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ABSTRACT

This dissertation develops basic theory and applications of statistical multirate

signal processing. Specific tools and terminology for describing multirate systems in

the time and frequency domains are presented. An optimal multirate estimator is

derived in both a direct form and recursive form. The recursive form of the optimal

estimator allows calculation of the relative change in performance when input signals

are added or removed from the multirate system. The optimal multirate filtering

problem also is specialized to the case of optimal multirate linear prediction. An

efficient method for calculating the multirate linear prediction coefficients and error

variances is developed through the use of the multichannel Levinson recursion and

generalized triangular UL factorization. Finally, a multirate sequential classifier is

derived and applied to the problem of target classification. It is shown that classifier

parameters needed for implementing the multirate sequential classifier are the same as

those for multirate linear prediction. The methods presented in this dissertation are

useful for multisensor fusion, particularly when the sensors are operating at different

rates.
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EXECUTIVE SUMMARY

Sensor fusion is an important component of target detection and classification.

The ability to exploit correlated information among multiple sensors with different

operating characteristics can lead to improved detection and classification perfor-

mance. This dissertation addresses multirate sequential classification through the

development of a common multirate framework and the multirate linear prediction

equations.

In order to lay the foundation for representing multirate signals, key terms

applicable to multirate systems are defined. These are the fundamental rate, system

period, system phase and decimation factors. These terms are used to explicitly

describe the periodic nature of the multirate system and allow for the appropriate

selection of values for the periodic components in the multirate system. In addition,

fundamental building blocks of the multirate system are presented, along with the

statistical characterizations of multirate signals as they pass through the multirate

building blocks. In particular, a linear periodically time-varying filter is presented

that permits the input and output signals to be sampled at different rates.

The first multirate optimal filter considered in this dissertation is the optimal

linear estimator. The explicit direct form that estimates multiple input signals at

possibly different sampling rates is first presented followed by a recursive innovations

form. This innovations form of the optimal estimator separates the direct form op-

timal filters into modified optimal filters and cross filters. These cross filters remove

any information from one signal that is contained in the other signals, in an ordered

fashion. In essence, a new set of input signals that are mutually orthogonal are de-

rived and used as the inputs to the modified optimal filters. Using the innovations

form of the optimal filter allows one to calculate the relative change in performance

in the optimal estimator when input signals are added or removed from the system.

xvii



The optimal filtering problem is specialized to the case of optimal multirate

linear prediction. The multirate Normal equations are derived for a multirate system

with multiple input and output signals which are observed at different sampling rates.

For a multirate system with a system period K, there are up to K distinct sets of

prediction coefficients and error covariance matrices that apply in a periodic fashion.

An efficient method for calculating the multirate linear prediction coefficients and

error variances is developed through the use of the multichannel Levinson recursion

and generalized triangular UL factorization.

Finally, a multirate sequential classifier is derived starting from the basic the-

ory of sequential hypothesis testing. It is shown that classifier parameters needed for

implementing the multirate sequential classifier are the same as those for multirate

linear prediction. A multirate sequential classifier is then implemented and tested us-

ing audio files of a propellor plane and three A-10 jet aircraft. The experiments tested

the classifier performance in selecting between the propellor plane and jet aircraft as

certain system parameters are changed. These parameters are the signal-to-noise

ratios of the observed signal and the length of the training data. In addition, the

performance of the multirate classifier is compared to that of the single-channel and

multichannel classifiers using similar data.

xviii
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I. INTRODUCTION

Within the field of signal processing, a growing interest in the area of multirate

signal processing has developed over the past three decades. This area focuses on

the processing of systems that contain multiple signals that can occur at different

sampling rates. Since this area deals with systems that have components operating at

different sampling rates, processing techniques and descriptions are needed to account

for any disparity between these sampling rates. Many advantages of multirate signal

processing have been found, and techniques have been applied to many areas, such as

telecommunications, digital audio encoding/decoding, speech and image processing,

and geophysical signal processing [Ref. 1, 2, 3].

Most of the research on multirate signal processing, beyond development and

characterization of the basic building blocks, has centered on filter bank theory and

multirate Kalman filtering [Ref. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. A

brief discussion on each of these areas is provided below. In the majority of the

filter bank research, there is one input signal (or vector of input signals sampled at

the same rate). Within the filter bank structure, the signal is separated into different

subbands sampled at different rates. Signal processing techniques are applied, and the

separate signals are then synthesized into one output signal (or vector of output signals

sampled at the same rate). This area of research has greatly improved the knowledge

and understanding of single-input single-output (SISO) and multiple-input multiple-

output (MIMO) filter bank structures; however, it has not developed methods for

processing multiple input signals at different sampling rates.

In the area of statistical multirate signal processing, there are a number of

papers published. One area that these papers have focused on is the characterization

of periodic random processes. These papers present methods to describe periodic

random processes in both the time and frequency domains and discuss such key

concepts as cyclostationarity of periodic random processes. Another significant area
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of research in statistical multirate signal processing is the development of state-space

multirate Kalman filters. These Kalman filters have been applied to a variety of

systems, such as small aircraft orbit control, helicopter passive ranging and machinery

control. In addition, multirate Kalman filter research has been applied to tracking

and estimation of mobile robots as well as recovery of lost speech packets in speech

signal processing.

This dissertation approaches statistical multirate signal processing from the

view point of optimal filtering (i. e., Wiener filtering) of multiple input signals at

different sampling rates. Following the investigation of statistical characteristics for

multirate signals, an optimal estimator for a desired output sequence is developed.

This development is then generalized to the linear prediction problem, which leads

to the general form of the optimal multirate Wiener filter. Finally, this optimal filter

is applied to the sequential target classification problem. Much of the foundation

for the multirate signal processing in this dissertation is derived from [Ref. 16, 17].

In addition the optimal estimation and prediction problems in this dissertation are

multirate extensions of analogous single-channel and multichannel concepts that can

be found in [Ref. 18, 19]. The multirate sequential classification algorithm is derived

from previous work on the single-channel and multichannel classification theory and

algorithms of [Ref. 20, 21, 22].

The following paragraphs review some of the research that has been conducted

in multirate signal processing. This includes multirate theory, multirate filter bank

theory, statistical signal characterization and multirate Kalman filtering. It is by no

means exhaustive, and indeed much work is still being conducted today.

A. LITERATURE REVIEW

The interest in multirate signal processing gained much popularity following

the 1975 IEEE Arden House Workshop for Acoustics, Speech, and Signal Processing
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[Ref. 16]. Much of the initial research in multirate signal processing has focused

on how to describe the multirate system, including the descriptions of some funda-

mental building blocks of the multirate system and on how to apply multirate signal

processing to filter bank theory. In 1983, Crochiere and Rabiner published the first

comprehensive book on multirate signal processing [Ref. 16]. Their work presents

the basics of sampling rate conversion through decimation and expansion, including

time and frequency characterization of multirate signals. The application that they

primarily focus upon is improving efficiency in a multirate system with large sampling

rate changes through multistage structures. These multistage structures break the

sampling rate changes into multiple stages, which can allow relaxation of filter design

criteria. In addition to multistage applications, Crochiere and Rabiner also describe

several forms of uniform filter banks (e.g., the discrete Fourier transform (DFT) filter

bank and the uniform single-sideband (SSB) filter bank) where the signal is sepa-

rated into multiple parts and all parts are decimated by the same value. They extend

the DFT filter bank to a generalized non-uniform DFT filter bank, which allows the

separated signals to be decimated by different values.

Ten years after the book by Crochiere and Rabiner, the next major publication

in multirate signal processing was by Vaidyanathan in 1993 [Ref. 17]. Vaidyanathan’s

work addresses the basics of multirate signal processing but provides greatly expanded

applications in filter bank theory. Vaidyanathan presents and thoroughly describes

many types of multirate filter banks, including maximally decimated filter banks,

paraunitary perfect reconstruction filter banks, linear phase perfectly reconstruction

quadrature mirror filter (QMF) banks and cosine modulated filter banks. His work

also presents the concept of periodically time-varying filters, which plays an impor-

tant part in the processing of multirate signals and the problem of quantization error.

Lastly, Vaidyanathan introduces the relationship between wavelet transform theory

and multirate signal processing since the wavelet transform inherently uses nonuni-

form decimation in developing its subbands. Both of these books [Ref. 16, 17] have
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provided the foundation on which much of the research on multirate signal processing

since then has been built.

In addition to these two seminal volumes on multirate signal processing, there

have been many contributions in journal papers and workshop and conference pub-

lications. Shenoy, Burnside and Parks extend previous work on multirate filter bank

theory to optimum minimax filters [Ref. 1]. By using a generalized Fourier analysis,

they derived a new error criteria for multirate filter design, which can be used to

design the optimum minimax multirate filters for a specific input signal class. In

addition, Chen and Vaidyanathan [Ref. 4] extend the concept of polyphase filters to

describe rational sampling rate alterations. These polyphase filters are useful in repre-

senting perfect reconstruction properties of multidimensional delay-chain systems and

periodicity properties of decimated periodic signals. Rules for multirate structures

were also extended by Evans, Bamberger and McClellan [Ref. 5] to multidimensional

structures by finding greatest common subblattices and computing coset vectors.

Since the multirate system contains signals at different sampling rates, there

is a natural periodicity that can be seen in the multirate system. Some basic forms

of linear periodically time-varying (LPTV) filters were described by Vaidyanathan;

however, Saadat Mehr and Chen [Ref. 23] present two methods of describing LPTV

structures, each of which consists of a periodic switch connected to several linear

time-invariant (LTI) systems. Saadat Mehr and Chen show that these structures can

be used to solve a general approximation problem where an LPTV system with period

p is approximated by an LPTV system with period p̂. They extend their work on

LPTV structures to address polyphase and alias-component representations of LPTV

systems [Ref. 24]. They show that in general a filter bank can be represented by two

LPTV systems connected in a cascading manner. They also show that a p-channel

filter bank with period m can be represented by an mp-channel LTI filter bank if p

and m are relatively coprime integers.
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Other research on time-varying systems has included work by Phoong and

Vaidyanathan [Ref. 25] on using a polyphase approach to filter banks to address

unusual properties not exhibited by LTI filter banks. This work is extended in [Ref.

26] to discuss the factorability of linear time-varying lossless filter banks. In particu-

lar, they show that all degree-one lossless linear time-varying (LTV) systems can be

decomposed into a time-dependent unitary matrix and a lossless dyadic-based LTV

system. Vaidyanathan expanded his work on periodic systems to address periodic sys-

tems with allpass and paraunitary properties [Ref. 27]. By providing a state-space

representation of periodic LTI systems and introducing the concept of reachability

and observability in terms of multirate periodic systems, Vaidyanathan shows that

reachability and observability are not related to the system minimality in a simple

way, unlike traditional state-space linear systems. In [Ref. 28], Gadre and Patney

address issues associated with aliasing cancelation and perfect reconstruction within

a vector context, and they define a vector multirate system. These definitions lead

to conditions whereby a vector LPTV system can become a time-invariant system.

Further, Spurbeck and Scharf [Ref. 29] applied spectral factorization techniques to

the filter design for periodically correlated time series.

Another approach to representing periodic systems was introduced by Misra

[Ref. 30]. Misra shows that many results from linear time invariant theory can be

extended to periodic systems. A necessary condition for these results is that an

equivalent time invariant system must be found for the periodic system. Misra pro-

vides a numerically reliable and simple procedure to find the equivalent time invariant

systems, and he shows that a minimal-order generalized state-space description can

always be found.

The research cited up to this point has focused on deterministic signal pro-

cessing. In addition, the primary focus has centered on filter bank theory and how

to best separate a signal into multiple parts that are sampled at different rates per-

form any necessary signal processing and then resynthesizing the processed signals.
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In many signal processing techniques, however, applications involve signals that are

random processes. Consequently, some work has been done to appropriately describe

the statistical characterizations of multirate signal processing techniques.

Since multirate systems are inherently periodic in nature, signals within the

multirate system are usually not wide-sense stationary (WSS). However, under ap-

propriate conditions, stationary input signals can exhibit cyclostationary or wide-

sense cyclostationary (WSCS) characteristics. In [Ref. 31] and [Ref. 32], Gardner

presents methods on how to spectrally characterize N th order cyclostationary signals

and how to exploit spectral redundancies that might exist in cyclostationary signals.

Related work in characterization of LTV systems was conducted by Akkarakaran and

Vaidyanathan [Ref. 33] through the use of bifrequency and bispectrum maps. The

bifrequency map is a two-dimensional Fourier transform used to characterize the LTV

system while the bispectrum map is a two-dimensional Fourier transform that charac-

terizes non-stationary random processes. In [Ref. 34] and [Ref. 35], Therrien presents

methods for defining correlations functions and power spectra for multirate signals.

This is extended by Therrien to non-stationary random processes in [Ref. 36] and in

[Ref. 37].

Research into cyclic higher-order statistics of multirate signals has been con-

ducted by Napolitano [Ref. 38]. Napolitano uses cyclic higher-order statistics to

derive the input-output relations for MIMO linear almost-periodically time-variant

systems excited by cyclostationary inputs. In addition, he presents a sufficient condi-

tion on the sampling rate to prevent aliasing when reconstructing cyclic higher-order

statistics of continuous signals from sampled signals. Research into the problem of

avoiding aliasing in the cyclic higher order spectra of a decimated time series is ex-

tended by Izzo and Napolitano in [Ref. 39] to a generalized form that avoids aliasing

and imaging effects of a time series decimated by a fractional factor.

Using cyclostationary spectral analysis, Ohno and Sakai [Ref. 6] developed a

method of deriving multirate optimal biorthogonal FIR filter banks that minimizes
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the time-averaged mean-square error (TAMSE) after the high-frequency subband is

removed. In order to properly describe the filter bank, cyclostationary spectral anal-

ysis is used since the output of the filter bank is cyclostationary for a wide-sense

stationary input.

Other statistical methods are used by Yurdakul and Dundar [Ref. 40] to

estimate the quantization error of FIR-based multirate systems. This is practical for

implementation of multirate filters since the quantization of filter coefficients leads to

quantization errors in the output signal of any discrete-time system.

One technique of statistical multirate signal processing researched by Sathe

and Vaidayanathan [Ref. 41] is adaptive filtering. They use the statistical proper-

ties of signals in LTV systems to develop an adaptive filter structure that is useful

for identification of band-limited channels. A matrix form of this adaptive filter is

shown to provide better performance in terms of lower error energy than a traditional

adaptive filter but suffers from high computational burden.

Outside of the signal processing literature, the most prominent technique in

statistical multirate signal processing available is Kalman filtering. Many applications

of and techniques for implementing multirate Kalman filters have been investigated.

Early work on multirate Kalman filtering by Andrisani and Gau [Ref. 7] uses two

different Kalman filters in parallel. One of the Kalman filters processes the high rate

measurement, at a reduced order. The second Kalman filter processes the residuals

of the first Kalman filter in conjunction with the low-rate measurement. Andrisani

and Gau were able to reduce the computational complexity of their multirate Kalman

filter by developing a suboptimal version, although a slight performance penalty was

incurred.

Much work in Kalman filtering has been advanced by Bor-Sen Chen, along

with You-Lin Chen and Chin-Wei Lin [Ref. 2, 3, 8, 9]. Through their work, the

multirate Kalman filter has been applied to modeling of autoregressive (AR) and

moving-average (MA) models through interpolation and estimation of the values of
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the AR or MA stochastic signals. In addition, these researchers have developed meth-

ods for optimal signal reconstruction in noisy filter banks and developed a multirate

Kalman filter that models system and channel noise. In addition to using a multirate

Kalman reconstruction filter, they derived a sample-interpolation algorithm useful for

the recovery of missing speech packets.

Further work on Kalman filtering was conducted by De Leon, Kober, Krumvieda

and Thomas [Ref. 10]. By separating signals into subbands and then implementing

multiple Kalman filters, a target can be tracked while reducing the computational rate

and sensitivity to noisy measurements. Ni et al. [Ref. 11] also developed multirate

Kalman filters that are less sensitive to noise. Their model combines the statistical

model of the input signal with a multichannel representation of the subband signal.

This form of the multirate Kalman filter provides the minimum variance reconstruc-

tion of the input signal, provided that the input signal is embedded in the state vector.

Other applications of the multirate Kalman filter include orbit control of small air-

craft [Ref. 13], helicopter passive ranging [Ref. 42, 43] and C.N.C. machining control

[Ref. 12]. In addition, Tornero et al. [Ref. 14] combine the multirate Kalman fil-

ter with a multirate LQG controller to be used in self-location and path-tracking in

mobile robots applications.

Another significant area of research employing multirate Kalman filtering is

the multiresolution multirate (MRMR) estimation problem. One of the fundamental

tools of MRMR techniques is the wavelet transform. The goal of MRMR estimation

is to improve the overall estimation capability by exploiting features at different

resolutions and sampling rates. Early work in this area was conducted by Basseville

et al. [Ref. 44] on modeling and estimation of multiresolution statistical processes.

Chou et al. [Ref. 45, 46] extended this work to recursive estimation and the kalman

filter. More recently, Cristi and Tummala [Ref. 15] extended the work even further

by developing a recursive MRMR Kalman filter.

In addition to multirate Kalman filtering, some research on multirate estima-
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tion is available. Haddad, Bernstein and Huang developed reduced order estimators

[Ref. 47]. These estimators were derived using a system of equations consisting of one

modified Riccati equations and two modified Lyapunov equations, and each system

of equation corresponds to a subinterval of the period associated with the multirate

system. Another method of estimation was introduced by Hong [Ref. 48, 49]. His

method focuses on using high-rate measurements to make low-rate estimations. By

using filter banks and taking advantage of the lowpass filtering effect of the filter bank,

improved approximations of the low rate estimation were obtained. In addition, a

good approximation of the original measurements was obtained through orthogonal

transformation by using highpass filtering and lowpass filtering. This thesis had its

beginning in early work by Therrien and his students and there have been several

publications along the way. In addition, some of the early work discussed here pro-

vided the groundwork for a companion thesis [Ref. 50] that extended the work along

various other directions, most particularly to two-dimensional signals with applica-

tions to super-resolution image reconstruction. In [Ref. 51], Cristi, Koupatsiaris and

Therrien present a method of multirate estimation for a two-signal input along with

a quantitative analysis of reduction in mean-square error. The multirate estimator

is extended to m-signals by Kuchler and Therrien in [Ref. 52] (preliminary work for

this dissertation), and a recursive means of finding the filter coefficients and error

variance as signals are added to the multirate system is presented. In addition, Ther-

rien presents a method of linear prediction for multirate systems in [Ref. 53] along

with a Levinson-type recursion for finding the prediction parameters (in conjunction

with this dissertation). Further work by Therrien and Hawes in [Ref. 54] and [Ref.

55] present a method of least mean squares (LMS) calculation for multirate systems

with two input signals. Lastly, some techniques used in the one-dimensional multirate

system have been extended to the two-dimensional multirate system by Scrofani
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and Therrien in [Ref. 56] and [Ref. 57]. They use multirate estimation algorithms

to reconstruct a high-resolution image from a set of low resolution images that are

subpixel translated (super-resolution).

B. DISSERTATION OUTLINE

From the literature review, it is apparent that the development of multirate

filter banks has matured greatly. These filter banks, however, apply to SISO systems

or MIMO systems where the sampling rates of all the input and output signals are

the same. This dissertation begins by developing a general framework for multirate

signal processing. The characterization of random processes as they are applied to

decimators, expanders and filters are presented. Some LPTV filter bank realizations

are discussed and, in particular, an LPTV filter bank that allows the input and output

to be observed at different sampling rates is presented. Further simplification of signal

presentation is presented through the use of matrix forms and Kronecker products.

Whereas the majority of statistical multirate signal processing has focused on the

Kalman filter, this dissertation approaches statistical multirate signal processing from

the point of view of the more general multirate Wiener filter and its extensions.

The remainder of the dissertation is organized as follows. In Chapter II, the

basic framework for describing a multirate system is developed. This includes de-

scribing the appropriate indexing schemes necessary to adequately describe different

signals that are observed at different sampling rates and how they can be referenced

to each other. This chapter also describes the different components available to

multirate signal processing systems. In particular, the expander, decimator, linear

time-invariant (LTI) filter and linear periodically time-varying (LPTV) filter are de-

scribed. Further, the correlation equations for these components are presented. In

Chapter III, the multirate Wiener-Hopf equations for optimal filtering are developed.

The multirate optimal filter is presented both in its direct form and in its innovations
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representation form. Simulations are conducted to analyze the performance of the

multirate optimal filter. In Chapter IV, the multirate optimal filter is focused on the

problem of linear prediction. A convenient formulation of this problem is presented

and a novel efficient algorithm for solving the multirate linear prediction coefficients is

developed. In Chapter V, the signal processing application of sequential classification

is developed for a multirate system. Simulations are conducted to explore factors

that affect the overall capabilities of multirate sequential classification. In addition,

performance results for a single channel, a multichannel and a multirate system are

compared. Finally, in Chapter VI, the research and conclusions of this dissertation

are summarized and areas of further research are suggested.
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II. ANALYSIS OF MULTIRATE SIGNALS AND

SYSTEMS

A. GENERAL CONCEPTS

Signal processing techniques have been well developed for processing a single-

input and single-output system, or for processing a multiple-input and multiple-

output system where all the signals are received at the same sampling rate; the latter

is referred to as multichannel signal processing. In some signal processing situations,

however, observed signals are sampled at various different rates, and it may be desired

to process or exploit these signals together to perform various operations, such as esti-

mation, prediction, detection or classification. To provide a basis for addressing some

of these problems, some new theory needs to be developed that extends the theory for

single-rate signals and systems. The theory developed for multirate statistical signal

processing should reduce to the single-channel and single-rate multichannel problems

as special cases. In this chapter, some basic concepts, notation, and terminology

for describing stochastic multichannel systems and signals are introduced. In other

words, this chapter presents the mathematical tools to be used in the remainder of

the research.

A representation of a general multirate system is shown in Fig. 2.1. From Fig.

2.1 it can be seen that each signal has an associated sampling rate, Fi (Hz), where

the letter i represents a particular signal. These sampling rates are generally differ-

ent, although some may be identical. Since these signals, in general, have different

sampling rates, their observations do not necessarily occur at the same point in con-

tinuous time and their indices mi may not be aligned. For example, suppose a signal

x is sampled at 3000 Hz and a signal y is sampled at 2000 Hz. If both signals have

a sample that occurs at t = 0, then the next observation of the signal x would occur
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Figure 2.1. Multirate System Concept.

at 0.33 milliseconds and the next observation of y would occur at 0.5 milliseconds.

Observations of both x and y would not coincide until 1 millisecond after the first

observation of both signals. this concept is illustrated in Fig. 2.2. A diagram such as

that provided in Fig. 2.2 will be called a sampling pattern.

Figure 2.2. Effect of Different Sampling Rates on Observation Times.

In order to provide a common framework to which all the signals can be refer-

enced, to account for the effects of sampling signals at different rates, a structure is

defined here that will be called the fundamental layer. This structure does not neces-

sarily correspond to any physical portion of the multirate system. It is a conceptual

tool that is used to allow common referencing of all the signals within the multirate

system.
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A key element of the fundamental layer is that it has a sampling rate that is

a multiple of the sampling rates for all signals in the system. This allows all of the

signals to be described explicitly in terms of fundamental layer parameters. Return-

ing to the example of two observed signals x and y with sampling rates Fx = 3000

Hz and Fy = 2000 Hz, respectively, the concept of the fundamental sampling rate

is illustrated. In order to represent both signals in a common framework (the fun-

damental layer) for analysis, each signal is represented at a higher rate which is an

integer multiple of the actual sampling rate. For efficiency, the lowest such rate that

can be applied to all signals is used. In the example just described, this sampling rate

would be 6000 Hz, and is illustrated by the tick marks on the time axis of Fig. 2.2.

This sampling rate will be called the fundamental rate, F and its inverse T = 1/F

will be called the system clock rate. The fundamental rate is the minimum sampling

rate necessary to describe all signals in the multirate system. It is assumed that each

sampling rate Fi is integer-valued; thus the following definition can be made.

Definition 1. The Fundamental Rate, F , is given by

F = LCM(F1, F2, . . .), (2.1)

where LCM( ) denotes the least common multiple and F1, F2, . . . represent the sam-

pling rates of all the signals in the system.

Each actual signal in the system can be associated with (a possibly fictitious)

signal in the fundamental layer which is sampled at the fundamental rate F . Thus

each signal in the system can be thought of as a down-sampled or decimated version

of some signal at the fundamental rate. The decimation factor associated with the

ith signal is given by

Ki =
F

Fi
, (2.2)

i.e., it is the ratio of the fundamental sampling rate to the signal sampling rate for

the ith signal of interest. While notation such as x[mx] is used to describe a signal at
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some sampling rate Fx, the notation x̄[n] will be used to describe the corresponding

signal in the fundamental layer. Thus these two signals are related by

x[mx] = x̄[n]
∣∣∣
n=Kxmx

= x̄[Kxmx]

For a system conceptualized as in Fig. 2.1, a global periodicity exists. The

system period represents the minimum number of time steps at the fundamental rate

necessary to establish a repetitive sampling pattern for all signals in the multirate

system.

Definition 2. The System Period, K, is the minimum common digital period of all

elements of the digital system. The system period is given by

K = LCM(K1,K2, . . .), (2.3)

where K1, K2, . . . represent the decimation factors of all the signals in the system.

For the ith signal, the number of samples per period is given by

Mi =
K

Ki
. (2.4)

While K represents the number of time steps at the system rate corresponding to one

period, Mi represents the number of time steps at the (ith) signal rate corresponding

to one period.

In order to demonstrate the concepts introduced thus far, the following exam-

ple of a two-channel multirate system is provided. Consider a multirate system that

has two signals x and y with sampling rates Fx = 3000 Hz and Fy = 2000 Hz, respec-

tively. From (2.1), the fundamental rate for this system is F = LCM(3000, 2000) =

6000 Hz. Then, from (2.2), the signal decimation factors are calculated to be Kx = 2

and Ky = 3. Finally, from (2.3), the system period is found to be K = 6. Figure

2.3 shows the relationships among these terms. It can be seen from Fig. 2.3 that the

decimation factors Kx and Ky represent the number of time steps, in the fundamental

layer, between successive observations (samples) of a particular signal. Notice that
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Figure 2.3. Illustration of Decimation Factors and System Period.

the sampling pattern repeats every K = 6 time steps at the fundamental rate. This

also corresponds to Mx = 3 samples at the rate of x and My = 2 samples at the rate

of y. Thus given a time n, the relative position within the sampling pattern is the

same for all times n + iK where i is an integer. This relative position will be called

the system phase of the system (not to be confused with the phase of its Fourier

transform). The system phase, denoted by k can be determined for any time n by

writing

n = mK + k,

where m = bn/Kc. Thus the following definition can be made.

Definition 3. The System Phase, k, is given by

n ≡ k (mod K), (2.5)

where n is associated time at the fundamental layer, and k is the residual modulo K.

B. MULTIRATE SIGNAL PROCESSING

Some common forms of discrete-time signals can be directly related to an

associated continuous-time signal. This will be shown using the sampling rates of

the observed signals of a multirate system and the definition of the fundamental rate.

Given a continuous time signal x(t), the discrete-time signal for a signal sampled at

17



Figure 2.4. Continuous and Multirate Signals: (a) continuous signal, (b) discrete
signal at fundamental sampling rate, (c) discrete signal at observed sampling rate.

the rate Fxi would be xi[mxi] = x(mxiTxi), where Txi =
1

Fxi

and i = 1, . . . , N , where

N is the number of signals in the system. Calculating the fundamental rate as F =

LCM(Fx1, Fx2, . . . , FxN
), the discrete-time signal associated with the fundamental rate

would be x̄[n] = x(nT ), where T =
1

F
is the system clock rate. All signals are

referenced to the initial time of t = 0, thus x[0] = x(0Tx) = x(0). For clarity,

parentheses are used to indicate the time dependence for a continuous signal, and

brackets are used to indicate the time step for a discrete-time signal.

The relationships among some various signals are depicted in Fig. 2.4. The

original continuous signal is denoted by x(t). The signal in the fundamental layer is

x̄[n], which may not exist in reality, and the signal which is sampled at the given rate

Fx1 is then x1[mx1], which is a decimated version of x[n].
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Some common multirate signal processing operations are now discussed in

detail.

1. Decimation

The concept of decimation, or downsampling, was introduced earlier in Section

II.A in conjunction with the definition of signals in the fundamental layer. In this

section, decimation is discussed in a more general sense, as it may relate to various

signals that may exist in a multirate system. Here decimation is discussed from the

point of view of obtaining one signal within the system from another.

The process of decimation eliminates data points in a signal vector in order to

reduce the sampling rate. The number of data points removed is dependent on the

decimation factor. Given an integer-valued decimation factor, L, only one of every L

consecutive samples is retained.

y[my] = x[Lmy] , for my = . . . ,−1, 0, 1, . . . . (2.6)

The implied sampling rate for y is thus also reduced by a factor of L, i.e., Fy = Fx/L.

The process of decimation is represented in block diagram form in Fig. 2.5, where L

represents the decimation factor and my is the index of the decimated signal, such

that my is the set of integers Z = {. . . ,−1, 0, 1, . . .}. The associated index of the

input signal is mx = Lmy.

Figure 2.5. Decimation.

It is well known, [Ref. 17, 58], that the frequency spectrum Y (ωy) of the

decimated signal is related to the frequency spectrum X(ωx) of the original signal by

the formula

Y (ωy) =
1

L

L−1∑

k=0

X

(
ωy

L
− k

2π

L

)
. (2.7)

The effect of decimation, in the frequency domain, is to stretch the frequency band

as shown in Fig. 2.6. Notice that if the spectrum of the original signal is nonzero for
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|ω| >
π

L
, aliasing will occur due to undersampling. In most cases this is undesirable,

although in some cases aliasing can be exploited to obtain useful results. To eliminate

aliasing, the data sequence may be pre-filtered with an (ideal) low pass filter with a

cutoff frequency at |ω| =
π

L
.

Figure 2.6. Frequency Spectrum for Decimation

Notice that given a signal x[n] at the fundamental rate, it is possible to generate

L different decimated signals by applying a time shift to the signal at the fundamental

rate before decimation. These L signals all have the same rate and are defined by

y(l)[m] = x[Lmy + l], l = 0, 1, . . . , L − 1.

The generation of these signals is illustrated in Fig. 2.7,

Figure 2.7. Decimation with Time Shift l.

where zl represents a time shift of l units at the input rate. When all of the L possible

decimation signals are formed, this process is known as complete decimation. Figure

2.8 illustrates complete decimation for a signal x[n] at the fundamental rate.

2. Expansion

The opposite of decimation is the process of expansion. Expansion, or up-

sampling, increases the sampling rate by inserting zeros between the data points of a
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Figure 2.8. Complete decimation illustrated for L = 3: (a) discrete signal at funda-
mental sampling rate, (b) discrete signal at decimated sampling rate, no unit shift
(l = 0), discrete signal at decimated sampling rate, one unit shift (l = 1), (d) discrete
signal at decimated sampling rate, two unit shifts (l = 2).
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signal. The sampling rate is increased by a factor of I if I − 1 zeros are inserted after

every data point. This process is defined by

y[my] =





x[my/I] for my div I

0 otherwise

(2.8)

where the expression “my div I” signifies that my is divisible by I, i.e., my/I is an

integer. The process is represented in block diagram form in Fig. 2.9. The frequency

Figure 2.9. Expansion.

spectrum of the expanded signal is related to the original signal by

Y (ωy) = X(Iωy). (2.9)

The effect of expansion in the frequency domain is to compress the frequency band

as shown in Fig. 2.10. This compression brings additional copies of the original

Figure 2.10. Frequency spectrum for Expansion.

spectrum, known as “images”, into the frequency band of interest (−π, π). In order

to produce a rate change without distortion the expander must be followed by an

(ideal) low-pass filter with cutoff frequency at |ω| =
π

I
. In the time domain, filtering
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after upsampling has the effect of “filling in” the zeros with “interpolated” values of

the signal.

3. Rate Changes

Any rate change by a rational factor, I/L, can be achieved by expansion,

low-pass filtering and then decimation of a signal. (It is assumed that I and L

are coprime, i.e., these integers have no common factors.) The structure for this

rate change system is shown in Fig. 2.11. The input x[mx] is at a rate Fx. After

expansion, the rate changes to FxI. The low-pass filter which is designed to operate

at this new rate (FxI) then serves both to eliminate the images due to expansion and

provide bandlimiting so the decimated signal will not be aliased. In order to avoid

aliasing, however, the cutoff frequency of the low pass filter must be less than or equal

to
π

C
, where C = max(L, I). The output of the decimator is at the sampling rate

Fy = Fx · I/L.

Observe that the system rate for this simple system is F = FxI and that

the decimation factors are given by Kx = I and Ky = L. Thus a rate change is

accomplished by expanding up to the system rate, filtering and then decimating.

Figure 2.11. Rate Change by a Rational Factor I/L.
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4. Filtering

Within the framework of multirate signal processing, there are two broad cat-

egories of filters that are most useful. These filters are 1) linear time-invariant filters

and 2) linear periodically time-varying filters, and are discussed in the following sub-

subsections.

a. Linear Time-Invariant Filters

Linear time-invariant filters process a signal at some sampling rate Fx

and produce an output at the same rate. The input x and output y are related by

convolution as

y[m] =
∞∑

k=−∞

h[k]x[m− k] =
∞∑

m=−∞

x[m]h[n− m] (2.10)

where h[m] is called the impulse response and has the same rate as x and y. The

system is causal if an only if h[m] = 0 for m < 0. In this case the lower limit of the

variable m in (2.10) can be changed from −∞ to 0.

The system is stable if and only if

∞∑

m=−∞

∣∣∣h[m]
∣∣∣ < ∞.

The system is said to have finite impulse response (FIR) if h[m] is a finite-length

sequence and said to have infinite impulse response (IIR) otherwise. In the case of

an FIR filter (2.10) can be reduced to a finite sum and the system is always stable.

b. Linear Periodically Time-Varying Filters

Linear periodically time-varying (LPTV) filters are important in multi-

rate applications because of the inherent periodic nature of the multirate system. For

example, in optimum filtering applications (see Chapter IV), the system periodicity

requires that the filter coefficients change in a periodic fashion. This is illustrated in

Fig. 2.12 where the filter output y[my] is intended to estimate another signal d[my].
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Figure 2.12. LPTV Filter

The sampling patterns for x, y and d are shown in Fig. 2.12 together

with a time scale labeled ‘n’ that represents the system rate in the fundamental layer.

The filtering is assumed to be causal so that at any selected time step only values

of the input occurring at the same time or earlier on the system time scale are used.

From Fig. 2.12 it can be seen that at time my = 6 the input sequence x and the output

sequence y are aligned, however at time my = 7 the input sequence lags the output

sequence. The difference in system clock time exhibited at these points implies there

will be a difference in correlation between input and output. Therefore, to estimate

the output properly at time my, a new set of filter coefficients different from those

at time my = 7 are needed, although the filter coefficients are operating on the same

input sequence.

Consider the following specific example. Given a causal LPTV filter

with a filter order of four, the optimal estimate of d at time my = 6 is

ŷ[6] = h(0)[0]x[4] + h(0)[1]x[3] + h(0)[2]x[2] + h(0)[3]x[1], (2.11)

where h(0)[l], l = 0, 1, 2, 3 are the optimal filter coefficients for estimating d[6]. At the

next desired estimate time, my = 7, no new input data has been observed. Therefore,

the estimate ŷ[7] also is

ŷ[7] = h(2)[0]x[4] + h(2)[1]x[3] + h(2)[2]x[2] + h(2)[3]x[1], (2.12)
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but h(2)[l], l = 0, 1, 2, 3 is a different set of coefficients since the filter is estimating

d[7], instead of d[6].

At time my = 8, a new observation of the input has already occurred.

Therefore, the filter equation at this time instance is

ŷ[8] = h(4)[0]x[5] + h(4)[1]x[4] + h(4)[2]x[3] + h(4)[3]x[2]. (2.13)

Again the coefficients are different from those occurring in (2.11) and (2.12). Finally,

at time my = 9, the input observation occurs at the same time as the output esti-

mate is calculated. This is the same system phase at the time instance of my = 6.

Therefore, the optimal filter coefficients at time my = 9 are the same as those at time

my = 6.

Although this example uses specific time steps to show how an LPTV

filter functions, a generalized filter equation can be found. Let x̄ and ȳ be the repre-

sentations of x and y in the fundamental layer, and let h̄(k)[i] be a set of time-varying

filter coefficients. The most generic linear filter can be written as

ȳ[n] =
∞∑

i=−∞

h̄(k)[i]x̄[n − i]. (2.14)

Observations of x̄ only occur when its argument is a multiple of Kx however. Thus

the right-hand side of (2.14) can be rewritten as

ȳ[n] =
∞∑

mx=−∞

h̄(k)[Kxmx]x̄[Kxbn/Kxc − Kxmx], (2.15)

where b c represents the floor (integer part) of its argument, and the term Kx ·bn/Kxc,

on the right-hand side of the equation, is needed to account for fact that x̄ is not

observed at every time n. The most recent observation of x, in the fundamental

layer, is described by Kxbn/Kxc. For example, if Kx is 3, then x̄ is observed only

at n = 0, 3, 6, .... Thus, at n = 5, for instance, the most recent observation of x is at

time Kxbn/Kxc = 3b5/3c = 3 · 1 or n = 3. Now recall that x is a decimated version

of x̄ that satisfies

x[mx] = x̄[Kxmx].
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If a corresponding decimated version of the filter sequence is defined as

h(k)[m] = h̄(k)[Kxm],

then the filter equation (2.15) can be expressed as

ȳ[n] =
∞∑

mx=−∞

h(k)[mx]x[bn/Kxc −mx]. (2.16)

Further, observe that the output ȳ[n] has values valid only at integer multiples of Ky,

i.e., n = myKy. Thus (2.16) becomes

ȳ[Kymy] =
∞∑

mx=−∞

h(k)[mx]x[bKymy/Kxc − mx], (2.17)

Finally, by noting that y is a decimated version of ȳ, one can write

y[my] =

∞∑

mx=−∞

h(k)[mx]x[bmyKy/Kxc −mx], my ≡ k (mod Kx). (2.18)

When the filtering is causal, the lower limit on the sum in (2.18) can be changed from

mx = −∞ to mx = 0 since the corresponding impulse response terms are zero.

Several implementations of LPTV filters using LTI filters are possible.

Two common representations known in the literature are shown in Fig. 2.13 and Fig.

2.14. Figure 2.13 shows an LPTV filter realized in a rotary switch form. Given a

system period K, the rotary switch steps through the sequence 0 ≤ k ≤ K − 1 in

synchronization with the rate of the output sequence and selecting a different LTI

filter to process the input. While this form is typically used in the literature to apply

when the filter input and output rates are the same, it easily applies to the more

general case represented by (2.18).

Figure 2.14 shows an LPTV filter realized in filter bank form. Here the

output y[n] is equal to the output of H(k)(z) where n ≡ k (mod K). The purpose

of decimation followed immediately by expansion is to remove any non-zero data not

associated with the proper phase of the system (for a detailed explanation of this
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Figure 2.13. Rotary Switch Representation of an LPTV Filter

Figure 2.14. Filter Bank Representation of an LPTV Filter (From [Ref. 17])

filter bank see [Ref. 17]). The filter bank form of Fig. 2.14 is restricted to situations

where the input and output are sampled at the same rate.

A generalized LPTV filter bank was derived that allows for the input

x[mx] to be observed at a rate Fx and the output y[my] to be observed at a rate Fy.

This more general filter bank is depicted in Fig. 2.15. This filter bank operates at

the fundamental rate F , thus the input signal x[mx] needs to be expanded to the

fundamental rate by Kx and the output needs to be decimated by Ky. In addition

the delays are shifted by multiples of the output decimation factor Ky and there are

My sets of filters H(ky)(z), where My is the number of samples per period for signal

y and my ≡ ky (mod My). If Kx and Ky are coprime, then My = Kx; but this is

not true in general. Since x[mx] is observed at a rate
1

Kx
of the clock rate, the filter
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coefficients for the filters H(ky)(z) are of the form

H(ky)(z) = h0 + h1z
−Kx + h2z

−2Kx + · · · + hP−1z
−(P−1)Kx ,

where P is the filter order.

The LPTV filter bank of Fig. 2.15 requires a clock that operates at

the fundamental rate F . If two clocks are available that operate at the input and

output rates, then the LPTV filter bank can be represented as shown in Fig. 2.16.

In this form z−1
y = z−Ky and z−1

x = z−Kx . The decimation and expansion factors are

replaced with My since the right hand side of the filter is operating at the output rate

Fy. In addition, the filters can be described by

H(ky)(zx) = h0 + h1z
−1
x + h2z

−2
x + · · · + hP−1z

−(P−1)
x .

C. STATISTICAL REPRESENTATION OF RANDOM
SIGNALS

In order to adequately develop methods and models for processing random

signals, it is important to be able to describe the statistical characteristics of the

random signals. Since, in most cases the first and second moments are sufficient

to describe the necessary statistical characteristics, this section is limited to “second

Figure 2.15. Filter Bank Representation of an LPTV Filter: Single Clock
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Figure 2.16. Filter Bank Representation of an LPTV Filter: Dual Clock

moment” properties. It will be seen that even with this limitation, there are significant

issues to be addressed in the case of multirate signals and systems.

The first order moment, or mean, of a random process is defined as the expec-

tation of the signal:

µx[m] = E{x[m]}. (2.19)

The mean is, in general, a function of time, although for wide sense stationary (WSS)

signals it is constant. For cases involving multirate signals and systems the mean

is (in general) a periodic function of time, i.e., µx[m] = µx[m + M ] where M is the

period.

The second order moments of a random process are defined via the autocorre-

lation function. Let m and m′ represent two different values of the time index. Then

the traditional autocorrelation function is defined as

Rx[m,m′] = E{x[m]x∗[m′]} (2.20)

where ‘∗’ denotes the complex conjugate. The autocorrelation function is used for

quantifying second order statistical linear dependence between samples of the signal

at different points in time.
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The autocovariance function is defined as the autocorrelation function with

the mean removed:

Cx[m,m′] = E{(x[m] − µx[m])(x[m′] − µx[m
′])∗}. (2.21)

Frequently, the autocovariance is more useful than the autocorrelation, although the

two functions are identical when the mean is zero. The autocorrelation and the

autocovariance functions are related by,

Rx[m,m′] = Cx[m,m′] + µx[m]µ∗
x[m

′]. (2.22)

By defining the term lag as the difference between the two time instances,

l = m−m′, the correlation and covariance functions can be represented also in terms

of the time index, m, and the lag, l,

Rx[m; l] = E{x[m]x∗[m− l]}. (2.23)

This form is referred to as the “time-dependent” autocorrelation function, or the

“time-lag” autocorrelation function. An analogous definition can be made for the

autocovariance function.

Two special cases are important for multirate systems. First, if the random

process is stationary, at least in the wide sense, then the mean of the random process

is constant and the correlation and covariance functions are dependent on the lag

only. Thus the dependence on m in (2.23) can be dropped and the autocorrelation

function can be written as:

Rx[l] = E{x[m]x∗[m− l]}.

In this case the traditional autocorrelation function Rx[m,m′], defined in (2.20) de-

pends only on the difference l = m − m′.

A second case of importance for multirate systems is the cyclostationary case.

A more complete discussion of cyclostationarity can be found in [Ref. 31, 32], however,
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it is simply observed here that for a cyclostationary process the time-lag autocorre-

lation function is a periodic function of m, i.e.,

Rx[m; l] = Rx[m + M ; l], ∃M (2.24)

where M is the period. This equation will be taken here as the definition of a cyclo-

stationary process. Note that Rx[m; l] is not necessarily periodic in l. Although for a

cyclostationary random process the traditional autocorrelation function Rx[m,m′] is

periodic in both arguments, with the same period M (See [Ref. 31, 32].)

For two signals sampled at the same rate the traditional cross-correlation

function is defined as

Rxy[m,m′] = E{x[m]y∗[m′]},

where m and m′ are two arbitrary values of the index. The cross-correlation can also

be represented in the time-lag form as

Rxy[m; l] = E{x[m]y∗[m− l]},

where l = m − m′. Further if the signals are jointly wide-sense stationary, then the

cross-correlation is a function of its lag term only,

Rxy[l] = E{x[m]y∗[m− l]}.

In multirate signal processing however, one must be able to find the cross-correlation

of signals at different rates. This requires more careful consideration. The discussion

here follows the development in [Ref. 35].

The cross-correlation function for signals in the fundamental layer can be de-

fined in two forms:

R̄x̄ȳ[nx, ny] = E{x̄[nx]ȳ
∗[ny]} (2.25)

and

R̄x̄ȳ[n; ν] = E{x̄[n]ȳ∗[n − ν]}. (2.26)

The latter is the time-lag form.
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The correlation function for two signals at different rates can be defined in

the traditional form. Following the discussion in Section II.B, x[mx] and y[my] are

represented in terms of signals in the fundamental layer. This representation makes

it straightforward to write

Rxy[mx,my] = E{x[mx]y
∗[my]} = E{x[Kxmx]y

∗[Kymy]}

= R̄x̄ȳ [Kxmx,Kymy] . (2.27)

One can consider the cross-correlation function Rxy[mx,my] as samples of the

cross-correlation R̄x̄ȳ in the fundamental layer, as shown in Fig. 2.17. The samples

are defined on a rectangular grid or lattice [Ref. 59, 60] of points separated by Kx

samples of the fundamental layer in the x direction and Ky samples in the y direction

(see Fig. 2.17). Correlation for values of nx and ny not on this lattice are not defined.

Figure 2.17. Cross-correlation Lattice.

Developing the time-lag form of correlation for two signals at different rates is

somewhat more complex. Consider the following definition, which can be written by

analogy:

Rxy[m; l] = E{x[m]y∗[m − l]} = E{x[Kxm]ȳ∗[Ky(m − l)]},
m = . . . ,−1, 0, 1, . . .

l = . . . ,−1, 0, 1, . . .

(2.28)
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With ν as the time delay in the fundamental layer, the cross-correlation can be plotted

in the (n, ν) space as shown in Fig. 2.18. The indices m and l map to points on a

non-rectangular lattice. Note that correlation values do not exist for all possible

combinations of n and ν because samples of ȳ occur only when its argument is an

integer multiple of Ky.

Figure 2.18. Time-lag Cross-correlation Lattice.

The lattice is described by two basis vectors v1 and v2 which are defined in

the fundamental layer as

v1 =


 Kx

Kx −Ky


 and v2 =


 0

Ky




The indices m and l in Rxy[m; l] represent a point on the lattice that is reached by

taking m steps in the v1 direction and l steps in the v2 direction. The time-lag

correlation function and the traditional cross-correlation function are related as

Rxy[m; l] = Rxy[m,m− l]. (2.29)

When the signals x̄ and ȳ are jointly wide sense stationary, then the cross-

correlation as defined in (2.28) is a function of ν only (and not n). Therefore, the

values of correlation depend only on the distance from the n axis in Fig. 2.18 and

since the sampling pattern is periodic, the values of correlation repeat periodically.

34



Consider the following example. Suppose the cross-correlation function for

signals in the fundamental layer is given by

R̄x̄ȳ[nx, ny] = β−|nx−ny |, (|β| < 1), (2.30)

where nx represents the time instance for the signal x in the fundamental layer and

ny represents the time instance of y in the fundamental layer. Note that the symbol

R̄x̄ȳ is used to distinguish the cross-correlation of the signals in the fundamental layer

from Rxy, the cross-correlation of the associated decimated signals.

From (2.27), the cross-correlation of the decimated signals is

Rxy[mx,my] = E{x̄[Kxmx]ȳ
∗[Kymy]}

= R̄xy[Kxmx,Kymy]

= β−|Kxmx−Kymy |

Then from (2.29), the cross-correlation can be represented in the (m, l) space as

Rxy[m; l] = Rxy[m,m− l]

= β−|Kxm−Ky(m−l)|

= β−|(Kx−Ky)m+Kyl|. (2.31)

Note that the cross-correlation of the multirate signals is a subset of the values of

cross-correlation of the signals in the fundamental layer.

In order to further illustrate the relation between the (mx,my) and (m, l)

spaces, the following example is provided. In this example numerical values are used

to show how valid data points in the (mx,my) space are transformed into valid data

points in the (m, l) space. Assuming Kx = 2 and Ky = 3 and using the definitions

that m = mx and l = mx − my, Table 2.1 shows the results of the transformations

and Fig. 2.19 visually depicts how the points map from one space to the other.
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Table 2.1. Index transformation of the cross-correlation

(mx,my) (0, 1) (1, 0) (1, 2) (2, 1) (2, 2)

(m; l) (0;−1) (1; 1) (1;−1) (2; 1) (2; 0)

Symbol © � 4 ♦ O

Figure 2.19. Index Transformation of the Cross-correlation.

D. INPUT-OUTPUT CROSS-CORRELATION FOR EX-

PANSION, DECIMATION AND FILTERING

Having defined the mean, autocorrelation and cross-correlation functions, ex-

pressions can be derived for the relationships between these statistics for the input

and output for some common operations. In particular, the operations of decimation,

expansion and linear filtering are considered. In the following, it is assumed that

the autocorrelation function Rx[mx,m
′
x] of the input as given by (2.20) is known.

Equivalently, the time-lag form of the autocorrelation Rx[mx; lx] of the input as de-

fined by (2.23) is known. Further, if the signal is wide-sense stationary, the time-lag

autocorrelation function can be reduced to

Rx[lx] = E{x[mx]x
∗[mx − lx]}. (2.32)
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1. Decimation

The operation of decimation is depicted in Fig. 2.5 and defined as (2.6). For

ease of reference, the mathematical description of decimation is also provided below:

y[my] = x[Lmy] for m = . . . ,−1, 0, 1, . . . .

Given two arbitrary time instances, my and m′
y, the output autocorrelation

for the decimator is given by

Ry[my,m
′
y] = E{y[my]y

∗[m′
y]}

= E{x[Lmy]x
∗[Lm′

y]}

Ry[my,m
′
y] = Rx[Lmy, Lm′

y] (2.33)

Thus decimation results in decimation of the auto-correlation function.

By defining a lag term which is the difference between the two time instances,

l = my −m′
y and renaming, m = my, the autocorrelation function can be represented

in the time-lag form as

Ry[m; l] = E{y[m]y∗[m− l]}

= E{x[Lm]x∗[Lm − Ll]}

or

Ry[m; l] = Rx[Lm;Ll] (2.34)

Further, if the signal is wide-sense stationary, then the autocorrelation function is

independent of m and can be written as

Ry[l] = Rx[Ll] (2.35)

The cross-correlation function for decimation is given by

Rxy[mx,my] = E{x[mx]y
∗[my]}

= E{x[mx]x
∗[Lmy]}
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or

Rxy[mx,my] = Rx[mx, Lmy] (2.36)

Thus the original cross-correlation function is decimated in one argument only.

Figure 2.20 visually depicts the effect of decimation on the cross-correlation function.

The circled locations of the input autocorrelation Rx are the values preserved in the

cross-correlation of the decimator.

Figure 2.20. Relation of the Input Autocorrelation to the Cross-correlation of the
Decimator.

Using the time-lag definition for the cross-correlation of two signals at different

sampling rates, the cross-correlation of the decimator can be written as

Rxy[mx; ly] = E{x[mx]y
∗[mx − ly]}

= E{x[mx]x
∗[L(mx − ly)]}

= E{x[mx]x
∗[mx − (Lly − (L − 1)mx)]}

or

Rxy[mx; ly] = Rx[mx;Lly − (L − 1)mx] (2.37)

The expression for the time-lag cross-correlation function in terms of the auto-

correlation function is rather cumbersome. The geometric representation in the (m, ν)

is more clear. The effect of decimation on the cross-correlation in the (m; l) space is

visually depicted in Fig. 2.21. Again, the circled values of the input autocorrelation

are preserved in the cross-correlation.
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Figure 2.21. Relation of the Input Autocorrelation to the Cross-correlation of the
Decimator in the (m; l) Space.

Even when the input is wide-sense stationary, the cross-correlation cannot be

described by its lag term only, since the lag term on the right-hand side of (2.37)

requires knowledge of mx.

2. Expansion

Again, for ease of reference, the mathematical description of expansion is pro-

vided below:

y[m] =





x[m/I] m div I

0 otherwise

The autocorrelation of the output signal is defined as

Ry[my,m
′
y] = E{y[my]y

∗[m′
y]}

=




E{x[my/I]x∗[m′

y/I]} my,m
′
y div I

0 otherwise

Therefore,

Ry[my,m
′
y] =





Rx[my/I],m′
y/I] my,m

′
y div I

0 otherwise

where my and m′
y represent two arbitrary values of the time index.
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The time-lag form of the autocorrelation can be written as

Ry[my; ly] = E{y[my]y
∗[my − ly]}

=




E{x[my/I]x∗[(my − ly)/I]} my, (my − ly) div I

0 otherwise

Therefore,

Ry[my; ly] =





Rx[my/I]; ly/I] my, ly div I

0 otherwise

In the case of the expander, the output is never wide-sense stationary even

if the input is WSS, because zeros have been added. Therefore, the autocorrelation

of the expander cannot be represented by a lag only, and a time reference must be

stated as well. If the input is WSS, the output is cyclostationary however, because

the autocorrelation function is periodic in its first argument.

The cross-correlation for expansion is computed as

Rxy[mx,my] = E{x[mx]y
∗[my]}

=




E{x[mx]x

∗[my/I]} my div I

0 otherwise

Therefore,

Rxy[mx,my] =





Rx[mx,my/I] my div I

0 otherwise

Thus the original cross-correlation function is expanded in one argument only.

Figure 2.22 visually depicts the effect of expansion on the cross-correlation function.

The circled locations of the expander cross-correlation are the autocorrelation values

preserved from the input. All other values are zero.
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Figure 2.22. Relation of the Input Autocorrelation to the Cross-correlation of the
Expander.

Using the time-lag definition for the cross-correlation of two signals at different

sampling rates, the cross-correlation of the expander can be written as

Rxy[mx; ly] = E{x[mx]y
∗[mx − ly]}

=




E{x[mx]x

∗[(mx − ly)/I]} (mx − ly) div I

0 otherwise

=




E{x[mx]x

∗[mx − (ly + (I − 1)mx)/I)]} (mx − ly) div I

0 otherwise

Therefore,

Rxy[mx; ly] =





Rx[mx; (ly + (I − 1)mx)/I)]} mx − ly div I

0 otherwise

(2.38)

The effect of expansion on the cross-correlation in the (m, l) space is visually

depicted in Fig. 2.23. Again, the circled values of the cross-correlation are the

values preserved from the input autocorrelation. The uncircled points represent valid

locations where the cross-correlation is defined, but these values are zero.

Similar to the decimator, when the input of the expander is wide-sense sta-

tionary the output cannot be represented in terms of its lag only. The first reason

is that the lag term on the right-hand side of (2.38) requires knowledge of mx. In
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Figure 2.23. Relation of the Input Autocorrelation to the Cross-correlation of the
Expander in the (m, l) Space.

addition, the expander inserts zeros, therefore the output is not WSS. It is however,

wide-sense cyclostationary.

3. Linear Time-invariant Filters

For the operation of linear time-invariant filtering the output is given by

y[m] =
∞∑

r=−∞

h[r]x[m− r].

Given two arbitrary time instances, m and m′, the autocorrelation of the filter output

is

Ry[m,m′] = E{y[m]y∗[m′]}

= E
{(

∞∑

R1=−∞

h[R1]x[m− R1]

)(
∞∑

R0=−∞

h[R0]x[m′ − R0]

)∗}

= E
{

∞∑

R1=−∞

∞∑

R0=−∞

h[R1]h
∗[R0]x[m− R1]x

∗[m′ − R0]

}

=
∞∑

R1=−∞

∞∑

R0=−∞

h[R1]h
∗[R0]Rx[m −R1,m

′ − R0]

This can be written as a two-dimensional convolution,

Ry[m,m′] = Rx[m,m′] ∗ h[m] ∗ h∗[m′]
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where ‘∗’ represents convolution with respect to the associated variable.

By using the relation Rx[m; l] = Rx[m,m− l], where l = m−m′, the time-lag

form of the output autocorrelation becomes

Ry[m; l] =
∞∑

R1=−∞

∞∑

R0=−∞

h[R1]h
∗[R0]Rx[m− R1; l − (R1 − R0)]

For a stationary process, the time-lag correlation function is independent of the first

argument. Therefore, the result for stationary processes becomes

Ry[l] =

∞∑

R1=−∞

∞∑

R0=−∞

h[R1]h
∗[R0]Rx[l − (R1 − R0)].

This can be put in the well-known form

Ry[l] = Rx[l] ∗ h[l] ∗ h∗[−l],

where ‘∗’ represents convolution.

The traditional cross-correlation function between the input and the output

of the filter is given by

Rxy[m,m′] = E{x[m]y∗[m′]}

= E

{
x[m]

(
∞∑

R0=−∞

h[R0]x[m′ −R0]

)∗}

= E
{

∞∑

R0=−∞

h∗[R0]x[m]x∗[m′ − R0]

}

=
∞∑

R0=−∞

h∗[R0]Rx[m,m′ − R0]

or

Rxy[m,m′] = Rx[m,m′] ∗ h∗[m′]

Again using the relation Rxy[m; l] = Rxy[m,m − l], where l = m − m′, the

time-lag form of the output cross-correlation function is:

Rxy[m; l] =
∞∑

R0=−∞

h∗[R0]Rx[m; l + R0]
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or

Rxy[m; l] = Rx[m; l] ∗ h∗[−l].

When the input process is stationary, this reduces to

Rxy[l] = Rx[l] ∗ h∗[−l].

4. Linear Periodically Time-varying Filters

When calculating the correlation functions for a LPTV filter, care must be

taken to account for the difference in rates between the input and output. Recall

that the general equation for an LPTV filter is given by (2.18).

The traditional cross-correlation function between the input and the output

of the LPTV filter is thus

Rxy[mx,my] = E{x[mx]y
∗[my]}

= E
{

x[mx]

(
∞∑

R0=−∞

h(k)[R0]x[bmyKy/Kxc − R0]

)∗}

= E
{

∞∑

R0=−∞

h∗(k)[R0]x[mx]x
∗[bmyKy/Kxc − R0]

}

=
∞∑

R0=−∞

h∗(k)[R0]Rx[mx, bmyKy/Kxc − R0].

which represents a convolution for h∗(k) with Rx along its first argument.

The autocorrelation for the LPTV filter is given by

Ry[my,m
′
y] = E{y[my]y

∗[m′
y]}

= E
{(

∞∑

R1=−∞

h(k)[R1]x[bmyKy/Kxc − R1]

)(
∞∑

R0=−∞

h(k′)[R0]x[bm′
yKy/Kxc −R0]

)∗}

= E
{

∞∑

R1=−∞

∞∑

R0=−∞

h(k)[R1]h
∗(k′)[R0]x[bmyKy/Kxc − R1]x

∗[bm′
yKy/Kxc − R0]

}

=
∞∑

R1=−∞

∞∑

R0=−∞

h(k)[R1]h
∗(k′)[R0]Rx[bmyKy/Kxc −R1, bm′

yKy/Kxc − R0],
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where my ≡ k (mod Kx) and m′
y ≡ k′ (mod Kx). This equation is the two-

dimensional convolution along indices my and m
′
y.

Because of the floor operation used to transform between the my index and the

mx index, the time-lag equivalents for the autocorrelation and the cross-correlation

functions become rather unwieldly.

A summary of correlation relations is provided in Tables 2.2 through 2.4.

A summary of relations in the frequency domain is provided in Appendix A. These

relations were not used in this dissertation, so are not presented here, but are provided

in the appendix for reference.

Table 2.2. Summary of Decimation

Ry[my,m
′
y] = Rx[Lmy, Lm

′
y]

Ry[my; ly] = Rx[Lmy;Lly]

Ry[ly] = Rx[Lly]

Rxy[mx,my] = Rx[mx, Lmy]

Rxy[mx; ly] = Rx[mx;Lly − (L − 1)mx]
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Table 2.3. Summary of Expansion

Ry[my,m
′
y] =

{
Rx[my/I,m′

y/I] my,m
′
y div I

0 otherwise

Ry[my; ly] =

{
Rx[my/I; ly/I] my, ly div I

0 otherwise

Rxy[mx,my] =

{
Rx[mx,my/I] my div I

0 otherwise

Rxy[mx; ly] =

{
Rx[mx; (ly + (I − 1)mx)/I] mx − ly div I

0 otherwise

Table 2.4. Summary of Filtering

Ry[m,m′] = Rx[m,m′] ∗ h[m] ∗ h∗[m′]

Ry[l] = Ry[l] ∗ h[l] ∗ h∗[−l]

Rxy[m,m′] = Rx[m,m′] ∗ h∗[m′]

Rxy[m, l] = Rx[m; l] ∗ h∗[−l]
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E. MATRIX REPRESENTATION

In order to develop signal processing algorithms in the time domain, it is fre-

quently easier to work with matrix and vector representations of the systems and

signals. This section therefore develops tools to represent the basic operations of dec-

imation, expansion and linear filtering. The development extends the ideas described

in [Ref. 61].

1. Decimation

Consider the decimator depicted in Fig. 2.5. The input and output are related

by y[m] = x[Lm]. Define the two vectors of input and output samples

x =
[
x[0] x[1] · · · x[LM − 1]

]T

y =
[
y[0] y[1] · · · y[M − 1]

]T

.

Then the decimation operation can be represented as

y = DL,Mx,

where DL,M is an M × ML matrix of 1’s and 0’s used to extract elements of x as

observations to be placed in y. The matrix DL,M will be called a decimation matrix.

For example, if the decimation factor is L = 3 and the size of the desired output

vector is M = 4, then the associated decimation matrix is

D3,4 =




1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0




. (2.39)
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This can be represented in a more compact form using Kronecker products. In this

compact form

DL,M = IM ⊗ dT
L,

where IM is the M ×M identity matrix and dL is a column vector consisting of a one

followed by L − 1 zeros,

dL =
[
1 0 0 · · · 0

]T
. (2.40)

Appendix B provides a short discussion of Kronecker products. For a detailed analysis

of Kronecker products and matrix calculus see [Ref. 62], or for a short tutorial paper

see [Ref. 63].

Using this definition and dropping the subscripts for ease of notation, the mean

of the decimator is

my = E{y} = E{Dx} = DE{x} = Dmx, (2.41)

and the output autocorrelation matrix for the decimator is

Ry = E{yy∗T} = E{Dx(Dx)∗T} = DE{xx∗T}D∗T = DRxD
∗T . (2.42)

Likewise, the matrix form of the cross-correlation is

Rxy = E{xy∗T} = E{x(Dx)∗T} = E{xx∗T}D∗T = RxD
∗T . (2.43)

For two separate signals, x1 and x2, that are decimated as

y1[m] = x1[L1m] y2[m] = x2[L2m],

the cross-correlation matrix is given by

Ry1y2 = E{y1y
∗T
2 } = DL1,M1Rx1x2D

∗T
L2 ,M2

. (2.44)

where the derivation for (2.44) is similar to that for (2.42) above.

The covariance matrix is defined as

Cy = E{(y − my)(y − my)
∗T} = E{(Dx − Dmx)(Dx − Dmx)

∗T}

= DE{(x −mx)(x −mx)
∗T}D∗T
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or

Cy = DCxD
∗T . (2.45)

The following relation can also be derived easily,

Cy = Ry − mym
∗T
y = D

(
Ry − mym

∗T
y

)
D∗T .

2. Expansion

Now consider the expander defined by the input-output relation

y[m] =





x[m/L] m div L

0 otherwise

.

The matrix form of expansion can be represented as

y = UL,Mx,

where the expansion matrix U is an LM × M matrix of 1’s and 0’s used to insert

L − 1 zeros between samples of x to form the output vector y. This matrix is called

an expansion matrix. For example, if the expansion factor is L = 3 and the length of

the input vector is M = 4, then the associated expansion matrix is

U3,4 =




1 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0

0 0 1 0
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0




(2.46)
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The expansion matrix can be represented as

UL,M = IM ⊗ dL,

where IM is the M × M identity matrix and dl is a column vector defined in (2.40).

Using this definition and following the procedure used for decimation in the

previous section, the matrix form of the output autocorrelation for the expander is

Ry = E{yy∗T} = URxU
∗T .

Likewise, the matrix form of the cross-correlation is

Rxy = E{xy∗T} = RxU
∗T .

The matrix results are of little use by themselves because there are large blocks of

zeros as a result of the expansion operation. When expansion is followed by linear

filtering however, the zeros fill in so a more meaningful correlation matrix results.

The cross-correlation of two interpolated signals,

y1[m] =





x1[m/L1] m div L1

0 otherwise

y2[m] =





x2[m/L2] m div L2

0 otherwise

is also of interest. The cross-correlation matrix for these two signals is

Ry1y2 = E{y1y
∗T
2 } = UL1,M1Rx1x2U

∗T
L2 ,M2

.

The covariance matrix for expansion follows a similar set of transformations.

The covariance matrix of the expander is

Cy = UCxU
∗T ,
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and satisfies the relation

Cy = Ry − mym
∗T
y = U

(
Rx − mxm

∗T
x

)
U∗T .

A direct relationship exists between the decimation matrix and the expansion

matrix. The expansion matrix is the transpose of the decimation matrix,

UL,M = DT
L,M .

The proof of this result follows directly from the definition

UL,M = IM ⊗ dL =
(
IM ⊗ dT

L

)T
= DT

L,M ,

where property (3) of the Kronecker products was used (as described in Appendix

B). This can also be seen in the examples of the decimation and expansion matrices,

(2.39) and (2.46).

Some combinations of decimation and expansion are also worth mentioning.

Expansion followed by decimation (using the same factor) is represented by the prod-

uct matrix DL,MUL,M = DL,MDT
L,M . Since this pair of operations results in no change

of the signal, it must follow that

DL,MUL,M = DL,MDT
L,M = IM . (2.47)

On the other hand, decimation followed by expansion selects every Lth term of a

sequence and replaces all other terms with zeros (the length of the sequence is un-

changed). This operation is represented by the product

UL,MDL,M = DT
L,MDL,M = IM ⊗ dLd

T
L. (2.48)
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This product matrix is an orthogonal projection matrix. The geometric interpretation

of this operation is a projection of the vector onto a subspace defined by every Lth

component of the original vector.

3. Filters

The matrix form of a linear filter with finite support

y[m] =

P+∑

r=P−

h[r]x[m− r] (2.49)

can be represented as

y = H̃Tx,

where, the term, H̃, represents the reversal of the matrix H, which is found by

inverting the order of the elements along both the columns and the rows (see Appendix

B.)1

For the case of a linear time-invariant filter, the matrix H has the form

H =




h[P−] 0 · · · 0 0

h[1 + P−] h[P−] · · · 0 0
...

...
. . .

...
...

h[P+] h[P+ − 1] · · · 0 0

0 h[P+] · · · 0 0
...

...
. . .

...
...

0 0 · · · h[P−] 0

0 0 · · · h[1 + P−] h[P−]
...

...
. . .

...
...

0 0 · · · h[P+] h[P+ − 1]

0 0 · · · 0 h[P+]




1The reversal of a P × Q matrix A with elements aij is defined as a matrix Ã with elements
aP−i,Q−j .
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where P− and P+ are the values of the lower and upper limits, respectively, of the

filter in (2.49). Using this definition, the matrix form of the output autocorrelation

of the filter is

Ry = E{yy∗T} = H̃TRxH̃
∗.

while, the matrix form of the cross-correlation is

Rxy = E{xy∗T} = RxH̃
∗.

If the lower limit of the filter matrix P− equals zero, then the filter is causal,

since the filter relies only on past observations of the input data. On the other hand,

if −P− is less than zero, the filter uses future observations of the input. Therefore,

the filter is non-causal and cannot be implemented in real-time. For an LPTV filter

there are up to K possible sets of filter coefficients, H(k). The appropriate set of

filter coefficients is chosen based upon the system phase, as discussed earlier in this

chapter.

F. SUMMARY

In this chapter, the fundamental building blocks and necessary indexing schemes

for a multirate system were described. In addition, methods for calculating the cor-

relations and power spectral densities for these building blocks were presented. Using

these building blocks and relations, it is possible to develop the multirate Wiener-

Hopf equations for optimal filtering of a multirate system. This is the topic of the

next chapter.
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III. LINEAR ESTIMATION

In this section, the methodology for optimal filtering with multirate obser-

vations is developed. The basic principles of linear mean-square estimation apply

to multirate signal processing; however, due to the periodic nature of the multirate

system, one optimal filtering equation is not sufficient to fully describe the optimal

filtering problem. By exploiting the system periodicity of the multirate system, a

set of optimal filtering equations can be derived, one for each “phase” of the filter.

The filter output (Wiener-Hopf equations) can be a single sequence or a vector of

sequences based upon the input sequences.

A. SYSTEM EQUATIONS

To define the problem, assume a multirate observation model with a set of M

wide-sense stationary observation sequences, x1[m1] . . . xM [mM ]. These sequences

represent M observations of the signal s[n] subjected to various linear degradations

(e.g., additive white Gaussian noise (WGN) or linear distortion), shown in Fig. 3.1.

These observations sequences are to be used to estimate a single desired sequence

d[n], as shown in Fig. 3.2. Let F1, F2, . . . , FM represent the sampling rates of the

observation sequences and let K1,K2, . . . ,KM be the associated decimation factors.

It will be assumed that the estimate d̂[n] is required at the fundamental rate F , so

the index ‘n’ is used for this sequence. The desired sequence at time n can be written

as

d[n] = d[K · l + k]

where K is the system period, l = bn/Kc and n ≡ k (mod K). The variable k, is the

sampling phase, as defined in Chapter II, with 0 ≤ k ≤ K − 1.
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Figure 3.1. M -Channel Multirate Observation Model

Assume that a causal estimate is desired, i.e., the estimate is calculated using

only the “present” and “past” observations. The optimal estimate is formed by

summing the output of linear periodically time-varying (LPTV) filters, one for each

observed sequence (see Fig. 3.2). Define the vector of filter coefficients

h
(k)
i =




h
(k)
i [0]

h
(k)
i [1]
...

h
(k)
i [Pi − 1]




1 ≤ i ≤ M

0 ≤ k ≤ K − 1

where Pi is the order of the ith filter and denote the vector of observations from the

ith channel by

x̃
(k)
i [mi] =

[
xi[mi] xi[mi − 1] · · · xi[mi − Pi + 1]

]T

,

where mi = bn/Kic. Here mi represents the most recent observation time for xi if

the causality constraint is to be maintained. Then the estimate at time ‘n’ is given

by

d̂k[n] =
M∑

i=1

x̃
(k)T
i [n]h

(k)
i =

M∑

i=1

h
(k)T
i x̃

(k)
i [n]; where n ≡ k (mod K). (3.1)

The subscript k in d̂k[n] is actually redundant since n ≡ k (mod K); however, this

notation is used to emphasize that the statistical properties of the estimate are peri-

odically time varying.
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Figure 3.2. Multirate Optimal Filter (Direct Form)

The form of the estimation given by (3.1) and depicted in Fig. 3.2 will be

called the “direct form” realization since the input sequences are directly weighed and

summed. In the next section, the methods for finding the optimal filter parameters

in the direct form and the corresponding mean-square error variance are developed.

B. MULTIRATE WIENER-HOPF EQUATIONS

Having defined the estimate, it is now possible to define the error as

εk[n] = d[n] − d̂k[n] (3.2)

and to find the optimal set of filter coefficients that minimize E{|εk[n]|2}. The or-

thogonality principle of linear mean-square estimation [Ref. 18, 58] requires that the

error be orthogonal to the observation vectors, i.e.,

E{x(k)
i [n]ε∗k[n]} = 0; i = 1, 2, . . . ,M. (3.3)

Substituting (3.1) and (3.2) into (3.3) and taking the expectation yields

E{x̃(k)
i [n]ε∗k[n]} = E

{
x̃

(k)
i [n]

(
d[n]−

M∑

j=1

x̃
(k)T
j [n]h

(k)
j

)∗}
= r̃

(k)∗
di −

M∑

j=1

R̃
(k)
ij [n]h

(k)∗
j = 0
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where the following terms have been defined:

r̃
(k)∗
di [n] = E{x̃(k)

i [n]d∗[n]} (3.4)

R̃
(k)
ij [n] = E{x̃(k)

i [n]x̃
(k)∗T
j [n]}. (3.5)

This can be rearranged and written as

r̃
(k)∗
di =

M∑

j=1

R̃
(k)
ij [n]h

(k)∗
j , i = 1, 2, . . . ,M

or equivalently as

r̃
(k)
di =

M∑

j=1

R̃
(k)∗
ij [n]h

(k)
j , i = 1, 2, . . . ,M. (3.6)

Then using the Hermitian symmetry property R̃
(k)∗
ij = R̃

(k)T
ji , (3.6) can be represented

in matrix form as




R̃
(k)
11 R̃

(k)∗
12 · · · R̃

(k)∗
1M

R̃
(k)T
12 R̃

(k)
22 · · · R̃

(k)∗
2M

...
...

. . .
...

R̃
(k)T
1M R̃

(k)T
2M · · · R̃

(k)
MM







h
(k)
1

h
(k)
2

...

h
(k)
M




=




r̃
(k)
d1

r̃
(k)
d2

...

r̃
(k)
dM




, (3.7)

The associated error variance according to the orthogonality principle is given by

σ2
k = E{d[n]ε∗k[n]} which, upon substitution of (3.1) and (3.2) becomes

σ2
k = Rd(0) −

M∑

i=1

r̃
(k)∗T
di h

(k)
i . (3.8)

Observe that the mean-square error σ2
k is periodically time varying, i.e., it is dependent

on the phase k of the filter. In order to establish a single figure of merit for the system,

an average error is defined,

σ2
ε =

(
K−1∏

k=0

σ2
k

) 1

K
(3.9)
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This geometrical average is chosen, since the error, when expressed in decibels (dB)

becomes the arithmetic average of the σ2
k values in dB. For Gaussian signals, this

relates to average information (entropy).

C. CALCULATION OF CORRELATION TERMS

The correlation terms needed in (3.7) and (3.8) can most easily be generated

by using the linear algebra concepts described in Chapter II. For any time n and

corresponding index k, the observation sequence x
(k)
i [n] can be expressed as

x̃
(k)
i [n] = D̃

(k)
Li

x̃i[n], (3.10)

where x̃i is given by

x̃i[n] =
[
xi[n] xi[n − 1] · · · xi[n− Pi · Ki + 1]

]T

and D̃
(k)
Li

is an appropriately-defined decimation matrix. Note that x̃i[n] consists of

all possible values of xi[n] (observed or unobserved) and x̃
(k)
i [n] represents just the

observed values used by the filter.

By virtue of (3.10), the correlation matrix R̃
(k)
ij of x̃i[n] and x̃j[n] is given by

R̃
(k)
ij = D̃

(k)
Li

R̃ijD̃
(k)T
Lj

, (3.11)

where R̃ij is the correlation matrix of x̃i[n] and x̃j[n] at the fundamental layer

R̃ij = E{x̃i[n]x̃∗T
j [n]}.

The cross-correlation vector between x̃i and d is

r̃
(k)
di = D̃

(k)
Li

r̃di. (3.12)
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where r̃di is the cross-correlation of between x̃i and d at the fundamental layer

r̃di = E{x̃i[n]d∗[n]}.

Note that the dependency on the system phase is completely determined by the

decimation matrices.

D. FILTER COEFFICIENTS

The solution to the multirate Wiener-Hopf equations produces the parameters

for the direct form realization of the filter. An alternative realization can be developed

that leads to some useful insights about the role that each input plays in forming the

overall estimate d̂k[n]. This alternative realization is a recursive form of the optimal

filter equations, and a complete derivation of these equations is contained in Appendix

C. It is shown there that the filter coefficients for the direct form can be written as:

h
(k)
i = E

(k)−1

i

(
r̃
(k)
di − G

(k)∗T
i b̃

(k)
di

)
−

M∑

j=i+1

E
(k)−1

i

(
R̃

(k)
ij − G

(k)∗T
i B̃

(k)
ij

)
h

(k)
j (1 ≤ i ≤ M − 1)

(3.13)

h
(k)
M = E

(k)−1

M

(
r̃
(k)
dM − G

(k)∗T
M b̃

(k)
dM

)
(3.14)

where the vector b̃
(k)
di and the matrix B̃

(k)
ij are defined as

b̃
(k)
di =




r̃
(k)
d1

...

r̃
(k)
d(i−1)


 B̃

(k)
ij =




R̃
(k)
1j

...

R̃
(k)
(i−1)j
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and the matrices G
(k)
i and E

(k)
i are given by

G
(k)
i =





0 i = 1



R̃
(k)
1 R̃

(k)
12 · · · R̃

(k)
1(i−1)

R̃
(k)∗T
12 R̃

(k)
2 · · · R̃

(k)
2(i−1)

...
...

. . .
...

R̃
(k)∗T
1(i−1) R̃

(k)∗T
2(i−1) · · · R̃

(k)
(i−1)




−1

B̃
(k)
ii 1 < i ≤ M

E
(k)
i =





R̃
(k)
11 i = 1

R̃
(k)
ii − G̃

(k)∗T
i B

(k)
ii 1 < i ≤ M

The filter coefficient, h
(k)
i in (3.13), can then be re-expressed as

h
(k)
i = h

′(k)
i −

M∑

j=i+1

H
(k)
ij h

(k)
j , (3.15)

where

h
′(k)
i = E

(k)−1

i

(
r̃
(k)
di −G

(k)∗T
i b̃

(k)
di

)

and

H
(k)
ij = E

(k)−1

i

(
R̃

(k)
ij − G

(k)∗T
i B̃

(k)
ij

)
.

With these definitions it can be seen from (3.15) that the filter h
(k)
i is comprised of

a modified optimal filter, h
′(k)
i , and cross (or prediction) filters, H

(k)
ij , which allows

the optimal filter to be represented in the form shown in Fig. 3.3. This form is

referred to as the innovations representation because each branch of the realization

works on just the new information not present in the other existing channels. It can

be seen that after applying the cross filters a modified set of observations {x′
1 · · · x′

M}

is obtained. The modified observation x′
i is the residual after predicting xi using xj,

1 ≤ j ≤ i − 1 and represents the new information brought in by channel i. The

primed observations are mutually orthogonal. The modified optimal filtering terms,
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h′
i, i = 1, 2, . . . , j, represent the optimal filter for estimating d if xj[mj], j > i is not

used.

Figure 3.3. Multirate Innovations Representation

By separating the filter into cross filter terms and a modified optimal filtering term

for each input signal, it is possible to determine the improvement in error variance

that would be derived from adding extra signals, without having to recalculate all of

the filter coefficients. For each new signal added only the prior filtering terms and the

modified optimal filtering terms associated with the new signal are calculated. All

the previous prior filtering and modified optimal filtering terms remain unaffected.

By substituting the filter coefficient definition of (3.15) into the error variance

of (3.8) the error variance can be expressed in a recursive form dependent on the

number of signals observed. Let σ2
k,j be the phase-periodic error variance when only

j signals are observed. This form of the error variance will be called the innovations

form of the error variance equation and is expressed as
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σ2
k,M = σ2

k,M−1 − r̃
(k)T
dM h

(k)∗
M −

M−1∑

i=1

r̃
(k)T
dM

(
−H

(k)∗
iM

)
h

′ (k)∗
iM

−
M−1∑

i=1

M∑

i1=i+1

r̃
(k) T
dM

(
−H

(k)∗
ii1

)(
−H

(k)∗
i1M

)
h

′ (k)∗
M − · · ·

−
M−1∑

i=1

M∑

i1=i+1

M∑

i2=i1+1

· · ·
M∑

iM−1=iM−2+1

r̃
(k)T
dM

(
−H

(k)∗
ii1

)
×

(
−H

(k)∗
i1i2

)
· · ·
(
−H

(k)∗
iM−2iM−1

)(
−H

(k)∗
iM−1M

)
h

′ (k)∗
iM

. (3.16)

The derivation for this form is also contained in Appendix C. Though this form of

the error variance can become unwieldly for systems with a large number of observed

signals, this equation is useful to show the improvement in performance brought about

by each additional channel.

E. PERFORMANCE STUDY

A typical scenario for multirate estimation is based on the signal model shown

in Fig. 3.4. The signal of interest is s[n], therefore d[n] = s[n]. The desired signal is

subject to independent additive noise in each channel before decimation. In particu-

lar, this study considers a system with two observation sequences x1[m1] and x2[m2],

with decimation factors of K1 = 2 and K2 = 5.

Two different types of signals were analyzed for comparison: a second order

AR process and a periodic signal comprised of two sinusoids. Both signals are defined

in the fundamental layer by the equations shown in Table 3.1; where the driving term

w[n] in the AR process is white Gaussian noise (WGN) with mean zero and unit

variance.

The associated autocorrelation functions for each of the signals were calculated and

are provided in Table 3.2.
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Figure 3.4. Multirate model with multiple observation sequences

Table 3.1. Signal Examples

Signal Type Signal Equation

2nd Order AR s[n] = 0.9s[n − 1] − 0.8s[n − 2] + w[n]

2 Sinusoids s[n] = 4 cos[0.2πn] + 2 cos[0.02πn]

The variances of the two noise sequences η1 and η2 were chosen such that the

Signal to Noise Ratio (SNR) assumed the values, −6 dB, −3 dB, −1.7 dB, 0 dB, 1.7

dB, 3 dB and 6 dB. The corresponding noise variance can be calculated from

σ2
η =

Rs(0)

10(SNR/10)

where Rs is the autocorrelation function for s[n]. A block diagram of the optimal

estimator along with the sampling pattern for the observations is shown in Fig. 3.5.

Initial simulations were conducted with filter orders of P1 = P2 = 5.

Figure 3.6 shows the theoretical error variances for the second order AR model,

computed using (3.8) and (3.9). The figure compares the error variances for using

the low-rate signal alone, for using the high-rate signal alone, and for using the low-

and high-rate signals in combination. In this particular experiment, the high-rate

signal, x1, was observed in a 0 dB noise environment and the low-rate signal, x2 was

observed with a SNR varying over the range −6 to 6 dB. From this figure, one can
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Table 3.2. Signal Autocorrelation Functions

Signal Type Autocorrelation Function

2nd order AR Rs(l) =

{
3.7114 · (0.8944)l cos(1.0436l − 0.0646), l ≥ 0

−3.7114 · (1.1180)l cos(1.0436l − 3.0770), l < 0

2 sinusoids Rs(l) = 8 cos(0.2πl) + 2 cos(0.02πl), ∀l

Figure 3.5. Optimal Estimator Block Diagram

see that the error variance for the low-rate signal, over the SNR range of −6 dB to

+6 dB, is higher than the error variance of the high rate signal observed at 0 dB.

Individually, the high-rate signal performs better than the low rate signal. When the

low-rate and high-rate signals are processed together, however, the error variance is

lower than for either signal individually. At the lowest SNR simulated (−6 dB) only

a modest improvement was observed. As the SNR of the low rate signal increases,

however, the improvement in the error variance approaches 2.5 dB.

Figure 3.7 shows the theoretical error variances for the sinusoidal model.

Again, the high-rate signal, x1, was observed in a 0 dB noise environment and the

low-rate signal, x2 was observed with a SNR varying over the range −6 dB to +6

dB. Again in this case, the error variance for the low-rate signal at all SNRs tested

is higher than the error variance of the high-rate signal at 0 dB. When the low-rate

and high-rate signals are processed together, however, the error variance is lower than

65



−8 −6 −4 −2 0 2 4 6 8
13

14

15

16

17

18

19

20

21

22
2nd Order AR Process: High Rate SNR = 0 dB   

 Low Rate Signal SNR (dB)

E
rr

or
 V

ar
ia

nc
e 

(d
B

)

High & Low Rate Signal

High Rate Signal
(SNR = 0 dB)      

Low Rate Signal
(SNR varying)  

Figure 3.6. Error Variance vs SNR for the 2nd Order AR Process

for either signal individually. At the lowest SNR simulated (−6 dB) only a modest

improvement was observed. As the SNR of the low-rate signal increases, however, the

improvement in the error variance approaches 6 dB.

Additional simulations were conducted with filter orders P1 and P2 ranging

from 5 to 30 for an environment where the SNR for both the low rate and high rate

signals is 6 dB. Selected results are listed in Table 3.3 for the signal with two sinusoids,

showing the performance that results when using both the high rate and the low rate

observations together or using only one set of observations at a time. From Table 3.3,

one can see that the use of both sets of observations results in significant improvement

(3 dB to 5 dB) over using either x1 or x2 separately, although the error associated

with filtering using only x2 is large compared to that resulting from using only x1.

The effect on order for the AR process could not be studied. Because of the low

order of the AR process, varying the filter orders between 5 and 30 has no appreciable
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Figure 3.7. Error Variance vs SNR for the Periodic Signal

effect on the error variance.

F. SUMMARY

This chapter addressed the problem of optimal filtering of multiple related

channels of data observed at different sampling rates. The direct form of the Wiener-

Hopf equations using linear, periodically time-varying filters was developed, and the

error variance of the optimal filter was observed to be periodically time-varying. In

addition to the direct form, an innovations form of the multirate Wiener-Hopf equa-

tions was presented. This recursive form provides insight into the relative change

in performance when additional signals are added or removed from the optimal fil-

ter. Using the geometric average of the periodic error variances as a performance

measure, it was demonstrated that optimal filtering of multiple channels can provide

improved performance over optimal filtering using one channel, even if the secondary

channel when used alone has high error variances. In the simulations conducted, the

67



Table 3.3. Error Variances for Periodic Signals with 2 sinusoids (All values in dB)

Filter Orders σ2
ε σ2

ε σ2
ε

x1[n] and x2[n] x1[n] only x2[n] only

P = 5, Q = 5 -0.43 3.27 13.98

P = 30, Q = 5 -13.54 -12.26 13.98

P = 5, Q = 30 -6.54 3.27 9.39

P = 30, Q = 30 -17.32 -12.26 9.39

largest improvements occured when the signal to be estimated consisted of sinusoids

in noise. When the signal was derived from a second order AR process, the use of

multiple channels and/or higher order filters resulted in only a small improvement in

performance. It was observed that a single channel filter of order 5 was sufficient to

estimate the second order AR signal in noise. These examples used only two obser-

vation sequences, but the derivations and experiments presented here can be applied

to an arbitrary number of channels.
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IV. LINEAR PREDICTION

The previous chapter discussed estimation of data from noisy signals using

present observations and a finite number of past observations. Applications that

require the ability to estimate the present value of the observations themselves using

only past observations (causal filtering), however, exist. A few of the most common

applications are focused on speech and image coding, target tracking and target

classification. The process of estimating a signal using only its past observations is

known as linear prediction. Linear prediction is at the core of all linear estimation

problems, such as the more general Wiener filter. Furthermore, specific insights that

arise from linear prediction, such as the lattice forms of the filter, can be carried over

to the more general problems.

A. SINGLE-CHANNEL AND MULTICHANNEL RE-

VIEW

Linear prediction has been well researched for the single-channel and multi-

channel cases. At its most intrinsic form, the goal is to estimate the present value of

a data sequence from a finite collection of past data. For the single-channel case, the

prediction equation can be written

x̂[n] = −a∗
1x[n− 1] − a∗

2x[n− 2] − · · · − a∗
P x[n− P ]

= −
P∑

i=1

a∗
i x[n − i]

where x̂[n] is the predicted value of x[n] using x[n − 1] through x[n − P ] and a1

through aP are the prediction filter coefficients (written as conjugate negative values

for later convenience). The value P is referred to as the prediction filter order.
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For the multichannel case, the prediction equation generalizes to

x̂[n] = −A∗T
1 x[n − 1] −A∗T

2 x[n− 2] − · · · − A∗T
P x[n − P ]

= −
P∑

i=1

A∗T
i x[n− i] (4.1)

where the vector x represents the data observed in each of M channels and A1 through

AP are the prediction filter coefficient matrices. This more general case will now be

discussed.

The goal of the linear prediction problem is to find an optimal solution for

the coefficients Ai in (4.1), such that the expected value of the squared norm of the

prediction error ε[n] = x[n]− x̂[n] is minimized. The solution to the linear prediction

problem results in the well known (multichannel) Normal equations




R[0] R[1] · · · R[P ]

R[−1] R[0] · · · R[P − 1]
...

...
. . .

...

R[−P ] R[−P + 1] · · · R[0]







I

A1

...

AP




=




E

0
...

0




, (4.2)

where the multichannel correlation function is defined as R[i] = E{x[n]x∗T [n − i]}

and E is the prediction error covariance matrix E = E{ε[n]ε∗T [n]}.

If the order of the prediction filter is allowed to grow at each successive ob-

servation, in order to include all past observations at each step, then the calculated

prediction errors ε[n] will be orthogonal. If a prediction filter of sufficiently high

order is used, then the calculated prediction errors will be approximately orthogonal

(E{ε[i]ε∗T [j] = 0} for i 6= j). Thus the prediction error filter can be thought of as
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a causal whitening filter. This property is important in autoregressive (AR) modeling,

moving average (MA) modeling and autoregressive moving average (ARMA) modeling

(see [Ref. 18, 58, 19].)

B. MULTIRATE LINEAR PREDICTION THEORY

The method for extending linear prediction to a multirate system will now be

considered. Recall from Chapter II, that multirate systems are periodic in nature and

that one can determine an associated system period K. This system period can be

used to partition the data into blocks with a common sampling structure as illustrated

in Fig. 4.1

Figure 4.1. Multirate System Block Structure

In this example, Channel 1 is observed at half the fundamental rate, i.e., the

decimation factor is 2, while for the Channel 2 the decimation factor is 3. The

system period, as defined in Chapter II, for this example is K = 6. This has been

highlighted in Fig. 4.1 by the dashed boxes representing blocks of data. When viewed

at the fundamental rate, the statistics of the multirate system are cyclo-stationary.

However, when the multirate system is viewed in blocks, the block statistics are

stationary.

In the specific linear prediction problem that is considered here, each new data

point (in any channel) is predicted as it occurs in time. The prediction is based on

a finite number Q of previous full blocks of data as well as all of the data within the

current block that occurs earlier than the point being predicted. Specifically, let m
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represent a time index for the blocks and i = 1, 2, . . . , P be an index for the data

occurring within a block, also ordered in time. For the moment, assume that data

points from different channels do not occur at exactly the same time. The prediction

equation for the (i + 1)st data point is then written as

x̂i[m] = −α∗
i,1xi−1[m]− · · · − α∗

i,i−1x1[m]− a∗T
i,1x[m− 1] − · · · − a∗T

i,Qx[m− Q]

= −
i−1∑

p=1

α∗
i,pxi−p[m]−

Q∑

q=1

a∗T
i,q x[m− q]. (4.3)

The variable xi[m] represents the ith observed data point for the mth system block,

and x[m] is a vector of all the observed data associated with the mth system block.

The elements of x[m] are

x[m] =




xP [m]

xP−1[m]
...

x1[m]




. (4.4)

This method of ordering the block data points is for indexing purposes only; it does

not account for data being observed at the same time. The data is ordered according

to oldest data first with channel 1 being considered the oldest channel for indexing

purposes. Figure 4.2 shows these variables for the system depicted in Fig. 4.1.

Figure 4.2. Multirate System Block Variables

The prediction error for xi[m] is given by

εi[m] = xi[m]− x̂i[m]
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or

εi[m] = xi[m] +
i−1∑

p=1

α∗
i,pxi−p[m] +

Q∑

q=1

a∗T
i,qx[m− q] (4.5)

By applying the principle of orthogonality [Ref. 18], one can determine the

prediction error variance for each predicted value and the set of equations that the

prediction coefficients must satisfy. The prediction error variance satisfies

σ2
i = E{xi[m]ε∗i [m]} = Rxi[0] +

i−1∑

p=1

αi,pRxixi−p[0] +

Q∑

q=1

aT
i,qrxix[q] (4.6)

where rxix[l] is the vector of cross-correlation terms

rxix[l] =




RxixP
[l]

RxixP−1
[l]

...

Rxix1[l]




.

Setting the observations orthogonal to the prediction error produces the equations

0 = E{xj [m− l]ε∗i [m]}

= Rxjxi[−l] +
P∑

p=1

αi,pRxjxi−p[−l] +

Q∑

q=1

aT
i,qrxjx[q − l]. (4.7)

Combining these sets of equations for all observations within a data block, and

using the shorthand notation

Rl = Rx[l] = E
[
x[m]x∗T [m− l]

]
, (4.8)

produces the matrix form of the multirate Normal equations




R0 R1 · · · RQ

R−1 R0 · · · RQ−1

...
...

. . .
...

R−Q R1−Q · · · R0







A0

A1

...

AQ




=




E

0
...

0




(4.9)
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where

A0 =




1 0 · · · 0

αP,1 1 · · · 0

αP,2 αP−1,1 · · · 0
...

...
. . .

...

αP,P−1 αP−1,P−2 · · · 1




(4.10)

Ai =




| | |

aP,i aP−1,i · · · a1,i

| | |


 i = 1, 2, . . . , Q, (4.11)

and the error covariance matrix is

E =




σ2
P × · · · ×

0 σ2
P−1 · · · ×

...
...

. . .
...

0 0 · · · σ2
1




. (4.12)

The matrix elements represented by an ‘×’ do not affect the linear prediction problem,

so their values do not have to be calculated.

So far, it has been assumed that data points from different channels do not

occur at the same time. If points do occur at the same time then they must be jointly

predicted. For instance, for the system depicted in Figure 4.2, data points occur in

both channels at the first observation time of the data block. The prediction equation

for x1[m] is of the form

x̂1[m] = −
Q∑

q=1

a∗T
1,qx[m− q].
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This equation does not change. The linear prediction equation of (4.3) for x2[m],

however, would change from

x̂2[m] = −α∗
2,1x1[m]−

Q∑

q=1

a∗T
2,qx[m− q]

to

x̂2[m] = −
Q∑

q=1

a∗T
2,qx[m− q].

In other words, x1[m] and x2[m] are predicted simultaneously. The prediction coef-

ficient matrix and prediction error matrix of (4.10) and (4.12) for the 5 × 5 system

with no joint observations are

A0 =




1 0 0 0 0

α5,1 1 0 0 0

α5,2 α4,1 1 0 0

α5,3 α4,2 α3,1 1 0

α5,4 α4,3 α3,2 α2,1 1




(4.13)

and

E =




σ2
5 × × × ×

0 σ2
4 × × ×

0 0 σ2
3 × ×

0 0 0 σ2
2 ×

0 0 0 0 σ2
1




. (4.14)

These matrices would change to

A0 =




1 0 0 0 0

α5,1 1 0 0 0

α5,2 α4,1 1 0 0

α5,3 α4,2 α3,1 1 0

α5,4 α4,3 α3,2 0 1




(4.15)
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and

E =




σ2
5 × × × ×

0 σ2
4 × × ×

0 0 σ2
3 × ×

0 0 0 σ2
2 σ2

21

0 0 0 σ2
12 σ2

1




. (4.16)

because of the joint observations. Notice that the lower right block in A0 has been

changed to the 2×2 identity matrix while the lower right block E is changed to a 2×2

error covariance matrix which characterizes the joint prediction of x1 and x2. The

equations for solving the Normal equations must be slightly modified to account for

any joint observations. In particular, the covariance elements of the joint observations

can be calculated from

σ2
ij = E{xi[m]ε∗j[m]} = Rxixj [0] +

∑

p

αi,pRxixi−p[0] +

Q∑

q=1

aT
i,qrxix[q], (4.17)

where i and j are jointly observed, the summation over p does not include any joint

observations and σ2
i = σ2

ii. In addition, the orthogonality equations become

0 = E{xj [m− l]ε∗i [m]}

= Rxjxi[−l] +
∑

p

αi,pRxjxi−p[−l] +

Q∑

q=1

aT
i,qrxjx[q − l]. (4.18)

The explicit form of the multirate linear prediction problem can most easily

be seen by using an example. Figure 4.3 shows a two-channel multirate system with

decimation factors of K1 = 1 and K2 = 2. Channel 1 has two samples per period while

channel 2 has one sample per period. In addition, observations from both channels

occur simultaneously at every other system clock interval. Thus joint prediction

of the channels must occur at those times. The block variables xi[m] used in this

example have been labeled in Fig. 4.3. Using a filter order of P = 1 and assuming

that the block of observations at m = 0 are available, the linear prediction equations

for predicting xi[m] can be determined. For x1[1] the equations would be
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Figure 4.3. Illustration of Decimation for a Linear Prediction System.

x̂1[1] = −a∗
1,1x3[0] − a∗

1,2x2[0] − a∗
1,3x1[0]

The error would then be ε1[1] = x1[1] − x̂1[1] or

ε1[1] = x1[1] + a∗
1,1x3[0] + a∗

1,2x2[0] + a∗
1,3x1[0]

Applying (4.17) with i = j = 1, the prediction error variance σ2
1 would be

σ2
1 = Rx1 [0] + a1,1Rx1x3 [1] + a1,2Rx1x2[1] + a1,3Rx1[1] (4.19)

and the prediction error covariance for observation x2[1] and x1[1] is

σ2
21 = Rx2x1[0] + a1,1Rx2x3[1] + a1,2Rx2 [1] + a1,3Rx2x1 [1] (4.20)

Applying (4.18), the orthogonality equations for the previous observations are

Rx3x1[−1]+ a1,1Rx3 [0]+a1,2Rx3x2[0]+a1,3Rx3x1[0] = 0 (4.21)

Rx2x1[−1]+a1,1Rx2x3 [0]+ a1,2Rx2[0]+a1,3Rx2x1[0] = 0 (4.22)

Rx1[−1]+a1,1Rx1x3 [0]+a1,2Rx1x2[0]+ a1,3Rx1[0] = 0 (4.23)

In a similar fashion, the linear prediction equations for x2[1] can be written.

The prediction equation, using (4.3), is

x̂2[1] = −a∗
2,1x1[0] − a∗

2,2x2[0] − a∗
2,3x1[0]
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with an error equation, from (4.5), of

ε2[1] = x2[1] + a∗
2,1x3[0] + a∗

2,2x2[0] + a∗
2,3x1[0]

The prediction error variance and prediction error covariance equations, derived from

(4.17), are

σ2
2 = Rx2[0] + a2,1Rx2x3[1] + a2,2Rx2 [1] + a2,3Rx2x1[1] (4.24)

σ2
12 = Rx1x2[0] + a2,1Rx1x3[1] + a2,2Rx1x2[1] + a2,3Rx1 [1] (4.25)

The orthogonality equations for the previous observations, using (4.18), are

Rx3x2[−1]+ a2,1Rx3 [0]+a2,2Rx3x2[0]+a2,3Rx3x1[0] = 0 (4.26)

Rx2[−1]+a2,1Rx2x3 [0]+ a2,2Rx2[0]+a2,3Rx2x1[0] = 0 (4.27)

Rx1x2[−1]+a2,1Rx1x3 [0]+a2,2Rx1x2[0]+ a2,3Rx1[0] = 0 (4.28)

Finally, the equations for x3[1] can be written as

x̂3[1] = −α∗
3,1x2[1] − α∗

3,2x1[1] − a∗
3,1x3[0]− a∗

3,2x2[0] − a∗
3,3x1[0]

ε3[1] = x3[1] + α∗
3,1x2[1] + α∗

3,2x1[1] + a∗
3,1x3[0] + a∗

3,2x2[0] + a∗
3,3x1[0]

and

σ2
3 = Rx3[0]+α3,1Rx3x2[0]+α3,2Rx3x1 [0]+a3,1Rx3[1]+a3,2Rx3x2[1]+a3,3Rx3x1[1] (4.29)

There are no prediction covariance equations since there are no observations occurring

at the same time as x3[1]. In this case however, the number of orthogonality equa-

tions increases to five, since the error ε3[1] must be orthogonal to all five previous
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observations (see Fig. 4.3) These orthogonality equations are:

Rx2x3[0]+ α3,1Rx2 [0]+ α3,2Rx2x1 [0]+a3,1Rx2x3[1]+ a3,2Rx2[1]+a3,3Rx2x1[1] = 0

(4.30)

Rx1x3[0]+ α3,1Rx1x2[0]+ α3,2Rx1 [0]+a3,1Rx1x3[1]+a3,2Rx1x2[1]+ a3,3Rx1 [1] = 0

(4.31)

Rx3[−1]+α3,1Rx3x2[−1]+α3,2Rx3x1[−1]+ a3,1Rx3[0]+a3,2Rx3x2[0]+a3,3Rx3x1[0] = 0

(4.32)

Rx2x3[−1]+ α3,1Rx2[−1]+α3,2Rx2x1[−1]+a3,1Rx2x3[0]+ a3,2Rx2[0]+a3,3Rx2x1[0] = 0

(4.33)

Rx1x3[−1] + α3,1Rx1x2[−1] + α3,2Rx1[−1] + a3,1Rx1x3[0] + a3,2Rx1x2[0] + a3,3Rx1[0] = 0

(4.34)

By combining (4.19) through (4.34), the matrix form of the multichannel Nor-

mal equations (4.9) can be produced and written as




R0
... R1

. . . . . . . . . . .

R−1
... R0







A0

. . . . . . .

A1


 =




E

. . . . .

0


 ,

where

R =




R0
... R1

. . . . . . . . . . .

R−1
... R0


 (4.35)
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or, more explicitly,

R =




Rx3 [0] Rx3x2[0] Rx3x1 [0]
... Rx3[1] Rx3x2[1] Rx3x1 [1]

Rx2x3[0] Rx2 [0] Rx2x1 [0]
... Rx2x3 [1] Rx2 [1] Rx2x1 [1]

Rx1x3[0] Rx1x2[0] Rx1[0]
... Rx1x3 [1] Rx1x2[1] Rx1[1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rx3[−1] Rx3x2[−1] Rx3x1[−1]
... Rx3[0] Rx3x2[0] Rx3x1 [0]

Rx2x3[−1] Rx2[−1] Rx2x1[−1]
... Rx2x3 [0] Rx2 [0] Rx2x1 [0]

Rx1x3[−1] Rx1x2[−1] Rx1 [−1]
... Rx1x3 [0] Rx1x2[0] Rx1[0]




A =




A0

. . . . . . .

A1


 =




1 0 0

α3,1 1 0

α3,2 0 1

. . . . . . . . . . . . . .

a3,1 a2,1 a1,1

a3,2 a2,2 a1,2

a3,3 a2,3 a1,3




(4.36)

and the error matrix is




E

. . . . .

0


 =




σ2
3 × ×

0 σ2
2 σ2

21

0 σ2
12 σ2

1

. . . . . . . . . . . .

0 0 0

0 0 0

0 0 0




(4.37)
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C. AN EFFICIENT SOLUTION TO THE MULTIRATE

NORMAL EQUATIONS

In the previous section, the Normal equations for the multirate linear predic-

tion problem were developed element by element. Although these equations can be

solved directly, it is desirable to develop a method for calculating the linear predic-

tion coefficients and error variances more efficiently. Efficient recursive methods for

solving these equations have been developed for both the single-channel and mul-

tichannel cases. In the single-channel case the method is called the Levinson (or

Levinson-Durbin) algorithm while in the multichannel case it is known commonly as

the multichannel Levinson algorithm, or in some literature it is called the Levinson-

Wiggins-Robinson (LWR) algorithm [Ref. 64]. In the following, a similar procedure

is developed for the multirate case.

The equations to be solved are




R0 R1 · · · RQ

R−1 R0 · · · RQ−1

...
...

. . .
...

R−Q R1−Q · · · R0







A0

A1

...

AQ




=




E

0
...

0




. (4.38)

These are the multirate Normal equations of (4.9), repeated here for convenience.

To begin the solution to (4.38), consider the problem of predicting an entire

block of data at once. This is identical to the multichannel problem. The Normal

equations for this problem are of the form (4.2) and can be written as




R0 R1 · · · RQ

R−1 R0 · · · RQ−1

...
...

. . .
...

R−Q R1−Q · · · R0







I

A
′
1

...

A
′

Q




=




E
′

0
...

0




. (4.39)
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Observe that the correlation matrix in (4.39) is identical to that in (4.38) although

the variables A
′
i and E

′
are not. If (4.39) is right multiplied with A0 however, and

(4.38) compared to (4.39), it can be seen that the following equalities must hold:

Ai = A
′

iA0, i = 1, . . . , Q (4.40)

E = E
′
A0. (4.41)

Therefore, if solutions to (4.39) and the matrix A0 can be found, then the desired

multichannel parameters Ai (for i = 1, 2, . . . , Q) and E can be found from (4.40) and

(4.41).

A computationally efficient solution to (4.39) can be found using the LWR

algorithm (see Appendix D). This solution produces the matrices A
′
i, where i =

1, 2, . . . , Q and E
′
. To find A0 from (4.41) the forms of E and A0 must be considered.

In particular, E is upper triangular, e.g., (4.14), when there are no simultaneous

observations, and block upper triangular, e.g., (4.16), when some observations occur

simultaneously. Also, A0 is lower triangular with unit diagonal, e.g., (4.13), when

there are no simultaneous observations, and block lower triangular in general, e.g.,

(4.15). Consider the specific case shown in Fig. 4.2. By writing (4.41) as E
′
= EA−1

0 ,

the matrices have the form



σ
′2
5 σ

′2
54 σ

′2
53 σ

′2
52 σ

′2
51

σ
′2
45 σ

′2
4 σ

′2
43 σ

′2
42 σ

′2
41

σ
′2
35 σ

′2
34 σ

′2
3 σ

′2
32 σ

′2
31

σ
′2
25 σ

′2
24 σ

′2
23 σ

′2
2 σ

′2
21

σ
′2
15 σ

′2
14 σ

′2
13 σ

′2
12 σ

′2
1




=




σ2
5 × × × ×

0 σ2
4 × × ×

0 0 σ2
3 × ×

0 0 0 σ2
2 σ2

21

0 0 0 σ2
12 σ2

1







1 0 0 0 0

α5,1 1 0 0 0

α5,2 α4,1 1 0 0

α5,3 α4,2 α3,1 1 0

α5,4 α4,3 α3,2 0 1




−1

.

(4.42)

It can be seen that (4.42) is similar in form to M = UL, where U and L are upper

and lower triangular matrices, respectively. Thus if E
′

can be factored into E and

A−1
0 , then the solution to the multirate Normal equations has been found.

Most linear algebra books (e.g., [Ref. 65]) contain LU factorization algorithms

for solving the decomposition of a matrix into a lower-upper triangular scheme (i. e.,
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M = LU). For the purpose of this dissertation, however, it is desired to factor E
′

into an upper-lower scheme. In addition, this factorization must be general enough to

allow for block elimination in the algorithm (this accounts for joint observations in the

multirate system). Thus a generalized UL factorization algorithm has been written

and provided in Appendix E. Using this generalized UL factorization algorithm to

find A0, the multirate Normal equations can be solved. A significant advantage of

decomposing E
′
into E and A−1

0 is that the only matrix that requires inversion is A−1
0 .

Since, A−1
0 is lower triangular, A0 can be found efficiently using forward elimination

which does not explicitly perform a full matrix inversion [Ref. 66].

The steps needed to solve for the multirate Normal equations are summarized

in Table 4.1.

Table 4.1. Steps in Solving the Multirate Normal Equations

1. Solve (4.39) using the multichannel Levinson recursion to find E
′
,A

′
1, . . . ,A

′
Q

2. Factor E
′
using the generalized UL factorization algorithm

to obtain E and A−1
0

3. Invert A−1
0 to obtain A0

4. Compute Ai = A
′
iA0 for i = 1, . . . , Q
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D. SUMMARY

In this chapter, the multirate linear prediction equations were developed. Also,

an efficient method for calculating the linear prediction coefficients using the multi-

channel Levinson recursion and LU factorization was propsed. These techniques for

calculating the linear prediction coefficients are used in the next chapter on multirate

sequential classification.
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V. CLASSIFICATION

The problem of distinguishing between two or more different types of signals

(arising from different sources) is known as classification. The classification is said to

be “sequential” when the signal to be classified is observed one discrete sample at a

time. After a new sample is observed, an attempt is made to classify the signal using

all of the samples available up to that time. If a classification cannot be made, then

another sample is taken and the procedure continues. The goal is to classify the signal

with a prescribed probability of error using as few samples as possible. The general

theory of sequential classification was originally and extensively developed by Wald

in 1947 [Ref. 20]. It has since been applied specifically to statistical signal processing

and described for the single-channel and multichannel cases (e.g., [Ref. 22] and [Ref.

21].) The focus of this chapter is to demonstrate the feasibility of developing an

algorithm that allows for multirate observations to be used in a sequential classifier.

A. SEQUENTIAL CLASSIFICATION

Before developing the sequential classifier for the multirate system, it is nec-

essary to provide a brief description of the sequential classification process. Conven-

tional methods of classification usually involve a fixed block of data. This method

is known as classifying with a fixed sample size. Statistically optimal methods then

involve developing the ratio of likelihood functions for the two classes and comparing

that likelihood ratio to a fixed threshold. This threshold is chosen to optimize some

criterion, such as total probability of error (Bayes test) or maximizing the probability

of correctly choosing one class while holding the probability of error on the other

class fixed (Neyman-Pearson test) [Ref. 22, 67, 68]. Wald developed a method, called

the sequential probability ratio test (SPRT), which allowed one to successively add

samples to data set being used to perform the classification. If classification is not
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possible at that time, another sample is added. This process is repeated until a clas-

sification can be made with some fixed desired probability of error. For an extensive

discussion on sequential analysis, see [Ref. 20].

To begin the discussion of sequential classification, assume that the signal of

interest, x, belongs to one of only two classes, class 0 or class 1. Let H0 be the

hypothesis that the signal belongs to class 0 and H1 the hypothesis that the signal

belongs to class 1. Let the vector of observations be denoted by

xn =




x0

...

xn


 , (5.1)

where xj is the set of observations of x available at time j, and let f(xn|Hi) be the

probability density function for xn given that the observations are from class i. In

the Wald SPRT, the likelihood ratio is defined as

ln(xn) =
f(xn|H1)

f(xn|H0)
(5.2)

and two positive constants or thresholds A and B (with A > B) are chosen to classify

the signal xn as either class 0 or class 1 with some desired probabilities of error. The

test performed is as follows: if
f(xn|H1)

f(xn|H0)
≥ A (5.3)

then xn is classified as class 1; while if

f(xn|H1)

f(xn|H0)
≤ B (5.4)

then xn is classified as class 0. If the ratio of the conditional probabilities falls between

A and B, that is, if

B <
f(xn|H1)

f(xn|H0)
< A, (5.5)
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then another sample is taken and the process is repeated with

xn+1 =




x1

...

xn

xn+1




.

Proper selection of the values for A and B is discussed below.

In many cases, it is more convenient to work with the logarithm of the like-

lihood ratio rather than the likelihood ratio itself. Since the logarithm is a strictly

monotonic function, this does not change the essential nature of the SPRT. In the

particular case that follows, it is most convenient to deal with the negative logarithm

and define

hn(xn) = −2 ln(ln(xn)) (5.6)

with

τA = −2 ln(A) (5.7)

τB = −2 ln(B) (5.8)

The inequality then reverses and the SPRT decision becomes

hn(xn)
≤ τA choose H1

≥ τB choose H0

, (5.9)

where

hn(xn) = −2 ln
fxn|H1(xn|H1)

fxn|H0
(xn|H0)

. (5.10)

Otherwise take another observation.

The choices for the thresholds A and B are related to the probabilities of error

for class 0 and class 1. Using the method described in [Ref. 22, 21], the relations

between thresholds and probabilities of error can be derived as follows. Let ε0 be the

probability of a decision error given the data is from class 0 and ε1 be the probability
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of error given the data is from class 1. Assume that the upper threshold is crossed

after n observations; that is, at time n the ratio ln(xn) defined by (5.2) is greater

than but approximately equal to A:

ln(xn) & A (5.11)

Substituting (5.2) into (5.11) and rearranging yields

f(xn|H1) & Af(xn|H0). (5.12)

The condition (5.12) defines a region of the xn space (R1) where the data is classified

as class 1 (H1). Integrating both sides over this region yields

∫

R1

f(xn|H1)dxn & A

∫

R1

f(xn|H0)dxn. (5.13)

Now, since R1 is taken to be the region of measurement space where xn is classified

as class 1, the left hand side of (5.13) is the probability of correctly classifying class

1, namely ∫

R1

f(xn|H1)dxn = 1 − ε1. (5.14)

The integral on the right hand side of (5.13) is then the probability of incorrectly

classifying class 0, ∫

R1

f(xn|H0)dxn = ε0 (5.15)

Substituting (5.14) and (5.15) into (5.13) yields

1 − ε1 & Aε0 (5.16)

or

A =
1 − ε1

ε0

(5.17)

where the inequality has been replaced by an equal sign since the threshold A is most

restrictive at that value. Similarly, assuming

ln(xn) . B (5.18)
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and integrating over the region where xn is classified as class 0 yields

B =
ε1

1 − ε0
(5.19)

Equations (5.17) and (5.19) provide the necessary relations to allow one to choose

appropriate values of thresholds A and B based on desired probabilities of error.

B. ALGORITHM DEVELOPMENT

When the observations in the SPRT are jointly Gaussian for both classes,

then a convenient recursive classification algorithm can be developed that involves

linear prediction. This recursive form has been developed in [Ref. 22, 21] for the

case of a single observation sequence, which is scalar-valued or vector-valued (the

multichannel case). Here, the method is extended to the case of multiple channels

sampled at different rates. Thus, at any given epoch on the system time scale, there

may be one or more simultaneous observations available from the various channels

or possibly no observations. The algorithm to be described takes this more general

situation into account.

The development of the recursive form of the quadratic classifier for the mul-

tirate system closely follows the development for the single-channel and multichannel

cases developed in [Ref. 22] and [Ref. 21]. It is necessary, however, to make modifi-

cations to some of the parameters, to account for the periodic nature of the multirate

system. Thus, some parameters that are constant in the single-channel and multi-

channel cases become periodically time-varying variables in the multirate case.

To start the development, assume that the signals associated with both classes

are jointly Gaussian and that the observations for all channels are collected and

ordered such that xn contains all observations from time 0 to n. In addition, the

observation vector (5.1) can be written recursively as

xn =


xn−1

x
(k)
n


 , (5.20)
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where the superscript k is used to indicate that the size of the observation vector

x
(k)
n is a periodically time-varying parameter since the number of observed channels

at any time step varies periodically. If the size of x
(k)
n (the number of observations at

time n) is defined as S
(k)
n and the total number of observations from time 0 to n − 1

is defined as Nn−1, then the total number of observations at time n can be expressed

as

Nn = Nn−1 + S(k)
n . (5.21)

As an example, consider the two-channel system where the first channel is

decimated by a factor of 2 and the second channel is decimated by a factor of 3, as

shown in Fig. 5.1. The system period as defined in Chapter II is K = 6. Thus, since

n ≡ k (mod K), the system phase, k, varies periodically between 0 and 5.

Figure 5.1. Two-channel Multirate System.

This can be illustrated more specifically as follows (refer to Fig. 5.1). Assum-

ing that observations through n = 29 have been collected, the associated observation

vectors for time steps n = 30, 31, . . . , 35 would be denoted by

x30 =


x29

x
(0)
30


 x31 =


x30

x
(1)
31


 x32 =


x31

x
(2)
32




x33 =


x32

x
(3)
33


 x34 =


x33

x
(4)
34


 x35 =


x34

x
(5)
35
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where the vectors of observations at these times are

x
(0)
30 =


x̄1[30]

x̄2[30]


 x

(1)
31 =

[
empty

]
x

(2)
32 = x̄1[32]

x
(3)
33 = x̄2[33] x

(4)
34 = x̄1[34] x

(5)
35 =

[
empty

]

The corresponding number of observations, S
(k)
n , at these times are

S
(0)
30 = 2 S

(1)
31 = 0 S

(2)
32 = 1

S
(3)
33 = 1 S

(4)
34 = 1 S

(5)
35 = 0

For any given time ‘n’, the probability density function for the collection of

observations is given by the multirate Gaussian form

fxn(xn) =
1

(2π)Nn/2|Cn|1/2
e−

1
2
(xn−mn)T C−1

n (xn−mn), (5.22)

where mn = E{xn} is the mean vector and Cn = E{(xn − mn)(xn − mn)
T} is the

covariance matrix for the observations. The mean vector and covariance matrix can

then be written as

mn =


mn−1

m
(k)
n


 (5.23)

and

Cn =


Cn−1 R

(k)
n

R
(k)T

n Σ
(k)
n


 (5.24)

where the partitioning corresponds to the partitioning defined in (5.20). By using a

formula for matrix partitioning [Ref. 69], the inverse covariance matrix, C−1
n , can be

represented in terms of the inverse covariance matrix, C−1
n−1, as

C−1
n =


 I −G

(k)
n

0T I





C−1

n−1 0

0T E
(k)−1

n





 I 0

−G
(k)T

n I


 (5.25)

91



or equivalently as

C−1
n =


C−1

n−1 0

0T 0


 +


−G

(k)
n

I


E(k)−1

n

[
−G

(k)T

n I
]

(5.26)

where G
(k)
n and E

(k)
n are defined as

G(k)
n = C−1

n−1R
(k)
n (5.27)

E(k)
n = Σ(k)

n − R(k)T

n C−1
n−1R

(k)
n . (5.28)

Since the determinants of the upper and lower triangular matrices of (5.25) are unity,

the determinant of C−1
n is given by

|C−1
n | = |C−1

n−1||E(k)−1

n |

or

|Cn| = |Cn−1||E(k)
n |. (5.29)

The partitionings of (5.1) and (5.23) through (5.29) provide all the necessary relations

for the recursive computation of the density function (5.22) at each time step.

Now that the probability density function for the multirate system has been de-

scribed, the probability density function for a given class within the multirate system

can be discussed. Consider observations from a known class i with a corresponding

mean vector

m(i)
n =


m

(i)
n−1

m
(i)(k)
n


 (5.30)

and covariance matrix

C(i)
n =


 C

(i)
n−1 R

(i)(k)
n

R
(i)(k)T

n Σ
(i)(k)
n


 , (5.31)

where the superscript (i) denotes association with class i and the partitioning corre-

sponds to the partitioning defined in (5.23) and (5.24). The vector of observations

with the mean removed can be denoted as

x(i)
n = xn − m(i)

n (5.32)
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or

x(i)
n =


 x

(i)
n−1

x
(i)(k)
n


 =


xn−1 − m

(i)
n−1

x
(k)
n − m

(i)(k)
n


 . (5.33)

By using the form (5.22) and substituting the relations (5.21), (5.32), (5.33), (5.26)

and (5.29), the probability density function for class i at time n can be written as

fxn|Hi
(xn|Hi) =

1

(2π)(Nn)/2|C(i)
n |1/2

e−
1
2

(
xn−m

(i)
n

)T

C
(i)−1

n

(
xn−m

(i)
n

)

=
1

(2π)Nn−1/2|C(i)
n−1|1/2

e−
1
2

(
x

(i)T
n−1C

(i)−1

n−1 x
(i)
n−1

)
× 1

(2π)S
(k)
n /2|E(i)(k)

n |1/2

× e−
1
2

(
x
(i)(k)
n −G

(k)T

n x
(i)
n−1

)T

E
(i)(k)−1

n

(
x
(i)(k)
n −G

(k)T

n x
(i)
n−1

)
. (5.34)

The first term on the right represents fxn−1 |Hi while the second term on the right

represents a conditional probability density function fxn|xn−1Hi
. In other words, (5.34)

can be written as

fxn|Hi
= fxn−1 |Hi

· fxn|xn−1Hi
i = 1, 2 (5.35)

where

fxn−1 |Hi
=

1

(2π)Nn−1/2|C(i)
n−1|1/2

e−
1
2

(
x

(i)T
n−1C

(i)−1

n−1 x
(i)
n−1

)
(5.36)

and

fxn|xn−1Hi =
1

(2π)S
(k)
n /2|E(i)(k)

n |1/2
e−

1
2

(
x
(i)(k)
n −G

(k)T

n x
(i)
n−1

)T

E
(i)(k)−1

n

(
x
(i)(k)
n −G

(k)T

n x
(i)
n−1

)
.

(5.37)

Using these results, the statistic hn(xn) defined in (5.10) becomes

hn(xn) = −2 ln

(
fxn−1 |H1

(xn−1|H1)

fxn−1 |H0
(xn−1|H0)

·
fxn|xn−1H1

fxn|xn−1H0

)
(5.38)

= −2 ln
fxn−1 |H1

(xn−1|H1)

fxn−1 |H0(xn−1|H0)
− 2 ln

fxn|xn−1H1

fxn|xn−1H0
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This can be written as

hn(xn) = hn−1(xn−1) + ∆hn(x(k)
n |xn−1), (5.39)

where

∆hn(x(k)
n |xn−1) = −2 ln

fxn|xn−1H1

fxn|xn−1H0

. (5.40)

Substituting (5.37) into (5.40) results in the expression

∆hn(x
(k)
n |xn−1) =

(x
(1)
n − G

(k)(1)T

n x
(1)
n−1)

2

|E(k)(1)
n |

−
(x

(0)
n − G

(k)(0)T

n x
(0)
n−1)

2

|E(k)(0)
n |

+ln
|E(k)(1)

n |
|E(k)(0)

n |
. (5.41)

Since the first observation vector is labeled x0 and the statistic h0(x0) =

h−1(x−1) + ∆h0(x
(0)
0 |x−1), the SPRT is first initialized with x−1 = 0 and the statistic

h−1(x−1) is empty. Thereafter, hn is computed from (5.39) and (5.41) recursively.

This statistic is used in the decision rule (5.9) to perform the classification.

C. CLASSIFICATION USING LINEAR PREDICTION

The equations for the multirate sequential classifier were developed assuming

that the observations were jointly Gaussian. The sequential classifier, however, can

also be interpreted in terms of linear prediction. By rearranging (5.27) and (5.28)

into

R(k)
n − Cn−1G

(k)
n = 0 (5.42)

E(k)
n = Σ(k)

n − R(k)T

n G(k)
n , (5.43)

these two equations can be combined in matrix form to write

Σ

(k)
n R

(k)T

n

R
(k)
n Cn−1





 I

−G
(k)
n


 =


E

(k)
n

0


 . (5.44)

These equations bear a striking similarity to the Normal equations of linear

prediction (see (4.2)). Indeed, the matrix −G
(k)
n can be interpreted as the prediction

filter coefficients for predicting the new observations, and E
(k)
n is the prediction error
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covariance matrix. More explicitly −G
(k)
n and E

(k)
n relate to the parameters in (4.9)

by




A0

A1

...

AQ




=




I | 0 | . . . | 0

| I | . . . | 0

−G
(K−1)
n | | . . . | 0

| −G
(K−2)
n | . . . | I

| | . . . | −G
(0)
n




(5.45)

and

E =




E
(K−1)
n | × | . . . | ×

0 | E
(K−2)
n | . . . | ×

... | ... | . . . | ×

0 | 0 | . . . | E
(0)
n




. (5.46)

The block form in (5.45) and (5.46) may be a little misleading. In most cases,

the width of the blocks is just one column and the “I” becomes a “1.” The matrices

in (5.45) and (5.46) have been represented in block form to allow for possible multiple

observations at each time step. The parameters −G
(k)
n and E

(k)
n thus represent the

periodically time-varying parameters used to predict each new observation (or set of

observations) within a block.

When a sufficiently high order Q is chosen for the prediction, the parameters

G
(k)
n and E

(k)
n do not depend explicitly on the time variable “n” but only on the phase

as indicated by the superscript k.

D. ALGORITHM SUMMARY

This section summarizes the multirate sequential classifier algorithm for ease

of implementation. The recursive classification algorithm can be divided into two

parts: 1) training and 2) testing.

In the first part, the system is trained to distinguish between two classes using

a priori information. Using known class training data, the classifier parameters (mean
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vectors, prediction coefficient matrices and prediction error variance matrices) for each

class are estimated. In addition, the thresholds used in classification are determined

and adjusted experimentally. These parameters are summarized in Table 5.1.

Table 5.1. Summary of Classifier Training Parameters

Class i Parameters: mean vectors, m
(i)(k)
n = Ei[x

(k)
n ]

i = 0, 1 Prediction coefficients, G
(i)(k)
n

Prediction Error Variances, E
(i)(k)
n

Classification Thresholds: A (Class 1) and B (Class 0)

In the second part new (test) data is presented to the classifier. The associated

class errors (ε
(1)(k)T

n and ε
(0)(k)T

n ) for the given signal, xn, are calculated and used

along with the class prediction error variances to calculate the SPRT statistic, hn,

for comparison with the class thresholds. When the SPRT statistic crosses a class

threshold, the classifier declares the classification; otherwise, the process is repeated.

These steps are shown in Table 5.2.

Table 5.2. Steps in Sequential Classification

1. x
(i)
n =

[
x

(i)
n−1

x
(k)
n −m

(i)(k)
n

]
i = 0, 1

2. ε
(i)(k)
n =

[
−G

(i)(k)
n

I

]T

x
(i)
n i = 0, 1

3. ∆hn = ε
(1)(k)T

n E
(1)(k)−1

n ε
(1)(k)
n − ε

(0)(k)T

n E
(0)(k)−1

n ε
(0)(k)
n + ln(|E(1)(k)

n |/|E(0)(k)
n |)

4. hn = hn−1 + ∆hn,
< −2 lnA → H1

> −2 ln B → H0
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The performance of the classifier can be evaluated with two key measures of

performance: the number of correct classifications and the length of data (length of

time) required to make a classification. By varying different properties of the classifier

and environment (e.g., signal-to-noise ratio), the effects of these different properties on

the classifier can be evaluated using the two performance measures. The remainder

of this chapter describes the simulations and results for varying conditions of the

classifier and environment.

E. SIMULATION SETUP AND PARAMETERS

In order to test the proof of concept for the multirate sequential classifier

multiple simulations were conducted. The test data consisted of recordings of sound

from one propellor plane and three different A-10 jet aircraft, with noise added. The

parameters that were varied during the simulations were the signal-to-noise ratio

(SNR) associated with the training and target data sequences, and the length of

the training sequences used to develop the classifier parameters. Simulations were

conducted to compare the single-channel, multichannel and multirate cases.

1. Test Data Characteristics

This subsection describes the characteristics of the test data. The original

audio data sequences were recorded at 44,100 Hz. The data was initially low-pass

filtered and downsampled by a factor of 10 to achieve a sampling rate of 4,410 Hz.

(The observed data for the simulation is then further decimated.) A spectral estimate

was then computed for each of the four data sequences prior to adding any additional

noise, in order to determine any unique characteristics. Figure 5.2 shows the spectral

plots of each sequence and Table 5.3 summarizes the dominant frequencies, and a

secondary frequency if noticeable, that were measured from the spectral plots.

From Fig. 5.2, it can be seen that the propellor plane has secondary frequency

at a lower frequency than the peak frequency of 192.0 Hz. A secondary frequency is
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Figure 5.2. Spectral Plots

Table 5.3. Spectral Information for Data Sequences

Propellor Plane A-10 Jet No. 1 A-10 Jet No. 2 A-10 Jet No. 3

Dominant

Freq (Hz) 192.0 145.0 82.5 84.6

Secondary

Freq (Hz) 106.9 N/A N/A 210.4
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also seen on the A-10 Jet No. 3 at 210.4 Hz. The A-10 Jet No. 1 has many peaks close

to each other. However, the magnitude of these peaks diminish as the distance from

the main peak increases. Thus they have not been considered as secondary peaks.

In addition to the spectral estimate of the test data, the autocorrelation of each

data sequence was calculated to examine any significant differences in correlation.

The autocorrelation plots were used to assist in selecting appropriate filter orders for

calculating the prediction orders used in the classifier. One can see from Fig. 5.3 that

the three A-10 Jet planes have similar, but not identical, correlation structure within

the first ten samples (dashed lines in Fig. 5.3.) This similar structure led to choosing

a prediction filter order larger than ten, as discussed in the next subsection.
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Figure 5.3. Estimated Autocorrelation Function for Aircraft Data at 4,410 Hz sam-
pling rate. Dashed lines show ±10 lag values.
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2. Simulation Models

For the simulations conducted, three scenarios were considered. These scenar-

ios considered classification using a single-channel system, the multichannel system

and the multirate system. All scenarios began with the recorded data sampled at

4410 Hz. For the single-channel scenario, the recorded data was decimated by a fac-

tor of two, resulting in a sampling rate of 2205 Hz. This was done to ensure that

the highest rate in all three scenarios would be the same. Additive white Gaussian

noise with a mean of zero and a variance of σ2
η was then added to achieve a desired

Signal-to-Noise ratio set by the simulation parameters. The proper selection of the

value of σ2
η is described below. The single-channel scenario is shown in Fig. 5.4.

Figure 5.4. Observation Model for the Single Channel Scenario.

The simulation model for the multichannel scenario is similar to the single-

channel scenario, with the exception that after the recorded data is decimated by a

factor of two, the signal is split into two channels. Noise was then added to each

channel to achieve a desired SNR. The model for the multichannel scenario is shown

in Fig. 5.5.

For the multirate scenario, Fig. 5.6, the high rate channel was decimated by a

factor of 2 and the low rate channel was decimated by a factor of 3. Noise was then

added to each channel to achieve a desired signal-to-noise ratio.

In order to produce the desired SNR for these models, the noise power must

be calculated using the desired SNR in decibels and the estimated power of the

appropriate channel. If the output of the decimator is s[mx], where mx is the time
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Figure 5.5. Observation Model for the Multichannel Scenario.

Figure 5.6. Observation Model for the Multirate Scenario.
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index for the decimated signal, η[mx] is the noise signal, and the observed signal x[mx]

is

x[mx] = s[mx] + η[mx],

then the noise power, σ2
η, can be calculated as

σ2
η =

1
mx

mx−1∑

i=0

s∗[i]s[i]

10−SNR/10
.

Once the noise power has been calculated, this value can be used to generate the

appropriate noise signal, η[mx].

3. Prediction Coefficients

When calculating the prediction coefficients for the training data, an appro-

priate filter order has to be chosen. In general, the filter order should be large enough

to exploit differences in correlation between the two classes of signals being tested.

It should be small enough, however, so that it does not add excessive computational

burden to the simulation and does not become sensitive to small artifacts of the train-

ing data. In addition, as the filter order increases, the determinant of the prediction

error covariance, which measures the quality of the prediction, typically approaches

a value such that any further increases in filter order do not result in an appreciable

improvement in performance.

From Fig. 5.3, it can be seen that the propellor plane is uniquely different in its

correlation structure, but the three A-10 jets have similar structures for lags smaller

then ten. Thus choosing an order for the linear prediction filter less than ten would

probably not provide enough uniqueness in the three A-10 jet parameters to be able

to adequately classify the different planes. However, the correlation shapes at lags

larger than ten are sufficiently dissimilar to exploit these differences in correlations.

Although larger filter orders could have been used, the filter order was chosen to be

40 to minimize excess computations.
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The prediction coefficients and prediction error variances were calculated in the

manner described in Chapter IV, using the multichannel Levinson recursion. Since

the decimation rates for the two channels in the multirate scenario are two and three,

the system period, K, is equal to 6. In addition, there are a total of five observations

that occur within one system period, three for the high-rate channel and two for the

low-rate channel. The sampling pattern is shown in Fig. 5.7. It is assumed the data

is aligned so that at the initial observation, both channels produce observations.

Figure 5.7. Illustration of Decimation for the Multirate Scenario.

4. Training Data

When calculating the prediction coefficients, a set of training data for each

class had to be used. This data consisted of a portion of the total data signal used

for each class, as shown shaded in Fig. 5.8. The length of this portion was varied

according to the scenario parameters. The rest of the signal was then used for the

testing portion of the simulation.

During the testing phase, the simulation starts at the beginning of the test

portion of the input signal and continues to take observations until a classification is

made. This is considered to be one “trial.” A second trial is then begun starting with

the observation corresponding to the data point just after the data point at which

the first classification was made, as shown in Fig. 5.8. This process is continued
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until 50 trials are conducted. The length of the data was sufficient to ensure that the

simulation was able to conduct 50 trials before reaching the end of the data.

Figure 5.8. Training Data.

Although the sequential classifier can in theory classify data based on as little

as one single observation, in practice it is better to allow some minimum number of

observations to be collected before a classification is attempted. In these experiments,

this minimum data length was linked to the length of the linear prediction filter. In

particular, the algorithm was designed not to classify the target until the number of

observations exceeded the filter order by one observation. It was decided to implement

the algorithm this way to avoid any errant classifications that might occur while the

algorithm collects the observations needed to make the predictions at full order.

F. SIMULATION RESULTS AND ANALYSIS

The results for the multirate scenarios are presented in the following subsec-

tion; the key parameters are analyzed in the last subsection.
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1. Multirate Scenario Results

Since there were four classes of data (one propellor and three jet planes) the

classifier was tested using two classes at a time. This resulted in six sets of experi-

ments, whose results are listed in Tables 5.4 through 5.9 of this section.

In order to make comparisons, specific parameters were varied for the simula-

tions. These were the signal-to-noise ratio (SNR) of the target data and the length

of data sequences used to calculate class parameters. In all cases, the training data

was assumed to be noiseless but white noise was added to the test data to achieve a

desired SNR.

Table 5.4. Classification Results: Propellor vs. A-10 Jet No. 1

Data Propellor Jet No. 1 Average Time Average Time

SNR Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications Propellor Jet No. 1

(out of 50) (out of 50) (msec) (msec)

40 dB 6250 50 50 9.52 9.52

2500 50 50 9.52 9.52

20 dB 6250 50 50 9.52 9.59

2500 50 39 9.52 9.52

10 dB 6250 50 21 9.52 9.52

2500 50 10 9.52 9.52

Table 5.4 shows the classification results for the propellor plane versus the

A-10 Jet No. 1. This table lists both the number of correct classifications for each

target as well as the average time to classify the target. The average time of 9.52 msec

listed in the table corresponds to the minimum observation condition of 41 samples

(see Subsection V.E.4). It can be seen from Table 5.4 that the classifier makes its

decision almost immediately after reaching the full filter order under all cases. Thus,
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for the case of the propellor plane versus Jet No. 1, the advantage of a sequential

classifier is not realized. This is not true for all the test scenarios.

From Table 5.4, one can see that the algorithm is able to classify the propellor

under all conditions, and almost immediately after collecting enough data to reach

full order. In an environment with an SNR of 40 dB, the classifier is able to classify

the propellor plane nearly perfectly. As the SNR is reduced to 20 dB, the success

rate reduces to a little below 80% for the short training data length and under 15%

for the high training data length. With the middle length training data classification

is perfect. Proportionately similar reductions occur as the SNR is dropped further to

10 dB. The results degrade significantly at an SNR of 10 dB. Namely, the classifier

tends to classify both signals as a propellor plane; this puts into question whether

the classifier appropriately classifies the propellor plane at 10 dB or defaults to the

propellor plane because of the signal degradation. In almost all cases classification

occurred with the minimum allowable number of observations. For SNR below 5

dB, classification degraded severely. Therefore, the results are not presented in these

tables.

Table 5.5. Classification Results: Propellor vs. A-10 Jet No. 2

Data Propellor A-10 No. 2 Average Time Average Time

SNR Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications Propellor A-10 No. 2

(out of 50) (out of 50) (msec) (msec)

40 dB 6250 50 50 9.56 9.52

2500 50 50 9.53 9.52

20 dB 6250 50 36 9.52 9.53

2500 50 8 9.52 9.53

10 dB 6250 50 2 9.52 9.52

2500 50 0 9.52 9.52

The results of classification for the propellor plane and the A-10 Jet No. 2

are contained in Table 5.5. Similar to the testing between the propellor plane and
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the A-10 Jet No. 1, the algorithm was able to correctly classify the propellor plane

nearly perfectly under all conditions simulated. In addition, the classification occurred

almost immediately after reaching the minimum number of observations allowed. The

number of correct classifications for Jet No. 2 was slightly less than that for Jet No. 1.

As with Jet No. 1, the performance of Jet No. 2 dropped appreciably as the SNR

was reduced to 20 dB. Under the conditions with an SNR of 10 dB, the classifier

performed poorly when trying to classify Jet No. 2.

Table 5.6. Classification Results: Propellor vs. A-10 Jet No. 3

Data Propellor A-10 No. 3 Average Time Average Time

SNR Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications Propellor A-10 No. 3

(out of 50) (out of 50) (msec) (msec)

40 dB 6250 50 50 9.52 9.52

2500 50 50 9.52 9.52

20 dB 6250 50 45 9.52 9.53

2500 50 35 9.52 9.53

10 dB 6250 50 2 9.52 9.52

2500 50 0 9.52 9.52

For the experiments conducted between the propellor plane and the A-10 Jet

No. 3 shown in Table 5.6, the algorithm once again was able to classify the propellor

plane one hundred percent of the time and with the minimum number of observations

allowed. The results for Jet No. 3 were somewhat between the result for the other

two A-10 jets. For the simulations with an SNR of 40 dB, the algorithm was able

to classify Jet No. 3 perfectly. As the SNR was reduced to 20 dB, the performance

dropped to between 70% and 90%. The performance then significantly dropped to

almost no correct classifications with an SNR of 10 dB.

Besides comparing the jet planes to the propellor plane, it was also of interest

to see if the classifier could discriminate between the different types of jet planes.
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Table 5.7. Classification Results: A-10 Jet No. 1 vs. A-10 Jet No. 2

Data A-10 No. 1 A-10 No. 2 Average Time Average Time

SNR Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications A-10 No. 1 A-10 No. 2

(out of 50) (out of 50) (msec) (msec)

40 dB 6250 49 47 10.01 9.94

2500 11 50 9.68 9.52

20 dB 6250 43 23 9.68 9.67

2500 19 42 9.65 9.54

10 dB 6250 43 16 9.54 9.57

2500 15 37 9.52 9.52

This is obviously a more difficult problem than discriminating between a jet plane

and a propellor plane.

When comparing the different jets, the results were more balanced than those

seen comparing the jets with the propellor plane. For the experiments conducted

comparing Jet No. 1 and Jet No. 2, shown in Table 5.7, percentages of correct clas-

sification greater than eighty percent were typical for about half of the scenarios.

The rest of the results ranged from 0% to about 50%. The time needed for the al-

gorithm to make a classification decision is somewhat higher than the time needed

when comparing a jet plane to the propellor plane.

Table 5.8 contains the results for the experiments conducted comparing the

A-10 Jet No. 1 with Jet No. 3. From this table one can see that the algorithm was

able to successfully classify Jet No. 1 correctly for the environments with SNRs of 20

dB and 10 dB, while Jet No. 3 performed poorly under these conditions. The results

were opposite for the case of an SNR of 40 dB. Classifications in the 20 dB and 10 dB

cases were made almost immediately after reaching the minimum allowable length.

For the 40 dB case the classification time was significantly longer.

Results for comparing the A-10 Jet No. 2 and the A-10 Jet No. 3 are contained

in Table 5.9. From this table one can see that nearly perfect results for classifying
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Table 5.8. Classification Results: A-10 Jet No. 1 vs. A-10 Jet No. 3

Data A-10 No. 1 A-10 No. 3 Average Time Average Time

SNR Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications A-10 No. 1 A-10 No. 3

(out of 50) (out of 50) (msec) (msec)

40 dB 6250 11 50 10.56 9.52

2500 5 50 9.53 9.52

20 dB 6250 50 1 9.52 9.66

2500 50 2 9.52 9.52

10 dB 6250 50 0 9.52 9.52

2500 50 0 9.52 9.52

Table 5.9. Classification Results: A-10 Jet No. 2 vs. A-10 Jet No. 3

Data A-10 No. 2 A-10 No. 3 Average Time Average Time

SNR Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications A-10 No. 2 A-10 No. 3

(out of 50) (out of 50) (msec) (msec)

40 dB 6250 40 49 12.48 11.40

2500 50 49 13.39 11.65

20 dB 6250 49 4 9.53 9.56

2500 50 0 9.52 9.52

10 dB 6250 50 0 9.52 9.52

2500 50 0 9.52 9.52
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Jet No. 2 were obtained. Classifications occurred almost immediately after reaching

full order for the 20 dB and 10 dB cases. While more time was needed for the 40

dB cases. For Jet No. 3 nearly perfect classification results were obtained for the 40

dB cases. This performance fell to nearly 0% for the 20 dB ad 10 dB cases. Similar

to the experiments with the propellor plane and Jet No. 1, as the SNR is dropped

significantly, degradation only in Jet No. 3 tends to show that the classifier is skewed

towards Jet No. 2 questioning whether the results for Jet No. 2 at SNRs of 20 dB

and 10 dB are reliable.

In another set of experiments, the classifier designed using the propellor and

Jet No. 1 was tested on data from all four classes (propellor, Jet No. 1, Jet No. 2 and

Jet No. 3). When tested on Jet No. 2 and Jet No. 3, the classification was considered

to be correct if the classifier chose the “Jet” category, and incorrect if the classifier

classified these jet planes as propellor planes.

Results of these experiments are listed in Table 5.10. From these results, it

can be seen that the classifier was able to correctly classify the A-10 Jets No. 2 and

No. 3 as jets perfectly for the 40 dB scenarios. When the SNR was reduced to 20

dB, the A-10 Jet No. 3 was classified nearly perfectly, while the A-10 Jet No. 2 had

at most a classification rate of about 60%. Under the 10 dB conditions, the classifier

performed poorly when trying to classify the A-10 Jets No. 2 and No. 3.

2. Analysis of Single-channel vs. Multirate vs. Multichannel
Simulations

Experiments identical to those conducted for the multirate data were con-

ducted for the single channel and multichannel scenarios. In most situations, it was

possible to adequately classify the target in these other scenarios. Therefore, to com-

pare the effectiveness of the methods, the average number of data samples needed to

make a classification were also compared. Tables 5.11 through 5.13 show results for

some of the experiments for an environment with an SNR of 40 dB. Table 5.11 shows

that under these conditions, the classifier was able to correctly classify the propellor
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Table 5.10. Classification Results: Class 0 = Propellor and Class 1 = A-10 Jet No. 1

Data Propellor Jet No. 1 Jet No. 2 Jet No. 3 Average Time Average Time Average Time Average Time

SNR Training No. of Correct No. of Correct No. of Correct No. of Correct to Classify to Classify to Classify to Classify

Length Classifications Classifications Classifications Classifications Propellor Jet No. 1 Jet No. 2 Jet No. 3

(out of 50) (out of 50) (out of 50) (out of 50) (msec) (msec) (msec) (msec)

40 dB 6250 50 50 50 50 9.52 9.52 9.52 9.52

2500 50 50 30 50 9.52 9.52 10.24 9.52

20 dB 6250 50 50 32 47 9.52 9.52 9.57 9.53

2500 50 39 3 41 9.52 9.75 9.55 9.54

10 dB 6250 50 21 2 9 9.52 9.52 9.52 9.52

2500 50 10 0 10 9.52 9.52 9.52 9.53

111



and Jet No. 2 in all these scenarios. In addition, it can be seen that the time needed

to make the classification is roughly the same for the single-channel, multichannel

and multirate cases.

Table 5.11. Classification Results for Propellor and Jet No. 2

Data Propellor Jet No. 2 Average Time Average Time

Scenario Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications Propellor Jet No. 2

(out of 50) (out of 50) (msec) (msec)

Single-Channel 6250 50 50 10.12 9.56

2500 50 50 9.56 9.52

Multichannel 6250 50 50 9.52 9.52

2500 50 50 9.76 10.28

Multirate 6250 50 50 9.53 9.52

2500 50 50 9.52 9.53

In table 5.12, it can be seen that ability to distinguish between Jet No. 1 and

Jet No. 2 becomes more difficult than between the propellor plane and jets for all

three scenarios. The multirate classifier, however, is able to make its classifications

in a shorter amount of time.

In the example of the A-10 Jet No. 2 versus the A-10 Jet No. 3, Table 5.13,

the classifiers again performed fairly well. Although, the amount of time necessary

to make classification decisions for all three cases was slightly higher than for some

of the other simulations, the multirate classifier on average needed less time to make

its classification.

From these tables it can be seen that the multirate case has some advantage

over the single-channel case. In low noise environments where the single-channel,

multirate and multichannel scenarios all had a high success rate of proper classifica-

tion, the multirate scenario was able to classify the proper signal in a shorter amount

of time. It was noticed that the multichannel channel case at times needed more time
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Table 5.12. Classification Results for Jet No. 1 and Jet No. 2

Data Jet No. 1 Jet No. 2 Average Time Average Time

Scenario Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications Jet No. 1 Jet No. 2

(out of 50) (out of 50) (msec) (msec)

Single-Channel 6250 50 36 9.90 35.78

2500 45 49 15.96 22.78

Multichannel 6250 50 35 9.89 32.42

2500 46 50 15.37 22.51

Multirate 6250 49 47 10.02 9.94

2500 11 50 9.68 9.52

Table 5.13. Classification Results for Jet No. 2 and Jet No. 3

Data Jet No. 2 Jet No. 3 Average Time Average Time

Scenario Training No. of Correct No. of Correct to Classify to Classify

Length Classifications Classifications Jet No. 2 Jet No. 3

(out of 50) (out of 50) (msec) (msec)

Single-Channel 6250 35 50 20.10 10.74

2500 50 49 15.13 13.08

Multichannel 6250 37 50 17.29 11.31

2500 50 48 12.05 15.18

Multirate 6250 40 49 12.48 11.40

2500 50 49 13.48 11.65

113



to make a classification decision than the multirate case. Although there is more

data available in the multichannel scenario, the offset observations of the multirate

scenario adds more statistical information to the solution.

3. Key Parameters for the Multirate Case

There were three main characteristics of the data that were analyzed for their

effect on the classification performance. They were the dominant frequency of the

target data, the signal-to-noise ratio and the training data length. In addition, the

performance between single-channel, multirate and multichannel observations were

compared. Each is described individually in the following subsubsections, however,

their impact is not independent of each other. So, if noticeable, their relative impact

on each other is discussed.

a. Dominant Frequency

While analyzing the data, it became apparent that the classifier per-

formed much better when one target data class had a dominant frequency higher than

that of the other class to which it was being compared. This was especially noticeable

in the high noise environment scenarios. Under the high noise conditions, the jets

were not classified correctly with any degree of success against the propellor plane.

Only under the low noise condition (SNR = 10 dB) did the jets display moderate

success with classification against the propellor plane. Likewise, Jet No. 1 had a

higher correct classification rate when attempting to classify against Jets No. 2 and

No. 3. And, Jet No. 2 performed better against Jet No. 3.

b. Signal-to-Noise Ratio

By analyzing the simulation data, it became noticeable that under low

noise conditions (SNR = 40 dB), the three A-10 jets were classified properly against

the propellor plane. As the training sample length was reduced, the performance

degraded dramatically. In addition, the higher noise conditions reduced the
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performance of the jets significantly when compared to the propellor plane. It appears

that the dominant frequency has a large effect on the outcome of the classifier, in any

condition other than ideal.

c. Training Data Length

As might be anticipated, the longer the training data length, the better

the classifier typically performed. Not only did the classification rate generally in-

crease, but the number of samples needed to make a proper classification was reduced.

For the audio data used, however, when the size of the training data was increased to

12500 samples the performance of the classifier actually degraded. It was determined

that at this length the data available for testing became statistically different enough

from the training data and caused a degradation in the performance of the classifiers.

G. CONCLUSION

In this chapter, it was shown that with some modifications to the single-

channel classifier, one can implement a sequential classifier that accepts multirate

data. In addition, using the multirate Levinson recursion developed in Chapter IV;

one can derive the needed class parameters for the multirate sequential classifier. The

multirate sequential classifier can handle multiple channels of observations occurring

at different sampling intervals.

Simulations were conducted to analyze the effectiveness of the multirate se-

quential classifier compared with a single-channel classifier and a multichannel clas-

sifier where all channels were sampled at the same rate. It was seen that under low

noise environments all three classifiers performed well, but the multirate classifier was

able to make classification decisions in a shorter amount of time due to the added

information from the offset observations. The amount of addiitonal information con-

tained in the multirate classifier is dependent upon the disparity between channel

sampling rates.
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VI. CONCLUSIONS AND FUTURE WORK

The goal of this work was to further develop the theory and applications of

statistical multirate signal processing. A summary of the work and contributions of

this thesis is provided here. This is followed by a section of suggestions for further

research.

A. CONCLUSIONS

In Chapter II, the foundation necessary to describe multirate systems is es-

tablished. Part of this foundation requires defining some key terms applicable to

multirate systems, such as fundamental rate, system period and system phase. These

terms are used to explicitly describe the periodic nature of the multirate system

and allow for the appropriate selection of values for the periodic components in the

multirate system. The definitions for describing the statistical characterizations of

multirate signals and building blocks (e.g., decimator and expander) are provided.

Compact matrix forms of the decimator, expander and filters, which take advantage

of Kronecker product relations, are presented. Finally, the LPTV filter bank of [Ref.

17] is generalized to apply to systems with different input and output rates.

In Chapter III, the explicit direct form of the multirate optimal estimator is

developed. This optimal estimator uses multiple-input signals observed at different

sampling rates to estimate a desired signal. In addition, a recursive innovations

form of this multirate optimal estimator is derived. This innovations form of the

optimal estimator separates the direct form optimal filters into modified optimal

filters and cross filters. These cross filters remove any information from one signal

that is contained in the other signals, in an ordered fashion. In essence, a new set

of input signals that are mutually orthogonal are derived and used as the inputs to

the modified optimal filters. Using the recursive form of the optimal filter allows
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one to calculate the relative change in performance in the optimal estimator when

input signals are added or removed from the system. Through simulations, it is

demonstrated that optimal filtering of multiple multirate channels for an AR process

and a sinusoidal process can provide improved performance over optimal filtering

using a single channel, even if the secondary channel when used by itself has high

error variances.

In Chapter IV, the optimal filtering problem is specialized for the case of

optimal multirate linear prediction. The multirate Normal equations are derived

for a multirate system with multiple input and output signals, which are observed at

different sampling rates. For a multirate system with a system period K, there are up

to K distinct sets of prediction coefficients and error covariance matrices that apply in

a periodic fashion. An efficient method for calculating the multirate linear prediction

coefficients and error variances is developed through the use of the multichannel

Levinson recursion and generalized triangular UL factorization. A specific algorithm

for the generalized triangular factorization is included in Appendix E.

In Chapter V, a multirate sequential classifier is derived starting from the

basic theory of sequential hypothesis testing. It is shown that classifier parameters

needed for implementing the multirate sequential classifier are the same as those for

multirate linear prediction. A multirate sequential classifier is then implemented and

tested using audio files of a propellor plane and three A-10 jet aircraft. The experi-

ments tested the classifier performance in selecting between the propellor plane and

jet aircraft as certain system parameters are changed. These parameters consisted of

the signal-to-noise ratios of the observed signal and the length of the training data.

In addition, the performance of the multirate classifier is compared to that of the
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single-channel and multichannel classifiers using similar data. These experiments

showed that improved performance can be obtained by using two channels of obser-

vation data even if one channel is sampled at a lower rate.

B. TOPICS FOR FURTHER INVESTIGATION

Multirate signal processing continues to be an active area of research and many

opportunities exist for further research, particularly in the area of statistical signal

processing. The optimal multirate filter developed in this dissertation is an FIR

filter. The infinite impulse response (IIR) filter was not considered here; however,

multirate theory applies equally well to the IIR case and also would provide significant

contributions to the theory of multirate signal processing.

Another opportunity for further work on multirate systems is in the area of

lattice structures. Some work on lattice structures has already been researched, but

extensive development of lattice theory as it applies to multirate linear prediction can

lead to more convenient representation and implementation. In addition, this disser-

tation focused on optimal solutions using time-domain characteristics. Solutions to

optimal filtering of multirate systems using frequency-domain techniques would fur-

ther expand the theory and utility of multirate statistical signal processing. Research

into filter design of periodically correlated scalar time series using a spectral factor-

ization algorithm for wide-sense stationary vector processes has already been started

by Spurbeck and Scharf [Ref. 29].

Research from a companion thesis [Ref. 50] has extended the concepts of opti-

mal multirate filtering to two-dimensional (2-D) signal processing and high-resolution

image reconstruction. The reader of this thesis may want to refer to [Ref. 50] for

some additional topics not treated here.
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APPENDIX A. POWER SPECTRAL DENSITY

FOR MULTIRATE PROCESSES

This appendix contains the derivations of the power spectral density functions

for the the decimator, expander and filters presented in Chapter II. The standard

equation for the power spectral density function of a stationary process

S(ω) =
∞∑

l=−∞

R[l]e−jωl (A.1)

can be applied to the input and output correlations independently. However, any

difference between sampling rates of the input and output signals makes it impossible

to develop a power spectral density function for the cross-correlation dependent on

a lag only. Therefore it is necessary to use a two-dimensional power spectral density

function. This function is defined as

S2D(λ1, λ0) =
∞∑

n1=−∞

∞∑

n0=−∞

R[n1, n0]e
−jλ1n1e−jλ0n0 . (A.2)

For the input to a decimator, expander or filter, the power spectral density is

defined as

S2D
x (λ1, λ0) =

∞∑

n1=−∞

∞∑

n0=−∞

Rx[n1, n0]e
−jλ1n1e−jλ0n0 . (A.3)

Using the time-lag form (when appropriate), the power spectral density function

becomes

S2D
x (λ, ω) =

∞∑

n=−∞

∞∑

l=−∞

Rx[n; l]e−jλne−jωl, (A.4)

which reduces to (A.1) when the signal is wide sense stationary.
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A. DECIMATION

The operation of decimation is depicted in Fig. A.1 and defined as

y[my] = x[Lmy] for m = . . . ,−1, 0, 1, . . . .

Figure A.1. Decimator

The correlation functions for the decimator are as shown in Table 2.2 of Chap-

ter II. The output power spectral density function for decimation is

S2D
y (λ1, λ0) =

∞∑

my=−∞

∞∑

m′
y=−∞

Ry[my,m
′
y]e

−jλ1mye−jλ0m′
y

=
∞∑

my=−∞

∞∑

m′
y=−∞

Rx[Lmy, Lm′
y]e

−jλ1m′
ye−jλ0my

=
∞∑

my=−∞

∞∑

m′
y=−∞

Rx[Lmy, Lm′
y]e

−j(λ1/L)Lm′
ye−j(λ0/L)Lmy

S2D
y (λ1, λ0) = S2D

x

(
λ1

L
,
λ0

L

)

In the time-lag representation, the output power spectral density function is defined
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as

S2D
y (λ, ω) =

∞∑

my=−∞

∞∑

ly=−∞

Ry[my; ly]e
−jλmye−jωly

=
∞∑

my=−∞

∞∑

ly=−∞

Rx[Lmy;Lly]e
−jλmye−jωly

=

∞∑

my=−∞

∞∑

ly=−∞

Rx[Lmy;Lly]e
−j(λ/L)Lmye−j(ω/L)Lly

S2D
y (λ, ω) = S2D

x

(
λ

L
,
ω

L

)

or in lag representation only

Sy(ω) =

∞∑

ly=−∞

Ry[ly]e
−jωly

=
∞∑

ly=−∞

Rx[Lly]e
−jωly

=
∞∑

ly=−∞

Rx[Lly]e
−j(ω/L)Lly

Sy(ω) = Sx

(ω

L

)

The cross-power spectral density function is given by

S2D
xy (λx, λy) =

∞∑

mx=−∞

∞∑

my=−∞

Rxy[mx,my]e
−jλxmxe−jλymy

=

∞∑

mx=−∞

∞∑

my=−∞

Rx[mx, Lmy]e
−jλxmxe−jλymy

=
∞∑

mx=−∞

∞∑

my=−∞

Rx[mx, Lmy]e
−jλxmxe−j(λy/L)Lmy

S2D
xy (λx, λy) = S2D

x

(
λx,

λy

L

)
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In the time-lag representation, the cross-power spectral density function is defined as

S2D
xy (λx, ωy) =

∞∑

mx=−∞

∞∑

ly=−∞

Rxy[mx; ly]e
−jλxmxe−jωyly

=
∞∑

mx=−∞

∞∑

ly=−∞

Rx[mx;Lly − (L − 1)mx]e
−jλxmxe−jωyly

=
∞∑

my=−∞

∞∑

ly=−∞

Rx[mx;Lly − (L − 1)mx]e
−jλxmxe−j(L−1

L
ωy)mxe−j(ωy/L)Llye−j(−L−1

L
ωy)mx

=

∞∑

my=−∞

∞∑

ly=−∞

Rx[mx;Lly − (L − 1)mx]e
−j(λx+L−1

L
ωy)mxe−j(ωy/L)(Lly−(L−1)mx)

S2D
xy (λx, ωy) = S2D

x

(
λx +

L − 1

L
ωy,

ωy

L

)

B. EXPANSION

The operation of expansion is depicted in Fig. A.2 and defined as

y[m] =





x[m/I] m div I

0 otherwise

.

Figure A.2. Expander

The correlation functions for the expander are as shown in Table 2.3 in Chapter
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II. The output power spectral density function for expansion is

S2D
y (λ1, λ0) =

∞∑

my=−∞

∞∑

m′
y=−∞

Ry[my,m
′
y]e

−jλ1mye−jλ0m′
y

=
∞∑

my=−∞

∞∑

m′
y=−∞

Rx[my/I,m′
y/I]e−jλ1mye−jλ0m′

y

=

∞∑

my=−∞

∞∑

m′
y=−∞

Rx[my/I,m′
y/I]e−j(Iλ1)my/Ie−j(Iλ0)m

′
y/I

S2D
y (λ1, λ0) = S2D

x (Iλ1, Iλ0)

In the time-lag representation, the output power spectral density function is defined

as

S2D
y (λ, ω) =

∞∑

my=−∞

∞∑

ly=−∞

Ry[my; ly]e
−jλmye−jωly

=
∞∑

my=−∞

∞∑

ly=−∞

Rx[my/I; ly/I]e−jλmye−jωly

=

∞∑

my=−∞

∞∑

ly=−∞

Rx[my/I; ly/I]e−j(Iλ)my/Ie−j(Iω)ly/I

S2D
y (λ, ω) = S2D

x (Iλ, Iω)

A lag representation for the expander does not exist, since the output is not wide

sense stationary. The cross-power spectral density function is given by

S2D
xy (λx, λy) =

∞∑

mx=−∞

∞∑

my=−∞

Rxy[mx,my]e
−jλxmxe−jλymy

=
∞∑

mx=−∞

∞∑

my=−∞

Rx[mx,my/I]e−jλxmxe−jλymy

=

∞∑

mx=−∞

∞∑

my=−∞

Rx[mx,my/I]e−jλxmxe−j(Iλy)my/I

S2D
xy (λx, λy) = S2D

x

(
λx,

λy

L

)
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In the time-lag representation, the cross-power spectral density function is defined as

S2D
xy (λx, ωy) =

∞∑

mx=−∞

∞∑

ly=−∞

Rxy[mx; ly]e
−jλxmxe−jωyly

=
∞∑

mx=−∞

∞∑

ly=−∞

Rx[mx; (ly + (I − 1)mx)/I]e−jλxmxe−jωyly

=
∞∑

my=−∞

∞∑

ly=−∞

Rx[mx; (ly + (I − 1)mx)/I]e−jλxmxe−j(−(I−1)ωymx)e−j(Iωy)ly/Ie−j(I−1)ωymx

=

∞∑

my=−∞

∞∑

ly=−∞

Rx[mx; (ly + (I − 1)mx)/I]e−j(λx−(I−1)ωy)mxe−j(Iωy)(ly+(I−1)mx)/I

S2D
xy (λx, ωy) = S2D

x (λx − (I − 1)ωy, Iωy)

C. FILTERS

Filtering is depicted in Fig. A.3 and defined as

y[m] =
∞∑

r=−∞

h[r]x[m− r].

Figure A.3. Filter

The correlation functions for the filter are as shown in Table 2.4 in Chapter

II. The output power spectral density function for a filter is

S2D
y (λ1, λ0) =

∞∑

m=−∞

∞∑

m′=−∞

Ry[m,m′]e−jλ1me−jλ0m′

=
∞∑

m=−∞

∞∑

m′=−∞

(Rx[m,m′] ∗ h[m] ∗ h∗[m′]) e−jλ1me−jλ0m′

S2D
y (λ1, λ0) = S2D

x (λ1, λ0)H(λ1)H
∗(λ0)
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In the time-lag representation, the output power spectral density function is defined

as

S2D
y (λ, ω) =

∞∑

m=−∞

∞∑

l=−∞

Ry[m; l]e−jλme−jωl

=

∞∑

m=−∞

∞∑

l=−∞

(Rx[m; l] ∗ h[m] ∗ h∗[−l])e−jλme−jωl

S2D
y (λ, ω) = S2D

x (λ, ω)H(λ)H∗(ω)

or in lag representation only

Sy(ω) =
∞∑

l=−∞

Ry[l]e
−jωl

=
∞∑

l=−∞

(Rx[l] ∗ h[l] ∗ h∗[l]) e−jωl

Sy(ω) = Sx(ω)H(ω)H∗(ω)

The cross-power spectral density function is given by

S2D
xy (λ1, λ0) =

∞∑

m=−∞

∞∑

m′=−∞

Rxy[m,m′]e−jλ1me−jλ0m′

=
∞∑

m=−∞

∞∑

m′=−∞

Rx[m,m′] ∗ h∗[m′]e−jλ1me−jλ0m′

S2D
xy (λ1, λ0) = S2D

x (λ1, λ0)H
∗(λ0)

In the time-lag representation, the cross-power spectral density function is defined as

S2D
xy (λ, ω) =

∞∑

m=−∞

∞∑

l=−∞

Rxy[m; l]e−jλme−jωl

=
∞∑

m=−∞

∞∑

l=−∞

Rx[m; l] ∗ h∗[−l]e−jλme−jωl

S2D
xy (λ, ω) = S2D

x (λ, ω)H∗(ω)
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D. SUMMARY OF CORRELATION AND POWER SPEC-

TRAL DENSITY

For ease of reference, a summary of the correlation functions and power spec-

tral densities for decimation, expansion and filtering is provided in Tables A.1 through

A.3.

Table A.1. Summary of Decimation

Ry[my,m
′
y] = Rx[Lmy, Lm′

y] S2D
y (λ1, λ0) = S2D

x (λ1

L
, λ0

L
)

Ry[my; ly] = Rx[Lmy;Lly] S2D
y (λ, ω) = S2D

x

(
λ
L
, ω

L

)

Ry[ly] = Rx[Lly] Sy(ω) = Sx

(
ω
L

)

Rxy[mx,my] = Rx[mx, Lmy] S2D
xy (λx, λy) = S2D

x

(
λx,

λy

L

)

Rxy[mx; ly] = Rx[mx;Lly − (L − 1)mx] S2D
xy (λx, ωy) = S2D

x

(
λx +

L − 1

L
ωy,

ωy

L

)
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Table A.2. Summary of Expansion

Ry[my,m
′
y] =

{
Rx[my/I,m′

y/I] my,m
′
y div I

0 otherwise
S2D

y (λ1, λ0) = S2D
x (Iλ1, Iλ0)

Ry[my; ly] =

{
Rx[my/I; ly/I] my, ly div I

0 otherwise
S2D

y (λ, ω) = S2D
x (Iλ, Iω)

Rxy[mx,my] =

{
Rx[mx,my/I] my div I

0 otherwise
S2D

xy (λx, λy) = S2D
x (λx, Iλy)

Rxy[mx; ly] =

{
Rx[mx; (ly + (I − 1)mx)/I] mx − ly div I

0 otherwise
S2D

xy (λx, ωy) = S2D
x (λx − (I − 1)ωy , Iωy)

Table A.3. Summary of Filtering

Ry[m,m′] = Rx[m,m′] ∗ h[m] ∗ h∗[m′] S2D
y (λ1, λ0) = S2D

x (λ1, λ0)H(λ1)H
∗(λ0)

Ry[l] = Ry[l] ∗ h[l] ∗ h∗[−l] Sy(ω) = Sx(ω)H(ω)H∗(ω)

Rxy[m,m′] = Rx[m,m′] ∗ h∗[m′] S2D
xy (λ1, λ0) = S2D

x (λ1, λ0)H
∗(λ0)

Rxy[m, l] = Rx[m; l] ∗ h∗[−l] S2D
xy (λ1, λ0) = S2D

x (λ, ω)H∗(ω)
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APPENDIX B. KRONECKER PRODUCT AND

REVERSAL NOTATION

A. KRONECKER PRODUCT

This appendix provides the definition of a Kronecker Product and lists some

useful relations. A thorough discussion of Kronecker products and matrix calculus is

contained in [Ref. 62] and a shorter concise synopsis is contained in [Ref. 63].

Given two matrices A and B, the Kronecker product A ⊗ B is defined as

A =




a11B a12B . . . a1jB

a21B a22B . . . a2jB
...

...
. . .

...

ai1B ai2B . . . aijB




Some basic properties and relations for Kronecker products are provided in Table B.1.

Table B.1. Some Properties of Kronecker Products

(1) (A ⊗ B) (D ⊗ G) = AD ⊗ BG

(2) (A + H)⊗ (B + R) = A ⊗ B + A ⊗ R + H ⊗B + H ⊗ R

(3) (A ⊗ B)T = AT ⊗ BT

(4) (A ⊗ B)−1 = A−1 ⊗ B−1

(5) tr (A ⊗ B) = tr (A) · tr (B)

(6) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
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B. REVERSAL NOTATION

Given a vector v of length P whose elements are

v =
[
a1 a2 · · · aP

]T

the reversal of the vector, denoted by ṽ, is defined by

ṽ =
[
aP aP−1 · · · a1

]T

.

Given a P × Q matrix A with elements ai,j,

A =




a1,1 a1,2 · · · a1,Q

a2,1 a2,2 · · · a2,Q

...
...

. . .
...

aP,1 aP,2 · · · aP,Q




,

the reversal of A is given by

Ã =




aP,Q aP,Q−1 · · · aP,1

aP−1,Q aP−1,Q−1 · · · aP−1,1

...
...

. . .
...

a1,Q a1,Q−1 · · · a1,1




.

A few important properties of vector and matrix reversal are listed in Table B.2.
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Table B.2. Properties of Reversal (from [Ref. 18])

Quantity Reversal

Matrix product AB ÃB̃

Matrix inverse A−1 (Ã)−1

Matrix conjugate A∗ (Ã)∗

Matrix transpose AT (Ã)T
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APPENDIX C. DERIVATION OF

PARAMETERS FOR INNOVATIONS FORM OF

THE OPTIMAL FILTER

In Chapter III recursive optimal filters were used to present the optimal filter

in its innovations representation. This appendix contains the derivations related to

these optimal filters.

A. REPRESENTING THE OPTIMAL FILTER IN A RE-

CURSIVE FORM

The Wiener-Hopf equations pertaining to an optimal multirate filter with M

input channels are given by (3.7). The solution for the filter coefficients can be written

as 


h
(k)
1

...

h
(k)
M


 = C

(k)−1

M b̃
(k)
d(M+1), (C.1)

where

C
(k)
M =




R̃
(k)
11 · · · R̃

(k)
1M

...
. . .

...

R̃
(k)∗T
i1 · · · R̃

(k)
MM


 (C.2)

and

b̃
(k)

d(M+1) =




r̃
(k)
d1

...

r̃
(k)
dM


 . (C.3)

In general, for the ith signal (C.2) and (C.3) can be defined as

C
(k)
i =




R̃
(k)
11 · · · R̃

(k)
1i

...
. . .

...

R̃
(k)∗T
i1 · · · R̃

(k)
ii


 (C.4)
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and

b̃
(k)
di =




r̃
(k)
d1

...

r̃
(k)
d(i−1)


 . (C.5)

In order to derive a recursive form of the optimal filter, the inverse matrix of

C
(k)
i is first written in a recursive form. By partitioning C

(k)
i into

C
(k)
i =


 C

(k)
i−1 B̃

(k)
ii

B̃
(k)∗T
ii R̃

(k)
ii


 , (C.6)

where

B̃
(k)
ij =




R̃
(k)
1j

...

R̃
(k)
(i−1)j


 ,

the recursive form of C
(k)−1

i (see [Ref. 69]) can be expressed as

C
(k)−1

i =


C

(k)−1

i−1 0

0 0


 +


−G

(k)
i

I


E

(k)−1

i

[
−G

(k) ∗T
i I

]

=


C

(k)−1

i−1 0

0 0


 +


G

(k)
i E

(k)−1

i G
(k) ∗T
i −G

(k)
i E

(k)−1

i

−E
(k)−1

i G
(k) ∗T
i E

(k)−1

i


 , (C.7)

where

G
(k)
i = C

(k)−1

i−1 B̃
(k)
ii (C.8)

and

E
(k)
i = R̃

(k)
ii − B̃

(k)T

ii C
(k)−1

i−1 B̃
(k)
ii

= R̃
(k)
ii − G

(k) ∗T
i B̃

(k)
ii . (C.9)
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Applying the result of (C.7) specifcally to the M th signal by substituting (C.7)

into (C.1) leads to




h
(k)
1

...

h
(k)
M


 =





C

(k)−1

M−1 0

0 0


 +


G

(k)
M E

(k)−1

M G
(k)∗T
M −G

(k)
M E

(k)−1

M

−E
(k)−1

M G
(k)∗T
M E

(k)−1

M








b̃

(k)
dM

r̃
(k)
dM


 .

Separating the two components of C
(k)−1

M then produces



h
(k)
1

...

h
(k)
M


 =


C

(k)−1

M−1 0

0 0




b̃

(k)
dM

r̃
(k)
dM


+


G

(k)
M E

(k)−1

M G
(k) ∗T
M −G

(k)
M E

(k)−1

M

−E
(k)−1

M G
(k) ∗T
M E

(k)−1

M




b̃

(k)
dM

r̃
(k)
dM


 .

Extracting the terms associated with h
(k)
M , the filter h

(k)
M is found to be equiv-

alent to

h
(k)
M = −E

(k)−1

M G
(k)∗T
M b̃

(k)
dM + E

(k)−1

M r̃
(k)
dM

= E
(k)−1

M

(
r̃
(k)
dM − G

(k) ∗T
M b̃

(k)
dM

)
(C.10)

and the rest of the matrices reduce to



h
(k)
1

...

h
(k)
M−1


 = C

(k)−1

M−1 b̃
(k)
dM +

[
G

(k)
M E

(k)−1

M G
(k)∗T
M −G

(k)
M E

(k)−1

M

]

b̃

(k)
dM

r̃
(k)
dM




or 


h
(k)
1

...

h
(k)
M−1


 = C

(k)−1

M−1 b̃
(k)
dM + G

(k)
M E

(k)−1

M G
(k)∗T
M b̃

(k)
dM − G

(k)
M E

(k)−1

M r̃
(k)
dM .

Further manipulation leads to



h
(k)
1

...

h
(k)
M−1


 = C

(k)−1

M−1 b̃
(k)
dM −G

(k)
M E

(k)−1

M

(
r̃
(k)
dM −G

(k) ∗T
M b̃

(k)
dM

)
, (C.11)
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and substituting (C.8) and (C.10) into (C.11) produces




h
(k)
1

...

h
(k)
M−1


 = C

(k)−1

M−1 b̃
(k)
dM −C−1

M−1B̃
(k)
MMh

(k)
M . (C.12)

Equation (C.12) can also be expressed as




h
(k)
1

...

h
(k)
M−1


 = C

(k)−1

M−1


b̃

(k)

d(M−1)

r̃d(M−1)


− C−1

M−1


B̃

(k)

(M−1)M

R̃
(k)
(M−1)M


h

(k)
M , (C.13)

and substituting (C.7) into (C.13) results in




h
(k)
1

...

h
(k)
M−1


 =





C

(k)−1

M−2 0

0 0


 +


G

(k)
M−1E

(k)−1

M−1G
(k) ∗T
M−1 −G

(k)
M−1E

(k)−1

M−1

−E
(k)−1

M−1G
(k) ∗T
M−1 E

(k)−1

M−1








b̃

(k)
d(M−1)

r̃d(M−1)




−





C

(k)−1

M−2 0

0 0


+


G

(k)
M−1E

(k)−1

M−1G
(k)∗T
M−1 −G

(k)
M−1E

(k)−1

M−1

−E
(k)−1

M−1G
(k)∗T
M−1 E

(k)−1

M−1








B̃

(k)
(M−1)Mh

(k)
M

R̃
(k)
(M−1)Mh

(k)
M




Extracting the terms associated with h
(k)
M−1, leads to

h
(k)
M−1 = −E

(k)−1

M−1G
(k) ∗T
M−1 b̃

(k)
d(M−1) + E

(k)−1

M−1 r̃
(k)
d(M−1)

+ E
(k)−1

M−1G
(k)∗T
M−1 B̃

(k)
(M−1)Mh

(k)
M −E

(k)−1

M−1 R̃
(k)
(M−1)Mh

(k)
M

This equation can be expressed equivalently as

h
(k)
M−1 = E

(k)−1

M−1

(
r̃
(k)
d(M−1) − G

(k)∗T
M−1 b̃

(k)
d(M−1)

)

−E
(k)−1

M−1

(
R̃

(k)
(M−1)M −G

(k) ∗T
M−1 B̃

(k)
(M−1)M

)
h

(k)
M (C.14)

138



The terms for h
(k)
1 through h

(k)
M−2 are then written as




h
(k)
1

...

h
(k)
M−2


 = C

(k)−1

M−2 b̃
(k)
d(M−1) +

[
G

(k)
M−1E

(k)−1

M−1G
(k)∗T
M−1 −G

(k)
M−1E

(k)−1

M−1

]

b̃

(k)
d(M−1)

r̃
(k)

d(M−1)




− C
(k)−1

M−2 B̃
(k)
(M−1)Mh

(k)
M −

[
G

(k)
M−1E

(k)−1

M−1G
(k) ∗T
M−1 −G

(k)
M−1E

(k)−1

M−1

]

B̃

(k)

(M−1)Mh
(k)
M

R̃
(k)
(M−1)Mh

(k)
M




This equation can be rearranged, producing




h
(k)
1

...

h
(k)
M−2


 = C

(k)−1

M−2 b̃
(k)
d(M−1) − G

(k)
M−1E

(k)−1

M−1

(
r̃
(k)
d(M−1) − G

(k)∗T
M−1 b̃

(k)
d(M−1)

)

+ G
(k)
M−1E

(k)−1

M−1

(
R̃

(k)

(M−1)M − G
(k)∗T
M−1 B̃

(k)

(M−1)M

)
h

(k)
M

− C
(k)−1

M−2 B̃
(k)
(M−1)Mh

(k)
M . (C.15)

Now substituting (C.8) and (C.14) into (C.15) yields




h
(k)
1

...

h
(k)
M−2


 = C

(k)−1

M−2 b̃
(k)
d(M−1) −C

(k)−1

M−2 B̃
(k)
(M−1)(M−1)h

(k)
M−1 −C

(k)−1

M−2 B̃
(k)
(M−1)Mh

(k)
M . (C.16)

By examining the pattern of how (C.1) is separated into (C.10) and (C.12) and how

(C.12) is separated into (C.14) and (C.16), the following recursions can be observed

h
(k)
i = E

(k)−1

i

(
r̃
(k)
di − G

(k)∗T
i b̃

(k)
di

)

−
M∑

j=i+1

E
(k)−1

i

(
R̃

(k)
ij − G

(k)∗T
i B̃

(k)
ij

)
h

(k)
j (1 ≤ i ≤ M − 1) (C.17)

h
(k)
M = E

(k)−1

M

(
r̃
(k)
dM − G

(k)∗T
M b̃

(k)
dM

)
(C.18)
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where the matrices G
(k)
i and E

(k)
i are given by

G
(k)
i =





0 i = 1



R̃
(k)
11 R̃

(k)
12 · · · R̃

(k)

1(i−1)

R̃
(k)∗T
12 R̃

(k)
2 · · · R̃

(k)
2(i−1)

...
...

. . .
...

R̃
(k)∗T

1(i−1) R̃
(k)∗T

2(i−1) · · · R̃
(k)

(i−1)(i−1)




−1

B̃
(k)
ii 1 < i ≤ M

and

E
(k)
i =





R̃
(k)
11 i = 1

R̃
(k)
ii − G̃

(k)∗T
i B

(k)
ii 1 < i ≤ M

.

The filter in (C.17) and (C.18) can be further simplified by defining

H
(k)
ij = E

(k)−1

i

(
R̃

(k)
ij −G

(k)∗T
i B̃

(k)
ij

)
(C.19)

h
′ (k)
i = E

(k)−1

i

(
r̃
(k)
di −G

(k)∗T
i b̃

(k)
di

)
(C.20)

and substituting these terms into (C.17) and (C.18)

h
(k)
i = h

′ (k)
i −

M∑

j=i+1

H
(k)
ij h

(k)
j (1 ≤ i ≤ M − 1) (C.21)

h
(k)
M = h

′ (k)
M (C.22)

The filter coefficients of (C.21) for an M -signal system can be expressed in

terms of the cross terms H
(k)
ij and orthogonal filters h

′ (k)
i only, which is useful for

development of the recursive error variance. Beginning with the general equation for

the filters for signals 1 to M − 1, (C.21), but using the index i1 instead of j for the

summation

h
(k)
i = h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)
h

(k)
i1

(1 ≤ i ≤ M − 1) (C.23)

the filter for signal i can be expanded by substituting (C.21) for the filter h
(k)
i1

h
(k)
i = h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)(
h

′ (k)
i1

+
M∑

i2=i1+1

(
−H

(k)
i1i2

)
h

(k)
i2

)
(1 ≤ i ≤ M − 1).

(C.24)
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Separating the expanded term yields

h
(k)
i = h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)
h

′ (k)
i1

+
M∑

i1=i+1

M∑

i2=i1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)
h

(k)
i2

(1 ≤ i ≤ M − 1).

(C.25)

Substituting (C.21) into the third term leads to

h
(k)
i = h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)
h

′ (k)
i1

+

M∑

i1=i+1

M∑

i2=i1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)(
h

′ (k)
i2

+

M∑

i3=i2+1

(
−H

(k)
i2i3

)
h

(k)
i3

)
(1 ≤ i ≤ M − 1)

(C.26)

Separating the last term on the right-hand side of the equation yields

h
(k)
i = h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)
h

′ (k)
i1

+
M∑

i1=i+1

M∑

i2=i1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)
h

′ (k)
i2

+
M∑

i1=i+1

M∑

i2=i1+1

M∑

i3=i2+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)(
−H

(k)
i2i3

)
h

(k)
i3

(1 ≤ i ≤ M − 1) (C.27)

If this recursion is continued, the final result becomes

h
(k)
i = h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)
h

′ (k)
i1

+

M∑

i1=i+1

M∑

i2=i1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)
h

′ (k)
i2

+ · · ·

+
M∑

i1=i+1

M∑

i2=i1+1

· · ·
M∑

iM−1=iM−2+1

M∑

iM=iM−1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)
· · ·
(
−H

(k)
iM−2iM−1

)(
−H

(k)
iM−1iM

)
h

′ (k)
iM

(1 ≤ i ≤ M − 1). (C.28)

The result of (C.28) can be used to also develop the recursive form of the error

variance.

B. EXPRESSION FOR THE ERROR VARIANCE

Beginning with the basic definition of the error variance

σ2
k = Rd(0) −

M∑

i=1

r̃
(k)T
di h

(k)∗
i , (C.29)
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the summation can be separated into

σ2
k = Rd(0) −

M−1∑

i=1

r̃
(k) T
di h

(k)∗
i − r̃

(k)T
dM h

(k)∗
M . (C.30)

Substituting (C.28) into (C.30) for the filter term representing the filters for signals

1 through M − 1 leads to

σ2
k = Rd(0) −

M−1∑

i=1

r̃
(k)T
di ×

(
h

′ (k)
i +

M∑

i1=i+1

(
−H

(k)
ii1

)
h

′ (k)
i1

+
M∑

i1=i+1

M∑

i2=i1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)
h

′ (k)
i2

+ · · ·

+

M∑

i1=i+1

M∑

i2=i1+1

· · ·
M∑

iM−1=iM−2+1

M∑

iM=iM−1+1

(
−H

(k)
ii1

)
×

(
−H

(k)
i1i2

)
· · ·
(
−H

(k)
iM−2iM−1

)(
−H

(k)
iM−1iM

)
h

′ (k)
iM

)∗

− r̃
(k)T
dM h

(k)∗
M . (C.31)
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The multiple summation term can be separated into two parts leading to

σ2
k = Rd(0) −

M−1∑

i=1

r̃
(k)T
di ×

(
h

′ (k)
i +

M−1∑

i1=i+1

(
−H

(k)
ii1

)
h

′ (k)
i1

+
M−1∑

i1=i+1

M−1∑

i2=i1+1

(
−H

(k)
ii1

)(
−H

(k)
i1i2

)
h

′ (k)
i2

+ · · ·

+
M−1∑

i1=i+1

M−1∑

i2=i1+1

· · ·
M−1∑

iM−1=iM−2+1

M−1∑

iM=iM−1+1

(
−H

(k)
ii1

)
×

(
−H

(k)
i1i2

)
· · ·
(
−H

(k)
iM−2iM−1

)
h

′ (k)
iM−1

)∗

−
M−1∑

i=1

r̃
(k) T
dM

((
−H

(k)
iM

)
h

′ (k)
iM

+
M∑

i1=i+1

(
−H

(k)
ii1

)(
−H

(k)
i1M

)
h

′ (k)
M + · · ·

+
M∑

i1=i+1

M∑

i2=i1+1

· · ·
M∑

iM−1=iM−2+1

(
−H

(k)
ii1

)
×

(
−H

(k)
i1i2

)
· · ·
(
−H

(k)
iM−2iM−1

)(
−H

(k)
iM−1M

)
h

′ (k)
iM

)∗

− r̃
(k)T
dM h

(k)∗
M . (C.32)

The first two terms on the right-hand side is the error variance for an (M − 1)-

signal system. Thus defining σ2
k,M = σ2

k and representing the error variance for the

(M − 1)-signal system as σ2
k,M−1 leads to

σ2
k,M = σ2

k,M−1 − r̃
(k)T
dM h

(k)∗
M −

M−1∑

i=1

r̃
(k)T
dM

(
−H

(k)∗
iM

)
h

′ (k)∗
iM

−
M−1∑

i=1

M∑

i1=i+1

r̃
(k) T
dM

(
−H

(k)∗
ii1

)(
−H

(k)∗
i1M

)
h

′ (k)∗
M − · · ·

−
M−1∑

i=1

M∑

i1=i+1

M∑

i2=i1+1

· · ·
M∑

iM−1=iM−2+1

r̃
(k)T
dM

(
−H

(k)∗
ii1

)
×

(
−H

(k)∗
i1i2

)
· · ·
(
−H

(k)∗
iM−2iM−1

)(
−H

(k)∗
iM−1M

)
h

′ (k)∗
iM

. (C.33)
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C. SUMMARY

For clarity and ease of reference, the results for the innovations form of the

optimal filter are summarized here. Given an M -signal multirate system, the solution

to the Wiener-Hopf equations is given by




h
(k)
1

...

h
(k)
M


 =




R̃
(k)
11 · · · R̃

(k)
1M

...
. . .

...

R̃
(k)∗T
1M · · · R̃

(k)
MM




−1 


r̃
(k)
d1

...

r̃
(k)
dM


 .

The following terms are defined for use in the filter equations

B̃
(k)
ij =




R̃
(k)
1j

...

R̃
(k)
(i−1)j


 b̃

(k)
di =




r̃
(k)
d1

...

r̃
(k)
d(i−1)


,

and

G
(k)
i =





0 i = 1



R̃
(k)
11 R̃

(k)
12 · · · R̃

(k)

1(i−1)

R̃
(k)∗T
12 R̃

(k)
2 · · · R̃

(k)
2(i−1)

...
...

. . .
...

R̃
(k)∗T

1(i−1) R̃
(k)∗T

2(i−1) · · · R̃
(k)

(i−1)(i−1)




−1

B̃
(k)
ii 1 < i ≤ M

and

E
(k)
i =





R̃
(k)
11 i = 1

R̃
(k)
ii − G̃

(k)∗T
i B

(k)
ii 1 < i ≤ M

.

The equations for the filter coefficient in the innovations representation of the filter

are then summarized in Table C.1.
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Table C.1. Innovations Form of the Optimal Filter

H
(k)
ij = E

(k)−1

i

(
R̃

(k)
ij − G

(k)∗T
i B̃

(k)
ij

)

h
′ (k)
i = E

(k)−1

i

(
r̃
(k)
di − G

(k)∗T
i b̃

(k)
di

)

h
(k)
i = h

′ (k)
i −

M∑

j=i+1

H
(k)
ij h

(k)
j (1 ≤ i ≤ M − 1)

h
(k)
M = h

′ (k)
M

σ2
k,M = σ2

k,M−1 − r̃
(k)T
dM h

(k)∗
M −

M−1∑

i=1

r̃
(k)T
dM

(
−H

(k)∗
iM

)
h

′ (k)∗
iM

−
M−1∑

i=1

M∑

i1=i+1

r̃
(k)T
dM

(
−H

(k)∗
ii1

)(
−H

(k)∗
i1M

)
h

′ (k)∗
M − · · ·

−
M−1∑

i=1

M∑

i1=i+1

M∑

i2=i1+1

· · ·
M∑

iM−1=iM−2+1

r̃
(k) T
dM

(
−H

(k)∗
ii1

)
×

(
−H

(k)∗
i1i2

)
· · ·
(
−H

(k)∗
iM−2iM−1

)(
−H

(k)∗
iM−1M

)
h

′ (k)∗
iM
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APPENDIX D. MULTICHANNEL LEVINSON

RECURSION

This appendix briefly discusses the procedure known as the multichannel

Levinson algorithm, (also called the Levinson-Wiggins-Robinson (LWR) algorithm).

For more detailed discussions of this topic see [Ref. 64, 70, 71]. The multichannel

Levinson algorithm is a method of solving the Normal equations for multichannel sys-

tems in a recursive fashion. This algorithm is an extension of the Levinson recursion

for single-channel systems.

A. THE MULTICHANNEL SYSTEM

In order to properly describe the multichannel Levinson algorithm, it is nec-

essary to first consider a multichannel random process and its correlation function.

Let the random process x[n] have the form

x[n] =




x1[n]

x2[n]
...

xC[n]




,

where C is the number of channels. The correlation function associated with x[n] is

given by

Rx[l] = E{x[n]x∗T [n − l]}.

where Rx[l] is a C × C matrix.

The multichannel Levinson algorithm solves for the filter coefficients and pre-

diction error covariance matrices for linear prediction of the multichannel random
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process. In so doing, it finds the parameters for both the forward and backward

prediction of the multichannel random process.

B. GENERAL FORM OF THE ALGORITHM

To initialize the recursion, the following variables are defined,

R0 = Rx[1] A
′

0 = B
′

0 = IC×C Σ0 = Σb
0 = Rx[0],

where IC×C is an identity matrix of size C ×C. In addition, a cumulative correlation

matrix is defined

Rp =




Rx[p]

Rx[p − 1]
...

Rx[1]




where p is between 1 and the desired order. Throughout this algorithm, the variables

with the superscript b refer to the backward prediction parameters and the other

variables refer to the forward prediction parameters.

Step 1. Calculate the reflection coefficients, Γp and Γb
p

∆p =
[
RT

1 RT
2 · · · RT

p

]
Ã

′

p−1 =
[[

R1 R2 · · · Rp

]
B̃

′
p−1

]T

Γp = Σb−1

p−1∆p

and

Γb
p = Σ−1

p−1∆
T
p

Step 2. Calculate the pth order prediction coefficients, A
′
p and B

′
p

A
′

p =




A
′

p−1

0


−




0

B̃
′
p−1


 Γp
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and

B
′

p =




B
′
p−1

0


 −




0

Ã
′
p−1


Γb

p

Step 3. Calculate the pth order Error Variance coefficients, Σp and Σb
p

Σp = Σp−1 − ΓT
p Σb

p−1Γp

and

Σb
p = Σb

p−1 − Γb T
p Σp−1Γ

b
p

These steps are repeated until the desired order has been reached. At that

point, the prediction coefficients, error variances and reflection coefficients for all

orders up through the desired order have been calculated.
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APPENDIX E. A GENERALIZED MATRIX

TRIANGULAR FACTORIZATION

ALGORITHM

In order to solve (4.41) for the transform matrix A0 when developing a so-

lution to the multirate linear prediction problem in Chapter IV, a generalized UL

factorization was developed. The generalized UL factorization presented in this ap-

pendix is modeled after the standard LU factorization algorithm that can be found in

many linear algebra books, such as [Ref. 65]; however, when factored, the left matrix

is upper triangular and the right matrix is lower triangular. The algorithm is called

“generalized” since it allows for a block UL factorization using different size blocks.

It thus provides for Gaussian elimination of multiple rows at the same time. This is

important to the multirate linear prediction solution, since eliminating multiple rows

at the same time is necessary when dealing with joint observations of multiple signals.

A. LU TRIANGULAR FACTORIZATION REVIEW

This section briefly reviews the algorithm for computing the basic LU trian-

gular factorization of a matrix. For a more detailed discussion of this methodology,

refer to any elementary linear algebra textbook, e.g, [Ref. 65].

Given an m × n matrix A,

A =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

am,1 ai,2 · · · am,n




,

it is desired to decompose the matrix into upper and lower triangular matrices, such

that

A = LU,

151



where L is the lower triangular matrix with 1’s on the main diagonal and U is the

upper triangular matrix. The procedure for this method is as follows:

Step 1: For i = 1, 2, . . . ,m − 1, eliminate row i from rows i + 1 to m:

a. Calculate row multipliers for rows i + 1 to m

Mk,i = ak,i/ai,i , k = i + 1, i + 2, . . . ,m

b. Subtract row i from rows i + 1 to m

ak,i = ak,i − Mk,i ∗ ai,i = 0 , k = i + 1, i + 2, . . . ,m

ak,l = ak,l − Mk,i ∗ ai,l , k, l = i + 1, i + 2, . . . ,m

After eliminating i rows, the matrix has the form:

Ai =




a1,1 a1,2 a1,3 · · · a1,i a1,i+1 · · · a1,n

0 a2,2 a2,3 · · · a2,i a2,i+1 · · · a2,n

0 0 a3,3 · · · a3,i a3,i+1 · · · a3,n

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · ai,i ai,i+1 · · · ai,n

0 0 0 · · · ai+1,i ai+1,i+1 · · · ai+1,n

...
...

...
. . .

...
...

. . . · · ·

0 0 0 · · · am,i am,i+1 · · · am,n




Repeat step 1 until matrix A is upper triangular. This is the matrix U.

U = Am =




a1,1 a1,2 a1,3 · · · a1,i a1,i+1 · · · a1,n

0 a2,2 a2,3 · · · a2,i a2,i+1 · · · a2,n

0 0 a3,3 · · · a3,i a3,i+1 · · · a3,n

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · ai,i ai,i+1 · · · ai,n

0 0 0 · · · 0 ai+1,i+1 · · · ai+1,n

...
...

...
. . .

...
...

. . . · · ·

0 0 0 · · · 0 0 · · · am,n
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Step 2: The lower triangular matrix can be formed as

L =




1 0 0 · · · 0

M2,1 1 0 · · · 0

M3,1 M3,2 1 · · · 0
...

...
...

. . .
...

Mm,1 Mm,2 Mm,3 · · · 1




,

where Mi,j are defined above.

B. A GENERALIZED UL TRIANGULAR FACTORIZA-

TION ALGORITHM

The basic LU triangular factorization algorithm can be modified and extended

to a generalized UL triangular factorization algorithm. This new procedure requires

the defining and use of interim variables to transform an original matrix A.

Given an m × n matrix A,

A =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

am,1 ai,2 · · · am,n




,

it is desired to decompose the matrix into generalized upper and lower triangular

matrices, such that

A = UL,

where U is a block upper triangular matrix and L is a block lower triangular matrix.

The blocks are not all of the same size, but the sizes of the desired blocks are known

(or given).

The procedure for this method is as follows (starting with the last column),
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Step 1: Eliminate columns i− r + 1 through i from columns 1 through i− r, where r

is the number of columns to be eliminated at the same time and i is the index of the

last of these columns.

a. Define the following vectors and matrices

A(i−r+1)i,(i−r+1)i =




ai−r+1,i−r+1 · · · ai−r+1,i

...
. . .

...

ai,i−r+1 · · · ai,i




a(i−r+1)i,k =




ai−r+1,k

...

ai,k


 , k = 1, 2, . . . , i− r

al,(i−r+1)i =
[
al,i−r+1 · · · al,i

]
, l = 1, 2, . . . , i− r

b. Calculate column multipliers for columns 1 to i − r

M(i−r+1)i,k = A−1
(i−r+1)i,(i−r+1)ia(i−r+1)i,k, k = 1, 2, . . . , i − r

c. Subtract columns i − r + 1 through i from columnss 1 through i − r

a(i−r+1)i,k = a(i−r+1)i,k − A(i−r+1)i,(i−r+1)iM(i−r+1)i,k = 0 , k = 1, 2, . . . , i − r

al,k = al,k − al,(i−r+1)iM(i−r+1)i,k , k, l = 1, 2, . . . , i − r

At the ith iteration, the matrix has the form:
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Ai =




a1,1 · · · a1,i−r a1,(i−r+1)i · · · a1,n−2 a1,n−1 a1,n

...
. . .

...
...

. . .
...

...
...

a3,1 · · · ai−r,i−r ai−r,(i−r+1)i · · · ai−r,n−2 ai−r,n−1 ai−r,n

· · · ai−r+1,n−2 ai−r+1,n−1 ai−r+1,n

ai,i−r · · · a(i−r+1)i,i−r A(i−r+1)i,(i−r+1)i · · · ...
...

...

· · · ai,n−2 ai,n−1 ai,n

...
. . .

...
...

. . .
...

. . .
...

...
...

0 · · · 0 0 · · · 0 · · · am−2,m−2 am−2,n−1 am−2,n

0 · · · 0 0 · · · 0 · · · 0 am−1,n−1 am−1,n

0 · · · 0 0 · · · 0 · · · 0 0 am,n




Repeat step 1 until matrix A is transformed into the upper triangular matrix U.

U = Am =




a1,1 a1,2 a1,3 · · · a1,i a1,i+1 · · · a1,n

0 a2,2 a2,3 · · · a2,i a2,i+1 · · · a2,n

0 0 a3,3 · · · a3,i a3,i+1 · · · a3,n

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · ai,i ai,i+1 · · · ai,n

0 0 0 · · · 0 ai+1,i+1 · · · ai+1,n

...
...

...
. . .

...
...

. . . · · ·

0 0 0 · · · 0 0 · · · am,n




Step 2: After the 2nd row is eliminated from the 1st row, the upper and lower trian-

gular matrices can be formed as

L =




1 0 0 · · · 0

M2,1 1 0 · · · 0

M3,1 M3,2 1 · · · 0
...

...
...

. . .
...

Mm,1 Mm,2 Mm,3 · · · 1




,
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C. EXAMPLE

Given a matrix A,

A =




a1,1
... a1,2 a1,3

... a1,4
... a1,5 a1,6

· · · · · · · · · · · ·
...

...

a2,1
... a2,2 a2,3

... a2,4
... a2,5 a2,6

a3,1
... a3,2 a3,3

... a3,4
... a3,5 a3,6

· · · · · · · · · · · · · · · · · ·
...

a4,1 a4,2 a4,3
... a4,4

... a4,5 a4,6

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

a5,1 a5,2 a5,3 a5,4
... a5,5 a5,6

a6,1 a6,2 a6,3 a6,4
... a6,5 a6,6




, (E.1)

where ai,j is the matrix element for the ith row and jth column. It is desired to decom-

pose the matrix using the generalized UL algorithm. For this particular example, it

also is desired to eliminate columns 5 and 6 together and followed by the elimination

of columns 2 and 3 together, as shown by the partitioning in (E.1). The number of

columns to be eliminated can be represented in vector form as
[
1 2 1 2

]
, where

the numbers refer to the block sizes (number of columns to be eliminated together).

Step 1: Eliminate columns 5 and 6

a. Define the following vectors and matrices
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A56,56 =


a5,5 a5,6

a6,5 a6,6




a56,1 =


a5,1

a6,1


 a56,2 =


a5,2

a6,2


 a56,3 =


a5,3

a6,3


 a56,4 =


a5,4

a6,4




a1,56 =
[
a1,5 a1,6

]
a2,56 =

[
a2,5 a2,6

]
a3,56 =

[
a3,5 a3,6

]
a4,56 =

[
a4,5 a4,6

]

b. The multipliers for columns 1 through 4 are

M56,1 = A−1
56,56a56,1 M56,2 = A−1

56,56a56,2

M56,3 = A−1
56,56a56,3 M56,4 = A−1

56,56a56,4

c. Eliminating columns 5 and 6 from columns 1 through 4 produces (primes

have been added to the modified values, for this example only, to highlight the changes

at each step)

a
′
56,1 = a56,1 −A56,56M56,1 = 0

a
′
1,1 = a1,1 − a1,56M56,1 a

′
2,1 = a2,1 − a2,56M56,1

a
′
3,1 = a3,1 − a3,56M56,1 a

′
4,1 = a4,1 − a4,56M56,1

a
′
56,2 = a56,2 −A56,56M56,2 = 0

a
′
1,2 = a1,2 − a1,56M56,2 a

′
2,2 = a2,2 − a2,56M56,2

a
′
3,2 = a3,2 − a3,56M56,2 a

′
4,1 = a4,2 − a4,56M56,2

a
′
56,3 = a56,3 −A56,56M56,3 = 0

a
′
1,3 = a1,3 − a1,56M56,3 a

′
2,3 = a2,3 − a2,56M56,3

a
′

3,3 = a3,3 − a3,56M56,3 a
′

4,3 = a4,3 − a4,56M56,3

a
′

56,4 = a56,4 −A56,56M56,4 = 0

a
′
1,4 = a1,4 − a1,56M56,4 a

′
2,4 = a2,4 − a2,56M56,4

a
′
3,4 = a3,4 − a3,56M56,4 a

′
4,4 = a4,4 − a4,56M56,4
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d. Matrix A with columns 5 and 6 eliminated looks like

A
′
=




a
′
1,1

... a
′
1,2 a

′
1,3

... a
′
1,4

... a1,5 a1,6

· · · · · · · · · · · ·
...

...

a
′
2,1

... a
′
2,2 a

′
2,3

... a
′
2,4

... a2,5 a2,6

a
′
3,1

... a
′
3,2 a

′
3,3

... a
′
3,4

... a3,5 a3,6

· · · · · · · · · · · · · · · · · ·
...

a
′
4,1 a

′
4,2 a

′
4,3

... a
′
4,4

... a4,5 a4,6

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0
... a5,5 a5,6

0 0 0 0
... a6,5 a6,6




.

Step 2: Eliminate row 4

a. The multipliers for columns 1 through 3 are

M4,1 = a
′
4,1/a

′
4,4 M4,2 = a

′
4,2/a

′
4,4 M4,3 = a

′
4,3/a

′
4,4

b. Eliminating column 4 from columns 1 through 3 produces

a
′′
4,1 = a

′
4,1 − a

′
4,4M4,1 = 0 a

′′
3,1 = a

′
3,1 − a

′
3,4M4,1

a
′′
2,1 = a

′
2,1 − a

′
2,4M4,1 a

′′
1,1 = a

′
1,1 − a

′
1,4M4,1

a
′′
4,2 = a

′
4,2 − a

′
4,4M4,2 = 0 a

′′
3,2 = a

′
3,2 − a

′
3,4M4,2

a
′′
2,2 = a

′
2,2 − a

′
2,4M4,2 a

′′
1,2 = a

′
1,2 − a

′
1,4M4,2

a
′′
4,3 = a

′
4,3 − a

′
4,4M4,3 = 0 a

′′
3,3 = a

′
3,3 − a

′
3,4M4,3

a
′′

2,3 = a
′

2,3 − a
′

2,4M4,3 a
′′

1,3 = a
′

1,3 − a
′

1,4M4,3

158



c. Matrix A with columns 4 through 6 eliminated looks like

A
′′

=




a
′′
1,1

... a
′′
1,2 a

′′
1,3

... a
′
1,4

... a1,5 a1,6

· · · · · · · · · · · ·
...

...

a
′′
2,1

... a
′′
2,2 a

′′
2,3

... a
′
2,4

... a2,5 a2,6

a
′′
3,1

... a
′′
3,2 a

′′
3,3

... a
′
3,4

... a3,5 a3,6

· · · · · · · · · · · · · · · · · ·
...

0 0 0
... a

′
4,4

... a4,5 a4,6

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0
... a5,5 a5,6

0 0 0 0
... a6,5 a6,6




.

Step 3: Eliminate columns 2 and 3

a. Define the following vectors and matrices

A23,23 =


a

′′
2,2 a

′′
2,3

a
′′
3,2 a

′′
3,3


 a23,1 =


a

′′
2,1

a
′′
3,1


 a1,23 =

[
a

′′
1,2 a

′′
1,3

]

b. The multiplier for column 1 is

M23,1 = A−1
23,23a23,1

c. Eliminating columns 2 and 3 from column 1 produces

a
′′′
23,1 = a23,1 −A23,23M23,1 = 0 a

′′′
1,1 = a

′′
1,1 − a1,23M23,1
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d. Matrix A with columns 2 and 3 eliminated looks like

A
′′′

=




a
′′′
1,1

... a
′′
1,2 a

′′
1,3

... a
′
1,4

... a1,5 a1,6

· · · · · · · · · · · ·
...

...

0
... a

′′
2,2 a

′′
2,3

... a
′
2,4

... a2,5 a2,6

0
... a

′′
3,2 a

′′
3,3

... a
′
3,4

... a3,5 a3,6

· · · · · · · · · · · · · · · · · ·
...

0 0 0
... a

′
4,4

... a4,5 a4,6

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0
... a5,5 a5,6

0 0 0 0
... a6,5 a6,6




.

Step 4: Build the U and L matrices

a. The matrix U is the transformed matrix A

U =




a
′′′
1,1

... a
′′
1,2 a

′′
1,3

... a
′
1,4

... a1,5 a1,6

· · · · · · · · · · · ·
...

...

0
... a

′′
2,2 a

′′
2,3

... a
′
2,4

... a2,5 a2,6

0
... a

′′
3,2 a

′′
3,3

... a
′
3,4

... a3,5 a3,6

· · · · · · · · · · · · · · · · · ·
...

0 0 0
... a

′
4,4

... a4,5 a4,6

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0
... a5,5 a5,6

0 0 0 0
... a6,5 a6,6




.
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b. The matrix L is made up of the multipliers, such that

L =




1
... 0 0

... 0
... 0 0

· · · · · · · · · · · ·
...

...

M23,1

...

...

1

0

0

1

...

...

0

0

...

...

0

0

0

0

· · · · · · · · · · · · · · · · · ·
...

M4,1 M4,2 M4,3
... 1

... 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

M56,1 M56,2 M56,3 M56,4

...

...

1

0

0

1
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