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ABSTRACT 
 

A Networked Virtual Environment (Net-VE) is a distributed software system in 

which multiple users interact with each other in real time even though these users may be 

located around the world [Zyda 99]. Net-VEs gained first attention through a variety of 

DOD and Academic research projects. After release of the multiplayer game DOOM, the 

gaming industry captured the idea of interactive multiplayer games. Today there are 

many popular Internet-based multiplayer games available. 

Effective networking of diverse entities and systems is a common problem for 

Networked Virtual Environments. In order to communicate with other entities a variety 

of communication protocols are used. Historically these communication protocols are 

“hard coded” into the software system and all nodes that participate in the environment 

must identically implement the protocols to interact with others. These communication 

protocols require authoring and compiling by a trained programmer. When the compiling 

process is introduced to the networked virtual environment, it detracts the extensibility 

and dynamicism of the system. 

This thesis presents the design and development of a Networked Virtual 

Environment model that uses Cross Format Schema Protocol (XFSP). With this work we 

show that a networked simulation can work for 24 hours a day and 7 days a week with an 

extensible schema based networking protocol and it is not necessary to hard code and 

compile the protocols into the ne tworked virtual environments. Furthermore, this thesis 

presents a general automatic protocol handler for schema-defined XML document or 

message. Additionally, this work concludes with idea that protocols can be loaded and 

extended at runtime, and can be created with different- fidelity resolutions, resulting in 

swapping at runtime based on distributed state. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

The term Networked Virtual Environment (Net-VE) is defined as follows             

“A networked virtual environment is a software system in which multiple users interact 

with each other in real-time, even though those users may be located around the world. 

These environments aim to provide users with a sense of realism by incorporating 

realistic 3D graphics and stereo sound, to create an immersive experience” by Michael 

Zyda [Zyda 99]. A new networking framework for run-time extensible networked virtual 

environments is presented in this thesis. 

Run-Time Extensible Virtual Environments differ from traditional Virtual 

Environments through the capabilities of run-time discovery and usage of new object 

types and behaviors. Traditional VEs can only operate with objects, behaviors and 

protocols that are present when the VE is started; if any kind of new object, behavior or 

protocol needs to be added to the architecture, the environment mus t be stopped, 

compiled and restarted. NPSNET-V is a Run-Time Extensible Virtual Environment 

implemented by the Naval Postgraduate School (NPS) that uses run-time extensibility for 

new object and behavior discovery.  

Historically communication protocols tha t are used in Net-VEs are hard coded 

into the software system and all entities that participate in the environment need to 

implement the protocols to interact with others. Introducing a new application layer 

protocol requires off- line authoring and compiling by a trained programmer. This 

compiling process detracts from the extensibility and dynamicism of Net-VEs. 

In RTEVE networking protocols can be loaded and extended at runtime. 

Furthermore, protocols can be created with different fidelity resolutions which can be 

swapped at runtime, based on the network state. Since the protocols can be tailored to 

best support the requirements of a particular environment, they can enhance network 

performance. These improvements can be made adaptively at run-time by a                

non-professional programmer or by software agents. 
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B. MOTIVATION 

With the dramatic increase in computing and network speed over the past few 

years, Net-VEs have become more widespread. This enhancement introduced the non-

professional programmers into the networked virtual environment area. The main 

motivation behind this thesis was to enable non-adept programmers to tailor their 

networking protocols by using the Extensible Markup Language (XML).                                

The NPSNET-V architecture is used to adapt the designed and implemented XML-based 

networking protocol. 

NPSNET-V is used as a framework for development and research in dynamically 

extensible, large-scale virtual environments (LSVEs). The main property of this 

architecture is run-time discovery of new object types and their behaviors. A limitation of 

NPSNET-V architecture is networking protocols which cannot be tailored without 

recompiling and restarting. This limitation detracts the goal of run-time extensibility 

within this architecture.  

 

C. OBJECTIVES 

This thesis serves two purposes; design and implementation of a user-tailored 

networking protocol which is called Cross Format Schema Protocol (XFSP), and 

presenting that protocol with different schemas for use in a networked virtual 

environment.  

The networking protocol (using XFSP) determines the state changes in entities 

which participate in a Net-VE and is used to exchange state information (e.g. position, 

orientation etc.) between entities. 

In a Net-VE, entities issue packets when their states are changed or when they 

want to keep their states alive in all other participating users. To establish the 

communication between participants, all users (the ones that want to exchange data) must 

agree on the same protocol. The major differences between XFSP and hard-coded 

networking protocols is run-time extensibility and flexible ease of use. 
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As it is discussed before, XFSP is based on defining packet formats with              

XML-Schema language. The process behind XFSP can be called XML Serialization, or 

XML marshalling. The basic idea is similar to creating a Document Object Model 

(DOM) pipe between participants. When a user receives a packet into which an XML tree 

is serialized, he or she can build a DOM object tree back from the packet and can retrieve 

the needed data. The position of the data in that DOM object tree is defined by                

XML-Schema. 

Determining the semantics between the DOM tree and entity state is considered to 

have a computational complexity of NP-Hard and is not examined in this thesis. The 

semantic process is defined as being able to know which information to retrieve from an 

information source in order to reflect the output in a Net-VE. Run-time extensibility of a 

semantic process is hard to accomplish and requires thoughtful design. Facilitating the 

expression and distribution of protocol syntax is a major step forward nevertheless which 

enables rapid exploration of efficient and effective protocol semantics. 

Ordinarily, XML is not a compact way to express the data. Messages written in 

XML are much larger than a binary equivalent. The technique that is used to overcome 

this problem is replacing tags with binary tokens. When an XML tree is parsed to 

serialize into an output stream, the tags that mark up the data are replaced with their 

binary equivalents. The end result is a more compact serialized XML tree. 

As it is discussed before, the basic idea behind XFSP was XML-Serialization. 

With this approach, XFSP can be used in any application which needs transactions via 

XML documents such as XML-RPC (XML Remote Procedure Call), XKMS (XML Key 

Management Services), XML-DSig (XML Digital Signatures) and XML-Enc (XML 

Encryption). XFSP can present those transactions in a more compact way. 

In this thesis the usage of XFSP in a Networked Virtual Environment to exchange 

state information between entities by using the idea of creating DOM pipes between 

participants is presented. Also with this thesis, a PDU Server (Protocol Datagram Unit 

Server) and a PDU Capturer are implemented for servers. The PDU Server program is 

used to continuously send state information from a previously recorded simulation and 
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the PDU Capturer program is used to capture the packets issued by entities from a 

simulation. 

In order to test this new protocol, experiments are conducted across a wide-area 

network (WAN) with George Mason University (GMU) and on a local-area network 

(LAN). 

The results of these experiments are discussed in following chapters. 

 

D. THESIS ORGANIZATION 

Seven chapters comprise this research: 

• Chapter I–Introduction:  Identifies the purpose and motivation behind 

conducting this research.  Establishes the goals for the thesis. 

• Chapter II–Related Work and Background:  Provides information on 

Networked Virtual Environments, NPSNET-V, XML, XSD, JXTA, 

SOAP, HLA, DOM4J, DREN and Abilene/Internet2 projects. 

• Chapter III–Design and Implementation of XFSP:  Describes the general 

system structure, software components and implementation process of 

XFSP. 

• Chapter IV–PDU Farm Implementation: Describes the general system 

structure, software components and implementation process of PDU 

Server and PDU Capturer programs. 

• Chapter V–Binary X3D: Describes the general system structure, software 

components and implementation process of Binary X3D program. 

• Chapter VI–Data Collection and Analysis: Explains the results and 

collected metrics from the conducted experiments. 

• Chapter VII–Conclusion and Recommendations: Explains the conclusions 

and provides recommendations regarding possible future work. 
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II.  RELATED WORK AND BACKGROUND 

A. INTRODUCTION  

This chapter provides an overview to Net-VEs, NPSNET-V, XML,                 

XML-Schema, Simple Object Access Protocol (SOAP), JXTA, High Level Architecture 

(HLA), DOM4J, Defense Research and Engineering Network (DREN) 

Internet2/Abilene/Next Generation Internet (NGI). 

 

B.      NETWORKED VIRTUAL ENVIRONMENTS (NET-VES) 

A Networked Virtual Environment (Net-VE) is a distributed software component 

with a computer generated simulated space in which multiple users interact with each 

other in real time. The main motivation behind Net-VEs is run-time collaboration 

between participants. 

Each participant uses his or her computer in order to access and collaborate with 

the displayed 3D content. In virtual environments, users are represented by one or more 

entities called avatars. These avatars give the users the illusion of being located in that 

simulated space where the immersive experience is presented. Net-VEs are used for 

multiple purposes varying from education and entertainment to training. From a military 

point of view, Net-VEs are a cost effective way to train the war fighters and mimic the 

war scenarios. 

By simulating scenarios in a networked environment, we have opportunity to 

examine the interactions between participants. This examination helps decision makers to 

present new tactics and doctrines for future scenarios.    

A Net-VE system consists of four basic components [Zyda 99].  

• Graphic Engines and Displays 

• Communication and Control Devices 

• Processing Systems 

• Data Network 
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 In this chapter the bottlenecks created by these components in Net-VE systems are 

examined. 

1. Graphic Engines and Displays 

Graphic engines, also called graphics cards, are used to process the 3D content 

generated by some Application Programming Interface (API) (e.g. OpenGL, DirectX) in 

order to make it displayable through some output device (such as a computer monitor). 

Display devices vary from 14" Cathode Ray Tube (CRT) to fully immersive              

head-mounted displays. These devices open the three-dimensional (3D) window of the 

virtual environment to the participants. Traditional displays offer only limited immersion 

to the user where they can be distracted by outside light and peripheral vision. For higher 

immersion, users often use Head Mounted Displays (HMDs). HMDs present images 

directly in front of a user's eyes and block out almost all external light. Another example 

for immersive displays is CAVE. CAVE is a five sided cube where the user stands at the 

center and the images are projected to the sides that give a highly immersive experience 

to the participant. 

With the dramatic increase in silicon technology, today we are able to access very 

fast and powerful graphic cards which can render millions of triangles per second with 

pixel shading capability. If the bottlenecks of generating Net-VE content are examined 

from a network programmer point of view, limitations are not the graphic engines and 

displays. 

 

2. Communication and Control Devices  

The second attribute of a Net-VE system is Communication and Control Devices, 

which are used to manipulate the virtual world objects and communicate with other 

participants in the environment. For manipulation purposes, users typically depend on 

keyboard and mouse. Mouse is a key device for navigation in the virtual environment to 

control the speed of travel and perform other interactions. Incidentally, a keyboard is also 

utilized for typing textual communication and can be used for complicated or less-

common operations in the environment. 
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Although the keyboard and mouse are the most common control devices, they are 

not the only ones. For game applications the common devices are joysticks, wheel-drives 

or derivatives of these devices. For applications that need more precise manipulation, 

datagloves can be a good candidate. In the near future, with the progress in speech 

synthesizers, voice-recognition applications will be valuable candidates for control 

purposes. 

To achieve full immersion from the Networked Virtual Environment, users should 

be able to communicate with each other. Historically this is done by using keyboard and 

textual communication which is inconvenient for the participants. For example, with 

today’s technology Voice over IP (VoIP) can be an effective way for meeting participant 

communication and collaboration objectives in an integrated fashion. 

 

3.  Processing Systems  

The third component of a Networked Virtual Environment is processing systems. 

A Net-VE system needs a considerable amount of processing capacity [Brutzman 97]. 

The processor receives events from the user’s input devices and computes how these 

inputs can change hosted entity’s positions within the virtual environment as well as the 

location of other entities within the environment [Zyda 99]. The processor also decides 

how and when to notify other users about these state changes. 

In a Net-VE system, Central Processing Unit (CPU) can be easily overwhelmed 

by different computation needs. A physically based modeling exemplar of an F-16 

aircraft can present this heavy-weight computation by processing air dynamics and 

kinematics when precisely modeling the entity. These flight coefficients and quaternion 

mathematic equations [Cooke 92] may be the bottleneck in designing the system. 

As discussed before, a Net-VE system is a distributed software architecture in 

which multiple users interact with each other. In a large-scale Net-VE with many 

participants scenario, without a partitioned network, processing system will be first 

bottleneck in creating this content. In this large-scale Net-VE example, the bottleneck can 

be examined in two ways. First is the buffer (memory) limitation of the computer system 



 8 

in which the environment is simulated, and the second is the cycle limitation of the 

processing unit. This discussion bases the use of XFSP in a Net-VE system where 

sufficient computational horsepower exists to allow users to customize their application 

layer protocol. Fortunately, this overhead is shown to be low, allowing commodity PC 

and laptop devices to use XFSP. 

 

4. Data Network 

The last component of a Net-VE system is Data Network. This component will be 

examined in more depth to base the discussion on implementing Cross Format Schema 

Protocol (XFSP). 

For several years one of the major factors that limited research into large-scale 

distributed virtual worlds was immature network technology [Macedonia 97]. Immature 

network technology constrained Net-VEs to operate on local-area networks (LANs), 

which limited the number of participating hosts in geographical scope. 

In order to expand this geographical scope and increase number of participating 

hosts, large-scale Net-VEs should operate over Internet , wide-area networks (WAN), and 

exploit its resources. Furthermore, operation over WAN will bring some discussion on 

communication aspects such as bandwidth, latency, distribution schemes, and reliability. 

 

a. Bandwidth  

Bandwidth is defined as the width of the usable spectrum that is available 

for data signal transmission. The spectrum refers to the range of frequencies that a signal 

contains [Stallings 00]. The bandwidth of the communication link depends on the 

material (media) on which it operates. It can be twisted pair, coaxial cable, fiber optic or 

air. The highest bandwidth among those is in fiber optic cable. 

Bandwidth plays an essential role in determining the richness and size of a 

Net-VE. As the number of participating hosts in a Net-VE system increases so does the 

bandwidth requirement. Additionally, by the nature of virtual environment, a Net-VE 
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system will demand a considerable amount of bandwidth to support video, audio and the 

exchange of 3D content in real time. 

With today’s technology, the networks that have gigabits per second 

bandwidth over Ethernet links or Asynchronous Transfer Mode (ATM) cells are already 

available. Although this enormous bandwidth is present for some users, we cannot 

generalize all users. This efficient use of bandwidth must be considered. 

The discussion on bandwidth determines the scope of target users. In a 

multiplayer game scenario, the target profile is often home users. Although there are 

many promising technologies such as Digital Subscriber Line (DSL) or Cable which can 

provide up to 2 Mbps download and 256 Kbps upload bandwidth, most of the home users 

are still limited to 56Kbps voice modems to join these multiplayer games. Average 

available bandwidth continues to increase each year. 

Because of these reasons, bandwidth plays a crucial role in scalability of 

Net-VE systems. Application- layer protocols thus need to be customized properly to 

satisfy the participant’s needs. 

Well-defined techniques to handle data transmission over the network 

links is a prerequisite for supporting internetworked computer graphics [Brutzman 97]. 

 

b. Latency  

Network latency is the amount of time required to transfer application data 

from one point to another [Zyda 99]. Latency controls the Net-VE’s interactive and 

dynamic nature, directly impacting the realism of the environment by determining how            

up-to-date is the information received. 

In order to give the players the illusion of being immersed in a networked 

virtual environment, the limits of human perception must be rigorously considered. For a 

distributed environment that emulates the real world, Net-VE architecture must deliver 

the packets with sufficiently minimal latency, and generate 3D images at 30-60 Hz to 

guarantee the illusion of reality [Macedonia 97]. 
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Latency is a problematic network component, and Net-VE designers can 

usually do very little about it, because latency is a combination of many constraining 

factors. The first factor to consider is the speed of light. Electromagnetic or optical 

transmission cannot travel faster than that speed. Actually the real propagation speed 

depends on the medium in which the data signal travels, and generally speaking for 

electromagnetic or optical media, it is 2/3 of the speed of light in a vacuum. The second 

factor is the delay introduced by the network. In today’s packet-switched network 

topology data passes through multiple repeater, router and switch hops during its journey 

from source to destination. Most significant are routers which route the packets over the 

network. Each router introduces queuing and processing delays for each packet that 

increases the total amount of delay. The third delay to consider occurs between the 

operating system and network interface hardware on application computers. It takes some 

amount of time for the data to travel from Operating System (OS) kernel to network 

hardware even before it reaches the network. 

 

c. Jitter 

Given these many factors, users may think that the latency is static and 

cannot change in time. This is not correct statement. Latency is considered to be a 

stochastic process and cannot be determined precisely, furthermore it will change from 

packet to packet. This change is called “jitter” and is used to define the variation of 

delays. Because of jitter, state changes in a Net-VE system cannot be received at a steady 

rate, thereby degenerating the smooth perception by introducing jerky behavior. In order 

to cope with latency effects, a variety of dead reckoning algorithms are proposed by 

researchers. Specifically, dead reckoning depends on predictive modeling which 

estimates current state of the entity based on previous state, elapsed time and other 

factors. 

 

d. Distribution Schemes 

 Distribution determines the way to transfer data packets from source host 

to destination hosts. There are three ways to transmit data over the network to the users. 



 11 

These are unicast, broadcast and multicast. Distribution scheme is correlated with 

scalability and reliability. Where scalability is defined by the richness of the virtual 

environment and reliability is defined by the data loss rate. 

(1) Unicast: Unicast is a point-to-point communication 

between two end-users. In this scheme only the recipient host and intermediate routers 

need to spend computational cycles during the journey of the packet. With this nature, 

unicast distribution does not scale well for networked virtual environments. In an 

environment with N participants, each host must open N-1 connections and send the same 

data multiple times onto the network. The connection and bandwidth complexity can be 

considered as O (n2) which is clearly an expensive proposition when sending high 

bandwidth streams such as audio and video to multiple users. 

(2) Broadcast: Broadcasting is at the opposite end of the 

spectrum from unicast distribution scheme. Broadcast messages reach every host on a 

local-area network and demand a response from each operating system. This is an 

extremely inefficient way to distribute packets. Even a few small global broadcasts could 

bring the Internet to its knees. Imagine what could happen if a real-time video feed were 

copied to six million Internet users, whether they wanted to watch it or not [Harold 00]. 

That is the reason that broadcasting is prohibited from passing across the switches and 

routers. As it is seen, broadcasting does not scale well for large-scale networked virtual 

environments and limited to the local area networks, furthermore it does not reach 

Internet at all.  

(3) Multicast: There is a middle ground between point-to-point 

communication and broadcasting to the whole world. One way to do this is to create 

static connection trees. This was the solution used by some conferencing systems (e.g. 

CU-See Me). In this example data is fed from the originating site to other servers, which 

replicate it to the other servers, which eventually replicate it to the clients [Harold 00]. In 

this architecture the connection tree does not reflect the best possible network topology to 

distribute the packets and the hooks into the tree must be done manually. It would be 

better to allow the routers to determine the best path for transmitting one-to-many or 

many-to-many type transmission of data. This is where the multicasting comes in. 
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Multicasting is based on the idea of groups. Each host can 

subscribe to any multicast group in order to send and receive data to or from that group. 

Multicasting is done at the hardware level by informing the network interface card (NIC) 

to monitor any specific group. This feature is extremely important since a single high 

bandwidth stream can still reach an arbitrary number of hosts, but computational load is 

only seen on hosts which explicitly subscribe to the multicast channel [Brutzman 97]. 

In order to have multicasting capability and creating one-to-many 

or many-to-many distribution scheme, the routers on the way should be multicast 

enabled. With today’s Internet architecture there are still problems. Most of the routers 

are not multicast enabled; specifically they are not “mrouters”. Current architecture of 

multicasting can be described as the following model. This model describes how end 

systems are to send and receive the multicast packets.  

• IP-style semantics : A source can send multicast packets at any time, with 

no need to register or to schedule transmission. IP multicast is based on 

User Datagram Protocol (UDP), so the packets are delivered using a    

best-effort delivery 

• Open groups : Sources only need to know a multicast address. They don’t 

need to know group membership, and they do not need to be a member of 

the multicast group to which they are sending. A group can have any 

number of sources. 

• Dynamic Groups : Multicast group members can join or leave a multicast 

group at will. There is no need to register, synchronize or negotiate with a 

centralized group management entity. 

This standard IP multicast model is an end-system specification 

and does not discuss requirements for how the network should perform the multicast 

routing. Also it does not propose any mechanisms for providing quality of service (QoS), 

security or address allocation. Actually the major problem here is the routing itself. 

There were many efforts to establish multicast connectivity or 

routing. One of them used handcrafted tunnels across the Internet where the multicast 
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stream is encapsulated with unicast packets. The idea behind this approach was 

establishing UDP channel, IP-encapsulated tunnel, between sub-networks and 

encapsulating multicast data with UDP packets. This model was called MBone. The 

MBone carried its first worldwide event when 20 sites received audio from the meeting 

of the IETF in San Diego in 1992 [MBoneInternet2]. The most significant achievement 

was the deployment of a virtual multicast network. The multicast routing function was 

provided by workstations running a daemon process called mrouted, which received 

unicast-encapsulated multicast packets on an incoming interface and then forwarding the 

packets over the appropriate set of outgoing interfaces. Routing decisions were made 

using Distance Vector Multicast Routing Protocol (DVMRP), which is based on reverse 

shortest path trees. 

Actually these discussions brought the idea of intra and inter 

domain multicasting. For intradomain multicasting new solutions showed themselves, 

such as MOSPF (Multicast Extensions to Open Shortest Path First) where MOSPF 

routers flooded the group membership information to other MOSPF routers or newer 

protocols PIM-DM (Protocol Independent Multicast Dense Mode) and PIM-SM 

(Protocol Independent Multicast Sparse Mode) where they use an existing unicast routing 

table to build a multicasting table. The difference between dense and sparse mode is the 

mechanism that they use for multicasting, such as broadcast-and-prune or explicit join. 

Broadcast-and-prune method is considered to be the dense, and explicit join is the sparse 

mode. 

For interdomain multicasting the solution was BGP (Border 

Gateway Protocol) which supports the routing by reliably exchanging network 

reachability information between border gateways where a network administrator can run 

any protocol within his/her domain.  

Despite all these accomplishments, the multicasting is still not 

widely deployed; most of the routers drop every multicasting packet that hits its incoming 

interface. Multicasting is not the only problem with today’s Internet architecture, QoS 

issues are still not solved, IPv6 is still not supported and there are problems with 



 14 

bandwidth issues. These topics will be discussed in Internet2 / NGI (Next Generation 

Internet) section. 

 

e.  Reliability  

Reliability typically measures how much data is lost by the network 

during its journey from source to destination [Zyda 99]. In reliable systems it is assumed 

that when data is sent it is always received. Reliable transport protocols use 

acknowledgement and error-recovery schemes. Unfortunately this introduces 

considerable amount of delay and inefficient use of bandwidth to the system. As we saw 

before, real- time systems need fast transmission and high-bandwidth capacity. With these 

acknowledgement, error recovery and congestion control components it is not practical to 

implement both reliable and real-time networked virtual environments. Consequently, 

most of the Net-VE systems use unreliable transport protocol (UDP over IP based 

networks). These systems have been designed to recover from a lost packet and it is not 

crucial to lose a state information packet when the next one is going to be received a 

short time later. 

The Transmission Control Protocol (TCP) is the reliable transport protocol 

that sits on top of the Internet Protocol (IP). TCP uses acknowledgement, sequencing, 

error-recovery and flow-control schemes to achieve its functionality. Another transport 

protocol is User Datagram Protocol (UDP), which is very different than TCP. It offers 

best effort delivery without any promise of sequencing. 

Although it depends on the architecture that the user wants to implement, 

in most of large scale Net-VEs hybrid systems are used. In hybrid systems, both of the 

transport protocols run at the same time for different purposes. TCP can be used for 

managerial and UDP can be used for state exchange objectives. 

Multicasting is implemented by using UDP, however there are many 

efforts in developing reliable (partial) and scalable multicast services by using designated 

receivers and other ideas [Pullen 95] and [Pullen 00]. 
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C.  OVERVIEW OF A RTEVE (NPSNET-V) 

The NPSNET program of Naval Postgraduate School started in 1990 as a research 

platform for networked virtual environment technology. It is now its fifth iteration known 

as NPSNET-V [Salles 02]. NPSNET-V is implemented to meet the following goals.  

• Run-time extensibility of both content and applications 

• Scalability in world complexity and number of participants 

• Composability of heterogenous content and applications 

As stated by McGregor and Kapolka, implementers of NPSNET-V, the dream of 

NPSNET-V is for it to be “… a framework for fully distributed, component-based, 

persistent, networked virtual worlds, extensible at runtime and scalable to infinite size on 

the Internet” [McGregor 01],[Salles 02]. 

A full description of NPSNET-V architecture is too extensive for the scope of this 

work; therefore only an overview of the components that play an essential role in XFSP 

scope will be covered. Readers can refer to [McGregor 01], [Kapolka 02], [Salles 02] and 

[Capps 01] for more detailed description. 

1. Components 

NPSNET-V is a component-based framework and used to build virtual worlds by 

combining modules at run-time. The run-time extensibility of NPSNET-V does not 

depend on prior knowledge of individual modules. Furthermore, new behaviors                  

(new components) can be added to the system “on-the-fly”. 

NPSNET-V can divided into five functional areas [Salles 02] 

• Configuration Files: the blueprints of NPSNET-V 

• Communications: the communication infrastructure of NPSNET-V 

• Database: the database of all necessary data for NPSNET-V 

• Components: the functional code modules used to build VE 

• Temporal: time coordination system 
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Network communication architecture is examined next with regard to the new 

framework called XFSP. 

2. Network Communication Architecture  

NPSNET-V is implemented to handle unicast, broadcast and multicast channels 

as well as using reliable or unreliable transport protocols. 

There are three types of communications performed in NPSNET-V architecture.  

• Administrative Communications which deal with required exchanges of 

necessary components. TCP type connections are used. 

• Object Communication; which deals with passing of object code, modules 

and terrain data from HTTP or specialized servers. They can be 

transmitted over reliable or unreliable connection schemes. 

• Entity Communication which deals with state exchanges. Both reliable 

and unreliable transport schemes might be used. For the scalability of the 

environment unreliable transport protocol over multicast distribution 

scheme is preferred. Until recently Distributed Interactive Simulation 

(DIS) (IEEE 1278.1) was used to exchange state information between 

entities. With this work, a new type of entity state exchange protocol, 

XFSP, is introduced to the NPSNET-V architecture. XFSP exploits the 

idea of XML-Serialization and DOM-Pipe generation. Design and 

implementation of XFSP will be examined in Chapter III. 

 

D. XML 

Extensible Markup Language (XML) is a markup language used to describe the 

structure of data in meaningful ways. The most well known XML applications are web-

related, but there are many other non-web based applications where XML is considered 

to be very useful for solving specific problems. An example for this type of usage is the 

financial transactions between different businesses. 
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XML can be used in many applications varying from databases to extensible 3D 

environments. Actually it can be said that XML is to be used in any application where 

“data” is processed, which results in “every” application. 

With today’s evolving technology, XML is considered to be the solution for many 

problems in computer world. In my opinion the biggest problem is the interoperability 

between non-homogenous systems. The differences between these non-homogenous 

systems can be summarized in four major points. 

- Computer Architecture 

- Operating Systems 

- Data Structures  

- Programming Language 

Being a W3C standard, XML is a simple text document which describes the 

actual data with meta-data. Any programming language running on any platform can 

parse this text document and interpret it to its internal data structure. With this nature, 

XML is the solution for system-integration and interoperability problems in non-

homogenous systems. Reader can refer to [Hunter 01] and [W3CXML] for more 

information on this topic. 

 

E. XSD 

An XML Schema is the modeling document which defines the structure of an 

XML document. Schemas are used to validate the XML documents. 

XML Schema uses the same syntax that XML uses, it fully supports the 

Namespace Recommendation and allows creation of complex and reusable content 

models with the idea of object inheritance and type substitution. 

The fundamental idea behind validation is to create XML documents that they can 

be shared by multiple users without any conflict when they follow the same rules that the 

schema defines. Any well- formed XML document can be validated against any schema. 
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There are many open-source XML Schema parsers and XML validators which 

can be downloaded from web-sites.  The basic process of XML validation is shown in 

Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1: XML Validation Using Schema  

In XFSP, XML Schema is used to define the application layer protocol format in 

a Net-VE platform for participating users. The complete process of XFSP will be 

discussed in Chapter III. For now, the fundamental idea is creating a schema parser over 

top of a non-commercial schema parser where it can parse the schema to properly define 

the protocol syntax. 

For more information about XML Schema and schema parsers refer to 

[W3CSchema]. 

 

F. JXTA 

JXTA Project is an open-source technology which is about communication, 

collaborations and sharing. The JXTA applications vary from instant messaging to 

transactional web services to interactive gaming. This technology provides an open, 

generalized platform for building peer-to-peer (P2P) applications.  

JXTA provides a set of simple and flexible mechanisms for enabling devices such 

as cell phones, wireless PDAs, PCs and servers to act as peers on a virtual network. As a 

peer, any connected device can establish ad hoc networks to find, access and use the vast 

resources of other peers on the network regardless of location [JXTA]. 
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JXTA protocols establish a virtual network on top of existing networks, hiding 

their underlying complexity. Unlike traditional client-server networks which rely on a 

centralized point of message transport, a JXTA virtual network allows peers to interact 

with other peers or resource directly, even across firewalls or different network 

boundaries. In order to cross firewall problems, JXTA uses HTTP tunneling over port 80. 

Most of firewall administrators consider port 80 as safe and allow communication 

connections on that port. JXTA exploits this idea and crosses firewall boundaries. 

Today, companies in diverse industries such as wireless telecommunications, 

government, entertainment, financial services and educations have started using and 

evaluating the JXTA technology. 

For example in the telecommunications industry, JXTA technology enables the 

creation of ad hoc wireless networks. In the media and entertainment industry, developers 

are exploring the use of P2P technologies for a new generation of interactive and 

participative games.  

The power of JXTA comes in building virtual networks quickly for short-term 

projects as well as for long ones without needing to create separate, costly and complex 

infrastructures. 

JXTA may not seem a solution for all of the networking infrastructure needs, but 

it is a promising technology for creating ad hoc virtual networks for distributed 

computing. 

 

G. SOAP 

In order to understand SOAP (Simple Object Access Protocol) we must have a 

firm understanding of basic concept of web services. A web service is a network 

accessible interface to application functionality, built using existing Internet technologies 

[SOAP]. Web services is an interface positioned between the application code and the 

user of that code. It acts as an abstraction layer, separating the platform and programming 

language-specific details of how the application code is actually invoked. This process of 

abstraction is shown in Figure 2.2. 
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Figure 2.2: SOAP Web-Services Abstraction [SOAP] 

SOAP’s place in the web services is as a standardized packaging protocol for the 

messages shared by different applications. The SOAP specification defines nothing more 

than a simple XML-based envelope for the information being transferred and a set of 

rules for translating application and platform-specific data types into XML 

representations (XML Marshalling and XML Unmarshalling). 

SOAP is just an XML document relying on XML standards like XML Schema 

and XML Namespaces for its definition and functionality. SOAP is a basic XML 

Messaging where applications exchange information. It provides a flexible way for 

applications to communicate. 

An XML message can be anything: a purchase order, a request for current stock 

price or current position of friendly forces. The XML messaging process is shown in 

Figure 2.3. 

 

 

 

 

Figure 2.3: XML Messaging [SOAP] 
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program can create an XML document representing a message and send it to a Windows 

Java program where it can be interpreted without any conflict. 

The fundamental idea is that two applications, regardless of operating system, 

programming language or any type of technical implementation detail, may share the 

information using nothing more then a simple message encoded in a way that both 

applications understand. 

This was at the heart of XFSP, where SOAP-like XML messaging is used to 

transmit entity state information. In order to gain from the bandwidth, XML element and 

attribute names are replaced by binary short tags and XML document is serialized into 

packets. The complete process of XFSP will be discussed in Chapter III. 

 

H. HLA 

The High Level Architecture (HLA) is a software architecture that can be 

considered as the glue which allows users to combine computer simulations into a larger 

simulation [HLA 00]. HLA helps to create a big simulation from pieces; the fundamental 

idea is component-based simulation.  

For instance, there may be a need to combine simulations in several different 

regions with simulators running on different machines, such as Fast Patrol Boats, Frigate 

Divisions, Amphibious Ships, Tactical Air Support Maritime Operations (TASMO) 

Aircrafts to create a navy battle simulation. HLA combines these standalone simulations 

into a single and combined simulation with the ability to extend it in the future by adding 

new simulations. 

In order to be familiar with the HLA framework, some new terms are introduced 

below. 

  Federation: Federation is the combined simulation system created from the 

existing simulations. 

    Federate: Federate is the each simulation that is combined to form a 

federation. 
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  Federation Execution: Federation Execution is a session of a federation 

executing together. 

A federation contains a supporting software called the Run-time Infrastructure 

(RTI), a common object model for the data to be exchanged between federates 

(simulations) in a federation called the Federation Object Model (FOM) and a number of 

federates [HLA 00]. 

In the HLA framework, one federate might represent one platform such as a Fast 

Patrol Boat, or a federate might represent an entire Fast Patrol Boat Division. From the 

perspective of HLA, a federate is defined by its single point of attachment to the RTI. 

As shown in Figure 2.4, a federate might model some number of entities, or it 

might have a different purpose such as just being a data collector by passively receiving 

data and generating none. 

 

 

 

 

 

 

 

 

Figure 2.4: Software Components in HLA [HLA 00] 

 

The fundamental idea behind the HLA is software reuse. Design goals of the HLA 

are listed below. 

• It should be possible to decompose a large simulation problem into 

smaller parts. Smaller parts are easier to define, build correctly and verify. 

 
Run-time Infrastructure 

 
Interface 

 

Data Collector / 
Passive Viewer 

 
Simulations 

 

Live 
Participants 



 23 

• It should be possible to combine the resulting smaller simulations into a 

larger simulation system 

• The functions that are generic to component-based simulations systems 

should be separated from specific simulations. The resulting generic 

infrastructure should be reusable from the one simulation system to the 

next. 

• The interface between simulations and generic infrastructure should 

isolate the simulations from the changes in the technologies [HLA]. 

With regard to these goals, the HLA is foremost a software architecture, rather 

than a particular implementation of its infrastructure. It contains a variety of different 

implementations. Consequently, it is defined not by the software, but by a set of 

documents. 

Currently the HLA is an IEEE standard as the IEEE 1516 specification. For more 

information about the HLA the reader can refer to [HLA 00], [HLADMSO] and 

[HLAIEEE]. 

 

I. DOM4J 

DOM4J is a Java toolkit for writing XML processing applications, with its own 

tree-based model for XML documents, inspired by the XPath data model             

[DOM4JCook 01]. It has both event-based and tree-based modes, supports evaluation of 

XPath expressions against the document tree, and also has an implementation of its own 

tree model that supports the DOM.  

The current implementation of XFSP uses DOM4J API in order to accomplish 

XML processing. XML processing includes a number of sub-components such as XML 

Serialization, XML Deserialization, XML Schema Parsing and XPath Addressing. 

DOM4J is chosen to be the API for this project for the following reasons. 
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• Open-Source: It is an open-source project where the source of the 

complete API can be downloaded, inspected and customized (as 

necessary) according to the user needs. 

• Easy-to-Use: It is a Java-based API, easy-to-use and intuitive for a Java 

programmer. It takes best features from DOM and SAX and puts them 

together. 

• Standards Compliant: It fully supports DOM and SAX together with 

existing Java platform standards such as Java 2 Collections and J2EE. 

• Complete XPath Integration: Complete XPath support is integrated into 

the API. XPath is the ideal technology for navigating around XML 

documents simply and easily. 

• Handle Very Large Documents: It is fast and efficient with small memory 

overhead for parsing, where it can process large XML documents with the 

support of XPath, XSLT and XML Query. 

 
With DOM4J, users are able to create their own XML tree implementations by 

simply providing a DocumentFactory implementation where it can support dynamic data 

binding to XML tree nodes. 

For further details about DOM4J API, reader should refer to DOM4J Cookbook 

[DOM4JCook 01] and on- line documentation [DOM4JOnline]. 
 

J. DREN 

The Defense Research and Engineering Network (DREN) is DoD’s high-

performance network. The DREN is a robust, high-speed network that provides 

connectivity among geographically dispersed user sites and shared resource centers. The 

networking services of DREN are provided by a contract service where the service 

provider has built DREN as virtual private network (VPN) over a public infrastructure. 

The DREN provides digital data transfer services between defined service delivery points 

(SDPs). SDPs are specified in terms of wide area networking (WAN) bandwidth access, 
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network protocols (Multi Protocol Label Switching, IP, ATM) and local connection 

interfaces [DREN 03].  

DREN currently supports bandwidths from DS-3 (45 Mbps) at user sites to OC-12 

(622 Mbps) at selected centers. Future bandwidths will scale to OC-192 (10 Gbps) and 

beyond. The sites to be connected by DREN services may be at virtually any point in the 

continental Unites States, Alaska and Hawaii.  

Incorporating the best operational capabilities of both the DoD and the 

commercial telecommunications infrastructure, DREN is the official DoD long-haul 

network for computational research and testing. DREN enables many scientists and 

engineers at defense laboratories, test centers, universities and industrial sites to use  

high-performance computing resources. 

 

K. INTERNET2/ABILENE/NGI 

The rapid growth of Internet in the number of hosts, number of users, traffic level, 

traffic nature and topology complexity has often resulted in the degradation of Quality of 

Service (QoS) available to the end-users. Some replication techniques, such as caching of 

recently accessed information and deliberate mirroring are used to reduce the Internet 

traffic. Nevertheless, problems are common. 

The growing interest in multimedia applications had huge impact both on 

telecommunication networks and the Internet. With current Internet’s best-effort delivery 

it seemed not quite possible to support applications which need differentiated services, 

real-time streaming or real-time collaboration. These developments led the education and 

research community to think about a Next Generation Internet (NGI). The Internet2 

initiative provided a forum for the universities and research communities interested in 

NGI activity [Ghonaimy 99]. 

The Internet2 project aims at serving the education and research community and 

is mainly a joint project among universities mostly in United States. A release project is 

the Next Generation Internet (NGI) which is envisaged to cope with demanding new 

applications in all fields. The ultimate objectives of Internet2 are: 
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• Developing a fast all-optical network 

• Using more efficient switches and routers where IPv6 is supported 

• Developing the new multicasting technology 

• Putting an emphasis on end-to-end QoS 

The first stage of Internet2 relied on the vBNS (the very high-speed Backbone 

Network Service), but later developed its own backbone called Abilene, announced in 

April 1998 [Ghonaimy 99]. 

The Abilene backbone network provides high-performance, best-effort delivery 

for U.S. nationwide connectivity to Internet2 universities and their institutions. The Naval 

Postgraduate School is one of the members of this community. Abilene is a pure packet-

over-SONET (POS) network providing coast-to-coast OC-48 (2.4 Gbps) IP transit. 

Connectors attach to one of the POPs (Point of Presence) with either POS or                 

IP-over-ATM access circuits, running at OC-3 (155Mbps), OC-12 (622 Mbps) or OC-48 

(2.4 Gbps) speed. Current logical connectivity is shown in Figure 2.5. 

 
Figure 2.5: Abilene Network Logical Map [Abilene 00] 
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With Abilene, Internet2 and NGI projects, the research community is trying to 

find answers to the needs of real-time interactive applications which typically support 

human-to-human collaboration or human-to-machine remote control. This demand of 

interactivity imposes stringent worst-case delay, jitter and loss requirements on the 

underlying network service. These applications often demand worst-case network 

performance bounds that must be maintained on any time interval longer than a few 

milliseconds. 

In order to accomplish these achievements, researchers are trying to extend 

current Internet technology with the ones that discussed above. Current Internet 

technology is a single-service network where all packets are treated almost same. Many 

research efforts are contributed to bring solution to the QoS problems and provide a 

better technology. With all these efforts it seems quite promising to have a high-speed 

Internet which fully supports IPv6 and differentiated services in the near term. 

 

L. RELATED WORK 

1. An Automated Approach to Distributed Interactive Simulation (DIS) 
Entity Development  

Michael Canterbury’s thesis tried to solve the limitation of DIS protocol for large-

scale Net-VEs. In that thesis, Canterbury targeted the DIS support for real-time, 

simulated engagements of more than 1000 entities. In order to solve that problem, 

Canterbury refined the existing DIS protocol and optimized the form and content of DIS 

network traffic [Canterbury 95].  

The approach taken was to design and build a protocol development tool which 

was accomplished in three phases. In the first phase, a modified Backus-Naur Form 

(BNF) grammar was formulated for use in modeling DIS data elements. In the second 

phase, the grammar was applied to the PDUs and data types specified in DIS standard. In 

the last phase, a tool, the DIS Protocol Support Utility, was developed as a means to 

automate the process of authoring, editing and implementing refinements to the DIS 

protocol. 
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As a result of this effort, Canterbury specified the data elements depicted in DIS 

standard by using a BNF-like grammar. With the implementation of Protocol Support 

Utility, the generated grammar was parsed and program source code associated with each 

data element automatically generated. The conclusion that the framework reached was 

[Canterbury 95], 

• A modified BNF grammar can be used to describe DIS protocol entities. 

• A simple grammar might be used to model the data elements associated 

with a complex protocol. 

• Though the modified BNF syntax was suitable for modeling the PDUs and 

data entities associated with DIS, it was not well suited for modeling the 

methods or implementation details needed in processing those entities. 

For further information about run-time protocol extensibility, reader should refer 

to [Zeswitz 93], [Canterbury 95] and [Fischer 01]. 

 

2. Wireless Access Protocol (WAP) Wireless Markup Language (WML) 
Specification 

Wireless Application Protocol (WAP) is a result of continuous work to define an 

industry-wide specification for developing applications that operate over wireless 

communication networks. The WAP Forum, originally founded by Ericsson, Motorola, 

Nokia, and Unwired PlanetWML was formed to create the global wireless protocol 

specification that works across differing wireless network technology types, for adoption 

by appropriate industry standards bodies. To enable operators and manufacturers to meet 

the challenges in advanced services, differentiation and fast/flexible service creation, 

WAP defines a set of protocols in transport, session and application layers [WAP 99].  

The WML specification designed by WAP Forum defines a compact binary 

representation of the XML. The binary format was designed to allow for compact 

transmission with no loss of functionality or semantic information. The format is 

designed to preserve the element structure of XML, allowing a browser to skip unknown 

elements or attributes. The binary format encodes the parsed physical form of an XML 



 29 

document, i.e., the structure and content of the document entities. Meta-information, 

including the document type definition and conditional sections, is removed when the 

document is converted to the binary format. 

Based on XML, Wireless Markup Language (WML) is intended for use in 

specifying content and user interface for narrowband devices, including cellular phones 

and pagers. WML includes four major functional areas [WAPW3C]:  

• Text presentation and layout: WML, including image support and a 

variety of formatting and layout commands. 

• Deck/card organizational metaphor: All information in WML is organized 

into a collection of cards and decks.  

• Inter-card navigation and linking: WML includes support for explicitly 

managing the navigation between cards and decks. 

• String parameterization and state management: All WML decks can be 

parameterized, using a state model. 

 

3. Compressing XML with Multiplexed Hierarchical Prediction by 
Partial Match (PPM) Models (XMLPPM) 

XMLPPM is a data compression program that compresses XML files. It is a 

combination of the Prediction by Partial Match (PPM) algorithm for text compression, 

and an approach to modeling tree-structured data called Multiplexed Hierarchical 

Modeling (MHM) developed by Cheney [XMLPPM].  

The main idea behind XMLPPM is leveraging the work that a Simple API for 

XML (SAX) parser does by encoding the sequence of events. An implemented decoder 

decodes these events, and reconstitutes an XML document equivalent to the original. 

Alternatively, the decoder acts as a SAX parser, parsing encoded event sequences instead 

of text, and sending those events directly to the application. 

In XMLPPM, a single byte event encoding is used to encode element start tags, 

end tags and attribute names and to indicate events such as “begin/end characters, 

begin/end comment”, and so on. The encoder and decoder maintain consistent symbol 
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tables; whenever a new symbol is encountered, the encoder sends the symbol name and 

the decoder enters it to the table [XMLPPM]. 

Additional to the SAX type encoder/decoder, in XMLPPM a Multiplexed 

Hierarchical Modeling is used. This technique employed two basic ideas: multiplexing 

several text compression models based on XML’s syntactic structure (one model for 

element structure, on for attributes and so on) and injecting hierarchical element structure 

symbols into the multiplexed models. With these techniques XMLPPM claims that it can 

compress XML files from 5 to 30% better than any existing text or XML-specific 

compressors. Further information about XMLPPM can be found at [XMLPPM] and 

[XMLPPM 03]. 

 

4. XMill 

XMill is an XML-conscious compressor that compresses XML documents by 

using the redundancy and standard text compression approaches. XMill combined with 

gzip compresses XML data about 10% better then gzip on equivalent non-XML 

forms; further improvement (up to 50%) is possible with user assistance in the form of 

complex command-line parameters [XMill 00]. 

XMill shows that XML-conscious compression can do better than text 

compression alone. XMill applies three principals to compress XML data [XMill 00]. 

• Separate structure from data: The structure consisting of XML tags and 

attributes is compressed separately from the data.  

• Group related data items: Data items are grouped into containers, and each 

container compressed separately.  

• Applying semantic compressors: XMill can apply specialized semantic 

compressors to different containers. 

However, XMill’s base transformation has several drawbacks, it requires user 

assistance to achieve best compression, and it wins only if the data set is large, typically 
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over 20 KBytes because of the additional bookkeeping overhead and the fact that small 

data containers are poorly compressed by gzip.  

For further information about generic and XML-specific compression schemes 

reader should refer to [ZLib], [BinXML], [XMill 03] and [Millau]. 

 

M. SUMMARY 

In this chapter Net-VEs, NPSNET-V, XML, XML-Schema, SOAP, JXTA, HLA, 

DOM4J, DREN, Internet2/Abilene/NGI are discussed. Additionally, related works such 

as An Automated Approach to Distributed Interactive Simulation (DIS) Entity 

Development, WML, XMLPPM and XMill are introduced to provide the background and 

reasons for this thesis research. 
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III.  CROSS FORMAT SCHEMA PROTOCOL (XFSP) 

A. INTRODUCTION  

This chapter introduces the description, design and implementation detail of Cross 

Format Schema Protocol (XFSP). This general XML compression scheme can be used 

for automatic production of binary network protocols, and binary file formats, for any 

data structures specified in an XML Schema. 

 

B. OVERVIEW OF XFSP 

The idea of creating flexible and run-time extensible application layer protocols 

inspired the implementation of XFSP. The question to be answered was “How can a run-

time extensible application layer protocol be implemented?” After preliminary searches 

in published papers and different software architectures, XML appeared to be an 

excellent approach for describing data structures. Specifically, XML-Schema can be used 

to define the protocol syntax. Because the protocols are considered to be the definition 

language describing the agreement between end-users and end-systems, they can be 

described well by XML-Schema using its internal as well as user defined data structures.  

In order to accomplish this, a schema parser is implemented on top of an open-

source XML parser called DOM4J [DOM4JOnline 03]. That schema parser parses the 

provided schema and creates entries in a table for each element and attribute defined in 

the schema document. The need for this process is to be able to send the XML documents 

in a more compact way by exploiting the protocol (i.e.”agreement”) notion. Initial tests 

showed that a short XML document can go beyond the MTU (Maximum Transmission 

Unit; i.e. 1500 bytes for Ethernet) very easily. The solution for that problem came with 

binary XML or XML Serialization. Instead of sending the XML document as a serialized 

text, a replacement algorithm might be used that replaces the element and attribute names 

with short tag numbers to serialize the data.  

Because the protocols are defined as an agreement between user applications and 

if users agree on using the same protocol via the same schema, then there is no need to 

send the whole name for each element and attribute. This may raise the question why a 
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DIS- like (Distributed Interactive Simulation) [DIS] protocol is not used instead of XFSP. 

Actually the answer for this question is obvious. First, in DIS- like protocols the syntax of 

the protocol is static and all of the data must be in their previously specified places, so 

there is no way to send a subset or selected section of the whole protocol. The second 

reason is that such protocols are not run-time extensible. The syntax of the protocol 

cannot be changed while the application is running. The last reason is the serialized data 

can be converted easily back to the text and can be used in web-service applications like 

SOAP. 

With XFSP two main ideas are implemented: changing the protocol syntax at run-

time and XML Serialization / Deserialization. The problem domain is targeted to meet 

the needs of non-homogenously distributed users, where non-homogeneity is primarily 

described as the bandwidth distribution. Although fast networks are already present in 

today’s networking infrastructures, users are still non-homogenously distributed and 

cannot always access high bandwidth. The idea of changing the protocol at run-time to 

meet the needs of the different users at different fidelity levels is considered as a valuable 

problem to address. 

The following sections cover the design and implementation details of XFSP. 

 

C. PROTOCOL DESCRIPTION VIA XML SCHEMA 

The key elements of a network protocol can be described as: 

• Syntax: Describes the format and the position of data. 

• Semantics: Describes the functional connection between application and 

data. 

For the XFSP project, semantics is not targeted to be solved and is generally 

considered to be NP-Hard, because the semantic definition needs a knowledge domain 

and AI generation. As described before, the run-time extensible syntax is pointed out as 

the research question and targeted to be solved. To solve this problem, XML Schema is 

used to define the application- layer protocol between users and serialized XML data is 

sent as the payload. 
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An exemplar application layer protocol is shown in Figure 3.1, where it is defined 

by using XML Schema. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A Simple Schema Document 

This schema shows that there are three top level elements, header, location and 

velocity, that are connected to the root element called protocol. The data type of header is 

a custom type called HeaderType and the data types of location and velocity elements are 

custom type as well, Vector3Double and Vector3Float respectively. If the HeaderType is 

examined, it has three elements, version as short type, exerciseID as byte type and 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 
 <xs:element name="protocol"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="header" type="HeaderType"/> 
    <xs:element name="location" type="Vector3Double"/> 
    <xs:element name="velocity" type="Vector3Float"/> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="HeaderType"> 
  <xs:all> 
   <xs:element name="version" type="xs:short"/> 
   <xs:element name="exerciseID" type="xs:byte"/> 
   <xs:element name="pdutype" type="xs:int"/> 
  </xs:all> 
 </xs:complexType> 
 <xs:complexType name="Vector3Double"> 
  <xs:attribute name="x" type="xs:double "/> 
  <xs:attribute name="y" type="xs:double "/> 
  <xs:attribute name="z" type="xs:double "/> 
 </xs:complexType> 
 <xs:complexType name="Vector3Float"> 
  <xs:attribute name="x" type="xs:float"/> 
  <xs:attribute name="y" type="xs:float"/> 
  <xs:attribute name="z" type="xs:float"/> 
 </xs:complexType> 
</xs:schema> 
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pduType as integer. Vector3Double and Vector3Float define three attributes such as x, y 

and z as double or float types respectively. 

If the protocol hierarchy tree is examined (Figure 3.2), it can be represented by a 

tree structure as follows. Elements are shown by boxes and attributes are represented by 

ellipses. 

 

 

 

 

 

 

 

 

Figure 3.2: Tree Representation of Example Schema 

The extensibility also shows itself in this tree representation, that the protocol can 

be described in different ways; i.e. the attribute and element locations do not have to be at 

the exact place in a PDU as it is in DIS. Another legitimate representation for the same 

protocol payload is shown in Figure 3.3. 

 

 

 

 

 

 

 

Figure 3.3: Alternate Tree Representation of Example Schema 
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Another area for extensibility might be the capability to send a subset of this 

protocol tree to users who do not need to know the whole data set. XFSP can also handle 

this selective transmission process. 

The implementation detail of XFSP is examined in the following sections. The 

UML diagrams shown in Figure 3.4 and Figure 3.5 provide background information 

about the class hierarchy of the XFSP Project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: UML Diagram for Root Directory of XFSP (Generated by [ESS]) 
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Figure 3.5: UML Diagram for Implemented Data Types corresponding to XML Schema 
and X3D (Generated by [ESS]) 

 

D. SCHEMA PARSING 

As described before, the data-defining XML Schema is parsed to create the 

application layer protocol. The end product of the parsing process is a look up table 

where element and attribute names and associated data types can be retrieved.  
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The parsing process assigns a unique short number (i.e. token) for start and end 

tags of each element, as well as an element-specific token for each attribute. The process 

also determines the data types used by elements or attributes. The element or attribute 

names do not need to be unique; the schema parser is able to distinguish non-unique 

names. 

If the previous schema document is examined for the parsing process, the 

resultant tables for element and attribute look ups would be as follows (Table 3.1 and 

Table 3.2). 

Name Start Tag Number End Tag Number Datatype 

/protocol 10 11 Null 

/protocol/header 12 13 ComplexType 

/protocol/location 14 15 ComplexType 

/protocol/velocity 16 17 ComplexType 

/protocol/header/version 18 19 XSDShort 

/protocol/header/exerciseID 20 21 XSDByte 

/protocol/header/pduType 22 23 XSDInteger 

Table 3.1: Element Look up Table Example 

Name Tag Number Datatype 

/protocol/location/@x 24 XSDDouble 

/protocol/location/@y 25 XSDDouble 

/protocol/location/@z 26 XSDDouble 

/protocol/velocity/@x 27 XSDFloat 

/protocol/velocity/@y 28 XSDFloat 

/protocol/velocity/@z 29 XSDFloat 

Table 3.2: Attribute Look up Table Example 
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The XPath addressing and tag numbers are used as keys for creating hash tables. 

These keys provide quick access to the elements and attributes during the serialization 

and deserialization processes. The table generation is done in TableManager class. This 

class also provides adding a new schema over the existing ones. In this way, new schema 

documents can be parsed at run-time when new protocols need to be introduced to the 

system. 

Another feature of this class is providing an empty XML document (tree) 

according to the given schema. The capability to provide a sub-tree when the root of the 

requested sub-tree is passed as parameter is further provided. 

The implemented parser cannot handle every schema document. Schema parsing 

operation is a difficult process and many cases need to be handled uniquely. One of the 

difficulties is assigning a unique name to every element and attribute. This is vital 

because it affects the correctness of the serialization and deserialization processes. A 

counter example where unique name assignment might be mishandled is shown in       

Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6: Example Schema Demonstrating Valid Distinction of Dissimilar Elements 

with Identical Names 

<?xml version="1.0"?> 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 <xsd:element name="SameElementName"> 
  <xsd:complexType> 
   <xsd:attribute name="SameAttrName" type="xsd:boolean"/> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:element name="AnotherElement"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="SameElementName"> 
     <xsd:complexType> 
      <xsd:attribute name="SameAttrName" type="xsd:int"/> 
     </xsd:complexType> 
    </xsd:element> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 
</xsd:schema> 
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In this example there are two attributes with different data types but with the same 

name connected to different elements that have the same element name. Figure 3.6 

demonstrates valid distinction of dissimilar elements with identical names. 

Discrimination of over- loaded element names occurs through context-sensitive inclusion 

of parent element inheritance during tokenization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Automatically Amended, Intermediate Example Schema Demonstrating  
Valid Distinction 

In Figure 3.7 the same conflict occurs in a different way where this conflict must 

be resolved before the tag assignment process. If the XPath representation of conflicted 

attributes is examined they can be represented as /protocol/location_1/location/@x 

(includes y and z) and /protocol/location_2/location/@x. Although they are bound to the 

<xs:element name="protocol"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="location_1" type="locationType_1"/> 
    <xs:element name="location_2" type="locationType_2"/> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="locationType_1"> 
  <xs:sequence> 
   <xs:element name="location" type="Vector3Float"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="locationType_2"> 
  <xs:sequence> 
   <xs:element name="location" type="Vector3Double"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="Vector3Float"> 
  <xs:attribute name="x" type="xs:float"/> 
  <xs:attribute name="y" type="xs:float"/> 
  <xs:attribute name="z" type="xs:float"/> 
 </xs:complexType> 
 <xs:complexType name="Vector3Double"> 
  <xs:attribute name="x" type="xs:double "/> 
  <xs:attribute name="y" type="xs:float"/> 
  <xs:attribute name="z" type="xs:float"/> 
 </xs:complexType> 
</xs:schema> 
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same element name, they are nonetheless unique and thus need to be differentiated. 

Attribute names are also fully qualified by parent elements and types to allow 

distinguishing them despite possible overriding of the same name by multiple many 

different attributes. The schema parser in XFSP handles many of these cases. 

 

E. XML SERIALIZATION 

The purpose of XML Serialization process is to send XML documents in a more 

compact way. In order to accomplish this, the attribute and element name replacement 

idea is used. The serialization can be considered as the preorder traversal of a given XML 

tree putting all node names and associated data to the output stream. 

XFSP can serialize text-based XML documents as well as Document Object 

Model (DOM) trees. This feature comes with the open-source DOM4J API. 

DocumentProcessor class is implemented to serialize the XML documents or Document 

objects. The UML diagram of DocumentProcessor class is shown in Figure 3.4. 

There are two main constructors for this class. First if the XML document to be 

serialized provides the schema that it implements, that information is used to build the 

look up table. Otherwise the TableManager must be constructed and passed to the 

DocumentProcessor before the serialization method is fired.  The following XML 

document (Figure 3.8) implements the schema document provided before. This XML 

document is used as an example in describing the serialization process. 

 

 

 

 

 

 

 
Figure 3.8: XML Document for a Sample Protocol 

<?xml version="1.0" encoding="UTF-8"?> 
<protocol xmlns :xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="example.xsd"> 
 <location x="3.45" y="56.72" z="-10.1"/> 
 <header> 
  <exerciseID>1</exerciseID> 
  <version>1</version> 
  <pdutype>2</pdutype> 
 </header> 
 <velocity x="1.0" y="0.0" z="-0.7"/> 
</protocol> 
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If element and attribute tag names are replaced in the serialization process with 

the short numbers looked up from the parsed schema, the above XML document can be 

represented as in Figure 3.9. 

 

 

 

 

 

 

 

Figure 3.9: XML Document with Replaced Tags 

In order to signal specific conditions such as elements that have data or start and 

end of attribute reading, special tokens 0, 1 and 2 are used and these numbers are not 

assigned to any element or attribute in the schema parsing process. The serialization and 

deserialization processes are shown in Figures 3.10 and 3.11. The meanings of tokens and 

tags are also shown in those figures. Tokens are the short numbers signaling deserializer 

to change its state. Tags represent the name of the elements or attributes obtained from 

the previously generated look up table.  

Tokenization and de-tokenization are handled in Serializer and Deserializer 

programs. The input for the Serializer is a raw XML document as shown in Figure 3.8. 

The output of the Deserializer is the same XML Document. The tokens and tags in the 

Figures 3.9, 3.10 and 3.11 are shown for the clarity and understandability purposes. The 

XML document is not tokenized before entering the Serializer. The tokens and tags are 

present during the transit of the document from the Serializer to the Deserializer. 

 

 

 

<?xml version="1.0" encoding="UTF-8"?> 
<10 > 
 <14 24="3.45" 25="56.72" 26="-10.1" 15> 
 <12> 
  <20>1<21> 
  <18>1<19> 
  <22>2<23> 
 <13> 
 <16 27="1.0" 28="0.0" 29="-0.7" 17> 
<11> 
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Figure 3.10: XML Serializer and XML Deserializer showing Native Tags 
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Figure 3.11: XML Serializer and XML Deserializer with Tokens and Tags Replaced by 
Short Numbers 
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In Figure 3.11, the Deserializer received the tokens 10, 14 and 1 and started 

building the XML tree gradually. The complete end product of XML Serializer is shown 

in Figure 3.12. The serialized document is interpreted from left to right and top to bottom. 

 

10 14 1 24 3.45 25 56.72 26 -10.1 2 15 

 

12 20 0 1 21 18 0 1 19 22 0 

 

2 23 13 16 1 27 1.0 28 1.0 29 -0.7 

 

2 17 11         

Figure 3.12 : Serialized XML Document 

In order to properly describe, validate and verify the designed algorithm, 

Communicating Finite State Machines (CFSMs) are used [CFSM]. Finite State Machines 

represent the actions taken by Serializer and Deserializer algorithms in serializing XML 

Documents or deserializing them back from the encoded stream. The finite state machine 

diagram of serialization process is shown in Figure 3.15. In this figure, states are 

represented by circles and the arrows between states represent the state changes. The 

valid transitions and failure of transitions are shown in Figure 3.13 and Figure 3.14 

 

 

Figure 3.13: Valid Transition 
 

 

 

Figure 3.14: Transition Failure Resulting in Error 
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Figure 3.15: Communicating Finite State Machine (CFSM) Diagram of the Serialization 
Process 

 

The state table for the CFSM used to validate and verify the serialization process 

is shown in Table 3.3. This table provides information about the purpose and actions 

taken in the states. 
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Name Purpose / Action Next Input / Transitions 

start 

Waits for the incoming XML 

Document. When XML 

document is passed in, the 

DOCTYPE, Processing 

Instruction and Schema 

information are removed. 

Input : XML Document. 

Transition : The root element is 

passed to “have element” state. 

 

have element 

Waits for the root element of the 

document or the root element of 

the sub-elements. The element 

name is looked up from the table 

and the corresponding tag is put 

into the output stream. 

Input : Start of the element. 

Transitions :   

   1- If data is present, state is 

transitioned to “read content” state 

via data_to_write transition. 

   2- If end_of_element is 

encountered, state is transitioned to 

“element complete” state. 

   3- If sub-elements are encountered, 

state is transitioned to itself via 

new_element transition. 

   4- If element start tag is not found 

in the look up table, an error is raised. 
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Name Purpose / Action Next Input / Transitions 

read    

element 

content 

Data Token “0” is put into the stream. 

Content from the XML Document is 

parsed and serialized according to its 

data types such as: 

1- Non-continued data is put 

directly without putting size 

token. 

2- If array type is encountered, 

first the data is parsed and its 

length measured; then the 

length token and data are put 

into the stream. 

Input : Payload of an element. 

Whitespace is consumed as 

appropriate 

Transition : 

    1-If end of payload is 

encountered state is transitioned 

to “element complete” state. 

   2- If payload is a continued 

payload, state is transitioned to 

itself. 

   3- If the datatype of the 

corresponding element is not 

found an error is raised. 

build 

attribute 

payload 

Attribute Token “1” is put into the 

stream to signal the incoming 

attributes. This token is used only at 

the start of the first attribute. For 

attribute name the tag is looked up 

from the table and written to the 

stream. Data is parsed and handled 

as; 

1. Non-continued data is put directly 

without putting size token. 

    2. If an array type is encountered, 

first the data is parsed and its length 

measured, the length token and data 

are put into the stream. 

Input : Payload of an attribute. 

Transition: 

1-If end of payload is 

encountered state is transitioned 

to “attribute complete” state. 

   2- If payload is a continued 

payload, state is transitioned to 

itself via the attr_payload 

transition. 

   3- If the datatype of the 

corresponding attribute is not 

found from the look up table, an 

error is raised. 
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Name Purpose / Action Next Input / Transitions 

element 

complete 

The end token for the 

element is looked up from 

the table and put into the 

stream. 

Input : End of the element; next token 

Transition: 

1-If the element to write is the last element 

in the XML Document, state is transitioned 

to state “end”. 

   2- If new element is encountered, state is 

transitioned to “have element” state via the 

new_element transition. 

   3- If the token corresponding to the 

element is not found from the look up 

table, an error is raised. 

attribute 

complete 

Checks for the new 

attributes, data for the 

current element, and new 

elements. 

Input : End of the last attribute; next token 

Transition :  

   1-If all attributes are handled as indicated 

by receipt of end_of_element token, state is 

transitioned to “element complete” state. 

   2- If a new attribute token is encountered, 

state is again transitioned to “build 

attribute payload” state. 

   3- If token for payload data is 

encountered for the element, state is 

transitioned “read element content” state. 

   4- If new element token is encountered, 

state is transitioned to “have element” state. 

  5- If none of the above tokens are 

encountered, an exception is raised. 
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Name Purpose / Action Next Input / Transitions 

E 
Error Condition: declares the 

failure of the transition 

In any state errors may occur. The 

reasons for the error state are listed 

below. 

1 – Token numbers cannot be found for 

element or attribute. 

2 - Data serialization cannot be handled 

properly. 

3 - XML Document is not well- formed. 

4- XML Document is not valid. 

 

end 
Declares the success of the 

serialization process. 
Stream Serialization Complete 

Table 3.3: Serialization Algorithm State Table 

The transition table for XML Serialization is shown in Table 3.4. This table 

identifies the names, purposes, start and end states of the performed transitions in 

Serializer CFSM. The transitions are the changes from the beginning state to the end state 

and occur in the conditions stated in Table 3.3.  

Name Purpose Start State End State 

extract doctype, PI, 

schemas 

Extracts DOCTYPE, 

Processing Instruction and 

Schema Information from 

the XML Document prolog 

and root element 

start start 

root_element 
Transition from start to have 

element 
start have element 
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Name Purpose Start State End State 

have element 

attribute complete 
new_element 

Declares the existance of 

the new element 

element complete 

have element 

have element 
new_attribute 

Declares the existence of 

first or new attribute attribute complete 

build attribute 

payload 

have element 

read content end_of_element 
Declares the end of the 

element. 
attribute complete 

element 

complete 

have element data_to_write Declares that current 

element has data to write. attribute complete 
read content 

end_of_attr Declares the end of the 

attribute is encountered 

build attribute 

payload 

attribute 

complete 

attr_payload The payload for this 

attribute is an array type. 

build attribute 

payload 

build attribute 

payload 

continued content 

payload 

The payload for this 

element is an array type. 
read content read content 

finished_writing Declares the end of the 

document is reached. 
element complete end 

attribute complete 
attribute 

complete 

white_space Removes white space 

between  attributes or 

element tags as 

appropriate. 
read element 

content 

read element 

content 

Table 3.4: Serialization Algorithm Transition Table 
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In order to show how much bandwidth is saved, the previous text-based XML 

Document is sent in four different ways: first by sending the document as a text file; in 

the second and third, serializers JDOM and DOM4J are used, which remove whitespace; 

and in the last one XFSP is used. As seen in Figure 3.16 XFSP provides almost 60% 

compression over the other three methods for this example document.  

 

 

 

 

 

 

 

 

 

Figure 3.16: Comparison of Serialization Programs 

 

F. XML DESERIALIZATION 

XML Deserialization can be defined as recreating the XML tree back from the 

received binary stream. The purpose and implementation detail of sending XML 

documents in a compact way is described in the previous sections. In this section the 

process of deserializing back to the XML document is discussed. 

For deserialization, BinaryReader class is implemented. The UML diagram for 

this class is shown in Figure 3.4. In order to construct a BinaryReader object, a look up 

table has to be created and passed as a parameter to the constructor of the class. That look 

up table is used for finding the element and attribute names and their data types as well. 

The pseudocode for binary reading operation is provided in Figure 3.17. In this operation, 

there can be two main parsing states, such as reading element state and reading attribute 
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state. These states signal the type of reading operation. If the parser is in reading element 

state then it can read a tag that corresponds to the start of an element, or a tag that 

corresponds to the end of the element, or a tag which states that actual data must be read 

next, or a tag which signals that a series of attributes will be read next.  

When the parser enters the attribute-reading state, it can read a tag that 

corresponds to an attribute or a tag which signals the end of reading attributes which 

results with changing the reading state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Binary Reader Pseudocode 
 
 

parse_state := element_reading; 
current_element := null; 
 
function binary_reader ( ) 
 do  
  if (parse_state = element_reading) 
   read_elements( ); 
  if (parse_state = attribute_reading) 
   read_attributes ( ); 
 while ( not_end_of_stream) 
end function; 
 
function read_elements () 
 read_tag(); 
 if (element_start_tag) 
  create_element(); 
  bind_to_current_element(); 
  push_to_stack(); 
 else if (element_end_tag) 
  current_element := pop_stack(); 
 else if (data_tag) 
  read_data(); 
  bind_to_current_element(); 
 else if (attribute_start_tag) 
  parse_state := attribute_reading;  
end function; 
 
function read_attributes () 
 read_tag(); 
 if (attribute_end_tag) 
  parse_state : = element_reading; 
 else 
  read_attribute_tag (); 
  create_attribute(); 
  read_data(); 
  bind_to_current_element(); 
end function; 
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As seen in pseudocode, the main approach in recreating the XML document is 

gradually building the tree back by using stack operations. The major steps in this process 

can be seen in Figure 3.18, some in-between steps are skipped to reduce the complexity 

in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.18: XML Deserialization 
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The Deserializer CFSM is shown in Figure 3.19. This figure defines the algorithm 

used to deserialize the received stream back into the original XML tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: Communicating Finite State Machine (CFSM) Diagram of Deserialization 
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The state table for the CFSM used to validate and verify the deserialization 

process is shown in Table 3.5. This table provides information about the purpose and 

actions taken in the states. 

 

Name Purpose / Action Input / Transitions 

start 
Waits for the incoming 

stream. 

Input : Incoming serialized stream 

Transition : When the tag for the root 

element is read and looked from the 

table, state is transitioned to “element 

start” state. 

 

element start 

The element for the 

deserialized tag is created 

and pushed to the stack. 

Input : Token for the name of the element 

Transition :  

   1- If another tag for a new element is 

encountered, state is transitioned to itself. 

   2- If end tag for the current element is 

encountered, state is transitioned to 

“element end” state. 

   3- When data token is encountered, 

state is transitioned to “continued data” 

state. 

   4- In case that an attribute start token is 

found, state is transitioned to “attribute 

start” state. 

   5- When none of the above tokens are 

found, an exception is raised. 
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Name Purpose / Action Input / Transitions 

attribute start  

The start tag for the attribute 

names is parsed from the 

stream, then a new attribute 

is created and bound to the 

current element.  

Input : The special token “1” which 

indicates the start of the attributes. 

Transitions : 

   1-If data type of the current attribute is 

not variable length, state is transitioned 

“build payload” state via read_attribute 

transition. 

   2- If data type of the current element is 

variable length, the state is transitioned to 

“get length” state via array_type 

transition. 

   3- When none of the above tokens are 

found, an exception is raised. 

build payload 

Builds the payload of the 

current attribute and binds 

the created data object to the 

attribute. 

Input : The payload of the attribute 

Transitions : 

   1- If start of new attribute is 

encountered, state is transitioned to 

“attribute start” state. 

   2- If open or close tag of the element is 

found, state is transitioned to “element 

start” state. 

   3- In variable length data case, payload 

of the current attribute is created by 

reading special tags between data blocks. 

   4- If continuation token is found, state is 

transitioned to “get length” state. 

5- When none of the above tokens are 

found, an exception is raised. 
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Name Purpose / Action Input / Transitions 

continued 

data 

Builds the payload of the 

current element and binds it 

to itself. 

Input : The data to parse 

Transitions : 

   1- If child element is found, state is 

transitioned to “element start” state. 

   2- If end of the current element is 

encountered, state is transitioned to 

“element end” state. 

   3- If data cannot be parsed or when none 

of the above is found, an exception is 

raised. 

element end 

Pops the element from the 

stack and binds it to current 

root element. 

Input : End tag of the current element. 

Transitions : 

   1- If a start tag for a new element is 

encountered, then state is transitioned to 

“element start” state. 

   2- If end of the current stream is found, 

then state is transitioned to “end” state. 

   3- If another end tag of another element 

is found then state is transitioned to itself. 

   4. When none of the above tokens are 

found, an exception is raised. 
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Name Purpose / Action Input / Transitions 

get length 
Reads the length of the 

variable length data. 

Input : The data type of the current 

attribute or data continuation token. 

Transitions : 

   1- The length of the data is read and 

state is transitioned to “built_payload” 

state. 

E 
Error condition: declares the 

failure of the transition 

In any state errors can occur. The 

reasons for the error state are listed 

below. 

1 - Tag numbers cannot be found. 

2 - Data deserialization cannot be 

handled properly. 

3 – Invalid tokens are received. 

End 
Declares the success of the 

deserialization process. 

Input : End of the data stream 

Transitions : -- 

Table 3.5: Deserialization Algorithm State Table 

 

The transition table for XML Deserialization is shown in Table 3.6. This table 

identifies the names, purposes, start and end states of the performed transitions in the 

CFSM. 

 

Name Purpose Start Sate End State 

incoming stream 
The start of the process is 

declared. 
--- start 
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Name Purpose Start State End State 

start 

element start start_tag 
The start tag of an element is 

read. 
element end 

element start 

element start 

element end end_tag 
The end tag of the element is 

read. 
continued data 

element end 

read_data Data is encountered element start continued data 

attribute 

token_found 

Special token “1” is read 

from the stream 
element start attribute start  

child_element_found 

Another start tag is found 

during the processing 

current element. 

continued data element start 

read attribute 
The token for the current 

attribute is read. 
attribute start  built payload 

new_attribute_found 

A new attribute is found 

(token for the new attribute 

is read from the stream).  

build payload attribute start  

attribute_payload 

Continuation of parsing the 

payload of the current 

attribute. 

build payload build payload 

read_length_token 

The length token for the 

variable length attribute 

payload is read. 

get length build payload 
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Name Purpose Start State End State 

continuation_token 

found 

A special token for payload 

continuation is found. 
build payload get length 

open_or_close 

element_tag found 

Open or close tag for an 

element is read. 
built payload element start 

array_type 

If data type of the current 

attribute is an array type, 

where the data type is 

looked up from the table. 

attribute start  get length 

EOF End of stream is read. element end end 

Table 3.6: Deserialization Algorithm Transition Table 

 

G. DATA TYPES 

In XFSP 13 native data types [W3C Schema Part II] are implemented. These data 

types provide the foundation of data structures that XFSP can understand. The main point 

of implementing XFSP data types is pushing the serialization and deserialization of data 

into the classes where data is actually stored. 

These data objects are created when the text-based XML document is parsed or 

when a serialized stream is received at the user end. The UML diagram for implemented 

data types is shown in Figure 3.5.  

The data types can be divided into two main categories such as Complex Type 

and Simple Type. Complex Type provides name storage for the XML elements where 

they implement non-primitive type data structures. Simple Types are the objects where 

actual primitive or array type data is stored. These data types have the capability to store 

the data, serialize it into the given output stream, deserialize it from the received input 

stream and provide that data as text to the user. The implemented data types are shown 

below. The prefix XSD is used to distinguish these types from the primitive types used in 

the Java programming language. 
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• XSDByte 

• XSDUnsignedByte 

• XSDShort 

• XSDUnsignedShort 

• XSDInteger 

• XSDUnsignedInt 

• XSDLong 

• XSDFloat 

• XSDDouble 

• XSDBoolean 

• XSDString 

• XSDComment 

• SimpleTypeExtension 

 

In XFSP, these objects are bound to the XML tree during the tree generation 

process. These objects can represent primitive data structures as well as user defined 

complex data types. 

 

H. XFSP AND NPSNET-V 

XFSP is introduced as a run-time extensible application layer protocol into the 

NPSNET-V. As discussed before, NPSNET-V is a run-time extensible networked virtual 

environment architecture having both DIS and HLA capabilities to share information for 

participating users. The major advantage of using NPSNET-V to show the run-time 

extensibility of application protocols is its component based framework allowing 

components to be loaded at run-time to build the actual virtual-environment architecture. 
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NPSNET-V uses many well-known design patterns. The major ones that are used 

in XFSP components are Interface  and Listener patterns. Both of these design patterns 

are highly used in the XFSP component in NPSNET-V architecture. 

The idea behind the Interface pattern is “… Keep a class that uses data and 

services provided by instances of other classes independent of those classes by having it 

access those instances through an interface” [Grand 98]. This pattern allows for a plug-

and-play type of architecture within an application. “For example a certain application 

relies on a specific service to be provided, and that service can be provided by different 

service providers. All that the application interface needs to specify is a set of functions 

that any service provider must implement in order to provide the desired service. Any 

service provider that is to be used with that application must implement the function 

required by the interface in order for the applications to be able to use its services”  

[Salles 02]. 

The second pattern is the Listener pattern, also commonly known as Observer 

pattern. This pattern lays the foundation for efficient notification of events occurring in 

one object to be transmitted to registered objects.  

In order to implement the XFSP component in NPSNET-V, two main controller 

modules, StandardXFSPController and XFSPExplosionManagerController are 

implemented. These modules can understand entity state and explosion packets defined 

by XML-Schemas. 

These controllers define the semantics between the protocol syntax and 

application. They cause action of the received packets to be represented correctly in a 3D 

world when they are issued by the participating entities. Currently the semantics of fire 

and collision packets are not defined in the NPSNET-V framework, but XFSP can parse 

those packets and create the XML documents from the received streams.  

UML diagram of classes implemented to integrate XFSP and NPSNET-V is 

shown in Figure 3.20. 
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Figure 3.20: StandardXFSPController UML Diagram (Generated by [ESS]) 
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The following pictures show the run-time extensibility of the protocols in 

NPSNET-V. Figure 3.21 shows the start of the application with two ships communicating 

via multicast where they implement the same entity state protocol.  Each ship is 

controlled by separate processes running on the same computer or separate hosts. In the 

presented pictures, therefore, one ship is local controller (master) and the other is ghosted 

copy (slave). 

 

 

 

 

 

 

 

 

Figure 3.21: Start of NPSNET-V Application 

 

 

 

 

 

 

 

 

 

Figure 3.22: Run-time Detonation Protocol Loading 
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After the start of application, one of the clients loads a detonation entity 

associated with a detonation protocol schema. At the parsing process the entity that have 

loaded the schema sends a special message to the multicast group declaring the new 

protocol that it loaded. When the other entities receive the special message they parse the 

schema pointed to by the URL in the message and are then able to understand the 

detonation protocol syntax. Figure 3.22 shows one of the clients that received the 

message and parsed the schema pointed to in that message, resulting in execution of a 

detonation behavior. The format of the special message is shown below in Figure 3.23. 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: NPSNET-V Simulation Manager Type Packet Format 

 

I. SUMMARY 

This chapter provides information about the implementation details of XFSP and 

an exemplar usage in a Net-VE. Schema parsing, XML Serialization and XML 

Deserialization processes are covered in detail to address the research question and show 

how an XML document can be compressed and restored. 

 

 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 
 <xs:element name="xfsp"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="manager" type="managerType"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="managerType"> 
  <xs:sequence> 
   <xs:element name="entitySite" type="xs:short"/> 
   <xs:element name="entityApplication" type="xs:short"/> 
   <xs:element name="entityID" type="xs:short"/> 
   <xs:element name="schemaURL" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:schema> 
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IV.  BINARY X3D 

A. INTRODUCTION 

This chapter examines the design and implementation details of a binary X3D 

format for network streaming and file storage. 

 

B. OVERVIEW 

Extensible 3D (X3D) is an XML file format that describes a scene graph which is 

rendered as a 3D scene. X3D scene graph is a directed acyclic graph with nodes and 

edges. Nodes in the scene graph define the graphic and aural objects contained in the 

system, and the edges define the transformation hierarchy containing the spatial 

relationship of objects [Web3D]. X3D is the third-generation version of the ISO standard 

for The Virtual R-M-C-VRML97. 

Being an XML text file format makes X3D fairly heavyweight for network 

transmission as well as storage purposes. Text files generally require much more 

bandwidth than their binary equivalents. The compressed versions of text files offer an 

efficient way to send or receive data over the network as well as to store them locally. 

The idea of schema parsing, XML Serialization and XML Deserialization is used to 

compress the X3D files. The output file format is called “Binary X3D” with .b3d or 

.b3z file extensions depending on whether or not GZIP compression is further used. 

The following sections describe and analyze the binary X3D program by 

providing essential details on process flow. 

 

C. X3D-EDIT 

X3D-Edit is an authoring tool for X3D graphic scenes developed by using IBM’s 

Xeena, an XML-based tool-building application. It is a graphics file editor for X3D files 

that enables simple error-free editing, authoring and validation of X3D scene graph files 

[Brutzman X3D]. X3D scene graph files are translated to VRML97 syntax by using an 

XSLT stylesheet. The converted file format can be rendered by open-source browsers 
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(Xj3D) as well as commercial products; e.g., Internet Explorer by providing a plug- in. 

Figure 4.1 shows the X3D Edit interface for a typical “Teapot” example. 

 

 
 

Figure 4.1: Teapot.x3d File Example 

 

Figure 4.2 shows the output file rendered by using Cortona [Cortona 03] plug- in 

for Internet Explorer browser. The rendered file is in VRML97 file format and generated 

by applying an XSLT stylesheet to the teapot.x3d file. The Figure 4.1 and Figure 4.2 are 

presented to show the how an XML file that defines a 3D scene graph can be rendered. 
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Figure 4.2: Teapot.wrl File Example 
 

D. BINARY X3D 

1. Binary X3D Program Interface 

Binary X3D program provides a compact way to store X3D files by exploiting the 

idea of schema parsing and XML Serialization described in previous chapter. In addition 

to XML Serialization, binary X3D program provides options to use GZIP streams to 

further compress the X3D files. The interface for the binary X3D program is shown in  

Figure 4.3. The implementation details and process flows are discussed at each option 

description. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: BinaryX3D Program Interface 
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• The option “-c” is used to compress the X3D file to a binary X3D file. The 

output file extension is considered as .b3d which stands for binary X3D. 

The process for this operation is shown in Figure 4.4. The X3D file is 

provided as parameter to the Serializer program and compressed by using 

X3D Schema. 

 

 

 

 

 
Figure 4.4: Binary X3D File Generation 

 

• The option “-d” is used to decompress binary X3D file format. The 

process for this operation is shown in Figure 4.5. The .b3d (Binary X3D) 

file is provided as a parameter to the Deserializer and decompressed by 

using X3D Schema. 

 

 

 

 

Figure 4.5: .x3d File Generation from .b3d File 
 

• The option “-cz” is used to compress the X3D file by using Serializer 

program and GZIP streams. The output file format is considered as B3Z 

which stands for gzipped binary X3D. The process for this operation is 

shown in Figure 4.6. The X3D file is provided as a parameter to the 

Serializer program where it is serialized using X3D Schema and 

compressed using GZIP compression. 
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Figure 4.6: .b3z File Generation (Gzipped Binary X3D) 
 

• The option “-dz” is used to decompress gzipped binary X3D (.b3z) file 

back to the .x3d file format. The process for this operation is shown in 

Figure 4.7. The .b3z file is provided as a parameter to the GZIP stream 

and decompressed. The decompressed file (.b3d) is provided to 

Deserializer program and converted back to the .x3d file by using X3D 

Schema. 

 

 

 

 

Figure 4.7: .x3d File Generation from .b3z File 

 

• The option “-dr” is used to decompress binary X3D (.b3d) files and 

render them. To render .b3d file format an XSLT stylesheet is applied to 

the decompressed B3D (.x3d) file and transformed to VRML97 file 

format. The VRML97 file format is loaded into a VRML or X3D browser 

(e.g. Xj3D). The complete process flow for this operation is shown in      

Figure 4.8. 
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Figure 4.8 : Rendering .b3d File Format 
 

• The option “-dzr” is used to decompress .b3z files and render them by 

using a browser. To render .b3z file format, the input file is 

decompressed by gzip stream and converted to a .b3d file format. The 

.b3d file is converted to .x3d file by using the XFSP Deserializer 

program. An XSLT stylesheet is applied to the X3D file and transformed 

to VRML97 file format. The VRML97 file is rendered by using Xj3D 

browser. The complete process flow for this operation is shown in      

Figure 4.9. 

 

 

 

 

 

 

 

 

Figure 4.9: Rendering .b3z File Format 
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2. Analysis 

To test the designed program, a common example “Teapot” is used. The 

teapot.x3d file contains 14994 integer numbers that define the coordinate indices, and 

5916 floating point numbers that represent the coordinates of vertices in 3D. 

Furthermore, the Teapot file includes various elements and attributes that define the 

material and color properties of the object. The rendered teapot is shown in Figure 4.2. 

The following charts shows the data collected by using different file formats and 

compression schemes. In Figure 4.10 the x-values represent the file format, and y-values 

represent the size of the file in Kbytes. The file formats used for comparison are 

described below. 

  - x3d : X3D File Format 

  - wrl : VRML97 File Format 

  - b3d : Binary X3D File Format 

  - zip_x3d : X3D File Compressed by WinZip Program 

  - zip_wrl : VRML97 File Format Compressed by WinZip Program 

  - b3z : X3D File Compressed by Serializer using GZIP Streams 

Figure 4.10: File Format Comparison for Teapot Exemplar 
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Figure 4.11 represents the storage and bandwidth gained by using different file 

formats. The base for percentage calculation is set as the teapot.x3d file. The B3Z file 

format provides 78% bandwidth saving over the regular X3D file format. Furthermore, 

B3Z file format provides 12% saving over the compressed WRL file format commonly 

known as WRZ file format. The teapot.x3d example contains much more data than the 

element and attributes names. For an exemplar including many elements and attributes, 

the storage savings will increase due to the Serializer program compression. In that case, 

attribute and element names will need more storage and the Serializer program will work 

more effectively to compress the X3D file. 

Figure 4.11: File Format Percentage Saving for Teapot Exemplar 

 

The properly reconstructed and rendered teapot.b3z file is shown in Figure 4.12. 

The total amount of time for decompression, stylesheet transformation and rendering is 

measured as 5 seconds. The experiment was conducted on a Dell Inspiron 8200 Laptop 

with P4 1.6GHz CPU, 512 MByte RAM and 64 MByte GeForce-4 graphics card. 
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Figure 4.12: Rendered teapot.b3z File 

 

E. SUMMARY 

This chapter provides information about the implementation details of binary 

X3D file formats (.b3d and .b3z). .b3d file format offers 34% bandwidth gains over 

regular X3D file format; B3Z file format offers 78% bandwidth gains for Teapot 

exemplar. Additionally, .b3z file format provides 12% bandwidth gains over zipped 

VRML97 file format. These compression improvements from using XML are consistent 

with other results. The implemented program provides an effective way to use network 

bandwidth as well as local storage capacity by using XML Serialization and GZIP stream 

compressions. 
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V.   PROTOCOL DATAGRAM UNIT (PDU) FARM 

A. INTRODUCTION 

This chapter examines the design and implementation details of Pdu Server, Pdu 

Capture and Network Analyzer programs. 

 

B. OVERVIEW 

In order to test the designed Net-VE for 24 hours a day and 7 days a week, three 

main programs, Pdu Server, Pdu Capture and Network Analyzer are implemented. As 

their names imply, these programs are used to send and receive packets as well as to 

monitor the network state between end points.  

In the monitoring process, previously described metrics such as latency, drop-rate 

and jitter are collected and stored in a file to help users draw conclusions about the 

current state of the network between the end points. 

Protocol Datagram Unit (PDU) Farm is defined as the collection of computers 

where previously recorded or run-time generated packets are continuously transmitted 

over the network. In order to establish a PDU Farm, implemented programs are loaded to 

four different computers and run continuously. Current implementation of PDU Farm 

needs previously recorded packets to execute its task. The main point is mimicking a 

previously played scenario to draw conclusions about different metrics such as network 

state, rendering performance or memory usage for Net-VEs.  

In the benchmark tests the total bandwidth of four computers is measured as 1.6 

Mbps. With this bandwidth 300 different entities with one packet per second send rate 

can be represented in highest resolution XFSP (670 bytes) packet format.  

The implementation details of PDU Farm are covered in the following sections. In 

order to present the design scheme of PDU Farm, a UML diagram is provided in        

Figure 5.1. The UML diagram presents the implemented Java classes. 

 



 80 

 

Figure 5.1: PDU Farm UML Diagram (Generated by [ESS]) 
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C. PDU SERVER 

The Pdu Server program is used to send previously recorded packets to the end-

users via unicast or multicast transport. These previously recorded packets are stored in a 

file where they are encapsulated by a special wrapper. This wrapper is used to determine 

the capture time and capture order of the received packet. 

In order to simulate the previously recorded scenario precisely, the captured 

packets are sent at the rate and in the order of their capture intervals. These time intervals 

define the send time of the captured packet.  

Starting the Pdu Server is done by a batch (DOS) or bash (Linux) file. This file 

uses an XML file to define initialization parameters of the server. An example 

initialization file is shown in Figure 5.2.  

 

 

 

 

 

 

 

Figure 5.2: Pdu Server Initialization Parameters 
 

Start and end time fields in Figure 5.2 define the start and end time of the 

application. In the given example the server will start running at 29th of March 2003 at 

9:34:00 am. and will stop at 29th of March 2003 at 11:35:00 am. Between the actual start 

time and the start of the application, the server will enter to sleep state. At the end of the 

sleep state the server will wake up and will start sending previously recorded packets. 

The Loop field in this initialization document defines whether the server will use 

the same file where previously recorded packets are stored continuously between its start 

and end. The Loop true means that the server is going to use the same file continuously 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
<!-- Time pattern is mm.dd.yyyy hh:mm:ss--> 
 <StartTime>03.29.2003 09:34:00</StartTime> 
 <EndTime>03.29.2003 11:35:00</EndTime> 
 <Loop>true</Loop> 
 <SocketIP>225.23.93.25</SocketIP> 
 <Port>61000</Port> 
 <URL>file://c:/xfsp/nps.pdu</URL> 
</System> 
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during its operation. When the server reaches the end of the file it will restart sending the 

packets from the top of the file. 

The SocketIP field determines the IP address that the server will use to send the 

recorded packets. The server is capable of sending both unicast as well as multicast 

packets. If the provided IP is in the multicast IP address range                              

(224.0.0.0 - 239.255.255.255) the server will open a multicast socket and join that 

address group. In the unicast IP case, the server will open a unicast socket and send the 

packets to that IP address. 

The Port field is used to define the port number to send the packets. A port 

number is an integer number between 1- 65535 and differentiates the applications 

running on the same computer with the same IP. It can be considered as the multiplexer 

where the operating system uses it to hand the incoming data to the correct application. 

The URL (Uniform Resource Locator) field determines the location of the file 

that will be used for sending the packets. As mentioned before, that file stores the 

previously recorded packets. 

When the initialization parameters are provided with the XML document, the 

server uses these parameters to set its internal attributes. After setting internal attributes, 

the server sends the recorded packets to a unicast user or to a multicast group. The output 

of the PDU Server program is shown in Figure 5.3. In order to run the server remotely on 

computers with Linux Operating System (OS), no graphical user interface is used. Text-

based command-line startup simplifies remote invocation. 

 

 

 

 

 

 



 83 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 : Output of PDU Server Program 

 

D. PDU CAPTURER 

The Pdu Capture program is used to capture the packets generated by other users 

and store them in a file for the future use to regenerate the previously played scenario. 

The server listens to a unicast or multicast socket and receives the packets. At each 

packet receive interval it wraps the packet payload by a special wrapper where it puts the 

length and receive time of the received packet in that wrapper. 

Starting of Pdu Capture program is similar to Pdu Server where a batch (DOS) or 

bash (Linux) file is used. This file uses an XML file to define initialization parameters of 

the capturer program. An example initialization file is shown in Figure 5.4.  

Start and end time fields in Figure 5.3 are similar to PDU Server program. These 

fields define the start and end time of the application. In the given example the server will 

start running at 29th of March 2003 at 4:55:00 pm. and will stop at 29th of March 2003 at 

6:15:00 pm. Between the actual start time and the start of the application, the capturer 

will enter to sleep state. At the end of the sleep state, the capturer will wake up and will 

start capturing the packets. 
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Figure 5.4: Pdu Capture Program Initialization Parameters 
 

The SocketIP field determines the IP address that the Pdu Capture program will 

use to receive the packets. The server is capable of receiving both unicast as well as 

multicast packets. If the provided IP is in the multicast IP address range                                  

(224.0.0.0 - 239.255.255.255) the capturer will open multicast socket and join that 

address group. In the unicast IP case, the capturer will open a unicast socket and receive 

the packets on that IP. If the provided unicast IP address is not the local-host or not the IP 

address of one of its network interfaces then the capturer will not be able to receive any 

incoming packets. 

The Port field is used to define the port number to receive the packets. A detailed 

description port number is provided in PDU Server program section. 

The HeaderFileURL field determines the location of the header file, an XML file, 

which is copied to the top of the file where the captured packets are stored. The reason 

for using an approach like this is to be able to see the content of the binary file in which 

the captured packets are stored. An example of the header file is shown in Figure 5.5. 

When the recorded PDU file is opened by notepad or any text file viewer the XML file in 

Figure 5.5 will be on top of that file where it describes the content of the opened file. The 

captured packets will follow this XML-text in binary format where they will not be 

correctly interpreted by the text file viewer used. This provides the user the flexibility of 

seeing at least the content of a binary file with a text file viewer. 

<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
 <!-- Time pattern is mm.dd.yyyy hh:mm:ss--> 
 <StartTime>03.29.2003 16:55:00</StartTime> 
 <EndTime>03.29.2002 18:15:00</EndTime> 
 <SocketIP>127.0.0.1</SocketIP> 
 <Port>61000</Port> 
 <HeaderFileURL>file://c:/xfsp/FileHeader.xml</HeaderFileURL> 
</System> 



 85 

 

 

 

 

 

 

 

Figure 5.5: A File Header for Recorded PDU File 
 

The output of the PDU Capturer program is shown in Figure 5.6. In this output, 

the program prints the initialization parameters and starts listening for the incoming 

packets. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Output of Pdu Capture Program 
 

E. NETWORK ANALYZER 

The NetworkAnalyzer program is used to collect the previously decided metrics 

such as latency, drop-rate and jitter between two end-points. With this feature users are 

able to draw conclusions about the current state of the network. These metrics also 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<FileHeader xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
 <Type>XFSP</Type> 
 <Description>NPS Ship for IITSEC-Demo</Description> 
 <RecordedBy>Ekrem Serin</RecordedBy> 
 <Date>11.29.2002</Date> 
 <URL>file://c:/xfsp/xfspNPS.pdu</URL> 
</FileHeader> 
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provide information about network congestion and can be used to automatically tune the 

designed Net-VE. The tuning process includes send-rate change and packet resolution 

switching to enhance the performance. The automatic tuning is out of the scope of this 

thesis and is not implemented. The implementation purpose of the NetworkAnalyzer is 

network monitoring from an application- layer perspective.  

The start of the application is very similar to Pdu Server and Pdu Capture 

program which is done by a batch (DOS) or bash (Linux) file using an initialization file 

written in XML. The sample initialization file is shown in Figure 5.7. 

 

 

 

 

 

 

 

 

 

Figure 5.7: NetworkAnalyzer Initialization File (Sender) 

 

 

 

 

 
Figure 5.8: NetworkAnalyzer Initialization File (Receiver) 

 
In order to collect previously mentioned metrics, a Listener must be up and 

running at the other end. Listener receives the packets and replays them back to the 

sender. A sample initialization file for listener is shown in Figure4.8. 

The sender keeps track of each packet that it sends. When the packet is issued by 

the sender, current time for that packet is stored; at the time that sender gets the replayed 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
 <DestinationAddress>129.174.65.60</DestinationAddress> 
 <DestinationPort>9080</DestinationPort> 
 <ReceivePort>9080</ReceivePort> 
 <SendRateKbps>10</SendRateKbps> 
 <PayloadInBytes>500</PayloadInBytes> 
 <NumberOfPackets>2000</NumberOfPackets> 
 <OutputFileURL>file://c:/xfsp/AnalyzeResults.txt</OutputFileURL> 
</System> 
 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
 <DestinationAddress>131.120.7.1</DestinationAddress> 
 <DestinationPort>9080</DestinationPort> 
 <ReceivePort>9080</ReceivePort> 
</System> 
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packet back, it updates the receive time for the packet. Packets that are not received back 

by the sender are considered as dropped. 

At the end of the process, packets sent and received are analyzed to calculate the 

latency, drop-rate and jitter. The latency is calculated by dividing RTT (Round Trip 

Time) by two, the drop-rate is determined by keeping a counter for the packets that are 

not received and jitter is obtained by measuring variations between delays.  

The fields of the initialization file in Figure 5.7 are self-descriptive. The send-rate 

field is slightly important from the network programmer perspective. The send-rate 

depends on the CPU cycle that the application runs on and the buffer allocation by the OS 

(Operating System) to the current process. In order to set the send-rate the sender is 

forced to sleep for the calculated sleep time which is measured by sending test packets to 

the local host. In order to test the accuracy of the designed program tests are conducted 

on a computer with P4 1.6GHz processor and 512 MB RAM (Random Access Memory). 

The conducted tests showed that send-rates up-to 400Kbps are accurately achieved by the 

designed program, and rates higher than that rate cannot be achieved due to OS system 

calls for sleep threads. 

In network analyzing, there are three major points that the network analysis must 

consider. First, the current architecture of the Internet is a packet-switched network where 

packets can be routed via different routes resulting in out of order reception. Second, 

drops may occur at different places such as during transit from sender to receiver, at the 

receiver due to high send-rate and buffer limitation and during the transit from receiver to 

the sender. Third is that time-measurement in the Java programming language cannot be 

accurate for the values less than 10 milliseconds. The Java program cannot necessarily 

distinguish such precise differences due to the accuracy of various operating system calls.  
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F. SUMMARY 

This chapter provides information about the implementation details of Pdu 

Server, Pdu Capture and NetworkAnalyzer programs. The implemented programs are 

described in detail to show the design of a simple PDU Farm. The PDU Farm is able to 

send and receive unicast as well as multicast messages. With this framework previously 

recorded scenarios can be replayed and analyzed. Another possible use of this work is 

simulating off-site entities without the need of rendering. 
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VI.  EXPERIMENTS, DATA COLLECTION AND ANALYSIS 

A. INTRODUCTION 

This chapter examines the results and collected metrics from the conducted 

experiments. 

 

B. OVERVIEW 

In order to test the speed of XML Serialization program and collect the network 

metrics described previously, two sets of experiments were conducted. In the first set, the 

speed of XML Serialization program is tested by continuously generating serialized XML 

documents and sending them to the local host. In this set, the number of serialized 

documents that are sent and the number received are tracked. Additiona lly, the duration 

for XML Serialization is measured. 

In the second set of experiments, latency, jitter and drop-rate were measured 

between George Mason University (GMU) (Fairfax, Virginia) and Monterey, California 

by using commercial Internet Service Providers (ISPs) on V.98 modem as well as on 

Ethernet. The Naval Postgraduate School (NPS) network infrastructure is not used for the 

initial set of experiments due to firewall problems described in the following sections. 
 

C. XML SERIALIZATION PROGRAM 

To test the speed of XML Serialization program, XML Serializer is programmed 

to continuously generate serialized XML documents. These binary XML documents 

(serialized) are sent to the local host listening on a specified UDP port.  

The experiments are conducted on a machine whose properties are listed below. 

In the following list, the protocol and the buffer sizes are also specified. 

  Brand : Dell Inspiron 8200 Laptop 

  CPU and Memory : P4 1.6 GHz, 512 MByte 

  Transport Protocol : UDP 

  Send Buffer Size : 8192 Bytes 

  Receive Buffer Size : 8192 Bytes 

  XFSP Entity State PDU Size : 670 Bytes 
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This experiment shows the rate of binary XML document generation and the drop 

rate on UDP socket with 8192 Bytes receive buffer size. In this test the documents are 

generated continuously and are not regulated for send rate resulting in burst sending. The 

metrics collected for this set of experiment are shown in Table 6.1. Table 6.1 specifies the 

number of serialized XML documents that are sent and received as well as the total 

duration for serializing them.  

 

 

 

 

 

 

Table 6.1: XML Serialization Program Experiment 

As seen from Table 6.1, the Serializer program reaches its maximum limit at 

20000 serialized XML document row and starts to generate the XML documents at a rate 

~410 documents / sec. The serialized XML documents were XFSP Entity State PDUs 

that occupied 670 Bytes in memory. The behavior of reaching its maximum limit is 

shown in Figure 6.1. Figure 6.1 reveals that XML Serializer program cannot generate 

Sent Received Duration 

(secs) 

Binary XML 

Documents / Sec 

10 10 0.2 50 

100 100 0.47 212 

200 200 0.89 224 

300 300 1.18 254 

400 400 1.47 272 

500 425 1.73 289 

600 524 1.97 304 

700 468 2.12 330 

800 409 2.39 334 

900 474 2.67 337 

1000 558 2.95 338 

5000 1987 12.83 389 

10000 3991 25.14 397 

20000 7775 48.27 414 
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XFSP Entity State PDUs faster than ~410 documents /sec which is sufficient for fairly 

sophisticated Net-VEs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Maximum Limit of Binary XML Generation 
 
Figure 6.2 shows the analysis of drop-rate for local host transmission. The drops 

in local host transmission occur due to buffer and CPU cycle limitations. In socket 

operations, an Operating System (OS) assigns a buffer for sending and receiving 

processes to each socket opened. For example, the default buffer value that Windows 

uses for UDP sockets is 8192 Bytes. When the program receives at a rate higher that it 

can handle, the received packets will be dropped until enough space is available in the 

buffer. As seen from Figure 6.2, the drop-rate on UDP socket with 8192 Bytes receive 

buffer is increasing as the send-rate increases.  
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Figure 6.2: Drop Rates for Local Host Transmission 
 
Figure 6.2 reveals that after reaching certain send-rate some packets will be 

ignored by the receiver. 

 

D. NETWORK METRICS 

In order to design rich and well-managed Net-VEs, application implementers 

need to consider basic metrics such as latency, drop-rate and jitter over different network 

topologies. These metrics help designers to manage their transmission and receive rates 

as well as the performance of the simulation that they implement. The effects of latency, 

drop-rate and jitter on a Net-VE are described previously. A Net-VE with poor network 

management will distract users and reduce their sense of immersion. 

Two sets of experiments are conducted to measure the network metrics. For both 

experiments, the receive point was George Mason University (Fairfax, Virginia). In the 

first set of experiments, a commercial ISP is used by connecting via PPP (Point-to-Point 

Protocol) over V.98 voice modem. In the second set of experiments another commercial 

ISP is used by connecting via Ethernet over T1. The results achieved from the conducted 

experiments are presented and analyzed in the following sections. 
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1. V.98 Voice Modem 

To test the V.98 voice modem transmission, two sets of experiments are 

conducted. At each experiment the send rate is changed and previously described metrics 

are collected.  In the first experiment 2000 packets with 500 Bytes payload are sent at a 

rate of 10 Kbps. The collected metrics for this experiment are shown in Table 6.2. 

 

Table 6.2: Metrics for 10Kbps Transmission on V.98 Modem 

 
The measured latencies and jitter for this set of experiment are represented in 

Figure 6.3. and Figure 6.4 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Cross-USA Latency in 10Kbps Send Rate on V.98 Voice Modem 
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Figure 6.4: Cross-USA Jitter in 10Kbps Send Rate on V.98 Voice Modem 
 
In the second set of experiments, 4000 packets with payload 500 bytes are sent at     

50 Kbps rate. Drop-rate is measured as 1.18%. The average latency and jitter values are 

shown in Table 6.4. 

 

 

Table 6.3 : Metrics for 50Kbps Transmission on V.98 Modem 

 

The measured latencies and pure jitters for this set of experiment are represented 

in Figure 6.5. and Figure 6.6, respectively.  

 

 

 

Send Rate Total Packets 

Sent 

Drop Rate 

(%) 

Average Latency 

(msecs) 

Average Jitter 

(msecs) 

50 Kbps 4000 1.18 158.32 15.62 

10 Kbps Send Rate (Jitter)

0

5

10

15

20

25

30

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Packet Number

Ji
tt

er
 in

 m
se

cs



 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Cross-USA Latency in 50Kbps Send Rate on V.98 Voice Modem 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Cross-USA Jitter in 50Kbps Send Rate on V.98 Voice Modem 
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The experiments conducted on V.98 vo ice modem using PPP ISP connection 

revealed that average delay between Monterey, California and Fairfax, Virginia is over 

140 milliseconds for a voice modem transmission. It also shows that the delay is not a 

constant process and can change due to network conditions. The Net-VE designer can use 

these metrics while designing their Net-VE to control the transmission rate. 

 

2. Wide-Area Network (T1) 

To test the Ethernet transmission, three sets of experiments are conducted. At 

each experiment, the send rate is changed and previously described metrics are collected.  

In the first experiment 2000 packets with 500 bytes payload are transmitted at a 10 Kbps 

send-rate. In this set, the drop-rate is measured as 1.13%.  The collected metrics for this 

experiment are represented in Table 6.4. 

 

Table 6.4: Metrics for 10Kbps Transmission on T1 

 
The measured latencies and jitter for this set of experiment are represented in 

Figure 6.7. and Figure 6.8, respectively.  

 

 

 

 

 

 

 

 

 

 

Send Rate Total Packets 

Sent 

Drop Rate 

(%) 

Average Latency 

(msecs) 

Average Jitter 

(msecs) 

10 Kbps 2000 1.13 51.9 2.84 
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Figure 6.7: Latency in 10Kbps Send Rate on T1 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Jitter in 10Kbps Send Rate on T1 
 
In the second set, 5000 packets with payload 500 bytes are sent at 100 Kbps rate. 

In this experiment the drop-rate is measured as 3.8%. The average latency and jitter 

values are shown in Table 6.5. 
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Table 6.5: Metrics for 100Kbps Transmission on Ethernet 

 
The measured latencies and jitter for this set of experiment are represented in 

Figure 6.9. and Figure 6.10, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Latency in 100Kbps Send Rate on T1 
 

 

 

 

 

 

 

 

 

 

Figure 6.10: Jitter in 100Kbps Send Rate on T1 
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In the last set, 10000 packets with payload 500 bytes are sent at 400 Kbps rate. In 

this experiment the drop-rate is measured as 4.76%. The average latency and jitter values 

are shown in Table 6.6. 

 

Table 6.6: Metrics for 400Kbps Transmission on Ethernet 

 
The measured latencies and jitter for this set of experiment are represented in 

Figure 6.11. and Figure 6.12 respectively. The latency began at values similar to earlier 

runs, but increased over time. The most probable cause of this is increasing queue size in 

routers. At low data rates the queues stay relatively empty. As the data rate crosses the 

queue service threshold the queue grows to its capacity and starts dropping the received 

packets. There are various schemes for handling long queue sizes (e.g. dropping packets) 

in routers. Probably the most popular is tail-drop. In this scheme, the packet queue size 

grows until there is no room in the queue, and the arriving packets are simply dropped. 

Another popular dropping scheme is Random Early Drop (RED). In that scheme, when 

the queue size reaches some size smaller than its full capacity, the packets to be dropped 

are selected randomly. The probability of drop for both schemes increases as the queue 

size increases to its capacity.  

Another logical explanation for exponential increase in latency is packets to be 

delivered using different routes. When the link between two hops becomes congested, the 

routers can choose the packets to follow different hops resulting in different latency 

values for different packets. The calculation of using different route will also put some 

latency over the packets during their journey from source to destination.  

 

 

 

 

Send Rate Total Packets 
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Average Latency 
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Average Jitter 

(msecs) 

400 Kbps 10000 4.76 217.8 0.4 
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Figure 6.11: Latency in 400Kbps Send Rate on T1 (Day-1) 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.12: Jitter in 400Kbps Send Rate on T1 
 
The experiments conducted to analyze the exponential increase behavior gave 

similar results one on different days, Figure 6.13 and Figure 6.14. The routes from 

George Mason University to MovesInstitute.org are also presented to track the 

problem. This type of behavior can be caused by any of the nodes listed in Figure 6.15. 

The traceroute packets followed the same path presented in Figure 6.15 before and after 
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high rate transmission. This data reveals that the probable cause of latency problem is 

drops occurring in routers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Latency in 400Kbps Send Rate on T1 (Day -2) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Latency in 400Kbps Send Rate on T1 (Day -3) 
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Figure 6.15: Traceroute From gmu.edu To MovesInstitute.org 

 

E. NPS FIREWALL PROBLEM 

Experiments using Naval Postgraduate School network backbone were 

infrequently conducted due to firewall problems. To find the reasons of firewall problem, 

the traceroute program is used. This program shows all the nodes that traceroute packets 

hit during their journey from source to destination. 

When the computer behind Naval Postgraduate School firewall was 

“tracerouted”, firewall acted as a proxy and sent Internet Control Message Protocol 

(ICMP) packets to the traceroute initiator. In this case, the traceroute initiator assumed 

that the packets could be delivered to the computer behind the firewall. Unfortunately, 

when the experiments were attempted, the firewall intercepted every packet destined for 

the computer behind it, and did not forward them. Although the first proxy behavior is 

 [netlab] # traceroute movesinstitute.org 
 
 1  netlab (129.174.65.1)  1.174 ms  0.793 ms  0.741 ms 
 2  129.174.249.129 (129.174.249.129)  0.871 ms  0.735 ms  0.694 ms 
 3  129.174.248.233 (129.174.248.233)  1.115 ms  1.176 ms  1.109 ms 
 4  129.174.247.118 (129.174.247.118)  0.855 ms  0.605 ms  0.861 ms 
 5  WTN1-GeorgeMasonUFairfax.networkvirginia.net (65.162.90.5)  6.902 ms  6.662 
ms  5.833 ms 
 6  65.162.89.38 (65.162.89.38)  10.842 ms  10.816 ms  10.539 ms 
 7  sl-gw20-rly-2-2.sprintlink.net (160.81.255.1)  11.820 ms  11.909 ms  11.072 
ms 
 8  sl-bb23-rly-3-2.sprintlink.net (144.232.14.45)  142.828 ms  205.470 ms  244. 
164 ms 
 9  sl-bb21-pen-12-0.sprintlink.net (144.232.20.33)  21.815 ms  17.643 ms  13.12 
1 ms 
10  sl-bb20-pen-15-0.sprintlink.net (144.232.16.33)  17.500 ms  17.448 ms  13.96 
7 ms 
11  sl-bb20-stk-10-0.sprintlink.net (144.232.18.46)  79.529 ms  76.489 ms * 
12  sl-gw25-stk-9-0.sprintlink.net (144.232.4.218)  73.191 ms  71.910 ms  73.974 
 ms 
13  sl-swb-57-0.sprintlink.net (144.223.59.86)  80.435 ms  81.463 ms  78.775 ms 
14  ded1-fa5-1-0.mtry01.pbi.net (206.171.158.133)  83.213 ms  81.779 ms  77.889 
ms 
15  Naval-Post-Graduate-School-505769.cust-rtr.pacbell.net (209.232.139.54)  86. 
757 ms  81.758 ms  80.937 ms 
16  63.205.26.77 (63.205.26.77)  88.010 ms  79.443 ms  82.471 ms 
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consistent with firewalls that try to hide its internal topology, the second behavior is not 

consistent and should be resolved. Firewall adjustments and further experiments need to 

continue. 

 

F. SUMMARY 

This chapter summarizes the data collected in conducted experiments. For data 

collection two main sets of experiments are conducted. In the first set the speed of XML 

Serializer program is measured, and in the second, network metrics are measured by 

using V.98 voice modem and Ethernet transmission. Furthermore, the results achieved 

are represented in 2D graphs. 

This chapter also presents the usage of Network Analyzer program. This program 

can be used as proxy to track the changes in the latency where the changes can serve as 

basis to find the maximum capacity of the link. Additionally, the capacity of the link can 

be used to better manage the network transmissions resulting in richer Net-VEs. 
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VII.  CONCLUSIONS AND FUTURE WORK 

A. CONCLUSION 

1. Application Layer Protocol Extensibility 

Application layer protocols can be extended at run-time by using a protocol 

definition language. The run-time extensibility of the application layer protocols provides 

a way to optimize the bandwidth usage and to meet the needs of different users at 

different fidelity levels. 

Extensibility in Net-VE architectures is essential because it is clear that networks 

will continue to evolve, and a closed system which cannot be changed would be obsolete 

as the networking technology evolves. 

In this framework, XML Schema is used and considered as a good candidate to be 

protocol definition language. XML Schema can well describe the application protocol 

syntax with its internal as well as user-defined data structures. In order to parse the 

protocol definition document written in XML Schema, a schema parser is implemented. 

 

2. XML Serialization and XML Deserialization 

XML Serialization provides a compact way to send and receive XML documents 

over the network. Currently most of XML documents use UTF-8 encoding which 

corresponds to the 8-bit ASCII encoding. With this scheme each alphabetical character 

and number is represented by eight bits. Instead of using 8 bits for each character, the 

notion “agreement” is exploited and element and attribute names are replaced by binary 

short tags. Furthermore, the data marked-up by elements and attributes are serialized to 

binary form resulting in compact XML. 

With the implemented algorithm XML documents are compressed without using 

any binary compression algorithms. 

Driving factors of avoiding binary compression algorithms are simplicity of 

implementation, computational speed performance and skipping bitwise operations by 
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providing reimplementability and generality. Further elaborations can complicate the 

protocol beyond the comprehensibility except for information encoding experts. 

The compressed XML document is called as binary XML and decompressed by 

the XML Deserializer. The result of the decompression is the text XML document 

provided to the XML Serializer. 

With XML Serializer and XML Deserializer XML documents are sent in a more 

compact way over the network providing bandwidth and time saving. 

 

3. PDU Farm and Network Monitoring 

In this thesis a simple PDU Farm and Network Monitoring is implemented. PDU 

Farms let users to test the designed Net-VE for 24 hours a day and 7 days a week. 

Furthermore, they provide a way to mimic the previously played scenarios to draw 

tactical as well as technical conclusions. 

The technical conclusions derived from the played Net-VE simulation include the 

metrics for the bandwidth consumption, rendering performance and memory usage. The 

recorded scenario can also be replayed multiple times to accurately measure these metrics 

resulting in enhancing the design of Net-VE. 

The network monitoring program measures the current state of the network and 

provides information about network congestion, latency, drop-rate and jitter. These 

metrics are highly used by network programmers and can provide a fundamental for 

tuning purposes mentioned in the recommendations for future work section. 
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B. RECOMMENDATIONS FOR FUTURE WORK 

1. General XML Serializer / Deserializer 

XML Serialization and Deserialization can be enhanced to compress and 

decompress any XML document defined by any XML Schema. Currently, XFSP is an 

ongoing project and will be enhanced to base the generation of binary XML documents. 

The recommended process for this enhancement includes; 

• A schema validator implementation where it validates the provided 

schema. 

• Namespace handling 

This work needs to be continued as a general purpose XML compressor for both 

network and file streams. 

 

2. Monitoring Agents 

An agent is a computer system that is situated in some environment and that is 

capable of autonomous action in this environment in order to meet its design objectives 

[Wooldridge 01]. To automatically tune the networking and change the application layer 

protocol in a Net-VE, the software agents can be used. 

The network monitoring process can be implemented as an autonomous system 

and incorporated into the designed Net-VE system. These autonomous agents can work 

together and create a complex adaptive system, where that system can change the 

application layer protocol by using environmental information such as delay, drop-rate 

and jitter.  

The complex adaptive system can optimize the network utilization and provide a 

better managed network on which rich and responsive large-scale networked virtual 

environments can be implemented. 
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APPENDIX A. DIS SCHEMA 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema " 
elementFormDefault="qualified"> 
 <xs:element name="dis"> 
  <xs:complexType > 
   <xs:choice> 
    <xs:element name="espdu" type="espduType "/> 
    <xs:element name="collisionpdu" type="collisionpduType "/> 
    <xs:element name="firepdu" type="firepduType "/> 
    <xs:element name="detonationpdu" type="detonationpduType "/> 
   </xs:choice> 
  </xs:complexType > 
 </xs:element> 
 <xs:complexType name ="espduType "> 
  <xs:sequence> 
   <xs:element name="header" type="headerType "/> 
   <xs:element name="entityID" type="entityIDType "/> 
   <xs:element name="forceID" type="xs:byte "/> 
   <xs:element name="articulationNumber" type="xs:byte "/> 
   <xs:element name="entityType " type="entityTypeType "/> 
   <xs:element name="alternativeEntityType " type="entityTypeType "/> 
   <xs:element name="linearVelocity" type="Vector3Float"/> 
   <xs:element name="location" type="locationType "/> 
   <xs:element name="orientation" type="orientationType "/> 
   <xs:element name="appearence" type="xs:int"/> 
   <xs:element name="deadReckoning" type="deadReckoningType "/> 
   <xs:element name="entityMarking" type="entityMarkingType "/> 
   <xs:element name="capa bilities" type="capabilitiesType "/> 
   <xs:element name="articulationParameters" type="articulationParameterType "/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="collisionpduType "> 
  <xs:sequence> 
   <xs:element name="header" type="headerType "/> 
   <xs:element name="issuingEntityID" type="entityIDType "/> 
   <xs:element name="collidingEntityID" type="entityIDType "/> 
   <xs:element name="eventID" type="eventIDType "/> 
   <xs:element name="collisionType " type="xs:byte"/> 
   <xs:element name="padding" type="xs:byte"/> 
   <xs:element name="velocity" type="Vector3Float"/> 
   <xs:element name="mass" type="xs:float"/> 
   <xs:element name="location" type="Vector3Float"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="firepduType "> 
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  <xs:sequence> 
   <xs:element name="header" type="headerType "/> 
   <xs:element name="firingEntityID" type="entityIDType "/> 
   <xs:element name="targetEntityID" type="entityIDType "/> 
   <xs:element name="munitionID" type="entityIDType "/> 
   <xs:element name="eventID" type="eventIDType "/> 
   <xs:element name="fireMissionIndex" type="xs:int"/> 
   <xs:element name="locationInWorld " type="locationType "/> 
   <xs:element name="burstDescriptor" type="burstDescriptorType "/> 
   <xs:element name="velocity" type="Vector3Float"/> 
   <xs:element name="range " type="xs:float"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="detonationpduType "> 
  <xs:sequence> 
   <xs:element name="header" type="headerType "/> 
   <xs:element name="firingEntityID" type="entityIDType "/> 
   <xs:element name="targetEntityID" type="entityIDType "/> 
   <xs:element name="munitionID" type="entityIDType "/> 
   <xs:element name="eventID" type="eventIDType "/> 
   <xs:element name="velocity" type="Vector3Float"/> 
   <xs:element name="locationInWorld " type="locationType "/> 
   <xs:element name="burstDescriptor" type="burstDescriptorType "/> 
   <xs:element name="locationInEntity" type="Vector3Float"/> 
   <xs:element name="detonationResult " type="xs:byte "/> 
   <xs:element name="articulationNumber" type="xs:byte "/> 
   <xs:element name="padding" type="xs:short"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="headerType "> 
  <xs:sequence> 
   <xs:element name="protocolVersion" type="xs:byte "/> 
   <xs:element name="exerciseID" type="xs:byte"/> 
   <xs:element name="pduType " type="xs:byte "/> 
   <xs:element name="protocolFamily" type="xs:byte "/> 
   <xs:element name="timeStamp" type="xs:int"/> 
   <xs:element name="length" type="xs:short"/> 
   <xs:element name="padding" type="xs:short"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="entityIDType "> 
  <xs:sequence> 
   <xs:element name="site " type="xs:short"/> 
   <xs:element name="application" type="xs:short"/> 
   <xs:element name="entity" type="xs:short"/> 
  </xs:sequence> 
 </xs:complexType > 
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 <xs:complexType name ="entityTypeType "> 
  <xs:sequence> 
   <xs:element name="kind" type="xs:byte "/> 
   <xs:element name="domain" type="xs:byte "/> 
   <xs:element name="country" type="xs:short"/> 
   <xs:element name="category" type="xs:byte "/> 
   <xs:element name="subcategory" type="xs:byte "/> 
   <xs:element name="specific " type="xs:byte "/> 
   <xs:element name="extra" type="xs:byte "/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="locationType "> 
  <xs:attribute name="x" type="xs:double "/> 
  <xs:attribute name="y" type="xs:double "/> 
  <xs:attribute name="z" type="xs:double "/> 
 </xs:complexType > 
 <xs:complexType name ="Vector3Float"> 
  <xs:attribute name="x" type="xs:float"/> 
  <xs:attribute name="y" type="xs:float"/> 
  <xs:attribute name="z" type="xs:float"/> 
 </xs:complexType > 
 <xs:complexType name ="orientationType "> 
  <xs:attribute name="psi" type="xs:float"/> 
  <xs:attribute name="theta " type="xs:float"/> 
  <xs:attribute name="phi" type="xs:float"/> 
 </xs:complexType > 
 <xs:complexType name ="deadReckoningType "> 
  <xs:sequence> 
   <xs:element name="algorithm" type="xs:byte "/> 
   <xs:element name="otherParameters" type="otherParametersType "/> 
   <xs:element name="linearAcceleration" type="Vector3Float"/> 
   <xs:element name="linearAngularVelocity" type="Vector3Float"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="otherParametersType "> 
  <xs:attribute name="op1" type="xs:byte "/> 
  <xs:attribute name="op2" type="xs:byte "/> 
  <xs:attribute name="op3" type="xs:byte "/> 
  <xs:attribute name="op4" type="xs:byte "/> 
  <xs:attribute name="op5" type="xs:byte "/> 
  <xs:attribute name="op6" type="xs:byte "/> 
  <xs:attribute name="op7" type="xs:byte "/> 
  <xs:attribute name="op8" type="xs:byte "/> 
  <xs:attribute name="op9" type="xs:byte "/> 
  <xs:attribute name="op10" type="xs:byte "/> 
  <xs:attribute name="op11" type="xs:byte "/> 
  <xs:attribute name="op12" type="xs:byte "/> 
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  <xs:attribute name="op13" type="xs:byte "/> 
  <xs:attribute name="op14" type="xs:byte "/> 
  <xs:attribute name="op15" type="xs:byte "/> 
 </xs:complexType> 
 <xs:complexType name ="entityMarkingType "> 
  <xs:sequence> 
   <xs:element name="characterSet" type="xs:byte "/> 
   <xs:element name="unsignedInts" type="unsignedIntsType "/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="unsignedIntsType "> 
  <xs:attribute name="op1" type="xs:byte "/> 
  <xs:attribute name="op2" type="xs:byte "/> 
  <xs:attribute name="op3" type="xs:byte "/> 
  <xs:attribute name="op4" type="xs:byte "/> 
  <xs:attribute name="op5" type="xs:byte "/> 
  <xs:attribute name="op6" type="xs:byte"/> 
  <xs:attribute name="op7" type="xs:byte "/> 
  <xs:attribute name="op8" type="xs:byte "/> 
  <xs:attribute name="op9" type="xs:byte "/> 
  <xs:attribute name="op10" type="xs:byte "/> 
  <xs:attribute name="op11" type="xs:byte "/> 
 </xs:complexType > 
 <xs:complexType name ="capabilitiesType "> 
  <xs:attribute name="op1" type="xs:boolean"/> 
  <xs:attribute name="op2" type="xs:boolean"/> 
  <xs:attribute name="op3" type="xs:boolean"/> 
  <xs:attribute name="op4" type="xs:boolean"/> 
  <xs:attribute name="op5" type="xs:boolean"/> 
  <xs:attribute name="op6" type="xs:boolean"/> 
  <xs:attribute name="op7" type="xs:boolean"/> 
  <xs:attribute name="op8" type="xs:boolean"/> 
  <xs:attribute name="op9" type="xs:boolean"/> 
  <xs:attribute name="op10" type="xs:boolean"/> 
  <xs:attribute name="op11" type="xs:boolean"/> 
  <xs:attribute name="op12" type="xs:boolean"/> 
  <xs:attribute name="op13" type="xs:boolean"/> 
  <xs:attribute name="op14" type="xs:boolean"/> 
  <xs:attribute name="op15" type="xs:boolean"/> 
  <xs:attribute name="op16" type="xs:boolean"/> 
  <xs:attribute name="op17" type="xs:boolean"/> 
  <xs:attribute name="op18" type="xs:boolean"/> 
  <xs:attribute name="op19" type="xs:boolean"/> 
  <xs:attribute name="op20" type="xs:boolean"/> 
  <xs:attribute name="op21" type="xs:boolean"/> 
  <xs:attribute name="op22" type="xs:boolean"/> 
  <xs:attribute name="op23" type="xs:boolean"/> 
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  <xs:attribute name="op24" type="xs:boolean"/> 
  <xs:attribute name="op25" type="xs:boolean"/> 
  <xs:attribute name="op26" type="xs:boolean"/> 
  <xs:attribute name="op27" type="xs:boolean"/> 
  <xs:attribute name="op28" type="xs:boolean"/> 
  <xs:attribute name="op29" type="xs:boolean"/> 
  <xs:attribute name="op30" type="xs:boolean"/> 
  <xs:attribute name="op31" type="xs:boolean"/> 
  <xs:attribute name="op32" type="xs:boolean"/> 
 </xs:complexType > 
 <xs:complexType name ="eventIDType "> 
  <xs:sequence> 
   <xs:element name="site " type="xs:short"/> 
   <xs:element name="application" type="xs:short"/> 
   <xs:element name="eventNumber" type="xs:short"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="burstDescriptorType "> 
  <xs:sequence> 
   <xs:element name="munition" type="xs:long"/> 
   <xs:element name="warhead" type="xs:short"/> 
   <xs:element name="fuze " type="xs:short"/> 
   <xs:element name="quantity" type="xs:short"/> 
   <xs:element name="rate " type="xs:short"/> 
  </xs:sequence> 
 </xs:complexType > 
 <xs:complexType name ="articulationParameterType "> 
  <xs:sequence> 
   <xs:element name="typeDesignator " type="xs:byte "/> 
   <xs:element name="changeIndicator" type="xs:byte "/> 
   <xs:element name="id" type="xs:short"/> 
   <xs:element name="parameterType " type="xs:integer"/> 
   <xs:element name="parameterValue " type="xs:long"/> 
  </xs:sequence> 
 </xs:complexType > 
</xs:schema> 
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APPENDIX B. ENTITY STATE PDU EXAMPLE 
<?xml version="1.0" encoding="UTF-8"?> 
<espdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\espdu.xsd
"> 
 <header> 
  <protocolVersion>1</protocolVersion> 
  <exerciseID>2</exerciseID> 
  <pduType>3</pduType> 
  <protocolFamily>4</protocolFamily> 
  <timeStamp>1000</timeStamp> 
  <length>400</length> 
  <padding>300</padding> 
 </header> 
 <entityID> 
  <site>50</site> 
  <application>60</application> 
  <entity>70</entity> 
 </entityID> 
 <forceID>19</forceID> 
 <articulationNumber>10</articulationNumber> 
 <entityType> 
  <kind>1</kind> 
  <domain>1</domain> 
  <country>99</country> 
  <category>10</category> 
  <subcategory>3</subcategory> 
  <specific>5</specific> 
  <extra>7</extra> 
 </entityType> 
 <alternativeEntityType> 
  <kind>1</kind> 
  <domain>2</domain> 
  <country>89</country> 
  <category>2</category> 
  <subcategory>5</subcategory> 
  <specific>7</specific> 
  <extra>5</extra> 
 </alternativeEntityType> 
 <linearVelocity x="12.90" y="1.6" z="0.0"/> 
 <location x="233.56" y="5.7" z="1.8"/> 
 <orientation phi="0.6" theta="0.5" psi="0.0"/> 
 <appearence>12345</appearence> 
 <deadReckoning> 
  <algorithm>4</algorithm> 



 116 

  <otherParameters op1="1" op10="10" op11="11" op12="12" op13="13" 
op14="14" op15="15" op2="2" op3="3" op4="4" op5="5" op6="6" op7="7" op8="8" 
op9="9"/> 
  <linearAcceleration x="1.0" y="1.0" z="1.0"/> 
  <linearAngularVelocity x="2.0" y="2.0" z="2.0"/> 
 </deadReckoning> 
 <entityMarking> 
  <characterSet>23</characterSet> 
  <unsignedInts op1="1" op2="2" op3="3" op11="11" op10="10" op4="4" op5="5" 
op6="6" op7="7" op8="8" op9="9"/> 
 </entityMarking> 
 <capabilities op1="true" op10="true" op11="false" op12="false" op13="true" 
op14="false" op15="false" op16="false" op17="false" op18="false" op19="false" 
op2="false" op20="false" op21="false" op22="false" op23="true" op24="false" 
op25="false" op26="false" op27="false" op28="false" op29="false" op3="false" 
op30="false" op31="false" op32="false" op4="true" op5="true" op6="true" op7="false" 
op8="false" op9="false"/> 
 <articulationParameters> 
  <typeDesignator>1</typeDesignator> 
  <changeIndicator>2</changeIndicator> 
  <id>5</id> 
  <parameterType>10</parameterType> 
  <parameterValue>7</parameterValue> 
 </articulationParameters> 
</espdu> 
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APPENDIX C. DETONATION PDU EXAMPLE 
<?xml version="1.0" encoding="UTF-8"?> 
<detonationpdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\detonation
pdu.xsd"> 
 <header> 
  <protocolVersion>9</protocolVersion> 
  <exerciseID>9</exerciseID> 
  <pduType>9</pduType> 
  <protocolFamily>9</protocolFamily> 
  <timeStamp>12345678</timeStamp> 
  <length>234</length> 
  <padding>33</padding> 
 </header> 
 <firingEntityID> 
  <site>1</site> 
  <application>1</application> 
  <entity>99</entity> 
 </firingEntityID> 
 <targetEntityID> 
  <site>1</site> 
  <application>1</application> 
  <entity>89</entity> 
 </targetEntityID> 
 <munitionID> 
  <site>1</site> 
  <application>2</application> 
  <entity>3</entity> 
 </munitionID> 
 <eventID> 
  <site>1</site> 
  <application>1</application> 
  <eventNumber>99</eventNumber> 
 </eventID> 
 <velocity x="10.3" y="44.2" z="67.7"/> 
 <locationInWorld x="22.1" y="33.5" z="12.9"/> 
 <burstDescriptor> 
  <munition>2222222</munition> 
  <warhead>111</warhead> 
  <fuze>333</fuze> 
  <quantity>444</quantity> 
  <rate>555</rate> 
 </burstDescriptor> 
 <locationInEntity x="123.456" y="456.789" z="980.123"/> 
 <detonationResult>10</detonationResult> 
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 <articulationNumber>0</articulationNumber> 
 <padding>111</padding> 
</detonationpdu> 
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APPENDIX D. FIRE PDU EXAMPLE 
<?xml version="1.0" encoding="UTF-8"?> 
<firepdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\firepdu.xsd"> 
 <header> 
  <protocolVersion>1</protocolVersion> 
  <exerciseID>2</exerciseID> 
  <pduType >3</pduType > 
  <protocolFamily>4</protocolFamily> 
  <timeStamp>555</timeStamp> 
  <length>6</length> 
  <padding>77</padding> 
 </header> 
 <firingEntityID> 
  <site>1</site> 
  <application>1</application> 
  <entity>10</entity> 
 </firingEntityID> 
 <targetEntityID> 
  <site>1</site> 
  <application>1</application> 
  <entity>11</entity> 
 </targetEntityID> 
 <munitionID> 
  <site>1</site> 
  <application>1</application> 
  <entity>10</entity> 
 </munitionID> 
 <eventID> 
  <site>1</site> 
  <application>1</application> 
  <eventNumber>22</eventNumber> 
 </eventID> 
 <fireMissionIndex>123567</fireMissionIndex> 
 <locationInWorld x="464646.899" y="4646.28" z="19997.567"/> 
 <burstDescriptor > 
  <munition>47747884</munition> 
  <warhead>345</warhead> 
  <fuze>125</fuze> 
  <quantity>100</quantity> 
  <rate>10</rate> 
 </burstDescriptor > 
 <velocity x="10" y="10" z="10"/> 
 <range>19929.991</range> 
</firepdu> 
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APPENDIX E. COLLISION PDU EXAMPLE 
<?xml version="1.0" encoding="UTF-8"?> 
<collisionpdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\collisionp
du.xsd"> 
 <header> 
  <protocolVersion>1</protocolVersion> 
  <exerciseID>2</exerciseID> 
  <pduType>3</pduType> 
  <protocolFamily>4</protocolFamily> 
  <timeStamp>5555</timeStamp> 
  <length>34</length> 
  <padding>444</padding> 
 </header> 
 <issuingEntityID> 
  <site>10</site> 
  <application>20</application> 
  <entity>30</entity> 
 </issuingEntityID> 
 <collidingEntityID> 
  <site>40</site> 
  <application>50</application> 
  <entity>60</entity> 
 </collidingEntityID> 
 <eventID> 
  <site>1</site> 
  <application>1</application> 
  <eventNumber>101</eventNumber> 
 </eventID> 
 <collisionType>110</collisionType> 
 <padding>33</padding> 
 <velocity x="2.0" y="2.9" z="3.0"/> 
 <mass>34.67</mass> 
 <location x="101.01" y="44.67" z="12.10"/> 
</collisionpdu> 
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APPENDIX F. HIERARCHY OF ALL PACKAGES 
Package Hierarchies:  
  org.npsnet.xfsp,  
  org.npsnet.xfsp.datatypes,  
  org.npsnet.xfsp.pduserver,  
  org.npsnet.xfsp.swing,  
  org.npsnet.xfsp.tests 
 
Class Hierarchy:  

o class org.npsnet.xfsp.BinaryReader  
o class org.npsnet.xfsp.BinaryReaderX3D  
o class org.npsnet.xfsp.datatypes.ComplexType  (implements 

org.npsnet.xfsp.datatypes.Type)  
o class org.npsnet.xfsp.pduserver.Help  
o class org.npsnet.xfsp.swing.LoaderDemo  
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI  
o class org.npsnet.xfsp.tests.ReceiverSimulation  
o class org.npsnet.xfsp.tests.SenderSimulation 
o class org.npsnet.xfsp.tests.Compressor  
o class org.npsnet.xfsp.DocumentProcessor  
o class org.npsnet.xfsp.DocumentProcessorX3D  
o class org.npsnet.xfsp.DOMManipulator  
o class org.npsnet.xfsp.DOMManipulatorX3D  
o class javax.swing.filechooser.FileFilter  
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI.PDUFileFilter  
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI.XSDFileFilter  
o class org.npsnet.xfsp.tests.ReceiverSimulation.SchemaFileFilter  
o class org.npsnet.xfsp.tests.SenderSimulation.XMLFileFilter 
o class org.npsnet.xfsp.datatypes.MFBool (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFColor (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFDouble (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFFloat (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFImage (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFInt32 (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFRotation (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.MFString (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
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o class org.npsnet.xfsp.datatypes.MFTime  (implements 
org.npsnet.xfsp.datatypes.SimpleType)  

o class org.npsnet.xfsp.datatypes.MFVec2d (implements 
org.npsnet.xfsp.datatypes.SimpleType)  

o class org.npsnet.xfsp.datatypes.MFVec2f (implements 
org.npsnet.xfsp.datatypes.SimpleType)  

o class org.npsnet.xfsp.datatypes.MFVec3d (implements 
org.npsnet.xfsp.datatypes.SimpleType)  

o class org.npsnet.xfsp.datatypes.MFVec3f (implements 
org.npsnet.xfsp.datatypes.SimpleType)  

o class org.npsnet.xfsp.pduserver.MyTimer (implements java.lang.Runnable)  
o class org.npsnet.xfsp.pduserver.NetworkAnalyzerReceiver  
o class org.npsnet.xfsp.pduserver.NetworkAnalyzerSender  
o class org.npsnet.xfsp.pduserver.Packet  
o class org.npsnet.xfsp.pduserver.PDUCapturer (implements 

java.lang.Runnable)  
o class org.npsnet.xfsp.pduserver.PDUServer  
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI.PDUSender 

(implements java.lang.Runnable)  
o class org.npsnet.xfsp.datatypes.SFBool (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFColor (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFDouble (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFFloat (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFImage (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFInt32 (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFRotation (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFString (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFTime  (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFVec2d (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFVec2f (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFVec3d (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.SFVec3f (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
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o class org.npsnet.xfsp.datatypes.SimpleTypeExtension (implements 
org.npsnet.xfsp.datatypes.SimpleTypeWithName)  

o class org.npsnet.xfsp.TableAttribute  
o class org.npsnet.xfsp.TableAttributeX3D  
o class org.npsnet.xfsp.TableElement  
o class org.npsnet.xfsp.TableElementX3D  
o class org.npsnet.xfsp.TableManager  
o class org.npsnet.xfsp.TableManagerX3D  
o class org.npsnet.xfsp.datatypes.TypeFactory  
o class org.npsnet.xfsp.swing.XMLSwingTree  
o class org.npsnet.xfsp.datatypes.XSDBoolean (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDByte (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDComment (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDDouble (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDFloat (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDInteger (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDLong (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDPrimitiveArray (implements 

org.npsnet.xfsp.datatypes.SimpleTypeWithName)  
o class org.npsnet.xfsp.datatypes.XSDShort (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDString (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDUnsignedByte (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDUnsignedInt (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o class org.npsnet.xfsp.datatypes.XSDUnsignedShort (implements 

org.npsnet.xfsp.datatypes.SimpleType)  
o interface org.npsnet.xfsp.datatypes.SimpleType   

o interface org.npsnet.xfsp.datatypes.SimpleTypeWithName  

 Interface Hierarchy:  

o interface org.npsnet.xfsp.datatypes.Type   
o interface org.npsnet.xfsp.datatypes.SimpleType   

o interface org.npsnet.xfsp.datatypes.SimpleTypeWithName  
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