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ABSTRACT

A model experiment was performed to measure acoustic reflection

from a rippled sand surface using a pulse-echo system employing electro-

static transducers over the frequency range 100-350 kHz. The ripple wave-

length of 1.23 cm was slightly greater than the longest acoustic wave-

length and had an amplitude to wavelength ratio of 1/10. Boiling of the

sand to remove entrapped air was essential before the scattering effects

of the ripples could be observed. The angles of propagation of the scat-

tered spectra are found to agree with the theoretical prediction within

+ 2°. The amplitudes of two orders of the scattered spectrum were mea-

sured at an incident angle of 45° and compared to the theory for the

limiting condition where the ripple wavelength is very much larger than

the acoustic wavelength. Agreement was excellent for the spectral re-

flection, but was not as good for the first order reflection.



NAVAL POSTGRADUATE SCHnni
MONTEREY, CA 93943-5101 °L

TABLE OF CONTENTS

Section

1. Introduction

2. Theory

3. Apparatus

4. Preliminary Observations

5. Discussion of Results

6. Conclusions

7. Acknowledgements

8. Bibliography

Page

9

12

16

34

49

61

62

63



,> hY?X



LIST OF ILLUSTRATIONS

Figure Page

3.1 Diagram of Transducer Supports 17

3.2 Photograph of Experimental Apparatus 17

3.3 Directivity Pattern of 5 cm Radius 20

Transducer @ 100 kc

3.4 Directivity Pattern of 3.5 cm Radius 21

Transducer @ 200 kc

3.5 Transmitter Block Diagram 25

3.6 Transmitter Gate 26

3.7 Receiver Block Diagram 29

3.8 Receiver Range Gate 30

3.9 Detector-Integrator 32

3.10 Photograph of Electronics Equipment 32

4.1 Flat Sand Reflection 35

4.2 Reflection Pattern From Flat Sand 36

4.3 Reflected Pulse From Flat, Stirred Sand 38

4.4 Radial Traverse Flat, Stirred Sand 39

4.5 Reflected Pulses From Flat Boiled and Unboiled Sand 41

Radial Traverse Flat Sand, <9q - 70 444.6

4.7 Radial Traverse Flat Sand, @a 45 45

4.8 Corrugated Cylinder for Making Sand Ripples 46

4.9 Sketch of Sand Ripples 48

5.1 Radial Traverse, Rippled Sand, <9o = 90 50

5.2 Radial Traverse, Rippled Sand, On - 70 51



Figure Page

5.3 Radial Traverse, Rippled Sand, Oo = 45 52

5.4 Radial Traverse, Rippled Sand,©^ = 30 53

5.5 Reflection Coefficient for Rippled Sand 57

5.6 Reflection Coefficient for Rippled Sand 58



Table of Symbols

C» speed of sound in fresh water-1480 m/sec.

C , speed of sound in water-saturated sand-1740 m/sec.
a.

p , density of fresh water- 1.00

P , density of water-saturated sand-2.01
' a.

\jj , radian frequency

r, distance from transducer

R, range from transmitter to receiver along spectrally
reflected ray path

7<.

,

acoustic wavelength in water

7l , wavelength of ripples on sand surface

k = v'C, ^y7\ » wave number in water

P s ^^X/7\. » wave number of sand surface ripples
f s

0, angle of incidence (measured from normal)
04(9i 90

®- , critical angle of incidence

0, , angle of refracted ray in the reflecting medium (measured
from normal)

Mj = 90° -Q, grazing angle of transmitted energy

0^ cos a^ ,
grazing angle of m order scattered wave

m = 0, 1, 2, ...

a^ =» cos (9^ direction cosine with respect to horizontal of m
order scattered wave -1 <• CL^ < +1

A^ , amplitude of m order scattered wave

<=<
r , sound pressure reflection coefficient for plane interface

ae cos ©q , Direction cosine with respect to horizontal of incident
wave

h , sine wave amplitude of rippled surface; surface = h cos px





1. Introduction

The importance of acoustics in searching the oceans for objects such

as submarines, mines and fish has long been established, and much, though

still not enough, is known about the transmission of sound in the water

itself.

In addition, many added problems occur upon consideration of the

boundaries of the ocean, since they complicate the situation so drasti-

cally. The ocean surface, a near perfect reflecting surface due to the

extreme acoustic mismatch, acts as a simple reflector when flat, but is

capable of considerable scattering when roughened by wind and waves.

Several studies have been made of scattering from random and periodic

ocean surface roughness. [3,6,12, 21]

The other ocean boundary, the bottom, is also of great interest,

especially when considering the search for mines and other debris on

the bottom, as well as the Navy's interest in long range bottom-bounce

SONAR. Many studies have been made, both in the laboratory and in-situ,

of the acoustic properties of ocean bottom materials with a view toward

obtaining possible reflection characteristics of the sediments found in

large parts of the oceans. [1,4,5,14,19]

Studies at sea of the effect of the ocean bottom on acoustic propa-

gation are being conducted continually. T13] Certainly much is to be

gained from such field studies, and, in the final analysis, all theories

must be evaluated at sea if they are to be useful in explaining actual

phenomenon. However, experiments at sea are expensive, and, in general,

the conditions of the experiments are difficult to control.



If workable techniques can be developed, scale model studies in small

laboratory tanks can provide much basic information about various phdttCttt-

ena. In the laboratory all the parameters of the experiment can be care-

fully examined and controlled, and valuable testing of recent as well as

older theories provided at minimum expense. Horton describes several model

experiments and builds a good case for scale model studies. [7]

The reflection from a boundary is not only a function of the acoustic

properties of the media involved but of the shape of the interface as well.

Photographic studies of the ocean bottom indicate that it is far from

flat. Of special interest is the existance of nearly periodic, extended,

coherent ripples on portions of the deep ocean floor. [18] Nearly every-

one has seen ripples on a sandy beach and in shallow water caused by

wave action. [2] Those on the deep ocean are caused by steady currents,

much as a steady wind causes ripples on desert sand. From an acoustical

reflection viewpoint, one of the more interesting characteristics of

these ripples is the unusually long wave-lengths. Periodic ripples up to

twelve inches apart have been found in 1000 fathoms of water. This is

close to the wavelength of many SONARS in use today. It seems apparent

that sound waves having a similar wavelength and striking such a surface

would be diffracted in much the same way as light striking a diffraction

grating.

The study of acoustic reflections from periodic rippled surfaces

began with Rayleigh. [11] The many theoretical works through the pres-

ent time are excellently reviewed, with the salient features of each

presented, by Spitznoggle. [20]

Experimental work on this topic is rather scarce. In one such
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study LaCasce and Tamarkin used a corrugated floating cork boundary and

obtained results reasonably consistent with earlier theories so long as

the assumption of a small surface slope was adhered to. [9] Many of the

theoretical studies made since 1955 depend on this work for comparison

with experiment. Spitznoggle mentions briefly some as yet unpublished

work with corrugated styrofoam being conducted at Defense Research Labora-

tory, Austin, Texas.

There is only one study that considers a corrugated boundary other

than pressure release. Yen and Middleton used a hardened plaster-sand

mixture for the corrugated boundary. [22] The corrugation wavelength was

approximately five times that of the acoustic wavelength. Due apparently

to noise and use of an omnidirectional receiver, the higher order dif-

fraction spectra are not as clearly defined as those described by Spitz-

noggle.

The experiments described herein are concerned with reflections from

a rippled sand boundary utilizing acoustic wavelengths only slightly larg-

er than the ripple wavelength. This wavelength ratio was selected since

it seems to occur in practice, and it is convenient for laboratory study.

There were three objectives for the experiment. First, to develop

pulse techniques for the conduct of acoustic model experiments in a small

reverberant tank; second, to study the feasibility of combining the use

of actual ocean bottom material with a rippled boundary in a model experi-

ment; and third, to compare the results with suitable theory for reflec-

tion from periodic surfaces.

11



2 . Theory

The simplest theory for the reflection of acoustic waves from a

fluid-fluid interface considers plane waves incident on a plane surface.

Extensive theoretical work has been done on spherical waves reflecting

from a plane fluid-fluid interface, however, the more difficult problem

of reflection from a sinusoidal surface has been studied only for plane

waves. Plane waves are not easily obtained in a small tank. As a result,

in order to eorapajee experimental results with available theories, it is

important to consider the conditions which must be fulfilled to allow

plane wave theory to be used.

Officer discusses these conditions for a point source in the vicinity

of a plane boundary. [15] This work shows that when

/

Va «

the plane wave reflection coefficient may be taken as a valid approxi-

mation for the reflection of an incident spherical wave. (See table of

symbols)

2 2
As long as (C./C-) - sin © is not zero, a wavelength small com-

pared to the range satisfies this condition. (In this experiment R/PV.

ranges between 74 and 268). However, if C- > C. as is the case here,

and the incident angle approaches too closely to the critical angle

(sin <St = C../C ), the approximation is no longer valid for a finite
c 12

value of R/tv. .

If the expression "very much less than one 1
'

( « 1) is taken to be

equivalent to "less than one-tenth" (<0.1), one can solve for the limit-

ing angle for which the approximation remains valid. In the case of the

12



sand -water interface considered here:

C- 1.48 x 10 cm/sec

C_ 1.74 x 10 cm/sec

R » 109 cm

71 = 1.48 cm

% ' 57°

and the limiting angle turns out to be approximately 53 degrees.

For those incident angles less than 53 degrees the Rayleigh re-

flection coefficient for plane waves incident on a plane fluid-fluid

interface can be used. [8]

o< -
r

/°C*CoS &-^ C iCos St

P C a Co S ©" + /°, C , CesS-t
One incident angle used in the experiment was less than the 53

degree limiting angle described above. Problems at this large angle

can occur due to the arrival at the receiver of energy from the re-

fracted wave in the reflecting medium which re-enters the incident

medium. This refraction arrival, as referred to by Officer, or lateral

wave, as referred to by Landau, takes the form of a conical wave pro-

pagating into the incident medium at an angle equal to the critical

angle &c . [10]

Landau and Officer both obtain solutions for the lateral wave, but

only for long ranges. No evidence that the lateral wave appears signi-

ficantly was obtained during the experiment.

A fluid- fluid interface has been assumed throughout. That the water-

saturated sand does indeed behave as a fluid at wavelengths large com-

pared to particle size has been experimentally shown by Nolle. [14]
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The majority of theoretical studies of sound scattering from

periodic surfaces assume the incident wave is a plane wave. [3,6,11,

21] However, considering the approximations shown above, valid compari-

sons can be made with experimental results.

These studies differ mainly in their initial approach to the problem,

the method of evaluating the coefficients of the resulting series solu-

tion, and in the restrictions placed on the parameters of the periodic

surface. They vary in complexity from the earliest of Rayleigh, through

attempts to improve on Rayleigh, to the theory of Uretsky, which is the

least restrictive and the most all encompassing. However, this last

theory, as explained by Spitznoggle, involves lengthy and complex numeri-

cal methods including inversion of an infinite matrix. [20]

The reflected radiation is composed of a specular reflection as well

as the nonspecular scattered orders. The angles at which these scatter-

ed spectra are propagated can be determined directly from the wave equa-

tion without application of any boundary conditions. Hence, all the

theories essentially agree that these angles can be given by: [9]

A great deal of effort has been expended on further solution of the

problem. This has entailed, through application of appropriate boundary

conditions, determination of the coefficients of the series solution to

the wave equation. The terms of this series represent the amplitudes of

the various scattered spectra. Rayleigh 1
s work in this area, applicable

only when the ripple wavelength ( TV. ) is very large compared to the

acoustic wavelength ( /\ ) , leads to the result:

14



Under the condition where the ripple wavelength is only slightly

greater than the acoustic wavelength, Rayleigh solved the problem only

when the reflecting surface is of the pressure-release type. All the

later studies also deal only with this type of boundary, and as yet,

no one has developed a theoretical solution for the general case. Ex-

pressions for the scattered spectra amplitudes are somewhat more in-

volved in the pressure -release situation than in those given above,

and it can be safely assumed that such would be the case for a general

reflecting surface. LaCasce indicates that the amplitudes of the lower

order spectra are functions of the higher orders.
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3. Apparatus

Tank

The water tank, 8 feet long, 4 feet wide, and 3 feet deep, was

constructed of one quarter inch steel plate and reinforced by one and

one half inch angle -iron around its upper edge and middle. The bare

steel was cleaned and coated with Sherwin Williams Chemical and Moisture

Resistant Primer and Paint to prevent corrosion. This treatment appear-

ed completely satisfactory for corrosion prevention needing only occasion-

al touch-up where the finish was scratched or physically marred. It was

not judged necessary to provide the tank with acoustic insulation due to

the use of pulse techniques, as reverberation from each pulse could be

allowed to decay completely before the next pulse is transmitted.

Transducer Support

The transducer support (Fig. 3.1) consisted of a large, four foot

by six foot, aluminum and steel frame placed in the bottom of the tank.

Two arms for supporting the sending and receiving transducers were mount-

ed coaxial ly on a bearing and shaft attached to the frame. The signal

source transducer was mounted on one of the arms at a distance of 72 cm.

from the shaft. This arm could be rotated through 90 degrees from hori-

zontal to vertical positions. The receiving transducer was mounted on

the other arm at a distance of 37 cm. from the shaft. Considerable care

was required to ensure that the transducer faces were carefully aligned

perpendicular to the support arms so that they would always be pointed

at the same portion of the reflecting surface.

The receiving transducer support arm was constructed of light weight

material so that it could be easily driven through its 180 degree radial

16



Transmitter

Receiver

7
:
?ure 3.1 Diagram of Transducer Supports

Figure '). 2 Sxperimental Apparatus



traverse by an electric motor. The motor and traverse arm were connect-

ed by gears and a chain. A potentiometer on the gear box shaft was

calibrated to provide a DC output proportional to the angular position

of the traverse arm. Due to backlash in the chain drive, all the travers-

es were made in the same direction.

An aluminum box, four feet by one and one -half feet and five inches

deep was placed at the bottom of the tank within the support frame. The

box was filled to the top with fine (30 mesh) "Del Monte White Sand" pro-

duced by Del Monte Properties Co., Pacific Grove, California. The top of

the box, and hence the surface of the sand, was placed level with the

shaft on which the transducer support arms were rotated. A photograph of

the experimental apparatus is shown in Figure 3.2.

Transducers

The requirements placed on the transducers for this experiment were

extreme. First, a wide band device was required because of the desire

to investigate the problem over the frequency range from 100 kcps to

350 kcps. This range was set by the size of the most easily made ripples

and by the electronic equipment available. Second, a reasonably narrow

beamwidth was required in order to confine the insonified reflecting sur-

face to within a sand box of reasonable size. Twenty degrees (null to

null) was selected as a maximum beam width as this insonified an area

25 cm. in diameter at a distance of 72 cm. Third, it was necessary to

insure that the transducer was not so large that the reflecting surface

would be in the near field. Kinsler indicates that near field effects

do not extend beyond a range

18



j a transducer radius

7V acoustic wavelength

for a free piston transducer. [8] In order to allow a safety margin,

the transducer radius was selected such that Qa^A never exceeded 50 cm,

Attempts were made to obtain commercial transducers having the de-

sired beamwidth and frequency response. None were available and a series

of locally constructed mylar electrostatic transducers was employed.

This type of transducer is very inexpensive to build, has wide bandwidth

and essentially free piston-like directivity capabilities. [16] In

order to meet both the beamwidth and far field conditions in a water

depth less than three feet, it was necessary to employ two different

transmitters. One had a radius of five cm. and the other 3.5 cm. The

larger transducer was used at frequencies from 100 kc to 150 kc, and the

smaller one from 200 kc to 350 kc.

In order to insure that spherical divergence was occuring, sound

pressure level measurements made along the transducer axis were plotted

against frequency on semi-log paper. When this curve approached within

one db of its final six db per octave slope, far field performance was

assumed. These measurements indicated that the far field began at a

range ten percent greater than the la/"^. indicated above. Examples of

the directivity patterns of the transducers are shown in Figures 3.3

and 3.4.

It was not initially intended to be concerned with the absolute

magnitudes of the spectra amplitudes; the main concern being with the

relative amplitudes of the various spectra. However, in order to draw

conclusions as to the effect of frequency on the scattering phenomenon

19
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it was deemed necessary to determine accurately the relative sensitivity

of the receiving transducers. This was accomplished by substituting the

hydrophone to be calibrated in place of a previously calibrated standard

in a pulsed sound field. The standard hydrophone was obtained by recipro-

city calibration of a small mylar transducer being used on other experi-

ments by G. L. Palatini. [16] Since the absolute sensitivity of the

standard was known, the absolute sensitivities of the receivers and the

probe were obtained and are shown in Table I.

Table I

Transducer Receiving Sensitivities
(db re 1 /ubar)

freq. (kc) 1/8" probe 3.5 cm radius 5 cm radius

100 -130.0 -106.5 -106.6
150 -127.6 -110.9 -109.6
200 -125.0 -117.4 -112.4
250 -128.8 -118.8 -114.4
300 -135.0 -119.9 -115.6
350 -137.8 -121.1 -115.2

In order to obtain reflected amplitudes which could be compared,

the calibrated 1/8 inch probe was placed in front of the source trans-

ducer at a distance of 60 centi-meters. This was used to ensure that

the Sound Pressure Level incident on the reflecting surface remained

constant at all frequencies.

Attempts to calibrate the transmitters were unsuccessful due to

being unable to ensure a constant DC bias on the electrostatic trans-

ducers. The mylar gradually became polarized in a direction opposite to

the applied field and it was very difficult to determine the exact "ef-

fective" bias on the transducer. Fortunately this effect was much re-

duced on the transducers used only for receiving. The reasons for this

22



are not clearly understood. Measuring the sound field directly as mention-

ed above obviated any requirement for calibrated transmitters.

It is interesting to note that the small probe made from a 1/8 inch

barium titanate cylinder was far from omnidirectional even at frequencies

as low as 100 kc. In addition, the directional pattern varied radically

with frequency. A specific orientation of the probe was selected and

once it was calibrated, this position was carefully preserved during all

measurements.

Alignment of the apparatus and the transducers was found to be most

important in assuring an accurately calibrated experiment. Incorrect

tilt of one transducer gave as much as 2 db. error.

23



Transmitter

A transmitter block diagram is shown in Figure 3.5.

The acoustic pulses are generated by feeding the output of a Hew-

lett Packard test oscillator Model 650A into a General Radio Tone Burst

Generator Model 1396A. The Tone Burst Generator is essentially a trans-

mitter gate which can be set to open for a selected number of cycles and

remain closed for a selected period composed of an integral number of

cycles. The gate is coherent in that the tone burst always begins and

ends at the same point in a cycle of the input signal. A pulse length

of 16-64 cycles (depending on frequency) was selected as being long

enough to set up reasonably steady- state conditions during the pulse.

A low pulse repetition frequency of 40 Hz was used to avoid interfer-

ence among the pulses in the highly reverberant steel tank.

The Tone Burst Generator provided only 44 db. isolation between

gate-open and gate-closed conditions. This permitted a substantial

standing wave background noise which restricted the dynamic range of

the experiment. Satisfactory isolation was obtained by feeding the

Tone Burst output into a second gate, the schematic for which appears

in Figure 3.6. This gate is essentially a shunt-chopper and is a some-

what less refined version of the General Radio Tone Burst Generator.

The gate trigger is obtained from the "gate out" terminal of the tone

burst generator which provides a large positive voltage except when the

gate is open. The negative on-signal turns off the shunt transistor

and the input is fed directly to the output. When the transistor is

"on" its impedance is under 40 ohms and the signal is essentially short-

ed to ground. The input emitter- follower and the collector resistors

provide a means of completely eliminating any pedestal effects by providing

24
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equal current through the collector resistance during both transistor

on and off periods. The second emitter-follower provides isolation from

external loading effects.

The reference diodes provide additional regulation on the power sup-

ply. The small "speed-up" capacitor in parallel with the current limit-

ing 10 kilohm resistor reduces delay in the opening and closing of the

gate. Slight improvement in operation might be obtained by elimination

of the input and output capacitors if the circuit is not to be used with

tube circuits where high voltages might be encountered. Through use of

the two gating circuits in series, an isolation of over 75 db was obtain-

ed.

Significant switching transients were present in both gating circuits

and it was necessary to operate the oscillator at reasonably high levels.

Only a high gain power amplifier, the General Radio Model 1233A, was

available, so a 20 to 1 voltage divider was inserted between the gating

circuits and the power amplifier input in order to obtain a compromise

between the desired output and minimum transients.

Variable DC Bias, between 160 and 300 volts, for the mylar trans-

ducer was obtained from a Hewlett-Packard model 710 power supply. A

blocking capacitor served to isolate the power amplifier and the power

supply. A 2 megohm resistor in series with the bias supply provided cur-

rent limiting in event of a short and eliminated shorting of the output

signal through the power supply.

27



Receiver

The receiver block diagram is shown in Figure 3.7. The output of

the receiving transducer was fed to a battery powered transistor ampli-

fier, Burr-Brown Model 100. This unit, set for 20 db gain, was selected

as the first amplifier because of its low noise characteristic, thus

assisting the establishment of a high signal to noise ratio early in the

receiver chain.

The second amplifier utilized was a Hewlett Packard Model 465A trans-

istor preamplifier set at a gain of 40 db. This amplifier was also se-

lected for its low noise capability.

At this point variable filtering was accomplished by placing in

series the two sections of a Spencer-Kennedy Labs Model 308 dual electron-

ic filter. This permitted both high and low pass filtering at an 18 db

per octave rate. In the higher frequency experiments, the low pass filter-

ing was omitted.

The filtered signal was observed and the experiment monitored on a

dual-beam Tektronics 565 oscilliscope. Care was taken to ensure that

the filters did not remove information useful to the experiment.

The output of the filter was further amplified by 20 db in a Scott

Model 140A amplifier and fed to a receiver range gate. This gate was

constructed similarly to the transmitter gate. The schematic is shown

in Figure 3.8. The two shunt-choppers yield an isolation between gate-

open and gate-closed in excess of 60 db. The gating signal amplifier,

Q6 serves to match the gating signal input to the output of the Digital

Equipment Corporation Laboratory Modules which provide the delays and

pulse forming circuitry required for the input pulse. The delayed input

28
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pulse is formed in the DEC modules by differentiating the Tone Burst

Generator gating signal forming a very narrow pulse. This pulse passes

through a variable delay circuit and changes the state of a "flip-flop."

The delayed pulse also passes into another variable delay circuit and

then is used to return the flip-flop to its original state at a later

time. By appropriate setting of the two delay circuits the output of the

flip-flop serves to position the receiver range gate over a considerable

range (up to approximately 1 second) in both time delay and gate width.

Use of the range gate provided very accurate selection of the re-

flected signal to the exclusion of any noise or spurious response which

are separated from it in time. Thus automatic processing and recording

of only the reflected pulse is facilitated. The output of the gate was

amplified 20 db by a Hewlett-Packard Model 467A power amplifier which

drives a simple diode detector and integrator. See Figure 3.9. The

combination of very low duty cycle (under 0.5%), long charging time

constant (approximately .0012 sec) and very long discharge time constant

provides a DC output with very low ripple and a linear characteristic

over more than 40 db. In addition the integration circuit provides

nearly complete immunity from all random noise and all but very low

frequency periodic noise. Spurious response is also avoided by opera-

tion of the receiver range gate at a signal level where the switching

transients are insignificant. Bias for the detector diode is provided

by setting the gate so that the output "rides" on a small positive pedest-

al.

The DC voltage from the integrator was read on an RCA Senior Volto-

hmyst and on the vertical scale of a Moseley X-Y recorder. Since the
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X-Y plotter has a linear scale, a Moseley Logarithmic Converter Model

7561A was used to provide a decibel reading. The horizontal scale of

the X-Y plotter was calibrated in degrees with deflection provided by a

precision potentiometer connected to the shaft of the traverse -drive

motor. Power for the potentiometer was provided from the same regulated

DC power supply as the gates.

A photograph of the electronic equipment as used in the laboratory

is shown in Figure 3.10.
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4. Preliminary Observations

In order to check out the equipment, tests were made at normal in-

cidence using a large piece of styrofoam as the reflecting surface. The

styrofoam was weighted so that it could be placed at the bottom of the

tank in place of the sand. A clear undistorted reflected pulse was ob-

tained and a radial traverse indicated that the reflected pulses ac-

curately mirrored the directivity pattern of the transducer. However, a

reflection coefficient significantly greater than one was obtained. The

method was tested by turning the experiment over and using the water-air

interface as a reflecting surface. This procedure yielded a reflection

coefficient very close to one as expected.

Experiments with flat sand also yielded a clean undistorted reflect-

ed pulse. An oscilloscope trace of this pulse is shown in Figure 4.1.

An angular plot, Figure 4.2, indicated that the reflected pulses ac-

curately mirrored the directivity pattern, but here again the reflection

coefficients were unusually high, ranging between 0.8 and 1.5. Pre-

dicted reflection coefficient for the flat sand is 0.40, using the meas-

3 3
ured density of 2.01 gm/cm and Nolle' s speed of 1.74 x 10 meters/sec.

[14] This velocity was later confirmed as reasonably accurate for this

experiment when the critical angle was experimentally determined to be

approximately 57 degrees plus or minus one degree.

Poking the sand with a pole revealed a large number of small air

bubbles trapped in the sand. Removal of some of these bubbles by stir-

ring the sand destroyed the clean shape of the reflected pulse. As can

be seen in Figure 4.3, several distinct reflections appear from within

the sand volume. Before stirring, the dense, relatively uniform concen-

tration of bubbles presented a flat upper surface which effectively
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Figure 4.1 Flat Sand Reflection (before boiling)

1) Sand Surface Reflection

2) Sand Surface- -Water Surface Reflections

3) Sand--Air--Sand Reflections

16 cycles at 100 kc

.

vertical scale 0.2v/cm.

horiz. scale 0.2 itis/cm.
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reflected nearly all the incident energy and allowed almost none to

penetrate into the volume of the sand. This led to the clean undistort-

ed pulse of Figure 4.1. After stirring, the hubbies were less dense,

and the sound entering the sand was reflected both from the irregular

upper surface of the bubbles and from areas where the bubbles were more

highly concentrated. This volume scattering from within the sand made

it impossible to obtain a usable undistorted pulse which was reflected

only from the sand surface.

Angular traverses made using the sand in this condition gave wildly

random reflection patterns bearing little resemblance to the appropriate

reflected directivity pattern of the source. An example of such a

traverse is shown in Figure 4.4. Similar plots were obtained regardless

of the condition of the sand surface; flat, rippled or randomly scored.

It is apparent that neither Figure 4.2 nor 4.4 is a true plot of the re-

flections from the sand surface, but from the sand volume or from the

surface of the layer of bubbles.

The most significant indication of volume scattering is the fact

that a distinct reflection was not received from the bottom of the sand.

Apparently the sound was being completely reflected prior to reaefoi&guuv

the sand bottom.

Barnard discusses elaborate precautions taken with his sand mixtures,

and Nolle mentions large reflection coefficients which occur when the

sand is not boiled, but neither discusses the severe interference dis-

covered here. [1,14] Following their lead the entire 600 pounds of wet

sand was boiled over a gas burner in a large drum (200 pounds at a time)

and transferred to the bottom of the water tank. The boiled sand was
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Figure 4.3 Reflected Pulse from Flat, Stirred Sand

1 cycle at lOOkc . Normal Incidence

The top trace shows electronic pickup from the

transmitter, direct unreflecced pulse, sand surface
reflection, and sand surface--water surface re-

flections .

vertical scale 0.5v/cm. horiz. scale 0.2ms/cm.

Several pulses of volume scattering can be ob-

served on the bottom trace between the sand sur-

face reflection and the small indistinct reflection
indicating the sand box bottom approximately 3 cm.

after the large surface reflection.

vertical scale 0.05v/cm.

horiz. scale (approx) 30 usec/cm.
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kept under water at all times during the transfer process. Boiling re-

moved all the air from the sand and the volume scattering disappeared.

Oscilloscope photographs of early test samples of unboiled and boiled

sand are shown in Figure 4.5. Note the repeated echoes and indistinct

bottom return in the unboiled sand, and the distinct bottom return in

the boiled sand.

As might be expected this procedure rendered reflection coefficients

near the predicted values. It is felt that the air bubbles in the sand

were resonating at the acoustic frequencies used, thus acting as scat-

terers having an effective cross -section hundreds of times larger than

the actual cross-section. In addition it is hypothesized that the

bubbles in the submerged styrofoam acted similarly.

It was initially intended to utilize a small omnidirectional receiv-

ing probe, since this is a simple lightweight device which could easily

be driven through the intended traverse. This was the type receiver

used by Yen and Middleton. [22] During use of the 1/8 inch probe des-

cribed in section three, it was determined that the probe was receiving

reflected energy from many directions. This could be observed on the

oscilloscope as a considerable amount of distortion of the received

pulse caused by phase interference as a result of the different path

lengths traveled by the undesired pulses. The desired pulse could not

be cleaned up sufficiently even through use of the receiver range gate.

When a directional receiver was used, much cleaner pulses were

received virtually without distortion. The amplitude plots as a func-

tion of angle were far more noise-free, and the fine structure caused

by phase interference distortion was almost eliminated. This occurred
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a) Unboiled sand has small surface reflection, considerable

volume scattering and indistinct bottom reflection.

vertical scale 0.05v/cm. horiz. scale (approx.)25us/cm,

b) Boiled Sand has larger surface reflection and a clearly

defined bottom reflection <+ 1/2 cm. later.

vertical scale 0.05v/cm. horiz. scale 0.02ms/cm.

Figure 4.5 Reflected Pulses from Flat Boiled and Unboiled
Sand

1 cycle at lOOkc . Normal Incidence

Ui



even when a receiver having a beamwidth twice that of the transmitter

was employed. Little change was noticed when a narrower beam receiver

was used. However, identical transducers were used for receiver and

transmitter whenever possible.

It is believed that the omnidirectional probe-type receiver can be

used only if l€ic range from the reflecting surface is very much larger

than the dimensions of the insonified surface. The experiments of Yen

and Middleton do not seem to have met this criterion. An exception to

this condition would certainly occur if one desires to study the sound

field close to the surface. (Papadakis discusses measurements in air

within the near field of a periodic surface). [17] It was the aim of

this model experiment to draw mainly what one might call "far-field"

conclusions.

After the equipment was checked out thoroughly and operating proper-

ly, radial traverses were made through the sound field reflected from

flat sand. Angles and frequencies utilized were the same as those to

be used for the experiments in rippled sand: 90°, 70°, 45°, 30°.. 100,

150, 200, 250, 300, 350 kilocycles. These flat sand runs were made at

a constant power output from the transmitter as described above, and

permitted a useful comparison of the spectral (zero order) reflection

between rippled and flat surface. (See Figures 4.6 and 4.7).

Ripples, oriented perpendicular to the incident sound, were made on

the sand mechanically by use of a cylinder having longitudinal cor-

rugations. The cylinder was supported by plastic- tired wheels riding on

the edges of the sand box. (See Figure 4.8). (The plastic tires helped

eliminate skidding and hence irregular ripples) . Ripple wavelengths of

approximately 1.30 cm were obtained. Since the corrugations dipped down
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into the sand about three-sixteenths of an inch, the locus of a point on

the outer edge of a corrugation was a prolate cycloid. This caused

ripples which had a predominantly sawtooth waveform. However, this devia-

tion from a sinusoid appears to have changed the results little; the

main effect being to cause the spectra on the less sloping side of the

sawtooth to have a higher amplitude. This effect was confirmed when,

upon reversing the ripples, the higher amplitude spectra reversed sides

also. The majority of the data was taken with the ripples in the same

direction for consistancy. Several runs were made at 45 degrees with the

ripples in the opposite direction (i.e., sound hitting steep side of

ripple crests).

In order to compare the experimental data with theory it was neces-

sary to determine the parameters, 7V^ and h, of the rippled sand surface.

The wavelength, 71 s, was determined by measuring twenty ripples with a

ruler and using the average. This yielded As * 1.23 cm. The ripple

height, h, was more difficult to determine. Attempts to use a depth

gauge destroyed the ripples and may have led to errors in the measure-

ment. These measurements resulted in h .136 cm. Several materials

were tried in an attempt to make a casting of the ripples and it was

found that Portland Cement would harden under water if the top of the

cement was exposed to air.

The casting was made with one inch of water covering the sand by

sprinkling the dry cement -sand mixture (one to one) into a cylindrical

form pushed into the sand surface. The semi -hardened cast was removed

from the water after 12 hours, and when thoroughly dry, it was care-

fully brushed to remove excess sand.
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Figure 4.8 Corrugated cylinder for making sand ripples
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Depth gauge measurements on the casting gave h = .134 cm with a

standard deviation equal to + .006 cm. This result is only .002 cm

different from that obtained from the depth gauge readings directly

from the rippled sand surface. A sketch of the sand ripples is shown

in Figure 4.9. As shown in the figure the crests occur at approximately

one-third the distance between troughs. The sawtooth peaks were slight-

ly more rounded than indicated by the sketch, and the ripples were as-

sumed sinusoidal.
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2M.267

all dimensions in cm.

Figure 4.9 Sketch of sand ripples
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5. Discussion of Results

Examples of radial traverses made by reflection from rippled sand

are shown in Figures 5.1 through 5.4. The runs shown by these figures

were all made at 300 kc at four different angles of incidence. The

figures were copied directly from the recorder graphs without touch-up

or removal of any bias.

The value 7v = 1.23 cm was used to predict the direction of propa-

gation of the scattered orders in accordance with:

cu = a. + v* V^
as shown earlier. These predicted values are shown in Tables II and III

along with angles obtained experimentally. A uniform bias determined

from reflection experiments on flat sand has been removed from the experi-

mental values in the table. This bias appears to be due to inaccuracies

in the alignment of the apparatus.

Angles nearest cutoff for a certain order show the most deviation

between theory and experiment due to the high degree of sensitivity of

the cosine function at small angles. In fact, spectra which are predict-

ed to lie just beyond cutoff at each frequency do in fact appear. This

effect was apparently reasoned intuitively by Rayleigh when he mention-

ed, briefly, media which are not impenetrable. He gave no details of

his reasoning.

The experimental spectra propagation angles are generally within

two degrees of the predicted values. A few isolated cases of deviations

as high as three degrees occur, but these are all at small angles.

From this data it is apparent that periodic ripples on a sand-

water interface do indeed reflect energy according to theory; i.e.,
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Table II

Reflection Angle ,C7m, (degrees) of m

Normal Incidence

Frequency (kcps)

m 100 150 200 250 300 350

2 experimental
(theoretical)

20.5

(17.0)

38.0

(37.1)

42.8

(46.8)

1 18.0

( * )

38.0
(37.2)

53.0
(53.2)

61.5

(61.4)
63.5
(66.5)

70.0
(70.0)

Spectral Reflection Obscured by Receiver Shadow

1 163.0

( * )

143.0
(142.8)

126.5
(126.8)

116.5

(118.6)

112.5

(113.5)

110.5

(110.0)

2 162.0

(163.0)

143.0

(142.9)

130

(133.2)

3

20° from Normal

12

(* )

2

1 20.0

(25.0)

35.0

(36.5)

42.1
(42.5)

15

(* )

46.8

(48.5)

69.0
(70.0)

69.5

(70.0)

70.0

(70.0)

70.0
(70.0)

70.0

(70.0)

70.0

(70.0)

1 152.5
(148.5)

120.0
(117.2) (104.7)

95.0
(97.8)

93.0
(93.3)

89.5

(90.0)

2 151.0
(148.5)

129.0
(127.9)

"trie

(117.2)

**

(110.0)

3

4

151.5
(148.5)

133.5
(136.8)

173.0

(* )

Spectra not shown at a given frequency are beyond cutoff

Calculation indicates this spectra is beyond cutoff
**Transmitted pulse obscured by receiver
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Table III

Reflection Angle,^An, (degrees) of m
Order Scattered Wave

45° From Normal

Frequency (kcps)

m 100 150 200 250 300 350

-1

-3

-4

17

(*)

23

(*)

44.5
(45.0)

45.0
(45.0)

44.5

(45.0)

47.0
(45.0)

46.0
(45.0)

45.0
(45.0)

116.0
(119.0)

93.5

(95.2)

81.5
(83.8)

75.5

(77.3)

69.5

(72.1)

68.0
(68.6)

151.0

(152.5)

115.0

(U9.3)
103.0
(104.4)

93.5

(95.2)

87.0
(88.7)

**

(136.6)
117.5
(119.3)

153.0
(153.0)

106.0
(108.6)

**

(131.4)

60° From Normal

29.5

(30.0)

29.5

(30.0)

28.5

(30.0)

29.5

(30.0)

31.5

(30.0)

31.5

(30.0)

108.5
(109.2)

85.0
(86.1)

73.5

(74.5)

66.5

(66.2)

61.5

(62.1)

57.5

(58.4)

163.5

(* )

133.5

(136.8)

107.5

(109.3)

93.5

(95.2)

85.5

(86.1)

78.5

(79.6)

159.5
(158.2)

124.5

(124.7)

108.5

(109.4)

133.5
(136.9)

161.5

( * )

97.5

(99.2)

118.0
(120.2)

**

(147.5)

Spectra not shown at a given frequency are beyond cutoff
Calculation indicates this spectra is beyond cutoff
Transmitted pulse obscured by receiver
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in a manner nearly identical to the reflection from an optical diffrac-

tion grating. This effect could make searching with SONAR for objects

on a rippled ocean bottom extremely difficult.

The amplitudes of the various spectra were found to vary considerab-

ly with changes in frequency. At certain frequencies some spectra even

disappeared completely. Measurements were made of the reflection co-

efficients for the spectral and first negative order reflections at an

angle of incidence of 45 degrees. The results are shown as a function

of frequency in figures 5.5 and 5.6.

These points were obtained by dividing the reflected pressure ampli-

tude by the incident pressure amplitide as determined on a probe placed

in the direct beam of the transmitter. The data was taken on two differ-

ent sets of transducers which were calibrated separately. Agreement be-

tween the two sets of data was close. Also plotted are the theoreti-

cal reflection coefficients for Rayleigh's limiting case where the sur-

face wavelength is much greater than the acoustic wavelength (p <,< k)

.

(This situation, utilized since no theory exists for p^k, is discussed

in section three.)

This theory predicts that the reflection coefficient for the spectral

reflection should be equal to c< J (2hkcos 0) and that of the first

order reflection «k J. (2hkcos 9). All quantities in the argument of

the Bessel Functions have been previously determined. All that is need-

ed is to determine the flat sand reflection coefficient, <?< , at the

angle of incidence used to obtain the data.

The flat sand reflection coefficient, at an angle of incidence of

45 degrees, was measured for several frequencies and was found to vary
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with frequency. The pattern of this variation changed when the trans-

ducers were changed although the mean remained the same. Therefore, it

was considered that this variation was experimental. The flat sand re-

flection coefficient was obtained by determining the mean and standard

deviation of the data points. This lead to a value of 0.29 + .05.

This value of the reflection coefficient at 45 degrees is consider-

ably smaller than would be predicted from information given earlier in

this paper. In an attempt to resolve this anomaly it was decided to

compute ©<. using Rayleigh's reflection formula and the directly measured

sand density and sound velocity, /O and C_. C was determined through

a measurement of the critical angle, and /O was measured by weighing a

small container of sand removed from the bottom of the tank. This

resulted in:

C = (1.65 + .04) x 10
5

cm/sec

3P - 1.91 + .05 gm/cm

o< - 0.42 + .03

The difference between the two flat sand coefficients is larger than the

estimated experimental error and, unfortunately, has not been resolved.

In the case of the spectral reflection (Figure 5.5) the first null

point occurs at a position so as to indicate an 8% error in the argument

of the Bessel Function. This could be explained by an error in measur-

ing the ripple amplitude by this amount. The standard deviation of

measuring the ripples was only four percent, assuming the cement cast

accurately reflects the ripple shape. However, the measurements made

directly from the rippled sand yielded approximately the same ripple height

but did have an eight percent error. As a result, the position of the
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first null can be said to agree with theory within the limit of maximum

probable measurement error. Considering the amplitude, there is excel-

lent agreement with theory if the directly measured ©^ (0.29) is used.

However, if the indirectly determined value of ©< is used, agreement is

not good.

Turning to the first order reflection, (Figure 5.6) it can be seen

that the amplitudes agree using the directly measured <x, except for a

horizontal displacement of the theoretical curve of 80 to 90 kHz. The

fact that reasonable agreement is once more obtained using the directly

measured ©< supports the assumption that this is, in fact, the appropri-

ate value for the flat sand reflection coefficient.

Given the assumption that the directly measured flat sand reflection

coefficient is the proper one, the theory accurately predicts the reflec-

tion coefficient for spectral reflection from rippled sand. The agree-

ment is not as good for the first order reflection. It seems that the

difference in this latter case is caused, not by an error in «< , but by

an error in the theoretical expression for the argument of the Bessel

Function or in lack of additional terms. Investigation of higher orders

would be useful, but time did not permit.
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6. Conclusions

Pulse techniques were developed and found suitable for use in a

small reverberant tank within the frequency range 100-350 kHz. It was

found feasible to construct a model of the ocean bottom, provided that

the sand was boiled to remove entrapped air. This results in an inter-

face which is a more realistic representation of the ocean bottom than

is possible with either styrofoam or plaster. The sand surface could be

mechanically shaped to represent the ripples which are frequently found

on the ocean bottom.

The results show that scattering from a rippled sandwater inter-

face occurs generally in the manner predicted by theory. The experimental

diffraction angles agreed quite closely with theory, although the diffract-

ed spectra nearest cutoff could not be predicted accurately. Often the

highest order present was predicted to lie beyond cutoff.

The limiting case theory (p£<k) accurately predicts the spectral

reflection coefficient, but there is some error in the prediction of the

first order reflection coefficient. Hence, it appears that Rayleigh's

theory for scattering from a rippled surface into which sound can pene-

trate allows reasonably accurate prediction of the reflection coefficients.

The degree of agreement is better than might be expected considering that

the condition p £•< k has been violated in this experiment.

More information can be gained by extension of the experiment to

ripples of greater height, to a wider frequency range, and to an examina-

tion of the higher order reflections. It is hoped that such an effort

will result in development of a more exact theory for predicting reflec-

tion from a rippled non-pressure release boundary.
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