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ABSTRACT

The thickness of lubricant films under impact loading conditions

has been measured as a function of time by passing a collimated beam

of light through the film, detecting the emerging rays with a photo-

multiplier tube, and displaying the transient waveform on a cathode

ray oscilloscope. It is shown that rotative speed is the dominant

variable in the determination of film thickness in the contact area of

rolling cylinders. Plateau Time is defined as the time period during

which minimum film thickness is maintained at the contact area and is

interpreted as a measure of the "oiliness" of a lubricant.
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1. Introduction.

The thickness of the oil film separating the load carrying surfaces

in many machine elements, in relation to the roughness of the surface,

determines the state of lubrication. The efficient operation of these

machine elements is critically dependent upon the state of lubrication.

If the lubricant film becomes too thin, direct metallic contact may take

place leading to wear or seizure of the surfaces.

Many theories have been postulated to predict the minimum film

thickness under varying load conditions. Such a theory is essential for

a rational design of machine elements such as gears and rolling bearings.

However, a complete and adequate theory of elasto-hydrodynamic lubrica-

tion is not yet available. Grubin [15] has presented one of the most

general theories while Dowson and Higginson [19] have advanced perhaps

the most developed and most accurate of the recently published theories.

It must be noted, however, that a theory is only good to the extent that

it may be substantiated by experimental evidence.

The accurate measurement of film thickness under operating condi-

tions is, by its very nature, not easy to accomplish. Numerous methods

have been used in the past with varying degrees of success. Christensen

[6] determined film thickness by measuring directly the displacement

relative to the machine frame of a lightly loaded pad riding on the sur-

face film ahead of the contact. El Sisi and Shawki [20] used an additive

in the lubricant to increase its electrical conductivity and an electri-

cal resistance method of measurement. Cameron and MacConochie [22] main-

tained a continuous electric discharge between gear tooth surfaces at the

point of minimum oil film thickness. The voltage required to maintain



the discharge was proportional to the film thickness. Borsoff and Wagner

[10] dissolved radioactive sulfur in the libricant which formed an E.P.

film on the gears tested. The radioactivity on the working surfaces

was measured using a thin window G-M tube and by autoradiography methods

and was related to film thickness. Klorig [41] used a light measurement

technique similar in principle to the x-ray technique used by Sibley and

Orcutt [14].

Of the methods mentioned above, those based on electrical resistance

and conductivity have been subject to considerable skepticism due to the

fact that precise rheological data on lubricants under high pressure is

not available. The method used by Klorig showed promise of successful

and relatively direct application if a system of sufficient sensitivity

could be developed for detecting the light signal. The only apparent

drawback in this method is the change in optical absorption of the lubri-

cant under pressure. While no data are available for typical lubricants,

Bridgman [36] has stated that tests on various aqueous salt solutions

yielded no striking effects on absorption under high pressures. Collins

[37] made similar tests on water, methyl alcohol, and toluene with the

results that no changes were found either in the spectral position or the

intensity of the absorption bands studied. With this information, it

appears reasonably safe to proceed on the assumption that increased

pressure will have little or no measurable effect on optical absorption.

The object of this investigation is to utilize the light measure-

ment technique for determination of oil film thickness as a function of

time under conditions of impact loading, and to correlate the results

with existing elasto-hydrodynamic theory.



2. Test Unit Design Considerations

The basic requirement for conducting the proposed research was a

testing device for measuring thin oil films. Preliminary considerations

indicated that the device should consist of:

(a) A rotating test surface with rigid mounts capable of with-

standing high impact loads while sustaining minimum de-

formation.

(b) A means of impact loading to squeeze the oil film on the

test surface to minimum thickness.

(c) A light source of sufficient intensity and directional

capabilities to pass through the oil film and be detected.

(d) A detection device for the light signal.

(e) A recording device for the detected signal.

(f) An electronic unit for synchronizing the events of the

test.

To avoid the necessity of designing a separate machine in the future

for further research in this field, an additional capability was built

into the testing apparatus to provide for measurement of the change in

viscosity of the lubricant being tested. This latter feature dictated,

to a degree, the specifications for the test surface and the loading

device.

The estimate of minimum film thickness to be measured was taken

as 0.0005 inches. This value then established a relative set of toler-

ances for various parts of the testing machine. To bridge the gap of

statistical variations in material quality and to minimize vibrational

problems, the policy of over-design was used whenever practicable. The



most notable departures from this policy were in the selection of certain

bearing sizes where frictional drag calculations were the limiting fac-

tors.
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3. Test Unit Configuration.

The overall configuration of the testing device is shown in Figure

1.

The rotating test surface (Figure 2) was designed as a stepped shaft

of circular cross-section. The massive construction of this shaft is

intended to help maintain uniform rotative speed under impact loads.

The actual test surface is one-half inch wide and six inches in diameter.

The shaft is constructed of AISI 8620 steel, case carburized to 1/16

inch depth with a hardness of 50-60 Rockwell C. The surface finish is

ground to six microinches center line average. The shaft is rigidly

supported at either end in precision ground tapered roller bearings.

Provision was made for adjusting the axial and radial clearances in these

bearings by means of a clearance adjusting plate, shown in Figure 3. The

shaft was coupled, by means of a flexible coupling, to a variable speed

d-c drive motor. The flexible coupling was employed, rather than belt

drive, to minimize transverse vibrations from the drive source. To

measure the shaft rotative speed, a tachometer was geared directly to

the shaft adjacent to the flexible coupling (Figure 4).

The impact loading device was configured as a compound pendulum.

This is shown in Figure 5. The weight at the end of the pendulum is so

designed as to position the point of impact at the center of precussion

of the pendulum. This, of course, eliminates any reaction at the pivot

point due to impact. The large wheel at the end of the pendulum arm is

a free rotating wheel of AISI 8620 steel ground to a six microinch center

line average finish. The specifications for this part are identical to

those of the test surface on the main shaft with which it comes into

11
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contact during testing.

The bearings supporting this wheel are sized such that their friction-

al drag will be negligible compared to the viscous drag in the lubricant

on the test surface of the wheel subsequent to Impact. This considera-

tion was necessary to validate the measurement of change in viscosity of

the lubricant. See Appendix II for these calculations.

The overall mass of the pendulum was great enough that a gravity

drop was sufficient to provide the desired impact loading. Gravity drop

from a specified height has the additional advantage of being reproducible

on multiple tests. To position the pendulum, a ratchet was built into

the hub around the pivot point. This is shown in Figure 6. The pendulum

position is read from a graduated and calibrated scale attached to a

supporting member.

Adjustment for parallel alignment of the two rotating test surfaces

was accomplished by using a ball and socket mounting at the pivot point

of the pendulum which allows rotation about the longitudinal axis.

Lateral alignment is affected with two adjusting nuts in the pendulum

supports (Figure 7).

The selection of a light source was based on two primary require-

ments:

(1) Sufficient intensity

(2) Stable output

The intensity requirement was directly related to the sensitivity of

the signal detection equipment. Hence, those two design parameters were

considered jointly. The detection device was so chosen as to place no

stringent requirement on the intensity of the source. This eliminated a

rather formidable problem area, inasmuch as the vast majority of high

17
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intensity sources have an unsteady or pulsating output. This includes

the variety of arc discharge lamps and tubes available.

Output stability (no flicker or cyclic variation in light intensity)

was a requirement levied by the duration of a "test event". The time in-

volved in any one measurement of film thickness is of the order of several

milliseconds. Any variation in light intensity during such a period would

invalidate the measurement. A perfectly steady d-c source would provide

the only assurance of reliable operation. Full wave rectification and

filtering of an a-c signal was determined to be unsatisfactory within

feasible limits. Therefore, two wet cell batteries of 175 ampere-hour

capacity were connected in parallel to provide power for the light source.

A further assurance of steady output would be realized if a heavy tungsten

filament could be used. A microscope illuminator with a ribbon fila-

ment, type SR-8, rated at six volts and 18 amperes was selected. This

was coupled to an optical train for point source generation and collima-

tion. The light source and optical system are shown in Figure 8.

The signal detection device selected was the RCA 5819 Multiplier

Phototube. This is a 10-Stage, head-on type of high vacuum phototube with

an S-4 spectral response as shown in Figure 9. Maximum response occurs

at 4000 + 500 angstroms. The 5819, therefore, has high sensitivity to

blue light and negligible sensitivity to red radiation. It is capable

of multiplying extremely small photoelectric current produced at the

cathode by an average value of 500,000 times when operated with a supply

voltage of 1000 volts. The output current is a linear function of the

exciting illumination under normal operating conditions. The frequency

response of the tube is flat up to a frequency of about 50 megacycles per

20
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second, above which the variation in electron transit time becomes the

limiting factor.

Basically, the multiplier phototube is a vacuum tube which utilizes

the phenomenon of secondary emission to amplify signals composed of elec-

tron streams. A schematic arrangement of the 5819 is shown in Figure 10.

The electrons emitted from the illuminated, semi-transparent cathode are

directed by fixed electrostatic fields to the first dynode. These elec-

trons impinging on the dynode surface produce many more electrons, de-

pending on the energy of the impinging electrons. These secondary elec-

trons are then directed by fixed electrostatic fields to the next dynode

and the process repeats itself through to the last dynode. The anode

collects the electrons emitted from the last dynode and they constitute

the current utilized in the output circuit.

The operating stability of the 5819 is dependent upon the magni-

tude of the anode current and its duration. In general, high values of

anode current will induce a fatigue, characterized by a decrease in

sensitivity. This decrease is, of course, dependent upon the severity

of the operating conditions. After the tube has been stored in darkness

for a day or so, the sensitivity will usually recover to approximately

the initial level. From this discussion, it is obvious that the average

anode current used must be held to a value well below the maximum rated

value for the tube to ensure stability. The average anode characteris-

tics for the tube are shown in Figure 11.

The range of sensitivity of the tube is dependent upon the respec-

tive amplification of each dynode stage which is in turn dependent on the

supply voltage per stage. The sensitivity and amplification characteris

tics of the tube are shown in Figure 12.
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In utilizing the tube, one strives primarily for stability of

operation and a high signal to noise ratio. Stability, as previously

noted, is a function of anode current. High signal to noise ratio implies

a high sensitivity and low dark current. These two factors are, however,

contradictory to a certain degree. From Figure 12, it is apparent that

sensitivity increases with supply voltage. On the other hand, dark cur-

rent increases with voltage per stage. At this point, it would be well

to discuss the phenomenon of dark current. There are three domains in

each of which a different type of dark current dominates. These dark

currents are caused by (a) ohmic leakage, (b) amplified thermionic emis-

sion, and (c) regenerative ionization. Ohmic leakage dominates up to

about 50-60 volts per stage. Above 60 volts per stage, thermionic emis-

sion becomes important. In almost any method of using the multiplier

phototube, the ultimate limiation to signal detection is thermionic

emission. Associated with this component of the dark current is a shot

noise resulting from random thermionically emitted electrons, variably

multiplied by the secondary emission gains of all stages. Above about

110 volts per stage, a third region of dark current begins which is associ-

ated with regenerative ionization effects and which causes complete break-

down and an uncontrollable discharge at sufficiently high voltage. Hence,

the desirable combination of high sensitivity and low dark current is,

at best, a problem of optimization. Selection of the 5819 takes a

considerable amount of the sting out of the problem, since this particular

tube has an uncommonly high signal to noise ratio when operated in a

normal range below 1000 volts.

Considering the spectral characteristic of the light source used,

it may give the reader some concern that a phototube with a spectral

27



sensitivity centered further up the wavelength scale was not selected.

The chief justification for this lies in the fact that the 5819 is so

much more sensitive than its competitor in the 5500 angstrom range. In

fact, they differ by a factor as high as 25.

With certain orientations of the 5819, the earth's magnetic field

is sufficient to cause a noticeable decrease in the response of the tube.

Figure 13 shows the effect on the anode current of variation in magnetic

field strength. To prevent this decrease in response, the tube was fitted

with a combination magnetic and electrostatic shield. Electrostatic

shielding was necessary to prevent internal discharge phenomena at high

voltages which would result in an increase in noise.

The selection of a recording device for the signal from the photo-

multiplier tube was limited by system response requirements. As pre-

viously mentioned, the entire test event would encompass only a few milli-

seconds. Practically speaking, this eliminated an electro-mechanical

device from the possible choices. An oscilloscope with a memory circuit,

however, would satisfy response requirements and would permit photographic

reproduction of the test results. A Memo-Scope oscilloscope was used for

this purpose. Traces were then photographed at leisure using a panchro-

matic film rated at ASA 200. This provided well defined copies of each

test result.

Synchronization of the triggering pulse for the oscilloscope was

provided by a pulse generator operating in conjunction with a micro-

switch tripped by the pendulum arm. The delay between closing the micro-

switch and triggering the oscilloscope was adjusted by varying the out-

put pulse width of the pulse generator. The generator output was a

28
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positive square wave form that tripped to a negative value at termination.

A block diagram of the instrumentation interconnections is shown in Figure

14. Thus, the scope could be set to trigger on a negative signal after a

predetermined delay which could be varied from 0.1 microsecond to 1.0

second. With such precise synchronization, the time scale on the oscil-

loscope could be adjusted to present a trace of optimum size. Figure 15

shows the oscilloscope and pulse generator, in company with the power

supply for the photomultiplier tube.

Vibrations from the impact of the pendulum head posed a potential

problem. To minimize this, the table holding the impact device was

mounted on a composition rubber sheet of approximately one-half inch

thickness. The light source, channeling system and photomultiplier tube

were placed on separate tables similarly mounted and all electronic equip-

ment was individually located.
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4. Test Unit Calibrations.

The purpose of test unit calibration was to establish a relation

between the output of the photomultiplier tube and light passing through

the lubricant film. The output of the tube is directly proportional to

the amount of light incident on the cathode. Light passing through the

lubricant film is directly proportional to the thickness of the film

(since the face width of the test surface is constant). Therefore, with

the tube operating in a linear region, the output should be directly pro-

portional to the film thickness. The calibration then should consist of

setting a known value of disc separation, with the lubricant film pre-

sent, and measuring the tube output across the load resistor. The disc

separation was set with an adjustable micrometer positioning device

shown schematically in Figure 16. The gap between the discs was then

measured using a microscope. This microscope, with an etched hairline

on one reticle, could be adjusted in the vertical plane with a calibrated

vernier, enabling one to measure the separation between the two surfaces

of the discs. The vernier could be read to an accuracy of 0.001 mm.

Thus, the micrometer was calibrated to read gap thickness corresponding

to a given setting. Lubricant was placed on the test surfaces, the light

source was energized, and the output signal was read from the oscillo-

scope for preset gap thicknesses. A calibration curve was obtained for

each lubricant tested so as to account for any variation in light attenua-

tion properties among the lubricants. These calibration curves are shown

in Figure 17.
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5. Selection of Lubricants.

The criteria established for the selection of lubricants to be

tested was based on a variation of bulk viscosity and other physical

properties. With this aim, the following lubricants were obtained from

the U. S. Navy Marine Engineering Laboratory, Annapolis, Maryland:

(a) Military Symbol 2190TEP

(b) Military Symbol 2110TH

(c) Versilube F-50 Silicone Fluid

The specifications of the lubricants tested are listed in Appendix

I.

36



6. Experimental Procedure.

The basic instrumentation previously described, and shown schemati-

cally in Figure 14, was employed and the experimental procedure reduced

to the following sequence:

(a) Clean test surfaces with acetone.

(b) Apply lubricant to surfaces.

(c) Set pendulum height.

(d) Set pulse width for synchronized delay period.

(e) Set drive motor speed at constant preselected value.

(f) Darken room.

(g) Arm sweep on oscilloscope.

(h) Bring photomultiplier tube power supply up to 900 volts.

(i) Turn on light source.

(j) Release pendulum.

(k) Photograph trace on oscilloscope.

It should be noted that a calibration of pulse width as a function

of pendulum drop position was performed in order to maximize the trace

size on the oscilloscope.

Special precautions were taken to minimize the introduction of

spurious light signals into the photomultiplier tube. These consisted

primarily of:

(a) Complete shielding of the light source.

(b) Shielding of the photomultiplier tube and optical train.

(c) Light shielding of the testing room.

(d) Operation after dark.

To eliminate the effect of reflections passing around the edge of

37



the test surfaces when "zero" gap thickness was set, the d-c level of

the oscilloscope was reset to zero. The aforementioned preparations

yielded an output signal free from all extraneous signals except circuit

noise. This noise was of such a nature that it could not be completely

eliminated, but only minimized within practicable limits.

38



7. Experimental Observations.

Observations of experimental results will be presented in photo-

graphic form showing the variation of film thickness with time. As

indicated in Section 5, three lubricants were tested. The conditions of

testing, for each lubricant, were as follows:

(a) For a pendulum release height of seven degrees, speed was

varied over a range of approximately 200 to 1000 rpm.

(b) For a pendulum release height of 11.75 degrees, speed was

varied over the above stated range.

All photographs may be interpreted by recognition of the following

facts:

(a) The time scale, running from left to right, is an arbitrary

period of time so chosen as to maximize the trace size on

the oscilloscope face. Hence, the zero time reference of

any photograph does not, and need not, necessarily coincide

with that of any other photograph.

(b) The output signal of the photomultiplier tube is negative.

Therefore, as the film thickness decreases, the trace will

approach the zero magnitude reference line from below it.

(c) The majority of traces start at a value which is beyond the

scale set on the oscilloscope. This is clearly an attempt

to provide maximum definition at small film thicknesses.

(d) All magnitude scales are presented in millivolts to avoid

odd scaling factors. These may be related, to film thick-

ness for each lubricant, using Figure 17. This correla-

tion is presented in Section 8. In addition, each photograph

39



is annotated with the conversion factor from millivolts

to inches of film thickness.

To avoid needless repetition, only a limited number of representative

photographic test results will be presented. Series # 1 through # 6 show

the effects of varying speed at a constant load for two different loads.

Series # 7 shows the dominant effect of high speed. Series # 8 shows

elastic rebounds.

Series # 1

Lubricant: 2110TH
Drop Position: 7 degrees

4.V> ^.U

Vertical Scale: 5 mv = 0.0087 inch
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2 4 6 8 10 12 14 16 IS 20

TIME (milliseconds/civ)

Vertical Scale: 5 mv = 0.0087 inch

Series # 2

Lubricant: 2110TH
Drop Position: 11.75 degrees

3 6 9 12 15 13 21 24 27

TIME (miiliseconda/vliv;

Vertical Scale: 5 mv = 0.0087 inch
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01234567 8 9 10

TIME (milliseconds/civ)

Vertical Scale: 5 mv - 0.0087 inch

123 456789 10

TIME (milliseconds/div)

Vertical Scale: 5 mv - 0.0087 inch
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Series » 3

Lubricant: 2190TEP
Drop Position: 7 degrees

T^MZ (mil iicGcoriGs/cliv)

Vertical Scale: 5 mv = 0.0034 inch

go

01 23456739 10

TIMS (millicecor.ds/ciiv)

Vertical Scale: 5 mv = 0.0034 inch
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12 3 7 3 9 10

TIME (milliseconds/cliv)

Vertical Scale: 5 rav - 0.0034 inch

Series # 4

Lubricant: 2190TEP
Drop Position: 11.75 degrees

12 3 4 5

TIMS (nilli!

7 3 9 10

:cr.dz/Civ)

Vertical Scale: 5 rav 0.0034 inch
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12 3 4 5 6 7 £ 9 10

TIME (millisecor.cG/div)

Vertical Scale: 5 mv = 0.0034 inch

Vertical Scale: 5 mv = 0.0034 inch
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Series # 5

Lubricant: Versilube F-50
Drop Position: 7 degrees

Vertical Scale: 5 mv = 0.00305 inch

,... . ,, , _. , ^ .
i

Vertical Scale: 5 mv = 0.00305 inch
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12 3 4 :

TIMS (rr.illiseconds/div)

Vertical Scale: 5 mv = 0.00305 inch

Series # 6

Lubricant: Versilube F-50
Drop Position: 11.75 degrees

12 3 4 5 6 7 3 9 10

TIK2 (milliseconds/civ)

Vertical Scale: 5 mv = 0.00305 inch
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1 2 3 4 5 6 7 8 9

TIME (millisc±co:-.c.j/d-:v)

Vertical Scale: 5 mv - 0.00305 inch

Series # 7

Lubricant: 2110TH

Vertical Scale: 5 mv = 0.0087 inch
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Vertical Scale: 5 mv = 0.0087 inch

~— w—

•

Vertical Scale: 5 mv = 0.0087 inch
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Series # 8

Drop Position: 7 degrees

£ 120

0123 4 5 6 7 8 9 10

TIME (millicccor.ds/aiv)

Vertical Scale: 5 mv = 0.0034 inch

2 4 6 8 10 12 14 13 18 20

TIME (miilicccorids/civ/

Vertical Scale: 5 rav = 0.0087 inch
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8. Discussion of Results.

The results from Series # 1 through # 6 may be utilized for four

major purposes:

(1) To obtain minimum film thickness as a function of rotative

speed and load.

(2) To obtain the film thickness profile, for given loading

conditions, as a function of time,

(3) To obtain the time period during which minimum film thick-

ness is maintained.

(4) To obtain the approach velocity and departure velocity of

the pendulum disc.

The first three of these are germane to the problem of film thick-

ness measurement, and will be discussed further. The fourth is appli-

cable to the determination of change in viscosity under load. This ap-

plication is outlined in Appendix IV.

A plot of film thickness versus rotative speed, with drop height

as parameter, is shown in Figures 18, 19 and 20 for the three oils test-

ed. The film thickness is seen, in general s to increase with rotative

speed at a constant load. This is in agreement with basic elasto-

hydrodynamic theory [15, 19, 31, 35]. For a given speed, the film thick-

ness is seen to decrease with increase in load for the 2110TH oil and the

Versilube F-50 silicone fluid. This conforms to theory. The 2190TEP oil,

however, shows the reverse effect with film thickness greater at a great-

er load up to about 750 rpm. The effect of an extreme pressure additive

in the 2190TEP most certainly becomes more prominent at higher loads and

would therefore create thicker EP films in that region [10]. However,
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it is considered improbable that an EP film alone could account for this

reversal.

The film thickness profile as a function of time is a necessary

measurement for the determination of both the time period during which

minimum film thickness is maintained and the approach velocity and de-

parture velocity of the pendulum disc. Careful inspection of the traces

presented indicates that two features are common to all traces:

(1) There exists a time period, of varying magnitude, during

which a constant minimum film thickness is maintained.

(2) The slope of the leading edge of the trace is greater than

the slope of the trailing edge. Since the slope represents

velocity (dx/dt) , this shows graphically that the approach

velocity is greater than the departure velocity. The vali-

dity of this observation is obvious from energy considera-

tions.

To facilitate further discussion, a new term will be defined.

PLATEAU TIME is defined as the time period during which minimum film thick-

ness is maintained under impact loading conditions. This value may be

taken directly from the scaled photographs of thickness versus time. To

obtain a comparison of plateau time for the oils tested, a plot of plat-

eau time versus rotative speed, with lubricant type as parameter, was

constructed for each load. These curves are shown in Figures 21 and 22.

From these curves, it is apparent that plateau time is a function of ro-

tative speed, loading and lubricating fluid. Furthermore, from an intui-

tive point of view, plateau time would appear to be related to the abil-

ity of a lubricant to adhere to the surface of a metal. With these
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considerations as a basis, the following interpretation of plateau time

is proposed:

Plateau time is a measure of the "oiliness" of a lubricant.

The term "oiliness" was first used by Kingsbury to describe the

reduction in the coefficient of friction of a metal surface when wetted

with an oil containing polar molecules. When these molecules are pre-

sent in a lubricant, they form a bond with surfaces, extending their

long dimensions roughly perpendicular to the surface. In this manner,

several layers of molecules form a coating with reduced coefficient of

friction, as compared to a surface wetted with nonpolar molecules. Sub-

sequent use of the term "oiliness" has lead more or less to a synonymity

with wettability.

Since plateau time was found to be a function of loading conditions,

oiliness is also a function of loading. Test results show no correla-

tion of plateau time with viscosity. Also, there is no pattern of in-

crease in plateau time with increase in viscosity due to pressure. These

findings will therefore apply to oiliness. The fact that oiliness is

apparently independent of viscosity is in agreement with Kingsbury's

original definition of oiliness [23],

Based on the definition herein proposed, the oils tested, as

evidenced by Figures 21 and 22, are classified in order of increasing oili-

ness as follows:

Drop Position - 7 degrees

(1) 2110TH

(2) Versilube F-50
(3) 2190TEP

Drop Position - 11.75 degrees

(1) Versilube F-50
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(2) 2110TH

(3) 2190TEP

No attempt will be made in this paper to explain the change in re-

lative oiliness of the oils tested. It is believed that further investi-

gation will be necessary to evaluate this phenomenon.

The results from Series # 7 represent a special group of tests run

to show the effect of higher speeds on film thickness. Figures 18, 19

and 20 show a definite trend towards equalization of film thickness,

regardless of load, as the rotative speed increases. Figure 20 is per-

haps the clearest indication of this. The photographs presented in this

series validate the fact that at higher speeds, the speed factor is the

dominant variable in the determination of film thickness. This result is

in agreement with the findings of Dowson and Higginson [19], which have

also been confirmed by Christensen [6].

The photographs in Series # 8 show elastic rebounds from the film.

The speed of rotation is a significant factor in causing this effect.

It may be noted that elastic rebound did not occur at the lower test

speeds. As speed increases, however, the deformation rate of the oil

increases during the contact time and the oil responds as an elastic

solid. This result was obtained earlier by Borsoff [40].
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9. Conclusions.

The thickness of lubricant films under impact loading conditions

has been measured as a function of time by passing a collimated beam of

light through the film, detecting the emerging light rays, and display-

ing the transient waveform on a cathode ray oscilloscope. Interpretation

of the test results has lead to the following conclusions:

(1) The light measurement technique employed provides a satis-

factory method for determination of film thickness.

(2) Results still confirm the fact that rotative speed is the

dominant variable in the determination of film thickness in the contact

area of rolling cylinders. The effect of load is of a lesser magnitude.

(3) There exists a time period, the magnitude of which is

dependent upon rotative speed, load and lubricant type, during which a

constant minimum film thickness is maintained at the contact area. This

time period has been defined as Plateau Time.

(4) Plateau Time has been interpreted as a measure of the "oili-

ness" of a lubricant and found to be independent of viscosity.

(5) Further investigation will be necessary to explain fully

the mechanism of oiliness.
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APPENDIX I

LUBRICANT SPECIFICATIONS

Military Symbol 2190TEP Petroleum Oil

Mineral Acidity Neutral

Water None

Flash Point, degrees F. minimum 350

Pour Point, degrees F. maximum 20

Viscosity
Centistokes at 100 degrees F. 82-100
Centistokes at 210 degrees F. minimum 8.2

Military Symbol 2110TH Petroleum Oil

Mineral Acidity Neutral

Water None

Flash Point, degrees F. minimum 325

Pour Point, degrees F. maximum -10

Viscosity
Centistokes at degrees F. 2400
Cenistokes at 210 degrees F. minimum 5.3-6.7

Versilube F-50 Silicone Fluid

Flash Point, degrees F. minimum 570

Pour Point, degrees F. maximum -100

Viscosity, centistokes at 210 degrees F. 16

Viscosity-Temperature Coefficient 0.60

Surface Tension, dynes/cm 23
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APPENDIX II

FRICTIONAL DRAG ESTIMATES

Bearings

where

f - T
f
/rP (1)

f = coefficient of friction

T
f

= frictional torque

r = bore radius

P = radial load

For the given bearings (New Departure # 7037 - Single Row Radial

Ball Bearing):

r = 0.2756 inch

f - 0.0015 [5]

Then, from (1):

T
f

= 4.13 x 10 P (2)

Noting that equation (2) applies to one bearing only, we may modify

it to account for the two mounting bearings in use:

T
f
=8.26x10 P (3)

From equation (3), T
f
may be plotted as a function of P. This is

shown by the lower curve in Figure B-l.

Viscous Drag at Test Surface

For one-dimensional

fluid flow:

EZZSEzzzzzzzza

7""7

^^/

F////////
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r *m% w
where

T » shear stress in the fluid

M = absolute viscosity

Equation (4) may be rewritten as:

F' =aAAv (5)

Ay

where A is the fluid area being sheared and F' is the shearing force.

Assume the following values:

Ay ~ 0.0001 inch

M 12 x 10" ' reyn (SAE 20W at 80°F. and atmospheric pressure)

Speed of driver = 500 RPM

Radius of driver = 3 inches

Radius of driven member = 2 inches

Poisson's ratio =0.3

Young's modulus = 30 x 10 psi

A v = A v Peripheral speed of driver~ max

From known values:

A v = 500( if ) 3 - 507f (inches/sec)

( 30)

and equation (5) may be reduced to

F' - (507T x 10
4
)/< A (6)

We may determine A in the following manner:

Set A equal to the Hertzian contact area

w A = w x b (7)

where b % inch (face width of)

(test surface)
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and
9

.

2 S
c max «-*l

,

1 ^2 >

w " l/r1+ l/r
2

( £[
+ —^~) <8 >

where

S = maximum Hertzian stress
c max

V Poisson's ratio

E = Young's modulus

r.,r = radii of cylinders in contact

For cylinders of the same material,!) = l) and E = E .

Equation (8) then reduces to:

w - 1.459 x 10" 7
S (9)
c max

The basic formulation for maximum Hertzian stress, assuming a value

of 0.3 for Poisson's ratio is

1 h

s
c max

0.35 F (l/rj+l/rg)

bCl/E^ 1/E
2
)

(10)

Inserting known values into (10), we obtain

S = 2.96 x 10
3

(F)^ (11)
c max

We may utilize equations (11), (9), (7), and (6) to find F' in

terms of yUL and F. Then

T
f

= F' r (12)

where

T
f

frictional torque

r = radius of driven wheel (2 inches)

Combining equations (12), (11), (9), (7), and (6), we have:

T
f

= 677x< (F)
%

(13)
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At this point, we must take into account one of the basic Theologi-

cal properties of oil - the variation of viscosity with pressure. Data

compiled by Hersey and Shore [1] may be used for this purpose. The maxi-

mum pressure within the oil film may be found by equating it to the

maximum Hertzian compressive contact stress as given in equation (11).

Thus, assuming a value of F, a change in x is determined and T
f

in

equation (13) may be plotted as a function of F . This is shown in

Figure B-l.
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APPENDIX III

CORRELATION OF PENDULUM DROP POSITION AND LOAD

The fundamental principle to be used in correlating drop position

and load is that impulse is equal to the change in momentum of a body.

The basic quantity to be dealt with is angular momentum, which may be

converted to linear momentum. The fact that all motion in this problem

is constrained to a single plane permits reduction of the vector equa-

tion for angular momentum to the following scalar equation:

H - I a) (1)
o o v '

where

H = angular momentum

I = moment of inertia about axis of rotation
o

w angular velocity

Further, we may note that the corresponding linear momentum may be

written:

h
n

- H /r (2)
o o

where r is the radius to the point concerned relative to the center

of rotation. From basic mechanics, we have:

v - cJ r (3)

where v is the linear velocity. Substituting values for H and a) from
o

equations (1) and (3) into equation (2)

,

h - I v/r
2

(4)
o o

The following data apply to the pendulum:

2
I 2.09 (inch-pound-second ) (determined analytically)
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r = 12.00 (inches) (from pivot to impact point)

Placing these values in equation (4) yields

h = 0.0145 v (5)o

where the units of v are (inches/second) and h is measured in (pound-

seconds). The relationship between impulse and momentum may be written

as:

A h -
f F dt (6)

Making use of equation (5) , this may be restated as

/ F dt = 0.0145 4V (7)

The reason for writing linear momentum in terms of velocity now

becomes clear. A value for velocity may be taken from the photographic

test results as the slope of the trace (dx/dt) at any point. The pro-

blem now remains to evaluate the integral in equation (7). The most

direct and appropriate method at hand is the use of numerical differentia-

tion. Equation (7) may be rewritten as:

Z F At = 0.0145 A v (8)
o

Selection of an appropriate number of time intervals, n, and a value of

A t for these intervals permits solution of equation (8) for the radial

load, F. If the number of time intervals selected is three, as suggested

by Gatcombe [44], use may be made of the following formula from Milne

[45]:

F = 1/ 6 h 2y„ 18 y_ I[-2y + 9y
i - 18y

2
]

where

h » the time interval selected
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y 0.0145 vJ o o

y
x

= 0.0145 v
l

y
2

= 0.0145 v
2

From the foregoing development, It Is clear that a single pendulum

drop position does not correspond to a unique load on the oil film.

Rotative speed has an unmistakable effect on the load being considered

inasmuch as it plays a key role in oil residence time in the contact

zone.
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APPENDIX IV

APPLICATION OF TEST RESULTS TO DETERMINATION OF CHANGE IN VISCOSITY

A change in viscosity may be found by measuring the apparent

viscosity of a lubricant under pressure and subtracting from it the

viscosity at ambient conditions. The basic approach presented herein

will be to measure the torque of the rotating upper disc and equate

this to the frictional torque developed in the lubricant film.

The basic equation for the torque of the rotating disc is

T = I (1)
o

where

I mass moment of inertia of the disc
o

• •

= angular acceleration of the disc

Measurement of angular position, 0, with respect to time and sub-

sequent differentiation of this plotted curve will yield a curve of

angular acceleration as a function of time. A mean value of angular

acceleration over any time period may then be taken as oC = 1/t / OC dt

o

where the integral simply represents the area under the curve.

From equation (13) of Appendix II

T
f
= k A (F)

%
(2)

where

T
f

= frictional torque developed in the oil film

A = viscosity

F radial load

k a constant dependent upon speed of rotation and minimum
film thickness.
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The value of F may be computed as shown in Appendix III. A value

for k may be computed from test results. Then

M = I
o
0/ k(F) % (3)

It should obviously be noted that the measurement of angular dis-

placement as a function of time is no simple matter. However, a scheme

for accomplishing this task might be as follows:

(1) Scribe finely spaced lines on the side edge of the upper

disc and blacken the lines.

(2) Focus a light source on the scribed line directly above

the point of contact of the two test surfaces.

(3) Image this reflected point, through appropriate optics,

on the cathode of a photomultiplier tube.

(4) During contact, the disc will start to rotate, the lines

will pass through the focused beam of light, and the photomultiplier

will receive a pulsing input with each null corresponding to a line

crossing the focus point.

(5) The output of the photomultiplier tube can be coupled,

through a resistive load, to an oscilloscope which will display the

pulses as a function of time.

(6) Knowing the line spacing and disc geometry will translate

the pulse display to angular displacement as a function of time.
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