
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2003-03

Design and test of the cross-format schema protocol

(XFSP) for networked virtual environments

Serin, Ekrem

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/9872

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36703395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

DESIGN AND TEST OF THE

CROSS-FORMAT SCHEMA PROTOCOL (XFSP) FOR
NETWORKED VIRTUAL ENVIRONMENTS

by

Ekrem Serin

March 2003

Thesis Advisor: Don Brutzman
Co Advisor: Joseph Sullivan
Second Reader: Curt Blais

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Design and Test of The Cross-Format Schema
For Networked Virtual Environments
6. AUTHOR Ekrem Serin

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
A Networked Virtual Environment (Net-VE) is a distributed software system in which multiple users interact with

each other in real time even though these users may be located around the world [Zyda 99]. Net -VEs gained first attention
through a variety of DOD and Academic research projects. After release of the multiplayer game DOOM, the gaming industry
captured the idea of interactive multiplayer games. Today there are many popular Internet-based multiplayer games available.

Effective networking of diverse entities and systems is a common problem for Networked Virtual Environments. In

order to communicate with other entities a variety of communication protocols are used. Historically these communication
protocols are “hard coded” into the software system and all nodes that participate in the environment must identically
implement the protocols to interact with others. These communication protocols require authoring and compiling by a trained
programmer. When the compiling process is introduced to the networked virtual environment, it detracts the extensibility and
dynamicism of the system.

This thesis presents the design and development of a Networked Virtual Environment model that uses Cross Format

Schema Protocol (XFSP). With this work we show that a networked simulation can work for 24 hours a day and 7 days a week
with an extensible schema based networking protocol and it is not necessary to hard code and compile the protocols into the
networked virtual environments. Furthermore, this thesis presents a general automatic protocol handler for schema-defined
XML document or message. Additionally, this work concludes with idea that protocols can be loaded and extended at runtime,
and can be created with different-fidelity resolutions, resulting in swapping at runtime based on distributed state.

15. NUMBER OF
PAGES

149

14. SUBJECT TERMS Networked Virtual Environments, Cross Format Schema Protocol (XFSP),
XML, XSD, SOAP, HLA, NPSNET-V, JXTA, XML Serialization.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

 DESIGN AND TEST OF THE
CROSS FORMAT SCHEMA PROTOCOL (XFSP) FOR

NETWORKED VIRTUAL ENVIRONMENTS.

Ekrem Serin

Lieutenant Junior Grade, Turkish Navy
B. S., Turkish Naval Academy, 1997

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Ekrem Serin

Approved by: Don Brutzman
 Thesis Advisor

 Joseph Sullivan
 Co Advisor

 Curt Blais
 Second Reader

 Peter Denning
 Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A Networked Virtual Environment (Net-VE) is a distributed software system in

which multiple users interact with each other in real time even though these users may be

located around the world [Zyda 99]. Net-VEs gained first attention through a variety of

DOD and Academic research projects. After release of the multiplayer game DOOM, the

gaming industry captured the idea of interactive multiplayer games. Today there are

many popular Internet-based multiplayer games available.

Effective networking of diverse entities and systems is a common problem for

Networked Virtual Environments. In order to communicate with other entities a variety

of communication protocols are used. Historically these communication protocols are

“hard coded” into the software system and all nodes that participate in the environment

must identically implement the protocols to interact with others. These communication

protocols require authoring and compiling by a trained programmer. When the compiling

process is introduced to the networked virtual environment, it detracts the extensibility

and dynamicism of the system.

This thesis presents the design and development of a Networked Virtual

Environment model that uses Cross Format Schema Protocol (XFSP). With this work we

show that a networked simulation can work for 24 hours a day and 7 days a week with an

extensible schema based networking protocol and it is not necessary to hard code and

compile the protocols into the ne tworked virtual environments. Furthermore, this thesis

presents a general automatic protocol handler for schema-defined XML document or

message. Additionally, this work concludes with idea that protocols can be loaded and

extended at runtime, and can be created with different- fidelity resolutions, resulting in

swapping at runtime based on distributed state.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. MOTIVATION ..2
C. OBJECTIVES ..2
D. THESIS ORGANIZATION ..4

II. RELATED WORK AND BACKGROUND ..5
A. INTRODUCTION..5
B. NETWORKED VIRTUAL ENVIRONMENTS (NET-VES)5

1. Graphic Engines and Displays ..6
2. Communication and Control Devices ..6
3. Processing Systems ...7
4. Data Network..8

a. Bandwidth..8
b. Latency...9
c. Jitter...10
d. Distribution Schemes ..10
e. Reliability...14

C. OVERVIEW OF A RTEVE (NPSNET-V) ...15
1. Components ..15
2. Network Communication Architecture ...16

D. XML..16
E. XSD..17
F. JXTA ...18
G. SOAP...19
H. HLA...21
I. DOM4J..23
J. DREN ..24
K. INTERNET2/ABILENE/NGI...25
L. RELATED WORK ..27

1. An Automated Approach to Distributed Interactive Simulation
(DIS) Entity Development ...27

2. Wireless Access Protocol (WAP) Wireless Markup Language
(WML) Specification..28

3. Compressing XML with Multiplexed Hierarchical Prediction
by Partial Match (PPM) Models (XMLPPM).................................29

4. XMill..30
M. SUMMARY..31

III. CROSS FORMAT SCHEMA PROTOCOL (XFSP) ...33
A. INTRODUCTION..33
B. OVERVIEW OF XFSP ...33

 viii

C. PROTOCOL DESCRIPTION VIA XML SCHEMA.................................34
D. SCHEMA PARSING...38
E. XML SERIALIZATION ...42
F. XML DESERIALIZATION ...53
G. DATA TYPES ..62
H. XFSP AND NPSNET-V...63
I. SUMMARY..67

IV. BINARY X3D...69
A. INTRODUCTION..69
B. OVERVIEW...69
C. X3D-EDIT...69
D. BINARY X3D...71
E. SUMMARY..77

V. PROTOCOL DATAGRAM UNIT (PDU) FARM..79
A. INTRODUCTION..79
B. OVERVIEW...79
C. PDU SERVER ..81
D. PDU CAPTURER ..83
E. NETWORK ANALYZER ...85
F. SUMMARY..88

VI. EXPERIMENTS, DATA COLLECTION AND ANALYSIS89
A. INTRODUCTION..89
B. OVERVIEW...89
C. XML SERIALIZATION PROGRAM...89
D. NETWORK METRICS...92
E. NPS FIREWALL PROBLEM ..102
F. SUMMARY..103

VII. CONCLUSIONS AND FUTURE WORK...105
A. CONCLUSION ..105
B. RECOMMENDATIONS FOR FUTURE WORK....................................107

APPENDIX A. DIS SCHEMA..109

APPENDIX B. ENTITY STATE PDU EXAMPLE..115

APPENDIX C. DETONATION PDU EXAMPLE ...117

APPENDIX D. FIRE PDU EXAMPLE ...119

APPENDIX E. COLLISION PDU EXAMPLE ..121

APPENDIX F. HIERARCHY OF ALL PACKAGES..123

LIST OF REFERENCES ..127

INITIAL DISTRIBUTION LIST...133

 ix

LIST OF FIGURES

Figure 2.1: XML Validation Using Schema ..18
Figure 2.2: SOAP Web-Services Abstraction [SOAP] ..20
Figure 2.3: XML Messaging [SOAP] ..20
Figure 2.4: Software Components in HLA [HLA 00] ...22
Figure 2.5: Abilene Network Logical Map [Abilene 00] ..26
Figure 3.1: A Simple Schema Document ..35
Figure 3.2: Tree Representation of Example Schema ...36
Figure 3.3: Alternate Tree Representation of Example Schema..36
Figure 3.4: UML Diagram for Root Directory of XFSP (Generated by [ESS])37
Figure 3.5: UML Diagram for Implemented Data Types corresponding to XML Schema

and X3D (Generated by [ESS]) ...38
Figure 3.6: Example Schema Demonstrating Valid Distinction of Dissimilar Elements

with Identical Names ...40
Figure 3.7: Automatically Amended, Intermediate Example Schema Demonstrating

Valid Distinction..41
Figure 3.8: XML Document for a Sample Protocol ..42
Figure 3.9: XML Document with Replaced Tags..43
Figure 3.10: XML Serializer and XML Deserializer showing Native Tags44
Figure 3.11: XML Serializer and XML Deserializer with Tokens and Tags Replaced by

Short Numbers ...45
Figure 3.13: Valid Transition...46
Figure 3.14: Transition Failure Resulting in Error ..46
Figure 3.15: Communicating Finite State Machine (CFSM) Diagram of the Serialization

Process ...47
Figure 3.16: Comparison of Serialization Programs..53
Figure 3.17: Binary Reader Pseudocode..54
Figure 3.18: XML Deserialization...55
Figure 3.19: Communicating Finite State Machine (CFSM) Diagram of Deserialization

Process ...56
Figure 3.20: StandardXFSPController UML Diagram (Generated by [ESS])65
Figure 3.21: Start of NPSNET-V Application...66
Figure 3.22: Run-time Detonation Protocol Loading ..66
Figure 3.23: NPSNET-V Simulation Manager Type Packet Format67
Figure 4.1: Teapot.x3d File Example ..70
Figure 4.2: Teapot.wrl File Example ...71
Figure 4.3: BinaryX3D Program Interface ..71
Figure 4.4: Binary X3D File Generation ...72
Figure 4.5: .x3d File Generation from .b3d File ...72
Figure 4.6: .b3z File Generation (Gzipped Binary X3D)..73
Figure 4.7: .x3d File Generation from .b3z File ...73
Figure 4.8 : Rendering .b3d File Format...74
Figure 4.9: Rendering .b3z File Format..74

 x

Figure 4.10: File Format Comparison for Teapot Exemplar ...75
Figure 4.11: File Format Percentage Saving for Teapot Exemplar ...76
Figure 4.12: Rendered teapot.b3z File ...77
Figure 5.1: PDU Farm UML Diagram (Generated by [ESS]) ...80
Figure 5.2: Pdu Server Initialization Parameters...81
Figure 5.3 : Output of PDU Server Program ...83
Figure 5.4: Pdu Capture Program Initialization Parameters ...84
Figure 5.5: A File Header for Recorded PDU File ..85
Figure 5.6: Output of Pdu Capture Program ...85
Figure 5.7: NetworkAnalyzer Initialization File (Sender) ..86
Figure 5.8: NetworkAnalyzer Initialization File (Receiver)...86
Figure 6.1: Maximum Limit of Binary XML Generation..91
Figure 6.2: Drop Rates for Local Host Transmission..92
Figure 6.3: Cross-USA Latency in 10Kbps Send Rate on V.98 Voice Modem......................93
Figure 6.4: Cross-USA Jitter in 10Kbps Send Rate on V.98 Voice Modem...........................94
Figure 6.5: Cross-USA Latency in 50Kbps Send Rate on V.98 Voice Modem......................95
Figure 6.6: Cross-USA Jitter in 50Kbps Send Rate on V.98 Voice Modem...........................95
Figure 6.7: Latency in 10Kbps Send Rate on T1 ...97
Figure 6.8: Jitter in 10Kbps Send Rate on T1 ..97
Figure 6.9: Latency in 100Kbps Send Rate on T1 ...98
Figure 6.10: Jitter in 100Kbps Send Rate on T1 ..98
Figure 6.11: Latency in 400Kbps Send Rate on T1 (Day-1) ...100
Figure 6.12: Jitter in 400Kbps Send Rate on T1..100
Figure 6.13: Latency in 400Kbps Send Rate on T1 (Day -2) ..101
Figure 6.14: Latency in 400Kbps Send Rate on T1 (Day -3) ..101
Figure 6.15: Traceroute From gmu.edu To MovesInstitute.org.............................102

 xi

LIST OF TABLES

Table 3.1: Element Look up Table Example ...39
Table 3.2: Attribute Look up Table Example ..39
Table 3.3: Serialization Algorithm State Table ...51
Table 3.4: Serialization Algorithm Transition Table ...52
Table 3.5: Deserialization Algorithm State Table ...60
Table 3.6: Deserialization Algorithm Transition Table ...62
Table 6.1: XML Serialization Program Experiment ..90
Table 6.2: Metrics for 10Kbps Transmission on V.98 Modem...93
Table 6.3 : Metrics for 50Kbps Transmission on V.98 Modem..94
Table 6.4: Metrics for 10Kbps Transmission on T1 ..96
Table 6.5: Metrics for 100Kbps Transmission on Ethernet...98
Table 6.6: Metrics for 400Kbps Transmission on Ethernet...99

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. Don Brutzman, CDR Joseph

Sullivan and Curt Blais for their motivation and support throughout this study.

To Don McGregor and Andrzej Kapolka, I thank you for your guidance, wisdom,

patience and enthusiasm throughout this project. Your efforts have given me an

invaluable learning experience.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

The term Networked Virtual Environment (Net-VE) is defined as follows

“A networked virtual environment is a software system in which multiple users interact

with each other in real-time, even though those users may be located around the world.

These environments aim to provide users with a sense of realism by incorporating

realistic 3D graphics and stereo sound, to create an immersive experience” by Michael

Zyda [Zyda 99]. A new networking framework for run-time extensible networked virtual

environments is presented in this thesis.

Run-Time Extensible Virtual Environments differ from traditional Virtual

Environments through the capabilities of run-time discovery and usage of new object

types and behaviors. Traditional VEs can only operate with objects, behaviors and

protocols that are present when the VE is started; if any kind of new object, behavior or

protocol needs to be added to the architecture, the environment mus t be stopped,

compiled and restarted. NPSNET-V is a Run-Time Extensible Virtual Environment

implemented by the Naval Postgraduate School (NPS) that uses run-time extensibility for

new object and behavior discovery.

Historically communication protocols tha t are used in Net-VEs are hard coded

into the software system and all entities that participate in the environment need to

implement the protocols to interact with others. Introducing a new application layer

protocol requires off- line authoring and compiling by a trained programmer. This

compiling process detracts from the extensibility and dynamicism of Net-VEs.

In RTEVE networking protocols can be loaded and extended at runtime.

Furthermore, protocols can be created with different fidelity resolutions which can be

swapped at runtime, based on the network state. Since the protocols can be tailored to

best support the requirements of a particular environment, they can enhance network

performance. These improvements can be made adaptively at run-time by a

non-professional programmer or by software agents.

 2

B. MOTIVATION

With the dramatic increase in computing and network speed over the past few

years, Net-VEs have become more widespread. This enhancement introduced the non-

professional programmers into the networked virtual environment area. The main

motivation behind this thesis was to enable non-adept programmers to tailor their

networking protocols by using the Extensible Markup Language (XML).

The NPSNET-V architecture is used to adapt the designed and implemented XML-based

networking protocol.

NPSNET-V is used as a framework for development and research in dynamically

extensible, large-scale virtual environments (LSVEs). The main property of this

architecture is run-time discovery of new object types and their behaviors. A limitation of

NPSNET-V architecture is networking protocols which cannot be tailored without

recompiling and restarting. This limitation detracts the goal of run-time extensibility

within this architecture.

C. OBJECTIVES

This thesis serves two purposes; design and implementation of a user-tailored

networking protocol which is called Cross Format Schema Protocol (XFSP), and

presenting that protocol with different schemas for use in a networked virtual

environment.

The networking protocol (using XFSP) determines the state changes in entities

which participate in a Net-VE and is used to exchange state information (e.g. position,

orientation etc.) between entities.

In a Net-VE, entities issue packets when their states are changed or when they

want to keep their states alive in all other participating users. To establish the

communication between participants, all users (the ones that want to exchange data) must

agree on the same protocol. The major differences between XFSP and hard-coded

networking protocols is run-time extensibility and flexible ease of use.

 3

As it is discussed before, XFSP is based on defining packet formats with

XML-Schema language. The process behind XFSP can be called XML Serialization, or

XML marshalling. The basic idea is similar to creating a Document Object Model

(DOM) pipe between participants. When a user receives a packet into which an XML tree

is serialized, he or she can build a DOM object tree back from the packet and can retrieve

the needed data. The position of the data in that DOM object tree is defined by

XML-Schema.

Determining the semantics between the DOM tree and entity state is considered to

have a computational complexity of NP-Hard and is not examined in this thesis. The

semantic process is defined as being able to know which information to retrieve from an

information source in order to reflect the output in a Net-VE. Run-time extensibility of a

semantic process is hard to accomplish and requires thoughtful design. Facilitating the

expression and distribution of protocol syntax is a major step forward nevertheless which

enables rapid exploration of efficient and effective protocol semantics.

Ordinarily, XML is not a compact way to express the data. Messages written in

XML are much larger than a binary equivalent. The technique that is used to overcome

this problem is replacing tags with binary tokens. When an XML tree is parsed to

serialize into an output stream, the tags that mark up the data are replaced with their

binary equivalents. The end result is a more compact serialized XML tree.

As it is discussed before, the basic idea behind XFSP was XML-Serialization.

With this approach, XFSP can be used in any application which needs transactions via

XML documents such as XML-RPC (XML Remote Procedure Call), XKMS (XML Key

Management Services), XML-DSig (XML Digital Signatures) and XML-Enc (XML

Encryption). XFSP can present those transactions in a more compact way.

In this thesis the usage of XFSP in a Networked Virtual Environment to exchange

state information between entities by using the idea of creating DOM pipes between

participants is presented. Also with this thesis, a PDU Server (Protocol Datagram Unit

Server) and a PDU Capturer are implemented for servers. The PDU Server program is

used to continuously send state information from a previously recorded simulation and

 4

the PDU Capturer program is used to capture the packets issued by entities from a

simulation.

In order to test this new protocol, experiments are conducted across a wide-area

network (WAN) with George Mason University (GMU) and on a local-area network

(LAN).

The results of these experiments are discussed in following chapters.

D. THESIS ORGANIZATION

Seven chapters comprise this research:

• Chapter I–Introduction: Identifies the purpose and motivation behind

conducting this research. Establishes the goals for the thesis.

• Chapter II–Related Work and Background: Provides information on

Networked Virtual Environments, NPSNET-V, XML, XSD, JXTA,

SOAP, HLA, DOM4J, DREN and Abilene/Internet2 projects.

• Chapter III–Design and Implementation of XFSP: Describes the general

system structure, software components and implementation process of

XFSP.

• Chapter IV–PDU Farm Implementation: Describes the general system

structure, software components and implementation process of PDU

Server and PDU Capturer programs.

• Chapter V–Binary X3D: Describes the general system structure, software

components and implementation process of Binary X3D program.

• Chapter VI–Data Collection and Analysis: Explains the results and

collected metrics from the conducted experiments.

• Chapter VII–Conclusion and Recommendations: Explains the conclusions

and provides recommendations regarding possible future work.

 5

II. RELATED WORK AND BACKGROUND

A. INTRODUCTION

This chapter provides an overview to Net-VEs, NPSNET-V, XML,

XML-Schema, Simple Object Access Protocol (SOAP), JXTA, High Level Architecture

(HLA), DOM4J, Defense Research and Engineering Network (DREN)

Internet2/Abilene/Next Generation Internet (NGI).

B. NETWORKED VIRTUAL ENVIRONMENTS (NET-VES)

A Networked Virtual Environment (Net-VE) is a distributed software component

with a computer generated simulated space in which multiple users interact with each

other in real time. The main motivation behind Net-VEs is run-time collaboration

between participants.

Each participant uses his or her computer in order to access and collaborate with

the displayed 3D content. In virtual environments, users are represented by one or more

entities called avatars. These avatars give the users the illusion of being located in that

simulated space where the immersive experience is presented. Net-VEs are used for

multiple purposes varying from education and entertainment to training. From a military

point of view, Net-VEs are a cost effective way to train the war fighters and mimic the

war scenarios.

By simulating scenarios in a networked environment, we have opportunity to

examine the interactions between participants. This examination helps decision makers to

present new tactics and doctrines for future scenarios.

A Net-VE system consists of four basic components [Zyda 99].

• Graphic Engines and Displays

• Communication and Control Devices

• Processing Systems

• Data Network

 6

 In this chapter the bottlenecks created by these components in Net-VE systems are

examined.

1. Graphic Engines and Displays

Graphic engines, also called graphics cards, are used to process the 3D content

generated by some Application Programming Interface (API) (e.g. OpenGL, DirectX) in

order to make it displayable through some output device (such as a computer monitor).

Display devices vary from 14" Cathode Ray Tube (CRT) to fully immersive

head-mounted displays. These devices open the three-dimensional (3D) window of the

virtual environment to the participants. Traditional displays offer only limited immersion

to the user where they can be distracted by outside light and peripheral vision. For higher

immersion, users often use Head Mounted Displays (HMDs). HMDs present images

directly in front of a user's eyes and block out almost all external light. Another example

for immersive displays is CAVE. CAVE is a five sided cube where the user stands at the

center and the images are projected to the sides that give a highly immersive experience

to the participant.

With the dramatic increase in silicon technology, today we are able to access very

fast and powerful graphic cards which can render millions of triangles per second with

pixel shading capability. If the bottlenecks of generating Net-VE content are examined

from a network programmer point of view, limitations are not the graphic engines and

displays.

2. Communication and Control Devices

The second attribute of a Net-VE system is Communication and Control Devices,

which are used to manipulate the virtual world objects and communicate with other

participants in the environment. For manipulation purposes, users typically depend on

keyboard and mouse. Mouse is a key device for navigation in the virtual environment to

control the speed of travel and perform other interactions. Incidentally, a keyboard is also

utilized for typing textual communication and can be used for complicated or less-

common operations in the environment.

 7

Although the keyboard and mouse are the most common control devices, they are

not the only ones. For game applications the common devices are joysticks, wheel-drives

or derivatives of these devices. For applications that need more precise manipulation,

datagloves can be a good candidate. In the near future, with the progress in speech

synthesizers, voice-recognition applications will be valuable candidates for control

purposes.

To achieve full immersion from the Networked Virtual Environment, users should

be able to communicate with each other. Historically this is done by using keyboard and

textual communication which is inconvenient for the participants. For example, with

today’s technology Voice over IP (VoIP) can be an effective way for meeting participant

communication and collaboration objectives in an integrated fashion.

3. Processing Systems

The third component of a Networked Virtual Environment is processing systems.

A Net-VE system needs a considerable amount of processing capacity [Brutzman 97].

The processor receives events from the user’s input devices and computes how these

inputs can change hosted entity’s positions within the virtual environment as well as the

location of other entities within the environment [Zyda 99]. The processor also decides

how and when to notify other users about these state changes.

In a Net-VE system, Central Processing Unit (CPU) can be easily overwhelmed

by different computation needs. A physically based modeling exemplar of an F-16

aircraft can present this heavy-weight computation by processing air dynamics and

kinematics when precisely modeling the entity. These flight coefficients and quaternion

mathematic equations [Cooke 92] may be the bottleneck in designing the system.

As discussed before, a Net-VE system is a distributed software architecture in

which multiple users interact with each other. In a large-scale Net-VE with many

participants scenario, without a partitioned network, processing system will be first

bottleneck in creating this content. In this large-scale Net-VE example, the bottleneck can

be examined in two ways. First is the buffer (memory) limitation of the computer system

 8

in which the environment is simulated, and the second is the cycle limitation of the

processing unit. This discussion bases the use of XFSP in a Net-VE system where

sufficient computational horsepower exists to allow users to customize their application

layer protocol. Fortunately, this overhead is shown to be low, allowing commodity PC

and laptop devices to use XFSP.

4. Data Network

The last component of a Net-VE system is Data Network. This component will be

examined in more depth to base the discussion on implementing Cross Format Schema

Protocol (XFSP).

For several years one of the major factors that limited research into large-scale

distributed virtual worlds was immature network technology [Macedonia 97]. Immature

network technology constrained Net-VEs to operate on local-area networks (LANs),

which limited the number of participating hosts in geographical scope.

In order to expand this geographical scope and increase number of participating

hosts, large-scale Net-VEs should operate over Internet , wide-area networks (WAN), and

exploit its resources. Furthermore, operation over WAN will bring some discussion on

communication aspects such as bandwidth, latency, distribution schemes, and reliability.

a. Bandwidth

Bandwidth is defined as the width of the usable spectrum that is available

for data signal transmission. The spectrum refers to the range of frequencies that a signal

contains [Stallings 00]. The bandwidth of the communication link depends on the

material (media) on which it operates. It can be twisted pair, coaxial cable, fiber optic or

air. The highest bandwidth among those is in fiber optic cable.

Bandwidth plays an essential role in determining the richness and size of a

Net-VE. As the number of participating hosts in a Net-VE system increases so does the

bandwidth requirement. Additionally, by the nature of virtual environment, a Net-VE

 9

system will demand a considerable amount of bandwidth to support video, audio and the

exchange of 3D content in real time.

With today’s technology, the networks that have gigabits per second

bandwidth over Ethernet links or Asynchronous Transfer Mode (ATM) cells are already

available. Although this enormous bandwidth is present for some users, we cannot

generalize all users. This efficient use of bandwidth must be considered.

The discussion on bandwidth determines the scope of target users. In a

multiplayer game scenario, the target profile is often home users. Although there are

many promising technologies such as Digital Subscriber Line (DSL) or Cable which can

provide up to 2 Mbps download and 256 Kbps upload bandwidth, most of the home users

are still limited to 56Kbps voice modems to join these multiplayer games. Average

available bandwidth continues to increase each year.

Because of these reasons, bandwidth plays a crucial role in scalability of

Net-VE systems. Application- layer protocols thus need to be customized properly to

satisfy the participant’s needs.

Well-defined techniques to handle data transmission over the network

links is a prerequisite for supporting internetworked computer graphics [Brutzman 97].

b. Latency

Network latency is the amount of time required to transfer application data

from one point to another [Zyda 99]. Latency controls the Net-VE’s interactive and

dynamic nature, directly impacting the realism of the environment by determining how

up-to-date is the information received.

In order to give the players the illusion of being immersed in a networked

virtual environment, the limits of human perception must be rigorously considered. For a

distributed environment that emulates the real world, Net-VE architecture must deliver

the packets with sufficiently minimal latency, and generate 3D images at 30-60 Hz to

guarantee the illusion of reality [Macedonia 97].

 10

Latency is a problematic network component, and Net-VE designers can

usually do very little about it, because latency is a combination of many constraining

factors. The first factor to consider is the speed of light. Electromagnetic or optical

transmission cannot travel faster than that speed. Actually the real propagation speed

depends on the medium in which the data signal travels, and generally speaking for

electromagnetic or optical media, it is 2/3 of the speed of light in a vacuum. The second

factor is the delay introduced by the network. In today’s packet-switched network

topology data passes through multiple repeater, router and switch hops during its journey

from source to destination. Most significant are routers which route the packets over the

network. Each router introduces queuing and processing delays for each packet that

increases the total amount of delay. The third delay to consider occurs between the

operating system and network interface hardware on application computers. It takes some

amount of time for the data to travel from Operating System (OS) kernel to network

hardware even before it reaches the network.

c. Jitter

Given these many factors, users may think that the latency is static and

cannot change in time. This is not correct statement. Latency is considered to be a

stochastic process and cannot be determined precisely, furthermore it will change from

packet to packet. This change is called “jitter” and is used to define the variation of

delays. Because of jitter, state changes in a Net-VE system cannot be received at a steady

rate, thereby degenerating the smooth perception by introducing jerky behavior. In order

to cope with latency effects, a variety of dead reckoning algorithms are proposed by

researchers. Specifically, dead reckoning depends on predictive modeling which

estimates current state of the entity based on previous state, elapsed time and other

factors.

d. Distribution Schemes

 Distribution determines the way to transfer data packets from source host

to destination hosts. There are three ways to transmit data over the network to the users.

 11

These are unicast, broadcast and multicast. Distribution scheme is correlated with

scalability and reliability. Where scalability is defined by the richness of the virtual

environment and reliability is defined by the data loss rate.

(1) Unicast: Unicast is a point-to-point communication

between two end-users. In this scheme only the recipient host and intermediate routers

need to spend computational cycles during the journey of the packet. With this nature,

unicast distribution does not scale well for networked virtual environments. In an

environment with N participants, each host must open N-1 connections and send the same

data multiple times onto the network. The connection and bandwidth complexity can be

considered as O (n2) which is clearly an expensive proposition when sending high

bandwidth streams such as audio and video to multiple users.

(2) Broadcast: Broadcasting is at the opposite end of the

spectrum from unicast distribution scheme. Broadcast messages reach every host on a

local-area network and demand a response from each operating system. This is an

extremely inefficient way to distribute packets. Even a few small global broadcasts could

bring the Internet to its knees. Imagine what could happen if a real-time video feed were

copied to six million Internet users, whether they wanted to watch it or not [Harold 00].

That is the reason that broadcasting is prohibited from passing across the switches and

routers. As it is seen, broadcasting does not scale well for large-scale networked virtual

environments and limited to the local area networks, furthermore it does not reach

Internet at all.

(3) Multicast: There is a middle ground between point-to-point

communication and broadcasting to the whole world. One way to do this is to create

static connection trees. This was the solution used by some conferencing systems (e.g.

CU-See Me). In this example data is fed from the originating site to other servers, which

replicate it to the other servers, which eventually replicate it to the clients [Harold 00]. In

this architecture the connection tree does not reflect the best possible network topology to

distribute the packets and the hooks into the tree must be done manually. It would be

better to allow the routers to determine the best path for transmitting one-to-many or

many-to-many type transmission of data. This is where the multicasting comes in.

 12

Multicasting is based on the idea of groups. Each host can

subscribe to any multicast group in order to send and receive data to or from that group.

Multicasting is done at the hardware level by informing the network interface card (NIC)

to monitor any specific group. This feature is extremely important since a single high

bandwidth stream can still reach an arbitrary number of hosts, but computational load is

only seen on hosts which explicitly subscribe to the multicast channel [Brutzman 97].

In order to have multicasting capability and creating one-to-many

or many-to-many distribution scheme, the routers on the way should be multicast

enabled. With today’s Internet architecture there are still problems. Most of the routers

are not multicast enabled; specifically they are not “mrouters”. Current architecture of

multicasting can be described as the following model. This model describes how end

systems are to send and receive the multicast packets.

• IP-style semantics : A source can send multicast packets at any time, with

no need to register or to schedule transmission. IP multicast is based on

User Datagram Protocol (UDP), so the packets are delivered using a

best-effort delivery

• Open groups : Sources only need to know a multicast address. They don’t

need to know group membership, and they do not need to be a member of

the multicast group to which they are sending. A group can have any

number of sources.

• Dynamic Groups : Multicast group members can join or leave a multicast

group at will. There is no need to register, synchronize or negotiate with a

centralized group management entity.

This standard IP multicast model is an end-system specification

and does not discuss requirements for how the network should perform the multicast

routing. Also it does not propose any mechanisms for providing quality of service (QoS),

security or address allocation. Actually the major problem here is the routing itself.

There were many efforts to establish multicast connectivity or

routing. One of them used handcrafted tunnels across the Internet where the multicast

 13

stream is encapsulated with unicast packets. The idea behind this approach was

establishing UDP channel, IP-encapsulated tunnel, between sub-networks and

encapsulating multicast data with UDP packets. This model was called MBone. The

MBone carried its first worldwide event when 20 sites received audio from the meeting

of the IETF in San Diego in 1992 [MBoneInternet2]. The most significant achievement

was the deployment of a virtual multicast network. The multicast routing function was

provided by workstations running a daemon process called mrouted, which received

unicast-encapsulated multicast packets on an incoming interface and then forwarding the

packets over the appropriate set of outgoing interfaces. Routing decisions were made

using Distance Vector Multicast Routing Protocol (DVMRP), which is based on reverse

shortest path trees.

Actually these discussions brought the idea of intra and inter

domain multicasting. For intradomain multicasting new solutions showed themselves,

such as MOSPF (Multicast Extensions to Open Shortest Path First) where MOSPF

routers flooded the group membership information to other MOSPF routers or newer

protocols PIM-DM (Protocol Independent Multicast Dense Mode) and PIM-SM

(Protocol Independent Multicast Sparse Mode) where they use an existing unicast routing

table to build a multicasting table. The difference between dense and sparse mode is the

mechanism that they use for multicasting, such as broadcast-and-prune or explicit join.

Broadcast-and-prune method is considered to be the dense, and explicit join is the sparse

mode.

For interdomain multicasting the solution was BGP (Border

Gateway Protocol) which supports the routing by reliably exchanging network

reachability information between border gateways where a network administrator can run

any protocol within his/her domain.

Despite all these accomplishments, the multicasting is still not

widely deployed; most of the routers drop every multicasting packet that hits its incoming

interface. Multicasting is not the only problem with today’s Internet architecture, QoS

issues are still not solved, IPv6 is still not supported and there are problems with

 14

bandwidth issues. These topics will be discussed in Internet2 / NGI (Next Generation

Internet) section.

e. Reliability

Reliability typically measures how much data is lost by the network

during its journey from source to destination [Zyda 99]. In reliable systems it is assumed

that when data is sent it is always received. Reliable transport protocols use

acknowledgement and error-recovery schemes. Unfortunately this introduces

considerable amount of delay and inefficient use of bandwidth to the system. As we saw

before, real- time systems need fast transmission and high-bandwidth capacity. With these

acknowledgement, error recovery and congestion control components it is not practical to

implement both reliable and real-time networked virtual environments. Consequently,

most of the Net-VE systems use unreliable transport protocol (UDP over IP based

networks). These systems have been designed to recover from a lost packet and it is not

crucial to lose a state information packet when the next one is going to be received a

short time later.

The Transmission Control Protocol (TCP) is the reliable transport protocol

that sits on top of the Internet Protocol (IP). TCP uses acknowledgement, sequencing,

error-recovery and flow-control schemes to achieve its functionality. Another transport

protocol is User Datagram Protocol (UDP), which is very different than TCP. It offers

best effort delivery without any promise of sequencing.

Although it depends on the architecture that the user wants to implement,

in most of large scale Net-VEs hybrid systems are used. In hybrid systems, both of the

transport protocols run at the same time for different purposes. TCP can be used for

managerial and UDP can be used for state exchange objectives.

Multicasting is implemented by using UDP, however there are many

efforts in developing reliable (partial) and scalable multicast services by using designated

receivers and other ideas [Pullen 95] and [Pullen 00].

 15

C. OVERVIEW OF A RTEVE (NPSNET-V)

The NPSNET program of Naval Postgraduate School started in 1990 as a research

platform for networked virtual environment technology. It is now its fifth iteration known

as NPSNET-V [Salles 02]. NPSNET-V is implemented to meet the following goals.

• Run-time extensibility of both content and applications

• Scalability in world complexity and number of participants

• Composability of heterogenous content and applications

As stated by McGregor and Kapolka, implementers of NPSNET-V, the dream of

NPSNET-V is for it to be “… a framework for fully distributed, component-based,

persistent, networked virtual worlds, extensible at runtime and scalable to infinite size on

the Internet” [McGregor 01],[Salles 02].

A full description of NPSNET-V architecture is too extensive for the scope of this

work; therefore only an overview of the components that play an essential role in XFSP

scope will be covered. Readers can refer to [McGregor 01], [Kapolka 02], [Salles 02] and

[Capps 01] for more detailed description.

1. Components

NPSNET-V is a component-based framework and used to build virtual worlds by

combining modules at run-time. The run-time extensibility of NPSNET-V does not

depend on prior knowledge of individual modules. Furthermore, new behaviors

(new components) can be added to the system “on-the-fly”.

NPSNET-V can divided into five functional areas [Salles 02]

• Configuration Files: the blueprints of NPSNET-V

• Communications: the communication infrastructure of NPSNET-V

• Database: the database of all necessary data for NPSNET-V

• Components: the functional code modules used to build VE

• Temporal: time coordination system

 16

Network communication architecture is examined next with regard to the new

framework called XFSP.

2. Network Communication Architecture

NPSNET-V is implemented to handle unicast, broadcast and multicast channels

as well as using reliable or unreliable transport protocols.

There are three types of communications performed in NPSNET-V architecture.

• Administrative Communications which deal with required exchanges of

necessary components. TCP type connections are used.

• Object Communication; which deals with passing of object code, modules

and terrain data from HTTP or specialized servers. They can be

transmitted over reliable or unreliable connection schemes.

• Entity Communication which deals with state exchanges. Both reliable

and unreliable transport schemes might be used. For the scalability of the

environment unreliable transport protocol over multicast distribution

scheme is preferred. Until recently Distributed Interactive Simulation

(DIS) (IEEE 1278.1) was used to exchange state information between

entities. With this work, a new type of entity state exchange protocol,

XFSP, is introduced to the NPSNET-V architecture. XFSP exploits the

idea of XML-Serialization and DOM-Pipe generation. Design and

implementation of XFSP will be examined in Chapter III.

D. XML

Extensible Markup Language (XML) is a markup language used to describe the

structure of data in meaningful ways. The most well known XML applications are web-

related, but there are many other non-web based applications where XML is considered

to be very useful for solving specific problems. An example for this type of usage is the

financial transactions between different businesses.

 17

XML can be used in many applications varying from databases to extensible 3D

environments. Actually it can be said that XML is to be used in any application where

“data” is processed, which results in “every” application.

With today’s evolving technology, XML is considered to be the solution for many

problems in computer world. In my opinion the biggest problem is the interoperability

between non-homogenous systems. The differences between these non-homogenous

systems can be summarized in four major points.

- Computer Architecture

- Operating Systems

- Data Structures

- Programming Language

Being a W3C standard, XML is a simple text document which describes the

actual data with meta-data. Any programming language running on any platform can

parse this text document and interpret it to its internal data structure. With this nature,

XML is the solution for system-integration and interoperability problems in non-

homogenous systems. Reader can refer to [Hunter 01] and [W3CXML] for more

information on this topic.

E. XSD

An XML Schema is the modeling document which defines the structure of an

XML document. Schemas are used to validate the XML documents.

XML Schema uses the same syntax that XML uses, it fully supports the

Namespace Recommendation and allows creation of complex and reusable content

models with the idea of object inheritance and type substitution.

The fundamental idea behind validation is to create XML documents that they can

be shared by multiple users without any conflict when they follow the same rules that the

schema defines. Any well- formed XML document can be validated against any schema.

 18

There are many open-source XML Schema parsers and XML validators which

can be downloaded from web-sites. The basic process of XML validation is shown in

Figure 2.1.

Figure 2.1: XML Validation Using Schema

In XFSP, XML Schema is used to define the application layer protocol format in

a Net-VE platform for participating users. The complete process of XFSP will be

discussed in Chapter III. For now, the fundamental idea is creating a schema parser over

top of a non-commercial schema parser where it can parse the schema to properly define

the protocol syntax.

For more information about XML Schema and schema parsers refer to

[W3CSchema].

F. JXTA

JXTA Project is an open-source technology which is about communication,

collaborations and sharing. The JXTA applications vary from instant messaging to

transactional web services to interactive gaming. This technology provides an open,

generalized platform for building peer-to-peer (P2P) applications.

JXTA provides a set of simple and flexible mechanisms for enabling devices such

as cell phones, wireless PDAs, PCs and servers to act as peers on a virtual network. As a

peer, any connected device can establish ad hoc networks to find, access and use the vast

resources of other peers on the network regardless of location [JXTA].

XML
Document

Validator

XML
Schema

Valid
Or

Not ?

 19

JXTA protocols establish a virtual network on top of existing networks, hiding

their underlying complexity. Unlike traditional client-server networks which rely on a

centralized point of message transport, a JXTA virtual network allows peers to interact

with other peers or resource directly, even across firewalls or different network

boundaries. In order to cross firewall problems, JXTA uses HTTP tunneling over port 80.

Most of firewall administrators consider port 80 as safe and allow communication

connections on that port. JXTA exploits this idea and crosses firewall boundaries.

Today, companies in diverse industries such as wireless telecommunications,

government, entertainment, financial services and educations have started using and

evaluating the JXTA technology.

For example in the telecommunications industry, JXTA technology enables the

creation of ad hoc wireless networks. In the media and entertainment industry, developers

are exploring the use of P2P technologies for a new generation of interactive and

participative games.

The power of JXTA comes in building virtual networks quickly for short-term

projects as well as for long ones without needing to create separate, costly and complex

infrastructures.

JXTA may not seem a solution for all of the networking infrastructure needs, but

it is a promising technology for creating ad hoc virtual networks for distributed

computing.

G. SOAP

In order to understand SOAP (Simple Object Access Protocol) we must have a

firm understanding of basic concept of web services. A web service is a network

accessible interface to application functionality, built using existing Internet technologies

[SOAP]. Web services is an interface positioned between the application code and the

user of that code. It acts as an abstraction layer, separating the platform and programming

language-specific details of how the application code is actually invoked. This process of

abstraction is shown in Figure 2.2.

 20

Figure 2.2: SOAP Web-Services Abstraction [SOAP]

SOAP’s place in the web services is as a standardized packaging protocol for the

messages shared by different applications. The SOAP specification defines nothing more

than a simple XML-based envelope for the information being transferred and a set of

rules for translating application and platform-specific data types into XML

representations (XML Marshalling and XML Unmarshalling).

SOAP is just an XML document relying on XML standards like XML Schema

and XML Namespaces for its definition and functionality. SOAP is a basic XML

Messaging where applications exchange information. It provides a flexible way for

applications to communicate.

An XML message can be anything: a purchase order, a request for current stock

price or current position of friendly forces. The XML messaging process is shown in

Figure 2.3.

Figure 2.3: XML Messaging [SOAP]

Because XML is not tied to any particular application, operating system or

programming language, XML messages can be used in all environments. A Unix-based C

Application
Code

Web

Service

Application
Client

Platform and
language specific
communication

Platform and
language agnostic
communication

Application

XML
Message

Application

 21

program can create an XML document representing a message and send it to a Windows

Java program where it can be interpreted without any conflict.

The fundamental idea is that two applications, regardless of operating system,

programming language or any type of technical implementation detail, may share the

information using nothing more then a simple message encoded in a way that both

applications understand.

This was at the heart of XFSP, where SOAP-like XML messaging is used to

transmit entity state information. In order to gain from the bandwidth, XML element and

attribute names are replaced by binary short tags and XML document is serialized into

packets. The complete process of XFSP will be discussed in Chapter III.

H. HLA

The High Level Architecture (HLA) is a software architecture that can be

considered as the glue which allows users to combine computer simulations into a larger

simulation [HLA 00]. HLA helps to create a big simulation from pieces; the fundamental

idea is component-based simulation.

For instance, there may be a need to combine simulations in several different

regions with simulators running on different machines, such as Fast Patrol Boats, Frigate

Divisions, Amphibious Ships, Tactical Air Support Maritime Operations (TASMO)

Aircrafts to create a navy battle simulation. HLA combines these standalone simulations

into a single and combined simulation with the ability to extend it in the future by adding

new simulations.

In order to be familiar with the HLA framework, some new terms are introduced

below.

 Federation: Federation is the combined simulation system created from the

existing simulations.

 Federate: Federate is the each simulation that is combined to form a

federation.

 22

 Federation Execution: Federation Execution is a session of a federation

executing together.

A federation contains a supporting software called the Run-time Infrastructure

(RTI), a common object model for the data to be exchanged between federates

(simulations) in a federation called the Federation Object Model (FOM) and a number of

federates [HLA 00].

In the HLA framework, one federate might represent one platform such as a Fast

Patrol Boat, or a federate might represent an entire Fast Patrol Boat Division. From the

perspective of HLA, a federate is defined by its single point of attachment to the RTI.

As shown in Figure 2.4, a federate might model some number of entities, or it

might have a different purpose such as just being a data collector by passively receiving

data and generating none.

Figure 2.4: Software Components in HLA [HLA 00]

The fundamental idea behind the HLA is software reuse. Design goals of the HLA

are listed below.

• It should be possible to decompose a large simulation problem into

smaller parts. Smaller parts are easier to define, build correctly and verify.

Run-time Infrastructure

Interface

Data Collector /
Passive Viewer

Simulations

Live
Participants

 23

• It should be possible to combine the resulting smaller simulations into a

larger simulation system

• The functions that are generic to component-based simulations systems

should be separated from specific simulations. The resulting generic

infrastructure should be reusable from the one simulation system to the

next.

• The interface between simulations and generic infrastructure should

isolate the simulations from the changes in the technologies [HLA].

With regard to these goals, the HLA is foremost a software architecture, rather

than a particular implementation of its infrastructure. It contains a variety of different

implementations. Consequently, it is defined not by the software, but by a set of

documents.

Currently the HLA is an IEEE standard as the IEEE 1516 specification. For more

information about the HLA the reader can refer to [HLA 00], [HLADMSO] and

[HLAIEEE].

I. DOM4J

DOM4J is a Java toolkit for writing XML processing applications, with its own

tree-based model for XML documents, inspired by the XPath data model

[DOM4JCook 01]. It has both event-based and tree-based modes, supports evaluation of

XPath expressions against the document tree, and also has an implementation of its own

tree model that supports the DOM.

The current implementation of XFSP uses DOM4J API in order to accomplish

XML processing. XML processing includes a number of sub-components such as XML

Serialization, XML Deserialization, XML Schema Parsing and XPath Addressing.

DOM4J is chosen to be the API for this project for the following reasons.

 24

• Open-Source: It is an open-source project where the source of the

complete API can be downloaded, inspected and customized (as

necessary) according to the user needs.

• Easy-to-Use: It is a Java-based API, easy-to-use and intuitive for a Java

programmer. It takes best features from DOM and SAX and puts them

together.

• Standards Compliant: It fully supports DOM and SAX together with

existing Java platform standards such as Java 2 Collections and J2EE.

• Complete XPath Integration: Complete XPath support is integrated into

the API. XPath is the ideal technology for navigating around XML

documents simply and easily.

• Handle Very Large Documents: It is fast and efficient with small memory

overhead for parsing, where it can process large XML documents with the

support of XPath, XSLT and XML Query.

With DOM4J, users are able to create their own XML tree implementations by

simply providing a DocumentFactory implementation where it can support dynamic data

binding to XML tree nodes.

For further details about DOM4J API, reader should refer to DOM4J Cookbook

[DOM4JCook 01] and on- line documentation [DOM4JOnline].

J. DREN

The Defense Research and Engineering Network (DREN) is DoD’s high-

performance network. The DREN is a robust, high-speed network that provides

connectivity among geographically dispersed user sites and shared resource centers. The

networking services of DREN are provided by a contract service where the service

provider has built DREN as virtual private network (VPN) over a public infrastructure.

The DREN provides digital data transfer services between defined service delivery points

(SDPs). SDPs are specified in terms of wide area networking (WAN) bandwidth access,

 25

network protocols (Multi Protocol Label Switching, IP, ATM) and local connection

interfaces [DREN 03].

DREN currently supports bandwidths from DS-3 (45 Mbps) at user sites to OC-12

(622 Mbps) at selected centers. Future bandwidths will scale to OC-192 (10 Gbps) and

beyond. The sites to be connected by DREN services may be at virtually any point in the

continental Unites States, Alaska and Hawaii.

Incorporating the best operational capabilities of both the DoD and the

commercial telecommunications infrastructure, DREN is the official DoD long-haul

network for computational research and testing. DREN enables many scientists and

engineers at defense laboratories, test centers, universities and industrial sites to use

high-performance computing resources.

K. INTERNET2/ABILENE/NGI

The rapid growth of Internet in the number of hosts, number of users, traffic level,

traffic nature and topology complexity has often resulted in the degradation of Quality of

Service (QoS) available to the end-users. Some replication techniques, such as caching of

recently accessed information and deliberate mirroring are used to reduce the Internet

traffic. Nevertheless, problems are common.

The growing interest in multimedia applications had huge impact both on

telecommunication networks and the Internet. With current Internet’s best-effort delivery

it seemed not quite possible to support applications which need differentiated services,

real-time streaming or real-time collaboration. These developments led the education and

research community to think about a Next Generation Internet (NGI). The Internet2

initiative provided a forum for the universities and research communities interested in

NGI activity [Ghonaimy 99].

The Internet2 project aims at serving the education and research community and

is mainly a joint project among universities mostly in United States. A release project is

the Next Generation Internet (NGI) which is envisaged to cope with demanding new

applications in all fields. The ultimate objectives of Internet2 are:

 26

• Developing a fast all-optical network

• Using more efficient switches and routers where IPv6 is supported

• Developing the new multicasting technology

• Putting an emphasis on end-to-end QoS

The first stage of Internet2 relied on the vBNS (the very high-speed Backbone

Network Service), but later developed its own backbone called Abilene, announced in

April 1998 [Ghonaimy 99].

The Abilene backbone network provides high-performance, best-effort delivery

for U.S. nationwide connectivity to Internet2 universities and their institutions. The Naval

Postgraduate School is one of the members of this community. Abilene is a pure packet-

over-SONET (POS) network providing coast-to-coast OC-48 (2.4 Gbps) IP transit.

Connectors attach to one of the POPs (Point of Presence) with either POS or

IP-over-ATM access circuits, running at OC-3 (155Mbps), OC-12 (622 Mbps) or OC-48

(2.4 Gbps) speed. Current logical connectivity is shown in Figure 2.5.

Figure 2.5: Abilene Network Logical Map [Abilene 00]

 27

With Abilene, Internet2 and NGI projects, the research community is trying to

find answers to the needs of real-time interactive applications which typically support

human-to-human collaboration or human-to-machine remote control. This demand of

interactivity imposes stringent worst-case delay, jitter and loss requirements on the

underlying network service. These applications often demand worst-case network

performance bounds that must be maintained on any time interval longer than a few

milliseconds.

In order to accomplish these achievements, researchers are trying to extend

current Internet technology with the ones that discussed above. Current Internet

technology is a single-service network where all packets are treated almost same. Many

research efforts are contributed to bring solution to the QoS problems and provide a

better technology. With all these efforts it seems quite promising to have a high-speed

Internet which fully supports IPv6 and differentiated services in the near term.

L. RELATED WORK

1. An Automated Approach to Distributed Interactive Simulation (DIS)
Entity Development

Michael Canterbury’s thesis tried to solve the limitation of DIS protocol for large-

scale Net-VEs. In that thesis, Canterbury targeted the DIS support for real-time,

simulated engagements of more than 1000 entities. In order to solve that problem,

Canterbury refined the existing DIS protocol and optimized the form and content of DIS

network traffic [Canterbury 95].

The approach taken was to design and build a protocol development tool which

was accomplished in three phases. In the first phase, a modified Backus-Naur Form

(BNF) grammar was formulated for use in modeling DIS data elements. In the second

phase, the grammar was applied to the PDUs and data types specified in DIS standard. In

the last phase, a tool, the DIS Protocol Support Utility, was developed as a means to

automate the process of authoring, editing and implementing refinements to the DIS

protocol.

 28

As a result of this effort, Canterbury specified the data elements depicted in DIS

standard by using a BNF-like grammar. With the implementation of Protocol Support

Utility, the generated grammar was parsed and program source code associated with each

data element automatically generated. The conclusion that the framework reached was

[Canterbury 95],

• A modified BNF grammar can be used to describe DIS protocol entities.

• A simple grammar might be used to model the data elements associated

with a complex protocol.

• Though the modified BNF syntax was suitable for modeling the PDUs and

data entities associated with DIS, it was not well suited for modeling the

methods or implementation details needed in processing those entities.

For further information about run-time protocol extensibility, reader should refer

to [Zeswitz 93], [Canterbury 95] and [Fischer 01].

2. Wireless Access Protocol (WAP) Wireless Markup Language (WML)
Specification

Wireless Application Protocol (WAP) is a result of continuous work to define an

industry-wide specification for developing applications that operate over wireless

communication networks. The WAP Forum, originally founded by Ericsson, Motorola,

Nokia, and Unwired PlanetWML was formed to create the global wireless protocol

specification that works across differing wireless network technology types, for adoption

by appropriate industry standards bodies. To enable operators and manufacturers to meet

the challenges in advanced services, differentiation and fast/flexible service creation,

WAP defines a set of protocols in transport, session and application layers [WAP 99].

The WML specification designed by WAP Forum defines a compact binary

representation of the XML. The binary format was designed to allow for compact

transmission with no loss of functionality or semantic information. The format is

designed to preserve the element structure of XML, allowing a browser to skip unknown

elements or attributes. The binary format encodes the parsed physical form of an XML

 29

document, i.e., the structure and content of the document entities. Meta-information,

including the document type definition and conditional sections, is removed when the

document is converted to the binary format.

Based on XML, Wireless Markup Language (WML) is intended for use in

specifying content and user interface for narrowband devices, including cellular phones

and pagers. WML includes four major functional areas [WAPW3C]:

• Text presentation and layout: WML, including image support and a

variety of formatting and layout commands.

• Deck/card organizational metaphor: All information in WML is organized

into a collection of cards and decks.

• Inter-card navigation and linking: WML includes support for explicitly

managing the navigation between cards and decks.

• String parameterization and state management: All WML decks can be

parameterized, using a state model.

3. Compressing XML with Multiplexed Hierarchical Prediction by
Partial Match (PPM) Models (XMLPPM)

XMLPPM is a data compression program that compresses XML files. It is a

combination of the Prediction by Partial Match (PPM) algorithm for text compression,

and an approach to modeling tree-structured data called Multiplexed Hierarchical

Modeling (MHM) developed by Cheney [XMLPPM].

The main idea behind XMLPPM is leveraging the work that a Simple API for

XML (SAX) parser does by encoding the sequence of events. An implemented decoder

decodes these events, and reconstitutes an XML document equivalent to the original.

Alternatively, the decoder acts as a SAX parser, parsing encoded event sequences instead

of text, and sending those events directly to the application.

In XMLPPM, a single byte event encoding is used to encode element start tags,

end tags and attribute names and to indicate events such as “begin/end characters,

begin/end comment”, and so on. The encoder and decoder maintain consistent symbol

 30

tables; whenever a new symbol is encountered, the encoder sends the symbol name and

the decoder enters it to the table [XMLPPM].

Additional to the SAX type encoder/decoder, in XMLPPM a Multiplexed

Hierarchical Modeling is used. This technique employed two basic ideas: multiplexing

several text compression models based on XML’s syntactic structure (one model for

element structure, on for attributes and so on) and injecting hierarchical element structure

symbols into the multiplexed models. With these techniques XMLPPM claims that it can

compress XML files from 5 to 30% better than any existing text or XML-specific

compressors. Further information about XMLPPM can be found at [XMLPPM] and

[XMLPPM 03].

4. XMill

XMill is an XML-conscious compressor that compresses XML documents by

using the redundancy and standard text compression approaches. XMill combined with

gzip compresses XML data about 10% better then gzip on equivalent non-XML

forms; further improvement (up to 50%) is possible with user assistance in the form of

complex command-line parameters [XMill 00].

XMill shows that XML-conscious compression can do better than text

compression alone. XMill applies three principals to compress XML data [XMill 00].

• Separate structure from data: The structure consisting of XML tags and

attributes is compressed separately from the data.

• Group related data items: Data items are grouped into containers, and each

container compressed separately.

• Applying semantic compressors: XMill can apply specialized semantic

compressors to different containers.

However, XMill’s base transformation has several drawbacks, it requires user

assistance to achieve best compression, and it wins only if the data set is large, typically

 31

over 20 KBytes because of the additional bookkeeping overhead and the fact that small

data containers are poorly compressed by gzip.

For further information about generic and XML-specific compression schemes

reader should refer to [ZLib], [BinXML], [XMill 03] and [Millau].

M. SUMMARY

In this chapter Net-VEs, NPSNET-V, XML, XML-Schema, SOAP, JXTA, HLA,

DOM4J, DREN, Internet2/Abilene/NGI are discussed. Additionally, related works such

as An Automated Approach to Distributed Interactive Simulation (DIS) Entity

Development, WML, XMLPPM and XMill are introduced to provide the background and

reasons for this thesis research.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

III. CROSS FORMAT SCHEMA PROTOCOL (XFSP)

A. INTRODUCTION

This chapter introduces the description, design and implementation detail of Cross

Format Schema Protocol (XFSP). This general XML compression scheme can be used

for automatic production of binary network protocols, and binary file formats, for any

data structures specified in an XML Schema.

B. OVERVIEW OF XFSP

The idea of creating flexible and run-time extensible application layer protocols

inspired the implementation of XFSP. The question to be answered was “How can a run-

time extensible application layer protocol be implemented?” After preliminary searches

in published papers and different software architectures, XML appeared to be an

excellent approach for describing data structures. Specifically, XML-Schema can be used

to define the protocol syntax. Because the protocols are considered to be the definition

language describing the agreement between end-users and end-systems, they can be

described well by XML-Schema using its internal as well as user defined data structures.

In order to accomplish this, a schema parser is implemented on top of an open-

source XML parser called DOM4J [DOM4JOnline 03]. That schema parser parses the

provided schema and creates entries in a table for each element and attribute defined in

the schema document. The need for this process is to be able to send the XML documents

in a more compact way by exploiting the protocol (i.e.”agreement”) notion. Initial tests

showed that a short XML document can go beyond the MTU (Maximum Transmission

Unit; i.e. 1500 bytes for Ethernet) very easily. The solution for that problem came with

binary XML or XML Serialization. Instead of sending the XML document as a serialized

text, a replacement algorithm might be used that replaces the element and attribute names

with short tag numbers to serialize the data.

Because the protocols are defined as an agreement between user applications and

if users agree on using the same protocol via the same schema, then there is no need to

send the whole name for each element and attribute. This may raise the question why a

 34

DIS- like (Distributed Interactive Simulation) [DIS] protocol is not used instead of XFSP.

Actually the answer for this question is obvious. First, in DIS- like protocols the syntax of

the protocol is static and all of the data must be in their previously specified places, so

there is no way to send a subset or selected section of the whole protocol. The second

reason is that such protocols are not run-time extensible. The syntax of the protocol

cannot be changed while the application is running. The last reason is the serialized data

can be converted easily back to the text and can be used in web-service applications like

SOAP.

With XFSP two main ideas are implemented: changing the protocol syntax at run-

time and XML Serialization / Deserialization. The problem domain is targeted to meet

the needs of non-homogenously distributed users, where non-homogeneity is primarily

described as the bandwidth distribution. Although fast networks are already present in

today’s networking infrastructures, users are still non-homogenously distributed and

cannot always access high bandwidth. The idea of changing the protocol at run-time to

meet the needs of the different users at different fidelity levels is considered as a valuable

problem to address.

The following sections cover the design and implementation details of XFSP.

C. PROTOCOL DESCRIPTION VIA XML SCHEMA

The key elements of a network protocol can be described as:

• Syntax: Describes the format and the position of data.

• Semantics: Describes the functional connection between application and

data.

For the XFSP project, semantics is not targeted to be solved and is generally

considered to be NP-Hard, because the semantic definition needs a knowledge domain

and AI generation. As described before, the run-time extensible syntax is pointed out as

the research question and targeted to be solved. To solve this problem, XML Schema is

used to define the application- layer protocol between users and serialized XML data is

sent as the payload.

 35

An exemplar application layer protocol is shown in Figure 3.1, where it is defined

by using XML Schema.

Figure 3.1: A Simple Schema Document

This schema shows that there are three top level elements, header, location and

velocity, that are connected to the root element called protocol. The data type of header is

a custom type called HeaderType and the data types of location and velocity elements are

custom type as well, Vector3Double and Vector3Float respectively. If the HeaderType is

examined, it has three elements, version as short type, exerciseID as byte type and

<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="protocol">
 <xs:complexType>
 <xs:all>
 <xs:element name="header" type="HeaderType"/>
 <xs:element name="location" type="Vector3Double"/>
 <xs:element name="velocity" type="Vector3Float"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="HeaderType">
 <xs:all>
 <xs:element name="version" type="xs:short"/>
 <xs:element name="exerciseID" type="xs:byte"/>
 <xs:element name="pdutype" type="xs:int"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="Vector3Double">
 <xs:attribute name="x" type="xs:double "/>
 <xs:attribute name="y" type="xs:double "/>
 <xs:attribute name="z" type="xs:double "/>
 </xs:complexType>
 <xs:complexType name="Vector3Float">
 <xs:attribute name="x" type="xs:float"/>
 <xs:attribute name="y" type="xs:float"/>
 <xs:attribute name="z" type="xs:float"/>
 </xs:complexType>
</xs:schema>

 36

pduType as integer. Vector3Double and Vector3Float define three attributes such as x, y

and z as double or float types respectively.

If the protocol hierarchy tree is examined (Figure 3.2), it can be represented by a

tree structure as follows. Elements are shown by boxes and attributes are represented by

ellipses.

Figure 3.2: Tree Representation of Example Schema

The extensibility also shows itself in this tree representation, that the protocol can

be described in different ways; i.e. the attribute and element locations do not have to be at

the exact place in a PDU as it is in DIS. Another legitimate representation for the same

protocol payload is shown in Figure 3.3.

Figure 3.3: Alternate Tree Representation of Example Schema

protocol

header location velocity

version

exerciseID

pduType

 y

 x

 z

 y

 x

 z

protocol

header location velocity

version exerciseID

pduType

y z x y z x

 37

Another area for extensibility might be the capability to send a subset of this

protocol tree to users who do not need to know the whole data set. XFSP can also handle

this selective transmission process.

The implementation detail of XFSP is examined in the following sections. The

UML diagrams shown in Figure 3.4 and Figure 3.5 provide background information

about the class hierarchy of the XFSP Project.

Figure 3.4: UML Diagram for Root Directory of XFSP (Generated by [ESS])

 38

Figure 3.5: UML Diagram for Implemented Data Types corresponding to XML Schema
and X3D (Generated by [ESS])

D. SCHEMA PARSING

As described before, the data-defining XML Schema is parsed to create the

application layer protocol. The end product of the parsing process is a look up table

where element and attribute names and associated data types can be retrieved.

 39

The parsing process assigns a unique short number (i.e. token) for start and end

tags of each element, as well as an element-specific token for each attribute. The process

also determines the data types used by elements or attributes. The element or attribute

names do not need to be unique; the schema parser is able to distinguish non-unique

names.

If the previous schema document is examined for the parsing process, the

resultant tables for element and attribute look ups would be as follows (Table 3.1 and

Table 3.2).

Name Start Tag Number End Tag Number Datatype

/protocol 10 11 Null

/protocol/header 12 13 ComplexType

/protocol/location 14 15 ComplexType

/protocol/velocity 16 17 ComplexType

/protocol/header/version 18 19 XSDShort

/protocol/header/exerciseID 20 21 XSDByte

/protocol/header/pduType 22 23 XSDInteger

Table 3.1: Element Look up Table Example

Name Tag Number Datatype

/protocol/location/@x 24 XSDDouble

/protocol/location/@y 25 XSDDouble

/protocol/location/@z 26 XSDDouble

/protocol/velocity/@x 27 XSDFloat

/protocol/velocity/@y 28 XSDFloat

/protocol/velocity/@z 29 XSDFloat

Table 3.2: Attribute Look up Table Example

 40

The XPath addressing and tag numbers are used as keys for creating hash tables.

These keys provide quick access to the elements and attributes during the serialization

and deserialization processes. The table generation is done in TableManager class. This

class also provides adding a new schema over the existing ones. In this way, new schema

documents can be parsed at run-time when new protocols need to be introduced to the

system.

Another feature of this class is providing an empty XML document (tree)

according to the given schema. The capability to provide a sub-tree when the root of the

requested sub-tree is passed as parameter is further provided.

The implemented parser cannot handle every schema document. Schema parsing

operation is a difficult process and many cases need to be handled uniquely. One of the

difficulties is assigning a unique name to every element and attribute. This is vital

because it affects the correctness of the serialization and deserialization processes. A

counter example where unique name assignment might be mishandled is shown in

Figure 3.6.

Figure 3.6: Example Schema Demonstrating Valid Distinction of Dissimilar Elements

with Identical Names

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="SameElementName">
 <xsd:complexType>
 <xsd:attribute name="SameAttrName" type="xsd:boolean"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="AnotherElement">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="SameElementName">
 <xsd:complexType>
 <xsd:attribute name="SameAttrName" type="xsd:int"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 41

In this example there are two attributes with different data types but with the same

name connected to different elements that have the same element name. Figure 3.6

demonstrates valid distinction of dissimilar elements with identical names.

Discrimination of over- loaded element names occurs through context-sensitive inclusion

of parent element inheritance during tokenization.

Figure 3.7: Automatically Amended, Intermediate Example Schema Demonstrating
Valid Distinction

In Figure 3.7 the same conflict occurs in a different way where this conflict must

be resolved before the tag assignment process. If the XPath representation of conflicted

attributes is examined they can be represented as /protocol/location_1/location/@x

(includes y and z) and /protocol/location_2/location/@x. Although they are bound to the

<xs:element name="protocol">
 <xs:complexType>
 <xs:all>
 <xs:element name="location_1" type="locationType_1"/>
 <xs:element name="location_2" type="locationType_2"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="locationType_1">
 <xs:sequence>
 <xs:element name="location" type="Vector3Float"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="locationType_2">
 <xs:sequence>
 <xs:element name="location" type="Vector3Double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Vector3Float">
 <xs:attribute name="x" type="xs:float"/>
 <xs:attribute name="y" type="xs:float"/>
 <xs:attribute name="z" type="xs:float"/>
 </xs:complexType>
 <xs:complexType name="Vector3Double">
 <xs:attribute name="x" type="xs:double "/>
 <xs:attribute name="y" type="xs:float"/>
 <xs:attribute name="z" type="xs:float"/>
 </xs:complexType>
</xs:schema>

 42

same element name, they are nonetheless unique and thus need to be differentiated.

Attribute names are also fully qualified by parent elements and types to allow

distinguishing them despite possible overriding of the same name by multiple many

different attributes. The schema parser in XFSP handles many of these cases.

E. XML SERIALIZATION

The purpose of XML Serialization process is to send XML documents in a more

compact way. In order to accomplish this, the attribute and element name replacement

idea is used. The serialization can be considered as the preorder traversal of a given XML

tree putting all node names and associated data to the output stream.

XFSP can serialize text-based XML documents as well as Document Object

Model (DOM) trees. This feature comes with the open-source DOM4J API.

DocumentProcessor class is implemented to serialize the XML documents or Document

objects. The UML diagram of DocumentProcessor class is shown in Figure 3.4.

There are two main constructors for this class. First if the XML document to be

serialized provides the schema that it implements, that information is used to build the

look up table. Otherwise the TableManager must be constructed and passed to the

DocumentProcessor before the serialization method is fired. The following XML

document (Figure 3.8) implements the schema document provided before. This XML

document is used as an example in describing the serialization process.

Figure 3.8: XML Document for a Sample Protocol

<?xml version="1.0" encoding="UTF-8"?>
<protocol xmlns :xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="example.xsd">
 <location x="3.45" y="56.72" z="-10.1"/>
 <header>
 <exerciseID>1</exerciseID>
 <version>1</version>
 <pdutype>2</pdutype>
 </header>
 <velocity x="1.0" y="0.0" z="-0.7"/>
</protocol>

 43

If element and attribute tag names are replaced in the serialization process with

the short numbers looked up from the parsed schema, the above XML document can be

represented as in Figure 3.9.

Figure 3.9: XML Document with Replaced Tags

In order to signal specific conditions such as elements that have data or start and

end of attribute reading, special tokens 0, 1 and 2 are used and these numbers are not

assigned to any element or attribute in the schema parsing process. The serialization and

deserialization processes are shown in Figures 3.10 and 3.11. The meanings of tokens and

tags are also shown in those figures. Tokens are the short numbers signaling deserializer

to change its state. Tags represent the name of the elements or attributes obtained from

the previously generated look up table.

Tokenization and de-tokenization are handled in Serializer and Deserializer

programs. The input for the Serializer is a raw XML document as shown in Figure 3.8.

The output of the Deserializer is the same XML Document. The tokens and tags in the

Figures 3.9, 3.10 and 3.11 are shown for the clarity and understandability purposes. The

XML document is not tokenized before entering the Serializer. The tokens and tags are

present during the transit of the document from the Serializer to the Deserializer.

<?xml version="1.0" encoding="UTF-8"?>
<10 >
 <14 24="3.45" 25="56.72" 26="-10.1" 15>
 <12>
 <20>1<21>
 <18>1<19>
 <22>2<23>
 <13>
 <16 27="1.0" 28="0.0" 29="-0.7" 17>
<11>

 44

Figure 3.10: XML Serializer and XML Deserializer showing Native Tags

header

exerciseID /exerciseID

version /version

pduType /pduType

/header

velocity

/velocity

/protocol

Serializer

D

protocol

location

D

D /location

Deserializer

ATag ATag ATag

AET

D

D

D

AST D ATag D ATag ATag

D AET

DT

DT

DT

Key :

 : Data Payload

 : Data Type Token

 : Attribute Token

 : Attribute Start Token

 : Atrribute End Token

D

DT

ATag

AST

AET

AST

 45

Figure 3.11: XML Serializer and XML Deserializer with Tokens and Tags Replaced by
Short Numbers

Serializer
Deserializer

11

protocol

location

24 3.45 25 56.72 26

-10.1 2 15

12

20 1 21

18 1 19

22 2 23

13

16 1 27 1.0 28 1.0 29

-0.7 2 17

0

0

0

AST

Key :

 : Data Payload

 : Data Type Token

 : Attribute Token

 : Attribute Start Token

 : Atrribute End Token

D

DT

ATag

AST

AET

 46

In Figure 3.11, the Deserializer received the tokens 10, 14 and 1 and started

building the XML tree gradually. The complete end product of XML Serializer is shown

in Figure 3.12. The serialized document is interpreted from left to right and top to bottom.

10 14 1 24 3.45 25 56.72 26 -10.1 2 15

12 20 0 1 21 18 0 1 19 22 0

2 23 13 16 1 27 1.0 28 1.0 29 -0.7

2 17 11

Figure 3.12 : Serialized XML Document

In order to properly describe, validate and verify the designed algorithm,

Communicating Finite State Machines (CFSMs) are used [CFSM]. Finite State Machines

represent the actions taken by Serializer and Deserializer algorithms in serializing XML

Documents or deserializing them back from the encoded stream. The finite state machine

diagram of serialization process is shown in Figure 3.15. In this figure, states are

represented by circles and the arrows between states represent the state changes. The

valid transitions and failure of transitions are shown in Figure 3.13 and Figure 3.14

Figure 3.13: Valid Transition

Figure 3.14: Transition Failure Resulting in Error

start end

E state

 47

Figure 3.15: Communicating Finite State Machine (CFSM) Diagram of the Serialization
Process

The state table for the CFSM used to validate and verify the serialization process

is shown in Table 3.3. This table provides information about the purpose and actions

taken in the states.

finished_writing

start

have_
element

read
element
content

build
attribute
payload

attribute
complete

element
complete

end

E

end_of_element

end_of_element

end_of_element

data_to_write

data_to_write

new_element

new_element
new_attribute

end_of_attr

attr_payload
root_element

E

xml_document

new_attribute

white_space
?

new_element

continued_
content_
payload

E

E
E

extract
doctype, PI,

schemas

white-space

?

 48

Name Purpose / Action Next Input / Transitions

start

Waits for the incoming XML

Document. When XML

document is passed in, the

DOCTYPE, Processing

Instruction and Schema

information are removed.

Input : XML Document.

Transition : The root element is

passed to “have element” state.

have element

Waits for the root element of the

document or the root element of

the sub-elements. The element

name is looked up from the table

and the corresponding tag is put

into the output stream.

Input : Start of the element.

Transitions :

 1- If data is present, state is

transitioned to “read content” state

via data_to_write transition.

 2- If end_of_element is

encountered, state is transitioned to

“element complete” state.

 3- If sub-elements are encountered,

state is transitioned to itself via

new_element transition.

 4- If element start tag is not found

in the look up table, an error is raised.

 49

Name Purpose / Action Next Input / Transitions

read

element

content

Data Token “0” is put into the stream.

Content from the XML Document is

parsed and serialized according to its

data types such as:

1- Non-continued data is put

directly without putting size

token.

2- If array type is encountered,

first the data is parsed and its

length measured; then the

length token and data are put

into the stream.

Input : Payload of an element.

Whitespace is consumed as

appropriate

Transition :

 1-If end of payload is

encountered state is transitioned

to “element complete” state.

 2- If payload is a continued

payload, state is transitioned to

itself.

 3- If the datatype of the

corresponding element is not

found an error is raised.

build

attribute

payload

Attribute Token “1” is put into the

stream to signal the incoming

attributes. This token is used only at

the start of the first attribute. For

attribute name the tag is looked up

from the table and written to the

stream. Data is parsed and handled

as;

1. Non-continued data is put directly

without putting size token.

 2. If an array type is encountered,

first the data is parsed and its length

measured, the length token and data

are put into the stream.

Input : Payload of an attribute.

Transition:

1-If end of payload is

encountered state is transitioned

to “attribute complete” state.

 2- If payload is a continued

payload, state is transitioned to

itself via the attr_payload

transition.

 3- If the datatype of the

corresponding attribute is not

found from the look up table, an

error is raised.

 50

Name Purpose / Action Next Input / Transitions

element

complete

The end token for the

element is looked up from

the table and put into the

stream.

Input : End of the element; next token

Transition:

1-If the element to write is the last element

in the XML Document, state is transitioned

to state “end”.

 2- If new element is encountered, state is

transitioned to “have element” state via the

new_element transition.

 3- If the token corresponding to the

element is not found from the look up

table, an error is raised.

attribute

complete

Checks for the new

attributes, data for the

current element, and new

elements.

Input : End of the last attribute; next token

Transition :

 1-If all attributes are handled as indicated

by receipt of end_of_element token, state is

transitioned to “element complete” state.

 2- If a new attribute token is encountered,

state is again transitioned to “build

attribute payload” state.

 3- If token for payload data is

encountered for the element, state is

transitioned “read element content” state.

 4- If new element token is encountered,

state is transitioned to “have element” state.

 5- If none of the above tokens are

encountered, an exception is raised.

 51

Name Purpose / Action Next Input / Transitions

E
Error Condition: declares the

failure of the transition

In any state errors may occur. The

reasons for the error state are listed

below.

1 – Token numbers cannot be found for

element or attribute.

2 - Data serialization cannot be handled

properly.

3 - XML Document is not well- formed.

4- XML Document is not valid.

end
Declares the success of the

serialization process.
Stream Serialization Complete

Table 3.3: Serialization Algorithm State Table

The transition table for XML Serialization is shown in Table 3.4. This table

identifies the names, purposes, start and end states of the performed transitions in

Serializer CFSM. The transitions are the changes from the beginning state to the end state

and occur in the conditions stated in Table 3.3.

Name Purpose Start State End State

extract doctype, PI,

schemas

Extracts DOCTYPE,

Processing Instruction and

Schema Information from

the XML Document prolog

and root element

start start

root_element
Transition from start to have

element
start have element

 52

Name Purpose Start State End State

have element

attribute complete
new_element

Declares the existance of

the new element

element complete

have element

have element
new_attribute

Declares the existence of

first or new attribute attribute complete

build attribute

payload

have element

read content end_of_element
Declares the end of the

element.
attribute complete

element

complete

have element data_to_write Declares that current

element has data to write. attribute complete
read content

end_of_attr Declares the end of the

attribute is encountered

build attribute

payload

attribute

complete

attr_payload The payload for this

attribute is an array type.

build attribute

payload

build attribute

payload

continued content

payload

The payload for this

element is an array type.
read content read content

finished_writing Declares the end of the

document is reached.
element complete end

attribute complete
attribute

complete

white_space Removes white space

between attributes or

element tags as

appropriate.
read element

content

read element

content

Table 3.4: Serialization Algorithm Transition Table

 53

In order to show how much bandwidth is saved, the previous text-based XML

Document is sent in four different ways: first by sending the document as a text file; in

the second and third, serializers JDOM and DOM4J are used, which remove whitespace;

and in the last one XFSP is used. As seen in Figure 3.16 XFSP provides almost 60%

compression over the other three methods for this example document.

Figure 3.16: Comparison of Serialization Programs

F. XML DESERIALIZATION

XML Deserialization can be defined as recreating the XML tree back from the

received binary stream. The purpose and implementation detail of sending XML

documents in a compact way is described in the previous sections. In this section the

process of deserializing back to the XML document is discussed.

For deserialization, BinaryReader class is implemented. The UML diagram for

this class is shown in Figure 3.4. In order to construct a BinaryReader object, a look up

table has to be created and passed as a parameter to the constructor of the class. That look

up table is used for finding the element and attribute names and their data types as well.

The pseudocode for binary reading operation is provided in Figure 3.17. In this operation,

there can be two main parsing states, such as reading element state and reading attribute

389 383 378

118

0

50

100

150

200

250

300

350

400

450

1 2 3 4

In
 B

yt
es

File JDOM DOM4J XFSP

 54

state. These states signal the type of reading operation. If the parser is in reading element

state then it can read a tag that corresponds to the start of an element, or a tag that

corresponds to the end of the element, or a tag which states that actual data must be read

next, or a tag which signals that a series of attributes will be read next.

When the parser enters the attribute-reading state, it can read a tag that

corresponds to an attribute or a tag which signals the end of reading attributes which

results with changing the reading state.

Figure 3.17: Binary Reader Pseudocode

parse_state := element_reading;
current_element := null;

function binary_reader ()
 do
 if (parse_state = element_reading)
 read_elements();
 if (parse_state = attribute_reading)
 read_attributes ();
 while (not_end_of_stream)
end function;

function read_elements ()
 read_tag();
 if (element_start_tag)
 create_element();
 bind_to_current_element();
 push_to_stack();
 else if (element_end_tag)
 current_element := pop_stack();
 else if (data_tag)
 read_data();
 bind_to_current_element();
 else if (attribute_start_tag)
 parse_state := attribute_reading;
end function;

function read_attributes ()
 read_tag();
 if (attribute_end_tag)
 parse_state : = element_reading;
 else
 read_attribute_tag ();
 create_attribute();
 read_data();
 bind_to_current_element();
end function;

 55

As seen in pseudocode, the main approach in recreating the XML document is

gradually building the tree back by using stack operations. The major steps in this process

can be seen in Figure 3.18, some in-between steps are skipped to reduce the complexity

in the figure.

Figure 3.18: XML Deserialization

protocol location
Step-1

protocol

Step-2

location

protocol

Step-3

Step-4

header
version exerciseID

pduType
Step-5

header

Step-6

Step-7

x y z
x y z

location

protocol

x y z

location

protocol

x y z

version exerciseID

pduType

header

location

protocol

x y z

version exerciseID

pduType

header

location

protocol

x y z

velocity
x y z

version exerciseID

pduType

header location

protocol

x y z

velocity
x y z

Step-8

 56

The Deserializer CFSM is shown in Figure 3.19. This figure defines the algorithm

used to deserialize the received stream back into the original XML tree.

Figure 3.19: Communicating Finite State Machine (CFSM) Diagram of Deserialization
Process

start

element
start

continued
data

attribute
start

build
payload

element
end

end

incoming
stream

start_tag

start_tag

start_tag

end_tag

end_tag_
found

read_data

attribute_
token_found

read_attribute

attribute_payload

EOF

child_element_
found

get
length

array_type

read_length_
token

continuation_
token_
found

end_tag

open_or_close
element_tag_

found

E

E

E

E

E new_attribute_
found

 57

The state table for the CFSM used to validate and verify the deserialization

process is shown in Table 3.5. This table provides information about the purpose and

actions taken in the states.

Name Purpose / Action Input / Transitions

start
Waits for the incoming

stream.

Input : Incoming serialized stream

Transition : When the tag for the root

element is read and looked from the

table, state is transitioned to “element

start” state.

element start

The element for the

deserialized tag is created

and pushed to the stack.

Input : Token for the name of the element

Transition :

 1- If another tag for a new element is

encountered, state is transitioned to itself.

 2- If end tag for the current element is

encountered, state is transitioned to

“element end” state.

 3- When data token is encountered,

state is transitioned to “continued data”

state.

 4- In case that an attribute start token is

found, state is transitioned to “attribute

start” state.

 5- When none of the above tokens are

found, an exception is raised.

 58

Name Purpose / Action Input / Transitions

attribute start

The start tag for the attribute

names is parsed from the

stream, then a new attribute

is created and bound to the

current element.

Input : The special token “1” which

indicates the start of the attributes.

Transitions :

 1-If data type of the current attribute is

not variable length, state is transitioned

“build payload” state via read_attribute

transition.

 2- If data type of the current element is

variable length, the state is transitioned to

“get length” state via array_type

transition.

 3- When none of the above tokens are

found, an exception is raised.

build payload

Builds the payload of the

current attribute and binds

the created data object to the

attribute.

Input : The payload of the attribute

Transitions :

 1- If start of new attribute is

encountered, state is transitioned to

“attribute start” state.

 2- If open or close tag of the element is

found, state is transitioned to “element

start” state.

 3- In variable length data case, payload

of the current attribute is created by

reading special tags between data blocks.

 4- If continuation token is found, state is

transitioned to “get length” state.

5- When none of the above tokens are

found, an exception is raised.

 59

Name Purpose / Action Input / Transitions

continued

data

Builds the payload of the

current element and binds it

to itself.

Input : The data to parse

Transitions :

 1- If child element is found, state is

transitioned to “element start” state.

 2- If end of the current element is

encountered, state is transitioned to

“element end” state.

 3- If data cannot be parsed or when none

of the above is found, an exception is

raised.

element end

Pops the element from the

stack and binds it to current

root element.

Input : End tag of the current element.

Transitions :

 1- If a start tag for a new element is

encountered, then state is transitioned to

“element start” state.

 2- If end of the current stream is found,

then state is transitioned to “end” state.

 3- If another end tag of another element

is found then state is transitioned to itself.

 4. When none of the above tokens are

found, an exception is raised.

 60

Name Purpose / Action Input / Transitions

get length
Reads the length of the

variable length data.

Input : The data type of the current

attribute or data continuation token.

Transitions :

 1- The length of the data is read and

state is transitioned to “built_payload”

state.

E
Error condition: declares the

failure of the transition

In any state errors can occur. The

reasons for the error state are listed

below.

1 - Tag numbers cannot be found.

2 - Data deserialization cannot be

handled properly.

3 – Invalid tokens are received.

End
Declares the success of the

deserialization process.

Input : End of the data stream

Transitions : --

Table 3.5: Deserialization Algorithm State Table

The transition table for XML Deserialization is shown in Table 3.6. This table

identifies the names, purposes, start and end states of the performed transitions in the

CFSM.

Name Purpose Start Sate End State

incoming stream
The start of the process is

declared.
--- start

 61

Name Purpose Start State End State

start

element start start_tag
The start tag of an element is

read.
element end

element start

element start

element end end_tag
The end tag of the element is

read.
continued data

element end

read_data Data is encountered element start continued data

attribute

token_found

Special token “1” is read

from the stream
element start attribute start

child_element_found

Another start tag is found

during the processing

current element.

continued data element start

read attribute
The token for the current

attribute is read.
attribute start built payload

new_attribute_found

A new attribute is found

(token for the new attribute

is read from the stream).

build payload attribute start

attribute_payload

Continuation of parsing the

payload of the current

attribute.

build payload build payload

read_length_token

The length token for the

variable length attribute

payload is read.

get length build payload

 62

Name Purpose Start State End State

continuation_token

found

A special token for payload

continuation is found.
build payload get length

open_or_close

element_tag found

Open or close tag for an

element is read.
built payload element start

array_type

If data type of the current

attribute is an array type,

where the data type is

looked up from the table.

attribute start get length

EOF End of stream is read. element end end

Table 3.6: Deserialization Algorithm Transition Table

G. DATA TYPES

In XFSP 13 native data types [W3C Schema Part II] are implemented. These data

types provide the foundation of data structures that XFSP can understand. The main point

of implementing XFSP data types is pushing the serialization and deserialization of data

into the classes where data is actually stored.

These data objects are created when the text-based XML document is parsed or

when a serialized stream is received at the user end. The UML diagram for implemented

data types is shown in Figure 3.5.

The data types can be divided into two main categories such as Complex Type

and Simple Type. Complex Type provides name storage for the XML elements where

they implement non-primitive type data structures. Simple Types are the objects where

actual primitive or array type data is stored. These data types have the capability to store

the data, serialize it into the given output stream, deserialize it from the received input

stream and provide that data as text to the user. The implemented data types are shown

below. The prefix XSD is used to distinguish these types from the primitive types used in

the Java programming language.

 63

• XSDByte

• XSDUnsignedByte

• XSDShort

• XSDUnsignedShort

• XSDInteger

• XSDUnsignedInt

• XSDLong

• XSDFloat

• XSDDouble

• XSDBoolean

• XSDString

• XSDComment

• SimpleTypeExtension

In XFSP, these objects are bound to the XML tree during the tree generation

process. These objects can represent primitive data structures as well as user defined

complex data types.

H. XFSP AND NPSNET-V

XFSP is introduced as a run-time extensible application layer protocol into the

NPSNET-V. As discussed before, NPSNET-V is a run-time extensible networked virtual

environment architecture having both DIS and HLA capabilities to share information for

participating users. The major advantage of using NPSNET-V to show the run-time

extensibility of application protocols is its component based framework allowing

components to be loaded at run-time to build the actual virtual-environment architecture.

 64

NPSNET-V uses many well-known design patterns. The major ones that are used

in XFSP components are Interface and Listener patterns. Both of these design patterns

are highly used in the XFSP component in NPSNET-V architecture.

The idea behind the Interface pattern is “… Keep a class that uses data and

services provided by instances of other classes independent of those classes by having it

access those instances through an interface” [Grand 98]. This pattern allows for a plug-

and-play type of architecture within an application. “For example a certain application

relies on a specific service to be provided, and that service can be provided by different

service providers. All that the application interface needs to specify is a set of functions

that any service provider must implement in order to provide the desired service. Any

service provider that is to be used with that application must implement the function

required by the interface in order for the applications to be able to use its services”

[Salles 02].

The second pattern is the Listener pattern, also commonly known as Observer

pattern. This pattern lays the foundation for efficient notification of events occurring in

one object to be transmitted to registered objects.

In order to implement the XFSP component in NPSNET-V, two main controller

modules, StandardXFSPController and XFSPExplosionManagerController are

implemented. These modules can understand entity state and explosion packets defined

by XML-Schemas.

These controllers define the semantics between the protocol syntax and

application. They cause action of the received packets to be represented correctly in a 3D

world when they are issued by the participating entities. Currently the semantics of fire

and collision packets are not defined in the NPSNET-V framework, but XFSP can parse

those packets and create the XML documents from the received streams.

UML diagram of classes implemented to integrate XFSP and NPSNET-V is

shown in Figure 3.20.

 65

Figure 3.20: StandardXFSPController UML Diagram (Generated by [ESS])

 66

The following pictures show the run-time extensibility of the protocols in

NPSNET-V. Figure 3.21 shows the start of the application with two ships communicating

via multicast where they implement the same entity state protocol. Each ship is

controlled by separate processes running on the same computer or separate hosts. In the

presented pictures, therefore, one ship is local controller (master) and the other is ghosted

copy (slave).

Figure 3.21: Start of NPSNET-V Application

Figure 3.22: Run-time Detonation Protocol Loading

 67

After the start of application, one of the clients loads a detonation entity

associated with a detonation protocol schema. At the parsing process the entity that have

loaded the schema sends a special message to the multicast group declaring the new

protocol that it loaded. When the other entities receive the special message they parse the

schema pointed to by the URL in the message and are then able to understand the

detonation protocol syntax. Figure 3.22 shows one of the clients that received the

message and parsed the schema pointed to in that message, resulting in execution of a

detonation behavior. The format of the special message is shown below in Figure 3.23.

Figure 3.23: NPSNET-V Simulation Manager Type Packet Format

I. SUMMARY

This chapter provides information about the implementation details of XFSP and

an exemplar usage in a Net-VE. Schema parsing, XML Serialization and XML

Deserialization processes are covered in detail to address the research question and show

how an XML document can be compressed and restored.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="xfsp">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="manager" type="managerType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="managerType">
 <xs:sequence>
 <xs:element name="entitySite" type="xs:short"/>
 <xs:element name="entityApplication" type="xs:short"/>
 <xs:element name="entityID" type="xs:short"/>
 <xs:element name="schemaURL" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

IV. BINARY X3D

A. INTRODUCTION

This chapter examines the design and implementation details of a binary X3D

format for network streaming and file storage.

B. OVERVIEW

Extensible 3D (X3D) is an XML file format that describes a scene graph which is

rendered as a 3D scene. X3D scene graph is a directed acyclic graph with nodes and

edges. Nodes in the scene graph define the graphic and aural objects contained in the

system, and the edges define the transformation hierarchy containing the spatial

relationship of objects [Web3D]. X3D is the third-generation version of the ISO standard

for The Virtual R-M-C-VRML97.

Being an XML text file format makes X3D fairly heavyweight for network

transmission as well as storage purposes. Text files generally require much more

bandwidth than their binary equivalents. The compressed versions of text files offer an

efficient way to send or receive data over the network as well as to store them locally.

The idea of schema parsing, XML Serialization and XML Deserialization is used to

compress the X3D files. The output file format is called “Binary X3D” with .b3d or

.b3z file extensions depending on whether or not GZIP compression is further used.

The following sections describe and analyze the binary X3D program by

providing essential details on process flow.

C. X3D-EDIT

X3D-Edit is an authoring tool for X3D graphic scenes developed by using IBM’s

Xeena, an XML-based tool-building application. It is a graphics file editor for X3D files

that enables simple error-free editing, authoring and validation of X3D scene graph files

[Brutzman X3D]. X3D scene graph files are translated to VRML97 syntax by using an

XSLT stylesheet. The converted file format can be rendered by open-source browsers

 70

(Xj3D) as well as commercial products; e.g., Internet Explorer by providing a plug- in.

Figure 4.1 shows the X3D Edit interface for a typical “Teapot” example.

Figure 4.1: Teapot.x3d File Example

Figure 4.2 shows the output file rendered by using Cortona [Cortona 03] plug- in

for Internet Explorer browser. The rendered file is in VRML97 file format and generated

by applying an XSLT stylesheet to the teapot.x3d file. The Figure 4.1 and Figure 4.2 are

presented to show the how an XML file that defines a 3D scene graph can be rendered.

 71

Figure 4.2: Teapot.wrl File Example

D. BINARY X3D

1. Binary X3D Program Interface

Binary X3D program provides a compact way to store X3D files by exploiting the

idea of schema parsing and XML Serialization described in previous chapter. In addition

to XML Serialization, binary X3D program provides options to use GZIP streams to

further compress the X3D files. The interface for the binary X3D program is shown in

Figure 4.3. The implementation details and process flows are discussed at each option

description.

Figure 4.3: BinaryX3D Program Interface

 72

• The option “-c” is used to compress the X3D file to a binary X3D file. The

output file extension is considered as .b3d which stands for binary X3D.

The process for this operation is shown in Figure 4.4. The X3D file is

provided as parameter to the Serializer program and compressed by using

X3D Schema.

Figure 4.4: Binary X3D File Generation

• The option “-d” is used to decompress binary X3D file format. The

process for this operation is shown in Figure 4.5. The .b3d (Binary X3D)

file is provided as a parameter to the Deserializer and decompressed by

using X3D Schema.

Figure 4.5: .x3d File Generation from .b3d File

• The option “-cz” is used to compress the X3D file by using Serializer

program and GZIP streams. The output file format is considered as B3Z

which stands for gzipped binary X3D. The process for this operation is

shown in Figure 4.6. The X3D file is provided as a parameter to the

Serializer program where it is serialized using X3D Schema and

compressed using GZIP compression.

XFSP
Serializer

X3D
Schema

X3D File
Binary X3D
file (.b3d)

XFSP
Deserializer

X3D
Schema

B3D File .x3d File

 73

Figure 4.6: .b3z File Generation (Gzipped Binary X3D)

• The option “-dz” is used to decompress gzipped binary X3D (.b3z) file

back to the .x3d file format. The process for this operation is shown in

Figure 4.7. The .b3z file is provided as a parameter to the GZIP stream

and decompressed. The decompressed file (.b3d) is provided to

Deserializer program and converted back to the .x3d file by using X3D

Schema.

Figure 4.7: .x3d File Generation from .b3z File

• The option “-dr” is used to decompress binary X3D (.b3d) files and

render them. To render .b3d file format an XSLT stylesheet is applied to

the decompressed B3D (.x3d) file and transformed to VRML97 file

format. The VRML97 file format is loaded into a VRML or X3D browser

(e.g. Xj3D). The complete process flow for this operation is shown in

Figure 4.8.

XFSP
Serializer

X3D
Schema

.x3d File .b3d GZIP
Compression

.b3z

GZIP
Decompression

X3D
Schema

.b3z File .b3d XFSP
Deserializer

.x3d

 74

Figure 4.8 : Rendering .b3d File Format

• The option “-dzr” is used to decompress .b3z files and render them by

using a browser. To render .b3z file format, the input file is

decompressed by gzip stream and converted to a .b3d file format. The

.b3d file is converted to .x3d file by using the XFSP Deserializer

program. An XSLT stylesheet is applied to the X3D file and transformed

to VRML97 file format. The VRML97 file is rendered by using Xj3D

browser. The complete process flow for this operation is shown in

Figure 4.9.

Figure 4.9: Rendering .b3z File Format

XFSP
Deserializer

X3D
Schema

.b3d File .x3d File XSLT
Transformer

VRML97

X3dToVRML97.xsl
Stylesheet

Xj3D
Browser

GZIP
Decompression

X3D
Schema

.b3z File .b3d File XFSP
Deserializer

VRML97

Xj3D
Browser

XSLT
Transformer

.x3d File
X3dToVRML97.xsl

Stylesheet

 75

2. Analysis

To test the designed program, a common example “Teapot” is used. The

teapot.x3d file contains 14994 integer numbers that define the coordinate indices, and

5916 floating point numbers that represent the coordinates of vertices in 3D.

Furthermore, the Teapot file includes various elements and attributes that define the

material and color properties of the object. The rendered teapot is shown in Figure 4.2.

The following charts shows the data collected by using different file formats and

compression schemes. In Figure 4.10 the x-values represent the file format, and y-values

represent the size of the file in Kbytes. The file formats used for comparison are

described below.

 - x3d : X3D File Format

 - wrl : VRML97 File Format

 - b3d : Binary X3D File Format

 - zip_x3d : X3D File Compressed by WinZip Program

 - zip_wrl : VRML97 File Format Compressed by WinZip Program

 - b3z : X3D File Compressed by Serializer using GZIP Streams

Figure 4.10: File Format Comparison for Teapot Exemplar

129

111

84

34 33
29

0

20

40

60

80

100

120

140

x3d wrl b3d zip_x3d zip_wrl b3z

File Formats

Si
ze

 in
 K

B
yt

e

 76

Figure 4.11 represents the storage and bandwidth gained by using different file

formats. The base for percentage calculation is set as the teapot.x3d file. The B3Z file

format provides 78% bandwidth saving over the regular X3D file format. Furthermore,

B3Z file format provides 12% saving over the compressed WRL file format commonly

known as WRZ file format. The teapot.x3d example contains much more data than the

element and attributes names. For an exemplar including many elements and attributes,

the storage savings will increase due to the Serializer program compression. In that case,

attribute and element names will need more storage and the Serializer program will work

more effectively to compress the X3D file.

Figure 4.11: File Format Percentage Saving for Teapot Exemplar

The properly reconstructed and rendered teapot.b3z file is shown in Figure 4.12.

The total amount of time for decompression, stylesheet transformation and rendering is

measured as 5 seconds. The experiment was conducted on a Dell Inspiron 8200 Laptop

with P4 1.6GHz CPU, 512 MByte RAM and 64 MByte GeForce-4 graphics card.

14

34

73 74
78

0

10

20

30

40

50

60

70

80

90

wrl b3d zip_x3d zip_wrl b3z

File Formats

Sa
vi

ng
s i

n
%

 77

Figure 4.12: Rendered teapot.b3z File

E. SUMMARY

This chapter provides information about the implementation details of binary

X3D file formats (.b3d and .b3z). .b3d file format offers 34% bandwidth gains over

regular X3D file format; B3Z file format offers 78% bandwidth gains for Teapot

exemplar. Additionally, .b3z file format provides 12% bandwidth gains over zipped

VRML97 file format. These compression improvements from using XML are consistent

with other results. The implemented program provides an effective way to use network

bandwidth as well as local storage capacity by using XML Serialization and GZIP stream

compressions.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

V. PROTOCOL DATAGRAM UNIT (PDU) FARM

A. INTRODUCTION

This chapter examines the design and implementation details of Pdu Server, Pdu

Capture and Network Analyzer programs.

B. OVERVIEW

In order to test the designed Net-VE for 24 hours a day and 7 days a week, three

main programs, Pdu Server, Pdu Capture and Network Analyzer are implemented. As

their names imply, these programs are used to send and receive packets as well as to

monitor the network state between end points.

In the monitoring process, previously described metrics such as latency, drop-rate

and jitter are collected and stored in a file to help users draw conclusions about the

current state of the network between the end points.

Protocol Datagram Unit (PDU) Farm is defined as the collection of computers

where previously recorded or run-time generated packets are continuously transmitted

over the network. In order to establish a PDU Farm, implemented programs are loaded to

four different computers and run continuously. Current implementation of PDU Farm

needs previously recorded packets to execute its task. The main point is mimicking a

previously played scenario to draw conclusions about different metrics such as network

state, rendering performance or memory usage for Net-VEs.

In the benchmark tests the total bandwidth of four computers is measured as 1.6

Mbps. With this bandwidth 300 different entities with one packet per second send rate

can be represented in highest resolution XFSP (670 bytes) packet format.

The implementation details of PDU Farm are covered in the following sections. In

order to present the design scheme of PDU Farm, a UML diagram is provided in

Figure 5.1. The UML diagram presents the implemented Java classes.

 80

Figure 5.1: PDU Farm UML Diagram (Generated by [ESS])

 81

C. PDU SERVER

The Pdu Server program is used to send previously recorded packets to the end-

users via unicast or multicast transport. These previously recorded packets are stored in a

file where they are encapsulated by a special wrapper. This wrapper is used to determine

the capture time and capture order of the received packet.

In order to simulate the previously recorded scenario precisely, the captured

packets are sent at the rate and in the order of their capture intervals. These time intervals

define the send time of the captured packet.

Starting the Pdu Server is done by a batch (DOS) or bash (Linux) file. This file

uses an XML file to define initialization parameters of the server. An example

initialization file is shown in Figure 5.2.

Figure 5.2: Pdu Server Initialization Parameters

Start and end time fields in Figure 5.2 define the start and end time of the

application. In the given example the server will start running at 29th of March 2003 at

9:34:00 am. and will stop at 29th of March 2003 at 11:35:00 am. Between the actual start

time and the start of the application, the server will enter to sleep state. At the end of the

sleep state the server will wake up and will start sending previously recorded packets.

The Loop field in this initialization document defines whether the server will use

the same file where previously recorded packets are stored continuously between its start

and end. The Loop true means that the server is going to use the same file continuously

<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- Time pattern is mm.dd.yyyy hh:mm:ss-->
 <StartTime>03.29.2003 09:34:00</StartTime>
 <EndTime>03.29.2003 11:35:00</EndTime>
 <Loop>true</Loop>
 <SocketIP>225.23.93.25</SocketIP>
 <Port>61000</Port>
 <URL>file://c:/xfsp/nps.pdu</URL>
</System>

 82

during its operation. When the server reaches the end of the file it will restart sending the

packets from the top of the file.

The SocketIP field determines the IP address that the server will use to send the

recorded packets. The server is capable of sending both unicast as well as multicast

packets. If the provided IP is in the multicast IP address range

(224.0.0.0 - 239.255.255.255) the server will open a multicast socket and join that

address group. In the unicast IP case, the server will open a unicast socket and send the

packets to that IP address.

The Port field is used to define the port number to send the packets. A port

number is an integer number between 1- 65535 and differentiates the applications

running on the same computer with the same IP. It can be considered as the multiplexer

where the operating system uses it to hand the incoming data to the correct application.

The URL (Uniform Resource Locator) field determines the location of the file

that will be used for sending the packets. As mentioned before, that file stores the

previously recorded packets.

When the initialization parameters are provided with the XML document, the

server uses these parameters to set its internal attributes. After setting internal attributes,

the server sends the recorded packets to a unicast user or to a multicast group. The output

of the PDU Server program is shown in Figure 5.3. In order to run the server remotely on

computers with Linux Operating System (OS), no graphical user interface is used. Text-

based command-line startup simplifies remote invocation.

 83

Figure 5.3 : Output of PDU Server Program

D. PDU CAPTURER

The Pdu Capture program is used to capture the packets generated by other users

and store them in a file for the future use to regenerate the previously played scenario.

The server listens to a unicast or multicast socket and receives the packets. At each

packet receive interval it wraps the packet payload by a special wrapper where it puts the

length and receive time of the received packet in that wrapper.

Starting of Pdu Capture program is similar to Pdu Server where a batch (DOS) or

bash (Linux) file is used. This file uses an XML file to define initialization parameters of

the capturer program. An example initialization file is shown in Figure 5.4.

Start and end time fields in Figure 5.3 are similar to PDU Server program. These

fields define the start and end time of the application. In the given example the server will

start running at 29th of March 2003 at 4:55:00 pm. and will stop at 29th of March 2003 at

6:15:00 pm. Between the actual start time and the start of the application, the capturer

will enter to sleep state. At the end of the sleep state, the capturer will wake up and will

start capturing the packets.

 84

Figure 5.4: Pdu Capture Program Initialization Parameters

The SocketIP field determines the IP address that the Pdu Capture program will

use to receive the packets. The server is capable of receiving both unicast as well as

multicast packets. If the provided IP is in the multicast IP address range

(224.0.0.0 - 239.255.255.255) the capturer will open multicast socket and join that

address group. In the unicast IP case, the capturer will open a unicast socket and receive

the packets on that IP. If the provided unicast IP address is not the local-host or not the IP

address of one of its network interfaces then the capturer will not be able to receive any

incoming packets.

The Port field is used to define the port number to receive the packets. A detailed

description port number is provided in PDU Server program section.

The HeaderFileURL field determines the location of the header file, an XML file,

which is copied to the top of the file where the captured packets are stored. The reason

for using an approach like this is to be able to see the content of the binary file in which

the captured packets are stored. An example of the header file is shown in Figure 5.5.

When the recorded PDU file is opened by notepad or any text file viewer the XML file in

Figure 5.5 will be on top of that file where it describes the content of the opened file. The

captured packets will follow this XML-text in binary format where they will not be

correctly interpreted by the text file viewer used. This provides the user the flexibility of

seeing at least the content of a binary file with a text file viewer.

<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
 <!-- Time pattern is mm.dd.yyyy hh:mm:ss-->
 <StartTime>03.29.2003 16:55:00</StartTime>
 <EndTime>03.29.2002 18:15:00</EndTime>
 <SocketIP>127.0.0.1</SocketIP>
 <Port>61000</Port>
 <HeaderFileURL>file://c:/xfsp/FileHeader.xml</HeaderFileURL>
</System>

 85

Figure 5.5: A File Header for Recorded PDU File

The output of the PDU Capturer program is shown in Figure 5.6. In this output,

the program prints the initialization parameters and starts listening for the incoming

packets.

Figure 5.6: Output of Pdu Capture Program

E. NETWORK ANALYZER

The NetworkAnalyzer program is used to collect the previously decided metrics

such as latency, drop-rate and jitter between two end-points. With this feature users are

able to draw conclusions about the current state of the network. These metrics also

<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<FileHeader xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Type>XFSP</Type>
 <Description>NPS Ship for IITSEC-Demo</Description>
 <RecordedBy>Ekrem Serin</RecordedBy>
 <Date>11.29.2002</Date>
 <URL>file://c:/xfsp/xfspNPS.pdu</URL>
</FileHeader>

 86

provide information about network congestion and can be used to automatically tune the

designed Net-VE. The tuning process includes send-rate change and packet resolution

switching to enhance the performance. The automatic tuning is out of the scope of this

thesis and is not implemented. The implementation purpose of the NetworkAnalyzer is

network monitoring from an application- layer perspective.

The start of the application is very similar to Pdu Server and Pdu Capture

program which is done by a batch (DOS) or bash (Linux) file using an initialization file

written in XML. The sample initialization file is shown in Figure 5.7.

Figure 5.7: NetworkAnalyzer Initialization File (Sender)

Figure 5.8: NetworkAnalyzer Initialization File (Receiver)

In order to collect previously mentioned metrics, a Listener must be up and

running at the other end. Listener receives the packets and replays them back to the

sender. A sample initialization file for listener is shown in Figure4.8.

The sender keeps track of each packet that it sends. When the packet is issued by

the sender, current time for that packet is stored; at the time that sender gets the replayed

<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <DestinationAddress>129.174.65.60</DestinationAddress>
 <DestinationPort>9080</DestinationPort>
 <ReceivePort>9080</ReceivePort>
 <SendRateKbps>10</SendRateKbps>
 <PayloadInBytes>500</PayloadInBytes>
 <NumberOfPackets>2000</NumberOfPackets>
 <OutputFileURL>file://c:/xfsp/AnalyzeResults.txt</OutputFileURL>
</System>

<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<System xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <DestinationAddress>131.120.7.1</DestinationAddress>
 <DestinationPort>9080</DestinationPort>
 <ReceivePort>9080</ReceivePort>
</System>

 87

packet back, it updates the receive time for the packet. Packets that are not received back

by the sender are considered as dropped.

At the end of the process, packets sent and received are analyzed to calculate the

latency, drop-rate and jitter. The latency is calculated by dividing RTT (Round Trip

Time) by two, the drop-rate is determined by keeping a counter for the packets that are

not received and jitter is obtained by measuring variations between delays.

The fields of the initialization file in Figure 5.7 are self-descriptive. The send-rate

field is slightly important from the network programmer perspective. The send-rate

depends on the CPU cycle that the application runs on and the buffer allocation by the OS

(Operating System) to the current process. In order to set the send-rate the sender is

forced to sleep for the calculated sleep time which is measured by sending test packets to

the local host. In order to test the accuracy of the designed program tests are conducted

on a computer with P4 1.6GHz processor and 512 MB RAM (Random Access Memory).

The conducted tests showed that send-rates up-to 400Kbps are accurately achieved by the

designed program, and rates higher than that rate cannot be achieved due to OS system

calls for sleep threads.

In network analyzing, there are three major points that the network analysis must

consider. First, the current architecture of the Internet is a packet-switched network where

packets can be routed via different routes resulting in out of order reception. Second,

drops may occur at different places such as during transit from sender to receiver, at the

receiver due to high send-rate and buffer limitation and during the transit from receiver to

the sender. Third is that time-measurement in the Java programming language cannot be

accurate for the values less than 10 milliseconds. The Java program cannot necessarily

distinguish such precise differences due to the accuracy of various operating system calls.

 88

F. SUMMARY

This chapter provides information about the implementation details of Pdu

Server, Pdu Capture and NetworkAnalyzer programs. The implemented programs are

described in detail to show the design of a simple PDU Farm. The PDU Farm is able to

send and receive unicast as well as multicast messages. With this framework previously

recorded scenarios can be replayed and analyzed. Another possible use of this work is

simulating off-site entities without the need of rendering.

 89

VI. EXPERIMENTS, DATA COLLECTION AND ANALYSIS

A. INTRODUCTION

This chapter examines the results and collected metrics from the conducted

experiments.

B. OVERVIEW

In order to test the speed of XML Serialization program and collect the network

metrics described previously, two sets of experiments were conducted. In the first set, the

speed of XML Serialization program is tested by continuously generating serialized XML

documents and sending them to the local host. In this set, the number of serialized

documents that are sent and the number received are tracked. Additiona lly, the duration

for XML Serialization is measured.

In the second set of experiments, latency, jitter and drop-rate were measured

between George Mason University (GMU) (Fairfax, Virginia) and Monterey, California

by using commercial Internet Service Providers (ISPs) on V.98 modem as well as on

Ethernet. The Naval Postgraduate School (NPS) network infrastructure is not used for the

initial set of experiments due to firewall problems described in the following sections.

C. XML SERIALIZATION PROGRAM

To test the speed of XML Serialization program, XML Serializer is programmed

to continuously generate serialized XML documents. These binary XML documents

(serialized) are sent to the local host listening on a specified UDP port.

The experiments are conducted on a machine whose properties are listed below.

In the following list, the protocol and the buffer sizes are also specified.

 Brand : Dell Inspiron 8200 Laptop

 CPU and Memory : P4 1.6 GHz, 512 MByte

 Transport Protocol : UDP

 Send Buffer Size : 8192 Bytes

 Receive Buffer Size : 8192 Bytes

 XFSP Entity State PDU Size : 670 Bytes

 90

This experiment shows the rate of binary XML document generation and the drop

rate on UDP socket with 8192 Bytes receive buffer size. In this test the documents are

generated continuously and are not regulated for send rate resulting in burst sending. The

metrics collected for this set of experiment are shown in Table 6.1. Table 6.1 specifies the

number of serialized XML documents that are sent and received as well as the total

duration for serializing them.

Table 6.1: XML Serialization Program Experiment

As seen from Table 6.1, the Serializer program reaches its maximum limit at

20000 serialized XML document row and starts to generate the XML documents at a rate

~410 documents / sec. The serialized XML documents were XFSP Entity State PDUs

that occupied 670 Bytes in memory. The behavior of reaching its maximum limit is

shown in Figure 6.1. Figure 6.1 reveals that XML Serializer program cannot generate

Sent Received Duration

(secs)

Binary XML

Documents / Sec

10 10 0.2 50

100 100 0.47 212

200 200 0.89 224

300 300 1.18 254

400 400 1.47 272

500 425 1.73 289

600 524 1.97 304

700 468 2.12 330

800 409 2.39 334

900 474 2.67 337

1000 558 2.95 338

5000 1987 12.83 389

10000 3991 25.14 397

20000 7775 48.27 414

 91

XFSP Entity State PDUs faster than ~410 documents /sec which is sufficient for fairly

sophisticated Net-VEs.

Figure 6.1: Maximum Limit of Binary XML Generation

Figure 6.2 shows the analysis of drop-rate for local host transmission. The drops

in local host transmission occur due to buffer and CPU cycle limitations. In socket

operations, an Operating System (OS) assigns a buffer for sending and receiving

processes to each socket opened. For example, the default buffer value that Windows

uses for UDP sockets is 8192 Bytes. When the program receives at a rate higher that it

can handle, the received packets will be dropped until enough space is available in the

buffer. As seen from Figure 6.2, the drop-rate on UDP socket with 8192 Bytes receive

buffer is increasing as the send-rate increases.

Document Generation

0

50

100

150

200

250

300

350

400

450

Time

D
oc

um
en

ts
 /

se
c

 92

Figure 6.2: Drop Rates for Local Host Transmission

Figure 6.2 reveals that after reaching certain send-rate some packets will be

ignored by the receiver.

D. NETWORK METRICS

In order to design rich and well-managed Net-VEs, application implementers

need to consider basic metrics such as latency, drop-rate and jitter over different network

topologies. These metrics help designers to manage their transmission and receive rates

as well as the performance of the simulation that they implement. The effects of latency,

drop-rate and jitter on a Net-VE are described previously. A Net-VE with poor network

management will distract users and reduce their sense of immersion.

Two sets of experiments are conducted to measure the network metrics. For both

experiments, the receive point was George Mason University (Fairfax, Virginia). In the

first set of experiments, a commercial ISP is used by connecting via PPP (Point-to-Point

Protocol) over V.98 voice modem. In the second set of experiments another commercial

ISP is used by connecting via Ethernet over T1. The results achieved from the conducted

experiments are presented and analyzed in the following sections.

Drop Rate

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Transmission Rate in packets/sec (670 Bytes / packet)

D
ro

p
R

at
e

in
 %

 93

1. V.98 Voice Modem

To test the V.98 voice modem transmission, two sets of experiments are

conducted. At each experiment the send rate is changed and previously described metrics

are collected. In the first experiment 2000 packets with 500 Bytes payload are sent at a

rate of 10 Kbps. The collected metrics for this experiment are shown in Table 6.2.

Table 6.2: Metrics for 10Kbps Transmission on V.98 Modem

The measured latencies and jitter for this set of experiment are represented in

Figure 6.3. and Figure 6.4 respectively.

Figure 6.3: Cross-USA Latency in 10Kbps Send Rate on V.98 Voice Modem

Send Rate Total Packets

Sent

Drop Rate

(%)

Average Latency

(msecs)

Average Jitter

(msecs)

10 Kbps 2000 2.0 146.6 2.54

10 Kbps Send Rate (Latency)

0

20

40

60

80

100

120

140

160

180

1 151 301 451 601 751 901 1051 1201 1351 1501 1651 1801 1951

Packet Number

L
at

en
cy

 in
 m

se
cs

 94

Figure 6.4: Cross-USA Jitter in 10Kbps Send Rate on V.98 Voice Modem

In the second set of experiments, 4000 packets with payload 500 bytes are sent at

50 Kbps rate. Drop-rate is measured as 1.18%. The average latency and jitter values are

shown in Table 6.4.

Table 6.3 : Metrics for 50Kbps Transmission on V.98 Modem

The measured latencies and pure jitters for this set of experiment are represented

in Figure 6.5. and Figure 6.6, respectively.

Send Rate Total Packets

Sent

Drop Rate

(%)

Average Latency

(msecs)

Average Jitter

(msecs)

50 Kbps 4000 1.18 158.32 15.62

10 Kbps Send Rate (Jitter)

0

5

10

15

20

25

30

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Packet Number

Ji
tt

er
 in

 m
se

cs

 95

Figure 6.5: Cross-USA Latency in 50Kbps Send Rate on V.98 Voice Modem

Figure 6.6: Cross-USA Jitter in 50Kbps Send Rate on V.98 Voice Modem

50 Kbps Send Rate (Latency)

0

50

100

150

200

250

300

350

400

450

1 224 447 670 893 1116 1339 1562 1785 2008 2231 2454 2677 2900 3123 3346 3569 3792

Packet Number

L
at

en
cy

 in
 m

se
cs

50 Kbps Send Rate (Jitter)

0

20

40

60

80

100

120

140

160

180

1 250 499 748 997 1246 1495 1744 1993 2242 2491 2740 2989 3238 3487 3736

Packet Number

Ji
tt

er
 in

 m
se

cs

 96

The experiments conducted on V.98 vo ice modem using PPP ISP connection

revealed that average delay between Monterey, California and Fairfax, Virginia is over

140 milliseconds for a voice modem transmission. It also shows that the delay is not a

constant process and can change due to network conditions. The Net-VE designer can use

these metrics while designing their Net-VE to control the transmission rate.

2. Wide-Area Network (T1)

To test the Ethernet transmission, three sets of experiments are conducted. At

each experiment, the send rate is changed and previously described metrics are collected.

In the first experiment 2000 packets with 500 bytes payload are transmitted at a 10 Kbps

send-rate. In this set, the drop-rate is measured as 1.13%. The collected metrics for this

experiment are represented in Table 6.4.

Table 6.4: Metrics for 10Kbps Transmission on T1

The measured latencies and jitter for this set of experiment are represented in

Figure 6.7. and Figure 6.8, respectively.

Send Rate Total Packets

Sent

Drop Rate

(%)

Average Latency

(msecs)

Average Jitter

(msecs)

10 Kbps 2000 1.13 51.9 2.84

 97

Figure 6.7: Latency in 10Kbps Send Rate on T1

Figure 6.8: Jitter in 10Kbps Send Rate on T1

In the second set, 5000 packets with payload 500 bytes are sent at 100 Kbps rate.

In this experiment the drop-rate is measured as 3.8%. The average latency and jitter

values are shown in Table 6.5.

10 Kbps Send Rate (Latency)

0

20

40

60

80

100

120

140

1 134 267 400 533 666 799 932 1065 1198 1331 1464 1597 1730 1863

Packet Number

L
at

en
cy

 in
 m

se
cs

10 Kbps Send Rate (Jitter)

0

10

20

30

40

50

60

70

1 134 267 400 533 666 799 932 1065 1198 1331 1464 1597 1730 1863

Packet Number

Ji
tt

er
 in

 m
se

cs

 98

Table 6.5: Metrics for 100Kbps Transmission on Ethernet

The measured latencies and jitter for this set of experiment are represented in

Figure 6.9. and Figure 6.10, respectively.

Figure 6.9: Latency in 100Kbps Send Rate on T1

Figure 6.10: Jitter in 100Kbps Send Rate on T1

Send Rate Total Packets

Sent

Drop Rate

(%)

Average Latency

(msecs)

Average Jitter

(msecs)

100 Kbps 5000 3.8 64.4 2.5

100 Kbps Send Rate (Latency)

0

20

40

60

80

100

120

140

160

180

1 330 659 988 1317 1646 1975 2304 2633 2962 3291 3620 3949 4278 4607

Packet Number

L
at

en
cy

 in
 m

se
cs

100 Kbps Send Rate (Jitter)

0

20

40

60

80

100

120

1 312 623 934 1245 1556 1867 2178 2489 2800 3111 3422 3733 4044 4355

Packet Number

Ji
tt

er
 in

 m
se

cs

 99

In the last set, 10000 packets with payload 500 bytes are sent at 400 Kbps rate. In

this experiment the drop-rate is measured as 4.76%. The average latency and jitter values

are shown in Table 6.6.

Table 6.6: Metrics for 400Kbps Transmission on Ethernet

The measured latencies and jitter for this set of experiment are represented in

Figure 6.11. and Figure 6.12 respectively. The latency began at values similar to earlier

runs, but increased over time. The most probable cause of this is increasing queue size in

routers. At low data rates the queues stay relatively empty. As the data rate crosses the

queue service threshold the queue grows to its capacity and starts dropping the received

packets. There are various schemes for handling long queue sizes (e.g. dropping packets)

in routers. Probably the most popular is tail-drop. In this scheme, the packet queue size

grows until there is no room in the queue, and the arriving packets are simply dropped.

Another popular dropping scheme is Random Early Drop (RED). In that scheme, when

the queue size reaches some size smaller than its full capacity, the packets to be dropped

are selected randomly. The probability of drop for both schemes increases as the queue

size increases to its capacity.

Another logical explanation for exponential increase in latency is packets to be

delivered using different routes. When the link between two hops becomes congested, the

routers can choose the packets to follow different hops resulting in different latency

values for different packets. The calculation of using different route will also put some

latency over the packets during their journey from source to destination.

Send Rate Total Packets

Sent

Drop Rate

(%)

Average Latency

(msecs)

Average Jitter

(msecs)

400 Kbps 10000 4.76 217.8 0.4

 100

Figure 6.11: Latency in 400Kbps Send Rate on T1 (Day-1)

Figure 6.12: Jitter in 400Kbps Send Rate on T1

The experiments conducted to analyze the exponential increase behavior gave

similar results one on different days, Figure 6.13 and Figure 6.14. The routes from

George Mason University to MovesInstitute.org are also presented to track the

problem. This type of behavior can be caused by any of the nodes listed in Figure 6.15.

The traceroute packets followed the same path presented in Figure 6.15 before and after

400 Kbps Send Rate (Latency)

0

50

100

150

200

250

300

350

1 810 1619 2428 3237 4046 4855 5664 6473 7282 8091 8900

Packet Number

L
at

en
cy

 in
 m

se
cs

400 Kbps Send Rate (Jitter)

0

5

10

15

20

25

30

35

1 637 1273 1909 2545 3181 3817 4453 5089 5725 6361 6997 7633 8269 8905

Packet Number

Ji
tt

er
 in

 m
se

cs

 101

high rate transmission. This data reveals that the probable cause of latency problem is

drops occurring in routers.

Figure 6.13: Latency in 400Kbps Send Rate on T1 (Day -2)

Figure 6.14: Latency in 400Kbps Send Rate on T1 (Day -3)

400 Kbps Send Rate (Latency)

0

100

200

300

400

500

600

700

Transmission

L
at

en
cy

 in
 m

se
cs

400 Kbps Send Rate (Latency)

0

100

200

300

400

500

600

Transmission

L
at

en
cy

 in
 m

se
cs

 102

Figure 6.15: Traceroute From gmu.edu To MovesInstitute.org

E. NPS FIREWALL PROBLEM

Experiments using Naval Postgraduate School network backbone were

infrequently conducted due to firewall problems. To find the reasons of firewall problem,

the traceroute program is used. This program shows all the nodes that traceroute packets

hit during their journey from source to destination.

When the computer behind Naval Postgraduate School firewall was

“tracerouted”, firewall acted as a proxy and sent Internet Control Message Protocol

(ICMP) packets to the traceroute initiator. In this case, the traceroute initiator assumed

that the packets could be delivered to the computer behind the firewall. Unfortunately,

when the experiments were attempted, the firewall intercepted every packet destined for

the computer behind it, and did not forward them. Although the first proxy behavior is

 [netlab] # traceroute movesinstitute.org

 1 netlab (129.174.65.1) 1.174 ms 0.793 ms 0.741 ms
 2 129.174.249.129 (129.174.249.129) 0.871 ms 0.735 ms 0.694 ms
 3 129.174.248.233 (129.174.248.233) 1.115 ms 1.176 ms 1.109 ms
 4 129.174.247.118 (129.174.247.118) 0.855 ms 0.605 ms 0.861 ms
 5 WTN1-GeorgeMasonUFairfax.networkvirginia.net (65.162.90.5) 6.902 ms 6.662
ms 5.833 ms
 6 65.162.89.38 (65.162.89.38) 10.842 ms 10.816 ms 10.539 ms
 7 sl-gw20-rly-2-2.sprintlink.net (160.81.255.1) 11.820 ms 11.909 ms 11.072
ms
 8 sl-bb23-rly-3-2.sprintlink.net (144.232.14.45) 142.828 ms 205.470 ms 244.
164 ms
 9 sl-bb21-pen-12-0.sprintlink.net (144.232.20.33) 21.815 ms 17.643 ms 13.12
1 ms
10 sl-bb20-pen-15-0.sprintlink.net (144.232.16.33) 17.500 ms 17.448 ms 13.96
7 ms
11 sl-bb20-stk-10-0.sprintlink.net (144.232.18.46) 79.529 ms 76.489 ms *
12 sl-gw25-stk-9-0.sprintlink.net (144.232.4.218) 73.191 ms 71.910 ms 73.974
 ms
13 sl-swb-57-0.sprintlink.net (144.223.59.86) 80.435 ms 81.463 ms 78.775 ms
14 ded1-fa5-1-0.mtry01.pbi.net (206.171.158.133) 83.213 ms 81.779 ms 77.889
ms
15 Naval-Post-Graduate-School-505769.cust-rtr.pacbell.net (209.232.139.54) 86.
757 ms 81.758 ms 80.937 ms
16 63.205.26.77 (63.205.26.77) 88.010 ms 79.443 ms 82.471 ms

 103

consistent with firewalls that try to hide its internal topology, the second behavior is not

consistent and should be resolved. Firewall adjustments and further experiments need to

continue.

F. SUMMARY

This chapter summarizes the data collected in conducted experiments. For data

collection two main sets of experiments are conducted. In the first set the speed of XML

Serializer program is measured, and in the second, network metrics are measured by

using V.98 voice modem and Ethernet transmission. Furthermore, the results achieved

are represented in 2D graphs.

This chapter also presents the usage of Network Analyzer program. This program

can be used as proxy to track the changes in the latency where the changes can serve as

basis to find the maximum capacity of the link. Additionally, the capacity of the link can

be used to better manage the network transmissions resulting in richer Net-VEs.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSION

1. Application Layer Protocol Extensibility

Application layer protocols can be extended at run-time by using a protocol

definition language. The run-time extensibility of the application layer protocols provides

a way to optimize the bandwidth usage and to meet the needs of different users at

different fidelity levels.

Extensibility in Net-VE architectures is essential because it is clear that networks

will continue to evolve, and a closed system which cannot be changed would be obsolete

as the networking technology evolves.

In this framework, XML Schema is used and considered as a good candidate to be

protocol definition language. XML Schema can well describe the application protocol

syntax with its internal as well as user-defined data structures. In order to parse the

protocol definition document written in XML Schema, a schema parser is implemented.

2. XML Serialization and XML Deserialization

XML Serialization provides a compact way to send and receive XML documents

over the network. Currently most of XML documents use UTF-8 encoding which

corresponds to the 8-bit ASCII encoding. With this scheme each alphabetical character

and number is represented by eight bits. Instead of using 8 bits for each character, the

notion “agreement” is exploited and element and attribute names are replaced by binary

short tags. Furthermore, the data marked-up by elements and attributes are serialized to

binary form resulting in compact XML.

With the implemented algorithm XML documents are compressed without using

any binary compression algorithms.

Driving factors of avoiding binary compression algorithms are simplicity of

implementation, computational speed performance and skipping bitwise operations by

 106

providing reimplementability and generality. Further elaborations can complicate the

protocol beyond the comprehensibility except for information encoding experts.

The compressed XML document is called as binary XML and decompressed by

the XML Deserializer. The result of the decompression is the text XML document

provided to the XML Serializer.

With XML Serializer and XML Deserializer XML documents are sent in a more

compact way over the network providing bandwidth and time saving.

3. PDU Farm and Network Monitoring

In this thesis a simple PDU Farm and Network Monitoring is implemented. PDU

Farms let users to test the designed Net-VE for 24 hours a day and 7 days a week.

Furthermore, they provide a way to mimic the previously played scenarios to draw

tactical as well as technical conclusions.

The technical conclusions derived from the played Net-VE simulation include the

metrics for the bandwidth consumption, rendering performance and memory usage. The

recorded scenario can also be replayed multiple times to accurately measure these metrics

resulting in enhancing the design of Net-VE.

The network monitoring program measures the current state of the network and

provides information about network congestion, latency, drop-rate and jitter. These

metrics are highly used by network programmers and can provide a fundamental for

tuning purposes mentioned in the recommendations for future work section.

 107

B. RECOMMENDATIONS FOR FUTURE WORK

1. General XML Serializer / Deserializer

XML Serialization and Deserialization can be enhanced to compress and

decompress any XML document defined by any XML Schema. Currently, XFSP is an

ongoing project and will be enhanced to base the generation of binary XML documents.

The recommended process for this enhancement includes;

• A schema validator implementation where it validates the provided

schema.

• Namespace handling

This work needs to be continued as a general purpose XML compressor for both

network and file streams.

2. Monitoring Agents

An agent is a computer system that is situated in some environment and that is

capable of autonomous action in this environment in order to meet its design objectives

[Wooldridge 01]. To automatically tune the networking and change the application layer

protocol in a Net-VE, the software agents can be used.

The network monitoring process can be implemented as an autonomous system

and incorporated into the designed Net-VE system. These autonomous agents can work

together and create a complex adaptive system, where that system can change the

application layer protocol by using environmental information such as delay, drop-rate

and jitter.

The complex adaptive system can optimize the network utilization and provide a

better managed network on which rich and responsive large-scale networked virtual

environments can be implemented.

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

APPENDIX A. DIS SCHEMA
<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited with XML Spy v4.3 by Ekrem Serin (NPS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema "
elementFormDefault="qualified">
 <xs:element name="dis">
 <xs:complexType >
 <xs:choice>
 <xs:element name="espdu" type="espduType "/>
 <xs:element name="collisionpdu" type="collisionpduType "/>
 <xs:element name="firepdu" type="firepduType "/>
 <xs:element name="detonationpdu" type="detonationpduType "/>
 </xs:choice>
 </xs:complexType >
 </xs:element>
 <xs:complexType name ="espduType ">
 <xs:sequence>
 <xs:element name="header" type="headerType "/>
 <xs:element name="entityID" type="entityIDType "/>
 <xs:element name="forceID" type="xs:byte "/>
 <xs:element name="articulationNumber" type="xs:byte "/>
 <xs:element name="entityType " type="entityTypeType "/>
 <xs:element name="alternativeEntityType " type="entityTypeType "/>
 <xs:element name="linearVelocity" type="Vector3Float"/>
 <xs:element name="location" type="locationType "/>
 <xs:element name="orientation" type="orientationType "/>
 <xs:element name="appearence" type="xs:int"/>
 <xs:element name="deadReckoning" type="deadReckoningType "/>
 <xs:element name="entityMarking" type="entityMarkingType "/>
 <xs:element name="capa bilities" type="capabilitiesType "/>
 <xs:element name="articulationParameters" type="articulationParameterType "/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="collisionpduType ">
 <xs:sequence>
 <xs:element name="header" type="headerType "/>
 <xs:element name="issuingEntityID" type="entityIDType "/>
 <xs:element name="collidingEntityID" type="entityIDType "/>
 <xs:element name="eventID" type="eventIDType "/>
 <xs:element name="collisionType " type="xs:byte"/>
 <xs:element name="padding" type="xs:byte"/>
 <xs:element name="velocity" type="Vector3Float"/>
 <xs:element name="mass" type="xs:float"/>
 <xs:element name="location" type="Vector3Float"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="firepduType ">

 110

 <xs:sequence>
 <xs:element name="header" type="headerType "/>
 <xs:element name="firingEntityID" type="entityIDType "/>
 <xs:element name="targetEntityID" type="entityIDType "/>
 <xs:element name="munitionID" type="entityIDType "/>
 <xs:element name="eventID" type="eventIDType "/>
 <xs:element name="fireMissionIndex" type="xs:int"/>
 <xs:element name="locationInWorld " type="locationType "/>
 <xs:element name="burstDescriptor" type="burstDescriptorType "/>
 <xs:element name="velocity" type="Vector3Float"/>
 <xs:element name="range " type="xs:float"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="detonationpduType ">
 <xs:sequence>
 <xs:element name="header" type="headerType "/>
 <xs:element name="firingEntityID" type="entityIDType "/>
 <xs:element name="targetEntityID" type="entityIDType "/>
 <xs:element name="munitionID" type="entityIDType "/>
 <xs:element name="eventID" type="eventIDType "/>
 <xs:element name="velocity" type="Vector3Float"/>
 <xs:element name="locationInWorld " type="locationType "/>
 <xs:element name="burstDescriptor" type="burstDescriptorType "/>
 <xs:element name="locationInEntity" type="Vector3Float"/>
 <xs:element name="detonationResult " type="xs:byte "/>
 <xs:element name="articulationNumber" type="xs:byte "/>
 <xs:element name="padding" type="xs:short"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="headerType ">
 <xs:sequence>
 <xs:element name="protocolVersion" type="xs:byte "/>
 <xs:element name="exerciseID" type="xs:byte"/>
 <xs:element name="pduType " type="xs:byte "/>
 <xs:element name="protocolFamily" type="xs:byte "/>
 <xs:element name="timeStamp" type="xs:int"/>
 <xs:element name="length" type="xs:short"/>
 <xs:element name="padding" type="xs:short"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="entityIDType ">
 <xs:sequence>
 <xs:element name="site " type="xs:short"/>
 <xs:element name="application" type="xs:short"/>
 <xs:element name="entity" type="xs:short"/>
 </xs:sequence>
 </xs:complexType >

 111

 <xs:complexType name ="entityTypeType ">
 <xs:sequence>
 <xs:element name="kind" type="xs:byte "/>
 <xs:element name="domain" type="xs:byte "/>
 <xs:element name="country" type="xs:short"/>
 <xs:element name="category" type="xs:byte "/>
 <xs:element name="subcategory" type="xs:byte "/>
 <xs:element name="specific " type="xs:byte "/>
 <xs:element name="extra" type="xs:byte "/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="locationType ">
 <xs:attribute name="x" type="xs:double "/>
 <xs:attribute name="y" type="xs:double "/>
 <xs:attribute name="z" type="xs:double "/>
 </xs:complexType >
 <xs:complexType name ="Vector3Float">
 <xs:attribute name="x" type="xs:float"/>
 <xs:attribute name="y" type="xs:float"/>
 <xs:attribute name="z" type="xs:float"/>
 </xs:complexType >
 <xs:complexType name ="orientationType ">
 <xs:attribute name="psi" type="xs:float"/>
 <xs:attribute name="theta " type="xs:float"/>
 <xs:attribute name="phi" type="xs:float"/>
 </xs:complexType >
 <xs:complexType name ="deadReckoningType ">
 <xs:sequence>
 <xs:element name="algorithm" type="xs:byte "/>
 <xs:element name="otherParameters" type="otherParametersType "/>
 <xs:element name="linearAcceleration" type="Vector3Float"/>
 <xs:element name="linearAngularVelocity" type="Vector3Float"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="otherParametersType ">
 <xs:attribute name="op1" type="xs:byte "/>
 <xs:attribute name="op2" type="xs:byte "/>
 <xs:attribute name="op3" type="xs:byte "/>
 <xs:attribute name="op4" type="xs:byte "/>
 <xs:attribute name="op5" type="xs:byte "/>
 <xs:attribute name="op6" type="xs:byte "/>
 <xs:attribute name="op7" type="xs:byte "/>
 <xs:attribute name="op8" type="xs:byte "/>
 <xs:attribute name="op9" type="xs:byte "/>
 <xs:attribute name="op10" type="xs:byte "/>
 <xs:attribute name="op11" type="xs:byte "/>
 <xs:attribute name="op12" type="xs:byte "/>

 112

 <xs:attribute name="op13" type="xs:byte "/>
 <xs:attribute name="op14" type="xs:byte "/>
 <xs:attribute name="op15" type="xs:byte "/>
 </xs:complexType>
 <xs:complexType name ="entityMarkingType ">
 <xs:sequence>
 <xs:element name="characterSet" type="xs:byte "/>
 <xs:element name="unsignedInts" type="unsignedIntsType "/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="unsignedIntsType ">
 <xs:attribute name="op1" type="xs:byte "/>
 <xs:attribute name="op2" type="xs:byte "/>
 <xs:attribute name="op3" type="xs:byte "/>
 <xs:attribute name="op4" type="xs:byte "/>
 <xs:attribute name="op5" type="xs:byte "/>
 <xs:attribute name="op6" type="xs:byte"/>
 <xs:attribute name="op7" type="xs:byte "/>
 <xs:attribute name="op8" type="xs:byte "/>
 <xs:attribute name="op9" type="xs:byte "/>
 <xs:attribute name="op10" type="xs:byte "/>
 <xs:attribute name="op11" type="xs:byte "/>
 </xs:complexType >
 <xs:complexType name ="capabilitiesType ">
 <xs:attribute name="op1" type="xs:boolean"/>
 <xs:attribute name="op2" type="xs:boolean"/>
 <xs:attribute name="op3" type="xs:boolean"/>
 <xs:attribute name="op4" type="xs:boolean"/>
 <xs:attribute name="op5" type="xs:boolean"/>
 <xs:attribute name="op6" type="xs:boolean"/>
 <xs:attribute name="op7" type="xs:boolean"/>
 <xs:attribute name="op8" type="xs:boolean"/>
 <xs:attribute name="op9" type="xs:boolean"/>
 <xs:attribute name="op10" type="xs:boolean"/>
 <xs:attribute name="op11" type="xs:boolean"/>
 <xs:attribute name="op12" type="xs:boolean"/>
 <xs:attribute name="op13" type="xs:boolean"/>
 <xs:attribute name="op14" type="xs:boolean"/>
 <xs:attribute name="op15" type="xs:boolean"/>
 <xs:attribute name="op16" type="xs:boolean"/>
 <xs:attribute name="op17" type="xs:boolean"/>
 <xs:attribute name="op18" type="xs:boolean"/>
 <xs:attribute name="op19" type="xs:boolean"/>
 <xs:attribute name="op20" type="xs:boolean"/>
 <xs:attribute name="op21" type="xs:boolean"/>
 <xs:attribute name="op22" type="xs:boolean"/>
 <xs:attribute name="op23" type="xs:boolean"/>

 113

 <xs:attribute name="op24" type="xs:boolean"/>
 <xs:attribute name="op25" type="xs:boolean"/>
 <xs:attribute name="op26" type="xs:boolean"/>
 <xs:attribute name="op27" type="xs:boolean"/>
 <xs:attribute name="op28" type="xs:boolean"/>
 <xs:attribute name="op29" type="xs:boolean"/>
 <xs:attribute name="op30" type="xs:boolean"/>
 <xs:attribute name="op31" type="xs:boolean"/>
 <xs:attribute name="op32" type="xs:boolean"/>
 </xs:complexType >
 <xs:complexType name ="eventIDType ">
 <xs:sequence>
 <xs:element name="site " type="xs:short"/>
 <xs:element name="application" type="xs:short"/>
 <xs:element name="eventNumber" type="xs:short"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="burstDescriptorType ">
 <xs:sequence>
 <xs:element name="munition" type="xs:long"/>
 <xs:element name="warhead" type="xs:short"/>
 <xs:element name="fuze " type="xs:short"/>
 <xs:element name="quantity" type="xs:short"/>
 <xs:element name="rate " type="xs:short"/>
 </xs:sequence>
 </xs:complexType >
 <xs:complexType name ="articulationParameterType ">
 <xs:sequence>
 <xs:element name="typeDesignator " type="xs:byte "/>
 <xs:element name="changeIndicator" type="xs:byte "/>
 <xs:element name="id" type="xs:short"/>
 <xs:element name="parameterType " type="xs:integer"/>
 <xs:element name="parameterValue " type="xs:long"/>
 </xs:sequence>
 </xs:complexType >
</xs:schema>

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

APPENDIX B. ENTITY STATE PDU EXAMPLE
<?xml version="1.0" encoding="UTF-8"?>
<espdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\espdu.xsd
">
 <header>
 <protocolVersion>1</protocolVersion>
 <exerciseID>2</exerciseID>
 <pduType>3</pduType>
 <protocolFamily>4</protocolFamily>
 <timeStamp>1000</timeStamp>
 <length>400</length>
 <padding>300</padding>
 </header>
 <entityID>
 <site>50</site>
 <application>60</application>
 <entity>70</entity>
 </entityID>
 <forceID>19</forceID>
 <articulationNumber>10</articulationNumber>
 <entityType>
 <kind>1</kind>
 <domain>1</domain>
 <country>99</country>
 <category>10</category>
 <subcategory>3</subcategory>
 <specific>5</specific>
 <extra>7</extra>
 </entityType>
 <alternativeEntityType>
 <kind>1</kind>
 <domain>2</domain>
 <country>89</country>
 <category>2</category>
 <subcategory>5</subcategory>
 <specific>7</specific>
 <extra>5</extra>
 </alternativeEntityType>
 <linearVelocity x="12.90" y="1.6" z="0.0"/>
 <location x="233.56" y="5.7" z="1.8"/>
 <orientation phi="0.6" theta="0.5" psi="0.0"/>
 <appearence>12345</appearence>
 <deadReckoning>
 <algorithm>4</algorithm>

 116

 <otherParameters op1="1" op10="10" op11="11" op12="12" op13="13"
op14="14" op15="15" op2="2" op3="3" op4="4" op5="5" op6="6" op7="7" op8="8"
op9="9"/>
 <linearAcceleration x="1.0" y="1.0" z="1.0"/>
 <linearAngularVelocity x="2.0" y="2.0" z="2.0"/>
 </deadReckoning>
 <entityMarking>
 <characterSet>23</characterSet>
 <unsignedInts op1="1" op2="2" op3="3" op11="11" op10="10" op4="4" op5="5"
op6="6" op7="7" op8="8" op9="9"/>
 </entityMarking>
 <capabilities op1="true" op10="true" op11="false" op12="false" op13="true"
op14="false" op15="false" op16="false" op17="false" op18="false" op19="false"
op2="false" op20="false" op21="false" op22="false" op23="true" op24="false"
op25="false" op26="false" op27="false" op28="false" op29="false" op3="false"
op30="false" op31="false" op32="false" op4="true" op5="true" op6="true" op7="false"
op8="false" op9="false"/>
 <articulationParameters>
 <typeDesignator>1</typeDesignator>
 <changeIndicator>2</changeIndicator>
 <id>5</id>
 <parameterType>10</parameterType>
 <parameterValue>7</parameterValue>
 </articulationParameters>
</espdu>

 117

APPENDIX C. DETONATION PDU EXAMPLE
<?xml version="1.0" encoding="UTF-8"?>
<detonationpdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\detonation
pdu.xsd">
 <header>
 <protocolVersion>9</protocolVersion>
 <exerciseID>9</exerciseID>
 <pduType>9</pduType>
 <protocolFamily>9</protocolFamily>
 <timeStamp>12345678</timeStamp>
 <length>234</length>
 <padding>33</padding>
 </header>
 <firingEntityID>
 <site>1</site>
 <application>1</application>
 <entity>99</entity>
 </firingEntityID>
 <targetEntityID>
 <site>1</site>
 <application>1</application>
 <entity>89</entity>
 </targetEntityID>
 <munitionID>
 <site>1</site>
 <application>2</application>
 <entity>3</entity>
 </munitionID>
 <eventID>
 <site>1</site>
 <application>1</application>
 <eventNumber>99</eventNumber>
 </eventID>
 <velocity x="10.3" y="44.2" z="67.7"/>
 <locationInWorld x="22.1" y="33.5" z="12.9"/>
 <burstDescriptor>
 <munition>2222222</munition>
 <warhead>111</warhead>
 <fuze>333</fuze>
 <quantity>444</quantity>
 <rate>555</rate>
 </burstDescriptor>
 <locationInEntity x="123.456" y="456.789" z="980.123"/>
 <detonationResult>10</detonationResult>

 118

 <articulationNumber>0</articulationNumber>
 <padding>111</padding>
</detonationpdu>

 119

APPENDIX D. FIRE PDU EXAMPLE
<?xml version="1.0" encoding="UTF-8"?>
<firepdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\firepdu.xsd">
 <header>
 <protocolVersion>1</protocolVersion>
 <exerciseID>2</exerciseID>
 <pduType >3</pduType >
 <protocolFamily>4</protocolFamily>
 <timeStamp>555</timeStamp>
 <length>6</length>
 <padding>77</padding>
 </header>
 <firingEntityID>
 <site>1</site>
 <application>1</application>
 <entity>10</entity>
 </firingEntityID>
 <targetEntityID>
 <site>1</site>
 <application>1</application>
 <entity>11</entity>
 </targetEntityID>
 <munitionID>
 <site>1</site>
 <application>1</application>
 <entity>10</entity>
 </munitionID>
 <eventID>
 <site>1</site>
 <application>1</application>
 <eventNumber>22</eventNumber>
 </eventID>
 <fireMissionIndex>123567</fireMissionIndex>
 <locationInWorld x="464646.899" y="4646.28" z="19997.567"/>
 <burstDescriptor >
 <munition>47747884</munition>
 <warhead>345</warhead>
 <fuze>125</fuze>
 <quantity>100</quantity>
 <rate>10</rate>
 </burstDescriptor >
 <velocity x="10" y="10" z="10"/>
 <range>19929.991</range>
</firepdu>

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

APPENDIX E. COLLISION PDU EXAMPLE
<?xml version="1.0" encoding="UTF-8"?>
<collisionpdu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\XFSP\source\org\npsnet\xfsp\schemas\collisionp
du.xsd">
 <header>
 <protocolVersion>1</protocolVersion>
 <exerciseID>2</exerciseID>
 <pduType>3</pduType>
 <protocolFamily>4</protocolFamily>
 <timeStamp>5555</timeStamp>
 <length>34</length>
 <padding>444</padding>
 </header>
 <issuingEntityID>
 <site>10</site>
 <application>20</application>
 <entity>30</entity>
 </issuingEntityID>
 <collidingEntityID>
 <site>40</site>
 <application>50</application>
 <entity>60</entity>
 </collidingEntityID>
 <eventID>
 <site>1</site>
 <application>1</application>
 <eventNumber>101</eventNumber>
 </eventID>
 <collisionType>110</collisionType>
 <padding>33</padding>
 <velocity x="2.0" y="2.9" z="3.0"/>
 <mass>34.67</mass>
 <location x="101.01" y="44.67" z="12.10"/>
</collisionpdu>

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

APPENDIX F. HIERARCHY OF ALL PACKAGES
Package Hierarchies:
 org.npsnet.xfsp,
 org.npsnet.xfsp.datatypes,
 org.npsnet.xfsp.pduserver,
 org.npsnet.xfsp.swing,
 org.npsnet.xfsp.tests

Class Hierarchy:

o class org.npsnet.xfsp.BinaryReader
o class org.npsnet.xfsp.BinaryReaderX3D
o class org.npsnet.xfsp.datatypes.ComplexType (implements

org.npsnet.xfsp.datatypes.Type)
o class org.npsnet.xfsp.pduserver.Help
o class org.npsnet.xfsp.swing.LoaderDemo
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI
o class org.npsnet.xfsp.tests.ReceiverSimulation
o class org.npsnet.xfsp.tests.SenderSimulation
o class org.npsnet.xfsp.tests.Compressor
o class org.npsnet.xfsp.DocumentProcessor
o class org.npsnet.xfsp.DocumentProcessorX3D
o class org.npsnet.xfsp.DOMManipulator
o class org.npsnet.xfsp.DOMManipulatorX3D
o class javax.swing.filechooser.FileFilter
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI.PDUFileFilter
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI.XSDFileFilter
o class org.npsnet.xfsp.tests.ReceiverSimulation.SchemaFileFilter
o class org.npsnet.xfsp.tests.SenderSimulation.XMLFileFilter
o class org.npsnet.xfsp.datatypes.MFBool (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFColor (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFDouble (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFFloat (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFImage (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFInt32 (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFRotation (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.MFString (implements

org.npsnet.xfsp.datatypes.SimpleType)

 124

o class org.npsnet.xfsp.datatypes.MFTime (implements
org.npsnet.xfsp.datatypes.SimpleType)

o class org.npsnet.xfsp.datatypes.MFVec2d (implements
org.npsnet.xfsp.datatypes.SimpleType)

o class org.npsnet.xfsp.datatypes.MFVec2f (implements
org.npsnet.xfsp.datatypes.SimpleType)

o class org.npsnet.xfsp.datatypes.MFVec3d (implements
org.npsnet.xfsp.datatypes.SimpleType)

o class org.npsnet.xfsp.datatypes.MFVec3f (implements
org.npsnet.xfsp.datatypes.SimpleType)

o class org.npsnet.xfsp.pduserver.MyTimer (implements java.lang.Runnable)
o class org.npsnet.xfsp.pduserver.NetworkAnalyzerReceiver
o class org.npsnet.xfsp.pduserver.NetworkAnalyzerSender
o class org.npsnet.xfsp.pduserver.Packet
o class org.npsnet.xfsp.pduserver.PDUCapturer (implements

java.lang.Runnable)
o class org.npsnet.xfsp.pduserver.PDUServer
o class org.npsnet.xfsp.pduserver.PDUServerWithGUI.PDUSender

(implements java.lang.Runnable)
o class org.npsnet.xfsp.datatypes.SFBool (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFColor (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFDouble (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFFloat (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFImage (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFInt32 (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFRotation (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFString (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFTime (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFVec2d (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFVec2f (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFVec3d (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.SFVec3f (implements

org.npsnet.xfsp.datatypes.SimpleType)

 125

o class org.npsnet.xfsp.datatypes.SimpleTypeExtension (implements
org.npsnet.xfsp.datatypes.SimpleTypeWithName)

o class org.npsnet.xfsp.TableAttribute
o class org.npsnet.xfsp.TableAttributeX3D
o class org.npsnet.xfsp.TableElement
o class org.npsnet.xfsp.TableElementX3D
o class org.npsnet.xfsp.TableManager
o class org.npsnet.xfsp.TableManagerX3D
o class org.npsnet.xfsp.datatypes.TypeFactory
o class org.npsnet.xfsp.swing.XMLSwingTree
o class org.npsnet.xfsp.datatypes.XSDBoolean (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDByte (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDComment (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDDouble (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDFloat (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDInteger (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDLong (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDPrimitiveArray (implements

org.npsnet.xfsp.datatypes.SimpleTypeWithName)
o class org.npsnet.xfsp.datatypes.XSDShort (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDString (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDUnsignedByte (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDUnsignedInt (implements

org.npsnet.xfsp.datatypes.SimpleType)
o class org.npsnet.xfsp.datatypes.XSDUnsignedShort (implements

org.npsnet.xfsp.datatypes.SimpleType)
o interface org.npsnet.xfsp.datatypes.SimpleType

o interface org.npsnet.xfsp.datatypes.SimpleTypeWithName

 Interface Hierarchy:

o interface org.npsnet.xfsp.datatypes.Type
o interface org.npsnet.xfsp.datatypes.SimpleType

o interface org.npsnet.xfsp.datatypes.SimpleTypeWithName

 126

THIS PAGE INTENTIONALLY LEFT BLANK

 127

LIST OF REFERENCES

[Abilene 00] Dunn,L., Hundertmark,G., Schopis, P., Teitelbaum, B., Turzuanski, M.,

Wood,R., “Abilene Premium Service Test Program”, April 2000.

[Ames 97] Ames, A.L., Nadeu, D.R., and Moreland, J.L., “VRML2.0 Sourcebook”,

John Wiley& Sons, Inc, 1997.

[BinXML] “Bin-XMLTM in for Encoding XML Documents”, Technical White Paper,

http://expway.fr/graph/Bin-XMLTechnical%20White%20Paper-jan03.pdf March 2003

[Brutzman 97] Brutzman, Don, “Graphics Internetworking : Bottlenecks and

Breakthroughs”, Addison-Wesley, Reading Massachusetts, 1997, pp. 61-97.

[Brutzman X3D] Brutzman, Don; X3D-Edit Authoring Tool for Extensible 3D (X3D)
Graphics, www.web3d.org February 2003

[Capps 00] Capps, M., McGregor, D., Brutzman, D., Zyda, M., “Projects in VR,

NPSNET-V, A New Beginning for Dynamically Extensible Networked Virtual

Environments”, IEEE, October 2000.

[Canterbury 95] Canterbury, Michael; “An Automated Approach to Distributed

Interactive Simulation (DIS) Protocol Entity Development”, Master Thesis, Naval

Postgraduate School, 1995

[CFSM] Lundy, M. Gilbert, “Systems of Communicating Machines: A Model for

Communication Protocols”, Ph.D dissertation, School of Information and Computer

Science, Georgia Institute of Technologies, 1988.

[Cooke 92] Cooke, J.C., Zyda J.M., Pratt, D.R., McGhee, R.B., “NPSNET : Flight

Simulation Dynamic Modeling using Quaternions”, 1992.

[Cortona 03] Parallel Graphics, http://www.parallelgraphics.com/ February 2003

[DIS] IEEE Standard for Distributed Interactive Simulation – Application Protocols,

IEEE Std 1278.1 -1995, (Revision of IEEE Std 1278-1993)

 128

[DOM4JCook 01] Rademacher T, Strachan J, “dom4j cookbook”, September 2001

http://www.dom4j.org/cookbook/cookbook.html , December 2003

[DOM4JOnline 03] ”dom4j the Flexible Framework for Java” http://www.dom4j.org/

December 2003

[DREN 03] Defense Research & Engineering Network,

http://www.hpcmo.hpc.mil/Htdocs/DREN December 2003

[ESS] ESS Model, “The Fastest and Easiest to Use UML Reversing Tool on the Market”,

http://www.essmodel.com , February 2003

[Fischer 01] Fischer, D. William, “Enhancing Network Communication in NPSNET-V

Virtual Environments Using XML-Described Dynamic Behavior Protocols (DBPs),

Master Thesis, Naval Postgraduate School, September 2002.

[Ghonaimy 99] Ghonaimy, R. Adeeb, “New Generation Internet and the Evolution

Towards Active and Programmable Networks”, 16th National Radio Science Conference,

1999.

[Harold 00] Harold, R. Elliotte, “Java Network Programming 2nd Edition”, O’Reilly

Publications, August 2000

[HLA 00] Kuhl F, Weatherly R, Dahmann J, “Creating Computer Simulation Systems,

An Introduction to the High Level Architecture”, Prentice Hall PTR, 2000

[HLADMSO] U.S. DoD Defense Modeling and Simulation Office, “High Level

Architecture”, https://www.dmso.mil/public/transition/hla/ December 2003

[HLAIEEE] IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA) Framework and Rules, IEEE 1516-2000

[Hunter 01] Hunter D., Cagle K., Dix C., “Beginning XML 2nd Edition”, Wrox

Publishing, February 2002.

[JXTA] Brookshier D., Govoni D., Krishnan N., “JXTA : Java P2P Programming”,

SAMS Publishing, March 2002.

 129

[Kapolka 02] Kapolka, A., McGregor, D., Capps, M., “A Unified Component
Framework for Dynamically Extensible Virtual Environments”, ACM, 2002

[Kurose 01] Kurose, F.J., Ross W.K., “Computer Networking A Top-Down Approach

Featuring the Internet”, Addison Wesley Publications, 2001

[Macedonia 97] Macedonia, R. Michael, Zyda, J. Michael, “ A Taxonomy for

Networked Virtual Environments”, IEEE, 1997

[MBoneInternet2] Almeroth C. Kevin, “The Evolution of Multicast : From the MBone

to Interdomain Multicast to Internet2 Deployment”, 2000

[McGregor 01] McGregor, D. Kapolka, A. “NPSNET-V : An Architecture for Creating

Scalable Dynamically Extensible Networked Virtual Environments”. Unpublished

presentation given at the 2001 MOVES Institute Open House, Naval Postgraduate

School.

[Millau] Girardot, M., Sundaresan,N. “ Millau: An Encoding Format for Efficient

Representation and Exchange of XML over the Web”,

http://www9.org/w9cdrom/154/154.html March 2003

[Oasis 02] WAP Wireless Markup Language Specification (WML), http://www.oasis-

open.org/cover/wap-wml.html March 2003

[PCWorld 01] Medford, Cassimir, “Pipe Dreams”, February 2001.

[Pullen95] Pullen, J. and V. Laviano, “A Selectively Reliable Transport Protocol for

Distributed Interactive Simulation,” Proceedings of the 13th Workshop on Standards for

the Interoperability of Distributed Simulations, 1995

[Pullen00] Pullen, J. “Reliable Multicast Network Transport for Distributed Virtual

Simulation”.

[Salles 02] Salles, J. Ernesto, “The Impact on Quality of Service when Using Security-

Enabling Filters to Provide for the Security of Run-time Virtual Environments”, Master

Thesis, Naval Postgraduate School, September 2002.

 130

[SOAP] Snell J., Tidwell D., Kulchenko P., ”Programming Web Services with SOAP”,

O’Reilly Publications, January 2002.

[Stallings 00] Stallings, William, “Data & Computer Communications 6th Edition”,

Prentice Hall Publications, June 2000.

[WAP 99] WAP Binary XML Content Format, Version 4-November 1999,

http://www1.wapforum.org/tech/documents/SPEC-WBXML-19991104.pdf March, 2003

[WAPW3C] W3C Note (24 June 1999) on “WAP Binary XML Content Format”,

http://www.w3.org/TR/wbxml/ March, 2003

[W3CSchema] W3C XML Schema, http://www.w3.org/XML/Schema December 2003

[W3CSchema Part-II] W3C XML Schema Part-II, http://www.w3.org/TR/2001/REC-

xmlschema-2-20010502/ March 2003

[W3CXML] XML Core Working Group Public Page, http://www.w3.org/XML/Core/

December 2003

[Web3D] Web3D Consortium, http://www.web3d.org February, 2003

[Wooldridge01] Wooldridge, Michael; “An Introduction to MultiAgent Systems”, Wiley

Publications, 2001

[XMLPPM] Compressing XML with Multiplexed Hieararchical PPM Models

http://www.cs.cornell.edu/People/jcheney/xmlppm/xmlppm.html March, 2003

[XMLPPM 03] XMLPPM: XML Conscious PPM Compression,

http://www.cs.cornell.edu/People/jcheney/xmlppm/xmlppm.html March, 2003

[XMill 00] Liefke,H., Suciu,D., “XMill: an Efficient Compressor for XML Data”, In

Proceedings of the 2000 ACM SIGMOD International Conference on Management of

Data, paged 153-164, 2000

[XMill 03] An Efficient Compressor for XML,

http://www.research.att.com/sw/tools/xmill/ March 2003

 131

[Zeswitz 93] Zeswitz, Steven R., “NPSNET Integration of Distributed Interactive

Simulation (DIS) Protocol for Communication Architecture and Information

Interchange”, Master Thesis, Naval Postgraduate School

[ZLib] “zlib : A Massively Spiffy Yet Delicately Unobtrusive Compression Library”,

http://www.gzip.org/zlib/zlib.html March 2003

[Zyda 99] Zyda, M., Singhal S., “Networked Virtual Environments, Design and

Implementation”, 1999

 132

THIS PAGE INTENTIONALLY LEFT BLANK

 133

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
 Monterey, California

3. Deniz Kuvvetleri Komutanligi
 Personel Egitim Daire Baskanligi

Bakanliklar, Ankara
 TURKEY

4. Deniz Harp Okulu Komutanligi Kutuphanesi
 Tuzla, Istanbul

TURKEY

5. Don Brutzman
 Naval Postgraduate School
 Monterey, California

6. Joseph Sullivan

Naval Postgraduate School
Monterey, California

7. Curt Blais
 Naval Postgraduate School
 Monterey, California

8. Mark Pullen

George Mason University
Fairfax, Virginia

