
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2006-12

Cost benefit analysis of performing a

pilot project for hydrogen-powered

ground support equipment at Lemoore

Naval Air station

Maxwell, Brian W.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/10089

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36703582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 
 

 

MBA PROFESSIONAL REPORT 
 
 

Cost Benefit Analysis of Performing a Pilot Project for Hydrogen-
Powered Ground Support Equipment at Lemoore Naval Air Station 

 
 

 
By:     Jacqueline M. Etheridge, 

   Brian W. Maxwell and  
   G. Dean Alton 

December 2006 
 

Advisors: William Gates 
Kenneth H. Doerr 

 
 

Approved for public release; distribution is unlimited. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for 
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and 
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
December 2006 

3. REPORT TYPE AND DATES COVERED 
MBA Professional Report 

4. TITLE AND SUBTITLE: Cost Benefit Analysis of Performing a Pilot 
Project for Hydrogen-Powered Ground Support Equipment at Lemoore 
Naval Air Station  
6. AUTHOR(S) : Brian W. Maxwell, Jacqueline M. Etheridge, G. Dean Maxwell 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING / MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this report are those of the author(s) and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
         A 

13. ABSTRACT (maximum 200 words)  
 

The primary purpose of this thesis is to provide a cost benefit analysis of a pilot program at NAS Lemoore 
for the use of hydrogen fuel cell powered aviation ground support equipment (GSE) and provide general 
background information on hydrogen power.  The analysis is conducted to determine expected program costs and 
to determine what benefits the Navy could achieve by using hydrogen fuel cell powered tow tractors, electric carts 
and hydraulic carts.  Analysis shows benefits in the following areas: reduced green house gas emissions and noise 
pollution, reduced HAZMAT generation due to reduced oil usage and spills/leaks, reduced maintenance labor costs 
for fuel cell over diesel engines, and reduced training time required after full fleet fuel cell implementation.  
 
 
 

15. NUMBER OF 
PAGES  

69 

14. SUBJECT TERMS  Hydrogen power. Aviation Ground Support Equipment (GSE). Cost Benefit 
Analysis Model 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



 iii

Approved for public release; distribution is unlimited 
 
 

COST BENEFIT ANALYSIS OF PERFORMING A PILOT PROJECT FOR 
HYDROGEN-POWERED GROUND SUPPORT EQUIPMENT AT LEMOORE 

NAVAL AIR STATION 
 
 

Brian W. Maxwell, Lieutenant Commander, United States Navy 
Jacqueline M. Etheridge, Lieutenant Commander, United States Navy 

G. Dean Alton, Lieutenant, United States Navy 
 
 

Submitted in partial fulfillment of the requirements for the degree of 
 
 

MASTER OF BUSINESS ADMINISTRATION 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
December 2006 

 
 

 
 
Authors:  _____________________________________ 

Jacqueline M. Etheridge 
 
   _____________________________________ 

Brian W. Maxwell 
 
   _____________________________________ 

G. Dean Alton 
 
 
Approved by:  _____________________________________ 

William Gates, Co-Advisor 
 
   _____________________________________ 
   Kenneth H. Doerr, Co-Advisor 
 
   _____________________________________ 
   Robert N. Beck, Dean 

Graduate School of Business and Public Policy 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

COST BENEFIT ANALYSIS OF PERFORMING A PILOT PROJECT 
FOR HYDROGEN-POWERED GROUND SUPPORT EQUIPMENT 

AT LEMOORE NAVAL AIR STATION 
 
 

ABSTRACT 
 
 
 

The primary purpose of this thesis is to provide a cost benefit analysis of a pilot 

program at NAS Lemoore for the use of hydrogen fuel cell powered aviation ground 

support equipment (GSE) and provide general background information on hydrogen 

power.  The analysis is conducted to determine expected program costs and to determine 

what benefits the Navy could achieve by using hydrogen fuel cell powered tow tractors, 

electric carts and hydraulic carts.  Analysis shows benefits in the following areas: reduced 

green house gas emissions and noise pollution, reduced HAZMAT generation due to 

reduced oil usage and spills/leaks, reduced maintenance labor costs for fuel cell over 

diesel engines, and reduced training time required after full fleet fuel cell implementation.  
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I.   INTRODUCTION  

A. PURPOSE 

This research will provide a cost benefit analysis and make recommendations for 

a pilot project for hydrogen-powered aviation ground support equipment (GSE) at Naval 

Air Station Lemoore, California. 

In both his 2003 and 2006 State of the Union Address, President Bush addressed 

growing concerns about the consumption of fossil fuels and encouraged research in the 

area of alternative fuels, particularly hydrogen power.  He established the Hydrogen Fuel 

Initiative in 2003 to develop technology for commercially viable hydrogen-powered fuel 

cells, with a vision of hydrogen-power for use in general transportation at costs that are 

competitive with gasoline by 2015.1 

1. The Need for Research in Alternative Fuels 

Research in alternative fuels is necessary for a multitude of reasons.  Federal and 

local governments in the United States are enacting policies like the Hydrogen Fuel 

Initiative to encourage the development and use of alternative fuels, and in some cases, 

establish goals for potentially requiring the use of alternatives.  California’s Executive 

Order S704, for example, orders building a network of hydrogen fueling stations 

sufficient to make hydrogen power accessible to every Californian by 2010.2  Concerns 

motivating this trend include national security, economic, and environmental. 

National security and dependence on foreign oil is the primary concern of the 

Hydrogen Fuel Initiative, as 55 percent of the oil consumed by the U.S. is imported, and  

 

 

                                                 
1 "Background on the Hydrogen Fuel Initiative." White House. 

http://www.hydrogen.gov/presidentdetails.html (accessed November 27, 2006). 
2 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team Report, 

California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental Protection 
Agency, 2005.  
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this is expected to grow to 68 percent by 2025.3  Many of the major importers to the U.S. 

are considered unstable areas, and are not friendly to the U.S.  See Table 1 for a list of the 

top 15 oil exporters to the U.S. at the time of writing this report.4 

 

 
Table 1.   Top Oil Exporters to the United States 

 

Many economists argue that there are no regional markets for oil, and therefore no 

country can exclude itself from the price fluctuations of the global market.5 Nonetheless, 

the President’s statements and national and state government investment into alternative 

fuels research indicate that energy security is a matter of significant political concern.  

                                                 
3 "Background on the Hydrogen Fuel Initiative." White House. 

http://www.hydrogen.gov/presidentdetails.html (accessed November 27, 2006). 
4"Crude Oil and Total Petroleum Imports Top 15 Countries." Energy Information Administration. 

http://www.eia.doe.gov/pub/oil_gas/petroleum/data_publications/company_level_imports/current/import.ht
ml (accessed August 12, 2006). 

5 Jerry Taylor. "Don't Worry about Energy Security." Cato Institute. http://www.cato.org/dailys/10-18-
01.html (accessed October 13, 2006). 
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Furthermore, if political concerns for energy security drive initiatives to cease importing 

crude oil to the U.S. (as evidenced by increased interest in exploring domestic oil 

reserves), domestic energy will become significantly more expensive if a mature 

alternative energy technology has not yet become available.  Currently, crude oil 

imported from the Persian Gulf is significantly less expensive than domestic oil or any 

available energy alternative.6 

Other economic concerns include the rising cost and volatility of oil prices.  The 

most common factors driving price volatility include economic or political instability in 

countries that provide oil, natural disasters, and the accessibility of oil in the ground.  

Historically, political and natural disasters have caused spikes in prices that eventually 

subsided.  The Iranian revolution in 1979, for example, increased crude oil prices from 

$15 per barrel to $40 per barrel.7  Damage to oil infrastructure in the Gulf of Mexico 

during Hurricane Katrina saw prices exceed $70 per barrel for the first time in history.8  

While these factors cause volatility in oil prices, the declining availability of oil reserves 

will have a more lasting effect.  While the world is not running out of oil, it is running out 

of oil that is economically recoverable.9  As oil companies drill into deeper and less-

accessible sites for oil, the cost of doing business will gradually increase, as will the price 

of oil.  Increases in fossil fuel efficiency and research into synthetic fossil fuels will not 

be enough to keep energy affordable in the long term.  

Reduction of greenhouse gas emissions is another significant environmental goal 

motivating alternative fuels research.  Carbon dioxide, produced by burning fossil fuels, 

is the most significant known cause of global warming and is considered to be the most 

threatening environmental issue.  Emissions from automotive vehicles constitute 25% of  

 

                                                 
6 Jerry Taylor. "Don't Worry about Energy Security." Cato Institute. http://www.cato.org/dailys/10-18-

01.html (accessed October 13, 2006). 
7 "1979 Energy Crisis." Wikipedia. http://en.wikipedia.org/wiki/1979_energy_crisis (accessed 

November 27, 2006). 
8 "No Decision Yet on Oil Reserves: President Bush Weighs Authorizing Tapping into US Petroleum." 

CBS News, August 29, 2005, http://www.cbsnews.com/stories/2005/08/29/national/main798952.shtml. 
9 "Oil Reserves." Wikipedia. http://en.wikipedia.org/wiki/Oil_reserves (accessed November 27, 2007). 
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the total greenhouse gas emissions for the U.S.  The U.S.’ stance on greenhouse gas 

emissions is that research into increased fuel efficiency and alternative fuels is the answer 

to improving air quality and reducing environmental risk.10 

2. Advantages of Hydrogen Power 

Hydrogen energy shows promise among technologies currently under 

development.  It has the highest energy content per unit of weight of any known fuel 

source, making it an efficient source.  Hydrogen is the most abundant element in the 

universe, and on Earth, it can be extracted from readily available sources such as water, 

coal, or waste.  When burned in an engine, it produces no emissions but water.  Research 

and development projects underway also show prospects for a zero-emissions extraction 

process using renewable energy sources or sequestration of carbon dioxide.11  Hydrogen-

powered fuel cells also demonstrate some safety and maintenance benefits which will be 

addressed in this report. 

3. Why a Government Sponsored GSE Project is Important 

Currently, hydrogen power is not considered a commercially viable energy 

solution because the technology has not reached maturity, and there is no readily 

available production, transportation, and delivery infrastructure for hydrogen power in 

any state.  The most commonly available hydrogen extraction processes, such as 

cryogenic separation and electrolysis, described in Chapter III, require a significant 

amount of energy, depending on the source of energy used.  Therefore, hydrogen power 

does not yet demonstrate a significant energy savings or show a dramatic reduction in 

greenhouse gas emissions.  Table 2 demonstrates the true carbon dioxide emissions per 

mile, based on the fuel source and extraction method.  Hydrogen derived from gasoline 

produces nearly as much carbon dioxide as common gasoline combustion.  Methods that  

 

 

 

                                                 
10 Global Climate Change Policy Book. Washington, DC: White House, 2002. 
11 "Fact Sheet: Hydrogen Fuel: A Clean and Secure Energy Future." White House. 

http://www.whitehouse.gov/news/releases/2003/02/20030206-2.html (accessed November 27, 2006). 
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are still under development, such as hydrogen extraction from methane or hydrogen 

extracted using renewable energy sources, show the real future promise of hydrogen 

power.12 

 

Engine Type Water Vapor/Mile Carbon Dioxide/Mile 

Gasoline Combustion 0.39 lb. 0.85 lb. 

Fuel Cell Running on Hydrogen from Gasoline 0.32 lb. 0.70 lb. 

Fuel Cell Running on Hydrogen from Methane 0.25 lb. 0.15 lb. 

Fuel Cell Running on Renewable Hydrogen 0.25 lb. 0.00 lb. 

Table 2.   Emissions by Fuel Type 

 

Technical and economic barriers to commercializing hydrogen power include lack 

of transportation and delivery infrastructures, high costs of capital, and significantly low 

economies of scale.13  Expanding the customer base through research projects not only 

increases public awareness and demonstrates the feasibility of hydrogen power, it helps 

to develop the commercial infrastructure, amortize capital investment, and improve 

economies of scale.  The DoD, as the largest consumer of fossil fuels in the United 

States, is in a unique position to provide a significant contribution to developing and 

expanding hydrogen technology. 

Aircraft ground support equipment (GSE) is a good candidate for a hydrogen-

powered pilot project for two reasons.  First, GSE is a major contributor to the carbon 

dioxide emissions problem.  Airport traffic is responsible for 2-3% of carbon dioxide 

emissions from U.S. metropolitan areas, and this number is expected to increase as the air 

                                                 
12 "Hydrogen Fuel Cells: Benefits of Fuel Cells." Bullnet eCommerce Solutions, Bull Group. 

http://www.bullnet.co.uk/ (accessed November 25, 2006). 
13 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team 

Report, California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental 
Protection Agency, 2005. 
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transportation industry grows.14  Of the three categories of airport traffic, including 

aircraft, GSE, and commuter traffic into and out of airports, GSE and commuter 

automotive vehicles are the most feasible candidates for conversion.  DoD has more 

control over GSE than commuter traffic.  If a DoD facility or program office chooses to 

run a pilot project for hydrogen-powered support equipment, despite emissions generated 

by hydrogen extraction, the DoD stands to benefit from environmental, safety, and 

maintenance advantages.  By carefully selecting a hydrogen refueling source, problems 

from emissions from extraction can be reduced or eliminated. 

B. RESEARCH GOALS 

The primary goal of this research is: 

• To perform a cost-benefit analysis of a pilot program for hydrogen-
powered GSE. 

Secondary goals are: 

• To review past and present hydrogen-powered and hybrid-electric GSE 
and lessons learned from those programs. 

• To provide background on technical hydrogen-power options for GSE in 
general: hydrogen feed stocks, power cells, and hydrogen storage and 
extraction.  

• To generate a spreadsheet model that can be used to analyze the cost of a 
program using any type of equipment, power cells, or recharging station.  
Naval Air Station Lemoore, California will be used as a notional location 
to demonstrate the model. 

C. SCOPE 

This project will review past and present programs using hydrogen-powered and 

hybrid-electric GSE with attention to cost and management of the program, and make 

recommendations based on the results of this research to implement a program 

successfully.  Finally, after reviewing available options for recharging stations, power  

 

 

                                                 
14 Technical Support for Development of Airport Ground Support Equipment Emission Reductions. 

Sacramento, CA: Sierra Research, Inc for the Office of Mobile Sources, US Environmental Protection 
Agency, 1999. 
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cells, and converting existing or designing new GSE to accept those power cells, this 

project will conclude with a cost-benefit analysis for specific equipment to be used in a 

pilot project at NAS Lemoore. 
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II.   BACKGROUND 

Background information is provided here on various technical options available 

and environmental and logistics concerns associated with them, and on two military 

hydrogen power programs that have already been implemented. 

A. HETT PROJECT AT NAS NORTH ISLAND AND MCAS MIRAMAR 

Review of the U.S. Navy’s hybrid electric tow tractor (HETT) test project 

between 1999 and 2002 reveals a number of useful and important lessons that can be 

applied to future pilot projects and equipment purchases.  The following summarizes the 

project’s background, equipment used, and methodology, followed by the resultant 

lessons learned from the project, which can be applied to future projects. 

1. Project Review 

The HETT project evolved from the Navy’s pollution prevention (P2) initiative, 

which allowed for procuring pollution prevention equipment under the Preproduction 

Initiative or the Competitive Procurement Initiative.  These programs were administered 

by Naval Air Systems Command Lakehurst and Naval Facilities Engineering Services 

Center, who were authorized by the Chief of Naval Operations (CNO), Environmental 

Protection, Safety, and Occupational Health Division (N45) through the establishment of 

the P2 Equipment Program (PPEP).  The HETT equipment selection derived from a bi-

service Navy/Air Force program to purchase several light duty electric and hybrid 

vehicles.  This program’s funding allowed the Navy to receive one hybrid tow tractor.15 

The HETT was based on a standard MB-4 tow tractor from the Air Force which is 

equivalent to the Navy’s A/S32A-37, after adding 4 battery packs, ISE Research 

ThunderVolt drive system, speed increaser, AC generator, controller, electric motor, and 

battery management and recharging system.  This equipment allowed the HETT to 

operate electrically and to recharge during the day if necessary.  It was a recommended  

 

                                                 
15 Hybrid Electric Tow Tractor Preproduction Initiative Final Report. Lakehurst, NJ: Polution 

Prevention Equipment Program, US Navy, 2006.  
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requirement that the tow tractor be plugged into the electrical grid during the night to 

balance the battery charge.  The June 2000 cost for the HETT was $297,000, compared to 

the replacement cost of $60,500 for an A/S32A-37 tow tractor.16 

End users employed two different manual methods of data collection for this 

program, in addition to automatic data logging with a data logger wired into the HETT.  

No useful data was collected by the system due to failure of the data logger equipment; 

however, the data provided manually by the users lead to the following conclusion: 

Due to maintainability issues, the performance of the hybrid electric drive 
system in the HETT could not be adequately evaluated under typical 
operating conditions.  The manufacturer recommended that the HETT be 
charged every night, but also indicated that connecting HETT to grid 
power once per week should be sufficient... the HETT performance 
deteriorated after approximately two days without connection to the grid 
power.  For these reasons, the performance of the HETT was unacceptable 
for implementation on a Navy-wide basis.17 

2. Lessons Learned  

Initial training on the daily and weekly inspections/maintenance procedures of the 

equipment should be provided to personnel responsible for training others in operator 

licensing courses. 

Ensure that the facility designated for use of the equipment can handle all the 

required maintenance; i.e. a proper electrical plug at the end users location, which was 

not the case for this HETT project. 

Ensure equipment operation counters are functional. 

Ensure the end users are properly trained and monitored periodically until the 

equipment becomes standard. 

Ensure there is enough equipment on hand to collect proper usage data. 

                                                 
16 Hybrid Electric Tow Tractor Preproduction Initiative Final Report. Lakehurst, NJ: Pollution 

Prevention Equipment Program, US Navy, 2006. 
17 Ibid. 
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Create a user-friendly data collection system (installed on the machine or 

separate) for users and maintainers to enter usage and maintenance data.   

Choose an electric drive system that has been tested commercially in a like item 

to prove the maintainability of the system. 

End users really do want an electric drive tow tractor to reduce the noise levels 

they are exposed to daily.18 

B. CAMP PENDLETON TRANSPORTATION DEPARTMENT 

1. Program Review 

The Camp Pendleton program is limited with regards to lessons learned in 

implementing a hydrogen-based fueling process; but it is primed for opportunity to 

implement and leverage benefits identified and employed from other DoD locations 

where alternate fueling programs are more mature.  While other programs previously 

discussed speak to fuel cell systems, Camp Pendleton is primarily an on-site hydrogen 

generation station.  Although the base has vast experience with alternative fueling 

options, its primary focus is on generating hydrogen power.  

How did Camp Pendleton arrive at hydrogen power as a dominant solution?  The 

base has a history of proactively implementing alternate fuel sources to reduce oil based 

energy dependency.  The Regional Fleet manager of transportation at Camp Pendleton is 

Mr. Gary Funk, who drives transportation procurements to ensure 75% of equipment is 

powered by alternate energy options.  The most challenging part of meeting that goal is 

the acquisition process.  Existing Blanket Purchase Agreements, lengthy budgeting and 

planning cycles and execution of contract options covering an increased period often 

slows migration to new technological opportunities.  However, with increased investment 

in emerging technologies and the realization of a rapidly changing energy environment, 

Mr. Funk has the ability to interject more flexibility into the acquisition process, which 

will ultimately enable an expeditious shift as technologies become available or are 

required. 

                                                 
18 Hybrid Electric Tow Tractor Preproduction Initiative Final Report. Lakehurst, NJ: Pollution 

Prevention Equipment Program, US Navy, 2006. 
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Currently, Camp Pendleton’s alternate fuel equipment inventory consists of more 

than 300 electric vehicles, which are recharged via solar power at a single station capable 

of charging 8 vehicles simultaneously.  “Camp Pendleton also uses hundreds of CNG 

vehicles. Camp Pendleton is the nation’s largest buyer of bio-diesel with annual 

purchasing of over one million gallons of B20. These one million gallons from virgin soy 

is a million less gallons of diesel from oil.  The use of B20 has been relatively problem 

free. Some commercial vehicles, such as buses, have fewer problems with B20 than JP-

8.”19 

On the forefront of employed hydrogen technologies, Camp Pendleton began 

operating a single hydrogen station in the first quarter of fiscal year 2007.  Hydrogen is 

produced from natural gas using a commercial reformer.  Production levels are 

approximately 30 kilograms per day.  With plans to expand, 60 kilograms of hydrogen 

storage is currently possible and the fueling station operates at 5,000 pounds pressure per 

square inch.  Placing the hydrogen station near the main interstate provides convenient 

access to the refilling station.  When introducing new technologies, it is important to 

make their benefit convenient and easy to exercise, as reluctance to participate alone 

presents a challenge.  

The location of the hydrogen plant proved to be a challenge, as site location 

required a significant environmental study.20   Both site location and construction 

required a thorough environmental assessment (EA) covering the construction and 

operation of a compressed hydrogen fueling station to evaluate the following areas: 

topography, geology, and soils; hydrology; biological resources; cultural resources; air 

quality; noise; land use; safety and environmental health (including hazardous materials 

and wastes); utilities; and traffic and transportation.21  Specific considerations regarding 

EA concerns are covered more thoroughly in the environmental section.  However, the  

 

                                                 
19 John Addison. "United States Marine Corps Uses Hydrogen." California Hydrogen Fleets and 

Fueling. http://www.cah2report.com/vault/camp_pendleton.htm (accessed October 30, 2006). 
20 Ibid. 
21 Environmental Assessment, Hydrogen Fueling Station Marine Corps Base Camp Pendleton. San 

Diego, CA: Naval Facilities Engineering Service Center, 2005. 
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in-depth EA conducted by Marine Corps Base Camp Pendleton would serve other DoD 

and Governmental organizations well in conducting similar analyses on establishing a 

hydrogen plant. 

2. Current Project Highlights 

With regard to hydrogen compressors, cost varies widely depending on size and 

type.  Much of the industry is using diaphragm compressors.  These are not low in cost 

but have inherent advantages in maintaining safety and hydrogen purity.  Approximate 

cost for a system that compresses 700 standard cubic feet per hour (scfh), or 

approximately 40 kilograms per day, is $140,000, assuming a 6,500 psig discharge 

pressure.  A piston type compressor may be procured at a reduced cost, which reduces 

maintenance requirements and complexity but compromises safety and purity. 

The hydrogen plant requires on-site utility capabilities of 208/110 Volts 

Alternating Current (VAC), three phase, or power at 480 VAC.  Most larger compressors 

are designed to operate at 480 VAC.  The station’s reformer requires two gallons of water 

per hour and 200 scfh of natural gas to operate.  Target efficiency of the natural gas 

reformer system is 65%, though power for the compressor will draw another 5% of 

reduced efficiency from the reformer.  The system does not generate power, though the 

reformer could be supplemented with a 10kw fuel cell to provide a continuous load, 

minimizing the idle time overnight and during weekends.  The station will store 30 

kilograms of useable stored hydrogen, with approximately 40% useable assuming 5000 

psig fill conditions, which are standard for most vehicles.  While the hydrogen plant 

offers promise, there are 1,180 light duty vehicles on base; assuming each vehicle is 

driven 10,000 miles per year and all vehicles are fuel cell vehicles, the base would need 

to produce approximately 260,000 kilograms of hydrogen power annually. 

As the project continues to develop, forecasted annual preventative maintenance 

costs per hydrogen plant are expected to be $30,000 for the fuel processor and hydrogen 

compressor combined. 

Annual operating expenses for indirect costs, including utilities, consumables, and 

fire and security services, are estimated at $15,000. 
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Training for the station equipment will cost approximately $10,000. Safety, 

emergency response, and fire department service must also be included.  California Fuel 

Cell Partnership provides some of the training for emergency responders at no cost; 

however, it is estimated that one plant will require one week of training per year for 10 

persons. 

Infrastructure to support the vehicles will require a hydrogen compatible 

intrinsically safe garage space, at an expected cost of $175,000 for a single bay, which 

would include a vehicle lift to repair fuel cell vehicles. 

Risks and benefits involved with implementing the new equipment center around 

sabotage and potential storage tank failure, or leaking and subsequent hydrogen ignition.  

Although the ultimate location was determined to be safe, initially there were concerns 

that terrorism or tank sabotage could have catastrophic effects.  The EA determined an 

explosion was not likely.  Hydrogen is eight times lighter than air, coupled with the fact 

that the hydrogen station is located outside, a tank puncture would vent hydrogen directly 

into the open air.  The base was required to assume worse case tank failure and provide a 

conservative setback from nearby activities. Many of these leak related concerns are 

alleviated by hydrogen's lighter than air properties, which reduce the chance of forming a 

combustible mixture for any length of time.  Due to its low energy density, hydrogen 

must be stored at high pressures, which has driven further research into low pressure 

storage systems.22 

The Camp Pendleton base includes over 125,000 acres in Southern California.  

Providing a year round training environment for Marine Corps personnel, housing more 

than 38,000 military families and with a population during normal working hours 

exceeding 60,000 military and civilian personnel, it is a prime location to introduce 

alternate sources of energy for testing and development.23 

 

                                                 
22 Environmental Assessment, Hydrogen Fueling Station Marine Corps Base Camp Pendleton. San 

Diego, CA: Naval Facilities Engineering Service Center, 2005. 
23 Environmental Assessment, Hydrogen Fueling Station Marine Corps Base Camp Pendleton. San 

Diego, CA: Naval Facilities Engineering Service Center, 2005. 
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C. TECHNICAL OPTIONS FOR HYDROGEN-POWERED GSE 

1. Overview 

GSE vehicles are either self propelled, such as tow tractors, or towed, such as 

electric carts and hydraulic power carts.  Self-propelled equipment is propelled by an 

internal combustion engine (ICE) or an electric drive motor.  The ICE commonly burn 

fossil fuels (gasoline, natural gas, propane, diesel, and other petroleum formulate), but 

can also burn gaseous hydrogen in a diesel cycle engine.24 The electric drive motor 

requires a source of electricity.  The common form of electric storage is a battery and the 

common form of an electric producer is a generator powered by an engine, steam turbine 

or ICE.  Another source of electricity is a fuel cell. 

Batteries and fuel cells are similar in that electricity is produced by 

electrochemical reaction.  However, batteries store a finite amount of energy within the 

materials constructing the battery.  In a fuel cell, energy is stored in hydrogen gas and 

released through a catalytic process and chemical reaction with oxygen in the air to form 

water.  Common materials for batteries are: lead acid solution, nickel metal hydride 

(NiMH), nickel cadmium (NiCd), and lithium-ion polymer.25 

Fuel Cells can be produced in seven different varieties: alkaline (AFC), direct 

methanol (DMFC), molten carbonate (MCFC), phosphoric acid (PAFC), proton exchange 

membrane (PEM), solid oxide (SOFC), and regenerative (RFC).  Each of these types 

perform best for different types of applications, from stationary power generation, to 

space based usage, to usage in mobile application, i.e. cell phones and laptop backup 

power supplies, or as a battery replacement power source for vehicles.26 

All fuel cells require a source of hydrogen and oxygen to produce electricity.  

Oxygen for the most part comes freely from the air for most fuel cell applications.  The  

 

                                                 
24 Joerg Dittmer. "A Closer Look at Hydrogen." Machine Design (February 2006): November 20, 

2006, http://www.machinedesign.com/ASP/viewSelectedArticle.asp?strArticleId=55381. 
25 "Battery Electric Vehicle." Wikimedia. http://en.wikipedia.org/wiki/battery_electric_vehicle#cost 

(accessed November 27, 2006). 
26 "Types of Fuel Cells." SAE International. http://www.sae.org/fuelcells/fuelcells-types.htm 

(accessed November 20, 2006). 
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hydrogen must be produced and stored to be used in the fuel cell.  There are numerous 

methods of producing and extracting hydrogen.  However, not all methods are energy 

efficient when considering the life cycle costs and emissions produced.27 

The equipment reviewed for use in this pilot program fit into three main 

categories: hydrogen fuel cell technology, hydrogen storage, and hydrogen production.  

Within each of these areas there are a few manufactures that produce the required 

equipment to produce and support hydrogen fuel cells.28 

2. Fuel Cells 

Reviewing fuel cell technology with electric drive systems found two viable 

options for fuel cells, PEM and DMFC, because they operate in the temperature range 

appropriate for automobiles and ground support equipment.  The PEM fuel cell is the 

most widely used in research today.  PEM fuel cells have a theoretical upper efficiency of 

60%.  The DMFC is a newer technology with a fuel cell construction similar to PEM fuel 

cells, but which extracts hydrogen directly from methanol fuel in the engine.  DMFC has 

a theoretical upper efficiency of 40%.  Although methanol is considered to be 

environmentally beneficial, there are some downsides to its use in DMFC technology.  

Methanol is a known toxic material when sufficient quantities are present, and the “low-

temperature oxidation of methanol to hydrogen ions and carbon dioxide in DMFC 

requires a more active catalyst so a larger quantity of expensive platinum catalyst is 

typically required than in conventional PEM” fuel cells.29  Additionally, DMFC 

technology is limited to licensing agreements from one company that does not 

manufacture the cells, and the technology is three to five years behind PEM technology 

in development. 

 

                                                 
27 Albert Germain et al. Hydrogen as an Energy Carrier. Brussels, Belgium: Royal Belgian Academy 

Council of Applied Science, 2006. 
28 "Fuel Cells Technology Showcase." SAE International. http://www.sae.org/fuelcells/fuelcells.htm 

(accessed November 20, 2006). 
29 "Types of Fuel Cells." Rocky Mountain Institute. http://www.rmi.org/sitepages/pid556.php 

(accessed November 20, 2006). 
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PEM fuel cells are manufactured by Ballard Power, General Hydrogen, and 

Hydrogenics.  All three companies manufacture PEM fuel cell stacks or provide them in 

self contained units similar to battery packs.  According to Ballard and Hydrogenics their 

fuel cells can obtain an average efficiency of approximately 50%.   

3. Storage 

Hydrogen storage includes two options.  One is the vehicle storage tank and the 

other is bulk hydrogen storage for a refueling station.  Vehicle storage tanks have vastly 

improved and are commercially available through a number of venders.  Bulk storage 

uses similar tanks but group the tanks in a variety of configurations.  Another source of 

storage tanks is from gas producing companies who lease/rent gas storage trailers.   

4. Hydrogen Refueling Equipment 

There are two types: pressurized and free flow.  A pressurized delivery system 

ensures complete refill of the onboard storage tank by using a compressor.  A free flow 

delivery system is simpler, but will fail to ensure a complete refill of the onboard storage 

tank, decreasing the useful hours of fuel cell operation.  The pressure of the stations refill 

tank is the pressure that is attained by the onboard storage tank (i.e. if the pressure in the 

stations tank is at 5000 psig then the onboard storage tank will be at 5000 psig). 

Typical fuel cell power systems require an external source of electrical power to 

start the power fuel cell power process.  This external power source is a battery or a 

capacitor.  Recent developments in ultra high capacitor designs have made this source of 

power storage the preferred method of providing starting power for the fuel cell.  

According to Frank Trotter, General Hydrogen president and CEO, “ultracapacitors help 

triple forklift runtime, eliminating the average three lead-acid battery sets per vehicle and 

extensive related infrastructure; Ultracapacitors' burst power capabilities, energy 

recapture efficiency, and long operating life make them an ideal complement to hydrogen 

fuel cells.”  The batteries are being replaced with 30-120 ultracapacitor cells.30  

 

                                                 
30"Ultracapacitors Help Fuel Cells Replace Lead-Acid Batteries." Control Engineering (March 2006,): 

November 26, 2006, http://www.manufacturing.net/ctl/article/CA6311938.html. 
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5. Hydrogen Production 

Reviewing hydrogen production revealed several options: “thermal (natural gas 

reforming, renewable liquid and bio-oil processing, and biomass and coal gasification), 

electrolytic (water splitting using a variety of energy resources), and photolytic (splitting 

water using sunlight via biological and electrochemical materials).”31  Some of these 

technologies are barely out of the experimental testing phase, such as using 

photosynthesis to create hydrogen.  The production options which currently produce 

commercially viable quantities of hydrogen are natural gas reforming, cryogenic gas 

separation, and electrolysis.  The following is a brief description of each process. 

Natural gas reforming is a process where thermal energy in the form of high 

temperature steam is mixed with natural gas which causes chemical reactions to break 

down natural gas and steam to form carbon monoxide, hydrogen, carbon dioxide, and a 

little natural gas.  The carbon monoxide and water vapor react in the presence of a 

catalyst to form more carbon dioxide and hydrogen, in a process known as water-gas shift 

reaction.  The gases are then filtered through other scrubber equipment to purify the 

hydrogen and to capture the carbon dioxide and other impurities.  Currently 95% of 

hydrogen produced in the United States is made using this process.32 

Coal gasification is another thermal process that mixes high temperature steam 

with coal and air to form synthesis gas, a mixture of hydrogen gas, carbon monoxide and 

dioxide gases.  The synthesis gas is processed using water-gas shift reaction to convert 

more carbon monoxide and water vapor to hydrogen and carbon dioxide.  The gas is then 

passed through absorbers and membranes to purify the hydrogen.  Coal gasification 

technology is most appropriate for large-scale, centralized hydrogen production, because 

of the challenge of handling large amounts of coal and the carbon capture and 

sequestration technologies that must accompany the process.  Additionally this 

sequestration technology needs time to mature. 

                                                 
31 "Hydrogen Production Basics." US Department of Energy, Energy Efficiency and Renewable 

Energy. http://www.eere.energy.gov/hydrogenandfuelcells/production/basics.html (accessed November 26, 
2006). 

32 Ibid. 
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The other three types of thermal hydrogen production sources rely on pyrolysis or 

gasification of bio streams to produce a liquid that can then be steam reformed into 

hydrogen, as described above. 

The electrolytic means of producing hydrogen is the process by which electricity 

is passed through water to split the water into hydrogen and oxygen.  The typical system 

setup is a source of pure water, electric current applied to positive and negative electrodes 

in a tank of water conditioned with an electrolyte chemical, such a potassium hydroxide, 

and a separation grid to separate hydrogen and oxygen into their proper storage tanks.  

These units can be of any size due to the modularity of the design. 

Photolytic hydrogen production methods rely on the sun as the energy source to 

split water or methane into hydrogen. 

The process of solar thermal water splitting uses solar collector concentrators to 

generate the high temperatures need to directly cause methane to breakdown chemically 

and react via water-gas shift reaction to form hydrogen and carbon dioxide.  This process 

requires large areas of land and weather conditions that permit abundant sunlight.  Due to 

high efficiency and rates of production, bad weather days can be compensated for by this 

process on an average production rate basis.33 

Solar energy can be converted by plants, algae, and microbes into hydrogen or 

oxygen.  Current research is trying to find a means of developing a chemical switch by 

which microbes and algae cells can be harnessed to be self-growing and hydrogen 

producers in a cyclic pattern.34  This method of production will require sulfur and proper 

sunlight conditions in addition to large areas to hold the growth vats for the biological 

water mix that is used for production. 

Lastly, hydrogen can be produced via photochemical water splitting by passing 

water through a multijunction photovoltaic cell, which produces the necessary voltage to 

split water.  This option has a low hydrogen production efficiency, which requires a large 

                                                 
33 "Hydrogen Production and Delivery." National Renewable Energy Laboratory, Department of 

Energy. http://www.nrel.gov/hydrogen/proj_production_delivery.html (accessed November 26, 2006). 
34 "Hydrogen Production and Delivery." National Renewable Energy Laboratory, Department of 

Energy. http://www.nrel.gov/hydrogen/proj_production_delivery.html (accessed November 26, 2006). 
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amount of photovoltaic cells to produce clean hydrogen.  Currently, research is underway 

to identify more efficient, lower cost materials and systems that are durable and stable 

against corrosion in an aqueous environment.35 

D. ENVIRONMENTAL CONSIDERATIONS 

Use of hydrogen power yields both risks and benefits.  The obvious benefit is 

derived from end use applications; hydrogen-powered fuel cells generate zero emissions.  

Generating hydrogen for fueling those cells, however, has unique risks depending on the 

method used. 

There are multiple possible methods for hydrogen generation.  Descriptions of 

these methods can be found in Chapter Three of this report.  All methods require some 

source of energy, some more than others.  Options range from powering the process using 

the common electrical grid to using purely renewable energy sources.  Some methods use 

fossil fuel feedstocks, such as coal, while others use renewable feedstocks, such as water.  

Environmental risks vary based on the methods used.  Brief descriptions of 

environmental concerns for some of the most common methods under development 

follow. 

Electrolysis: The most obvious environmental concern with electrolysis is that it 

requires the use of electricity.36  If a common commercial fossil-fueled electrical grid is 

used as the source of electrical power, the amount of fossil-fuel energy used to generate 

hydrogen and the corresponding atmospheric emissions may negate the environmental 

benefit of hydrogen power.  Fossil-fueled electricity produces greenhouse gases and other 

pollutants.  If the system is powered by the Pacific Gas and Electric power grid in 

California, for example, energy sources used to power the grid range from wind power to 

imported electricity from out-of-state coal power plants.  The average percentage of 

power derived from renewable sources is 25% across the U.S., but up to 40-45% in  

 

                                                 
35 "Hydrogen Production and Delivery." National Renewable Energy Laboratory, Department of 

Energy. http://www.nrel.gov/hydrogen/proj_production_delivery.html (accessed November 26, 2006). 
36 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team Report, 

California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental Protection 
Agency, 2005. 
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California.  There is, however, the option of powering the electrolysis system using a 

separate, dedicated grid powered purely by renewable sources, such as wind or solar 

energy.  This may achieve hydrogen generation with zero emissions.37 

Reforming: This method most commonly uses fossil fuels as a feedstock; 

however, reforming methods using renewable liquid fuels, such as ethanol or methanol, 

are also under development.  Reforming using fossil fuels does generate CO2 emissions, 

but there is still a 40 to 50% reduction in these emissions when compared to gasoline-

powered cars.38  Greenhouse gas emissions from reforming renewable liquid fuels are 

predicted to be 60 to 85% lower.39  When methanol is used as a feedstock, despite its 

benefits as a renewable energy source, there is an environmental downside that should be 

addressed.  It is a known neurotoxin, even when ingested in small amounts, and it can be 

absorbed through skin.  Special handling procedures are required to mitigate this risk, but 

methanol is not expected to put the general population at risk.40 

Cryogenic separation: The concern here is again emissions resulting from fuel 

consumption for an energy-intensive hydrogen generation process and greenhouse gases 

emitted by processing coal as a feedstock.  Cryogenic separation methods that sequester 

greenhouse emissions and are powered by renewable sources are currently under 

development, but are not technologically mature and are costly.41 

Other options for advanced gasification are being developed with the intention of 

reducing the need for fossil-fuel based energy inputs.42 

                                                 
37 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team Report, 

California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental Protection 
Agency, 2005. 

38 Ibid. 
39 Ibid. 
40 John D Osterlch. "Study of the Neurological Effects of Low-Level Methanol in Normal Subjects 

and Subjects with Susceptibility to Folate Deficiency." California Air Resources Board. 
http://www.arb.ca.gov/research/resnotes/notes/95-11.htm (accessed December 8, 2007). 

41 "Prospects for Hydrogen from Coal." Profiles no. PF 03-09 (December 2003): November 29, 2006, 
http://www.iea-coal.org.uk/publishor/system/component_view.asp?LogDocId=81106. 

42 Gassification Technologies: A Program to Deliver Clean, Secure, and Affordable Energy. 
Washington, DC: Department of Energy, National Energy Technology Laboratory, 2001. 
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There are several other technologies under development that will reduce or 

eliminate emissions from hydrogen generation, although they are mostly in research and 

development.  These include photobiological, photochemical, biomass gasification, coal 

gasification with sequestration of CO2 emissions, and high temperature thermo-chemical 

hydrogen production.  Environmental benefits and developmental state are outlined in 

Table 3. 

 
Production 
Mode 

Development Status / 
Industry Readiness 

Technical Barriers Environmental 
Considerations 

Photobiologica
l 

Photobiological hydrogen 
production today is still at the 
basic R&D stage. Barring an 
unforeseen breakthrough, it is 
not likely to be commercially 
viableuntil after 2015.  Two 
breakthroughs could move 
photobiological 
hydrogenproduction more 
rapidly to commercialization: 
(1) An acceptably high rate of 
hydrogen output, which 
depends upon solar-to-H2 
conversion efficiency; and 2) 
lower photobioreactor costs.  

In its early stage of 
development, the limitation to 
photobiological hydrogen 
production is inefficiency. 
Current solarto-hydrogen 
conversion efficiency is only 
0.5%. These systems are also 
constrained by “pond” depth 
and by diurnal operation 
limitations. Because they 
depend upon light, photolytic 
processes lose efficiency to 
varying degrees on cloudy days 
and at greater pond depths and 
of course are not operational at 
night without the presence of 
artificial light. 

Carbon neutral 
process. 

Photo-
electrochemica
l 
 

Like photobiological hydrogen 
production, PEC technology is 
still in the R&D stage. Two 
breakthroughs would move 
PEC hydrogen production 
rapidly to commercialization: 
(1) the discovery of new 
materials with a 2015 target 
efficiency of 14% and 20,000 
hours demonstrated durability; 
and (2) more optimal 
engineering systems to lower 
cost of hydrogen produced. 

PECs currently have low 
efficiency and durability. These 
appear to be mutually 
antagonistic in many of the 
materials investigated so far; 
that is, materials having greater 
efficiency have tended to be 
less durable and vice versa. 
Similarly, semiconductor 
materials that have more 
optimal band gaps to produce 
sufficient electricity for 
splitting water have had 
disappointingly low visible 
light spectrum absorption 
capability and vice versa. Like 
photo-biological processes, 
PEC needs light to function. 
 
 
 
 

This technology is 
expected to be 
carbon-free, but that 
may depend upon 
the electrolyte that is 
used. 
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Production 
Mode 

Development Status / 
Industry Readiness 

Technical Barriers Environmental 
Considerations 

Coal 
Gasification 
with CO2 
Capture and 
Sequestration 
Large, central 
option: not 
scalable (150- 
600 t/day H2) 
Delivered by 
Compressed 
Gas or LH2 
Truck or Gas 
pipeline 

Coal gasification is 
commercial technology; CO2 
capture and sequestration 
demonstrations  ongoing; 
could be developed in near 
term. 
 

Technical barriers center on 
cost reduction rather than 
feasibility. CO2 sequestration is 
still being proven via large 
scale demos. 
 

Impact of CO2 on 
underground storage 
reservoirs; need for 
long term 
monitoring to detect 
leaks. 
 

Biomass 
Gasification 
(75-150 t/d) 
Midsize 
central option, 
smaller than 
coal H2 
systems 
Delivered by 
Compressed 
Gas or LH2 
Truck or Gas 
Pipeline 

Demonstrated at pilot plant 
scale. 

Technical barriers center on 
cost reduction rather than 
feasibility. 
 

Land use 
Constraints (requires 
use of large land 
areas), depends on 
low cost biomass 
feedstocks. 

High 
temperature 
Thermochemical 
H2 Production 
(Nuclear) Large, 
central 
Delivered by 
Compressed Gas 
or LH2 Truck or 
Gas Pipeline 

Experimental, 
laboratory stage 

Hydrogen production from these 
technologies has not been proven, 
and subsystems have not been 
evaluated; new cost-effective 
materials operating at high 
temperatures and temperature 
cycling need to be developed. 

Same as nuclear 
power; serious public 
safety, environmental, 
and political issues. 

Thermo-
chemical H2 
Production 
(Solar).Size not 
yet determined. 
Delivered by 
Compressed Gas 
or LH2 Truck or 
Gas Pipeline 

Experimental, laboratory stage. Hydrogen production from these 
technologies has not been proven, 
and subsystems have not been 
evaluated; new cost-effective 
materials operating at high 
temperatures and temperature 
cycling need to be developed. 
 

Land use for solar 
Concentrators. 
 

 
Table 3.   Technical and Environmental Concerns for Developmental Extraction 

Technologies43 
                                                 

43 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team Report, 
California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental Protection 
Agency, 2005. 
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E. MAINTENANCE AND LOGISTICS CONCERNS 

In their current state of development, hydrogen fuel cells have multiple concerns.  

PEM fuel cells are sensitive to impurities in the hydrogen and the catalyst is precious 

metal (platinum) and thus relatively expensive to manufacture.44  Fuel cells are currently 

very expensive and large-scale production is needed to reduce these costs.  Fuel cell 

vehicle range is limited with current fuel storage options.  Gasoline typically provides 

300-400 miles of range while fuel cells provide 60-150 miles of range, with large 

vehicles (busses) able to get up to 250 miles by carrying larger storage tanks. 

Fuel cells run on hydrogen fuel.  A "reformer" reformulates non-hydrogen fuels 

such as gasoline, methane, etc., to turn them into hydrogen.  A reformer is expensive and 

produces emissions that may offset the advantage of using hydrogen by itself. 

Fuel cells are still in a relatively early stage of development and even the few 

commercially available models have limited fleet operating experience. This emerging 

technology requires risk-taking early adopters as end users to expose more consumers to 

the benefits of fuel cells.45  In order to become widely accepted as clean distributed 

generators, fuel cells must prove their adaptability for a variety of applications. Certain 

fuel cell system components—like the cell stack, which can require a costly replacement 

every one to five years depending on the model—must be developed to have a longer 

lifespan or be easily and cheaply replaced.46 

Despite risks associated with technological immaturity, hydrogen-fueled GSE 

may have significant logistic benefits over diesel-powered GSE.  Hydrogen fuel cells are 

inherently modular, and they operate at near constant efficiency, independent of size and 

load. The fuel cell power plant can be configured in a wide range of electrical outputs, 

                                                 
44 Fuel Cell Handbook, Seventh Edition. Morgantown, WV: National Energy Technology Laboratory, 

Department of Energy, 2004. 
45 "Energy Information: Fuel Cells." Massachusetts Technology Collaborative. 

http://www.mtpc.org/cleanenergy/cells.htm (accessed November 25, 2006). 
46 Ibid. 
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ranging from single kilowatt sizes up to multi-megawatt systems.47 The absence of 

combustion and moving parts means that fuel cell technologies have the potential for 

much improved reliability over traditional combustion engines in some vehicles.48  

Improved reliability is synonymous with a reduction in failures, and therefore may result 

in a reduction in maintenance requirements.  Maintenance benefits are further evaluated 

in the analysis section of this report. 

                                                 
47 "Fuel Cell Information: Fuel Cell Benefits." National Fuel Cell Research Center, University of 

California Irvine. http://www.nfcrc.uci.edu/fcresources/FCexplained/FC_benefits.htm (accessed November 
23, 2006). 

48 "Advantages and Benefits of Fuel Cell and Hydrogen Technologies." Fuel Cell Markets, Ltd. 
http://www.fuelcellmarkets.com/article_flat.fcm?subsite=1&articleid=663 (accessed November 26, 2006). 
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III. METHODOLOGY 

A. QUALITATIVE SAFETY ASSESSMENT 

In conducting a Cost Benefit Analysis, an organization must consider both 

qualitative and quantitative assessments.  Particular to establishing a Hydrogen program 

are safety concerns, which should be considered and will be addressed in the analysis 

portion of this report.  Key factors considered are safety hazards and hazard mitigation 

methods.  The analysis is a comparison between hydrogen gas and diesel in these two 

areas of concern.  The remainder of this methodology section will detail variables, 

distributional assumptions, and procedures used in the quantitative analysis. 

B. QUANTITATIVE ANALYSIS 

The Cost Benefit Analysis of Hydrogen Powered Ground Support Equipment is a 

simulation built on a Crystal BallTM analysis driven by Microsoft ExcelTM software. Key 

factors that are looked at are safety hazards and hazard mitigation methods.  The analysis 

is a comparison between hydrogen gas and diesel in these two areas of concern.  The 

remainder of this methodology section will detail variables, distributional assumptions, 

and procedures used in the quantitative analysis. 

1. Assumptions 

The simulation is in a spreadsheet, an analysis tool that quantifies the following 

costs and indirect benefits associated with establishing and operating a hydrogen 

processing operation (assumptions around key variables are explained in greater detail 

below): 

a. Annual Recurring Costs 

• Infrastructure expenditures 

• Cost of refilling 

• Transport cost of hydrogen 

• Maintenance cost 

• Labor cost 

• Filter cost 
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• Waste disposal 

• Hazmat cost 

b. One Time Expenses 

• Equipment conversion cost for A/S32A-42 Tow Tractor 

• Equipment conversion cost for A/M27T-5/A Hydraulic Cart 

• Equipment conversion cost for A/M32A-108 Electric Cart 

c. Plant Costs 

• Procuring the plant 

• Leasing the plant 

d. Indirect Benefits 

• Training value realized through reduced I-Level training costs 

• Reduced emissions 

e. Usage and Inventory Assumptions 

The model has been developed as a planning tool for decision makers to evaluate 

potential cost reductions and quantify indirect benefits that manifest themselves in 

reduced training costs at the organizational level and reduced emissions, providing an 

environmental benefit.  Naval Air Station Lemoore is a notional site for the pilot project; 

thus usage and analysis data used in the model are derived from the Fleet Readiness 

Center (FRC) at that location. 

f. Costs Overview 

The following assumptions will be used in the analysis section, and serve to 

extrapolate predicted values and costs, ultimately justifying conclusive recommendations.  

These assumptions are based on data received from Dave Cook at Naval Facilities 

Engineering Service Center, Port Hueneme, California. 

g. Recurring Costs 

These are comprised of infrastructure expenditures, including the cost of 

refilling, with a uniform distribution valued between $14,400 and $17,600 per year and 

the hydrogen transportation cost, with a normal distribution and a mean of $3,000 and 

standard deviation of $300 per year. 
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h. Maintenance Costs 

Maintenance costs include direct labor costs, with a normal distribution 

and a mean of $7,000 and a standard deviation of $700 per year, and filter costs, with a 

uniform distribution between $3,600 and $4,400 per year. 

i. Annual HAZMAT Processing Costs 

These costs have an associated value of $6,000 per year. 

j. One Time Expenses for Conversion of Individual GSE 

These are based on data provided by representatives from General 

Hydrogen, Concurrent Technologies Corporation and Naval Air Systems Command and 

are all uniformly distributed. 

(1) Conversion of one A/S32A-42 Tow Tractor ranges from 

$30,000 to $50,000. 

(2) Conversion of one A/M 27T-5/A Hydraulic Cart ranges 

from $10,000 to $30,000 

(3) Conversion of one A/M32A-108 Electric Cart iranges from 

$10,000 to $30,000. 

k. Discount Rate 

An 8% discount rate is based on the assumption that a project would run at 

least as long as the model's time analysis, which is five or ten years.  The discount rate 

creates a conservative output, and can be adjusted up or down to meet decision makers’ 

requirements, economic assumptions, and regulations. 

l. Building and Leasing Costs 

While the assumption to build or lease the hydrogen plant is discussed in 

the analysis section, these values are based on data received from Dave Cook at Naval 

Facilities Engineering Service Center, Port Hueneme, California.  

(1) A constant value to procure one hydrogen plant is valued at 

$350,000 with an annual 15% maintenance cost. 

(2) Leasing a production plant is valued at $100,000 annually. 
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m. Training Costs 

Training values are set at current Chief of Naval Education and Training 

school duration and are annotated in Table 4. 

 

 
ATT 
(Required)

Diesel in 
hours 

Hydrogen 
in hours 

A/S32A-42 Tow Tractor 224 240 69 

A/M 27T-5/A Hydraulic 
Cart 224 282 68 

A/M32A-108 Electric 
Cart 224 171 82 

Table 4.   Training required for I level maintenance qualification.  All maintainers 
require ATT, followed by training in either diesel or hydraulic systems. 

 

n. Emission Levels 

Emission levels are derived from the Environmental Protection Agency’s 

most recent issue of “Technical Support for development of Airport Ground Support 

Equipment Emission Reductions.” 

C. ANALYSIS SCENARIOS 

Analysis was conducted on three scenarios (set of input parameter values): 

1. Scenario 1 

Scenario 1 considers setting quantities of all recurring costs to one and setting the 

number for conversion for each piece of equipment to one, the minimum acceptable level 

in the model. Consideration was given to buying a plant with a time frame analysis of 

both five and ten years and with a leasing option for both five and ten years.  Intermediate 

level training requirements were set to 10 personnel.  This scenario is meant to represent 

a ‘minimum buy-in’ option, and is also included as a base case for the purposes of model 

validation. 
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2. Scenario 2 

Scenario 2 considers setting quantities of all recurring costs to one, setting 

intermediate level training requirements to 15 personnel and setting the number for 

conversion for each piece of equipment as follows (based on 20% of Naval Air Station 

Lemoore’s current inventory of 35, 40 and 25 respectively): 

• A/S32A-42 Tow Tractor conversion at 7 units 

• A/M 27T-5/A Hydraulic Cart conversion at 8 units 

• A/M32A-108 Electric Cart conversion at 5 units 

This scenario is meant to represent a smaller scale ‘shake-down’ pilot 

implementation, in which a significant portion (20%) of the equipment is converted, but 

the large majority remains diesel powered.  

3. Scenario 3 

Scenario 3 considers setting quantities for all recurring costs to one, and setting 

the number for conversion for each piece of equipment to fifteen, the maximum 

acceptable level in the model. Consideration was given to buying a plant with a time 

frame analysis of both five and ten years, and to a leasing option, again for both five and 

ten years.  Intermediate level training requirements were set to 20 personnel, the model 

maximum.  This report did not examine a ‘total conversion’ scenario in which all 

equipment was converted for the pilot, because that was considered unrealistic.  Hence, 

this scenario is meant to represent the largest-scale pilot implementation is likely to be 

undertaken. 
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IV. ANALYSIS 

A. SAFETY HAZARDS OF GASEOUS HYDROGEN VS. LIQUID DIESEL 
FUEL 

 

Table 5 shows a qualitative comparison of hydrogen fuel safety concerns to diesel 

fuel safety concerns.  Hydrogen power has several safety benefits over diesel, but has 

high explosive potential. 

 Hydrogen Diesel/Fuels 
Health hazards due to 
inhalation. 

There is some risk of 
asphyxiation resulting from 
oxygen deprivation.49 

Short term effects of 
inhalation include dizziness, 
headaches,50 nausea, and 
fatigue.51  Long term effects.   
Long term effects include 
damage to blood,52 liver, 
kidneys, heart, lungs, and 
nervous system. 53  

Health hazards due to 
ingestion. 

Not applicable. Same as those for prolonged 
inhalation.54  If swallowed, 
diesel may enter the lungs, 
resulting in injury and 
possibly death.55 

 

                                                 
49 Safetygram #4: Gaseous Hydrogen. Allentown, PA: Air Products and Chemicals, Inc., 2004. 
50 OPNAV P-45-110-961996 : Hazardous Material User’s Guide. 1996. 
51 Roy J. Irwin, Mark Van Mouwerik, Lynette Stevens, Marion Dubler Seese, and Wendy Basham. 

"Diesel Oil." in Environmental Contaminants Encyclopedia. Fort Collins, CO: National Park Services, 
Water Resources Divisions, Water Operations Branch, 1997. 

52 OPNAV P-45-110-961996 : Hazardous Material User’s Guide. 1996. 
53 Roy J. Irwin, Mark Van Mouwerik, Lynette Stevens, Marion Dubler Seese, and Wendy Basham. 

"Diesel Oil." in Environmental Contaminants Encyclopedia. Fort Collins, CO: National Park Services, 
Water Resources Divisions, Water Operations Branch, 1997. 

54 Ibid. 
55 Material Safety Data Sheet, Diesel Fuel no. 2. Richmond, CA: Chevron Energy Technology 

Company, 2006. 
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 Hydrogen Diesel/Fuels 
Health Hazards due 
to skin contact 

None.  Hydrogen is non-
toxic. 

Short term effects include 
skin irritation, blistering, 
redness, and dryness.56  
Prolonged contact may result 
in dermatitis.   

Health Hazards due 
to eye contact 

None.  Hydrogen is non-
toxic. 

Eye contact with diesel can 
cause discomfort and 
irritation.57 

Reproductive 
Hazards 

None.  Hydrogen is non-
toxic. 

Some immunological, 
reproductive, fetotoxic, and 
genotoxic effects have been 
associated with some of the 
compounds found in diesel 
fuel.58 

Environmental 
Hazard (Leakage or 
Spillage) 

None.  Hydrogen gas 
dissipates into the 
atmosphere.  Pure hydrogen 
is not a pollutant.59 

In the event of a fuel spill, 
there is risk of contamination 
to the local water table, 
presenting health hazards to 
the general population and 
potential acute toxicity to 
aquatic life.60 

 

                                                 
56 OPNAV P-45-110-961996: Hazardous Material User’s Guide. 1996. 
57 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team 

Report, California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental 
Protection Agency, 2005. 

58 Roy J. Irwin, Mark Van Mouwerik, Lynette Stevens, Marion Dubler Seese, and Wendy Basham. 
"Diesel Oil." in Environmental Contaminants Encyclopedia. Fort Collins, CO: National Park Services, 
Water Resources Divisions, Water Operations Branch, 1997. 

59 "Air Toxics Web Site: Original List of Hazardous Air Pollutants." US Environmental Protection 
Agency. http://www.epa.gov/ttn/atw/orig189.html (accessed December 12, 2006). 

60 Roy J. Irwin, Mark Van Mouwerik, Lynette Stevens, Marion Dubler Seese, and Wendy Basham. 
"Diesel Oil." in Environmental Contaminants Encyclopedia. Fort Collins, CO: National Park Services, 
Water Resources Divisions, Water Operations Branch, 1997. 
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 Hydrogen Diesel/Fuels 
Flammable/Explosive 
Hazard 

Air is flammable with 4% to 
74% hydrogen content, and 
requires very little energy for 
ignition within this range.61  
Hydrogen has the highest 
burning velocity of any 
gas.62 

Diesel has a flash point 125 
degrees Fahrenheit, with an 
external ignition source.  
Autoignition temperature is 
494 Fahrenheit.  Diesel is 
stable at normal temperatures 
and pressures.63 

Noise Pollution 
Hazard 

Hydrogen fuel cells have 
less moving parts than 
internal combustion engines; 
therefore they produce 
significantly less noise.64 

Highways are currently a 
major source of noise 
pollution in US metropolitan 
areas.  Noise is generated by 
vehicles powered by 
traditional internal 
combustion engines. 

 

                                                 
61 Safetygram #4: Gaseous Hydrogen. Allentown, PA: Air Products and Chemicals, Inc., 2004. 

62 "Hydrogen (H2) Carrier Gas Safety Guide." Agilent Technologies. 
http://www.chem.agilent.com/cag/servsup/psnews/h2safety.html (accessed December 11, 2006). 

63 Material Safety Data Sheet, Diesel Fuel no. 2. Richmond, CA: Chevron Energy Technology 
Company, 2006. 

64 Kate Figieland James Rhodes. Transition to a Hydrogen-Based System: Next Ten YearsDepartment 
of Engineering and Public Policy, Heinz School of Public Policy and Management, Carnegie Melon 
University, No year given. 
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 Hydrogen Diesel/Fuels 
Air Pollution Hazard Hydrogen fuel produces no 

emissions other then water 
vapor when burned in a 
combustion engine.65 

Diesel combustion generates 
greenhouse gases and other 
pollutants, including sulfur.66  
Typically, one gallon of 
diesel produces 10,084 grams 
of CO2.67 

Equipment Damage Metals exposed to hydrogen 
at elevated temperatures and 
pressures may suffer 
embrittlement. Vessels and 
piping used for 
transportation and storage of 
hydrogen must be designed 
to American Society of 
Mechanical Engineers and 
the Department of 
Transportation to mitigate 
this risk. 
Hydrogen is non-corrosive.68

During the combustion 
process, diesel fuel produces 
corrosive gases, such as sulfur 
and nitrous oxide.69 

 
Table 5.   Safety Hazards of Gaseous Hydrogen vs. Liquid Diesel Fuel 

 

Hydrogen’s high explosive risk can be mitigated by using appropriate protective 

gear, instructing handlers in safety precautions and proper procedures for transportation, 

storage, and usage, and ensuring facilities are designed to prevent incidents.  

Recommended measures are in Table 6. 

 

 

                                                 
65 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang Weiss. Rollout Strategy Topic Team 

Report, California 2010 Hydrogen Highway Network. Sacramento, CA: California Environmental 
Protection Agency, 2005. 

66 "Diesel." Wikimedia Foundation. http://en.wikipedia.org/wiki/Diesel (accessed December 11, 
2006). 

67 Emission Facts: Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel. 
Washington, DC: US Environmental Protection Agency, 2005. 

68 Safetygram #4: Gaseous Hydrogen. Allentown, PA: Air Products and Chemicals, Inc., 2004. 
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Safe hydrogen facility design: 
o Remove ignition sources (sources of electrical spark or static, high 

heat, or flame) from the operating environment wherever possible. 
o Provide adequate ventilation.  Forced ventilation may be necessary in 

some facilities. 
o Design gaseous hydrogen system for thorough purging (purged of all 

oxygen, air, or other oxidizers prior to introduction of hydrogen, and 
purged of all hydrogen prior to opening the system to atmosphere).  In 
systems with extensive piping, purge first with an inert gas between 
evacuations. 

o Use flammable gas analyzer (portable or continuous). 
o Buildings and all electrical equipment should be electrically grounded 

to avoid sparking.  Building material should be noncombustible. 
o Protect cylinders from extreme weather conditions, electrical, and heat 

sources. 
o Cylinders should not be stored near oxidents. 
o System must be located above ground; if possible, on higher ground 

than other flammable liquids and oxygen, including storage and 
piping.  If not possible to place on higher grounds, proper protection 
should be provided for the hydrogen storage facility (diking, grading, 
diversion curbs). 

o Post “no smoking” and “open flame” signs. 
Mitigate risk in storage and handling. 

o Ensure personnel are properly trained and practice prescribed handling 
techniques for hydrogen cylinders (e.g. never drag or slide cylinders 
along the floor, never tamper with valve safety devices). 

o Personnel should wear appropriate PPE when handling hydrogen 
cylinders; safety glasses, safety shoes, and leather gloves are 
recommended. 

Table 6.   Precautionary Measures for Handling and Storing Hydrogen.70 
 

B. COST BENEFIT ANALYSIS 

The methodologies, information, and assumptions given earlier in this report drive 

the hydrogen power cost benefit analysis.  It is built around GSE usage, inventory, and 

cost information from Naval Air Station Lemoore, coupled with best-available emissions 

data from reports published by the Environmental Protection Agency, including tracking 

pollutants which fall under the Clean Air Act (CAA).  Various seed values were used to 

                                                                                                                                                 
69 Fuels, Engines, and Emissions: Assessment of Corrosion Potential in Diesel Exhaust via 

Application of a Specialized Probe. Oak Ridge, TN: US Department of Energy, Oak Ridge National 
Laboratory, Freedom Car and Vehicle Technologies Program, 2003. 

70 Safetygram #4: Gaseous Hydrogen. Allentown, PA: Air Products and Chemicals, Inc., 2004. 
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populate the model and draw comparisons between relevant decision points in the 

process.  Results will show not only the mean expected cost or benefit, but also the fifth 

and 95th percentiles of the forecast distribution given by Crystal Ball (that is, a 90% 

certainty interval).  Note that these intervals are not the same as confidence intervals 

around the mean.  Assuming the model has been specified correctly, certainty intervals 

represent the outcomes that might be realized within the given probability range.  They 

do not address the likelihood that the mean is correct, but rather address the risk (upside 

and downside) of achieving values different from the mean.  Several of the graphs output 

from Crystal Ball are given in addition to the key output values as examples to aid in 

building decision makers’ intuitions about outcome risks. 

1. Scenario 1:  Minimum Buy-In 
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.000

.008

.017

.025

.034

0

42

84

126

168

25,000,000 30,625,000 36,250,000 41,875,000 47,500,000

5,000 Trials    13 Outliers

Forecast: Emissions Value realized

 
Figure 1.   Indirect benefit emission reduction value realized in assumption 1 

 

Scenario 1 results in an indirect annual benefit of emission reduction in grams of 

pollutants between 29,781,505 grams and 42,698,711 grams, based on a certainty interval 

between 5 and 95 percentile with a mean reduction of 36,348,339 grams  See Figure 1.  

Another indirect benefit is a reduced cost of Intermediate Level Maintenance Training  

between $80,055 and $297,213, with a mean of $192,972.  In sum, these results indicate 

that significant indirect benefits can be obtained even with a ‘minimum buy-in’. 
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One-time costs (excluding plant) are estimated between $62,690 and $96,103, 

with a mean of $80,063.  Recurring costs (excluding plant) are estimated between 

$33,707 and $38,258 with a mean of $35,983. 

Total project costs (including plant) are analyzed in four separate sub-scenarios: 

Buy vs. Lease, and 5 vs. 10 year decision horizons. 
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Figure 2.   Project cost in assumption 1A, Buy, 5-year horizon 

 

Overall project costs for analysis 1A assume a plant cost summary with a buy 

option spanning 5 years and an overall project cost between $767,500 and $802,500, and 

a mean of $783,351 (See Figure 2).  Overall project cost 1B assumes a plant cost 

summary with a lease option spanning 5 years and an overall project cost between 

$603,385 and $640,057, and a mean of $623,063 (See Figure 3).  Overall project cost 1C 

assumes a plant cost summary with a buy option spanning 10 years and an overall project 

cost between $1,001,503 and $1,045,352, and a mean of $1,023,788.  Overall project cost 

1D assumes a plant cost summary with a lease option spanning 10 years and an overall 

project cost between $970,538 and $1,015,521, with a mean of $992,823.  For both 

horizons, the lease option has a lower expected cost, and a lower ‘downside risk’ of high 

costs (i.e., those high costs seen no more than 5% of the time in the simulation were 

lower in the ‘lease’ options).  
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Frequency Chart
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Figure 3.   Project cost in assumption 1B, Lease, 5-year horizon 

 
2. Scenario 2:  Small Scale Pilot 

Analysis of Scenario 2 assumptions result in an indirect annual benefit of 

emission reductions between 30,409,202 and 41,565,232 grams of pollutants, with an 

expected mean reduction of 36,400,106 (see Figure 4). Another indirect benefit is a 

reduced cost of Intermediate Level Maintenance Training costs between $131,499 and 

$456,336, with an expected reduction of $290,294. 
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Figure 4.   Indirect benefit emission reduction value realized in Scenario 2 
 

One-time costs (excluding plant) is estimated between $498,213 and $583,143 

with a mean of $539,907, while the recurring costs (excluding plant) are estimated 
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between $33,797 and $38,321 with a mean of $35,998.  Overall project cost 2A assumes 

a plant cost summary with a buy option spanning 5 years and an overall project cost 

between $1,200,626 and $1,286,717, with a mean of $1,243,253 (see Figure 5). 
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Figure 5.   Project cost in assumption 2A, Buy option, 5-year horizon 

 

Overall project cost 2B assumes a plant cost summary with a lease option 

spanning 5 years and an overall project cost between $1,038,828 and $1,125,617 and a 

mean of $1,082,874 (see Figure 6). Note that the lease option is still more attractive for 

the short time horizon, even with the commitment to convert additional equipment. 
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Figure 6.   Project cost in assumption 2B, Lease Option, 5-year horizon 
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Overall project cost 2C assumes a plant cost summary with a buy option spanning 

10 years and an overall project cost between $1,439,290 and $1,528,348, with a mean of 

$1,483,341 (See Figure 7).  
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Figure 7.   Project cost in assumption 2C, Buy Option, 10 year horizon 

 

Overall project cost 2D assumes a plant cost summary with a lease option 

spanning 10 years and an overall project cost between $1,407,109 and $1,496,416, with a 

mean of $1,453,025 (See Figure 8).  With a 10-year time horizon and a commitment to 

convert 20% of the vehicles, the buy option begins to be economically attractive, but the 

lease option remains preferable. 
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Figure 8.   Project cost in assumption 2D, Lease Option, 10 year horizon 
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3. Scenario 3:  Large Scale Pilot 

Scenario 3 assumptions result in an indirect benefit of emission reduction in 

grams of pollutants annually between 30,930,174 and 41,641,841 with a mean of 

36,309,819 (see Figure 9), and a reduced cost of Intermediate Level Maintenance training 

costs between $345,194 and $423,610 with a mean of $384,869.  All values were 

determined with a 90% certainty.  
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Figure 9.   Indirect benefit emission reduction value realized in Scenario 3 

 

One-time costs are estimated between $1,134,611 and $1,262,149, with a mean of 

$1,199,484, while recurring costs are estimated between $33,759 and $38,204, with a 

mean of $35,978.  Overall project cost 3A assumes a plant cost summary with a buy 

option spanning 5 years and an overall project cost between $1,836,727 and $1,965,491, 

with a mean of $1,902,751.  Overall project cost 3B assumes a plant cost summary with a 

lease option spanning 5 years and an overall project cost between $1,680,062 and 

$1,810,635, with a mean of $1,743,133.  Note that even with a large-scale pilot, the buy 

option is not attractive for a five-year decision horizon. 

Overall project cost 3C assumes a plant cost summary with a buy option spanning 

10 years and an overall project cost between $2,075,218 and $2,207,970, with a mean of 

$2,144,165 (See Figure 10).  
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Frequency Chart
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Figure 10.   Project cost in assumption 3C, buy option, 10 year horizon 

 

Overall project cost 3D assumes a plant cost summary with a lease option 

spanning 10 years and an overall project cost between $2,046,490 and $2,178,364, with a 

mean of $2,112,384 (see Figure 11).  At the 10-year horizon, the buy option is again 

more attractive than at the 5-year horizon – but not markedly more attractive in scenario 

3 than it was in scenario 2.  In sum, the scale of the pilot may be less important—in 

deciding whether to lease or buy plant capacity—than the time frame over which the 

commitment is made to pursue the pilot, and a time frame longer than 10 years may be 

necessary in order to justify the decision to build. 
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Figure 11.   Project cost in assumption 3D, Lease option, 10-year horizon 
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Based on the three scenarios analyzed, the indirect benefits of both training and 

emission reduction should be considered by the organization in addition to any direct 

impact to local funding caused by a reduction in the recurring expenses associated with 

running hydrogen versus diesel vehicles. 

As with any analysis tool, the output computed by the model is derived from the 

assumptions and deliverables, and therefore produces a result with the inherent 

limitations of the assumptions.  For example, a key assumption that has been made is that 

plant maintenance expense can be reduced to zero at the end of the decision horizon.  

However, plant capacity that has been built (rather than leased) may continue to require 

operational expense, even if the pilot project is abandoned. 

The incremental recurring expense of hydrogen fuel cell vehicles versus diesel 

vehicles is not considered to be within the scope of this project.  An analysis of that type 

requires examining the cost distribution of operating diesel vehicles.  The recurring costs 

reported here should be compared to the recurring costs of operating diesel vehicles in 

order to obtain a complete picture of the potential benefits of a pilot project. 
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V.   CONCLUSION 

Hydrogen power opportunities present benefits to be realized across multiple 

spectrums.  Reduced levels of pollutants coupled with lower training and maintenance 

costs make evaluating hydrogen power opportunities essential to satisfying future power 

requirements.  This analysis demonstrates the qualitative and quantitative benefits of 

creating a hydrogen power plant and providing hydrogen power to aviation ground 

support equipment.  Command-level decision makers can personalize their assumptions 

and variables by modifying the model to reflect both their current GSE inventories and 

their financial constraints.  Additionally, they can interpret and assign an internal value to 

two indirect benefits being captured in the model based on equipment usage statistics.  

By comparing usage levels with training requirements and emission data, decision 

makers can assign a value to these indirect benefits.  A final aspect addressed in the 

analysis section is the consideration of safety impacts.  Although not quantitative, 

considering safety aspects of a program is proven to have significant impact to the 

success of a program. 

The ability to apply the model to a unique situation  will permit the user to 

validate existing costs, forecast expenses and draw conclusions about the applicability 

and benefit of establishing a hydrogen program, the number of vehicles to convert to 

hydrogen power, and whether to purchase or lease a plant.  All of these considerations 

can be placed across a varying timeframe to determine breakeven points.  By examining 

recurring and one-time costs and comparing those to current costs with diesel vehicles, 

sound business decisions can be made about the feasibility, affordability and expected 

return on investment. 
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