
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2004-09

The Distance Training System (DTS) application

using Dreamweaver MX2004 and JSP application

server technology

Pogkas, Nikolaos

Monterey California. Naval Postgraduate School

http://hdl.handle.net/10945/9953

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS
THE DISTANCE TRAINING SYSTEM (DTS)

APPLICATION USING DREAMWEAVER MX2004 AND
JSP APPLICATION SERVER TECHNOLOGY

by

Nikolaos Pogkas

September 2004

 Thesis Advisor: Thomas Otani
 Thesis Co-Advisor: Arijit Das

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: The Distance Training System (DTS) Application
Using Dreamweaver MX2004 and JSP Application Server Technology
6. AUTHOR(S) Nikolaos Pogkas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In recent years, declining budgets, limitations on military personnel and decreases in training areas have reduced the
opportunity to conduct live military training. For these reasons, Distance Learning Systems are available for providing an
almost realistic training platform for enlisted staff and officers.

This thesis has two main objectives: The first is the development of a data model that can be used as a central information
repository for an unlimited number of authenticated users. The Distance Training System (DTS) application was developed
using a hierarchical approach. The DTS is a Content Management System (CMS) appropriate for users desiring the benefit of
accessing the contents of a database. The other objective is the exploration of the interaction between application server
technologies such as the JSP with a Web development tool such as Dreamweaver MX2004. This work focuses on the
convenience of developing a fast and accurate web application product using HTML as long as it results in a correct and clean
data model. Other server technologies are also used as references, such as Active Server Page (ASP), Coldfusion and PHP,
which along with Java Servlet Pages (JSP), are the leading technologies in web database development for processing user
events.

15. NUMBER OF
PAGES

117

14. SUBJECT TERMS Distance Training System, DTS, Dreamweaver MX2004, JSP, Tomcat,
MySQL, XML, CMS

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release: distribution is unlimited

THE DISTANCE TRAINING SYSTEM (DTS) APPLICATION USING
DREAMWEAVER MX2004 AND JSP APPLICATION SERVER TECHNOLOGY

Nikolaos Pogkas

Major, Hellenic Army
B.S., Hellenic Military Academy, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: Nikolaos Pogkas

Approved by: Thomas Otani

Thesis Advisor

Arijit Das
Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

In recent years, declining budgets, limitations on military personnel and decreases

in training areas have reduced the opportunity to conduct live military training. For these

reasons, Distance Learning Systems are available for providing an almost realistic

training platform for enlisted staff and officers.

This thesis has two main objectives: The first is the development of a data model

that can be used as a central information repository for an unlimited number of

authenticated users. The Distance Training System (DTS) application was developed

using a hierarchical approach. The DTS is a Content Management System (CMS)

appropriate for users desiring the benefit of accessing the contents of a database. The

other objective is the exploration of the interaction between application server

technologies such as the JSP with a Web development tool such as Dreamweaver

MX2004. This work focuses on the convenience of developing a fast and accurate web

application product using HTML as long as it results in a correct and clean data model.

Other server technologies are also used as references, such as Active Server Page (ASP),

Coldfusion and PHP, which along with Java Servlet Pages (JSP), are the leading

technologies in web database development for processing user events.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION..1

II. WEB APPLICATION ARCHITECTURE..3
A. APPLICATION SERVERS ..4

1. ASP and .NET ..6
2. PHP..7
3. Pure Servlets...8

B. THE JSP SELECTION ...13

III. JSP SYNTAX BASICS..17
A. JAVA CODE ..17

1. Expressions ...17
2. Scriptlets ...18
3. Declarations ..19
4. Java Beans ..20

B. JSP DIRECTIVES...21

IV. DEFINING THE PROJECT ..23
A. SUPPORTING TECHNOLOGY ...23

1. MySQL..23
2. Web Server- Tomcat..25
3. Dreamweaver MX..28
4. JDBC Connector ..31

B. PROJECT DESCRIPTION ..34
1. The Distance-Training Application..34
2. UML Diagram ..35
3. Relationships and Relation Schema ...36

C. XML USAGE ...37

V. APPLICATION FILE ANALYSIS..41
A. USER AUTHENTICATION INTERFACE..41

1. Home_Page.jsp ...41
2. Registration.jsp ..42

B. SEARCH INTERFACE ..46
1. Search.jsp..46
2. Course_Request.jsp ...47
3. Topic_Request.jsp..51
4. Subsection_Request.jsp ...52
5. Subsection_Results.jsp...54
6. Image_Result_All.jsp...57
7. Keyword_Result.jsp...59

C. ALTER DATABASE INTERFACE ..61
1. Course_Master_Form.jsp ...62
2. Add_New_Course_Form.jsp...63

vii

3. Update_Course.jsp...65
4. Delete_Course_Form.jsp ...67
5. Subject_Master_Form.jsp...68
6. Topic_Master_Form.jsp..72
7. Subsection_Master_Form.jsp ...72
8. Add_New_Paragraph.jsp ..75
9. Confirmation.jsp ..77
10. Update_Paragraph.jsp...79
11. Image_Master_Form.jsp ...82
12. Confirm_Image.jsp ..84

VI. DISTANCE TRAINING SYSTEM DATA FLOW DIAGRAM87

VII. CONCLUSIONS ...91
A. DTS APPLICATION...91

1. Advantages..91
2. Future Research...93

B. DREAMWEAVER MX2004...94
1. Advantages..94
2. Disadvantages...95

APPENDIX A. DISTANCE TRAINING SYSTEM (DTS) SCHEMA97

APPENDIX B. DISTANCE TRAINING SYSTEM (DTS) CODE...................................99

LIST OF REFERENCES..101

INITIAL DISTRIBUTION LIST ...103

viii

LIST OF FIGURES

Figure 1. The Web Application Architecture (From Ref. 1)...4
Figure 2. Application Server Architecture (From Ref. 2) ...5
Figure 3. JSP Compilation Process (From Ref. 3) ..15
Figure 4. Java Bean Interface ..20
Figure 5. Java Bean Collection..20
Figure 6. MySQL Source Command...24
Figure 7. Success Messages ..25
Figure 8. Variable..25
Figure 9. Setting the Class Path...27
Figure 10. Including the Current Directory in the Classpath ..28
Figure 11. Site Definition-Local Info..29
Figure 12. Site Definition-Setting the Testing Sever ..30
Figure 13. JDBC Architecture (From Ref. 1)..32
Figure 14. Connecting Our Web Pages to the Database Server..33
Figure 15. Setting Up the MySQL Driver...33
Figure 16. UML for the DTS Application...36
Figure 17. Home (Default) Page ...42
Figure 18. Registration Page ...43
Figure 19. The “Insert Record” Dialog Window ..44
Figure 20. Determines the Uniqueness of the Entered Username.....................................44
Figure 21. Search Page..47
Figure 22. Course Request ..48
Figure 23. The “rs_course” Recordset ..48
Figure 24. Testing the Query...49
Figure 25. The “Dynamic/List” Dialog Window ..50
Figure 26. The “rs_topic” Recordset...51
Figure 27. Collecting the Topic Names...52
Figure 28. The “rs_subsection” recordset ...53
Figure 29. The “subsection results” Page..55
Figure 30. The “rs_subsection” Recordset ..55
Figure 31. Retrieving Text Using the “Dynamic Text” Dialog Window..........................56
Figure 32. The “rs_image” Recordset ...57
Figure 33. The “rs_allimages” Recordset..58
Figure 34. Inserting Images Using the “Select Image Source” Dialog Window58
Figure 35. Determining the Number of Images Per Page ...59
Figure 36. The Keyword Results Page (Design View) ...60
Figure 37. Retrieving a Paragraph Specified by the Passed Keyword..............................61
Figure 38. Course Master Page ...62
Figure 39. Restricting the Access to the Specified User Groups63
Figure 40. Insert a New Course Name ..64
Figure 41. “Insert Record” Behavior...64
Figure 42. The “rs_course” Recordset ..65

ix

Figure 43. Passing Test Value for the Query ..66
Figure 44. The “Update Record” Window..66
Figure 45. The “Delete Course” Page ...67
Figure 46. The “Delete Record” Behavior ..68
Figure 47. The Subject Master Page (Design View)...69
Figure 48. The “rs_course” Recordset ..70
Figure 49. The “rs_subject” Recordset..70
Figure 50. Keeping Track of the “course_id” Using the “Dynamic Data” Window71
Figure 51. The Topic Master Page ..72
Figure 52. The “rs_topic” Recordset...73
Figure 53. The “rs_topicsection” Recordset..74
Figure 54. The “Add New Paragraph” Page ...75
Figure 55. The “rs_topic” Recordset...76
Figure 56. The “Insert Record” Behavior ...76
Figure 57. The Confirmation Page When We Insert A Record ..77
Figure 58. Inserting a Record ..78
Figure 59. The “rs_confirm” Recordset ..78
Figure 60. The “Update Paragraph” Page ...80
Figure 61. The “rs_subsection” Recordset ..81
Figure 62. The “Update record” Server Behavior ...81
Figure 63. The Image Master Page ...82
Figure 64. The “rs_paragraph” Recordset...83
Figure 65. The “rs_sectionimage” Recordset..84
Figure 66. The “rs_confirm” Recordset ..85
Figure 67. Inserting an Image Record ...85
Figure 68. Securing the Database Server (After Ref. 4) ...93

x

ACKNOWLEDGMENTS

I would like to thank my advisors, Thomas Otani and Arijit Das, for their

supervision and support.

Also, I would like to thank my wife Orsia, for her endless encouragement and

patience.

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

I. INTRODUCTION

For reasons of cost and accessibility, the Hellenic Army has a growing need for

training to be delivered on an “anywhere at anytime” basis through distributed training

technologies. Those technologies can be developed by using tools, which are based on

the Internet and called E-learning tools. E-learning tools refer to Internet-based programs

designed for instructional purposes, such as interactive multimedia displays or threaded

electronic messaging.

This thesis will develop a distance training product prototype using MySQL as the

DBMS, Apache Tomcat as the web server and Macromedia’s Dreamweaver JSP as the

controller. This model can be applied to short or long-term military schools used by the

Hellenic Army or it can be used by educational institutions for information repository

which others can use. Specifically, it would be possible for military officers or enlisted

personnel to attend military schools or become evaluated without taking leave and being

absent from their units for a long period of time. Students enrolled in Distance Learning

(DL) courses remain assigned to their units while in training. Their status is the same as if

they were attending a proponent school.

The proliferation of computer networks, including the Internet and corporate

‘intranets’, has enabled users to access a large number of data sources, such as data stored

in databases. As a consequence, web designers and developers today increasingly face a

different set of problems than they did a few years ago. Firstly, rather than creating

brand-new sites, today’s designers and developers need to maintain existing sites in the

face of changing standards, new technologies and evolving content. Secondly, the

variations among different browsers have become so pronounced that it is no longer

acceptable only to check the page in both Netscape and Internet Explorer. Lastly, today’s

designers and developers need to build management systems, which facilitate the

movement of site content maintenance from IT departments to non-technical users by

creating forms that post content.

1

This type of application could be classified as a Learning Management System

(LMS). It is a software package used to administer one or more courses to one or more

learners. The reusability, durability, accessibility and interoperability is examined in

order to standardize and modernize the manner in which military training and education

are delivered through the maximization of technology-based learning to generate

substantial costs savings.

Chapter II presents the most known server models and the advantages of JSP over

the other competitive server models. However, web developers seldom decide based on

rational criteria, such as which model fits their needs better than another. In reality, the

choice is usually driven by the available technology, the budget, the technology used in

an existing site and the skills and experience of the available human resources.

Chapter III analyzes JSP’s implicit objects. Dreamweaver MX is not simply a

layout tool. It is web development software, which makes it possible to work directly

with the code view, add, remove or modify code and see the results using the design

view.

Chapter IV presents how to insert java code in the form of scripting elements or

java beans in a file, which is developed using Dreamweaver. In fact, this code is inserted

into the servlet generated by the JSP page.

Chapter V discusses the main components of the Dreamweaver environment

because the majority of the web designers and developers use other server technologies,

and as a result, adequate resources are not available. Although JSP is the fastest among

the others and the most powerful solution even over .NET, its code is daunting for those

new to dynamic website development.

Chapter VI analyzes the application idea and components, the data model, the

flow navigation and presents Dreamweaver’s performance, reliability, and stability

during the development of this product.

Finally, Chapter VII presents the overall conclusions, capabilities, and limitations

from the analysis and the development of this application.

2

II. WEB APPLICATION ARCHITECTURE

The term architecture describes how the different components of a complex

application relate to one another, and it is the starting point for the design of any

application. There are numerous architectures used in database applications. The most

common are client/server, distributed and web architectures. The focus of this thesis will

be the web architecture since it is the most common flexible architecture currently used in

the Internet environment.

The simplest form of web architecture consists of three tiers. The first is the

presentation tier, which provides users with a natural interface and uses HTML (or

XHTML) as its basic language. The middle tier executes the application logic and

consists of technologies such as PHP, ASP, JSP and others able to handle several

programming tasks like doing math or interacting with data sources including text files,

databases and XML documents, which compose the data management tier. This

architecture is commonly called the three-tier architecture. They can also handle tasks

that pertain only to the web such as collect data sent by the user, do the necessary

evaluation and computation based on those data, and return the result to the user.

Although the three-tier architecture has numerous advantages, it is not without

limitations. Browsers can manipulate only HTML, CSS and client-side scripts. They

cannot understand the server code “as-is”, and as a result, whatever the server sends to

the browser must be in standard HTML. As shown in Figure 1, the computer holding the

HTML files and where the control logic occurs is properly called a Web server (Apache,

IIS, etc.). The controller plays the role of the application server and comes in many

different forms, depending on the technologies used (JSP, PHP, etc.). The controller is

responsible for processing user events. Some of these technologies, such as the JSP,

generate programs that run on the web or application server (servlets) and act as a middle

layer between a request coming from the client and the database server storing the

information. This transformation has many advantages, which this chapter explains.

3

Browser
(Netscape, IE)

Web Server
(Apache, IIS, JRUN)

Controller
(JSP,ASP,PHP)

Model
(Servlet, EJB)

Database
(MySQL,Oracle)

Figure 1. The Web Application Architecture (From Ref. 1)

This model has the advantage of creating an “ultra-thin” client (web form)

because it is responsible only for the display logic. Controller logic resides in the

application server, which implements technologies illustrated in Figure 1.

A. APPLICATION SERVERS

The utilization of application server technologies arose from the need to improve

the performance of an application. A new process is generated when the user requests a

web page. This procedure does not work correctly with a large number of simultaneous

requests because the startup cost of creating a new process for each request reduces the

performance of the entire application. The solution is for the application server to

maintain a pool of processes or threads in the form of servlets programs and use these to

execute requests as illustrated in Figure 2.

4

Web Browser Web Server

Application Server

 HTTP

Pool of Servlets

DBMS2

DBMS1

Java
application

C++
application

JDBC

JDBC/ODBC...

Figure 2. Application Server Architecture (From Ref. 2)

Before describing the application server technologies, it would be beneficial to

refer to a possible architecture for a website with an application server as the one shown

in Figure 2:

• The client (Web browser) interacts with the web server through the HTTP
protocol requesting a dynamic page.

• The web server finds the page and passes it to the application server
(request).The application server, using servlet programs, reads the code on
the page, processes the page according to the instructions in the code, and
replaces the code from the page with the results of processing the
instructions. The code instructions may require the application server to
extract data from a data source or update requests to the data sources and
insert it into the webpage.

• The data source (RDBMS) returns the results (recordset) to the application
server.

• The application server inserts data into the webpage and then passes the
page to the requesting browser through the web server.

• The browser creates the webpage.

The next sections briefly describe the leading application server technologies and

the reasons for developing the application using the JSP model.

5

1. ASP and .NET

Active Server Page (ASP) is the scripting language for the middle tier for use in

creating and running dynamic and interactive web server applications. An Active Server

Page (ASP) itself is a text file with the extension .asp containing HTML and a client- and

server-side script.

For illustration purposes, consider the following simple code snippet that outputs

a value that the user entered in a form field called “firstName”:

<p>Thank you, <% Response.Write(Request.Form(“firstName”)) %>, for your

submission.</p>

This snippet declares the following points:

• The code for the ASP is contained in a special set of tags (<% and %>). In
other words, those tags indicate server markup.

• ASP uses the Write method from the Response object for outputting data.

• There is explicit reference to the variable name (Dim firstName).

• The above variable is a form variable because of the expression
Request.Form(“firstName”).

The disadvantages of this technology are its restrictions in using scripting

languages such as VBScript or Jscript and its dependence on a Windows-based platform.

Thus, ASP must rely on Active X, COM or other Microsoft technologies to enhance the

code’s functionality. In addition, ASP is interpreted, which means the code must be read

each time a webpage is called.

ASP.net (with the extension .aspx) is not just an improvement of ASP. ASP.net is

much better than its predecessor because it is possible to use a full featured programming

language such as C# or VB.net to build elegant web applications. The advantage of

ASP.net is that OOP is now available to Internet programming just as is JSP. OOP makes

it possible to build large applications, while still keeping the code clean and structured.

The development of an application using ASP forces the writing of spaghetti code

because VBScript is a scripting language, and as a result, the code is messy when

building large applications. ASP.net separates code from display and it is even possible to

have pages containing no ASP.net code at all.

6

For example, consider the following code snippets written in C#.
void Page_Load(Object S, EventArgs E) { myLabel.Text = “Hello!!”;

</script>

A simple ASP.net webpage is possible when embedding the above snippet into

the following HTML code:
<head>
<title>“Hello World” example!</title>
</head>
<body>
<asp:Label id=“myLabel” runat=“server” />
</body>
</html>

Web services are another advantage of ASP.net. Web services allow several

pieces of the application to run on different servers worldwide, and the entire application

will work almost perfectly and seamlessly.

Nevertheless, this new technology presents several but significant disadvantages.

Although the core of .NET works fine on a few non-Windows platforms, do not expect to

deploy serious ASP.net applications on multiple servers and operating systems. Second,

ASP.net is limited to C# and VB.net languages. Although C# presents significant

similarities to Java, few developers exist who are familiar with the C# syntax and its

auxiliary libraries.

2. PHP

PHP (a recursive acronym for “PHP: Hypertext Preprocessor”) is a fast-growing

open-source server, cross-platform model which integrates with other open-source

products, including an Apache Web server and MySQL DBMS. Speed is one of PHP’s

advantages. ASP is built on a COM-based architecture. A COM object is run when an

ASP programmer uses VBScript. As seen previously, writing to the client calls the

Response COM object’s Write method. Likewise, accessing a database uses another

COM object to do so. This COM overhead is cumulative and slows down the computer

programming.

In PHP modules, everything runs in PHP’s memory space. In other words, PHP

code will run faster because there is no overhead for communicating with different COM

objects in different processes.

7

The previous introductory example for the ASP server model could be applied in

this model to demonstrate the differences between the two technologies:

<p> Thank you, <?php echo $_POST[‘firstName’]; ?>, for your

submission.</p>

The above code snippet declares the following points:

• The code for the PHP is contained in a special set of tags (<?php and ?>).
In other words, those tags indicate server markup.

• PHP uses the echo for outputting data.

• There is explicit reference to the variable name (firstName).

• The above variable is a form/POST variable because of the expression
$_POST[‘firstName’].

Despite the above advantages, one disadvantage of PHP is having to learn a

completely new and less widely known API when compared with JSP.

3. Pure Servlets

Java servlets are java code that run either on webservers or application servers,

acting as a middle layer between requests coming from Web browsers or other HTTP

clients and databases or applications on the HTTP server, as seen in Figure 2. Their job is

to perform the following tasks:

• Read the explicit data sent by the client.

• Read the implicit HTTP request data sent by the browser.

• Generate the results

• Send the explicit (e.g., the query results) along with the implicit HTTP
response data to the client.

Since servlets are java programs and follow a standard API, they can do a variety

of tasks such as building a webpage, access databases and maintain information from

request to request simplifying techniques such as session tracking and caching of

previous computations. Therefore, a servlet is java code with HTML embedded inside of

it. For example, consider the following servlet file, which is generated by the

Home_Page.jsp from the application:

8

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import org.apache.jasper.runtime.*;
import java.sql.*;

public class Home_Page_jsp extends HttpJspBase {
 private int accesscount=0;
 private static java.util.Vector _jspx_includes;

 public java.util.List getIncludes() {
 return _jspx_includes;
 }
 public void _jspService(HttpServletRequest request,
HttpServletResponse response)
 throws java.io.IOException, ServletException {
 JspFactory _jspxFactory = null;
 javax.servlet.jsp.PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 JspWriter _jspx_out = null;
try {
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType(“text/html; charset=iso-8859-1”);
 pageContext = _jspxFactory.getPageContext(this, request,
response,
 ““, true, 8192, true);
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;
out.write(“\r\n”);
 out.write(“<!DOCTYPE html PUBLIC \”-//W3C//DTD XHTML 1.0
Transitional//EN\”\”http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd\”>\r\n”);
out.write(“<html xmlns=\”http://www.w3.org/1999/xhtml\”>\r\n”);
 out.write(“<head>\r\n”);
 out.write(“<title>Home Page”);
 out.write(“</title>\r\n”);
 out.write(“<meta http-equiv=\”Content-Type\” content=\”text/html;
charset=iso-8859-1\” />\r\n”);
 out.write(“<link href=\”DTStylesheet.css\” rel=\”stylesheet\”
type=\”text/css\” />\r\n”);
 out.write(“<style type=\”text/css\”>\r\n”);
 out.write(“<!--\r\n.style1 {\r\n\tfont-size: 24pt;\r\n\tcolor:
#FF0000;\r\n}\r\nbody {\r\n\tbackground-color: #CCFFCC;\r\n}\r\n.style2
{color: #FF0000}\r\n.style4 {font-size: 14}\r\n-->\r\n”);
 out.write(“</style>\r\n”);
 out.write(“</head>\r\n\r\n”);
 out.write(“<body>\r\n\r\n”);

9

 out.write(“<table width=\”95%\” height=\”264\” border=\”o\”
cellpadding=\”3\” cellspacing=\”0\”>\r\n “);
 out.write(“<tr>\r\n “);
 out.write(“<td>“);
 out.write(“<div align=\”center\” class=\”style1\”>Distance
Training System “);
 out.write(“</div>“);
 out.write(“</td>\r\n “);
 out.write(“</tr>\r\n “);
 out.write(“<tr>\r\n “);

The above code demonstrates that if it is necessary to general HTML, it must be

written to the out object.

On the other hand, JSP interchanges the roles of output and application logic.

JavaServer pages are written in HTML with java code embedded in special HTML tags.

For example, consider the JavaServer page (Home_Page.jsp) that corresponds to the

above servlet written in Dreamweaver’s IDE:

import=“java.sql.*” errorPage=““ %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml”>
<head>
<title>Home Page</title>
<meta http-equiv=“Content-Type” content=“text/html; charset=iso-8859-1”
/>
<link href=“DTStylesheet.css” rel=“stylesheet” type=“text/css” />
<style type=“text/css”>
<!--
.style1 {
 font-size: 24pt;
 color: #FF0000;
}
body {
 background-color: #CCFFCC;
}
.style2 {color: #FF0000}
.style4 {font-size: 14}
-->
</style>
</head>

<body>
<table width=“95%” height=“264” border=“o” cellpadding=“3”
cellspacing=“0”>
 <tr>
 <td><div align=“center” class=“style1”>Distance Training System
</div></td>
 </tr>
 <tr>

10

 <td><hr /> <h3 align=“center”> DTS Home Page </h3>
 <hr />
 <p align=“left”><span
class=“style2”> &n
bsp;
 ***Welcome to the DTS. Select
an Operation from the List below and continue***</p></td>
 </tr>
 <tr>
 <td><table width=“70%” border=“o” align=“center” cellpadding=“3”
cellspacing=“0”>
 <tr>
 <td width=“76%”>Search(Anyone)</td>
 <td width=“24%”><object classid=“clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000”
codebase=“http://download.macromedia.com/pub/shockwave/cabs/flash/swfla
sh.cab#version=5,0,0,0” name=“Search” width=“100” height=“23”
id=“Search”>
 <param name=“movie” value=“button1.swf” />
 <param name=“quality” value=“high” />
 <param name=“bgcolor” value=“#9CFF9C” />
 <embed src=“button1.swf” width=“100” height=“23”
quality=“high”
pluginspage=“http://www.macromedia.com/shockwave/download/index.cgi?P1_
Prod_Version=ShockwaveFlash” type=“application/x-shockwave-flash”
bgcolor=“#9CFF9C” name=“Search”></embed>
 </object></td>
 </tr>
 <tr>
 <td>Log In </td>
 <td><object classid=“clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000”
codebase=“http://download.macromedia.com/pub/shockwave/cabs/flash/swfla
sh.cab#version=5,0,0,0” width=“103” height=“24”>
 <param name=“movie” value=“button5.swf” />
 <param name=“quality” value=“high” />
 <param name=“bgcolor” value=“#9CFF9C” />
 <embed src=“button5.swf” quality=“high”
pluginspage=“http://www.macromedia.com/shockwave/download/index.cgi?P1_
Prod_Version=ShockwaveFlash” type=“application/x-shockwave-flash”
width=“103” height=“24” bgcolor=“#9CFF9C”></embed>
 </object></td>
 </tr>
 <tr>
 <td>Alter the Database (only Professors and
other legitimate users) </td>
 <td><object classid=“clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000”
codebase=“http://download.macromedia.com/pub/shockwave/cabs/flash/swfla
sh.cab#version=5,0,0,0” width=“103” height=“24”>
 <param name=“BGCOLOR” value=“#9CFF9C” />
 <param name=“movie” value=“button6.swf” />
 <param name=“quality” value=“high” />
 <embed src=“button6.swf” width=“103” height=“24”
quality=“high”
pluginspage=“http://www.macromedia.com/shockwave/download/index.cgi?P1_

11

Prod_Version=ShockwaveFlash” type=“application/x-shockwave-flash”
bgcolor=“#9CFF9C” ></embed>
 </object></td>
 </tr>
 <tr>
 <td>Register (only Admin and other legitimate
users) </td>
 <td><object classid=“clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000”
codebase=“http://download.macromedia.com/pub/shockwave/cabs/flash/swfla
sh.cab#version=5,0,0,0” width=“103” height=“24”>
 <param name=“BGCOLOR” value=“#9CFF9C” />
 <param name=“movie” value=“button7.swf” />
 <param name=“quality” value=“high” />
 <embed src=“button7.swf” width=“103” height=“24”
quality=“high”
pluginspage=“http://www.macromedia.com/shockwave/download/index.cgi?P1_
Prod_Version=ShockwaveFlash” type=“application/x-shockwave-flash”
bgcolor=“#9CFF9C” ></embed>
 </object></td>
 </tr>
 </table></td>
 </tr>
</table>
<p> </p>
<p>Current time: <%=new java.util.Date() %></p>
<p>Server: <%=application.getServerInfo() %></p>
<p><%! private int accesscount=0;%>
Accesses to site since server reboot:
<%=++accesscount%></p>
</body>

</html>

A comparison of these two files demonstrates how different they are from each

other. However, they are identical behind the scenes. JSP is another way of writing

servlets. JSP was used to build the application, but the JSP webpages written were

translated into servlets, which were compiled and it is the servlets that run at each

request. Why not use servlets instead of JSP? Servlets are better suited for performing

complex application logic, whereas this product is focuses on presentation with some

logic inside, not to mention that using Dreamweaver simplified the creation and

reusability of the XHTML.

XHTML is the current standard for HTML which brings HTML in line with

XML. Thus, the relationship between the two is historical: XHTML replaces HTML. The

use of the XHTML makes it possible to describe the structure of the webpage using

headings (<h1>, <h2> etc), lists (, ,), body text (<p>) and so forth, but

12

presentation tags are no longer allowed. CSS and XSLT handle these tasks. The

advantage of XHTML is its backward-compatibility. Browsers created before XHTML

specification can still display XHTML almost perfectly.

B. THE JSP SELECTION

JSP was chosen over ASP for the following reasons:

• Open Approach.

JSP technology is designed to be both platform and server independent, created

with input from a broader community of tool, server, and database vendors. Instead of

being tied to a single platform or vendor, JSP technology can run on any web server and

is supported by a wide variety of tools from multiple vendors. Specifically, for the used

web server, ASP works only with Microsoft’s IIS, whereas JSP works with any web

server, including Apache, Netscape, and IIS.

• From the developer’s perspective.

• Extensible JSP tags: While both ASP and JSP use a combination of
tags and scripting to create dynamic web pages, JSP technology
enables developers to extend the JSP tags available. Thus, the JSP
specification prescribes a core set of tags, but it is possible to
create new ones through custom tag libraries.

• Reusability across platforms: JSP technology emphases
components (JavaBeans, Enterprise JavaBeans, custom JSP tags)
over scripting. These components are reusable across platforms.
On the other hand, ASP does not support any cross-platform
component.

• Java utilization: The use of the Java programming language in the
JSP technology makes the developer’s work easier because it
provides superior performance, power and scalability over the
other scripting interpreted languages (VBScript or javascript).

JSP was selected over Microsoft’s new technology .NET because a lack of

familiarity with .NET’s C# language, and secondly, it was possible that the final product

would not work on multiple servers and operating systems.The same reasons led to the

deployment of JSP over PHP. PHP requires learning an entirely new, less widely used

language, not to mention that JSP is much more supported by a wide range of tool

vendors than is PHP.

13

Finally, JSP was chosen over servlets because this application is more concerned

about the presentation rather than performing complicated logic computations. Although

JSP provides exactly the same capabilities as the servlets,JSP was selected for the

following reasons:

• Dreamweaver usage: Macromedia’s Dreamweaver was used for the JSP
pages. It was not possible to take advantage of the facilities that a web-site
development tool provides by writing servlets. For instance, be cognizant
of the JSP tags library when developing an application writing only Java
code.

• Presentation issues: It was easier to write, reuse and maintain the XHTML
using JSP because it avoided the inconvenient print statements to generate
XHTML along with the error-prone and time-consuming characters
(semicolons, backslashes etc.) necessary to produce XHTML output using
servlets.

• Distinguishing application parts: After creating the main page template
and forms layout, the presentation layer is no longer worrisome and the
focus is then on the project logic (database accessibility, queries and so
forth).

The aforementioned reasons led to the choice of the JSP server model to develop

the application instead of the other competing technologies. As a result, the JSP

compilation process is now presented.

Figure 3 shows the process by which JSP pages are compiled. When a request for

a JSP page is received, the web server, (Tomcat in this case, finds the compiled version

of the page and checks to determine whether it is current. This is done by looking for an

uncompiled version of the page with a creation date and time later that the compiled

page’s creation date and time. If the page is not current, the new page is parsed and

transformed into a java source file and that source file is then compiled. Note that this

compile happens only once as long as the server it still running and the java source is not

changed. However, the server will recompile the JSP source the next time the page is

requested if a change is made to it. The servlet is then loaded and executed. If the

compiled JSP page is current, then it is loaded into memory and executed. If it is already

in memory, then it is simply executed.

14

JSP
Servlet

Current?

JSP Page Request

Parse JSP and
Create Java
Source File

No

JSP
Servlet in
Memory?

Yes

Compile Java
Source File

Load the JSP servlet

No

Execute the JSP
servlet

JSP Page Response

Figure 3. JSP Compilation Process (From Ref. 3)

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

III. JSP SYNTAX BASICS

The basics of the JSP structure are presented before describing the application in

order to provide the necessary understanding of the position of the scripting elements

along with the code structure and style of a JSP webpage. Generally, a JSP page consists

of static content, JSP directives, Java code and JSP tags. Static content is the XHTML

into which the JSP code is embedded. Consequently, the other basic syntax elements

using examples from the application are then offered.

A. JAVA CODE

JSP is used over servlets because of the desire to build user interfaces with some

logic for the application. Although putting a small amount of code in the web pages

works fine, using large pieces of java code makes the code view difficult to read and hard

to reuse. In other words, the fewer lines of java code in the JSP page the better.

Otherwise, this would defeat the purpose of using JSPs over the java Servlet API. As

stated earlier, the code written in the webpage is inserted into the servlet, which is

generated from the webpage and stored in a different directory on the Web server. It is

possible to insert Java code using JSP scripting elements in the form of expressions,

scriptlets and declarations.

1. Expressions

Java code between <%= and %> without semicolons is called a JSP Expression.

The results of evaluating a expression performed at runtime when the page is requested

are converted to a string and directly included within the output page. Typically,

expressions are used to display simple values of variables or return values by invoking a

bean's getter methods discussed later in this chapter. For example, consider the following

JSP Expression from the Home_Page.jsp:

<p>Current time: <%=new java.util.Date() %></p>

<p>Server: <%=application.getServerInfo() %></p>

17

The first line outputs the current date and time whereas the second line outputs

information about the Web server. Expressions have access to predefined variables such

as request, response, session and so forth. Specifically, the “application” implicit object is

used to extract web server information, which is a predefined variable representing the

ServletContext obtained from the servlet configuration object.

2. Scriptlets

JSP code fragments or scriptlets are embedded within <% ... %> tags. This Java

code is run when the request is serviced by the JSP page, and it is possible to have almost

any valid Java code within a scriptlet, and it is not limited to one line of source code.

Scriptlets have access to the same predefined variables as JSP expressions. For instance,

the following code fragment entered in the Course_Request.jsp file of the application to

handle the radio button responses of the Search.jsp page is a scriptlet example:

<%

int searchMethodInt=1;

String searchMethodStr=request.getQueryString();

if((searchMethodStr.equals(“radiobutton=1&Submit=Submit”))){

 response.sendRedirect(“Keyword_Request.jsp”);

 }

 }

%>

In this particular case, the getQueryString() returns the form data. Thus, if

“radiobutton=0&Submit=Submit”, then the redirect is to Course_Request.jsp. Otherwise,

if “radiobutton=1&Submit=Submit”, the redirect is to Keyword_Request.jsp and it is

possible to search for information using a specific word or phrase. The

sendRedirect(Sting url) method generates a 302 response code along with a Location

header giving the URL of the new document. Either an absolute or a relative URL is

permitted. The 302 response code is one of the HTTP’s status codes, which allows the

browser to connect to a new location.

18

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html

3. Declarations

The JSP declarations make it possible to define page-level variables to save

information or define supporting methods that the rest of a JSP page may need. A

declaration has the following form:

<%! Field or Method Definition %>

They are inserted into the main body of the servlet but out of the _jspService

method and they must not override the standard servlet life-cycle methods such as

service, doGet, init and so on. JSP declarations do not produce any output but are used in

conjunction with JSP expressions or scriptlets. In a JSP declaration, it is possible to write

instance variables, method definitions or anything that to be put in an existing method.

However, if there are a large number of method definitions put in the JSP code, it would

be easier and more convenient to use separate Java classes (utility classes) and not use

JSP declarations. Thus, the reusability of the classes are improved and the testing of the

webpage easier because of clean and readable code.

Consider the following JSP declaration from the Home_Page.jsp of the

application:

<p><%! private int accesscount=0;%>

Accesses to site since server reboot:

<%=++accesscount%></p>

First of all, from the above example, notice that since declarations do not generate

any output, the JSP declaration is used in conjunction with a JSP expression (third line) in

order to obtain the result of this code snippet. The second observation is a counter was

created which counts the number of times that the website is accessed in just two lines of

code. When multiple users request access to a webpage, only one instance of the servlet

that corresponds to that specific webpage is created, and each user “gets” one thread

using the service method of that servlet instance.

19

4. Java Beans

Beans are Java classes that are written in order to overcome the disadvantages of

scriptlets and JSP expressions for large applications. They are written in standard format,

that is, a bean class must have an explicitly default constructor, no instance variables and

accessors along with mutators for accessing the values of the class. Although Java Beans

were not used in this project, Dreamweaver provides the possibility for inserting a Java

Bean in a webpage using the following interface or a collection of beans as shown below:

Figure 4. Java Bean Interface

Figure 5. Java Bean Collection

20

B. JSP DIRECTIVES

JSP directives appear between <%@ and %> markers. They indicate directives to

the server prior to compiling the JSP page and affect the overall structure of the servlet

that results from the JSP page. In JSP, there are three main types of directives: page,

include and taglib. The “page” directive defines the language used in the webpage, the

content type of the document, import statements and the error page attribute, which

specifies a JSP page that should process any exceptions thrown but not caught in the

current page. They are usually placed at the beginning of the code and they remain the

same for all the web pages of the application. The following page JSP directive is

provided by the Dreamweaver IDE when creating a new webpage:

<%@ page contentType=“text/html; charset=iso-8859-1” language=“java”

import=“java.sql.*” errorPage=““ %>

The above directive is not unchangeable. If the desire is to import some helper

classes to the document, it is possible to organize them into packages and then import

these packages to the document. For instance, importing a helper package to the above

page directive would be written as follows:

<%@ page contentType=“text/html; charset=iso-8859-1” language=“java”

import=“java.sql.*, helperPackage.*” errorPage=““ %>

It is worth mentioning that the import attribute is the only page attribute allowed

to appear multiple times within the same document.

The second JSP directive, “include”, makes it possible to insert a file into the JSP

page at the time the JSP file is translated into the servlet. This directive’s main advantage

is that the attributes and characteristics inserted from the code of the secondary page

completely affects the requested (main) page. The disadvantage it is necessary to update

the main page whenever any changes are made to the included file. However,

Dreamweaver makes the necessary corrections automatically. In this project, the directive

used is as follows:

<%@ include file=“Connections/conne.jsp” %>

21

In this particular case, after establishing the connection to the database and saving

it as conne.jsp, to be discussed later in more detail, Dreamweaver automatically creates a

directory for this connection. As a result, in order to have access to the database records,

the MySQL driver code is included to every webpage that must have access to the

DBMS.

The third JSP directive, taglib, defines custom markup tags. Specifically, this

directive tells the server where to find definitions for the custom tags in use in a specific

page. This type of directive was not used in this application.

Finally, the JSP tag is the last element of a JSP page structure A JSP tag is an

XML-like interface in a library of Java code. The JSP specification prescribes a set of

tags, but it is possible to create the tags through custom tag libraries. When desiring to

add the tag in a file, the class that implements a specific API is written and then that class

is mapped to a tag name via an XML descriptor file. The concept of the JSP tag was not

expounded upon in this thesis since self-defined tags were not used except for those that

Dreamweaver provided automatically.

22

IV. DEFINING THE PROJECT

A. SUPPORTING TECHNOLOGY

Generally, before starting to develop any web based application, it is appropriate

to make some architectural decisions. First, it is necessary to decide which architecture to

use, for example client/server, three-tier, or peer-to-peer. For this application, the simple

website architecture (three-tier) is selected, which is perhaps the simplest and most

familiar to Internet developers. This first step is important because it is resulted after

understanding the requirements and the basic enterprise platform for the organization.

The next step is to determinate the tools and the components that constitute this project.

For the completion of this project, Dreamweaver MX2004 was used as the web

development tool. Except for the page layout facilities provided to the developer by using

this tool, it is possible to take advantage of one of its application server components,

which is (JSP for this project. The other components participating in this application are

the web server, which is Tomcat for this project, and the database server (MySQL)

described in the following sections.

1. MySQL

MySQL is a multithreading relational database management system. Its main

advantage over the other commercial database systems is that it is free and fast. Although

the commercial database engines such as Oracle 9i, Microsoft SQL Server or Sybase

support every feature imaginable, there is a performance cost to pay for these features.

None of these database engines can compete with MySQL for read-heavy database

applications basically due to MySQL’s limited transaction management and logging

capabilities. However, due to the above limitations, MySQL is very fast for pure query

applications. Therefore, there are web-oriented data publishing companies that maintain

their databases using Oracle, but download them to MySQL for query publishing on their

web servers.

The binary distribution of MySQL 4.0 for Windows was downloaded from

MySQL’s downloads page: http://www.mysql.com/downloads. The default directory

C:\mysql was used to install the database software. It could be installed in a different

23

http://www.mysql.com/downloads

directory, but in this case, it would have been necessary to create a configuration file

pointing to the directory chosen. These queries are run using the command line, which

appears if the mysql.exe is run in the C:\mysql\bin. In order to keep track of the relational

schema and the data entered in the relations, a text editor (distance_training.sql) was

created, which was kept in the C:\mysql directory. Consequently, in order to generate the

distance_training database in the copy of MySQL, the following source command as

shown in the screenshot was run:

Figure 6. MySQL Source Command

The source command is used to run SQL commands stored in an external

document. All the necessary code of the database is stored in the text file

distance_training.sql and using the source command tells MySQL to generate relations

and populate these relations according to the information specified in the text file. When

running the source command, a number of success messages are obtained that indicate

that the distance_training database is properly installed and running in MySQL:

24

Figure 7. Success Messages

2. Web Server- Tomcat

After the database server, the Tomcat zip file was downloaded as the web server

from http://jakarta.apache.org/tomcat/. Tomcat was configured as a standalone server for

servlet and JSP development following the steps shown below:

• Setting the JAVA_HOME Variable

The most critical Tomcat setting is the JAVA_HOME Variable because improper

setting of this variable stops Tomcat from finding the classes used by javac, and

therefore, prevents Tomcat from handling JSP pages. On this platform (Windows XP

Pro), this variable is set as follows:

Figure 8. Variable

25

http://jakarta.apache.org/tomcat/

• Specifying the server port.

Tomcat uses port 8080 by default in order to avoid conflicts with other servers

running on the system, such as IIS, which is registered on port 80. In order to ensure that

the Web server’s port is set to 8080 or if it is necessary to modify the port number, the

Connector element in the install_dir/conf/server.xml verifies this. In the web server, the

following applied:

<Connector className=“org.apache.coyote.tomcat4.CoyoteConnector”

port=“8080” minProcessors=“5” maxProcessors=“75”

enableLookups=“true” redirectPort=“8443”

acceptCount=“100” debug=“0” connectionTimeout=“20000”

useURIValidationHack=“false” disableUploadTimeout=“true” />

• Enabling Servlet Reloading

As stated in Chapter II (The JSP Selection) which describes the JSP compilation

process, when a request for a JSP page is received, the web server (Tomcat) finds the

compiled version of the page and checks to determine whether it is current by looking for

an uncompiled version of the page having a creation date and time later that the compiled

page’s creation date and time. Although this feature may slightly degrade performance, it

is very useful from the programmer’s point of view because there is no need to restart the

server every time a servlet is compiled. By looking at the install_dir/conf/server.xml

directory, note that the reloadable attribute is set to true. Check the alignment throughout.

<DefaultContext reloadable=“true”/>

• Enabling the ROOT Context

The ROOT Context is the default web application in Tomcat, which is already

enabled in Tomcat 4.0 and some versions of Tomcat 4.1. If, however, it is not enabled in

this server, it is possible to uncomment the following line in the

install_dir/conf/server.xml directory:

26

<Context path=““ docBase=“ROOT”

debug=“0”/>

• Turning on the Invoker Servlet

The invoker servlet makes it possible to run servlets without making any change

to the WEB-INF/web.xml file in the Web application. In this project, the

/servlet/*servlet-mapping element is uncommented in install_dir/conf/web.xml.

The local deployment environment is now finished. It is next necessary to create

the personal development environment as well, in order to be able to compile the servlets

generated from the JSP pages. Configuring the development environment involves the

following steps:

• Creating a Development Directory

In the C:\TOMCAT\webapps\ROOT directory, a new location is created called

website. In this directory, all the JSP documents, flash objects, images, Cascading Style

Sheet documents and database are stored. Every file participating in the project is stored

in this directory.

• Setting Our Classpath

This variable is set in order to tell the Java compiler (javac) where to find the

servlet classes. Before setting this variable, only the web server knows about the servlet

classes. Thus, if the classpath is not set in the system, an attempt is made to compile

servlets, tag libraries or other classes using the servlet API. In this server, the JAR files

containing the servlet API are located in C:\TOMCAT\server\lib.

Figure 9. Setting the Class Path

27

In addition to the servlet JAR file, it is also necessary to include both the

development and the current directory “.” in the classpath, as shown below.

Figure 10. Including the Current Directory in the Classpath

• Making shortcuts to start and stop the server

It was determined that it is more convenient to place shortcuts to the server startup

and shutdown icons on the desktop in order to avoid going to the C:\TOMCAT\bin

frequently to start and stop the server.

• Testing the Setup

Finally, before starting with Dreamweaver, the configuration was tested by

verifying the SDK installation, checking the basic server configuration (access to

Tomcat’s home page), and deploying some simple servlets and JSP Pages.

Lastly, the servlet source and their classes generated from the JSP Pages are

stored in the C:\TOMCAT\work\Standalone\localhost_\website directory.

During the development of this project, it was necessary to refer to these files frequently

in order to understand what is going on behind the scenes and for troubleshooting

problems on the webpages.

3. Dreamweaver MX

Macromedia Dreamweaver MX is a complete web application development tool

that combines many critical web authoring tools such as databases, SQL, Java, XML,

XSLT and so forth with application server technologies such as JSP, ASP.NET, PHP and

others. Dreamweaver’s main interface components will be referred to during the

development of this application. After configuring the database server and setting up the

28

JSP engine, the first step is to set Dreamweaver to work with dynamic webpages. A

location in the ROOT directory of the web server (website) was created and the

application was named DistanceTraining, as shown below:

Figure 11. Site Definition-Local Info

This thesis will not describe Dreamweaver’s user interface. Many books are

available that can assist in learning Dreamweaver’s components and features. Only its

main components and tools that helped to build a data-driven web application are

described. Besides, Dreamweaver was chosen in order to demonstrate the possibility of

developing a Web product prototype quickly and correctly as long as a reliable and clean

database model is built. Additionally, developing a static website, which is an application

not interacting with any data source, is possible by using some other lightweight HTML

text editors such as FrontPage, BBEdit or HomeSite.

29

The selection of the Testing Server from the Category list provides the next user

interface:

Figure 12. Site Definition-Setting the Testing Sever

The Testing Server enables Dreamweaver to test files after they have been

processed on the server and thus verify that they actually work. From the first drop-down

menu, the server model that will be used is selected , which is JSP for this project. In the

Access drop-down menu, Local/Network is chosen because the application was

developed on a computer with a local version of a standalone Tomcat installed. In the

testing server folder textfield, the location of the server is indicated where the files are

stored. When navigating the application, the web pages from this directory will be those

served. The website’s URL is entered in the URL prefix. The expression

30

“localhost:8080” is a shortcut that activates Tomcat on the machine on the specified port,

and tells it to look in its root directory, which is ROOT for this project. Finally, before

connecting to the database, it is necessary to handle the formatting of the web pages. This

can be done using Cascading Style Sheets (CSS), which makes it possible to maintain the

same appearance throughout the website without making formatting adjustments for

every webpage in the website. An external style sheet was used, which is stored outside

the web pages and is attached to every webpage in order to maintain the same formatting

style on the web pages. In this project, this external style sheet file is named

DTStylesheet.css.

4. JDBC Connector

JDBC, as with all Java APIs, is a set of classes and interfaces that work together

to support a specific set of functionality, which in the case of JDBC, is database access.

By using the JDBC API, it is possible to access a variety of SQL databases with the same

Java syntax. Java combines the classes that form the JDBC API in the java.sql package,

which is imported automatically in Dreamweaver as long as a connection is defined to the

database. It is important to note that JDBC standardizes the approach for connecting to a

RDBMS and does not attempt to impose a specific SQL syntax. Most of the classes in the

java.sql package are interfaces. In other words, they do not provide implementation

details. Individual database vendors provide the implementations of these interfaces in

the form of a JDBC driver. The JDBC API makes it possible to do three things:

• Establish a connection with a database or access any tabular data source

• Send SQL statements

• Process the results

Figure 13 shows the JDBC architecture.

31

Application

Data source

JDBC API JDBC APIJDBC API

MySQL JDBC
driver

Oracle JDBC
driver

MS SQL JDBC
driver

Figure 13. JDBC Architecture (From Ref. 1)

Figure 13 illustrates the general JDBC architecture from the application’s

perspective. From the application, methods of the JDBC API are called. The

implementation written in those methods actually performs the database calls.

In order to connect the web pages with the MySQL database using

Dreamweaver’s interface, the Databases panel is used in the Application panel group to

the right of the IDE, and the Connection (+) button is selected. Next, it is necessary to

choose one connection type from among the other options.

32

Figure 14. Connecting Our Web Pages to the Database Server

“MySQL Driver (MySQL)” is selected and the textfields of the window filled that

return the necessary information, as shown below:

Figure 15. Setting Up the MySQL Driver

33

As seen, the connection name in the first textfield (conne) is passed. The GNU

driver is selected with the implementation specified in the second textfield (Driver) from

the DriverManager class of the java.sql package. MySQL also contains the Caucho and

the twz driver types. This Driver provides the connection to the database based on the

URL passed on the third textfield (URL). A JDBC URL appears in the form of

jdbc:protocol:subprotocol. The protocol of the GNU Driver is mysql, whereas the

subprotocol provides the implementation-specific connection data. Thus, the hostname

(localhost) and the database name (distance_training) is passed. The port is also required,

but in this case, the database engine is running on the default port (8080).

It is worth mentioning that it does not matter which page of the website is open

when initially creating the connection. Dreamweaver sets the connection for the whole

website creating a new folder in the website, called Connections, with a new file inside

called conne.jsp. This file holds the information previously passed in the database

window:
<%
// FileName=“mysql_jdbc_conn.htm”
// Type=“JDBC” ““
// DesigntimeType=“JDBC”
// HTTP=“true”
// Catalog=““
// Schema=““
String MM_conne_DRIVER = “org.gjt.mm.mysql.Driver”;
String MM_conne_USERNAME = ““;
String MM_conne_PASSWORD = ““;
String MM_conne_STRING = “jdbc:mysql://localhost/distance_training”;
%>

B. PROJECT DESCRIPTION

1. The Distance-Training Application

In recent years, the field of educational technology has witnessed the emergence

of many e-learning tools (tools for instruction that use the Internet) as well as many

collaborative learning environments for online instruction. Basically, for economical and

flexibility reasons, the Distance Learning model should be applied to each country’s

Armed Forces without discarding the traditional learning method. This achievement will

make it possible to have a greater effectiveness and more learner-centric training.

Although the data model is created to work as a distance learning application, it can also

34

be transformed to deliver standardized individual, self-development, and small group

training to soldiers through the application of networked communication systems. This

can be accomplished by following a different hierarchy, for instance, a battalion-

company-platoon-troop-soldier. This adaptability is significant because never assume that

what works well in education will also necessarily work well in training.

The conceptual schema works fine for short-term military schools for both

officers and noncommissioned officers. Every Army branch supervision (e.g., signal

corps) has the possibility to train its personnel while they remain assigned to their units.

For familiarity reasons, the model was adapted to a university educational environment.

There are two paths to capture the information stored in the “section” and

“image” entity classes. The first path is through users→ course→subject→

topic→section→image. This path can be used by professors responsible for the course or

by students who have enrolled to attend one or more classes and they are familiar with

the official education management system of the university. The second path,

category→section→image, can be used by users not familiar with the navigation flow of

the first path. External users are able to use key words to capture the desired information.

Both types of users can use either path but only the users who belong to the professors’

user-group have permissions to insert, update, or delete information through forms.

A Learning Management System, such as NPS’s Blackboard, is appropriate for

those student/users enrolled to attend specific classes. Users in the DTS do not need to

take advantage of the full spectrum that a LMS such as Blackboard provides (grade

reports, participation records, etc.). They simply want to retrieve their desired

information by accessing the content without being necessarily part of the organization

that uses the DTS.

2. UML Diagram

There are many ways to represent the conceptual schema. The fundamental way is

the Entity- Relationship (E-R) model with the IDEF1X national standard and the UML as

its variants. UML was selected because it is the basis of the object-oriented design.

35

users

user_id (PK)
user_fname
user_lname
user_phone
user_address
user_email
user_username
user_pwd
user_group

course

course_id (PK)
course_name
course_code

profcourses

teachid (PK)
prof_num (FK)
course_num (FK)
room

subject
subject_id (PK)
subject_name
course_num (FK)

topic
topic_id (PK)
topic_name
topic_descr
subject_num (FK)

topicsection
ts_id (PK)
topic_num (FK)
section_num (FK)

section

section_id (PK)
section_name
section_content
section_Keyword
section_author
category_num (FK)

sectionimage
sec_image_id (PK)
section_num (FK)
image_num (FK)

image
image_id (PK)
image_name
image_des
image_author
image_src

category

category_id (PK)
category_name

Figure 16. UML for the DTS Application

3. Relationships and Relation Schema

Many-to-Many.

• A user who belongs to the professor’s user group can teach many courses
and one course can be taught by many professors. The join table
profcourses was used to model this many-to-many relationship.

• A topic may include many sections and one section may be included in
many topics. In other words, the same section can be used by different
topics, and as a result, by different courses. Thus, different professors can

36

use the same section in their course. For instance, a professor that teaches
databases in the IS department can use sections (paragraphs) from a
database course taught in the CS department. The join table topicsection
was used to model this many-to-many relationship.

• A section may have many images and an image can be included in many
sections. The join table sectionimage was used to model this many-to-
many relationship and transform it to a one-to-many.

One-to-Many

• A course contains many subjects but one subject is part of one course.

• A subject contains many topics but one topic is part of one subject.

• A category contains many sections but one section is part of one category.

Successively, the relation schema is described:

• users (user_id: INT, user_fname: VARCHAR(30), user_lname:
VARCHAR(30), user_phone: CHAR(20), user_address: VARCHAR(30),
user_username: CHAR(8), user_pwd: CHAR(10), user_group:
CHAR(10)).

• course (course_id: INT, course_name: TEXT, course_code: TEXT).

• profcourses (teachid: INT, prof_num: INT (FK), course_num: INT (FK),
room: CHAR(20)).

• subject (subject_id: INT, subject_name: CHAR(30), subject_descr:
VARCHAR(50), course_num: INT (FK)).

• topic (topic_id: INT, topic_name: VARCHAR(30), topic_desc:
VARCHAR(60), subject_num: INT (FK)).

• section (section_id: INT, section_name: CHAR(50), section_content:
MEDIUMTEXT, section_keyword: CHAR(100), section_author:
MEDIUMTEXT, category_num: INT (FK)).

• topicsection (ts_id: INT, topic_num: INT (FK), section_num: INT (FK)).

• category (category_id: INT, category_name: VARCHAR(30)).

• image (image_id: INT, image_name: CHAR(30), image_des: CHAR(30),
image_author: MEDIUMTEXT, image_src: VARCHAR(100)).

• sectionimage (sec_image_id: INT, section_num: INT (FK), image_num:
INT (FK)).

C. XML USAGE

A dilemma was faced in the beginning of this application.Is it better to store

information in XML documents or use the relational model? Furthermore, since it was

37

necessary to have a database to store the data, could XML be used as the database? The

answer to the last question is: “Sort of”. On the plus side, XML provides many of the

things found in databases: storage (XML documents), schemas (DTDs, XML Schemas,

and so forth), query languages (XQuery, XPath, XQL, etc.), and programming interfaces

(SAX, DOM, JDOM). Conversely, it lacks many of the features found in real databases:

efficient storage, indexes, security, transactions and data integrity, multi-user access,

triggers, and queries across multiple documents. Thus, the first general reason leading to

the adoption of the relational model is that while it may be possible to use an XML

document or documents as a database in environments with small amounts of data, few

users, and modest performance requirements, this will fail in most production

environments with many users, strict data integrity requirements, and the need for good

performance.

Another issue taken into consideration before starting was the type of data to

handle: data-centric or document-centric data. Data-centric is the kind of data

characterized by a fairly regular structure, fine-grained data and little or no mixed

content. Examples of data-centric documents are sales orders, flight schedules, scientific

data, and stock quotes. On the other hand, document-centric is the kind of data

characterized by less regular or irregular structure, larger grained data and a large amount

of mixed content. Examples are books, email, advertisements, and almost any hand-

written XHTML document.

38

The above distinction is important because if the data is data-centric, a good

solution is to store the data in a relational database with XML capabilities such as SQL-

Server and Oracle, or in a relational database and use software to transfer the data

between XML documents and the database. On the other hand, if the data is document-

centric, a good solution is to store the data in a native XML Database. The data in this

project is more document-centric than data-centric. A relational database with XML

capabilities was not utilized because these products are not free and when they are

upgraded (for instance, Oracle 8i to Oracle 9i), it is difficult and sometimes painful to

transfer the information from one DBMS to the other. Additionally, a Native XML

database was not used because of the lack of familiarity with the necessary software AG

(Tamino), which allows someone to access and manipulate data in a XML database.

Nevertheless, depicting the application using XML can be provided in the

following document edited with XMLSpy:

<?xml version=“1.0” encoding=“UTF-8” ?>
- <!--
MAJOR Nick Pogkas
 Description: This is an XML document that corresponds to one
section of the DTS application

 -->
- <Course courseCode=“cs2900” courseName=“Introduction to Java”
instructor=“Otani, Thomas”>
- <Contents>
- <Subject subjectName=“Chapter 1: Introduction to Object-Oriented
Programming and Software Development”>
- <Topic topicName=“Classes and Objects”>
- <Section sectionName=“Object-Oriented Programming Basics”>
 ![CDATA[
- <HTML>
- <HEAD>
- <TITLE>
 Classes and Objects
 </TITLE>
 </HEAD>
- <BODY>
- <p>
 Object-Oriented Programming Basics
 </p>
 <p>The two most important concepts in object-oriented programming are
the class and the object. In the broadest term, an object is a thing, both
tangible and intangible, that we can imagine. A program written in object-
oriented style will consist of interacting objects. For a program to keep
track of student residents of a college dormitory, we may have many
Student, Room, and Floor objects. For another program to keep track of
customers and inventory for a bicycle shop, we may have Customer, Bicycle,
and many other types of objects. An object is comprised of data and
operations that manipulate these data. For example, a Student object may
consist of data such as name, gender, birth date, home address, phone
number, and age and operations for assigning and changing these data
values. We will use the notation shown in Figure 1.1 throughout the book to
represent an object.</p>
- <p>
 <image src=“Images/cs2900_images/Figure1.gif” />
 </p>
 <p>Iside a program we write instructions to create objects. For the
computer to be able to create an object, we must provide a definition, called
a class. A class is a kind of mold or template that dictates what objects can
and cannot do. An object is called an instance of a class. An object is an
instance of exactly one class. An instance of a class belongs to the class.
The two Bicycle objects Moto-1 and Moto-2 are instances of the Bicycle

39

class. Once the class is defined, we can create as many objects of the class
as a program requires.</p>
 </BODY>
 </HTML>
]]
 </Section>
 </Topic>
 <Topic topicName=“Messages and Methods” />
 <Topic topicName=“Class and Instance Data Values” />
 <Topic topicName=“Inheritance” />
 <Topic topicName=“Software Engineering and Software Life Cycle” />
 </Subject>
 <Subject subjectName=“Chapter 2: Getting Started with Java” />
 <Subject subjectName=“Chapter 3: Numerical Data” />
 <Subject subjectName=“Chapter 4: Defining Your Own Classes” />
 <Subject subjectName=“Chapter 5: Selection Statements” />
 <Subject subjectName=“Chapter 6: Repetition Statements” />
 <Subject subjectName=“Chapter 7: Event-Driven Programming and Basic
GUI Objects” />
 <Subject subjectName=“Chapter 8: Exceptions and Assertions” />
 <Subject subjectName=“Chapter 9: Characters and Strings” />
 <Subject subjectName=“Chapter 10: Arrays” />
 <Subject subjectName=“Chapter 11:Sorting and Searching” />
 <Subject subjectName=“Chapter 12: File Input and Output” />
 <Subject subjectName=“Chapter 13: Inheritance and Polymorphism” />
 <Subject subjectName=“Chapter 14: Advanced GUI” />
 <Subject subjectName=“Chapter 15: Recursive Algorithms” />
 </Contents>
 </Course>

In conclusion, although native XML databases offer the advantage of speed over

traditional databases, it is too new to be of practical use at this stage. XML is not just an

extension of HTML. The complexities of this emerging technology require extensive

training. A year’s worth of additional courses in XML or XML-oriented topics would be

helpful and necessary to employ the rich potential of XML. It is beyond the focus of this

thesis to expound further upon the strengths and weaknesses of employing purely XML

databases.

40

V. APPLICATION FILE ANALYSIS

This section describes the main files constituting the application and examines

some of the most important Dreamweaver features that facilitated the work on this

project.

A. USER AUTHENTICATION INTERFACE

One of the most common tasks for web developers is the implementation of a

framework that allows users to register/log into a web site. Pages in a website are divided

into those that are publicly accessible and those that require log-in by users to.

When a user wants to access the website, the default page appears, which is the

“Home_Page.jsp”. From this point, in order to proceed, it is necessary to log-in or

register if this is the first log-in in order to access the site’s information.

1. Home_Page.jsp

The default page of this application is the Home_Page.jsp. It is mainly a static

page that consists of four buttons (flash objects). An event (a new page) is generated

upon pressing any of these buttons. Each button is registered to a specific page which

opens a path to a unique operation (search, log in, alter and registration). The other

features illustrated in this page (current time, type of server and counter) are JSP

Expression, scriptlet and Declaration JSP elements, respectively that are described

previously in Chapter III, JSP SYNTAX BASICS.

41

Figure 17. Home (Default) Page

It is obvious that the capabilities of the default page can be extended by adding

more buttons and dynamic content but these operations are basic and the most usual in

every content management website.

2. Registration.jsp

If a user has not visited the site previously, it is necessary register. The

Registration.jsp and Login.jsp pages are the main pages that constitute the user

authentication part of the application. User authentication is required in order to access

any part of the website because four groups of users are distinguished:

• The administrator authorized to maintain the normal operation of
the site, register new users and so forth.

• The professors responsible for the site content (insert, update or
delete course material).

• The students registered to attend a class and use the site’s content
to learn specific information about a subject of this course or
learning material included in other courses.

42

• Other legitimate users interested in learning information about a
specific topic.

This is not completely correct because unregistered users cannot determine in

advance if they are interested in the information provided by the DTS. However,

registration is free, and DTS only uses the information for marketing and promotional

reasons to learn more about the users.

Since the website consists entirely of restricted pages, the users can access them

as long as they have successfully logged in. The log-in process presupposes the

registration process. The registration process in this application is accomplished by

creating a registration form where the user can insert information to the database as

shown below.

Figure 18. Registration Page

The data passed in the text fields of the registration form update the “users”

relation of the database by adding a record to it. This is a matching activity. One item of

data from a form is matched to one field in the destination table, which is accomplished

by applying a Server behavior to the registration form by using the “Insert Record” of

Dreamweaver’s Server Behaviors panel.

43

Figure 19. The “Insert Record” Dialog Window

The second step is to ensure that the entered username is unique by using the

“Check New Username” server behavior as shown below.

Figure 20. Determines the Uniqueness of the Entered Username

If the registration fails, the redirect is to the Registration_Failed.jsp page, which

prompts the user to use a different username.

After creating a functioning registration page, the next step is to build the log-in

page. The role of the log-in page is to obtain the entered username and password. Then it

compares these values with the user_username and user_pwd with the “users” table. If

there is a match, a log-in script sets a session variable indicating that the user is logged in.

If there is no match, the user is redirected again to the Login.jsp page.

44

String MM_valUsername=request.getParameter(“username”);
if (MM_valUsername != null) {
 String MM_fldUserAuthorization=“user_group”;
 String MM_redirectLoginSuccess=“Home_Page.jsp”;
 String MM_redirectLoginFailed=“Login_Failed.jsp”;
 String MM_redirectLogin=MM_redirectLoginFailed;
 Driver MM_driverUser =

(Driver)Class.forName(MM_conne_DRIVER).newInstance();
 Connection MM_connUser =

DriverManager.getConnection(MM_conne_STRING,MM_conne_USERNAME,MM_conne
_PASSWORD);

 String MM_pSQL = “SELECT user_username, user_pwd”;
 if (!MM_fldUserAuthorization.equals(““)) MM_pSQL += “,” +

MM_fldUserAuthorization;
 MM_pSQL += “ FROM distance_training.users WHERE

user_username=\'“ + MM_valUsername.replace('\'', ' ') + “\' AND
user_pwd=\'“ +
request.getParameter(“password”).toString().replace('\'', ' ') + “\'“;

 PreparedStatement MM_statementUser =
MM_connUser.prepareStatement(MM_pSQL);

 ResultSet MM_rsUser = MM_statementUser.executeQuery();
 boolean MM_rsUser_isNotEmpty = MM_rsUser.next();
 if (MM_rsUser_isNotEmpty) {
 // username and password match - this is a valid user
 session.putValue(“MM_Username”, MM_valUsername);
 if (!MM_fldUserAuthorization.equals(““)) {
 session.putValue(“MM_UserAuthorization”,

MM_rsUser.getString(MM_fldUserAuthorization).trim());
 } else {
 session.putValue(“MM_UserAuthorization”, ““);
 }
 if ((request.getParameter(“accessdenied”) != null) && true)

{
 MM_redirectLoginSuccess =

request.getParameter(“accessdenied”);
 }
 MM_redirectLogin=MM_redirectLoginSuccess;
 }
 MM_rsUser.close();
 MM_connUser.close();

Response.sendRedirect(response.encodeRedirectURL(MM_redirectLogin));
 return;
}

Each page that restricts access needs to check for the presence of this session

variable in order to determine whether to grant access to the page or redirect the user to a

different page. For example, consider the following code listing from the Search.jsp and

Course_Master_Form.jsp pages appearing at the beginning of each page.

45

<%
// *** Restrict Access To Page: Grant or deny access to this

page
String MM_authorizedUsers=“professor,admin”;
String MM_authFailedURL=“Login.jsp”;
boolean MM_grantAccess=false;
if (session.getValue(“MM_Username”) != null &&

!session.getValue(“MM_Username”).equals(““)) {
 if (false || (session.getValue(“MM_UserAuthorization”)==““) ||

(MM_authorizedUsers.indexOf((String)session.getValue(“MM_UserAuthoriza
tion”)) >=0)) {

 MM_grantAccess = true;
 }
}
if (!MM_grantAccess) {
 String MM_qsChar = “?”;
 if (MM_authFailedURL.indexOf(“?”) >= 0) MM_qsChar = “&”;
 String MM_referrer = request.getRequestURI();
 if (request.getQueryString() != null) MM_referrer =

MM_referrer + “?” + request.getQueryString();
 MM_authFailedURL = MM_authFailedURL + MM_qsChar +

“accessdenied=“ + java.net.URLEncoder.encode(MM_referrer);

response.sendRedirect(response.encodeRedirectURL(MM_authFailedURL));
 return;
}
%>

B. SEARCH INTERFACE

This database features two paths by which to capture the information that resides

in the subsections. The first path is through course → subject → topic → subsection and

the other is by using keywords. Either of them can be used by any user group.

1. Search.jsp

This page can be used by any legitimate user granted access to the website. The

page layout is shown below.

46

Figure 21. Search Page

Two radio buttons were used to implement the “Search” operation, giving the first

one (By Course) the value 0 and the other one the value 1. If the user chooses to proceed

searching by course, Course_Request.jsp appears.

2. Course_Request.jsp

The Course_Request.jsp page has the following layout.

47

Figure 22. Course Request

A drop-down menu was used because the users are able to select from a finite

number of options for courses that the developer specifies. The following options result

from querying the database.

48
Figure 23. The “rs_course” Recordset

Dreamweaver also provides the option to verify the results of the query by

clicking the Test button.

Figure 24. Testing the Query

Each entry in a form menu has two attributes that need to be set: the label (the

part users read, or the course_code in this case not submitted with the form) and the data

(course_id here) submitted with the other form elements. The course_id is needed

because this value is used as a foreign key in the subject relation and it specifies the

subjects associated with this passed course_id.

Dreamweaver automatically binds the data to the menu using the following

Dynamic List/Menu dialog.

49

Figure 25. The “Dynamic/List” Dialog Window

This feature is very useful because, if for any reason a change the database is

required, the menu field is automatically and instantly updated. In general terms, as long

as the database is maintained, web maintenance will happen automatically.

Another characteristic of this page not visible in the page layout is the

implementation of the Search’s page radio buttons:
<%
int searchMethodInt=1;
String searchMethodStr=request.getQueryString();
if((searchMethodStr.equals(“radiobutton=1&Submit=Submit”))){
 response.sendRedirect(“Keyword_Request.jsp”);
}
%>

The flow navigation methodology developed from the Course_Request.jsp page

to the Subject_Request.jsp is exactly the same as that applied from Subject_Request.jsp

to the Topic_Request.jsp.

50

3. Topic_Request.jsp

The Topic_Request.jsp is a simple web page that includes one drop-down menu

with all the topics associated with the passed subject_id. The topics appeared by

executing the following query.

Figure 26. The “rs_topic” Recordset

In this case, the simple recordset dialog was used as in the previous paragraph

because the results were obtained from only one table. The next step is to bind the

recordset results to the menu.

51

Figure 27. Collecting the Topic Names

4. Subsection_Request.jsp

As mentioned previously in this chapter, one topic may include many subsections

and one subsection may be included in many topics. This is a Many-to-Many

relationship. In the database design, this situation was handled by creating the join table

“topicsection”. In order to obtain the subsections associated with a specific topic, the

following query was executed.

52

Figure 28. The “rs_subsection” recordset

In this case, the advanced recordset dialog was used because information came

from three tables. Dreamweaver generates the code fragment shown below when

successfully running the query.
<%
Driver Driverrs_subsection =

(Driver)Class.forName(MM_conne_DRIVER).newInstance();
Connection Connrs_subsection =

DriverManager.getConnection(MM_conne_STRING,MM_conne_USERNAME,MM_conne
_PASSWORD);

PreparedStatement Statementrs_subsection =
Connrs_subsection.prepareStatement(“SELECT
topicsection.section_num,topicsection.topic_num,section.
section_name,section.section_id FROM
distance_training.section,distance_training.topicsection,
distance_training.topic WHERE
section.section_id=topicsection.section_num AND
topic.topic_id=topicsection.topic_num “);

ResultSet rs_subsection = Statementrs_subsection.executeQuery();
boolean rs_subsection_isEmpty = !rs_subsection.next();
boolean rs_subsection_hasData = !rs_subsection_isEmpty;
Object rs_subsection_data;
int rs_subsection_numRows = 0;
%>

53

Dreamweaver produces the following code fragment upon binding the query

results to the menu.
while (rs_subsection_hasData) {
%>
 <option

value=“<%=((rs_subsection.getObject(“section_id”)!=null)?
rs_subsection.getObject(“section_id”):”“)%>“>
<%=((rs_subsection.getObject(“section_name”)!=null)?
rs_subsection.getObject(“section_name”):”“)%></option>
 <%
 rs_subsection_hasData = rs_subsection.next();
}

In this case, instead of illustrating the “Dynamic List/Menu” dialog window to

bind the SQL results to the menu as done previously, this dialog window demonstrates

what goes on behind the scenes. The JSP engine goes through each

section_id/section_name pairing in the recordset and adds it to the menu item.

The form data of this page will be processed by the Subsection_Results.jsp (as the

“Action” attribute specifies) and they will be transmitted to the Server using the GET

method (as the “Method” attribute specifies).

5. Subsection_Results.jsp

Both Subsection_Results.jsp and Image_Result_All.jsp constitute the last level of

the Content Management System hierarchy. The Subsection_Results.jsp reveals the

content requested from the Subsection_Request.jsp. The page layout is shown below.

54

Figure 29. The “subsection results” Page

The necessary information for the subsection name and content was pulsed using

the SQL shown below.

Figure 30. The “rs_subsection” Recordset

55

By sending section_id from the subsection request (the previous page), it is

possible to retrieve the subsection name and content associated with that specific

section_id using the “Dynamic Text Field” of the Dreamweaver’s Server Behaviors

shown below.

Figure 31. Retrieving Text Using the “Dynamic Text” Dialog Window

For instance, the code that Dreamweaver generates for the section_content

binding is:
<%=(((rs_subsection_data =

rs_subsection.getObject(“section_content”))==null ||
rs_subsection.wasNull())?”“:rs_subsection_data)%>

Every subsection includes zero, one or more images. In order to associate each

subsection with an image the following SQL was performed.

56

Figure 32. The “rs_image” Recordset

In succession, a drop-down menu was created and by using the “Dynamic

List/Menu” dialog window, each image was bound to the menu. This page was linked to

the Image_Result_All.jsp page so that is was possible to see all the images associated

with a specific subsection.

6. Image_Result_All.jsp

As mentioned previously (Database design), a subsection may include one or

more images and each image belongs to one or many subsections. This is a Many-to-

Many relationship, which was handled by creating the “sectionimage” join table. The

following query retrieved the images appearing in a subsection.

57

Figure 33. The “rs_allimages” Recordset

The images in this page were inserted using the “Select Image Source” dialog

window that makes it possible to use the string of the “image_src” field.

Figure 34. Inserting Images Using the “Select Image Source” Dialog Window

58

When inserting a dynamic image, what is really inserted is a dynamic string,

which consists of a URL path pointing to an image inside of an element.
<p><img src=“<%=(((rs_allImages_data =

rs_allImages.getObject(“image_src”))==null ||
rs_allImages.wasNull())?”“:rs_allImages_data)%>“ /></p>

The last characteristic of this page is the “Repeat Region” behavior, which

ensures that all the specified records, rather than just the first one, will be displayed.

Figure 35. Determining the Number of Images Per Page

7. Keyword_Result.jsp

The other “Search” option available to a user is to search the site using keywords.

The Keyword_Result.jsp page was created to process the data of the

Keyword_Request.jsp and generate the result as shown.

59

Figure 36. The Keyword Results Page (Design View)

The following query was executed to retrieve the data required for this page:

60

Figure 37. Retrieving a Paragraph Specified by the Passed Keyword

The above SQL statement indicates that all the fields from the section table are

desired where the column value (section_Keyword) matches any arbitrary number of

characters passed from the previous page using the “MMColParam” variable.

It is possible to generate the content and the images for this subsection using the

“Dynamic Text” behavior with this desired recordset.

The curly braces are Macromedia’s specific pseudocode expressions that indicate

the presence of dynamic content.

C. ALTER DATABASE INTERFACE

The “AlterDB” operation is slightly more complex than the previous two

operations of “User Authentication” and “Search”. It can be used only by the professors

and the Administrator of the site. This navigation flow is a combination of the “master”

and “detail” pages. In general terms, the master-page lists many records in a summary

61

format whereas the detail-page contains detailed information about a specific record that

has been selected by the user from the master-page. The files that constitute the

“AlterDB” operation are described successively.

1. Course_Master_Form.jsp

The top level of the content management system hierarchy is “course”. After a

professor logs-in, the Course_Master_Form.jsp page appears, which provides the actions

illustrated in the page:

Figure 38. Course Master Page

From this point on, the professor can select to continue to the other master page

(Subject_Master_Form.jsp) using the “Continue” button or perform modifications to this

page by inserting, updating or deleting a course. In order to insert data, the table is

identified and which data to write to which fields in that table specified. In order to

update a specific record, the same procedure is applied to a particular, existing record

Information is not appended to the end of the relation. The “UPDATE” SQL command

assists in the accomplishment of this task. Besides, Dreamweaver has the “Update

Record” behavior that makes it even easier. As far as the “Delete” action is concerned, it
62

is a pretty straightforward action as described later inthis section. All the above four

actions are submitted by four separate forms (one for each operation) to four different

web pages specified by the Action attribute.

Before performing any query on this page, the users authenticated to access this

page must be specified. This is done by using the “Restrict Access To Page” server

behavior as shown below.

Figure 39. Restricting the Access to the Specified User Groups

The next step is to perform a query in order to obtain the available courses from

the database, and then using the “Dynamic List/Menu” dialog match each value

(course_id) with the corresponding course_code in order to populate the drop-down

menus.

2. Add_New_Course_Form.jsp

When a professor presses the “Insert” button of the Course_Master_Form.jsp

page, the Add_New_Course_Form.jsp page appears. It is then possible to insert a new

course by entering the course code and name using the following interface.

63

Figure 40. Insert a New Course Name

The “Insert Record” behavior was used to insert data into the database.

Figure 41. “Insert Record” Behavior

64

The Insert Record behavior matches data entered in the form to fields in the

database, creating a new record in the database and populating it with the user-entered

data. The “course_code” and “course_name” to the left of the “Form Elements”

subwindow in the above dialog are the names given to the corresponding textfields of the

web page whereas the “course_code” and “course_name” to the right indicate fields of

the “course” relation. The other attributes of the above dialog are self-explanatory.

3. Update_Course.jsp

When the “Update” button is pressed, the instructor has the capability to modify

or correct the course code or class name using an interface identical to that presented in

the Add_New_Course_Form.jsp page.

The first step is to perform a simple SQL query in order to obtain the course name

and code specified by the course_id passed from the Add_New_Course_Form.jsp page.

Figure 42. The “rs_course” Recordset

It is worth mentioning that when testing this query, a test value is specified

because the query needs a value to be sent from the form.

65

Figure 43. Passing Test Value for the Query

At the next step, for each textfield (course code and course name), the

corresponding values obtained from the recordset using the “Dynamic Text Field”

behavior are set.

After finishing the textfield bindings with the results of the query, the “Update

Record” server behavior was applied as shown below.

Figure 44. The “Update Record” Window

66

The last observation is that Dreamweaver generated two hidden fields when

applying the update behavior.
<input type=“hidden” name=“MM_update” value=“frmCourse”>
<input type=“hidden” name=“MM_recordId”

value=“<%=(((rs_course_data = rs_course.getObject(“course_id”))==null
|| rs_course.wasNull())?”“:rs_course_data)%>“>

Hidden fields are used in forms to pass predetermined data when the form is

submitted. In this case, Dreamweaver automatically passed the form name (frmCourse)

along with the “course_id”. As shown later in this chapter, it is necessary to create

specific hidden fields, especially when Many-to-Many relationships must be

manipulated.

4. Delete_Course_Form.jsp

The last option of the Course_Master_Form.jsp page is the deletion of an existing

course. When an instructor presses the Delete button, the Delete_Course_Form.jsp page

appears as shown below.

Figure 45. The “Delete Course” Page

67

The only difference from the previous page (Update_Course.jsp) methodology is

the implementation of the “Delete Record” server behavior.

Figure 46. The “Delete Record” Behavior

Two hidden fields are generated as in the “Update Record” behavior when

applying the “Delete Record” behavior.
<input type=“hidden” name=“MM_delete” value=“form1”>
<input type=“hidden” name=“MM_recordId”

value=“<%=(((rs_course_data = rs_course.getObject(“course_id”))==null
|| rs_course.wasNull())?”“:rs_course_data)%>“>

5. Subject_Master_Form.jsp

If the user choses to continue from the course master page by selecting a specific

course from the first drop-down menu, the Subject_Master_Form.jsp page appears with

the option to select one among many other subjects included in that course. The design

view appears below.

68

Figure 47. The Subject Master Page (Design View)

The structure of this page was begun by restricting its access to legitimate users

(professors and admin) as with the course master page using the “Restrict Access To

Page” server behavior.

Two queries were performed in succession. One query is needed to retrieve the

course code (rs_course).

69

Figure 48. The “rs_course” Recordset

The other query (rs_subject) is used to retrieve the subject names for the drop-

down menus.

Figure 49. The “rs_subject” Recordset

Three hidden fields were used to request the course_id for the insert, update and

delete operations, as shown in the design view of this page at the beginning of this

section, using the following dialog window.

70

Figure 50. Keeping Track of the “course_id” Using the “Dynamic Data” Window

This is necessary because of the desire to keep track of the subjects specified by

the passed course_id. For the same reason, when building the detail pages (insert, update

and delete), the course_id is passed as a hidden field for each of those pages.

71

6. Topic_Master_Form.jsp

The topic master page has the following layout.

Figure 51. The Topic Master Page

In order to build this master page and its corresponding detail pages, the same

methodology as that of the subject master page was applied. The only difference is that

the subject_id was passed as a hidden field in the insert, update and delete forms of the

master page.

7. Subsection_Master_Form.jsp

Before continuing with the description of the subsection master page and in order

to avoid terminology confusion, note that the terms “subsection” and “paragraph” are

used interchangeably throughout this thesis because they refer to the same meaning.

The layout of this page does not differ from the other master pages layout. Thus,

it includes four forms; one to continue and display the subsection’s content, and the other

three for insertion, update and deletion.

72

After restricting access to this page only to legitimate users, as done with the

other master pages, a query was performed (obtaining the recordset rs_course) in order to

select the topic (illustrated at the beginning of the page) specified by the topic_id passed

to the current page from the topic master page.

Figure 52. The “rs_topic” Recordset

The next step was to ascertain a way to populate the drop-down form menus with

the data of the subsection table specified by the passed topic_id. As indicated in the

database design section, a topic may include many subsections and one subsection may

be included in many topics (M:N relationship). This was achieved by performing the

following SQL, where topicsection is the join table between the “topic” and “section”

tables.

73

Figure 53. The “rs_topicsection” Recordset

Finally, in order to keep track of the topic where it is desired to insert a new

paragraph, modify or delete an existing paragraph, the topic_id was passed as the hidden

field to each of those forms.

74

8. Add_New_Paragraph.jsp

If an instructor wants to insert a new subsection in a specific topic, it is possible to

use the following web page.

Figure 54. The “Add New Paragraph” Page

The “Category” drop-down menu determines the area of interest to which the

inserted paragraph belongs. The “Category” entity was used for grouping courses that

pertain to one broadband subject. For example, “Ethernet”, “LAN topologies” and

“WAN” may be included in the “Networks” Category.

The other three important attributes used by the professor for adding a new

subsection are the paragraph header (textfield) and the paragraph content - keywords

(textareas).

In order to select the topic to which the inserted paragraph belongs, the following

recordset was created:

75

Figure 55. The “rs_topic” Recordset

The “Insert Record” behavior was used successively.

Figure 56. The “Insert Record” Behavior

76

The last step is to create two hidden fields: one for the “topic_id” and one for the

“author”. Both hidden fields are very important to the correctness of the application. The

topic_id is necessary in order to keep track of the topic in the join table “topicsection”.

The next section explains the usage of the “author” as a hidden field.

9. Confirmation.jsp

After an instructor presses the “Submit” button in the Add_New_Paragraph.jsp

page, the Confirmation.jsp appears.

Figure 57. The Confirmation Page When We Insert A Record

This page consists of only one form and three hidden fields. The hidden field

from the table is generated by applying the “Insert Record” behavior. The other two are

the “topic_id” from the previous page and the “section_id”. They are created in order to

update the join table “topicsection” as seen below in the “Insert Record” behavior of this

page.

77

Figure 58. Inserting a Record

Tthe “topic_id” from the Add_New_Paragraph.jsp page is passed as hidden. The

next task now is to obtain the “section_id”. The following query is performed to achieve

this.

Figure 59. The “rs_confirm” Recordset

78

As seen from the above query, the maximum “section_id” is actually obtained

that identifies the most current inserted paragraph.

The other hidden field passed from the previous page is “author”. Actually, it is

not possible to use it but what would happen if, at the same time, another professor was

inserting another subsection? The section_id that is written by the database is not known

in advance. Thus, by using the passed “section_author” in this query, firstly it is possible

to identify the paragraph’s author, and secondly, the maximum section_id for this specific

author is obtained.

In conclusion, using the section_author as the hidden field in the

“Confirmation.jsp” page takes advantage of all the attributes included in the subsection

relation, and as a result, increases the robustness of this application.

10. Update_Paragraph.jsp

The “update” and “delete” constitute the last two detail pages of the subsection

master page. This section describes the Update_Paragraph.jsp. Exactly the same

methodology is applied to the delete detail page as well. The page layout is similar to the

Add_New_Paragraph.jsp (design view)

79

Figure 60. The “Update Paragraph” Page

At the beginning, two hidden fields were created. One was for the author and the

other for the topic for identification reasons. The exact same procedure was done for the

delete detail page.

The results of the following query were used successively.

80

Figure 61. The “rs_subsection” Recordset

As shown, all the columns of the subsection table appeared where the

“section_id” is equal to the value passed from the subsection master page. Finally, the

“Update Record” dialog window was used in order to modify the specified record.

Figure 62. The “Update record” Server Behavior

81

11. Image_Master_Form.jsp

An instructor can select to see an image related to the current subsection by

pressing the “Continue” button of the subsection master page. In the same form, a drop-

down menu is included called “subsectionid”. Proceeding in this manner causes the

image master page to appear.

Figure 63. The Image Master Page

Two forms were added to this page. One is for inserting and one for deleting an

image. The following query is performed to specify the paragraph name to which the

inserted or deleted image is related:

82

Figure 64. The “rs_paragraph” Recordset

The “subsectionid” filter used in the above query is the value passed from the

drop-down menu of the subsection master page. In addition, in order to keep track of this

value, two hidden fields were created in the image master page as shown in the first

screenshot of this section. The label “subsectionid” was also applied because it is the

value expected from the previous page.
<%= ((request.getParameter(“subsectionid”)!=null)?

request.getParameter(“subsectionid”):”“) %>

A second SQL call is also needed in order to obtain the image name to be deleted.

As indicated earlier, a subsection may include many images and one image may be

included in many subsections. This task is accomplished by performing the following

SQL, where “sectionimage” is the join table between the “image” and “subsection”

tables.

83

Figure 65. The “rs_sectionimage” Recordset

12. Confirm_Image.jsp

In the subsection master form, when inserting a new paragraph, the

“Confirmation” page appears. The role of this page is to update the join table

“topicsection” returning the maximum “section_id” for a specific professor at the time of

insertion. The same reasons led to the implementation of that idea for the image insertion.

At the “Confirmation.jsp” page, two hidden fields were created. One was for the topic

(topic_id) and the other for the subsection (section_id). Likewise, in the current page, two

hidden fields were also created. One was for the subsection (section_id) and the other for

the image (image_id).

The query performed in order to obtain the maximum “image_id” appears below:

84

Figure 66. The “rs_confirm” Recordset

Using the “Insert Record” behavior, the data entered in the form were matched

(the hidden fields “section_id” and “section_id”) to fields in the database, which created a

new record in the “image” table.

Figure 67. Inserting an Image Record

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

VI. DISTANCE TRAINING SYSTEM DATA FLOW DIAGRAM

87

Lo
gi

n/
Ho

m
e_

pa
ge

Lo
gi

n

Lo
gi

n_
Fa

ile
d

H
om

e_
Pa

ge

S
ea

rc
h

Lo
gi

n
A

lte
r

R
eg

is
te

r

To
 “S

ea
rc

h”
 P

ag
e

To
 “C

ou
rs

e_
M

as
te

r_
Fo

rm
” P

ag
e

To
 “R

eg
is

tra
tio

n”
 P

ag
e

Im
ag

e_
R

es
ul

t

K
ey

w
or

d_
R

eq
ue

st

Se
ar

ch

C
ou

rs
e_

R
eq

ue
st

S
ea

rc
h

B
y

C
ou

rs
e

By
 K

ey
w

or
ds

Fr
om

 “H
om

e_
P

ag
e S

ub
je

ct
_R

eq
ue

st

To
pi

c_
R

eq
ue

st

S
ec

tio
n_

R
eq

ue
st

Se
ct

io
n_

R
es

ul
ts

D
is

pl
ay

 Im
ag

e
D

is
pl

ay
 a

ll
Im

ag
es

Im
ag

e_
R

es
ul

t_
A

ll

88

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

VII. CONCLUSIONS

The purpose of this thesis had two main objectives. The first objective was the

demonstration of the DTS application as a Content Management System. The second was

the elaboration of Dreamweaver MX2004 as a web development tool.

A. DTS APPLICATION

1. Advantages

The DTS application was developed with the notion of the Content Management

System (CMS) in mind and not the development of a Learning Management System

(LMS). An LMS is appropriate for those students/users/visitors

enrolled/registered/invited in the class. However, technical personnel of a military unit

who must fix a piece of critical equipment before their campaign or individuals interested

in accessing the information but are not registered, cannot have easy access to it, not to

mention that they may not be aware of its existence. These military personnel or

individuals are not interested in the services that an LMS provides such as grades or

participation records. They simply want to access the information of interest in order to

solve specific problems. This speculation in the military environment was the main

reason leading to the development of the DTS application.

The expert headquarters personnel, for example the signal corps experts on digital

communications, are not content designers. They merely want to provide the signal corps

units with all the necessary technical instructions about a specific system. Using the DTS

application makes their job easier because they can manage their content through simple

forms. Furthermore, the military personnel who request the information have the

possibility to extract the material fast and correctly without the transformations from one

form to another, to XML and so forth. The same idea applies to professors as well; they

want to teach. They are educators, not instructional designers.

Another feature of the DTS application is its hierarchical structure. Whenever a

hierarchical structure is used in a database design, a “clean”, reliable and robust data

model results. This is very important because the DTS or any other application that

manages content must be as “clean” as possible. Furthermore, the usage of a web

91

development tool, such as Dreamweaver, presupposes a reliable data model without

design deficiencies and errors. In other words, Dreamweaver cannot mask database flaws.

Therefore, it is imperative to be certain of the reliability of the data model design by

checking the correctness and querying the database before beginning with the

presentation part of a project. It is extremely difficult and time-consuming to go back and

try to troubleshoot the database while in the phase of deciding and designing the

functionality of the website’s menu and the connection of the several screens.

As far as the organizational structure is concerned, the ideas are rather

straightforward. First it must be emphasized that the database engine (MySQL) does not

support roles, but that is necessary to create roles. Using Dreamweaver’s behaviors

provided users single user IDs and assigned those user IDs the permissions associated

with all of their roles. In other words, when a person connects to the database, a single

user ID and password is used, and additionally, a role is specified. As long as that user is

connected under the specified role, it is possible to act on only the permissions assigned

to that role. For instance, take the Administrator, who is authorized to add or remove

professors/authors. He is also authorized for addition, update or deletion of user records,

course categories and professors. As long as the professor is logged in as the user, one

role is assigned, for example, the instructor’s role and then is classified as professor. The

Administrator can also associate current professors to courses to authorize modification

of course content.

The “Search” operation is featured from manual and keyword lookup. As

indicated earlier, this database is not as restrictive as a LMS such as Blackboard, that

limits access to specific parties and content. It is an open information repository available

to anyone with access to the Internet. The usage of the “Category” entity, which is used

to group similar courses in categories for easier identification purposes, facilitates even

more the access of an external user. Another advantage of the “Category” approach that

makes the application more flexible is that it is specified by the professor because the

latter is the only person responsible for the subsection content.

This project was developed as a standalone application. It is obvious that, if the

DTS was a part of a publicly accessibly Network, many security issues would be

92

generated. As a general rule, no MySQL server should ever be accessible from the

Internet. As a result, the disadvantage of the DTS is that it faces a serious architecture

problem because it requires a MySQL server to be directly accessible from the Internet.

The the installation of the MySQL server behind a firewall would remedy that problem,

preferably on a network segment in which only the client applications, such as the Web

server or application server, can route to it.

Internet

Firewall Web server Firewall Database server
Figure 68. Securing the Database Server (After Ref. 4)

In conclusion, despite the security drawbacks of the DTS when using it in a

deployment environment, it satisfies the main purpose of its existence: make content

sharable.

2. Future Research

After deciding upon the application area and setting the business

rules/requirements, the creation of the data model began from the smallest piece of

information (paragraph) creating the “subsection” entity, and then, working

incrementally, all the relations were created that constitute the DTS application. The DTS

is a general Content Management System prototype, and as a result, it may be subject to

modifications or extensions. Due to its flexibility and its expanding capability, it can be

applied to military branches or college institutions that are interested in making their

information sharable. For instance, it is possible to create the “track” entity for

institutions that may need this extension in the data model. In this particular case, one

track must consist of two or more courses and one course may or may not be included in

many tracks. As a result, the creation of a join table between course and track for this

occasion is mandatory. Therefore, a possible extension of the data model according to

one’s requirements could be considered a field for future research.

93

The database product (MySQL) used for this application is an open source

RDBMS with many other advantages as demonstrated previously. However, for the time

being, it lacks a GUI, does not support views, cascading deletions, stored procedures nor

triggers. Therefore, another field for future research would be the DTS testing using a

larger and more complicated database product with XML capabilities such as Oracle or a

SQL Server.

Finally, the keyword search function needs improvement. Instead of forcing the

professor/author to specify keywords for a particular paragraph manually in a specific

field of the “subsection” relation, a mechanism may be discovered that can generate

keywords dynamically performing a kind of algorithm on the paragraph’s content. This

algorithm may automatically capture title words, subsection headers and words in the

first sentence of the paragraph.

Additionally, the manner in which images are inserted into the DTS is a bit

cumbersome. First, the image is placed into the “images” directory of the application, and

second, the path to the image is created in the source code of the file related to the image.

Simple typographical errors may prevent the display of the imported image.

B. DREAMWEAVER MX2004

1. Advantages

There are many advantages to using Dreamweaver for designing and maintaining

websites. First of all, building and editing websites is fast. A user may start with one of

many basic templates and quickly modify it for specific purposes. The GUI interface

allows simultaneous designing and coding. The user can see how html will appear

immediately after writing the code. The split view interface allows the user to quickly

build a page in the design view and then refine the html in the coding view. Also, code

that needs modification may be located quickly by selecting the corresponding element in

the design pane. The code pane automatically scrolls to the html for the selected element

and highlights the code. The ability to work form one interface also accelerates web

development. Dynamic features may be added to a site through the use of page behaviors,

Dreamweaver's JavaScript interface, and server behaviors, and Dreamweaver's database

connection interface. Also, basic image optimization may be accomplished within

94

Dreamweaver and more advanced image processing may be accomplished through close

integration between Dreamweaver and Fireworks. Finally, Flash buttons and other basic

Flash elements may be added within the Dreamweaver interface.

Another advantage to using Dreamweaver is that the program is extensible.

Hundreds of third party extensions that add functionality may be downloaded for free or

purchased. Extensions are usually written in html, JavaScript, or C. Most extensions do

one or more of the following: automate changes to a document, interact with

Dreamweaver to open or close windows or documents, connect to a data source, insert or

manage a block of server code. Dreamweaver offers both a JavaScript API and an Utility

API.

Finally, Dreamweaver is customizable. The user may set preferences controlling

how and to what extent accessibility is coded. The user may adjust code coloring, what

fonts are used for coding, and how code is highlighted. The user may also set which

browsers to use for previewing a page. Besides setting preferences, the user may also

directly edit the configuration files. In this way, menus may be rearranged to suite

individual tastes. Tabs may be added or removed. The names of commands may be

changed, added, or removed. Anything about the look and feel of Dreamweaver may be

customized within the configuration files.

2. Disadvantages

Although Dreamweaver may be the best software of its type, it possesses several

disadvantages. Dreamweaver’s main disadvantage is that after creating an interacting

web page, it is not possible to delete a functionality part of this specific page because the

corresponding code(a part of it) sometimes remains hooked into the page, and in the

worst case, it is scattered throughout the page. This drawback caused numerous problems

during the DTS development. For instance, on many occasions, it was necessary to delete

the page completely and rebuild it from scratch when an error occurred instead of fixing

this particular error on the existing page.

The visual interface for building tables does not always work. The user must

switch between code views and various design views in order to optimize table

construction.

95

Although far from perfect, Dreamweaver MX 2004 is the best tool of its type and

improves a bit with each release. Dreamweaver's flexibility facilitates its use by all

members of a multidisciplinary web design team. Dreamweaver is arguably the best stand

alone tool to use for developing today's complex websites that incorporate multiple server

technologies (JSP, .NET, PHP etc.), integration with databases and content management

systems. However, it is not possible to create a serious application relying exclusively on

Dreamweaver or any other Web development tool. With the currently available

development tools, hand coding is still required when developing serious Web

applications.

96

APPENDIX A. DISTANCE TRAINING SYSTEM (DTS) SCHEMA

Please click on the following link to view Appendices A and B.

http://library.nps.navy.mil/uhtbin/hyperion/04Sep_Pogkas_Appendices.doc (Appendix)

97

http://library.nps.navy.mil/uhtbin/hyperion/04Sep_Pogkas_Appendices.doc

THIS PAGE INTENTIONALLY LEFT BLANK

98

APPENDIX B. DISTANCE TRAINING SYSTEM (DTS) CODE

Please click on the following link to view Appendices A and B.

http://library.nps.navy.mil/uhtbin/hyperion/04Sep_Pogkas_Appendices.doc (Appendix)

99

http://library.nps.navy.mil/uhtbin/hyperion/04Sep_Pogkas_Appendices.doc

THIS PAGE INTENTIONALLY LEFT BLANK

100

LIST OF REFERENCES

1. Reese, G., Yanger, R. and King, T. Managing and Using MySQL. O’Reilly,
2002.

2. Ramakrishnan, R. and Gehrke, J. Database Management Systems. McGraw Hill;
2003.

3. Kroenke, D. M., Database Processing: Fundamentals, Design, and
Implementation. New Jersey: Prentice Hall, 2003.

4. Reese, G., Java Database Best Practices. O’Reilly, 2003.

5. Bardzell, J., Dreamweaver MX2004 with asp, Coldfusion and PHP. Macromedia,

2004.

6. Schach, S., Introduction to Object-Oriented Analysis and Design with UML and

the Unified Process. McGraw Hill; 2004.

7. Hunter, D. and Cagle, K., Beginning XML. Wiley Publishing; 2003.

8. Hall, M. and Brown, L., Core Servlets and JavaServer Pages. Prentice Hall, 2004.

9. Bonk, C. and Wisher, R., Applying Collaborative and E-Learning Tools to

Military Distance Learning: A Research Framework.
http://www.publicationshare.com/docs/Dist.Learn(Wisher).pdf (September 2004).

10. The Army Distributed Learning System, Fort Huachuca. http://huachuca-

www.army.mil/USAG/Distance (June 2004).

11. jGuru, JavaServer Pages Fundamentals, Short Course Contents.

http://java.sun.com/developer/onlineTraining/JSPIntro/contents.html (June 2004).

12. Bourret, R., XML and Databases.

http://www.rpbourret.com/xml/XMLAndDatabases.htm (March 2004).

101

http://www.publicationshare.com/docs/Dist.Learn(Wisher).pdf
http://huachuca-www.army.mil/USAG/Distance
http://huachuca-www.army.mil/USAG/Distance
http://java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://www.rpbourret.com/xml/XMLAndDatabases.htm

THIS PAGE INTENTIONALLY LEFT BLANK

102

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Thomas Otani
Naval Postgraduate School
Monterey, California

4. Instructor Arijit Das
Monterey Institute of International Studies
Monterey, California

5. DI.K.A.T.S.A.
Inter-University Center for the Recognition of Foreign Academic Titles
Athens, Greece

6. Embassy of Greece, Defense and Military Attaché Office
Washington, DC

7. Nikolaos Pogkas
 Mandra Attikis, Greece

	I.INTRODUCTION
	II.WEB APPLICATION ARCHITECTURE
	A.APPLICATION SERVERS
	1.ASP and .NET
	2.PHP
	3.Pure Servlets

	B.THE JSP SELECTION

	III.JSP SYNTAX BASICS
	A.JAVA CODE
	1.Expressions
	2.Scriptlets
	3.Declarations
	4.Java Beans

	B.JSP DIRECTIVES

	IV.DEFINING THE PROJECT
	A.SUPPORTING TECHNOLOGY
	1.MySQL
	2.Web Server- Tomcat
	3.Dreamweaver MX
	4.JDBC Connector

	B.PROJECT DESCRIPTION
	1.The Distance-Training Application
	2.UML Diagram
	3.Relationships and Relation Schema

	C.XML USAGE

	V.APPLICATION FILE ANALYSIS
	A.USER AUTHENTICATION INTERFACE
	1.Home_Page.jsp
	2.Registration.jsp

	B.SEARCH INTERFACE
	1.Search.jsp
	2.Course_Request.jsp
	3.Topic_Request.jsp
	4.Subsection_Request.jsp
	5.Subsection_Results.jsp
	6.Image_Result_All.jsp
	7.Keyword_Result.jsp

	C.ALTER DATABASE INTERFACE
	1.Course_Master_Form.jsp
	2.Add_New_Course_Form.jsp
	3.Update_Course.jsp
	4.Delete_Course_Form.jsp
	5.Subject_Master_Form.jsp
	6.Topic_Master_Form.jsp
	7.Subsection_Master_Form.jsp
	8.Add_New_Paragraph.jsp
	9.Confirmation.jsp
	10.Update_Paragraph.jsp
	11.Image_Master_Form.jsp
	12.Confirm_Image.jsp

	VI.DISTANCE TRAINING SYSTEM DATA FLOW DIAGRAM
	VII. CONCLUSIONS
	A.DTS APPLICATION
	1.Advantages
	2.Future Research

	B.DREAMWEAVER MX2004
	1.Advantages
	2.Disadvantages

	APPENDIX A. DISTANCE TRAINING SYSTEM (DTS) SCHEMA
	APPENDIX B. DISTANCE TRAINING SYSTEM (DTS) CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

