 

provide automated continuity of service control to vital systems despite major disruptions 

involving cascading failures.  Toward this objective, online physics-based fault detection 

and isolation (FDI) techniques are proposed and are expected to operate within a fault 

tolerant control (FTC) framework.  The methods seek to identify explicitly defined faults 

within a DC Zonal Electrical Distribution System (DC ZEDS) portion of an IPS.  Here, 

mathematical models, together with sensors providing real-time data, are used to validate 

the condition of the system.  The results of this research demonstrate various methods of 

generating fault-indicating signatures for classes of sensor, actuator, and plant faults.  In 

the case of system actuator FDI, several estimation techniques based on a polynomial 

realization are developed.  Numerical simulation results are based on the well-

documented Office of Naval Research Control Challenge benchmark system, which 

represents a prototypical U.S. Navy shipboard IPS power distribution system. 
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I. INTRODUCTION  

In keeping with the vision set forth by the Chief of Naval Operations, Naval 

warships in the Twenty-First Century must have the ability to “change, adapt and 

transform” to meet new threats.  Indeed, Sea Power 21 defines a Navy capable of 

constantly improving its ability to “project offensive power, defensive assurance, and 

operational independence around the globe” [111].  To achieve the vision, the CNO 

outlines three fundamental pillars; among them is a continuing transformation of 

improved technology.   

Achieving these goals require warships with a higher degree of survivability to 

enable decisiveness, sustainability, responsiveness and agility, which are the four 

fundamental qualities in Sea Power 21.  From an operational point of view, survivability 

is the ability to avoid and withstand a hostile environment.  From a system-level point of 

view, it can be thought of as a “fight hurt” or “fight-through” capability – that is, the 

warship’s ability to maintain continuity of service despite major disruptions and 

cascading failures in the presence of catastrophic events.   

Within this framework, an automated fault-tolerant control scheme is essential to 

a warship’s fight-through capability.  Of particular importance in achieving a graceful 

degradation of warship systems under these conditions is a design strategy that integrates 

combat systems with advanced hull, mechanical and electrical capabilities.  According to 

the U.S. Navy Survivability Design Handbook for Surface Ships, developing affordable 

survivability measures under a distributed, dynamically interdependent system of systems 

framework will “constitute the hallmark of the Navy's new approach to reliably automate 

damage control functions while operating with fewer crewmembers”  [343]. 

 Take for example an Integrated Fight Through Power (IFTP) system, which seeks 

to maintain power continuity resulting from a calamitous exogenous event.  According to 

numerous Naval Research Advisory Committee (NRAC) reports and naval power 

systems and automation experts, there is a growing need to develop cost-effective ways 

to solve power automation issues by taking into account the following aspects:  

[390][391][91][264][72][76] 
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1. Automation will be essential to ensure survivable and effective surface 

combatants in the warfare environment [271]. 

2. Personnel costs comprise over 50% of operating and supporting costs, 

therefore it is necessary to reduce the number of shipboard war fighters.  

Smart Ship demonstrated that technology and procedural changes can 

improve ship operations [272].   

3. Well-trained crew members are decision-makers that require real-time data to 

make informed decisions.  No longer able to rely on a well-staffed crew for 

data and unable to react to rapid and complex nonlinear system 

interdependencies, an automation strategy must instead respond to cascading 

system faults and failures [392].  

4. Life Cycle Costs (LCC), which include research and development, can be 

reduced by implementing simulation-based design environments – especially 

in cases where revolutionary technologies are being developed – where no 

historical cost data exists [273]. 

5. Advanced distributed simulations and simulation-based 

design/manufacturing to assess new technologies and ship design options is 

encouraged [273][392].   

 
Given this trend, it is most desirable and advantageous to employ an on-line 

analytically redundant, robust Fault Tolerant Control (FTC) scheme designed to detect 

unpermitted deviations from a system’s expected, acceptable or standard condition and 

perform actions as necessary to maintain continuity of service – in this case, power 

distribution.  Herein, the first of a two-step FTC process is presented using robust model-

based Fault Detection and Isolation (FDI) methods.  Characteristics of faults such as 

time, location, size, and relative influence are determined through residual generation and 

analysis methods developed herein.  The methods are applied to a DC Zonal Electrical 

Distribution System (DC ZEDS) testbed designed to resemble dc power distribution 

systems currently being researched for installation on future all-electric warships for 

reasons to be discussed.  
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A. ROADMAP TO AN ELECTRIC NAVAL FORCE 
The NRAC report Roadmap to an Electric Naval Force identified several major 

motivations for the navy to shift away from a separated power and propulsion platform 

and towards an all-electric warship [271][390][391][392]: 

 

• Electric weapons and advanced sensors for superior firepower range and 

resolution require far greater pulse power than currently available. 

• Electric propulsion and auxiliaries possess superior mobility, stealth and 

endurance. 

• Integrated Power System (IPS) allows provision for common electric 

power system for real-time power allocation, reconfigurability, and 

superior survivability. 

• Electric ship platform provides support for off board weapons and sensors 

for superior reach and warfighter sustainment. 

 

These reasons among many others make transitioning to an all-electric drive 

warship as significant a change as shifting from steam to gas turbine and possibly even 

from sail to steam.  With this change comes the challenge of managing far greater power 

requirements – on the order of tens of megawatts, which is only the beginning 

[11][72][90].  Already committed to fielding an electric warship, the U.S. Navy is 

currently building DDG 1000 as the baseline for future DC zonal electric power systems 

[271].  Again, survivability requirements and current trends in power electronics 

technology obviate the need for a power automation scheme capable of providing 

continuity of service under temporal and spatial bursts of natural or hostile disruption 

[390].  A Fault Tolerant Control scheme, then, provides a framework upon which to build 

a desirable, realizable, and tractable solution. 
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B. FAULT TOLERANT CONTROL 
A fault can be described as any deviation from nominal system behavior that can 

negatively impact overall desired system performance.  A mathematical model-based 

approach to the detection of a fault, therefore, is sought.  From a system automation point 

of view, a representative Fault Tolerant Control architecture can be depicted as in Figure 

I.1 [44]. 

   

 

Figure I.1:  Fault Management Architecture 
 

Notice the fault management architecture contains an execution level, which 

resembles common model-based state feedback control system architecture and a 

supervisory level, which depicts two major processes – diagnosis and controller re-

design.  The plant includes modeling uncertainties defined as a vector of unknown inputs 

d .  A vector of faults f , cause the plant to deviate from a nominal condition.   
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Assuming linearity, a plant model (depicted in Figure I.1) can be expressed in 

continuous time as 

   

x Ax Bu Ed Gf
y Cx Fd Hf
= + + +
= + +

            (0.1) 

 

where state vector ,  input , and output n m rx u y∈ ∈ ∈  and matrices A , B , C , E , 

F , G  and H  are of appropriate dimensions.  The terms Ed  and  Gf  model uncertain 

(unknown) inputs and faults, respectively, in the actuator(s) and plant model.  In the 

output equation, Fd  and Hf  represent uncertain (unknown) inputs and faults in the 

sensors.  Note that matrices A , B , and C  represent the nominal system where all faults 

and uncertainties are assumed to be contained within f  and d .  It is further assumed that 

matrices E , F , G  and H are constant and known, while f  and d  are typically 

unknown. 

Looking at the reconfiguration level in Figure I.1, the main objective of the on-

line Fault Diagnosis process block is to determine if the system is subjected to a fault and 

its time of occurrence. Then, all subsequent actions should focus on characterizing the 

fault(s) to the greatest extent possible.  These actions should include estimating the fault’s 

location, identification, and severity.  If a history of fault activity is needed for 

conditioned-based maintenance or scenario reconstruction, then developing fault statistics 

would be advantageous.  This step is represented as the output to the Fault Diagnosis 

process block and is annotated by f̂ . 

The Controller/Plant adjustment process block then receives the fault information 

and performs appropriate controlling action as depicted in the figure.  This action might 

be to adjust the parameters of the controller or reconfigure the controller altogether.  If a 

fault becomes a failure in the nominal plant, then it might be necessary to operate in a 

reduced capability, damage control reconfiguration mode in order to maintain continuity 

of service.  If this is the case, then it might be advantageous to have the Controller/Plant 
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adjustment process block initiate a reconfiguring of the nominal plant and associated 

mathematical models in the Fault Diagnosis block. 

Some work has been done at the execution level within a Fault Tolerant Control 

framework.  To a limited degree, fault tolerance can be achieved under a robust or 

adaptive control design.  In Robust Control, passive fault tolerance is achieved by a fixed 

controller that is designed to satisfy pre-defined performance specifications.  Adaptive 

control methods, on the other hand, are considered active fault tolerance measures since 

controller parameters are adjusted to changing plant parameters (possibly caused by 

faults) as a function of time.  In both cases, however, the classes of faults are restricted in 

the sense that they must be “well-behaved” according to their fault definitions and 

mathematical formulations.  Adaptive control, for example, performs well only for linear 

systems with slowly changing parameters [44].  Neither method attempts to diagnose a 

broader range of faults nor do they attempt to change the controller or plant structure to 

mask, compensate, correct, re-configure, re-design or otherwise “tolerate” faults.  This 

work looks beyond the restricted class of faults to generate residuals at the supervisory 

level. 

 

C. OVERVIEW AND CONTRIBUTIONS  
As described in Figure I.1, the flow in the reconfiguration level of a representative 

FTC architecture begins with Fault Diagnosis.  It is the intent of this work to provide the 

output of the Fault Diagnosis process block – that is, the necessary fault information for 

further processing to obtain the Navy’s goal:  achieve automated fight-through capability 

despite major disruptions and cascading failures.  Common error masking and error 

recovery methods are poorly suited for a system description under this framework 

[390][392]. 

The goal of this work is to develop Fault Diagnosis strategies applied to the DC 

Zonal Electrical Distribution System (DC ZEDS) by generating model-based residuals 

from estimates of the partial state.  The following chapters will establish a methodology 

for establishing the DC ZEDS models, estimation methods, and  Fault Detection and 

Isolation (FDI) methods. 
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Chapter II details the modules of the DC ZEDS system to include how some of 

the nonlinear dynamics are averaged.  Since a deductive approach will be taken to 

identify the effects of a system fault, a close observation of fault effects will be 

monitored.  It will be shown that output sensor measurements are selected to guarantee 

observability and are consistent with algebraic relationships and conservation of energy 

laws.  Chapter III then explains the methodology for choosing estimation methods, 

including several novel polynomial unknown input observer methods.  An explanation 

for using linear methods on nonlinear models will also be addressed.  Chapter IV 

identifies common mode failures and identifies classes of faults through simulation, then 

provides a methodology for choosing the Fault Diagnosis schemes to developing fault 

indications in the residuals.  Finally, Chapter V provides a summary of results. 

Overall, the contributions of this work can be categorized into 2 main areas.  The 

first is in a novel polynomial approach to the design of unknown input observers (UIO) 

with particular attention paid to partial-state and input estimation.  The second area is in 

the FDI techniques applied to the DC ZEDS application.  

A structural residual set – predicated upon physics-based mathematical model 

estimation – is developed to decouple the effects from a defined set of faults in order to 

determine fault indications.  The unknown input observer (UIO) developed in this 

research will be part of this task. 

Even though UIOs are used for Fault Detection and Isolation (FDI), little 

application research has been done to take advantage of input estimation, which is shown 

to enhance analytical redundancy.  In addition, it will be shown that the proposed 

polynomial based approach can be applied to a more general class of systems, compared 

to the standard projection based approach of [175]. 

A polynomial approach to a general UIO for state and input estimation for both 

discrete and continuous time systems is presented for the purpose of fault detection and 

isolation.  Unlike UIO methods that are based on a subspace projection of the whole state 

onto a subspace of known state components (such as [73], [80] and [175]), this robust  
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estimation method is based on an estimate of the partial-state representation of the 

system.  This is sufficient to the computation of a residual, even in cases when full-state 

estimation is not possible. 
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II. DC ZONAL ELECTRICAL DISTRIBUTION SYSTEM 

Among all shipboard distributed systems, it can be argued that the power 

distribution system is the most vital.  If not for its tightly coupled interdependence with 

every shipboard distributed system (including propulsion), it would be in terms of 

potential vulnerability.  Indeed, an all-electric drive warship depends absolutely upon its 

power system to provide quality and continuity of service while operating in a hostile 

environment.  And with future warships potentially requiring eight to ten times the power 

generated on today’s warships, it will only increase its stock.   

The prototypical power electronics based dc zonal electrical distribution system is 

uniquely designed as an efficient high power density, fast transient response, tightly 

coupled finite inertia system.  The sophisticated and robust power converter control 

elements provide nearly-ideal load regulation and transient performance (tens of 

milliseconds) with a high degree of fault tolerance.  The system is also characterized as 

having a high degree of automation and nearly instantaneous reconfiguration capabilities.  

For example, a dc/dc buck converter – which is the Ship’s Service Converter Module 

(SSCM) in the representative DC ZEDS system herein – is capable of maintaining a 

constant output voltage regardless of input disturbances.  From the output side, this 

attribute is highly desirable for power quality-sensitive loads.   

 

A. ONR INTEGRATED POWER SYSTEM TESTBED 

The nonproprietary, well-characterized, reduced-scale ONR IPS Testbed DC 

ZEDS model serves as an ideal resource for initial validation of electric warship power 

distribution analysis methods and control schemes.  Through sponsorships from the 

National Science Foundation (NSF) and the Office of Naval Research (ONR), the 

MATLAB Simulink based model was developed by a collaboration of academic 

communities from Purdue University and the U.S. Naval Academy.  The distribution 

system topology is also representative of the Naval Combat Survivability Testbed, a 

reduced-scale hardware testbed designed to achieve the same purpose. 
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For the purpose of this research, the DC ZEDS model – in both average value and 

detailed model forms – is used to apply novel estimation and residual generation 

techniques for robust model-based fault diagnosis.  When considering the topology, the 

DC ZEDS system is spatially designed to improve survivability and redundancy by 

splitting the DC power distribution into a two-bus system – one on the port side, the other 

on the starboard – each being fed by a dedicated power supply.  The power distribution 

system is subdivided into 3 zones (numbered forward to aft) that are separated by water-

tight compartments as shown in Figure II.1. 

 

 

Figure II.1:  DC Zonal Electrical Distribution System Topology 
 

Within each zone, two Ship’s Service Converter Modules (SSCM) are fed from 

the port bus and starboard bus, respectively.  Both of their regulated voltage outputs are 

compared and all the zonal load current demand is supplied from the bus with the higher 

voltage.  The converter modules have the capability to share power requirements in droop 

mode, but is not considered in this study.  Opposing diodes on the lines leading to the 
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load prevent one bus from providing power to the other.  The load in each zone is 

identical, consisting of a Ship’s Service Inverter Module (SSIM) feeding an ac load bank. 

If either power supply fails, the remaining bus will supply the entire load without 

interruption.  Current limits on the SSCMs alleviate faults at the oring (diode) function 

while some faults within the modules are mitigated through robust controls.  It should be 

noted here that the control scheme improves the robustness of the system, but this can 

have a masking effect on detecting and isolating faults.  Further discussion on this will be 

addressed in a later chapter. 

As stated before, there are two time-domain simulation models considered in this 

work:  the Average Value Model (AVM) and the more accurate Detailed Model.  Power 

electronics modeling experts have noted that a so-called ‘detailed’ model is unfortunate 

because the term is rather arbitrary, but have also documented its sufficient accuracy as a 

truth model for initial system analysis and control architecture simulations.  For the 

purpose of this dissertation, which is consistent with the literature, ‘detailed’ refers to a 

simulation in which semiconductor switching action is included, even if only on an on or 

off basis.  By comparison, the nonlinear average value model refers to simulations where 

the switching is represented on an average value basis resulting in state variables constant 

in the steady state.  Although the average value model removes the switching dynamics 

present in the detailed model, both models are comparable in every other respect, which 

includes parameter values, control architecture, dc steady state, and transient response.     

By comparison, the detailed model is the more representative simulation of the 

DC ZEDS system, but the average value model provides the basis for the state space 

models used for Fault Diagnosis.  The remaining part of the chapter describes these 

modules in more detail starting with the detailed model, followed by the nonlinear state 

space models of the average value model.  It should be noted here that the red markings 

on each circuit diagram represent sensor measurements.  By convention, a red sensor 

marking with a negative slope indicates a current sensor, while a positive slope indicates 

a voltage sensor (always measured with respect to ground).  Finally, a frequency analysis 

of the two models is presented and a method is proposed to generate residuals based on 

the AVM state space models and measurement data from the Detailed Model.  
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B. MODULES 

1. Power Supply 

a. Detailed Model 
Each 15 kW power supply is fed from a dedicated 3-phase ac source that 

may vary from 480 – 560 V line-to-line rms at 60 Hz and provides 500 V dc output to the 

bus.  The power supply consists of an isolating transformer (modeled as part of the 

leakage inductance), a controlled 3-phase bridge rectifier, and dc link capacitance, 

inductance and resistance as shown in Figure II.2. 

 

 

Figure II.2: Power Supply (detailed) 
 

For the simulations herein, the uncontrolled rectifier mode is considered 

with a zero firing angle ( )0α = . The output voltage outv  is regulated by a buck 

converter/controller scheme connected to the output of the rectifier.   Parameters for the 

system are shown in Table II.1. 
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Parameter Description Value Units 

cl  Source Commutating Inductance 1.0 Hm  

dcR  Rectifier Line resistance (dc link resistance) 0.03 Ω  

dcL  Rectifier line inductance (dc link inductance) 0 H  

rC  Rectifier output (dc capacitor) 500.0 Fµ  

gω  Input ac voltage frequency 377 / secrad

outLR  Buck controller line resistance 0.03 Ω  

outL  Buck controller line inductance 3.0 Hm  

outC  Buck controller output capacitance 500.0 Fµ  

Table II.1:  Power Supply Parameters 
 

 

b. Average Value Model   

The average value model for the power supply is developed in [220] and 

makes the assumptions that the rms amplitude of the ac source voltages E  is constant, 

only one commutation occurs at a time, and the dc load current dci  is constant (or at least 

near-constant).  The average value model makes several reference frame transformations 

of the input voltage to obtain the time-dependent peak voltage of the input, 2E .  A 

more detailed derivation of the transformation is shown in Appendix B.  Since the output 

waveform of the bridge rectifier circuit is periodic over a 3π  interval of the angular 

position of the source voltage gθ , the average dc voltage can be expressed as 

 

( )
2

3

3

3
d bs cs gv v v d

π α

π α
θ

π
+

+
= −∫ .       (0.2) 
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With further substitution and simplification, the average dc voltage from 

the rectifier can be expressed as 

 

3 3 2 cosdv E α
π

=      (0.3) 

 

and the average dc current di  is a state in the average value model as shown in Figure 

II.3. 

 

 

Figure II.3: Power Supply Average Value Model 

 

From the model in Figure II.3, the power supply rectifier and buck 

converter are dynamically coupled through a current and voltage source dependent on the 

duty cycle d , which is the control input used to regulate the output voltage outv .    
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c. Power Supply Control 

The power supply controller design is shown in Figure II.4 with its 

associated parameters listed in Table II.2.  

 

Figure II.4:  Power Supply Control 

 

The nonlinear controller allows for voltage and current regulation as it 

calculates the control signal d  that determines the on/off state of the switch.  For the 

average value model, d  is the duty cycle of the input state.  The measured output voltage 

outv  is compared with the reference voltage refV  and the error signal is fed through a 

proportional plus integral (PI) controller.  To provide a fast response to changes in load, 

the load current outi  is added to the output of the PI controller and is multiplied by the 

output of nonlinear stabilizing control (NSC), which has a scaling effect on the influence 

of the output voltage and current.  The resulting reference current signal is bounded and 

compared with the measured current 
outLi  in the current regulator.  The output of the 

current regulator is used for the hysteresis modulator so that the actual current closely 

tracks the measured current. 
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Parameter Description Value Units 

refV  Reference voltage (command output voltage) 500.0 V  

maxi  Maximum command current 40.0 A  

pK  PI controller, proportional gain 1.0  

iK  PI controller, integral gain 100.0  

ihK  Current regulator, integral gain 100.0  

n  NSC exponent 1.0  

errh  Hysteresis error bandwidth 1.0 A  

,maxiK  PI controller, integral gain output max 100.0  

,miniK  PI controller, integral gain output min -100.0  

maxtf  NSC Transfer Function output max 1000.0  

mintf  NSC Transfer Function output min 400.0  

Table II.2:  Power Supply Control Parameters 

 

 

d. Nonlinear State Space Model 
Looking at the power supply average value model circuit in Figure II.3, 

the inputs to the system can be defined as 

 

1

2

3

4

2

out

out

L

r

L

Eu
diu

u
u dv
u i

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

. 
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If the controller is considered external to the model, the control signal d  

can be viewed as an external input dynamically coupled to states of the system.  In this 

manner, nonlinear terms are defined as external inputs 2u  and 3u .  The model is then 

expressed as a linear state space model driven by inputs 1u  and 4u  with a decoupled 

nonlinear term as shown  

21
1, 2,

34
ps ps ps

uu
x A x B B

uu
⎡ ⎤⎡ ⎤

= + + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

,     (0.4) 

where 
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dc c dc c

dc c

rr
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L
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R l
L L L L

L l
CCA B B

R
LL L

C
C

ω π

π
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⎢ ⎥ ⎡ ⎤ ⎡ ⎤+ +⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦
 

and the output equations are chosen as 
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Although the dynamic model has only four states, we included a larger 

number of observations for the purpose of redundancy and fault detection.  Figure II.5 

shows a simulation of the power supply, plotting the input and output voltage for both the 

detailed and average value models.  Therein, the input voltage is shown to have the same 

dc value between the two models, but the detailed model shows a small amount of ac 

content and switching dynamics.  The output, however, is nearly identical.  

 

 

Figure II.5: Comparison of Detailed and Average Value Models of  
the Power Supply 

 

2. Bus 
The bus model connects the power supply to the SSCM in each zone.  It is a 

medium length Nominal-T circuit transmission model with switches separating the three 

zones as shown in Figure II.6.  The series impedance and shunt admittance parameters 

are equivalent in each zone and are shown in Table II.3. 
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Figure II.6: Bus Model 

 

Parameter Description Value Units

R  Bus line resistance 34.0 mΩ  

L  Bus line inductance 2.26 Hµ  

C  Bus shunt line capacitance 0.5 Fµ  

G  Bus shunt line admittance 10.0 1−Ω  

sR  Bus zone short line resistance 1.0 Ω  

Table II.3:  Bus Model Parameters 

 

Included in the bus model is a shunt resistance sR  used to model bus shorts.  

During no-fault operations, the shunt resistance is infinite to model an open line.  While 

not part of the power electronics modules, the bus model has proven to be quite an 
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important link between modules.  Generalized forms of the bus model are developed such 

that n  zones can be considered on larger scale systems. 

 

a. Six-state Bus Model 
Consider three operating modes of the bus system where Mode 1 

represents the power supply providing power to Zone 1 only, Mode 2 is where Zone 1 

and Zone 2 are energized, and Mode 3 is where all 3 zones are energized.  The mode 

switch configurations for each zone are described in Table II.4. 

 

 Switch 1s  Switch 2s  

Mode 1 Open Closed 

Mode2 Closed Open 

Mode 3 Closed Closed 

Table II.4:  Bus Zone Switch Configuration 

 

It is desired to express the bus model in matrix equation form.  From 

Kirchhoff’s conservation laws, the following equations are derived from the circuit in 

Figure II.6: 

 

1 1
m z

Rx x Q v Su
L L L

= − + +       (0.6) 

1T
z m z

s

i Q x v Mu
R

= − − −     (0.7) 

1
z zv i z

G
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1
zz i

C
= ,     (0.9) 
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[ ]1 2 3 bus current through zonesTx x x x= ≡ , 

[ ]1 2 3 voltage across zone shunt capacitanceTz z z z= ≡ , 

1 2 3
zone bus voltagez z z zv v v v⎡ ⎤= ≡⎣ ⎦ , and 

1 2 3
zone shunt admittance line currentz z z zi i i i⎡ ⎤= ≡⎣ ⎦ . 

 

From equations (0.6) through (0.9), it can be shown that the six-state 

model can be expressed as 
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 (0.10) 

 

with output equations 
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where  
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and 

 

 
0 0 0 0
0 0 0 0
0 0 0 1

S
⎡ ⎤
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⎢ ⎥⎣ ⎦

. (0.14) 

 

The effective conductance G  shown in (0.12) includes the shunt resistance term used in 

modeling a bus short.  Under no-fault conditions, the shunt resistance line in Figure II.6 is 

modeled as an open circuit ( )sR = ∞ .  The model also includes the three mode 

configurations with the matrix mQ  defined as 
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State ordering assignments for the port and starboard busses are also 

considered in the model using the transformations 

 

1 0 0 0 0 1
0 1 0 and 0 1 0
0 0 1 1 0 0

port stbdT T
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

to account for opposite-side state numbering.  To demonstrate the bus model, a baseline 

scenario is identified for all fault diagnosis experiments.  In further chapters, any induced 

system faults will reference the baseline system dynamics for analysis.  Table II.5 defines 

the nominal plant configuration.   

 

 Zone 1 Zone 2 Zone 3 

Load on (sec) 0.4 0.3 0.4 

Stbd SSCM refv  (V) 400 400 390 

Port SSCM refv  (V) 380 410 410 

Table II.5:  DC ZEDS Baseline Scenario Parameters 
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Herein, both busses are in Mode 3 with all six SSCMs on at the start of the 

simulation.  Each zone supplies an identical constant power load of 5.65 kW.  From the 

Oring Function dynamics, current is supplied from the starboard bus in zone 1 and from 

the port bus in zones 2 and 3.  Figures II.7 – II.9 show an example of the bus current 

distribution of the DC ZEDS baseline scenario for both the detailed and average value 

models.   

 

 

Figure II.7:  DC ZEDS Baseline Scenario Bus Current Distribution, Zone 1 

 

From the results in Figure II.7, it can be seen that the load in each zone 

requires about 12 Amps.  For Zone 1, the port bus (bottom) is directly connected to the 

port power supply, which shows current flowing through to Zone 2 at t=0.3 seconds.  An 

additional 12 Amps is added to the port bus, which is being sent to Zone 3 at t=0.4 sec.  
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The starboard bus (top) is at the end of the line since it is directly connected to Zone 3 at 

the opposite end.  Here, Figures II.7 – II.9 show that the starboard bus only feeds Zone 1. 

 

 

Figure II.8: DC ZEDS Baseline Scenario Bus Current Distribution, Zone 2 
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Figure II.9: DC ZEDS Baseline Scenario Bus Current Distribution, Zone 3 
 

b. Three-state Bus  Model 
The three-state bus model uses the same parameter values as the six-state 

model as shown in Table II.3 with the exception of completely passive line impedance in 

each zone.  This is equivalent to setting the line inductance L  to zero.  From a modeling 

and simulation point of view, the states to describe the dynamics of the bus current can 

no longer be found by integration, but by algebraic relationship.  The six-state model is 

essentially a double-cascaded, medium length Normal-T circuit transmission line model 

described in [323].  The energy storage elements are very small and equate to transient 

dynamics three orders of magnitude faster than that of the power electronics.  It also 

implies that most of the power is transferred from the power supply to the SSCMs with 

very little energy storage in the bus, which is desired.  Reducing the number of states may 

improve the realism of the model, but might incur unresolved algebraic loops in the 
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model.  It will be shown that a three-state model can be derived and is demonstrated to be 

useful for input estimation on the unknown input observers.   

To begin the model derivation, the same matrix definitions are used except 

this time the three modes are expressed as subspace projections of the full mode.  

Consider the bus model in Figure II.6 and the switching configurations in Table II.4.  If 

the bus is operating in the full mode (Mode 3), it can be represented as an orthogonal 

basis in three dimensions as 

 

3 3q I= , 

 

with each column ( , ,x y z  from left to right) representing the bus current through Zone 3, 

Zone 2, and Zone 1 (from left to right) respectively.  The numbering convention in 

reverse order is an unfortunate result of having 2 power supplies entering the DC ZEDS 

system from opposite zones.  Each lesser mode can be expressed as a subspace basis of 

3q .  For example, the Mode 2 basis spans the y z−  plane as 

 

2

0 0
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q
⎡ ⎤
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⎢ ⎥⎣ ⎦
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while the Mode 1 basis spans the x z−  plane as 
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⎡ ⎤
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In a physical sense, the Mode 2 basis describes opening the switch 

between Zone 2 and Zone 3, which sets the current in Zone 3 to zero and the dynamics 

follow.  Likewise the Mode 1 basis is like opening the switch between Zone 1 and Zone 

2, which sets the current in Zone 2 to zero.  Now define the mode projection matrix as 

 

( ) 1T T
m m m m mP q q q q

−
=  

 

where 1, 2, 3m =  denotes the mode.  Removing the inductance in the bus line changes 

the dynamics of the bus and shunt line current Kirchhoff law equations to 

 

1 1
zx Qv Su

R R
= +            (0.15) 

and 

 

zi Qx Mu= − − .       (0.16) 

 

With some substitution and algebra on equations (0.8), (0.9), (0.15) and (0.16), the three-

state model is expressed as 

 

( )1 1
1

x x
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G Gz T QC I z T QD M u
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⎛ ⎞
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⎝ ⎠
         (0.17) 

 

Where G , G , xT , C , R , sR , and M  are the same as in the six-state model and  
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0 1 1
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1 0 0

Q
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. 

 

The corresponding output equations (defined similarly to the six-state model) are 
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     (0.18) 

 

where 
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and 
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The properties of the 3-state model show that the D  matrix is full rank, 

which turns out to be important for full input estimates from unknown input observers as 

will be explained in the following chapter. 

 

3. Ship’s Service Converter Module 
The purpose of the Ship’s Service Converter Module (SSCM) is to step the bus 

voltage down to an acceptable power quality and rating for zonal loads.  As shown in 

Figure II.1, the DC ZEDS system has 2 SSCMs in each zone – one receiving input power 

from the port bus, and the other from the starboard.  All six SSCMs are identical in 

topology and parameters.  Rated at 8 kW, the SSCM accepts a 500 V input (that may 

vary) and provides a clean, 400 V output and a maximum of 20 Amps.  

 

a. Detailed Model 

The SSCM topology is a standard Buck Converter as shown in Figure 

II.10 with parameters listed in Table II.6.  The signal d  for the detailed model controls 

the semiconductor switch position to achieve the desired command voltage.    
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Figure II.10: Ship's Service Converter Module Circuit 
 

 

Parameter Description Value Units 

fL  Input filter inductor 357.0 Hµ  

fLR  Input inductor resistance 0.2 Ω  

1f
C  Input filter capacitor 1 500.0 Fµ  

fCR  Input filter series resistor 1.0 Ω  

2f
C  Input filter capacitor 2 45.0 Fµ  

outC  Buck Converter output capacitor 500.0 Fµ  

outL  Buck Converter dc inductor 3.0 Hm  

outLR  Resistance of the dc inductor 0.5 Ω  

outP  Rated power output 8.0 kW  

Table II.6:  SSCM Parameters 
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b. Average Value Model 

Similar to the power supply model, the SSCM average value model 

simulates a fast-average of the semiconductor switching dynamics of the detailed model 

such that state variables are constant in steady state.  Again, the average value model 

maintains transient response accuracy and implements the same model and control 

parameters. The model topology depicted in Figure II.11 shows the averaged command 

signal (duty cycle) d  being multiplied by states of the system, which acts as a dependent 

voltage and current source. 

 

 

Figure II.11:  SSCM Average Value Model Topology 
 

c. SSCM Control 

Because of the fast semiconductor switching action of the SSCM and 

near-ideal nature of the control scheme, the desired output voltage can be met even in the 

presence of input disturbances.  For this DC ZEDS model, the controller design is 

depicted in Figure II.12 with associated parameters listed in Table II.7.   
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Figure II.12:  SSCM Control Architecture 
 

 

Parameter Description Value Units 

refV  Output reference voltage 400.0 V 

pK  PI controller, proportional gain 0.1  

iK  PI controller, integral gain 23.0  

ih  Current feedforward proportional gain 0.015  

swf  switching frequency 20.0 kHz 

Table II.7:  SSCM Control Parameters 

 
Here, the output voltage is regulated through a PI controller design (with 

gains pK  and iK ).  For simultaneous current regulation the error signal, based on the 

difference between outi  and 
outLi  and scaled by ih , is placed on the feedforward path and 

added to the PI control output. 
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d. Nonlinear State Space Model 

Similar to the power supply model, the control signal d  is viewed as 

external to the model and dynamically coupled to states of the system such that the inputs 

can be defined as 

2

1

2

3

4

out

out

in

L

cf

L

Vu
diu

u
dvu

u i

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

 

In the same manner as the power supply model, nonlinear terms are 

expressed as unknown inputs while the remaining linear dynamics can be viewed as 2 

subsystems (pre-filter and buck portions) coupled together as shown: 
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34
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uu
x A x B B
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    (0.19) 

 

with plant dynamics 
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and known and unknown input matrices associated with linear and nonlinear inputs 
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. 

 

The states of the SSCM depicted in Figures II.10 and  II.11 are the energy storage 

elements from left to right in the model as 
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. 

 

It should be noted here that there is a limit to the direction of the current 

through the inductor path such that 
outLi is always in the positive direction defined in 

Figure II.10 and Figure II.11.  The model handles this state restriction by setting a lower 

bound on the integrator to zero.  The output equations are defined as 
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Notice that the feed-through term in (0.20), defined as the D  matrix, is 

full rank, which implies that full input estimation can be achieved from an unknown input 

observer.  The SSCM model will be used as an example in the following chapter to 

demonstrate the unknown input observer methods with input reconstruction.  Simulation 

results from the Zone 1, Starboard SSCM are shown in Figure II.13 where the DC ZEDS 

baseline scenario depicted in Table II.5 is used. 
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Figure II.13:  Zone 1 Starboard SSCM Simulation Regulates 400 V Output (bottom) 
from 500 V Input (top) 

 

 

4. Oring Function 
 The Oring function is the model in Figure II.1 that determines which bus supplies 

the power to the load in each zone.  The port and starboard SSCMs have slightly different 

voltage regulation set points so that the SSCM output voltage with the higher set point 

picks up all of the required power to the load in the zone.  The set points are close so that 

if the primary SSCM is lost, then the alternate SSCM picks up the load requirement at 

nearly the correct voltage.  As an example, for the nominal simulation configuration 

shown in Table II.5, Zone 1 load current is supplied from the starboard bus as shown in 

Figure II.14. 
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Figure II.14:  Oring Function Simulation Results 
 

The function is modeled as two voltage sources on opposite ends of a circuit 

providing current to a common constant power load through opposing diodes as shown in 

Figure II.15 and parameters detailed in Table II.8.  If the inputs and states of the state 

space model are defined as (respectively) 
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then the state space model is defined as 
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with output equations 
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The opposing diodes in the model are simulated as lower bounds on the state integrators. 

 

 

Figure II.15:  Oring Function Circuit Model 
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Parameter Description Value Units 

orR  Port/stbd line resistance 1.0 mΩ  

orL  Port/stbd line inductance 100.0 Hµ  

Table II.8:  Oring Function Parameters 

 

5. Inverter Module and Constant Power Load 

According to the DC ZEDS model, the load in each zone is a Ship’s Service 

Inverter Module – converting dc voltage back to ac – followed by a constant power load 

bank.  Although the simulation model is more detailed, the relevant dynamics may be 

represented by a capacitor and effective series resistance in parallel with an ideal constant 

power load of 5.65 kW.  Herein, the FDI analysis is conducted on the DC side of the 

power distribution system, which encompasses the rectifier dc input voltage of the Power 

Supply to the dc voltage and current leading to the SSIM in each zone. 

 

C. METHOD FOR ANALYZING DC ZEDS SYSTEM 
With respect to the complete set of state space models, including power supply 

and SSCM control, the DC ZEDS model is comprised of 21 distinct state space models 

with a total of 83 inputs, 159 outputs and 68 states.  Among the inputs, 2 are external plus 

8 reference voltage set points.  The remaining 88% of inputs are either output 

measurements from connecting modules or nonlinear components that are a function of 

control signals and internal states.  This fact demonstrates the high degree of dynamic 

interdependence between the modules and also the model’s propensity to propagate faults 

from one module to another.  Among all the output measurements, only about 30% of 

them are directly used as inputs to controllers or other DC ZEDS modules.  The 

positioning of the remaining 70% of output measurements is based solely on enabling 
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observer sufficiency conditions for full-state and input estimation.  In other words, almost 

70% of the sensors throughout the DC ZEDS system are used exclusively for detecting 

faults and analytical redundancy. 

It is shown that the average value model accurately represents the signature of the 

detailed model – even in the transient response.  In steady state, a frequency analysis 

between the two models reveals additional frequency content in the detailed model due to 

the switching action and it can be made to closely resemble the AVM dynamics with a 

simple lowpass filter (cutoff frequency of 100 Hz).   
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III. A POLYNOMIAL APPROACH TO DYNAMIC MODELING 
AND FAULT DETECTION 

The fundamental framework to detecting fault characteristics in this work is based 

on analytical redundancy.  Indeed, the large-scale dynamically interdependent DC ZEDS 

system must rely on mathematical models to provide fault indications for two main 

reasons:  first, as outlined in Chapter I, it is efficient in terms of hardware invested 

compared to current methods [390][271][272][273][289][343][90].  The second reason is 

that the DC ZEDS model is well-defined as shown in Chapter II, which lends itself well 

to model-based estimation techniques[220][335].  By combining the physics-based 

dynamical models and sensor information, we compute estimates of the states of the DC 

ZEDS modules.  Then, a comparison of the sensor measurements and their estimates is 

made, yielding residuals that are used as a measure of input-output consistency.    

Perhaps the most widely used approach to generate residuals is to measure the 

consistency between observations and their prediction based on a mathematical model 

[60].  Standard approaches are the observer for deterministic linear and nonlinear models 

and the Kalman Filter for stochastic models.  In both cases, the model-based estimation 

technique require knowledge of all inputs ( )u t  and outputs ( )y t .  There are cases 

however (especially in residual generation), where it is desirable to estimate the system 

when one or more (perhaps even all) inputs are unknown.  For example, it could be that 

the dynamical model of a system can be separated into linear and nonlinear parts and the 

nonlinear part could be modeled as an unknown input.  Also, it might be desirable to 

remove the dynamical influence of a particular input from an observer estimate for the 

purpose of detecting and isolating actuator faults.  In either case, it has been shown that 

unknown input observers are well-suited to solve the problem [110][175][297].   

 One such method to obtain an unknown input observer is the subspace method 

where the full state is estimated based on dynamics residing in a subspace of known 

inputs and outputs as stated in [170] and [175].  The conditions for UIO existence are 

proved in [60] and [230] in which a full-state unknown input observer is assumed.   

To this goal, consider a dynamic system 
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 1 1 2 2( ) ( ) ( )
( ) ( )

x t x u t u t
y t Cx t

= Φ +Γ +Γ⎧
⎨ =⎩

 

 

and we want to find conditions to estimate the state x  without the input 2 ( )u t .  This 

problem can be solved by decomposing the state in two components [175] 

 

 
( )

  .
x I MC x MCx

q My
= − +

= +
 

 

The matrix M  is chosen so that ( )I MC−  is a projection matrix and ( )q I MC x= −  is 

independent on the input 2 ( )u t .  The component ( )q t  satisfies the differential equation 

 

 ( ) ( ) ( )1 1 2 2( ) ( ) ( ) ( )q t I MC x t I MC u t I MC u t= − Φ + − Γ + − Γ  (0.23) 

 

where 1( )u t  and 2 ( )u t  represents all the known and unknown inputs, respectively.   

If M  is such that 

  

 ( ) 2 0I MC− Γ =  (0.24) 

 

( )q t  is clearly independent of 2 ( )u t .  For a more detailed explanation of the subspace 

method, refer to Appendix C. 

 

Lemma 4.1  Equation (0.24) is solvable iff: 
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 ( ) ( )2 2rank C rankΓ = Γ  (0.25) 

 

Proof:  Necessity:  When (0.24) has a solution M , it becomes 2 2MCΓ = Γ  or 

 ( )2 2
T T TC HΓ = Γ  

which means 2Γ  belongs to the range space of the matrix ( )2
TCΓ  resulting in: 

 ( ) ( )( )2 2
TTrank rank CΓ ≤ Γ  

and 

 ( ) ( )2 2rank rank CΓ ≤ Γ . 

However, 

 ( ) ( ) ( ){ } ( )2 2min ,rank C rank C rank rankΓ ≤ Γ ≤ Γ  

Hence, ( ) ( )2 2rank rank CΓ = Γ  and the necessary condition is proved. 

 Sufficiency:  When ( ) ( )2 2rank C rankΓ = Γ  holds true, 2CΓ  is a full column rank 

matrix (because 2Γ  is assumed to be full column rank), and a left inverse of 2CΓ  exists: 

 ( ) ( )( ) ( )
1†

2 2 2 2
T TC C C C

−
Γ = Γ Γ Γ  

Clearly, ( )†
2 2M C= Γ Γ  is a solution to (0.24) [60].  The rank condition also implies that 

the number of independent output measurements must be greater than the number of 

unknown inputs [175]. 

 A full-state UIO estimate is achievable if the rank condition (0.25) is satisfied.  

This condition can be rather restrictive.  A simple example of a system in controllable 

canonical form would show that a necessary condition would be that at least one of the 

transfer functions to have a relative degree at most equal to one.   
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For the purpose of fault diagnosis, what is actually needed is a residual generator, 

not necessarily the full-state estimate.  In the case where the full-state estimate is not 

achievable, it is still possible to compute the residual based on the partial state.  The 

purpose of the polynomial method is to take advantage of this property by generating 

residuals based on the partial state.  

The remainder of the chapter develops two unknown input observer (UIO) 

methods generalized to the multivariable case on a polynomial approach.  The first 

process, called the input replacement method, is limited to a more restrictive class of 

systems, but has a simpler combined input and state Kalman estimation implementation 

algorithm suitable for fault diagnosis.  By comparison, the second method (called the 

parametrization method), takes a more general class of systems and is based on the 

nonuniqueness property of the Diophantine equation to establish an unknown input 

Kalman estimation implementation.  In both cases, a partial-state representation of the 

system is sought, which is directly related to the controllable canonical form.   

 

A. DYNAMIC SYSTEMS AND THE PARTIAL STATE 

1. Single Input Single Output (SISO) Systems 

Consider a single input single output (SISO) system represented as a proper 

rational fraction of scalar polynomials ( )B p  and ( )A p  as shown in Figure III.1 and 

expressed as a transfer function along with its relationship to the state space realization in 

(0.26). 

 

 

Figure III.1:  SISO System in Transfer Function Form 
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( ) 1( )( )
( )

B pH p C pI D
A p

−= = −Φ Γ+                                (0.26) 

 

The numerator ( )B p  is of order sn  or at least of order 1sn −  ( )0 0b =  for a proper 

or strictly proper transfer function ( )H p , respectively, and is of the form 

  

 
1 2

0 1 2( ) ...
ns

s s

s

n n
nB p b p b p b p b

− −= + + + + . (0.27) 

 

Likewise, let the denominator characteristic equation be a monic polynomial of 

order sn as 

 

 1
1( ) ...s s

s

n n
nA p p a p a−= + + +  (0.28) 

 

where p  is the differential operator s  in continuous time and the time-shift operator z  

in discrete time.  If there are no common factors (i.e. no pole-zero cancellations) between 

( )B p  and ( )A p , then the transfer function is said to be coprime and the system is a 

minimal realization.  Now referring to Figure III.2,  define ( )z t  as the partial state [200] 

(or sometimes called the pseudo state [61]). 

 

 

Figure III.2:  Partial-state Space Representation of SISO System 
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It is easy to see that it can be related to the input and output signal, ( )u t  and  ( )y t  

as 

 

 ( ) ( ) ( )A p z t u t=  (0.29) 

 ( ) ( ) ( )y t B p z t=  (0.30) 

 

The meaning of the partial state is that (0.26) can be related directly to the state of a 

controllable canonical form realization.  Again, in the SISO case this is straightforward, 

since the state of the system is 

 

 1( ) ( ), ( ),..., ( )s
Tnz t z t pz t p z t−⎡ ⎤= ⎣ ⎦  (0.31) 

 

where ( )z t  is a scalar and ( ) snz t ∈ .  

 

2. Multiple Input Multiple Output (MIMO) Systems 

Expanding the discussion of partial state to the more general multivariable case, 

consider the class of systems represented in state space as 

 

( ) ( ) ( )px t x t u t= Φ +Γ                (0.32) 

( ) ( ) ( )y t Cx t Du t= +             (0.33) 

 

where , , ys u nn nx u y∈ ∈ ∈  and , , ,  and C DΦ Γ  are of appropriate dimensions.  

Again p  in the state dynamics equation (0.32) denotes the differential operator in 

continuous time or the time-shift operator in discrete time and its notation is consistent 

throughout.  Equations (0.32)-(0.33) can also be represented in transfer function form, 
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only the “numerator” ( )B p   and “denominator” ( )A p  are matrices whose elements are 

polynomials.  Together, ( )H p  is called the transfer function matrix or simply the 

transfer matrix and can be written as 

 

 1( ) ( ) ( )H p B p A p−=  (0.34) 

 1( ) ( ) ( )H p A p B p−=  (0.35) 

 

The right fraction pair ( )B p  and ( )A p  has dimensions y un n×  and u un n× , respectively 

while the left fraction pair ( )A p  and ( )B p  has dimensions y yn n×  and y un n× .  The 

“denominator” polynomial matrices ( )A p  and ( )A p  are always square.  If the pair 

( ),Φ Γ  is controllable and ( ),CΦ  observable then the system is a minimal realization, 

and the polynomial pairs ( )( ), ( )B p A p  and ( )( ), ( )B p A p  are mutually coprime.  In the 

SISO case, this implies that the numerator and denominator polynomials have no 

common roots (no pole-zero cancellations).  The more general MIMO case requires an 

appropriate extension of this concept, as shown in Appendix D.  Under these conditions, 

the three representations  

 

 ( ), , ,C DΦ Γ  

 

in state space form, 

 

 ( )( ), ( )A p B p  

 

in right polynomial matrix fraction form, and  
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 ( )( ), ( )A p B p  

 

in left polynomial matrix fraction form are equivalent and one can be computed from the 

other [61].  Of particular interest is the right coprime factorization in (0.34) which leads 

to the MIMO partial-state representation of the system shown in Figure III.3. 

 

 

Figure III.3:  Right Fraction Representation of MIMO System 
 

By extension to the SISO systems, the partial state in the multivariable case is related to 

the input and output signals ( )u t  and ( )y t  of  (0.29) and (0.30) and the system can be 

realized as 
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p z t
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µ

− −
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 (0.36) 

 ( )1 1( ) ( ) ( )l h h l h hy t B B A A z t B A u t− −= − +  (0.37) 

 

where  the state space equations (0.36)-(0.37) are related to the original system (0.32)-

(0.33) by a nonsingular matrix T  such that 

 

 ( ) ( )x t Tz t= . (0.38) 
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The matrices hA , hB  are matrices of high degree coefficients whose dimensions are 

u un n×  and y un n× , respectively, and lA , lB  are the matrices of all lower order 

coefficients with dimension u sn n×  and y sn n× , respectively.  It should also be noted here 

that a method for determining T  in (0.38) to transform the original system in (0.32)-

(0.33) directly to control canonical form in (0.36)-(0.37) is found in [386].  A more 

detailed explanation of the system partial-state realization for the MIMO case is found in 

[61] and in Appendix D. 

Similar to the vector of partial states (with derivatives) in (0.31) for the SISO 

case, we see that the partial state is a vector related to the system as  

 

 1 2 11 1
1 1 2 2( ) ( ), ... , ( ) ( ), ... , ( ) ... ( ), ... , ( )nu

u u

T

n nz t z t p z t z t p z t z t p z tµµ µ −− −⎡ ⎤= ⎣ ⎦  (0.39) 

 

where 1 2 ...( ) s nunz t µ µ µ= + + +∈  and 1 2, ,...,
unµ µ µ  are called the column degrees (i.e. the 

maximum degree of the polynomials in each column) of the denominator matrix ( )A p  

and is related to the controllability index in [200] and [386].  From (0.39), it can be seen 

that the maximum degree of the polynomials in each column of the denominator 

polynomial matrix ( )A p  is directly related to the full-state estimate of the observer.  It is 

an important distinction, then, to define the partial state alone (without derivatives) as 

 

 1 2( ) ( ), ( ), , ( )
u

T

nz t z t z t z t⎡ ⎤= ⎣ ⎦  (0.40) 

 

where  ( ) unz t ∈  has exactly the same elements in ( )z t , only without the associated 

derivatives.  This reduced partial-state vector is important as it relates to developing 

unknown input observers when the UIO rank condition is not satisfied. 
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It should be noted here that in Fault Diagnosis, the goal is to generate residuals, 

not necessarily to estimate the full state.  We will see that in many situations, it is 

possible to estimate the partial state ( )z t  but not the entire state ( ) ( )x t Tz t= , especially 

when ( )u t  is unknown or assumed unknown.  In this case, however, if a full-state 

estimate must be made, it still can by including the appropriate number of derivatives to 

the partial-state vector through a variety of filtering methods to obtain ( )z t  in (0.39). 

 

B. POLYNOMIAL-BASED UIO BY INPUT REPLACEMENT  

1. Theory 
In order to illustrate the UIO concept, let us consider a simple case of a SIMO 

system with equations (0.32)-(0.33) with one input and two outputs as shown in Figure 

III.4.  The goal is to estimate the partial state ( )z t  based on outputs 1( )y t  and 2 ( )y t  only. 

 

 

Figure III.4:  SIMO System Transfer Function 

 

As previously discussed, ( )z t  satisfies the equations  

 1 1

2 2

( ) ( ) ( )
      ( ) ( ) ( )
      ( ) ( ) ( ).

A p z t u t
y t B p z t
y t B p z t

=
=
=
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If the input ( )u t  is not available, we can use the last two equations as 

 

 1 1

2 2

( ) ( ) ( )
      ( ) ( ) ( )
B p z t y t

y t B p z t
=
=

 

 

with the same partial state ( )z t . 

From the definition of the partial-state vector in (0.31), a set of equations can be 

derived from the input/output relationships as if 1( )y t  and 2 ( )y t  are the input and output 

of the system as shown in Figure III.5. 

 

 

Figure III.5:  SIMO Unknown Input System 
 

Figure III.5 shows that ( )z t  is the partial state associated to the transfer function 

2 1( ) ( )B p B p  and therefore it can be estimated by a standard observer or Kalman Filter. 

In order for the UIO to exist, 1( )B p  and 2 ( )B p  must be mutually coprime (no 

pole-zero cancellations), which is the same as saying the system in Figure III.5 must be 

observable.  Note that there are more linearly independent outputs (2) than there are 

unknown inputs (1), consistent with the rank condition (0.25) [230].  To add robustness 

to the state estimation, a standard Kalman Filter can be used to minimize the mean square 

error of the estimates. 
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In general, consider a MIMO system of the form (0.32)-(0.33) where at least one 

of un  inputs is unknown and the input matrix Γ  with corresponding input vector function 

u  are partitioned into known and unknown inputs as 

 

 [ ] 1
1 2

2

( )
( )

( )
u t

u t
u t
⎡ ⎤

Γ = Γ Γ ⎢ ⎥
⎣ ⎦

 (0.41) 

 

where input is partitioned into 
1un  known inputs and 

2 1u u un n n= −  unknown inputs.  In 

this manner, using equation (0.41) we can write 

  

 1 1 2 2( ) ( ) ( ) ( )x t x t u t u t= Φ +Γ +Γ  (0.42) 

 ( ) ( ) ( )                 y t Cx t Du t= +  (0.43) 

 

where 1 2
1 2 and u un nΓ ∈ Γ ∈ .  For the unknown input observer to exist for full-state 

estimation, ( ) ( )2 2rank C rankΓ = Γ , which implies that there must be at least as many 

independent outputs as there are unknown inputs.  From the right polynomial matrix 

fraction of the transfer function matrix ( )H p , combine the partial-state input/output 

equations (0.29) and (0.30) as 

 

 
( ) ( )

( )
( ) ( )

A p u t
z t

B p y t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (0.44) 

where ( ) u un nA p ×∈ , ( ) y un nB p ×∈ , ( ) unz t ∈ , ( ) unu t ∈ , and ( ) yny t ∈ .  It can be 

seen in equation (0.44) that there are a total of u yn n+  equations relating the input and 

output measurements to the partial state ( )z t .  The main idea is to replace all the 
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unknown input row equations in ( )A p  with the same number of output row equations in 

( )B p  to obtain a new transfer matrix   

 

 1( ) ( ) ( )H p B p A p−=  (0.45) 

 

where 2( ) y u un n nB p − ×∈  and ( ) u un nA p ×∈ .  Right coprimeness of ( )H p  and column 

reducedness of ( )A p  must be verified since there is no guarantee that the system will 

have satisfied those conditions. 

To illustrate this argument, suppose a system described in (0.42)-(0.43) where 

5sn = , 2un = , and 4yn =  and suppose the second input 2 ( )u t  is unknown.  Then 

equation (0.44) is represented as 

 

3 2 1 2 1
1 10 1 11 1 12 1 13 1 20 1 21 1 22

3 2 1 2 1
2 10 2 11 2 12 2 13 2 20 2 21 2 22

3 2 1 2 1
1 10 1 11 1 12 1 13 1 20 1 21 1 22

3 2 1 2 1
2 10 2 11 2 12 2 13 2 20 2 21 2

3
3 10

22

3 11

a p a p a p a a p a p a
a p a p a p a a p a p

b p b

a

b p b p b p b b p b p b
b p b p b p b b p b p b

+

+ + + + +
+ + + + +

+ + + + +
+ + + + +

1

2

1

1

2 2

3 2 1 2 1

2 1 2 1
33 12 3 13 3 20 3 21 3 22

44 10 4 11 4 12 4 13 4 20 4 21 4 22

( )

( )
( )

( )
( )

( ) ( )

( )

u t
u t

z t
y t

z t y t

y tb
y tp b p

p b p b p b b p
b b p b p

b b
b

p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + + + ⎣ ⎦

+ + +

⎦

+

⎣

. 

 

It is desired to have the third output 3 ( )y t  replace the unknown input 2 ( )u t  in the input 

polynomial matrix ( )A p .  The rank condition has been satisfied and assuming the 

leading coefficients on the polynomials for the third output, 3 10b  and 3 20b  are nonzero 

(which implies that hA  in (0.36)-(0.37) is nonsingular), the replacement can be made as 

shown 
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3 2 1 2 1
1 10 1 11 1 12 1 13 1 20 1 21 1 22

3 2 1 2 1
1 10 1 11 1 12 1 13 1 20 1 21 1 22

3 2 1 2 1
2 10 2 11 2 12 2 13 2 20 2 21 2 22

3
4 10

3 2 1 2 1
3 10 3 11 3 12 3 13 3 20 3 21

4

3 22

1

b p b p b p b
a p a p a p a a p a p a

b p b p b p b b p b p b
b p b p b p b b p b

b p b p

b

p

b

p

b b

+ +
+ + + + +

+ + + + +
+ + + + +

+

+

+ +
1

1

1

2 2

2 1 2 1
41 4 12 4 13 4 20 4 4

3

21 22

( )

( )
( )

( ) ( )

(

( )

)

u t

z t
y t

z

y t

t y t

y tp b p b b p b p b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + + ⎣ ⎦⎣ ⎦

 

 

The top 2un =  rows are now the new input polynomial matrix ( )A p  and the bottom 

1 3yn − =  rows comprise the new ( )B p .  The transfer matrix 1( ) ( ) ( )H p B p A p−=  is 

checked for right coprimeness and ( )A p  is verified to be column reduced.  Finally, the 

new system of equations is represented in state space form for Kalman Filtering 

implementation.  Note that the estimate for the new system will be on the partial state, so 

it must be transformed through the linear transformation in (0.38) if the original full-state 

estimation is desired.   

  The relationship of the UIO rank condition in (0.25) to the polynomial 

representation for full-state estimation implies that ( )B p  must have higher degree 

coefficients. Consider the input and output matrices ,CΓ  for the controllable canonical 

form realization both partitioned as 

 
1

1 
u

u

T T T
n

nC C C

⎡ ⎤Γ = Γ Γ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 (0.46) 

 

with 

 
[ ]
[ ]
0 0

 

u i

y i

nT
i i

n
i i

R

C c R

µ

µ

γ ×

×

Γ = ∈

= × × ∈
 (0.47) 
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for  1,..., ui n= .  It turns out that the terms iC  are the coefficients of the polynomial 

( )B p .  In particular we can write 

 

 

1

1

1

11
1

( ) ( )  terms of lower degree

( ) terms of lower degree

t

nu

u

T

T
n

n

A p p

B p c p c p

µ

µµ

γ

γ

−

−−

⎡ ⎤
⎢ ⎥= Σ +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= +⎣ ⎦

 (0.48) 

 

where  

 

{ }1 2( ) , ,..., nu u un np diag p p pµµ µ
µ

×Σ = ∈ . 

 

In the case of a UIO we can see some of the conditions of existence.  Let Γ  be 

partitioned as 1 2Γ = ⎡Γ Γ ⎤⎣ ⎦  where 2Γ  is associated with the unknown inputs.  In Kudva 

et al [230], the condition for existence of the UIO for full-state estimation is 

( ) ( )2 2rank rankCΓ = Γ .  From (0.46)-(0.48) it can be seen that 

 2
1

un
T

i i
i

C c γ
=

Γ =∑  (0.49) 

with iγ  the part of the vector iγ  associated to the unknown input. From (0.48) we see 

that a necessary condition is that not all ic  can be zero, which means that the polynomial 

( )B p  must have higher degree terms. 

 While the unknown input observer rank condition (0.25) must be satisfied for full-

state estimation, it does not need to be satisfied for estimating the partial state.  This is the 

advantage of using the polynomial UIO technique and is illustrated in the following 

example. 
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2. Example 

Consider a third-order, single-input, two-output system shown in Figure III.4 

where the continuous time system is represented in right matrix fraction form as in (0.34) 

with [ ]( ) 1 2 TB s s s= + +    and   3 2( ) 6 11 6A s s s s= + + + .  It can be seen that the 

greatest common right divisor between ( )B s  and ( )A s  is 1, which is unimodular.  In [61] 

this implies that the system transfer matrix ( )H p  is controllable and observable and an 

equivalent minimal realization representation of the system in state space form is 

 

 
0 1 0 0

( ) 0 0 1 ( ) 0 ( )
6 11 6 1

x t x t u t
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 (0.50) 

 
1 1 0 0

( ) ( ) ( )
2 1 0 0

y t x t u t⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. (0.51) 

 

Notice all the terms in (0.50)-(0.51) are directly related to the coefficients of the 

polynomials ( )A s , 1( )B s , and 2 ( )B s .  By observation, the system of equations is indeed 

controllable because it is realized in controllable canonical form where the state vector 

( )x t  happens to be the partial-state vector ( )z t  with derivatives up to order 2 as shown in 

(0.31).  Since there is only one input, there is only one partial state ( ).z t   It can be 

verified that the system of equations is also observable.  To design a full-state unknown 

input observer, the rank condition (0.25) must be satisfied.  For this example, it means 

that 

 

0 0
1 1 0

rank 0 rank 0
2 1 0

1 1

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥≠⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
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and a full-state UIO does not exist for this system.  However, an unknown input  

observer still exists from a polynomial approach.   

With the polynomial input replacement UIO method described in this chapter, an 

estimate of the partial state can still be achieved as outlined in the following steps to the 

algorithm.  We start with the example state space representation in (0.50)-(0.51). 

 

1) Represent the system of equations in right matrix fraction from as in (0.34) and 

ensure that ( )H p  is right coprime, which implies a minimum realization. 

 

 1
3 2

1 1( ) ( ) ( )
2 6 11 6

s
H s B s A s

s s s s
− +⎡ ⎤

= = ⎢ ⎥+ + + +⎣ ⎦
 

 

The polynomial transfer matrix is right coprime. 

 

2) Represent the system of input/output equations in partial-state form as in (0.44). 

 

 

3 2

2

1

( )6 11 6

( )

(
( )

)2
1 y

u ts s s

z t

y
s

ts
t

⎡ ⎤+ + + ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢

+ ⎣ ⎦⎣

+
⎥

⎦

 

 

3) Determine the right matrix fraction form of the UIO where 1( ) ( ) ( )H p B p A p−=  

by replacing the rows in the input polynomial matrix ( )A p  that correspond to 

2 ( )u t  with the rows in the output polynomial matrix ( )B p  that correspond to the 

desired input replacement equations. 
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For this example, there is only one input and two options for replacement.  Let us 

choose the output 1( )y t  to replace ( )u t . 

 

 

1

2

( )

1

( )

( )

2

y t

z t

y ts

s ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+⎣ ⎣

+

⎦ ⎦

 

  

This leads to the system shown in Figure III.5 with the new scalar transfer 

function ( )H p  written as 

 

 2

1

( )( ) 2( )
( ) 1( )

B sB s sH p
B s sA s

+
= = =

+
. 

 

Since ( )H p  is a first order system – while the original ( )H p  was third order – 

we can estimate ( )z t , but not ( )z t  and ( )z t .  This means that we can still create a 

residual, but not a full-state estimate.  The principle can be generalized to say that 

for any column degree reduction of the original ( )A s  to the new ( )A s , it will 

result in an unknown input observer that cannot obtain a full-state estimate. 

  

4) Check 1( ) ( ) ( )H p B p A p−=  for right coprimeness and column reducedness. 

 

The new transfer function is 

 2( ) ( ) / ( )
1

sH s B s A s
s
+

= =
+
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since ( )B s  and ( )A s  are scalar polynomials.  By inspection, there are no pole-

zero cancellations of ( )H s  and a scalar polynomial is always column (and row) 

reduced [61].  Note that an equivalent observer (in the steady state) can be 

determined from 1( )H s− . 

 

5) Represent ( )H p  in state space form and implement any standard observer 

method. If the UIO can estimate the partial state (i.e. the UIO rank condition is 

satisfied), determine the nonsingular matrix T  such that ( ) ( )x t Tz t=  to determine 

the original state estimate. 

 

For this example, the UIO rank condition is not satisfied and a full-state estimate 

cannot be achieved.  The state space representation for ( )H s  is 

 

 1 1

2 1 2

( ) ( )
( ) ( )

z t z y t v
y t z y t v

= − + +
= + +

 

  

where the “input” is 1( )y t  and the “output” is 2 ( )y t .  The additional terms 1v , 2v  

account for possible measurement noise.  For this problem, let the input 

( ) sin( )u t t=  and the measurement noise variances 
1

2
vσ  and 

2

2
vσ  be 1% of the 

amplitude of the input signal.  Also, all measurement noise are assumed to be 

uncorrelated. Under these conditions, the Kalman Gain is 0.5811L =  and the 

observer implementation equation is  

 [ ] 1

2

( )
ˆ ˆ( ) 1.5811 ( ) 0.4189 0.5811

( )
y t

z t z t
y t
⎡ ⎤

= − + ⎢ ⎥
⎣ ⎦

 

and the output is the partial-state estimate ˆ( )z t  itself.  From the form of the 

observer equation, it can be easily seen that the estimate is independent of ( )u t .   
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A simulation of the polynomial UIO input replacement method is shown 

in Figure III.6 and the noise terms were removed in the simulation to see the 

convergence. 

 

 

Figure III.6:  UIO Input Replacement Method Simulation 
 

 

In this example the replacement of the unknown input ( )u t  with one of the 

outputs 1( )y t  is straightforward, since the resulting transfer function 2 1( ) ( )B s B s  is 

scalar.  In the more general MIMO case, the system resulting from input substitution has 

to be realizable, which might not always be the case.  In the next section we present a 

general observer parametrization which has the unknown input observer as a particular 

representation.  
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C. POLYNOMIAL-BASED UIO BY PARAMETRIZATION 

1. Theory 

In the previous section, the UIO input replacement method took advantage of the 

partial-state realization in right polynomial transfer matrix form (0.34).  This polynomial 

method, on the other hand, is based on the left polynomial transfer matrix in (0.35).   

In this section a polynomial transfer matrix formulation of the observer or Kalman 

Filter yields a class of stable solutions easily parametrized.  Consider the LTI system in 

(0.42)-(0.43) rewritten here as 

 

 1 1 2 2( ) ( ) ( ) ( )x t x t u t u t= Φ +Γ +Γ  (0.52) 

 1 1 2 2( ) ( ) ( ) ( )y t Cx t D u t D u t= + +                (0.53) 

 

where , , ys u nn nx u y∈ ∈ ∈  and , ,  and CΦ Γ  are of appropriate dimensions.  

Furthermore, 1 2
1 2 and u un nΓ ∈ Γ ∈  are the subdivided constant input matrices such that 

1( )u t  and 2 ( )u t  are vectors containing all the known and unknown inputs, respectively.  

If the system (0.52)-(0.53) is a minimal realization, it can be equally realized in partial-

state form from (0.44)  with the additional known and unknown input partitioned as 

 

 1 1

2 2

( ) ( )
( ) ( )

( ) ( )
u t A p

u t z t
u t A p
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (0.54) 

 ( ) ( ) ( )y t B p z t=  (0.55) 

 

 

Now from the general form for the Kalman estimator, a polynomial representation of the 

observer that estimates the partial state ( )z t  is expressed as 
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 ˆ( ) ( ) ( ) ( ) ( ) ( )C p z t E p u t F p y t= +  (0.56) 

 

with ( ) u un nC p ×∈ , ( ) u un nE p ×∈ , and ( ) u yn nF p ×∈ .  These polynomial matrices can be 

computed either from the Diophantine Equation (Appendix D) 

 

 ( ) ( ) ( ) ( ) ( )C p E p A p F p B p= +  (0.57) 

 

or directly from (0.32)-(0.33) as an observer of the form 

 

 
( )1 1 1

*

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) ( )

pz t T LC Tz t T u t T Ly t

y t Cz t

− − −= Φ − + Γ +

=
 (0.58) 

 

where *( )y t  is the partial-state vector estimate (with derivatives) ˆ( ) snz t ∈  in (0.39) 

when the UIO rank condition is satisfied ( )snC I= , and the partial state ˆ( ) unz t ∈  in 

(0.40) when it is not.  In the latter case, C  is an u sn n×  matrix that contains the rows of 

snI  that extracts the partial-state estimate ˆ( ) unz t ∈   from the partial-state vector (with 

derivatives) ˆ( ) snz t ∈ .  Also, T  is the nonsingular matrix transformation to the partial-

state space shown as ( ) ( )x t Tz t= .     

For convergence of the observer in polynomial form, it is shown that the 

substitution of ( )u t  and ( )y t  in (0.54)-(0.55) into the polynomial representation of the 

partial-state observer in (0.56), along with the Diophantine equation identity in (0.57), 

yields the state error equation 

 

 ( )ˆ( ) ( ) ( ) 0C p z t z t− = . (0.59) 
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Equation (0.59) implies that ˆlim ( ) ( ) 0
t

z t z t
→∞

− =  provided ( )det ( )C p  has all roots in the 

stable region.   

The useful feature of the Diophantine equation approach is that the solution is not 

unique.  In fact, if 0 ( ) u un nE p ×∈  and 0 ( ) u yn nF p ×∈  together are a solution of the 

Diophantine Equation (0.57) it can be shown in [61], [200], and [229] that, for any 

arbitrary polynomial matrix ( )W p  of appropriate dimensions  

 

 0( ) ( ) ( ) ( )E p E p W p B p= −  (0.60) 

 0( ) ( ) ( ) ( )F p F p W p A p= +  (0.61) 

 

are solutions to the differential equations.  As a consequence, from (0.56) and (0.60)-

(0.61) we obtain a family of observers, parametrized by ( ) u yn nW p ×∈  as 

 

 ( ) ( )0 0ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C p z t E p W p B p u t F p W p A p y t= − + +  (0.62) 

 

where ( ) y yn nA p ×∈  and ( ) y un nB p ×∈  are the left coprime representation of the original 

system transfer matrix 1( ) ( ) ( )H p A p B p−= .   

Now partitioning ( )u t  into known and unknown inputs we obtain 

   

[ ] [ ] 111 12
01 02 1 2

221 22

( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )
u tB p B p

E p u t E p E p W p W p
u tB p B p

⎛ ⎞⎡ ⎤ ⎡ ⎤
= −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠

 (0.63) 
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where 1
01( ) u un nE p ×∈ , 2

02 ( ) u un nE p ×∈ , 2
1( ) u y un n nW p × −∈ , 2

2 ( ) u un nW p R ×∈ , 

2 1
11( ) y u un n nB p − ×∈ , 2 2

12 ( ) y u un n nB p − ×∈ , 2 1
21( ) u un nB p ×∈ , and 2 2

22 ( ) u un nB p ×∈ .  In order 

to make the observer insensitive to 2 ( )u t ,  we choose the polynomial matrix ( )W p  so 

that  

 

 02 1 12 2 22( ) ( ) ( ) ( ) ( ) 0E p W p B p W p B p− + = . 

 

It can be seen that the row dimension of 12 ( )B p  requires that 
2y un n> , which means that 

in order to have a solution, the number of independent outputs must be greater than the 

number of unknown inputs.  This is the same result in Lemma 4.1 where 

( ) ( )2 2rank C rankΓ = Γ . 

If we choose two polynomial matrices 1 2( ),  and ( )W p W p  that satisfy the 

Diophantine equation 

 

 02 1 12 2 22( ) ( ) ( ) ( ) ( )E p W p B p W p B p= +  (0.64) 

 

then a viable solution can be obtained, provided that 12 22( ),  and B ( )B p p  are right 

coprime.  Finally, combine (0.62)-(0.64) to obtain 

 

 ( )* *11
01 1

22

( )
ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) o

B p
C p z t E p W p u t F p W p A p y t

B p
⎛ ⎞⎡ ⎤

= − + +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 (0.65) 

 

with [ ]*
1 2( ) ( ) ( )W p W p W p=  being the combined solution to (0.64).  From (0.65), it can 

be seen that the parametrized observer is now independent of 2 ( )u t . 
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2. Example 

In summary, the steps to obtain a UIO using parametrization is shown in the 

following example.  The goal is to demonstrate how the observer is obtained and 

compare the simulation results to the subspace projection method in [175] and to a 

standard Kalman Filter estimation.   

We start with the state space representation in (0.52)-(0.53) where the system, 

introduced in [175], is a fifth-order, two-input, four-output model where 

 

0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.1540 0.0042 1.5400 0.0000
0.0000 0.2490 1.0000 5.2000 0.0000
0.0386 0.9960 0.0003 0.1170 0.0000
0.0000 0.5000 0.0000 0.0000 0.5000

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥Φ = − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

2

0.0000 0.0000
0.7440 0.0320
0.3370 1.1200
0.0200 0.0000
0.0000 0.0000

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥Γ = −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  and 

0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

C

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 

For this problem, both inputs are considered unknown where 

[ ]2 ( ) cos( ) sin( ) Tu t t t= .  Added white Gaussian noise is also imposed on the inputs and 

output measurements where the variance for each is 1.0% of the amplitude of the input.  

All measurements are assumed to be uncorrelated.  Given that the initial conditions in 

[175] are arbitrarily chosen to be 

 

 [ ](0) 0.3420 0.3200 0.0718 0.2870 0.9497 Tx = − −  
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and the initial conditions of the observers are set to zero, we set out to determine the 

polynomial-based UIO from the following steps: 

 

1) Verify the system is a minimal realization and transform the state space system to 

controllable canonical form. 

 

The system is controllable and observable (and therefore a minimal realization 

[61]).  From the system of equations  

 

 1 1
2 2( ) ( ) ( )z t T Tz t T u t− −= Φ + Γ  

( )y CTz t= , 

 

and the system matrices Φ , 2Γ , and C  previously defined, the nonsingular 

matrix T  is determined to be  

 

-0.0001 0.0119 -0.0003 0.4478 0.8941
0.0173 -0.0009 0.0000 -0.0323 -0.4470

-0.0012 -0.1912 0.0173 0.0023 0.2235
-0.9950 0.0024 -0.0001 0.0894 -0.0449
0.0034 -0.1119 -0.9950 -0.0065 0.0225

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

which transforms the original system into controllable canonical form where the 

partial-state vector (with derivatives) is 1( ) ( )z t T x t−= . 

  

2) Design a standard observer or Kalman Filter based on the partial-state 

realization. 
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From the model, the plant and measurement noise covariance matrices are set to 

be 0.1
uw nQ I=  and 0.01

yv nR I= , respectively.  The steady-state Kalman Gain is 

determined to be 

 

0.0225 -0.0471 0.0174 -0.0135
-0.0115 -0.0377 0.0277 0.0098
-0.0513 0.0563 -0.0015 0.0267
0.0937 -0.5402 0.0793 -0.8628
0.1225 -1.3764 0.3712 -0.4888

zL

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

and the full-state Kalman Filter can be implemented as in equation (0.58). 

 

3) Check UIO rank condition.  Determine C  such that 

a. If the rank condition is satisfied, then a full-state estimate can be achieved 

and 
snC I= .  

b. If the rank condition is not satisfied, then determine C  such that un  

partial states are extracted (no derivatives) from ( )z t  resulting in the 

partial state ( )z t  in (0.40). 

 

The rank condition is satisfied and therefore for this example 5C I= . 

 

4) Determine the polynomial matrices ( )C p , 0 ( )E p , and 0 ( )F p from  (0.57), which 

is the equivalent polynomial representation of the partial-state observer designed 

Step 3. 

 

In the example,  
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-s-0.0420 0.9300 0.0720 -0.0150 -0.0460
-0.0740 -s-0.1500 0.9600 0.0073 -0.0390

( ) -1.0000 -2.2000 -s-1.1000 -0.0097 0.0560
-0.0020 -0.2500 -0.7900 s+0.8700 -0.4700
12.0000 26.0000 3.8000 -0.0560 -s-2.3000

C s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

and 0 ( )E s  and 0 ( )F s  are constant polynomial matrices 

 

0

0.0000 0.0000
0.0000 0.0000

( ) 0.1500 0.0130
0.0000 0.0000
0.2500 1.1000

E s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, 0

0.0091 0.0470 -0.0170 0.0130
0.0120 0.0380 -0.0280 -0.0098

( ) 0.0510 -0.0560 0.0015 -0.0270
0.0940 -0.5400 0.0790 -0.8600

-0.1200 1.4000 -0.3700 0.4900

F s

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

5) In (0.62), determine ( )A p  and ( )B p  from the left coprime realization of the 

original system, 1( ) ( ) ( )H p A p B p−= . 

 

Because the example is a minimal realization, the original system of equations 

defined by the matrices Φ , 2Γ , and C  can be realized in left matrix fraction form 

where 

 

2 2 2 20.845 0.470 -2.400s 2.500 0.610 0.450 12.000 5.100 0.95 0.41 0.010
-0.200s-0.098 0.053 0.035 0.017 0.029 0.089 0.001

( )
0.08s+0.040 0.570 1.300 0.130 2.900 0.680 0.005

-0.025s-0.012 0.210

s s s s s s s
s s s

A s
s s s
s

+ + − − − − − − +
− + + − −

=
+ + − −

− 0.440 0.049 1.100 0.65 0.002s s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ − − − +⎣ ⎦
 

and 
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0.670 0.280 2.700 1.100
0.130 0.066

( )
0.140 0.640
0.054 0.240

s s

B s

− − +⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 

Notice that the sum of the row degrees (maximum polynomial degree of each 

row) of ( )A s  is equal to the total number of states ( )5sn = , which implies that 

( )A s  is row reduced.  Since the degree of the thi  row in ( )B s  is less than the 

degree of the thi  row in ( )A s , the polynomial transfer matrix is proper [61]. 

 

6) From the structure of the input vector in (0.52), determine 1( )u t  and 2 ( )u t .  

Partition polynomial matrices 0 ( )E p  and ( )B p  accordingly from equation (0.63) 

 

Since both inputs are unknown, 
1

0un =  and 
2

2un =  and so 01( )E s  is an empty 

matrix and 02 0( ) ( )E s E s= .  From the dimensions of the polynomials in equation 

(0.63), it can be seen that from the previous step, ( )B s  is partitioned as 

 

12

0.670 0.280 2.700 1.100
( )

0.130 0.066
s s

B s
− − +⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ,  and  22

0.140 0.640
( )

0.054 0.240
B s

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

 

7) Verify 12 ( )B p  and 22 ( )B p  are right coprime and solve Diophantine equation to 

obtain 1( )W p  and 2 ( )W p  in (0.64). 

 

In the example, 12 ( )B s  and  22 ( )B s  are right coprime.  The solution to the 

Diophantine equation  
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02 1 12 2 22( ) ( ) ( ) ( ) ( )E p W p B p W p B p= +  

 

are the constant polynomial matrices 

 

1

0.000 0.000
0.000 0.000

( ) 0.000 1.000
0.000 0.000
0.000 0.099

W s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  and  1

0.000 0.000
0.000 0.000

( ) 0.100 0.064
0.000 0.000
1.500 0.580

W s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 

8) Form [ ]*
1 2( ) ( ) ( )W p W p W p=  and from (0.62) go back to the state space 

realization of the partial-state representation for simulation. 

 

The observer from the original system has now been successfully designed such 

that, in choosing the polynomial matrix *( )W p  in (0.62), the parametrized 

Kalman Filter in polynomial form is now independent of unknown inputs 2 ( )u t .  

Changing back to state space form from the left matrix fraction realization yields 

the following system of equations: 

 

*

0.0419 0.9311 0.0719 0.0150 0.4610
0.0743 0.1462 0.9586 0.0073 0.0386
1.0051 2.1930 1.1025 0.0097 0.0556
0.0020 0.2488 0.7881 0.8657 0.4708

12.1667 25.8504 3.7543 0.0563 2.3256

− −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥Φ = − − −
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 
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*

0.0008 0.0000 0.0304 0.0532
0.1894 0.0172 0.0609 0.1289
0.0568 0.1159 0.3352 0.1925
0.1118 0.9950 0.0027 0.6358
0.3771 0.6721 3.9845 2.4990

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥Γ = − − − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

*

0.2405 0.5811 0.0000 0.9950 0.0000
0.1779 2.9439 5.1764 0.0449 0.0899
0.0000 0.2405 0.5811 0.0000 0.9950
2.5932 5.2463 0.1378 0.0906 0.0016
0.1779 2.5882 0.0000 0.0449 0.0000

C

− − − −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

and  * 0
s yn nD ×= . 

 

For implementation, the resulting unknown input observer is independent of ( )u t  

and the output is the full partial state (with derivatives) as  

 

 * *( ) ( ) ( )q t q t y t= Φ +Γ  

 * *ˆ( ) ( ) ( )z t C q t D y t= +  

 

where ( )q t  denotes the state of the new system.  

A simulation was conducted using the above example and the estimation 

results on the original state 4x  are shown in Figure III.7.  The red line shows the 

actual state trajectory, while the other trajectories are from the three different 

observer designs.  It can be seen that the polynomial UIO method (blue) outlined 

in this section performed just as good as the subspace projection UIO method 

(green).  Both UIO methods, which only used output measurements to estimate 

the state, performed as well as the standard Kalman Filter, which depends on both 

inputs and outputs to estimate the state. 
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Figure III.7:  State Estimate Comparison 
 

When deciding on a method for estimation, it is desirable to design an observer so 

that one or more inputs have no effect on the state estimation.  Perhaps a system model 

has an unknown disturbance or other model uncertainties.  In the case of residual 

generation, perhaps an input is assumed unknown to develop a structured residual set for 

Fault Diagnosis.  When considering the subspace UIO methods and the polynomial ones 

described herein, each is designed to effectively obtain an estimate of the full state when 

the UIO rank condition is satisfied.  The advantage of the polynomial methods is that 

they can still generate a residual through an estimate of the partial state. 

As mentioned before, the input replacement UIO method is limited if the 

replacement polynomials do not have higher degrees.  As a consequence, this method  

works best when the degree of the numerator polynomial matrix ( )B p  is the same as the 

denominator polynomial matrix ( )A p , which is the same as saying that 0D ≠  in the 

equivalent state space realization. 
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The parametrization UIO method is the more general polynomial method and is 

comparable to the subspace projection UIO in complexity and performance.  The main 

idea is to develop a standard Kalman Filter in polynomial form and parametrize the 

solution such that it is made independent of the unknown inputs.  This method works well 

in the presence of plant and sensor disturbances with known first and second order 

statistics.  One drawback common to both polynomial methods is that they require a 

linear transformation to the controllable canonical form to accommodate estimating the 

partial state.  In cases where system eigenvalues are very large (i.e. greater than 610 ), the 

inverse of the transformation matrix T  can be near singular. 

Besides being able to generate residuals based on the partial state, another 

advantage to the parametrization method is that since the solution to the Diophantine 

equation is nonunique, it can be represented by a family of observers.  If one of the inputs 

is suddenly made unavailable for the estimation, the observer can be adjusted adaptively.  

This idea is being explored as a developing possibility.  

 

D. INPUT OBSERVABILITY AND ESTIMATION 
Throughout the discussion so far in this chapter is the idea that if the UIO rank 

condition (0.25) is not satisfied, a partial-state estimate is still possible and can be 

obtained through polynomial UIO techniques.  Specifically, it has also been shown that 

the column degrees of the denominator polynomial matrix ( )A p  (in the right matrix 

fraction realization 1( ) ( ) ( )H p B p A p−= )  are directly related to the ability to estimate the 

full state in (0.39).  For any column degree reduction of the original ( )A p  to the new 

observer denominator polynomial ( )A p , it will result in an unknown input observer that 

cannot obtain a full-state estimate.  This also implies that ( )B p  must have higher order 

terms. 

We have discussed residual generation based on the state and partial state.  Now 

we consider it based on input and output measurements.  It will be shown that in some 

cases, it is desirable to compute residuals not only on the outputs, but on the inputs as 

well.  Depending on system structure, this would give added information on the class of 
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faults.  It will be shown that while output estimation is straightforward when the full-state 

estimate is determined, the input estimation problem is non-trivial and it requires certain 

conditions for existence that relate to the system inversion problem.  

Compared to state estimation techniques for unknown input observers, little 

research has been conducted on input estimation [73].  Some input reconstruction 

methods base their estimation on derivatives of the output measurements [168][169].  

Here again, it is shown that input estimates can be determined on a larger class of 

systems from taking derivatives on the partial state.  The remainder of this section 

addresses the necessary condition for input estimation and how the output equations can 

be chosen so that it can be satisfied.  Similarities between the unknown input observer 

with input reconstruction and system inversion will also be addressed.  Moylan [268] 

showed a method for determining the inverted system in state space.  It will be shown 

here how this result relates to a system in right polynomial transfer matrix form through 

the partial state.  Finally, two DC ZEDS examples will be shown to demonstrate the 

concepts. 

 

1. Input Observability Theory 

The goal of the input reconstruction problem is to formulate a system filter whose 

inputs are the measurements and known inputs of the original system and whose outputs 

converge to the inputs of the original system.  We begin with a short example.  Suppose 

we have a third order, single input, 2-output system as shown in Figure III.4 and is 

represented by the polynomial matrix fraction 1( ) ( ) ( )H p B p A p−= .  If a UIO is 

developed (not necessarily polynomial-based) such that a partial-state vector estimate 

ˆ( )z t  is determined, then by the polynomial matrices [ ]1 2( ) ( ) ( ) TB p B p B p=  and ( )A p  

defined as in (0.27) and (0.28), an estimate of the input ˆ( )u t  and output ˆ( )y t  can be 

determined from (0.29)-(0.30) as 

 

 1 1 0 1 1 1 2 1 3

2 2 0 2 1 2 2 2 3

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

y t b z t b z t b z t b z t

y t b z t b z t b z t b z t

⎧ = + + +⎪
⎨

= + + +⎪⎩
 (0.66) 
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 1 2 3ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ).u t z t a z t a z t a z t= + + +  (0.67) 

 

Let 1ˆ ( )y t  be arbitrarily chosen to be the “input” to the estimation ˆ( )u t , meaning that we 

solve for the highest degree term in (0.66) and substitute in (0.67) to obtain 

 

 ( ) ( ) ( )( )1 1 1 2 1 2 3 1 3 1
1 0 1 0

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )u t a b z t a b z t a b z y t
b b

= − + − + − + , (0.68) 

 

provided that 1 0b  is nonzero.  This constraint implies that the polynomial 1( )B p  must be 

the same order as ( )A p .  In the state space realization, this means that the matrix D  in 

the state space model must be nonzero.  If 1 0b  is zero, then the input can be estimated 

directly from (0.67) by taking the derivative on the highest order in ˆ( )z t  to obtain ˆ ( )z t .  

Notice that the equation (0.68) is similar to the system inversion process, since the 

“output” is the system input estimate ˆ( )u t  and the “input” is the measurement 1( )y t  

[268][169].  

Now consider the more general MIMO case, again represented in state space as 

 

( ) ( ) ( )x t x t u t= Φ +Γ                (0.69) 

( ) ( ) ( )y t Cx t Du t= +             (0.70) 

 

where ( ) snx t ∈ , ( ) unu t ∈ , ( ) yny t ∈  and the constant matrices Φ , Γ , C , and D  are 

of appropriate dimensions.  If the system is a minimal realization and a UIO is designed 

to estimate the partial-state vector, then similar to solving for the high order derivative in 

(0.66) for the SIMO case, we use the result in (0.36)-(0.37) to relate the input estimate 

ˆ( )u t  in terms of the coefficients of the right matrix fraction polynomials ( )B p , ( )A p  and 

the output ( )y t  as 
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 ( ) ( ) ( )† †1 1 1ˆ ˆ( ) ( ) ( )h h l h h l h hu t B A B B A A z t B A y t− − −= − − +  (0.71) 

 

where u un n
hA ×∈  and y un n

hB ×∈  are constant matrices of high degree coefficients of 

( )A p  and ( )B p , respectively.  Likewise, u sn n
lA ×∈  and y sn n

lB ×∈  are the matrices of 

all lower order coefficients of ( )A p  and ( )B p , respectively.  The superscript †  

represents the Moore-Penrose pseudoinverse.  For more details on this representation, see 

Appendix D.  Clearly, in order to have an inverse, hA  must be nonsingular and the 

product 1
h hB A−  (which is the D  matrix in state space) cannot be zero for a nontrivial 

solution.  Again, a nonzero hB  implies that ( )B p  must have the same column degree as 

( )A p .  If it does not, then the input estimate can be found from (0.36) as 

 

 ˆ ˆ( ) ( ) ( )h lu t A z t A z tµ= +  (0.72) 

 

where 1
1ˆ ˆ ˆ( ) ( ) ( )nu

u

T

nz t p z t p z tµµ
µ

⎡ ⎤= ⎣ ⎦  is the vector of 1,..., u

th
nµ  derivatives on the partial 

state ( )z t , determined by any standard derivative filter.  We have shown in Section 

IV.B.1  that in cases where the UIO rank condition is not satisfied, the partial state can 

still be estimated.  This result can be extended to determining an input estimate by adding 

all derivatives of all partial states up to the column degree , 1,...,i ui nµ = . 

Input estimation is very closely related to system left inversion where a system’s 

inputs are determined from knowledge of its output. Necessary and sufficient conditions 

for the stable inversion problem are provided in [268].  Hou and Patton show the 

similarities between input estimation and system inversion and provide a necessary and 

sufficient condition for input observability [169]. 
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For both polynomial methods herein, special attention is paid to the input 

reconstruction problem because it provides more analytical redundancy and potential for 

improving a Fault Tolerant Control architecture.   

In order to determine conditions for input observability, consider the LTI model 

in (0.69)-(0.70) and express the system as 

 

 
( ) 0

( )
( )

pI x t
y t

C D u t I
− +Φ Γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (0.73) 

 

Now define the matrix 

 

 ( )
I

M
C D

λ
λ

− +Φ Γ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (0.74) 

 

called the matrix pencil [200][139].  Input observability is a necessary and sufficient 

condition for the existence of an estimator reconstructing inputs [169].  In the case of a 

controllable and observable system of equations (0.69)-(0.70) with unknown initial 

conditions, the input ( )u t  is observable if and only if 

 

 ( )rank ( ) dim( ) dim( ),M x uλ λ= + ∀ ∈ . (0.75) 

 

If the input observability condition (0.75) is satisfied for a system, then one such input 

estimator exists of the form 

 

 1 2( ) ( ) ( )w t F w t F y t= +  (0.76) 
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 ( )
1 2,

0

ˆ( ) ( ) ( )
k

i
i

i
u t G w t G y t

=

= +∑  (0.77) 

 

where ( ) ( )iy t  denotes the thi  derivative of ( )y t  [169].  The number k  is called the index 

of the estimator and it indicates the highest derivative needed.  The methods for input 

estimation described here and elsewhere require high orders of derivatives on the output 

measurements, which would make the estimate sensitive to noise.  Also, in [268] an 

iterative algorithm is described for determining an input estimation filter. 

Another method for determining the input estimate is derived directly from the 

state space realization (0.69)-(0.70) and is similar to the system inversion problem in 

[268], only no iterative process is necessary.  It is expressed here in partial-state space 

form as 

 

 ( )1 1ˆ ˆ( ) ( ) ( )z t T EC Tz t T Ey t− −= Φ −Γ + Γ  (0.78) 

 ˆ ˆ( ) ( ) ( )u t ECTz t Ey t= − +  (0.79) 

 

where all the system matrices are defined in (0.69)-(0.70), the matrix E  is defined as 

 

 
1

†

if 
if ,

u y

y u

D n n
E

D n n

−⎧ =⎪= ⎨ >⎪⎩
 

 

and the nonsingular matrix T  transforms state ( )x t  to the partial-state vector ( )z t  as 

before.  Notice that each term in the input estimation equation (0.79) includes the matrix 

E , which is directly related to the degree of the numerator polynomial ( )B p  as shown in 

the equivalent equation (0.71) from the polynomial approach.  Once again, in order to 



81 

have a proper system inverse, the degree of the numerator polynomial ( )B p  must be the 

same as the denominator polynomial ( )A p  or, in the state space realization 0D ≠ . 

In most cases for fault diagnosis, the number of outputs will be strictly greater 

than the number of inputs.  This implies that D  is not square and only some of the 

eigenvalues of ( )A BEC−  will depend on E .  If D  is rank deficient, then the inputs 

corresponding to a zero column will not have an estimate.  Notice that the inverted 

“output” equation in (0.79) is identical to (0.71), which again shows the equivalence of 

minimal realizations of a system.    

 If the system does not satisfy the inversion rank condition, it does not mean that 

an input estimate cannot be estimated.  It only means that the system does not have a 

proper inverse.  An explanation in [73] and [280] shows that if we relax the rank 

condition to 

 

 rank( ( )) dim( ) dim( )M x uλ′ < +  (0.80) 

where 

 

 ( )
0

I
M

C
λ

λ
− +Φ Γ⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

, 

 

and we further assume that a full-state estimate is obtainable and input matrix Γ  is full 

rank (which it will be if the system is controllable), then an input estimation process can 

be established with derivatives on the output measurements as shown in (0.76)-(0.77).  

Another way to look at this result is to consider an estimate of the input directly from the 

dynamic equation (0.32) represented in the partial state as 

 

 ( ) ( )†1 1 1ˆ ˆ ˆ( ) ( ) ( )u t T z t T T Tz t− − −= Γ − Γ Φ . (0.81) 



82 

By comparing equations (0.79) and (0.81), we see that the expression (0.81) shows 

dependence on derivatives of the partial state, but is independent of D .  This relationship 

shows the similarity of determining the input estimate based on the right fraction transfer 

matrix representation in (0.72).   Finally, recall that an estimate of the partial state is 

possible even when a full-state estimate is not.  Then by extension, an input estimate in 

this case can still be achieved by adding derivatives as necessary to (0.81). 

 

2. Examples 
Two examples are presented to demonstrate input reconstruction on an unknown 

input observer.  The first shows how a bank of unknown input observers successfully 

estimates the inputs while being systematically independent of each input.  From the 

structured residual set, it can be seen that the indication of the presence of a fault is more 

prominent using residuals from the input estimate rather than based on the output 

measurements.  In addition, for a certain class of systems the residual signal is an 

estimate of the fault signal itself.  The second example demonstrates an unknown input 

observer used to estimate nonlinear components of a system.  

The first example is a UIO-based structured residual set designed to detect and 

isolate actuator faults.  Suppose a system follows the flow diagram depicted in Figure 

III.8.  The system model shows an input ( )u t  being subjected to an unknown disturbance 

uη  with known mean (zero) and variance ( )2
uσ  and another completely unknown 

disturbance ( )f t .  The corrupted signal ( )fu t  is the input to the known plant dynamics 

and its output measurement is also influenced by a zero mean disturbance with variance 
2
yσ .  The goal is to determine the characteristics of the unknown disturbance ( )f t  – that 

is, determine ˆ ( )f t . 
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Figure III.8:  UIO Example, Signal Flow Diagram 
 

To make the problem more general, suppose the system depicted in Figure III.8 is 

a MIMO system where ( )u t  and ( )y t  are vectors.  Let ( )f t  be a scalar disturbance 

operating on one of the inputs, but it is not known a priori which one.  Also let the 

disturbances uη  and yη  have influence on all the inputs and outputs, respectively.  Now, 

the goal is to determine which input is corrupted by ( )f t  on the basis of the input 

residual  

 

 ˆ( ) ( ) ( )ur t u t u t= −  

 

and, for comparison, the output residual 

 

 ˆ( ) ( ) ( )yr t y t y t= − . 

  

The problem is solved using unknown input observers with input reconstruction 

(UIO-IR) in a structured residual set depicted in Figure III.9 where the bank of observers 

are designed to reject the inputs one at a time.  The system used in this example is the 
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sixth-order, four-input, twelve-output* port bus model for the DC ZEDS system shown in 

Figure II.6., with parameters listed in Table II.3.  For the purpose of this exercise, the bus 

is assumed to be in Mode 3 (where zones 1, 2, and 3 are energized) and the system is 

adjusted in time scale using arbitrary inputs 

 

 

1

2

3

4

sin( )
( )

sin( )( ) 2
( ) sin( )
( ) sin( )

2

t
u t

tu t
u t t
u t t

π

π
π

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ +
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

. 

 

 

Figure III.9:  UIO Example, Structured Residual set for Input FDI 
                                                 

* It turns out that twelve outputs are not necessary for the UIO implementation.  A more manageable 
number is 9 (bus current, bus voltage, and capacitance voltage in each zone), which still meets all criteria 
for the minimal realization, UIO rank condtion and input observability rank condition. 
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The bank of UIOs (designed using the polynomial parametrization method) in 

Figure III.9 shows that each of the four observers is designed to be insensitive to 1( )u t , 

2 ( )u t , 3 ( )u t , and 4 ( )u t , respectively, where the ‘~’ represents the unknown input.  The 

other inputs to the observer include the outputs y  (denoted as ( )fy t  in Figure III.8) less 

the bus voltage sensors where indicated.  For this problem, the system is a minimal 

realization and the UIO rank condition is satisfied for all conditions.  If only the bus 

current, bus voltage, and capacitance voltage for each zone are considered as outputs, 

then the D  matrix, in (0.11) would be 

 

 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

 

and the input observability rank condition in (0.75) is satisfied.  From this structure, it can 

be seen that ( ) 3 urank D n= <  and so a solution to the input estimate can be determined 

by (0.71) or (0.79) for all except 4 ( )u t , which shows all zeros in the fourth column.  In 

other words, none of the outputs are algebraically dependent on the input 4 ( )u t , which is 

the output voltage from the power supply in the DC ZEDS system. 

Also, since there is input dependence on the last three output measurements, they 

must be removed from the observer estimate because a fault on the input will also mean a 

fault on the outputs that are linearly dependent on the inputs.  These last three rows of D  

correspond to the bus voltage sensors. 
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In this example, a disturbance signal ( )f t  was arbitrarily chosen to be a triangle 

waveform added to the input 1( )u t  as shown in Figure III.10. 

 

Figure III.10:  UIO Example, Input Fault Trajectory 
 

 

The results from the simulation were obtained through resuiduals generated from 

the structured residual set in Figure III.9 and show a fault indication on the far left 

column of Figures III.11 - III.13.  The columns of these figures represent residuals 

generated from the UIOs insensitive to 1( )u t , 2 ( )u t , 3 ( )u t , and 4 ( )u t  from left to right, 

where the ‘~’ represents the unknown input.  The rows in each figure are residuals based 

on estimates of the inputs or outputs.  In Figure III.11, the subscript “ipz*” are the load 

demands leading to the SSCMs in each zone as shown in Figure II.6 as “
*outi ”, in Figure 

III.12, the subscript “ibus*” are the bus currents in each zone and in Figure III.13, the 

subscript “vb*” is bus voltage in each zone.  The fourth input is outv  from the power 
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supply but is not shown in Figure III.11 because an estimate cannot be  

determined without derivatives to the partial state. 

 It can be seen that the residual in the very top left corner of Figure III.11 is the 

estimate of the disturbance ( )f t  and because it resides in the first column, where no 

other signatures reside going down the column, the disturbance is on the first input 1( )u t .  

To make the figures more readable, the triangle disturbance signal ( )f t  is superimposed 

in red, the actual results are in blue, and the mean is green.  

 

 

Figure III.11:  Input Residuals (Fault on 1( )u t ) 

 

If the estimate 1̂( )u t  is determined from UIO.U~234 (shorthand for the unknown 

input observer insensitive to 1( )u t ), then from the consistency between input 1( )u t , 2 ( )u t , 

3 ( )u t , and ( )fy t , an input estimate will be 1
ˆˆ ˆ( ) ( ) ( )u t u t f t= +  and the residual 1 ur  
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(shorthand for input residual from UIO.U~234) would be 
11 1̂( )ur f t= − , which is the 

opposite of the estimate of the disturbance signal.  Any other combination of inputs and 

outputs will result in some signature in the residuals.   

Looking at the other columns in Figure III.11, it is possible to have ambiguous 

results.  For example, column U12~4 shows a similar signature in the top row with very 

small residual signatures down the column.  This is essentially a problem of residual 

evaluation, but a solution might be that if the disturbance signal (i.e. the fault) is known 

to have a certain characteristics, then a matched filter can be implemented along with any 

standard noise reduction scheme to identify signals buried in noise.  Another method 

might be to look for fault characteristics in the frequency domain. 

 

 

Figure III.12:  UIO Example, Output Residuals (Bus Current per Zone) 
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Looking at Figure III.12 and Figure III.13, we see the residuals based on output 

measurements.  Once again, the very first column has no signature while all the other 

columns do (except for 
11 vbr , which will be explained later).  This means that the fault 

indication is associated with 1( )u t .  Notice in these two figures, the residuals are not 

nearly as pronounced as they were in the residuals based on input estimation.  This can be 

explained by the linear combination of matrices in generating the residuals from the input 

estimation is better “tuned”, or simply more suitable, for detecting input faults.  Likewise, 

residuals generated from output estimates are better suited for sensor FDI. 

As mentioned before, the only output residual with any signature in the first 

column is the one in the top left corner of Figure III.13 ( )11 vbr .  This is because the bus 

voltage sensor in zone 1 is linearly dependent on the input 1( )u t .  Recall that this 

measurement was removed from UIO.U~234 when determining the state estimate.  This 

means that the estimate will have a 1( )u t  fault influence on the output measurement and 

therefore the row can be discarded. 
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Figure III.13:  UIO Example, Output Residuals (Bus Voltage per Zone) 
 

In the second example the purpose is to demonstrate how a UIO can be used to 

estimate the nonlinear terms in a system and then further estimate unknown input.  In this 

case, the power supply model with buck controller is used where its topology and 

corresponding parameters are shown in Figure II.3 and Table II.1.  Also, its controller 

design and parameters are shown in Figure II.4 and Table II.2.  The power supply model 

dynamic equation is shown in (0.4) and rewritten here as 

 

 21
1, 2,

34

( )( )
( )( )ps ps ps

u tu t
x A x B B

u tu t
⎡ ⎤⎡ ⎤

= + + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (0.82) 
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where the known inputs are [ ]1 4( ) ( ) 2
TT

Loadu t u t E i⎡ ⎤= ⎣ ⎦  and the “unknown” inputs 

are the nonlinear terms [ ]2 3( ) ( )
out

TT
L dcu t u t d i d v⎡ ⎤= ⋅ ⋅⎣ ⎦ .  The UIO design shown in 

Figure III.14 describes the estimation procedure. The idea is to design an observer 

independent of the nonlinear dynamics, then estimate the inputs through input 

reconstruction.  Finally, divide the unknown input estimates by the state estimates ˆdcv  

and  L̂outi  to determine an estimate on the control input ˆ( )d t .  If the input can be 

measured, then a residual ( )dr t  can be formed.  In this case, both the UIO rank condition 

and the input observable condition are satisfied. 

 

 

 

Figure III.14:  Input Estimation of a Nonlinear System 

 

 

The results are shown in Figure III.15.  Here, the estimate of the control input 

ˆ( )d t  is determined in the top graph while the bottom graph only serves to show that the 

estimate found is consistent with the actual control input trajectory. 
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Figure III.15:  Results from Polynomial UIO with Input Reconstruction 
 

From the observer point of view, if algebraic equations relating the unknown 

input to the measured output are included in the output measurements and certain rank 

conditions similar to the left inverse problem in [268], then input estimation is achievable 

without additional derivatives on the partial state. 
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IV. FAULT DIAGNOSIS APPLIED TO THE DC ZEDS SYSTEM 

It has been shown in numerous publications that the physics-based models of the 

DC ZEDS system accurately represent system dynamics [285][335][327][328][336].  

Indeed, the DC ZEDS simulation model used herein was developed and tested by the 

authors of the aforementioned publications and the text [220].  Because the Power 

Supply, bus, SSCM, and Oring functions in Figure II.1 and described in Chapter II are 

well-defined, it is reasonable, then, to take a model-based approach to Fault Diagnosis on 

the DC ZEDS system.  Chapter II sought to organize the DC ZEDS system into modules 

and represent their dynamics in state space form.  In cases where the average value 

models are nonlinear, such as the power supply and SSCM modules, the models are 

separated into linear and nonlinear parts.  Chapter III then developed several unknown 

input observer approaches that assume a model in state space form for implementation. 

The nature of the DC ZEDS system provides high bandwidth system control 

response, but because it can be controlled so tightly, faults can propagate quickly as well 

[327] (on the order of tens of milliseconds).  The fault diagnosis schemes must 

distinguish between normal and casualty transients and ultimately be able to dynamically 

reconfigure under stressful battle conditions [390].  Because time is critical, model based 

methods to detect the source of a fault rather than trace its effect, is sought. 

This chapter applies a variety of model-based observer techniques (including the 

polynomial approach) to the DC ZEDS simulation model for fault detection and isolation.  

It is desired to detect faults and classify them according to their characteristics.  Some of 

the means for characterization depends upon the detection method (i.e. structured residual 

set, unknown input observers, or fault modeling), while others upon the signature itself 

(i.e. positive or negative, shape, or relative size).  The goal for this chapter is to develop a 

set of methodologies to identify residuals that indicate certain classes of faults.   

 It is acknowledged here that standalone sensors perform a certain level of 

analytical redundancy without computations.  However, individual sensors do not 

contribute to a “global” perspective as do a network of sensors connected together by 

mathematical relationships.  One of the presuppositions in this work is to develop ways to 
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automate the fault detection process quickly, reliably, and accurately – and a hierarchical 

automated fault detection layer using robust model-based estimation is one such way.  

 

A. MODULAR APPROACH TO INPUT-OUTPUT CONSISTENCY 
The DC ZEDS model as a whole contains 68 states, and this does not consider the 

ac side of the overall power system from prime mover to constant power load.  From the 

input of the power supply to the input to the SSIM in each zone, the DC ZEDS system 

has many modes and system configurations that make it difficult to estimate as a whole – 

even under normal operating conditions.  A suitable solution to handle the sheer size of 

the problem is to separate the system into smaller logical subsystems and connect them 

together with common inputs and outputs.  This modular approach to verifying input-

output consistency is done for the DC ZEDS system and the topology is shown in Figure 

IV.1. 

 

 

Figure IV.1: DC ZEDS Module Topology 
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Four representative component module block types are configured so that each 

input/output pair between them is shared measurements such that the output to one block 

is the input to the connecting block.  Under this method, the entire system is viewed as a 

dynamic interconnection of subsystems with common inputs and outputs and is 

consistent with the DC ZEDS simulation model.  Notice also in Figure IV.1 that the 

models show voltages as outputs moving toward the constant power load in each zone 

and currents as inputs.   

Using various types of observers, model consistency is verified by comparing 

module estimates with measurements.  With algebraic equations relating the states and 

the input in the form of energy conservation laws, the observers become input observable 

and therefore an estimate of the inputs can be made without derivatives.  Taking a closer 

look at the input/output connections shown in Figure IV.2, we see that redundancy is 

verified from the input and output measurements of each module block “A”, “B”, and 

“C”. 

 

 

Figure IV.2:  System Module Interconnection 
 

Suppose block “B” is the port SSCM in Zone 1 where the external inputs 
1

ˆbu and 

2
ˆbu  in (0.19)-(0.20) are the port bus voltage and load current and let 

1
ˆby  and 

2
ˆby  be the 

SSCM output voltage and the Zone 1 load requirement to the port bus, respectively.  To 

verify analytical redundancy across the entire DC ZEDS system, estimates can be made 
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on system measurements from both sides of the block and compared to the estimates (or 

measurements) from each connecting block.  In our example, 
2

ˆau  and 
1

ˆay  from the port 

bus (block “A”) would represent the bus voltage and load current in (0.10)-(0.11), while 

1
ˆcu and 

1
ˆcy  from the Oring function (block “C”) would represent input portv  and output 

porti  in (0.21)-(0.22).  Residuals can be generated by comparing the measurements from 

each common line as 

 

 

1 1

2 2

1 1

2 2

ˆ ˆ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )

AB b a

BA a b

BC c b

CB b c

r t u t y t

r t u t y t

r t u t y t

r t u t y t

= −

= −

= −

= −

 (0.83) 

 

Notice that the one estimate in each equation of (0.83) is independent of the other.  

In this manner, the modular interconnection model shown in Figure IV.2 can zoom down 

to any desired level in the system, provided its external inputs and outputs are the outputs 

and inputs to connecting modules. 

Among the benefits of this consistency scheme is increased redundancy.  For 

example, if 
2

ˆau  is a control signal input for the controller in Module A, and the signal 

becomes disconnected or otherwise erroneous, then between the two estimates 
2

ˆau  and 

2
ˆby  the fault can be isolated to one of the modules.  In some cases, different methods of 

FDI can be performed in separate modules that draw the same conclusion and your 

confidence of the fault indication becomes much stronger.   

From Module A, verifying sensor consistency is done using a structured residual 

set of regular Kalman Filters as shown in Figure IV.3.  Here, an observer is designed to 

minimize the mean squared error of the output residuals using all the inputs and all the 

outputs less one.  Each successive observer in the set performs the same operations until 

all yn  sensors are removed one at a time for a total of yn  observers.  The notation 1 ( )y t  
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indicates the output measurement vector ( )y t  without sensor 1, and so on.  Likewise, 

1 ˆ( )y t  and 1 ( )yr t  are the corresponding output measurements and output residuals based 

on observer inputs ( )u t  and ( )y t  without sensor 1.  The residual generator compares the 

full output vector ( )y t  with all its estimates for consistency.  Suppose for example that 

the number three output sensor is faulted.   

 

 

Figure IV.3:  Sensor FDI Structured Residual Set 
 

Then by the observer structure in Figure IV.3, the third observer in the set would 

accurately estimate the faulted output signal 3, while the rest would show a signature in 

the residuals.  This is because all the other observers are dependent on the faulted 

measurement. 
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The following DC ZEDS example demonstrates the concept of modular FDI.  

Consider the nominal operating scenario where the port and starboard power supplies are 

energizing the port and starboard bus, respectively.  The starboard bus is providing power 

to the load in Zone 1 while the port bus is feeding the load in Zones 2 and 3 with 

operating parameters according to Table II.5.  The power supply controller is regulating a 

500 V output voltage through the control input d , which is assumed to be measurable. 

Suppose a fault occurs to the load current signal outi  in the port power supply 

controller (shown in Figure II.4) at time 0.6faultt =  seconds.  In the fault condition the 

signal outi  is a constant zero, thus removing the feedforward path to the PI controller.  

The local effect of the fault is that the feedforward path will communicate to the 

controller that there is no required load current, which disables the controller’s ability to 

provide fast response to changes in the load.  The fault propagates through to the port bus 

as a small transient that quickly recovers to the steady state as shown in Figure IV.4 and 

Figure IV.5.  The starboard bus remains unchanged. 
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Figure IV.4:  Bus Voltage Showing Bus Current Sensor Fault 
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Figure IV.5:  Bus Current Showing Bus Current Sensor Fault 
 

The goal here is to use the modular FDI approach to detect the fault and 

determine in what module the fault originated.  Beyond that, it is desirable to gain other 

fault characteristics, if possible.  Looking at the power supply module shown in Figure 

IV.1 we see that it is connected to the port bus through common signals outv  and Loadi .  

The first step to our goal is to conduct sensor FDI on the sensors within the bus module.  

Developing a structured residual set of Kalman Filters as shown in Figure IV.3 achieves 

that task.  So as to not be unnecessarily exhaustive in showing all the sensor FDI 

residuals, only the zone current sensors are plotted here since the other residuals are 

consistent with what is shown here in Figure IV.6. 
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Figure IV.6:  Bus Sensor FDI Residuals for Bus Current Sensor Fault in Power 
Supply 

 

The residuals in Figure IV.6 show that there is consistency between estimates and 

measurements since they are white and stationary.   It can be shown that the other sensors 

in the set show the same result.  Based on this result, we conclude that the sensor fault is 

not in the bus module.  Now we take a look at the structured residual set in the port power 

supply module.  Since the fault in question occurs on the input to the power supply, an 

actuator fault diagnosis problem similar to the one described in Figure III.8 applies.  

Applying the structured residual set similar to the one shown in Figure III.9 for the power 

supply model in (0.4)-(0.5), we receive the following residuals on the input and output 

estimates as shown in Figures IV.7 and IV.8. 
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Figure IV.7:  Input Residuals for Bus Current Sensor Fault in Power Supply 
Controller 

 

 In contrast to the sensor residuals in the bus module in Figure IV.6, the residuals 

in Figure IV.7 indicate the presence of a fault.  As before, the residuals are generated 

from the input estimations indicated by row and the unknown input observers by column.  

Looking down column U123~, it can be seen that the only residual which is not white is 

in the last row, which corresponds to the signal in question, Loadi .  This makes sense 

because the estimates in the column to the far right base their estimate on all inputs 

except Loadi , which is where the fault resides.  The residuals down the column indicate 

input/output consistency, while the input estimate for Loadi  contains the fault signature.  

Similar results are shown in the output residuals in Figure IV.8. 
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Figure IV.8:  Output Residuals for Bus Current Sensor Fault in Power Supply 
Controller 

 

The result of the bus current sensor fault example shows that first, the fault did 

not have any indication of originating in the bus module.   It did, however, have an 

indication in the power supply model and, more specifically, the fault showed indication 

of residing in the bus current sensor somewhere between the bus and the controller. 

 

B. FDI BASED ON FAULT MODELING 
In the last section we considered a class of faults where the fault information was 

due to a difference between measurements and estimates.  Using the methodical, 

structured residual set for both input and output residuals, a fault was detected.  The key 

component to this method is a valid model that accurately represents the input-output 

relationship. In this section, we consider another means to detect faults using 

mathematical models specifically “tuned” to a particular class of fault.  In this case, 
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regular Kalman Filters are determined from models which are known to indicate a fault 

condition in the DC ZEDS system.  In this case, indication of a fault in the residuals is 

exactly opposite of the results from the previous section.  A zero residual would indicate 

a match to the fault model, providing precise fault detection and isolation – provided the 

fault model is consistent with the actual fault dynamics.    

Suppose we have a nominal plant configuration similar to the one described in the 

last section and we wish to consider what the effects of an SSCM switch failure in the 

closed position would do to the DC ZEDS system.  Then, the goal is to model this failure 

and simulate the FDI scheme. 

For simulating the SSCM switch in the closed position, we first choose the 

starboard SSCM in Zone 1 depicted in Figure II.1.  In the average value model, the fault 

is triggered by setting the SSCM control signal d  to 1.  Similarly, in the detailed model, 

the control switching signal s  is set to 1.  A simulation of the fault condition was 

conducted and its effect on the bus is shown in Figures IV.9 and IV.10.   
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Figure IV.9:  SSCM Switch Closed Failure:  Port/Stbd Bus Voltage 
 

 

From Figure IV.9 it can be seen that the SSCM failure has very little effect on the 

bus voltage.  This is due to the sophisticated and robust power converter control elements 

that provide nearly-ideal load regulation and transient performance [327][332].  The port 

and starboard bus current is shown in Figure IV.10 where the starboard bus shows a large 

transient at the time of the fault, but settles back to near the same level as before.  It can 

also be seen on the starboard bus current figure that the average value model follows very 

closely to the detailed model, even in the fault transient.  Notice also that the port bus 

remains unchanged. 
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Figure IV.10:  SSCM Switch Closed Failure:  Port/Stbd Bus Current 
 

The next set of figures shows the inputs and outputs to the SSCM under the 

switch closed fault condition.  Figure IV.11 shows the inputs to the SSCM.  The bus 

voltage is virtually unchanged as before, but the load current demand oscillates very 

rapidly in the steady state.  This is due to the constant power nature of the load that the 

SSCM is feeding.  If the voltage to the load oscillates in the steady state, then so will the 

current according to the relationship *
Load Loadv i P⋅ = ,  where *P  is the constant load 

requirement shown in Figure II.15.  Here again, the average value fault simulation agrees 

with the detailed simulation.    
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Figure IV.11:  SSCM Switch Closed Failure:  SSCM Inputs 
 

Looking at the SSCM circuit diagram in Figure II.10, it can be seen that if the 

switch is closed permanently, then the steady-state output should be very close to the 

input.  This is indeed the case as shown in Figure IV.12 where the dc value of the SSCM 

output is close to the bus voltage (500 V).   
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Figure IV.12:  SSCM Switch Closed Failure:  SSCM Outputs 
 

Next we examine what is happening inside the controller depicted in Figure II.12.  

As it turns out, the position of the control signal d  becomes important for detecting the 

fault.  First, it makes sense that the duty cycle d  is around 80% under no-fault conditions 

because the regulated output voltage is 80% of the input voltage.   

If the SSCM switch fails closed, then we see that the output voltage becomes 

close to the input voltage.  The controller in Figure II.12 shows a large error signal 

between the output voltage (~500 V) and the reference voltage (400 V), resulting in the 

controller commanding the switch to open.  This fault condition means that the command 

signal d  is a constant zero, while the actual operating condition of the switch is stuck in 

the opposite state.  These command signal dynamics are shown in Figure IV.13.  



109 

 

Figure IV.13:  SSCM Switch Closed Failure:  SSCM Control Signal d  

 

In what follows we derive the equations that model the fault.  Consider the SSCM 

model equations in (0.19)-(0.20) where the dynamic equation is rewritten here as  

 

 21
1, 2,

34
sscm sscm sscm

uu
x A x B B

uu
⎡ ⎤⎡ ⎤

= + + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

. (0.84) 

 

Recall that the inputs 2 ( )u t  and 3( )u t  are the nonlinear terms relating the control signal 

d  and the states of the system as 

  

 2 5

3 3

( ) ( )
( ) ( )

u t d x t
u t d x t

= ⋅
= ⋅

 (0.85) 
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Under the SSCM switch closed fault condition, the control signal 1d =  and the 

nonlinear terms in (0.84) can now be expressed as a part of the linear dynamics in the 

new fault dynamics state space equation 

 

 1*
1,

4

( )
( ) ( )

( )sscm sscm

u t
x t A x t B

u t
⎡ ⎤

= + ⎢ ⎥
⎣ ⎦

 (0.86) 

 

where 

 

 
2

*

0 0 0 0 0
0 0 0 0 0

10 0 0 0

0 0 0 0 0
10 0 0 0

fsscm sscm

out

CA A

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥= + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  

 

 

The fault model in (0.86) along with the output equations in (0.20) is controllable, 

observable, and input observable.  Therefore, a standard Kalman Filter is applied to the 

SSCM switch closed fault model and simulated using the detailed model data.  The 

results in Figure IV.14 show the opposite trend in a positive identification of the fault 

compared to previous methods, which is expected.  What we have is essentially a filter 

that is “tuned” to the particular fault where the residuals will be zero when the fault 

occurs, which indicates input/output consistency in the fault condition.  All five states of 

the SSCM model reveal a constant near-zero mean residual, but only 4 of the 5 are shown 

in Figure IV.14.    
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Figure IV.14:  SSCM Switch Closed Failure:  Fault Model Residuals 
 

Finally, we go back to the nonlinear input estimation problem described in Figure 

III.14.  The SSCM model (0.19) has a similar model equation structure as the power 

supply model (0.4) and so its control signal d  can be estimated in like manner.  Recall 

that in the failed condition where the output voltage is far greater than the reference 

voltage, the SSCM controller is continuously sending the command to have the switch 

opened as seen in Figure IV.13.  Without the use of the fault model, a fault indication can 

still be achieved if a UIO scheme is set up such that it estimates the command signal d .  

If the control signal is measurable, then a residual on the command signal can indicate the 

presence of an SSCM switching fault as shown in Figure IV.15. 
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Figure IV.15:  SSCM Switch Closed Failure:  Residual on Control Signal d  

 

One more example for FDI based on fault modeling is presented.  Suppose only 

the  port power supply is on line providing power to all three zones and an open circuit on 

the bus occurs so that Zone 3 is dead.  The scenario was simulated and the results are 

shown in Figure IV.16.  The bus current, is shown to drop from the no fault Mode 3 

condition down to the Mode 2 condition.  This is consistent with what is expected since 

the load in Zone 3 is completely dropped. 
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Figure IV.16:  Bus Open Circuit in Zone 3: Bus Current 
 

We use the three bus mode models shown in Figure II.6 and Table II.4 as a means 

to detect the bus open circuit. Using the inputs and output measurements, we process the 

data through three Kalman Filters tuned to each bus mode configuration.  The model that 

is most consistent with the input and output data will show a zero residual.  The observers 

are based on bus model equations (0.10)-(0.11), and the results are shown in Figure 

IV.17.  From the residuals, it can be seen that the system began in Mode 3 operation (i.e., 

all zones on line) and then suddenly switched to zone 2, indicating an open circuit in zone 

3.     
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Figure IV.17:  Bus Open Circuit:  3 Mode Residuals 
 

To conclude this section, it is shown that FDI using fault models shows good 

results.  But like all model-based methods, they are dependent on the accuracy of the 

model.  Fortunately, these models have been proven to be accurate. 
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V. CONCLUSION 

A. SUMMARY OF FAULT DIAGNOSIS RESULTS TO THE DC ZEDS 
MODEL 
Model-based Fault Diagnosis is an excellent method for validating system 

input/output consistency and to detect fault indicators in the residuals, which is the 

fundamental principle of analytical redundancy.  However, these methods are only as 

good as the models upon which they are based.  Fortunately, it has been shown that the 

DC ZEDS model is an accurate power electronics-based distribution system and is very 

similar in design to the reduced scale hardware model implemented in the Naval Combat 

Survivability (NCS) Testbed located at Purdue University, which is specifically designed 

for concept studies such as the ones in this work [335].  The DC ZEDS system is a 

reduced-scale model, yet it contains enough of the complex, nonlinear, dynamically 

interdependent nature to make it quite suitable for scholarly research 

[56][327][328][245][246][335][285].   

Two models were used side-by-side for the results of this research:  the average 

value model and the more accurate detailed model.  The difference between the two 

models is the 20 kHz switching dynamics of the power supply and SSCM.  The average 

value models are nonlinear, but the switching dynamics are removed and, through the use 

of unknown input observers, accurate state and input estimates are determined for robust 

residual generation. In these fault scenarios, most of the FDI results aim at detecting the 

source of a fault rather than studying its propagation effects.   

Based on the results, the average value model accurately matched the detailed 

model for the fault scenarios studied herein – even in the transients.  It is acknowledged, 

however, that a class of faults caused by switching dynamics may not be accurately 

modeled (and therefore not accurately estimated) using the average value model and so 

they were not addressed.   

The closest one of the fault scenarios came to studying switching dynamic faults 

is the one with the SSCM switch failure in the closed position.  Here, the nonlinear 

dynamics are essentially removed by a constant connection, and a model of the fault is 
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formed.  The FDI scheme in this scenario used an observer based on the fault model to 

generate a residual.  Similarly, another fault model scheme presented in the results uses a 

bank of Kalman Filters specifically “tuned” to detect an open circuit in various places 

along the bus.  Again, the indication of this fault will be a zero in the residuals, meaning 

that there is input/output consistency in the fault condition.  As long as the models 

accurately represent the system and the fault, the fault model FDI scheme works quite 

well.  One drawback to this method might be that it is specifically designed to detect a 

particular fault while other FDI methods (using a structured residual set, for example) are 

able to detect a broader class of faults.  This might not be undesirable, though, if several 

FDI methods are applied concurrently; for example, one FDI method might be used for 

detecting a broader class of faults with less accuracy and the other method might be used 

for detecting (with greater accuracy) a very specific fault that is known to produce grave 

consequences.  

For a more general FDI scheme, it is shown that model consistency for the overall 

large-scale system can be successfully subdivided into modules with common inputs to 

and outputs from connecting modules.  In this manner, classes of faults (such as sensor 

faults or communication faults between modules) can be isolated to a particular module 

by verifying input/output consistency between modules.  This modular FDI approach has 

the effect of being able to subdivide into arbitrarily small submodules, provided that the 

inputs and outputs are common to the connecting modules.  

 

B. SUMMARY OF POLYNOMIAL UIO RESULTS 
A special type of observer that can be made insensitive to any combination of 

inputs (provided certain conditions are satisfied) is used extensively for the FDI 

application.  It is shown in several examples that a structured residual set of unknown 

input observers can accurately detect and isolate actuator faults and in some cases can 

estimate the fault signal itself.  Here, two UIO methods based on a polynomial 

representation of a system are developed and compared to the subspace projection UIO 

method.  Since these methods take advantage of the partial-state representation of a 

system, it is shown that in some cases an estimate of the partial state can still be 

determined even if the UIO rank condition is not satisfied, which is a necessary condition 
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for the subspace projection UIO method.  For the purpose of residual generation, a 

partial-state representation could possibly be all that is needed.  If the full-state estimate 

is required, then it can still be done by taking derivatives of the partial state – a process 

that is sensitive to noise.   

The input replacement UIO method is straightforward to implement, but is 

restricted to a smaller class of systems where higher degrees of the numerator polynomial 

is necessary.  One way to ensure the higher numerator polynomial degree is to include 

output measurements that are dependent on the states and inputs.  In the state space 

realization, this implies that the D  matrix is nonzero.  The input replacement UI method 

is also similar to the input inversion problem.   

The parametrization UIO method is comparable in performance to the subspace 

projection method and applies to a larger class of systems.  It is based on the nonunique 

solution of the Diophantine equation, where the particular solution we choose separates 

the known system dynamics from the unknown.  It is believed that this concept can be 

extended to an adaptive polynomial UIO method where the parameter vector is 

determined adaptively by minimizing the output residual.  However, precise conditions 

for existence of a solution still have to be determined.  In some applications to the DC 

ZEDS models, the parametrized solution of the UIO provided a nonrealizable estimator. 

Having a feed-through D  matrix in the system of equations of the state space 

realization (which implies higher order numerator polynomials in the right matrix 

polynomial realization) also allows for input estimation without having to take 

derivatives of the partial state.  Input estimation is quite useful for fault diagnosis as 

shown in several examples where the input to a nonlinear model was estimated.  It is also 

a key element to the modular approach to FDI as it enables each module to estimate both 

outputs and inputs for consistency validation.  It has also been shown that in some cases 

an estimate of the fault signal itself can be determined. 
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C. FUTURE WORK 

For follow-on work, other non-model based fault diagnosis strategies could be 

developed and compared to these results.  It would also be valuable to validate the fault 

diagnosis schemes using the Naval Combat Survivability (NCS) Testbed; it is very 

similar in design to the DC ZEDS model described in Chapter II and has been developed 

by the same team of engineers at Purdue University [335].  Here, real-time FDI on an 

actual hardware DC ZEDS system could be compared with simulation results.  The work 

would require modeling and simulation on a validated truth model using Advanced 

Continuous Simulation Language (ACSL).   

At the reconfiguration level shown in Figure I.1, raw residual data is analyzed and 

decisions are made about positive fault identification.  From the innovations determined 

in Chapter IV on the stochastic models described in Chapter II, residual evaluation 

techniques can be applied to determine fault probabilities or to develop an intelligent 

fault decision-making process.  Methods for residual evaluation may include: 

 

• Generalized likelihood ratio (GLR) testing 

• Fuzzy logic 

• Adaptive thresholds (time and/or freq domain)   

• Hypothesis testing 

• Multiple Model Adaptive Estimation (MMAE) 

 

In this systematic manner of evaluating residuals, a positive fault indication can then be 

sent to a control reconfiguration scheme to achieve the ultimate goal:  continuity of 

service despite combat damage involving cascading failures. 

Other areas for FDI research could be to introduce multiple simultaneous faults or 

conduct similar fault simulations on the DC ZEDS system with a droop a mode capability 

where power in each zone is brokered between the port and starboard busses. 
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In [60], authors Chen and Patton note that robust FDI is still an “open problem” 

where the most significant challenge is due to conflicting criteria in model-based robust 

residual generation.  Specifically, residual generation methods must be sensitive to faults, 

yet insensitive to modeling uncertainties.  In order to account for this in the residuals, a 

multicriteria optimization approach can be investigated where fault effects are maximized 

and modeling uncertainties are minimized.  Some general optimal FDI work has been 

studied using a single objective function codified as a weighted sum of objectives 

[59][60].  In many of these cases, however, the solutions do not adequately address the 

original problem [322].  What’s more, FDI is most often considered separately from the 

rest of the system design.  A better approach might be to develop a multicriteria optimal 

solution by investigating trade offs between design variables, system constraints, control 

laws, sensor allocation, and fault sensitivity. 
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APPENDIX A:  IFAC SAFEPROCESS FAULT DIAGNOSIS 
DEFINITIONS 

The following keywords are common terms applied to the field of Fault Diagnosis and 
Fault Tolerant Control.  They were developed by the Fault Detection, Supervision, and 
Safety for Technical Processes (SAFEPROCESS) Technical Committee and published in 
Isermann and Balle, 1997; [178]. The definitions are widely accepted in published books 
on the subject (Blanke et. al., 2003; [44], Chen and Patton, 1997; [60]). 

  

 
Active fault-tolerant 
control system 
 

A fault-tolerant system where faults are explicitly detected and 
accommodated.  Opposite of a passive fault-tolerant system. 

Analytical  
redundancy 
 
 

Use of two or more, but not necessarily identical ways to determine a 
variable where one way uses a mathematical process model in analytical 
form. 
 

Availability 
 
 

Probability of that a system or equipment will operate satisfactorily and 
effectively at any point in time. 

Constraint 
 
 

The limitation imposed by nature (physical laws) or man.  It permits the 
variables to take certain values in the variable space. 

Dependability 
 
 
 
 
 

A form of availability that has the property of always being available when 
required.  It is the degree to which a system is operable and capable of 
performing its required function at any randomly chosen time during its 
specified operating time, provided that the item is available at the start of 
that period. 

Diagnostic model 
 
 

A set of static or dynamic relations which link specific input variables - the 
symptoms - to specific output variables - the faults. 

Discrepancy 
 
 

An abnormal behavior of a physical value or inconsistency between more 
physical values and the relationship between them. 

Disturbance 
 

An unknown (and uncontrolled) input acting on a system 

Error 
 
 

Deviation between a measured or computed value (of an output variable) 
and the true, specified, or theoretically correct value. 

Fail safe 
 
 
 

The ability to sustain a failure and retain the capability to make a safe close-
down.  A system where the occurrence of a single fault can be determined 
but not isolated and where the fault cannot be accommodated to continue 
operation. 

O uθ SS
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Fail-operational 
 
 
 
 

A fault-tolerant system has the property that a single fault does not develop 
into a failure of the closed-loop system.  A Fail-operational system is one 
that the performance of the faulted system remains the same (original 
objective of the nominal system is met). 

Failure 
 
 

Permanent interruption of a systems ability to perform a required function 
under specified operating conditions. 

Failure effect 
 
 

The consequence of a failure mode on the operation, function, or status of an 
item. 

Failure mode 
 

Particular way in which a failure can occur. 

Fault 
 
 
 

Unpermitted deviation of at least one characteristic property or parameter of 
a system from its acceptable/usual/standard condition.[Blanke et. al. adds:  
A fault is the occurrence of a failure mode (Blanke, 2003)]  

Fault  
accommodation 
 

A correcting action (reconfiguration or a change in the operation of a 
system) that prevents a certain fault to propagate into an undesired end-
effect. 

Fault detection 
 

Determination of faults present in a system and time of detection. 

Fault detector 
 

An algorithm that performs fault detection and isolation. 

Fault diagnosis 
 
 
 

Determination of kind, size, location, and time of occurrence of a fault.  
Fault diagnosis includes fault detection, isolation, and estimation. 

Fault estimation 
 

Determination of the size and behavior of a fault over time. 

Fault  
identification 
 

Determination of the size and time-variant behavior of a fault.  Follows fault 
isolation 

Fault isolation 
 
 

Determination of kind, location, and time of detection of a fault.  Follows 
fault detection. 

Fault modeling 
 
 

Determination of a mathematical model to describe specific fault effect. 

Fault propagation 
analysis 
 

Analysis to determine how certain fault effects propagate through the 
considered system. 

Fault tolerant  
control 
 

Aims at changing the control law so as to cancel the effects of the faults or 
to attenuate them to an acceptable level. 
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Fault tolerant  
system 
 
 
 

A system where a fault is accommodated with or without performance 
degradation, but a single fault does not develop into a failure on subsystem 
or system level.  Fault tolerant system has the property that a single fault 
does not develop into a failure of the closed-loop system (p. 9). 

Hardware  
redundancy 
 

Use of more than one independent instrument to accomplish a given 
function 

Incipient fault 
 
 

A fault where the effect develops slowly e.g. clogging of a valve.  In 
opposite to an abrupt fault. 

Malfunction 
 
 

An intermittent irregularity in the fulfillment of a system's desired function. 

Monitoring 
 
 
 

A continuous real-time task of determining the conditions of a physical 
system, by recording information, recognizing and indicating anomalies in 
the behavior 

Passive fault- 
tolerant system 
 
 

A fault-tolerant system where faults are not explicitly detected and 
accommodated, but the controller is designed to be insensitive to a certain 
restricted set of faults.  Contrary to an active fault-tolerant system. 

Perturbation 
 
 

An input acting on a system, which results in a temporary departure from the
current state. 

Protection 
 
 
 

Means by which a potentially dangerous behavior of the system is 
suppressed if possible or means by which the consequences of a dangerous 
behavior are avoided. 

Qualitative  
model 
 
 

Use of static and dynamic relations among system variables and parameters 
in order to describe a system's behavior in qualitative terms such as 
causalities or if-then rules. 

Quantitative  
model  
 

Use of static and dynamic relations among system variables and parameters 
in order to describe a system's behavior in quantitative mathematical terms. 

Recoverability 
 
 

Possibility to accommodate the fault or to reconfigure the system if fault 
occurs. 

Reliability 
 
 

Ability of a system to perform a required function under stated conditions, 
within a given scope, during a given period of time. 

Remedial action 
 
 

A correcting action (reconfiguration or a change in the operation of a 
system) that prevents a certain fault to propagate into an undesired end-
effect.  Synonymous to fault accommodation. 
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Residual 
 
 

A fault indicator, based on a deviation between measurements and model-
equation-based computations 

Safety 
 
 

Ability of a system not to cause danger to persons or equipment or the 
environment 

Safety system 
 
 
 

Electronic system that protects local subsystems from permanent damage or 
damage to environment when potential dangerous events occur. 

Sensor fusion 
 

Integration of correlated signals from different [sources]. 

Supervision 
 
 

Monitoring of a physical system and taking appropriate actions to maintain 
the operation in the case of faults. 

Symptom 
 

A change of an observable quantity from normal behavior. 

Threshold 
 
 

Limit value of a residual's deviation from zero, so if exceeded, a fault is 
declared as detected. 
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APPENDIX B:  POWER SUPPLY AVM TRANSFORMATION 

The average value model begins with several reference frame transformations of 

the input voltage to obtain the time-dependent rms voltage of the input.  The source for 

the transformation is shown in Krause et al [220]. 

The 3-phase ac input voltage is expressed as  

 

( )2 cosag gv E θ=                                   ( .87) 

22 cos
3bg gv E πθ⎛ ⎞= −⎜ ⎟

⎝ ⎠
            ( .88) 

22 cos
3cg gv E πθ⎛ ⎞= +⎜ ⎟

⎝ ⎠
            ( .89) 

 

and the arbitrarily rotating real and reactive (q-d) axis representation is expressed as 

 

0qd s s abcv K v= ,                   ( .90) 

 

where 

 

( ) ( )
( ) ( )

cos cos 2 3 cos 2 3
2 sin sin 2 3 sin 2 3
3

1 2 1 2 1 2

g g g

s g g gK

θ θ π θ π

θ θ π θ π

⎡ ⎤− +
⎢ ⎥
⎢ ⎥= − +
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

If the input deviates from being balanced, then the third of 3 outputs of the 

transformation will be nonzero. 
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A second transformation is applied to the arbitrarily rotating orthogonal q-d axis 

to a reference frame where the reactive voltage is identically equal to zero.  In doing so, 

the transformation calculates the rms voltage of the input, 2E .  

 

0
2
0

g
q

a g qd sg
d

v E K v
v

⎡ ⎤⎡ ⎤
= =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
            ( .91) 

 

where 

 

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

g g

a g g gK
ϕ ϕ
ϕ ϕ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

and 

 

1tan
g
q

g g
d

v
v

ϕ −
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.       ( .92) 

 

The average value model of the 3-phase bridge rectifier is developed in [Krause, 

et al] and the schematic of the Port Power Supply in the DC ZEDS model is shown in 

Figure 1 along with its Buck Converter controller.  The input voltage expression takes 

into account the line-to-line voltage of the balanced 3-phase ac input and represents it 

with the rms voltage.  The 3 phase full wave rectifier equipped with thyristors allows for 

full control of the output dc voltage through the control input firing angle α . 
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APPENDIX C:  SUBSPACE PROJECTION UNKNOWN INPUT 
OBSERVER 

The purpose of Appendix C is to develop the subspace method Hui and Zak’s 

unknown input observer from a slightly different approach presented in [175].  The 

resulting observer design allows for any combination of inputs to be made insensitive to 

the observer – or all of them – provided that certain rank conditions are met.  This design 

freedom makes this observer type useful for Fault Diagnosis.  The paper does not 

explicitly address output measurements that are dependent on the inputs (i.e. 0D ≠ ), 

only to the extent that the input can be subtracted from the output measurements before 

the UIO is implemented and then added back to obtain an output estimate. 

The class of dynamical models considered herein is of the form 

 

 x Ax Bu= +      ( .93) 

 y Cx=      ( .94) 

 

where state vector ,  input , and output ys u nn nx u y∈ ∈ ∈  and matrices A  , B and C  

are completely known with appropriate dimensions.  For a system where at least one of 

un  inputs is unknown, the input matrix B  and corresponding input vector function u  are 

partitioned into known and unknown inputs as 

 

[ ] 1
1 2

2

u
Bu B B

u
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

where the first 
1un  known inputs are separated from the remaining 

2 1u u un n n= −  unknown 

inputs.  In this manner, the inputs of  ( .93) can be represented with separated known and 

unknown inputs with the same output equations as  
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 1 1 2 2x Ax B u B u= + +     ( .95)  

y Cx=  

 

where 1 2
1 2 and u un nB B∈ ∈ .  It should be noted up front that the well-known rank 

condition must be satisfied in order to check for the existence of the observer [230].  For 

the observer to exist, ( ) ( )2 2rank rankCB B= , which implies that there must be at least as 

many independent outputs as there are unknown inputs. 

The Hui and Zak UIO algorithm is based on the idea that we want to project the 

unknown component in sn  onto the subspace of known state components.  Then, an 

observer is constructed within this subspace to estimate the entire state.  Let P  be a 

projection matrix such that 

 

P MC=      ( .96)  

 

where  and  ys nnP M∈ ∈ .  The projection matrix has two important properties.  First, 

P  is symmetric ( TP P= ).  Second, the square of P  is itself ( 2P P= ).  The second 

property also implies that 

 

     1nP P n= ∀ ≥  

 

since any positive integer exponent n  can either be divided by two with a remainder of 0 

or 1.  When expanding the exponents of P  the result will always be a series of  
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multiplications of the projection matrix raised to the first or second power, which will 

always reduce to the second property of the projection matrix.  Using the projection 

matrix, the state vector can be separated as 

 

( )x I P x Px= − +                   ( .97)  

 

Notice that the expression ( )I P−  is a projection matrix itself because it is symmetric 

and  

 

( )

( )

2 2 22
            2
            .

I P I P P
I P P
I P

− = − +

= − +

= −

 

 

We can also conclude that 

 

( ) 2 0P I P P P− = − = . 

 

Substituting the output equation  ( .94) and ( .96) into equation ( .97) we get 

 

x q My= +      ( .98) 

 

where 

 

( )q I MC x= − .        ( .99) 
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The projection matrix I MC−  is constant so the derivative of ( .99) is simply 

 

( )q I MC x= −                ( .100) 

 

Notice that q  can be viewed as the projection (not necessarily orthogonal) of x  onto the 

subspace of known components in sn .  If the subspace state q  can be estimated, then an 

estimate of the entire state x  can be determined by equation ( .98) since the output 

measurement vector y  is known.  To determine M , the constraint 

 

( ) 2 0I MC B− =            ( .101) 

 

must be met, which essentially removes the influence of the unknown input in ( .95).  An 

observer is then designed within the subspace.  Provided that the rank condition 

( ) ( )2 2rank CB rank B=  is met (Kudva et al [230]), the known state subspace exists and 

the matrix M  is determined to be 

 

( ) ( )( )( )( )† †
2 2 0 2 2rM B CB H I CB CB= + −    ( .102) 

 

where the superscript †  denotes the Moore-Penrose pseudo-inverse operation and 

( )20  is u yH n n×  is a design parameter matrix introduced in [175] (default is zero).  To 

determine the dynamic state space model for the subspace state q , we substitute equation 

( .95) into ( .100) to get 

 

( ) ( ) ( ) ( )1 1 2 2q I MC A q My I MC B u I MC B u= − + + − + −               ( .103)  
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Recall that M  is chosen such that the constraint ( .101) is met and so the last term 

in equation – the term containing all unknown inputs – is zero.  The resulting state space 

equation is of the form 

 

q Aq Bu= +                             ( .104)  

y Cq=                                          ( .105) 

 

where 

 

         

( )
( )[ ]1

1

  and

A I MC A

B I MC AM B

y
u

u
y y CMy

= −

= −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

= −

 

 

Notice the new input u  is the vector function of output measurements and known 

inputs, which is fully known.  From here, it can be shown that a standard proportional 

gain observer can be applied to equations ( .104)-( .105) provided the pair ( ),A C  is fully 

observable.  Note that it is possible that the original system might be fully observable 

while the pair ( ),A C  is not.  Choosing the closed loop gain matrix L  to be 

 

( )L I MC L= − , 

 

where L  is the observer gain matrix chosen for the original system in ( .93) and ( .94).  

Finally, the estimate of the subspace state q̂  is determined to be 
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( )ˆ ˆ ˆq Aq Bu L y Cq= + + − .    ( .106)  

 

Now to show convergence of the subspace method, choose the state error to be ˆe q q= −  

so that the error dynamics are determined by the equation 

 

( )e A LC e= − . 

 

Knowing that ( )A I MC A= −  and ( )L I MC L= −  defined in equations ( .104) and 

( .105), the error dynamics can be expressed as the error of the original observer 

projected onto the known system subspace as 

 

( )( )e I MC A LC e= − − .    ( .107)  

 

Looking at equation ( .107), it is not readily apparent that the error converges to zero.  

With a few observations, though, it can be shown that it does.  First, pre-multiply 

equation ( .107) by the projection matrix MC , which yields 

 

( ) 0     MCe t t= ∀     ( .108) 

 

since 

 

( ) ( )2 0MC I MC MC MC MC MC− = − = − = , 
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which implies that 

 

( ) constant     MCe t t= ∀ . 

 

Next, pre-multiply the projection matrix MC  on q  in equation ( .99) , yielding 

 

( ) 0     MCq t t= ∀  

 

for the same reason as in ( .108).  Choose the initial condition on the estimate q̂  in the 

expression as 

 

( )ˆ 0 0MCq = , 

 

then 

 

( ) 0     MCe t t= ∀ . 

 

For simplicity, define a projection matrix P′  and system matrix A′  as 

 

   andP I MC
A A LC
′ = −
′ = −

 

 

then the expression for the error equation in ( .107) can be expanded as 
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( )

( )

( )

2 2 2

2 2

( ) ... 0
2!

        ... 0
2!

       0A t

P A tP e t P I P A t e

A tP I A t e

P e e′

′ ′⎛ ⎞
′ ′ ′ ′= + + +⎜ ⎟

⎝ ⎠
′⎛ ⎞

′ ′= + + +⎜ ⎟
⎝ ⎠
′=

 

 

Now choose L  so that the desired plant characteristics ( )A A LC′ = −  converge to 

zero so that ( ) ( ) 0I MC e t− → .  Putting it all together, it can be seen that the error ( )e t  

approaches zero because 

 

( ) ( ) ( ) ( ) 0
( ) 0.

I MC e t e t MCe t
e t
− = − →

⇒ →
 

 

Finally, since it has been shown that the estimate q̂  of the known component 

subspace state converges to the actual state q , an estimate x̂  for the whole state can be 

determined based on the relationship between q  and x  in equation ( .98) as 

 

ˆ ˆx q My= + . 
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APPENDIX D:  POLYNOMIAL MATRIX DEFINITIONS AND 
THEOREMS 

The purpose of Appendix D is to provide definitions to polynomial matrices for 

which the multivariable unknown input observer method is based.  Most of the 

definitions herein are documented in [61],[200], and [229]. 

 

Definitions 

Definition D.1 (field).  A field consists of a set, denoted by F , of elements called scalars 

and two operations called addition " "+   and multiplication " "⋅ ; the two operations are 

defined over F such that they satisfy the following conditions: 

1. To every pair of elements α  and β  in F , there correspond an element α β+  in 

F called the sum of α  and β , and an element α β⋅  or αβ  in F , called the 

product of α  and β . 

2. Addition and multiplication are respectively commutative:  For any α β,  in F , 

 α β β α α β β α+ = + ⋅ = ⋅  

3. Addition and multiplication are respectively associative:  For any α β γ, ,  in F , 

( ) ( ) ( ) ( )α β γ α β γ α β γ α β γ+ + = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅  

4. Multiplication is distributive with respect to addition:  For any α β γ, ,  in F , 

 ( ) ( ) ( )α β γ α β α γ⋅ + = ⋅ + ⋅  

5. F  contains an element, denoted by 0, and an element, denoted by 1, such that 

α α α α+ 0 = ,1⋅ =  for every α  in F . 

6. To every α  in F , there is an element β  in F  such that α β+ = 0 .  The element 

β  is called the additive inverse. 
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7. To every α  in F which is not the element 0, there is an element γ  in F  such 

that α γ⋅ =1 .  The element γ  is called the multiplicative inverse. 

Note 1:  The symbol  and  is used to denote the field of real numbers and the field of 

complex numbers, respectively. 

Note 2:  The set of integers and the set of polynomials do not form a field because they 

have no multiplicative inverse defined within the field. 

 

Definition D.2  (ring).  More precisely: a commutative ring with multiplicative identity.  

A set with all properties of a field except for property 7 in Definition D.1. 

 

Note:  The set of integers and the set of  polynomials with real coefficients form a ring. 

 

Definition D.3  (linear space over a field).  A linear space over a field F , denoted by 

( ),H F , consists of a set, denoted by H , of elements called vectors, a field F , and two 

operations called vector addition and scalar multiplication.  The two operations are 

defined over H  and F  such that they satisfy all the following conditions 

1. To every pair of vectors 1x  and 2x  in H , there corresponds a vector 1 2x x+  in 

H , called the sum of 1x  and 2x . 

2. Addition is commutative:  For any 1x , 2x  in H , 1 2 2 1x x x x+ = + . 

3. Addition is associative:  For any 1x , 2x , 3x  in H , ( ) ( )1 2 3 1 2 3x x x x x x+ + = + +  

4. H contains a vector, denoted by 0, such that 0 x x+ =  for every x  in H . 

The vector 0 is called the zero vector or the origin. 

5. To every x  in H , there is a vector x  in H , such that 0x x+ = . 

6. To every α  in F , and every x  in H , there corresponds a vector xα  in H  

called the scalar product of α  and x . 
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7. Scalar multiplication is associative:  For any α , β  in F  and any x  in H , 

( ) ( )x xα β αβ= . 

8. Scalar multiplication is distributive with respect to vector addition:  For any α  in 

F  and any 1x , 2x  in H , ( )1 2 1 2x x x xα α α+ = + . 

9. Scalar multiplication is distributive with respect to scalar addition:  For any α , 

β  in F  and any x  in H , ( ) x x xα β α β+ = + . 

10.   For any x  in H , 1x x= , where 1 is the element 1 in F . 

 

Note 1:  If =F , then ( ),n  is called the -dimensionaln  real vector space.  For 

brevity, the field of real numbers is implied and therefore is denoted as n . 

Note 2:   [ ]n p  is the set of all polynomials of degree less than n  with real coefficients. 

Note 3:  If a field is replaced by a  ring i , then ( ), iH  is called a module over the ring. 

A 1n×  or 1 n×  polynomial vector can be considered as an element of the rational vector 

space ( )( ), ( )n p p , or an element of the module ( )[ ], [ ]n p p .  A set of polynomial 

vectors is linearly independent over the field ( )p  if and only if the set is linearly 

independent over the ring [ ]p . 

 

Definition D.4  (normal rank).  The normal rank of a polynomial matrix 

( ) [ ]m nA p p×∈  is defines as e.g. 

1. The number 

 ( )( ) max
s

rank A p rank A p
∈

=  

2. The number of linearly independent columns (or rows) of ( )A p  

3. The number of invariant polynomials of the Smith form of ( )A p  
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4. The dimension of the space spanned by the rows/columns 

 

Definition D.5  (rank of  a rational matrix).  The rank of a matrix ( ) ( )m nM p p×∈  is 

defined as e.g. 

1. The number of linearly independent rows/columns with rational coefficients 

2. The (normal) rank of ( )N p  where ( )N p  is the numerator in a left or right MFD 

of ( )M p  

3. The dimension of the space spanned by the rows/columns 

 

Definition D.6  (matrix pencil).  A matrix pencil is a polynomial matrix ( )M p  of degree 

one.  It is often written as 

 ( )M p pE F= +  

where E  and F  are constant matrices and p is a differential/difference operator in the 

Laplace/Z domain in continuous/discrete time. 

 

Definition D.7  (regular matrix pencil).  A matrix pencil ( )M p  is said to be regular if 

( )M p  is square and full (normal) rank. 

 

Definition D.8  (controllability index).  The fact that the controllability matrix 

1nB AB A B−⎡ ⎤= ⎣ ⎦C  

has rank n  means that there are n  linearly independent columns in C .  It could be that 

n  such columns in the partial controllability matrix 

1 ,           1 q nq
q B AB A B−⎡ ⎤= ≤ ≤⎣ ⎦C  
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 can be found and that the smallest q  is denoted as µ .  The controllability index µ  of 

the pair ( ),A B  is said to be the smallest q such that qC  has rank n. 

 

Definition D.9  (unimodular matrix).  A square polynomial matrix ( )M p  is called 

unimodular if its determinant is nonzero and independent of p . 

 

Definition D.10  (right/left divisor, right/left multiple).  Consider the polynomial 

matrix equation 

 ( ) ( ) ( )A p B p C p=  

where ( ), ( ), and ( )A p B p C p  are polynomial matrices of appropriate orders. 

1. ( )C p  is a right divisor of ( )A p  

2. ( )B p  is a left divisor of ( )A p  

3. ( )A p  is a left multiple of ( )C p  

4. ( )A p  is a right multiple of ( )B p  

 

Definition D.11  (greatest common right divisor (gcrd)).  A square polynomial matrix 

( )R p  is a greatest common right divisor (gcrd) of ( )N p  and ( )D p  if ( )R p  is a common 

right divisor of ( )N p  and ( )D p  and is a left multiple of every common right divisor of 

( )N p  and ( )D p . 

 

Definition D.12  (greatest common left divisor (gcld)).  A square polynomial matrix 

( )Q p  is called a greatest common left divisor (gcld) of ( )A p  and ( )B p if ( )Q p  is a 

common left divisor of ( )A p  and ( )B p  and ( )Q p  is a right multiple of every common 

left divisor 1( )Q p  of  ( )A p  and ( )B p . 
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Definition D.13  (right coprime).  If a square polynomial matrix ( )R p  is a gcrd of 

( )N p  and ( )D p  and ( )R p  is a unimodular matrix, then ( )N p  and ( )D p  are said to be 

right coprime. 

 

Definition D.14  (left coprime).  If a square polynomial matrix ( )Q p  is a gcld of ( )A p  

and ( )B p and ( )Q p  is a unimodular matrix, then ( )A p  and ( )B p  are said to be left 

coprime. 

 

Definition D.15  (Sylvester matrix).  Let ( )W p  be a polynomial matrix of degree d such 

that 

 
0

( )
d

i
i

i

W p W p
=

= ∑  

with 0dW ≠ .  Then the thq  order Sylvester matrix for ( )W p  is defined as 

( )

0 1

0 1

0 1

0 0 0
0 0 0

( ),
0 0 0
0 0 0

d

d

d

W W W
W W W

S W p q

W W W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

 

 

Definition D.16  (characteristic polynomial).  The characteristic polynomial of a proper 

rational matrix ˆ ( )G p  is defined as  

1. The least common denominator of all minors of ˆ ( )G p .  The degree of the 

characteristic polynomial is defined as the McMillan or, simply, the degree of 

ˆ ( )G p  and is denoted by ˆ ( )G pδ . 

2. Consider the proper rational matrix ˆ ( )G p  factored as 

 1 1ˆ ( ) ( ) ( ) ( ) ( )G p N p D p D p N p− −= =  
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where ( )N p  and ( )D p  are right coprime, and ( )N p  and ( )D p  are left coprime.  Then 

the characteristic polynomial of ˆ ( )G p  is defined as 

 det ( )D p  or det ( )D p  

and the degree of ˆ ( )G p  is defined as 

 ( ) ( )ˆ ( ) det ( ) det ( )G p D p D pδ δ δ= =  

 

Definition D.17 (Right polynomial fraction).  Every q p×  proper rational matrix ˆ ( )G p  

can be expressed as 

 1ˆ ( ) ( ) ( )G p N p D p−=  

where ( )N p  and ( )D p  are q p×  and p p×  polynomial matrices, respectively.  ˆ ( )G p  

in this form is called a right polynomial fraction or, simply, right fraction.   

 

Definition D.18 (Left polynomial fraction).  The dual expression of ˆ ( )G p  in Definition 

D.16 where the same proper rational matrix can be equally expressed as 

 1ˆ ( ) ( ) ( )G p D p N p−=  

where ( )D p  and ( )N p  are q q× and q p×  polynomial matrices, respectively.  ˆ ( )G p  in 

this form is called a left polynomial fraction or, simply, left fraction. 

 

Definition D.19 (column/row reduced).  A nonsingular polynomial matrix ( )M p  is 

column reduced if  

 ( )det ( ) sum of all column degreesM pδ =  

It is row reduced if 

( )det ( ) sum of all row degreesM pδ =  
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Definition D.20 (Bezout Equation).  Consider two polynomial matrices ( ), ( )A p B p  and 

four  polynomial matrices ( ), ( ), ( ), ( )P p Q p R p S p  such that 

( ) ( ) ( ) ( )
( ) ( ) ( ) 0

P p Q p A p G p
R p S p B p
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

then the following can be said: 

1. ( ), ( )A p B p  are left coprime if and only if ( )G p  is unimodular 

2. ( )R p  and ( )S p  are right coprime 

3. 1 1( ) ( ) ( ) ( )B p A p S p R p− −= −  

This implies that if ( )G p  is unimodular, then right and left polynomial fractions of the 

same proper rational matrix are equivalent as 

 1 1( ) ( ) ( ) ( ) ( )H p B p A p A p B p− −= =  

where 

 
( ) ( )
( ) ( ).

A p S p
B p R p

= −

=
 

 

Definition D.21 (Diophantine Equation).  Given  three polynomial matrices 

( ), ( ), ( )A p B p C p  that are mutually right coprime and deriving equations in a Bezout 

Equation form, define the Diophantine Equation as 

( ) ( ) ( ) ( ) ( )C p E p A p F p B p= +  

from the top row of the Bezout equation and a left coprime representation such that  

( ) ( ) ( ) ( ) 0R p A p S p B p+ =  

from the bottom row of the Bezout equation.  A solution 0 0( ), ( )E p F p  exists such that all 

solutions (nonunique) can be expressed as 

0

0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

E p E p W p R p
F p F p W p S p

= +
= +
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with  ( )W p  an arbitrary matrix of appropriate dimensions. 

 

Definition D.22 (polynomial degree operator).  Given a polynomial matrix ( )M p , 

define 

 
( ) degree of  column of ( )

( ) degree of  row of ( ).

th
ci

th
ri

M p i M p

M p i M p

δ

δ

=

=
   

Denote ciδ  the column degree and riδ  the row degree. 

 

Definition D.23 (right polynomial transfer matrix and control canonical form) 

 Let a minimal realization of the system  

 

 ( ) ( ) ( )px t x t u t= Φ +Γ  ( .109)         

 ( ) ( ) ( )y t Cx t Du t= +  ( .110) 

 

where ( ) snx t ∈ , ( ) unu t ∈ , ( ) yny t ∈  and ( ), , ,C DΦ Γ  are of appropriate dimensions.  

Because the system is a minimal realization, an equivalent representation of ( .109)-

( .110) is the right polynomial transfer matrix form as 1ˆ ( ) ( ) ( )G p B p A p−= .  Let 

1 2, ,...,
unµ µ µ  be the column degrees (i.e. the maximum degree of the polynomials in each 

column) of the matrix ( )A p  and p  is the differential operator in continuous time or the 

time shift operator in discrete time.  If ( )z t  is defined as the partial state [200] (or 

sometimes called the pseudo state [61]), then it is easy to see that it can be related to the 

input ( )u t  and output ( )y t  as 

 

 ( ) ( ) ( )u t A p z t=  ( .111) 

 ( ) ( ) ( )y t B p z t= . ( .112) 
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The partial-state equations in ( .111)-( .112) can be expressed in state space form by first 

defining the matrices 

 

 { }1 2( ) , ,..., nu u un np diag p p p Rµµ µ
µ

×Σ = ∈  ( .113) 

 ( )1 2

1 2

...

1 1 1

11 1

( ) , , ... , n uu

nu

npp p
L p diag R

p p p

µ µ µ
µ

µ µ µ

+ + + ×

− − −

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥= ∈⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 ( .114) 

 

and expressing the polynomial matrices of ( .111)-( .112) as 

 

 ( ) ( ) ( )h lA p A p A L pµ µ= Σ +  ( .115) 

 ( ) ( ) ( )h lB p B p B L pµ µ= Σ +  ( .116) 

 

where ( ),h hA B  are matrices of high degree coefficients whose dimensions are u un n×  

and y un n× , respectively, and ( ),l lA B  are the matrices of all lower order coefficients 

with dimension u sn n×  and y sn n× , respectively.  The partial-state vector with dimension 

1 ...
us nn µ µ= + + , can now be expressed as 

 

 1 2 11 1
1 1 2 1( ) ( ), ... , ( ) ( ), ... , ( ) ... ( ), ... , ( )nu

u u

T

n nz t z t p z t z t p z t z t p z tµµ µ −− −⎡ ⎤= ⎣ ⎦  ( .117) 

 

can now be expressed as 

 ( ) ( ) ( )z t L p z tµ= . ( .118) 
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Substitute ( .115)-( .116)  into ( .111)-( .112) and assume hA  is nonsingular to obtain the 

state space realization of the original system in (0.32) and (0.33) as  

 

 

1
1

1 1

( )
( ) ( )

( )nu

u

h l h

n

p z t
A A z t A u t

p z t

µ

µ

− −

⎡ ⎤
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ( .119)  

 ( )1 1( ) ( ) ( )l h h l h hy t B B A A z t B A u t− −= − +  ( .120) 

 

It can be shown [61] that the ensuing state space structure of ( .119)-( .120) is in 

controllable canonical form for which the nonsingular matrix T  can be found for MIMO 

systems using a method such as the one published in (Zak, 2003; [386]). 

 

Theorems 

Note:  Theorems herein are stated without proof.  Source information is provided. 

 

Theorem D.1 ([61];Theorem G-6).  A square polynomial matrix is unimodular if and 

only if its inverse is a polynomial matrix  

 

Theorem D.2 ([61]; Theorem 7.1).  The controllable canonical form is observable if and 

only if ( )D p  and ( )N p  are coprime. 
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Theorem D.3 ([61]; Theorem 7.M2).  A state equation ( ), , ,A B C D  is a minimal 

realization of a proper rational matrix ˆ ( )G p  if and only if the ( ),A B  is controllable and 

the ( ),A C  is observable or if and only if 

 ( ) ˆdim ( )A G pδ= . 

 

Theorem D.4 ([61]; Theorem 7.8).  Let ( )N p  and ( )D p  be q p×  and p p×  polynomial 

matrices, and let ( )D p  be column reduced.  Then the rational matrix 1( ) ( )N p D p−  is 

proper (strictly proper) if and only if 

 ( )( ) ( ) ( ) ( )ci ci ci ciN p D p N p D pδ δ δ δ≤ <  

for 1, 2,...,i p= . 

 

Theorem D.5 ([61]; Theorem 7.M3).  All minimum realizations of ˆ ( )G p  are equivalent. 
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