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ABSTRACT

An electrohydrodynamic traveling vave induction interaction with

the bulk of a slightly conducting liquid (conductivity of approximately

10 " mhos/meter) is shovn to produce a fluid flow. A gradient in con-

ductivity normal to the direction of flow is required. In the scheme

described here the conductivity gradient is provided by taking advantage

of the temperature dependence of conductivity. A traveling potential

wave is created on an arrangement of electrodes parallel to the flow

direction and in contact with the liquid. The resulting fields induce

charges in the bulk "which lag the traveling potential wave. Therefore,

a time -average electric traction in the bulk is created, motivating the

liquid. Expressions for the fields, the time -average traction, and the

fluid velocity are derived and discussed. Experimental results are shown

which lend credence to the derived equations.
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IX





ACKNOWLEDGEMENT

The author wishes to thank Professor James R. Melcher for

the constant influx of ideas and assistance which he gave so

freely during the work of this thesis, which resulted from his

earlier work in the same area.

Thanks are also due to Mr. Paul Warren and Mr. Edmund Devitt

for their suggestions and assistance, and to Miss Carol Cook for

her patience and concern while typing this thesis.

This research was carried out under NASA Grant No. NsG 368.

111





TABLE OF CONTENTS

Page

Title i

Abstract ii

Acknowledgement iii

I. Introduction 1

II. Theory 3

A. Introduction 3

B. Electrical Theory 3

1. Electric Field Equations 3

2. Traveling Wave Solutions 5

C. Fluid Theory 9

1. Force Equation 9

2. Computation of Time-Average
Electric Stress 12

3- Velocity Equation 13

III. Fluid Properties 19

A. Introduction 19

B

.

Conductivity 19

C. Viscosity 26

D. Dielectric Constant 26

E. Conclusion 28

IV. The Experiment 30

A. Introduction 30

B. Apparatus 30





TABLE OF CONTENTS
(cont)

Page

C. Procedure 35

V. Results 38

A. Introduction 38

B. Experimental Results 38

C. Further Work ^5

References 4T

Appendices

Appendix A kS

Solution For a Singular Conductivity
Gradient

Appendix B 52

Solution For Small Conductivity
Gradient





CHAPTER I

INTRODUCTION

Induced charges in a slightly conducting liquid can interact with

traveling wave electric fields to produce a fluid flow. One method of

producing this kind of electroconvection is to introduce a potential

wave traveling parallel to an air liquid interface. Induced charges

in the liquid will relax to the interface and form a traveling wave

of surface charge which will lag behind the potential wave. An electric

surface shear will result and the liquid will move. In this kind of

device the interface is a singular point in a gradient of conductivity.

An extension of the concept of the surface interaction would he

to produce a continuous gradient in conductivity in a liquid. Then

eliminate the interface by bringing the electrodes carrying the travel-

ing potential wave into contact with the liquid. Charges induced in

the liquid will no longer relax to the surface but will remain in the

bulk of the liquid. A kind of internal wave of induced charge will

then travel along behind the traveling potential wave and the possibility

for an electric traction in the bulk of the liquid is created.

This phenomenon is very dependent on the charge relaxation time

which is the ratio of permittivity to conductivity. If the charge

Melcher, J.R., "Traveling Wave Induced Electroconvection" to be published
in Physics of Fluids .
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relaxation time for the liquid is very short, then charge will be

induced in the liquid "but will relax so quickly that it will not

lag behind the traveling potential wave. On the other hand, if the

relaxation time is very long, then very little charge will be in-

duced in the material and the interaction with the . traveling field will

be negligible.

EHD induction pumping would be feasible for a wide class of

liquids whose relaxation times would be compatible with reasonable

frequencies for which traveling electric potential waves might be

generated.

In succeeding chapters, a theory and experiment will be described

which deal with the phenomenon of electrohydrodynamic pumping of liquids

in the bulk. The results obtained are somewhat surprising.
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CHAPTER II

THEORY

A. Introduction

The basis of the following theory for electrohydrodynamic induction

pumping in the bulk of a slightly conducting liquid is .that the movement

of charge in the liquid may be explained by a pure conduction model. This

model applied to induction pumping in the bulk results in currents which

are small enough that the problem may be considered to be only an electric

problem and magnetic effects may be ignored. The theory as developed

here leads to a conclusion which at first glance is somewhat startling

and violates an intuitive conception of how an induction device ought to

operate.

B. Electrical Theory

1. Electri c Field Equations

Considering magnetic effects to be small we may immediately write

Maxwell's equations in the bulk of the liquid. They are:

s/ x E = (l)

V . „*rE = q (2)

Fano, Chu, Adler, Electromagnetic Fields, Energy, and Forces, p.l79<
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where q is the free charge, e is the permittivity and E is the electric

field vector. To satisfy conservation of charge

VJf -|f - O (3)

The free current J results from Ohm's Law conduction which written in

the coordinate system fixed to the laboratory will be

J = crE + qv (k)

where a is the electrical conductivity and v is the velocity in the

fluid flow. Since the Electric Reynolds number given by the formula

^Re = ev/o& is small for the problem under consideration (
N
1Re % 2,6 x 10 )

the qv term in Equ. (k) may be ignored leading to

J = o-E (5)

Equation (l) allows that E may be written as the negative gradient of

the potential $.

E = -S $ (6)

Combining Equs. (2), (3) and (6) leads to:

?• ;(aV$ ) +!g-:(V • ( c VO ) = (T)
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If both ct and e are functions of y in the coordinate system shown

in Fig. 1, this equation is in general difficult to solve, however,

there are situations in which it may be easily approached.

One such case occurs if it is assumed that e is a constant

throughout the bulk of the liquid and that a may be represented as:

a = a
o

+ a
]_

(C - C
Q ) (8)

where £> is the normalized depth in the channel. C = y/d . C re-

presents some appropriate depth in the channel where a value of a

is measured which is in some sense an average value of conductivity

in the channel. It is also necessary that the values of o and o

be such that it is reasonable to say that o m o in the liquid but

V a ~ — <t, /d, where — is the unit vector in the y direction.
iy iy

Combining equations (8) and (7) with e a constant leads then to;

2 — °i ft
2

a
o ^ *

+ V d^ * * $ + e ^ (V * )
= ° &)

ot

This equation will now be solved for the two-dimensional case.

2. Traveling Wave Solutions

If the upper surface of the channel is excited with a traveling

potential wave of the form:

A j(wt - kx)
V = Re V e (10)
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y

V * Re \& e

y = d

<r«<r + <,(*!*}

y = o
-> x

Figure 1 Coordinate system in the pumping channel
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where V is the magni bude of the applied voltage, cu is the angular

frequency, k is the wave number, and circumflex , indicates a complex

quantity; then the assumed form of the solution of Equ. (9) is:

j(ut - kx)
$ = Re $ (C) e (11)

Substituting Equ. (ll) into (9) gives:

as +

o
X

(dk) $ = (12)

This equation may he solved "by assuming for § solution of the form

Ae . Substituting this solution into Equ. (12 ) and solving for

the roots gives:

P = 2
a
Q

+ ju)e

n/(-

a
1

)

2
+ 4(dk)

2

cr

Q
+ juj e

(13)

Since in the experiment performed in Chapter IV, 4(dk) « (o* jfa +

juJe)) this square root may he expanded around the first term. At

the same time defining new constants T| = a, /cr and S = u>e /cr the
1' o ' o

roots may he rewritten:

PX
= 2

2

JL + (- U +

1 + jS 1 + jS

lf(dkf(l + JS )) dM

-7-





Now the complete solution for $ may be written and the boundary

condition on the electric field in the channel may be applied to

evaluate the constants of integration:

P
n
C Pp C

* (C) = A^ L
+ ^e d

(15)

At the perfectly conducting bottom of the channel where Q = 0,

the appropriate boundary condition is that the tangential com-

ponent of electric field must be zero. Therefore, -d$/<5x =

which says that A^ = -A . At the top of the channel where £ = 1

the condition is that § = V. This condition says that:

V

P
l

P2
- e

The final form of $ is:

a p, C PpC
Re V (6 - e ) j(ujt - kx)

2 e (16)
p
i

P2
e - e

Since E = - d$/dx and E = - d$/dd£ , writing E and E in the

form:

j(cut - kx) A j(uft - kx)
E=ReEe : E = Re E 6xx y y

-8-





leads to:

P-, C PP C

jk V (e " e )

E = 2
( 1T )x p Pp * '

'

(e
x

- e
2

)

A p C pp C

v (P e
x

- p2
e *

)

E = zo _i 2 l8)
y d p p

v
'

(e
1

- e
d

)

Equs. (17) and (18) complete the solution of the electric field

problem for the fields in the bulk of the liquid.

C. Fluid Theory

1. Force Equation

The force equation will be written for a two-dimensional

flow in a re-entrant channel under the influence of an internal

electric shear force which is constant in the x-direction because

only the time-average value of the electric stress is considered.

The liquid is incompressible and the flow is steady.

The general force euqation is:

p (
JL + ( 7 . ? ) v- ) + <vp = <3 • i - pg _ (19)
st

J y

P is the pressure, v the flow velocity, p the density, and g is

the gravitational acceleration. T. . is the total stress tensor

-9-





"which includes both the electric stress and the viscous stress.

Under the condition described above, the term p(o7/ot +

(y • v)v ) = and Equ. (19) may be re -written as:

oP = ^xx + ^xy (20)
OX cX 3y

3T J ST
_oF__ = _yx + _^QC _ pg (21)

By B* by

F V E
The total stress T.. = T. . + T. . . The electric stress T. .

ij ij ij ij

eE.E.- ^ 6. . e EE and the viscous stress T. . = ;u (b\r. /Bxj +
i j ij K. k. ij i

Bv /3x.), where u may be a function of space. Substituting these
j

1

expressions into Equ. (20) leads to:

2 /E E * Bv 3(EE ) Bv Bv
_BP_ = e_ o

(
x x) +> __x_ + e x_y

+ji(-2- + -E
) (22)

3x 2 Bx $x By By ox

In the re-entrant channel there can be no gradient in the x

direction in pressure. All of the derivatives with respect to x

in Equ. (22 ) are zero because if we consider only time average

electric stresses, then all of the stresses in the liquid are

constant in the x direction. This leaves only the last two terms

* Woodson and Melcher, Fields , Forces and Motions , Ch. 5 , P« 35

•

** Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, p. 12.
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of Equ. (22) which is the same as saying:

ST
-^-=0 (23)
5y

which may be immediately integrated to give:

T = C
n (22+)

xy 1 v '

where C is the arbitrary constant of integration.

Equ. (21 ) will not be treated since it is only concerned with

the balance of electric forces and gravitational forces in the liquid.

This equation concerns the internal instabilities in the flow but

does not effect the flow in the x direction, at least in the approxi-

mations of this theory.

The time average of the electric stress, which has heretofore

only been alluded to, will now be introduced, resulting in the follow-

ing equation:

3u f

M) -J>--f- ReE
x
E
y |

+G
1

(25)

The pulsating double frequency term which results when multiplying

two sinusoids has been ignored.
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2. Computation of Time -Average Electric Stress

Certain algebraic tricks "will be used in this section to perform

some computations which are essentially quite tedious. The roots p

and Pp given by Equ. (l^-) may be rewritten as:

p1= i[ -atjbj (26)

2

where a=a + ja. = Tj / (l +jS)
r 1

and b = 1^ + Jb
jL

=
71. / (l +JS) + k(dk) (l + jS)/

j]

From Equs. (17) and (l8) it is possible to write that:

-X- -x-

A A* PnC P2 £ * Pl^ * PpC

, h
* Rejkv

o
v
o
(e - - e )(Pl e - p2 e )

(2?)Re E E = - — 3
x y P

n p2 p^ P2
P

T
P2 Pl* P2*

(e
1

- e
2

) (e
x

- e '

)

where the asterisk indicates the operation of taking the complex

conjugate.
P
1

P2
Consider now a term such as 6 ' - 6 . Re-writing after substi-

tution for the p's from Equ. (26) leads to:

P
n

PP -a/
P

e - e = 2 e sirh b/2

Now sir.h b/2 = sinh (b /2 + jb /2) which may be expanded by double angle
r i

formulas leading finally to:

-12-





P
l

P2
_a/2 b b

b b
e - e = 26 (sinh _^_ cos i + j cosh _f_

sin i )

2 2 2 2'

By manipulative tricks of this sort with which the reader may not

wish to be bored it is possible to reduce Equ. (27), not, however,

without some effort, to the following form:

b sin b.£-b.sinh b Q + a. (cosh b C-cos b.CjA * * oReEE = —
* y

_ r (28)

2d (cosh b - cos b. )
\ r 1

The values of the a's and b's may now be computed by combining Equ. (l^)

with Equ. (26). In the experiment described in Chapter IV, it turns

2 2
out that n

s
/(l + S)»(dk) /r\. Ignoring the term on the right side

of this inequality in the expressions for the p's results in the follow-

ing values for the a's and the b's:

a
r

= b
r

=
Tl/(1 +S

2
) and a

±
= \>

±
= -ST]/(l + S

2
)

It should be noted that taking the above values for the a's and b's is

completely equivalent to assuming that one solution for the potential

§(£) is that $ is a constant.

3. Velocity Equation

Equ. (25) may be integrated to determine the velocity. The values

of the a's and b's are substituted into Equ. (28) and that result substi-

tuted into Equ. (25), giving:

-13-





•n (i -£) _ tt,

ekV
2

TS e

1+
f ^sin (§2L) + cos (^—- ) - e

(l+S )
} C.d

2
+ (29)

(1+ S
2

) u(C) (cosh (A-,) - cos (-§L) ) u(C)
1+S 1+S

For purposes of integration and evaluation the "boundary conditions on

the flow at £ = and £ = 1, Equ. (29) may be written as:

_* = - D ILL + -1_ (30)

^C u(£) u(£)

where:

RkV
2

T1S

D = ^-2 (3D

(1+S
2

) (cosh (3^2) - cos (3^2) )

and:

X
^> (1+s

2
)

f(C) - e^ { - i sin (^) + cos (^ - e '} (32)

1+S . 1+S

-14-





Integrating Equ. (30) gives:

o

C d d£

u (0

The boundary conditions for the flov are that at £ = and £ = 1,

the bottom and top of the channel, v =0. In Chapter III it is

shown that u(£) = u £~ where jx is a constant and this gives (when

substituted in the above integrals):

C £

vjl) = - ( D_ f (£) £^ d£ + C V £^ d£

o o o

which automatically satisfies the boundary condition at £ = 0. C

may be evaluated by satisfying the boundary condition at £ = 1. This

leads to:

«,{<>-£ ^f (£) £^d£ + £
5
^ f(£) d d£ (33)

The velocity equation has several properties of interest, some are

very interesting, in fact. First, it may be noted that the velocity

2
is proportional toV- which appears in the constant D, and that when

-15-





V = the velocity will be 0. This is the usual result in electric
o

field problems of this sorz. Second in the limit as S —* C^which is

the limit for frequency f (C) goes to some constant value and D—^

so there can be no motion for frequency. The limit for uo —i> °° may

not be xaken since it violates the conditions for which the equation

was derived.

Surely the most interesting result of Equ. (33) concerns the de-

pendence of v on T|. The sign of 7] is determined by whether or not

the conductivity gradient in the material from £ = to C = 1 is positive

or negative. A positive gradient corresponds to T] > and a negative

gradient corresponds to 7] < 0. In the expression for f (C), Equ. (32 )>

if the sign of 7] "... changes the only term which changes its sign is the
-TjS

sin term. When the expotential term 6 (l+S^ ) dominates the expression

in brackets in Equ. (32)>
as it will most of the time, a change in the

sign of £ will not change the sign of f (£). Therefore, the expression

in brackets in Equ. (33) will not change sign . However, the constant

D will change sign . That is, with a change in sign of the conductivity

gradient, the pump may be made to move the fluid in a direction opposite

to. that of the traveling potential wave. This amounts to an inverse

induction device. This direction reversal depends on the sign of the

charge induced in the liquid. If the conductivity gradient is positive,

that is the fluid is more conducting at the top than at the bottom, then

-16-





the charge induced in the liquid is positive. (Here we assume that E

is negative,) The field is slightly ahead of the induced charge because

of the charge relaxation in the liquid and the resulting electric force

on the charges is opposite to the direction of travel of the field. If,

on the other hand, the conductivity gradient is negative, then the charges

induced are negative and the field tends to pull the charges in the direction

of the field, dragging the fluid along with the charge.

The dependence of the sign of the charges on the sign of the conductivity

gradient may be easily shown for the static case. Consider a liquid

between two parallel plates with a voltage +V applied across the plates

from y = to y = d, where y is the direction normal to the plates and a

gradient in a exists in the liquid such that o = a +(cr /d)(y - y ). In

this case combining Equ. (2), (3) and (5) and noting that dq/dt = for

the static case it follows that:

-y _i
CT-, eE da (3k)

q = _1 __o e o ^

oQ d

where E is a constant determined by V , In this static case a positive
o o

gradient in a corresponds to a positive charge, and changing the sign of

of o\./cr changes the sign of the charge.

Even though at first glance a potential wave traveling in the +x

direction inducing a fluid flow in the - direction may seem startling

the theory predicts such a phenomenon and the static case would seem to

-17-





support this concept.

In Appendix A a dynamic problem with a singularity in con-

ductivity gradient is done exactly and supports the conclusion of

this theory.

-18-





CHAPTER III

FLUID PROPERTIES

A. Introduction

The liquid used in the electrohydrodynamic pump was AROCLOR 1232,

manufactured by the Monsanto Chemical Company. The properties of the

liquid 'which are of interest in the EHD pump experiment are the electri-

cal conductivity o~, the dielectric constant , and the absolute viscosity

,u. The value of the dielectric constant for AROCLOR was taken from the

manufacturers published data. The conductivity and the viscosity were

determined by experiments.

B. Conductivity

Measurements of the conductivity of AROCLOR are not simple to perform

in terms of repeatibility of data. The apparatus used in the experiments

was relatively straight -forward, however. The conductivity was measured

in a so called conductivity cell shown in Fig. 2. The cell consisted of

a lower plate of aluminum, an upper plate of brass and pyrex walls. To

measure the conductivity it was only necessary to place a sample of AROCLOR

in the apparatus so that it completely filled the region between the plates,

AROCLOR Platiclzers , Monsanto Chemical Company, Technical Bulletin,
No. PL - 306, p. 46.
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A voltage was applied to the top plate. A 5 megohm resistor "was

connected between the bottom plate and ground and the voltage across

this resistance was measured with a very high impedance (lOO megohm)

probe as shown in Fig. 3. Calling the value of the 5 megohm resistor

R , the applied voltage V, the voltage measured across the resistor V ,

the separation of the plates d, and the area of the plates A, the con-

ductivity o was computed from the formula:

d V
r

a =
A V R

r

In order to determine the temperature dependence of the conductivity

the apparatus described above was placed in a bath so that the level of

the bath was above the level of the liquid inside the plates. For

measurements above room temperature, this bath was mineral oil, heated

with immersion resistance heaters. For measurements below room temperature,

the bath was alcohol with dry ice. A thermometer was mounted in the

apparatus so that the bulb was immersed in the AROCLOR. When the apparatus

was placed in the cold bath frost tended to form on the sides of the

pyrex shorting the top plate to the bottom plate. Consequently, the top

was separated from the pyrex by blocks of plexiglass. This made the separa-

tion between the plates large enough for fringing fields to increase the

effective area of the plates. This effect was corrected for by making

measurements at room temperature with both the large and small separation,

-20-
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Figure 2 Conductivity cell for measuring conductivity of
AROCLOR as a function of temperature.

cell

5Mn v PkoW

X

tr v

Figure 3 Conductivity cell circuit,
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comparing the resulting values for a and calculating a correction

factor.

The results of the above experiment are shown in Fig. h.

These measurements were done at D.C. with a voltage applied of

6.0 kilovolts. The plate separation d was 2.15 cm, A was 33«6 sq.

cm. and the correction factor for fringing was k = 0.815 in the

formula <j , , = k a
corrected measured

The nature of the actual mechanism for which electrical con-

ductivity is a manifestation seems to be quite complicated in AR0CL0R.

By placing a point source of light in a position so that the light

shines through the liquid and falls on a white screen, motion of

the liquid may be easily observed. In an experiment performed with

the conductivity cell described above with a temperature gradient

applied across the cell, the motion of the liquid was observed as

a function of applied voltage. In this experiment the temperature

of the AR0CL0R on the bottom was about -25 C and on the top about

+25 C. The plate separation was about 2 cm. for a gradient in

temperature of 25 c/cm. With an applied voltage of less than 5

kilovolts at 1.5 cps. very little motion was observed. From 5 kilo-

volts to 7 kilovolts some local swirling of the liquid was noticed

although it was not violent. At about 7 kilovolts a vaguely defined

internal surface formed which undulated slowly. Above about 8

-22-
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Figure k

0.5 normalized depttf' >/d

Results of measurement of conductivity of AROCLOR as a
function of temperature for DC voltage of 6 kilovolts.
Lower scale indicates conductivity as a function of nor-
malized depth in pumping channel.
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kilovolts this surface was completely eradicated by moderately

violent swirling. Near 11 kilovolts the pattern of motion changes

radically to very violent swirling. Under the conditions of this

experiment gravity would tend to be stabilizing the liquid since the

colder, denser material is on the bottom and the warmer, less dense

material is on the top. However, the electric field is trying to

leviate the material. Presumably, the electric field forces over-

balance the gravitational force at some level of voltage and the

fluid becomes unstable. This picture is complicated by the varying

charge density within the material.

The result of the internal instabilities is to complicate under-

standing of the mechanism of conduction in the liquid. Mechanical

motion of the liquid caused by the presence of the field, so-called

electroconvection, may be very active in the process which results in

current flow at the terminals of the conductivity cell.

In spite of the complexity of the mechanism for conduction in the

AROCLOR, the data presented in Fig. k is assumed to represent the con-

ductivity in the liquid as a function of temperature. The theory pre-

sented in Chapter II requires that a be represented in the liquid as

cr = a + a (C - C )• As will be explained in Chapter IV, the tempera-

ture in the liquid in the pumping channel was assumed to be a linear

function of the normalized distance Q with the cold bottom corresponding

-24-





to C = and hot top corresponding to C = 1,

Several approaches might be envisioned for approximating the

data of Fig. k as <j = o + a. ( C - C )• The first would be to say
o x o

that o is the mean value of u and that o\ is the mean value of
o 1

dcr/dC. In that case, a = 10.5 x 10" mho/meter and cr = 129 x 10*"

mho/meter. £ would then be O.89. A second possibility would be to

say that o and o\ should be evaluated at C = 0.5, that is, at the
o 1 ' '

mid-depth of the channel. In that case a = 2.8 x 10~ mho/meter

and o" = 11.2 x 10" mho/meter. Of course, Q =0.5. A third

possibility would be to call a the average value of a and <r, the

average value of do/dC. In that event, a = k.O x 10" mho/meter

and o = 20.3 x 10 mho/meter. Then C = 0.6. A final possibility

exists which is influenced by the pumping theory and experiment. In

Chapter V it is shown that the maximum pumping velocities attainable

for a constant voltage occur at a frequency of 1.5 cps. In the theory

of Chapter II the frequency dependence of velocity predicts that the

o
maximum velocity is strongly influenced by the expression uoe /(<j +

(u)e) )_, which has a maximum when a = uoe . For a frequency of 1.5 cps.

this equation predicts that c = ^.75 x 10*" mho/meter which occurs at

C = 0.66. At that value of C cr_ = 11.2 x 10" mho/meter. For calcu-
o o 1 '

lations in this thesis, these latter values will be used. The other

possibilities are presented to show the range of uncertainty which might
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be expected as a result of the approximations made in the theory

of Chapter II.

C. Viscosity

The viscosity of AROCLOR was measured using three Cannon-Fenske

viscometers, ASTM Nos. 50, 200 and 400 to cover the temperature range

of interest. The Cannon-Fenske viscometer measures v, the kinematic

viscosity. Measurements were made over a range of temperature from

-5 C to 68.75 C. The kinematic viscosity was converted to the absol-

ute viscosity, )x, by the formula ji = pu where p is the density. The

density of AROCLOR was taken from the manufactures data. The results

of the viscosity measurements are presented in Fig. 5* As with the

conductivity measurements described earlier, the temperature was related

to the normalized depth in the channel and the data of Fig. 5 was

-h -3
approximated by the analytic function p. - jp. Q where p. = 5»7 x 10

kg. /m. -sec. This seems to be a very good approximation for the

viscosity.

D, Dielectric Constant

As mentioned before the dielectric constant for AROCLOR was taken

from the manufacturers data. The value used was 5*7 measured at 1000 cps

ftTest for Kinematic Viscosity", {ASTM Dkk^-IP 71)

**
Op. Cit., Monsanto Technical Bulletin No. PL-306, pg. hi
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absolute viscosity ^ in ^/mcler-scc.

1 -T-

0.1-t-

O.Ol-

0.001 L

10

VISCOSITY OF AROCLOR

TEMPERATURE

25 SO 100

0.1
0.2.5 aso

T«-30
#C

ilo normalized depth >/d

Figure 5. Results of measurement of absolute viscosity of

AROCLOR as a function of temperature and normal-

ized depth in pumping channel.
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and 25 C. Since the pumping experiment vas run at a mean temperature

of C and 1.5 cps. this value is only a approximation to that which

existed in the pump. It is probable that the dielectric constant is

also a function of frequency and temperature, however, this dependence

was not measured and e was assumed to be constant in the pumping ex-

periment.

E. Conclusion.

The values of the properties of AROCLOR used for calculation in this

thesis are shown in Table 1. While the viscosity measurements were quite

straight -forward and gave trustworthy results, the values for a and e are

more open to question. Further experimentation with more careful measure-

ment is indicated. There seem to be enough mysteries in the determination

of the conductivity to justify a considerable expenditure of effort in

careful experimentation.
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FROPERTTF.R OV ATROHT.OP

absolute viscosity
--4

u = 5.7 x 10~\g/m-sec

conductivity
o l v

d

= 4.75 x 10 mho/meter

ct = 11.2 x 10" mho/meter

permittivity e - constant
« 5 - 7 *o

Table 1 Properties of AR0CL0R used in the evaluating of

experimental results.
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CHAPTER IV

THE EXPERIMENT

A. Introduction

The purpose of the experiment performed for this thesis was to

demonstrate that slightly conducting liquids can be pumped accord-

ing to the method purposed in Chapter I. Measurements were taken

to determine how the velocity of the liquid in the flow depends on

the voltage of the applied traveling potential wave, and how the

velocity depends on the frequency of the applied traveling wave.

B. Apparatus

The apparatus used in the experiment is shown in Fig. 6. It

is a modification of an apparatus used in an earlier experiment in

EHD pumping of a liquid with a free surface. The liquid to be pumped

was contained in a re-entrant, circular channel with insulating walls,

made of plexiglass and a highly conducting bottom made of aluminum.

The liquid was bound at the top of the channel by an arrangement of

electrodes to which the traveling potential wave was applied. The

dimensions of the channel were:

1) mean circumference 88.6 cm.

2) depth k cm.

3) width 5.1 cm.
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Graphite
commutator
contact

Conducting bottom

Slightly conducting liquid

Figure 6 Apparatus used in the induction pumping experiment, shoving

•
~

traveling vave generator, pumping channel, and hot and cold

baths

.
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The kO electrodes which formed the top of the channel were

individually connected to 40 contacts on a commutator ring. The

ho contacts were connected in a closed loop with a 22 megohm resistor

connecting each two adjacent contacts. The commutator was a rotating

plexiglass bar with a contact mounted at each end. One contact was

connected through a slip ring to a potential of +V volts and the

other was connected through another slip ring to a potential of

-V volts. The commutator was rotated with an angular velocity
o

uo. In this way, if the commutator was located at some particular

angular position
5
ideally the potential on the electrodes varied

linearly in small steps from +V at one position at the top surface

of the channel to -V at the diametrically opposed position. Then

as the commutator rotated the potential distribution moved around

the channel as a traveling potential wave with a sawtooth shape.

The actual wave which was created is shown in Fig. J. The tendency

of the wave shape to be more sharply peaked than an ideal sawtooth

was caused by the loading effect on the power supplies of the liquid

in the channel.

The liquid in the channel was AROCLOR 1232. Its properties have

been described in Chapter III. The experiment requires that a gradient

in electrical conductivity be established between the top and the bottom
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Figure 7 Approximate shape of voltage waveform produced by-

traveling wave generator. Fundemental component
has a value of 0.66 V .
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of the channel. To produce the required gradient advantage was

taken of the fact that the electrical conductivity of AROCLOR is

a function of temperature. Consequently, a temperature gradient

was established in the liquid, between the top and the bottom of

the channel. The bottom of the channel was put in contact with

a bath of dry ice in alcohol which kept the bottom of the channel

at a temperature of approximately -52 C. The region above the

electrodes on the top surface was heated by circulating hot mineral

oil in a channel above the electrodes. The mineral oil was physically

separated from the AROCLOR by the plexiglass ring which also served

as a mount for the electrodes. Heat from the circulating mineral

oil was conducted to the AROCLOR by the electrode mounting bolts.

The mineral oil was maintained at a temperature of approximately

+62 C, By this method, a temperature difference of about UA C

was maintained between the top and the bottom of the channel. It

should be noted, however, that the temperatures measured were the

temperatures of the alcohol bath and the mineral oil and not the

temperature of the AROCLOR at the top and bottom of the channel.

While the heat conduction through the aluminum plate at the bottom

was probably quite good, it is likely that heat conduction from the

mineral oil to the AROCLOR was relatively poor. A reasonable

assumption seems to be that the temperature at the top of the channel
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was about +^0 C and at the bottom, -50°C. This gives a total

temperattire difference of 100°C across the channel, or a temp-

erature gradient of 25°c/cm. , assuming that the variation in

temperature from the bottom (C = 0) to the top (C = l) of the

channel is linear. The measurement of the velocity of the fluid

flow was done by suspending a few small particles of bakelite in

the AR0CL0R and measuring the time that a particle took to pro-

ceed around the channel. The particles stayed suspended in the

liquid because a density gradient was caused by the gradient

in temperature. The specific gravity of the bakelite particles

was such that they would sit in the density gradient of the liquid.

The progress of the particles around the channel was observed

through the clear plexiglass walls. The particles were about l/8 in.

in diameter so that they were massive enough that even if they were

themselves slightly charged, they would still respond to the fluid

motion and not more independently of the fluid.

C. Procedure

Two interesting experiments were performed with the apparatus describ-

ed above. The experiment to measure the dependence of the flow velocity

on the voltage of the applied potential wave was done at a frequency of

1.5 cps. for a range of voltages between 7*0 kilovlots and 13.0 kilovolts

in increments of .5 kilovolts. At each voltage the velocity of a particle

in the flow was measured several times. At voltage levels below 7*0
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kilovolts the particle velocities vere quite small and somewhat

difficult to measure. Since the electric field in addition to

inducing a flow is also tending to leviate the liquid against the

gravitational force. Above 13. kilovolts the liquid became so

unstable internally that the flow was wiped out by the violent

local motions of the liquid. The very unstable motion of the

liquid was easily observable as swirls of liquid of slightly

different refractive indices which could be seen in the presence of

a strong light. This experiment was conducted at a frequency of

1.5 cps, since at a constant voltage, that frequency resulted in

the largest velocities. Some variations in the velocities measured

for a given set of conditions were observed and were caused by

particles sitting at different places in the flow in both the

vertical and the horizontal directions.

Repeatibility of data was difficult to attain unless the

AROCLOR was allowed to remain in the channel for several hours

before the experiment was performed. This may have been due to

the fact that the AROCLOR was slightly corrosive to the plexiglass

walls of the channel and some time was necessary to allow this pro-

cess to achieve some equilibrium.

Another experiment was performed to find the dependence of

velocity on the frequency of the applied traveling potential wave.

This experiment was performed at a constant voltage of 10 kilovolts.

This voltage level was chosen because the particle velocity was
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relatively fast and allowed measurements to be made reasonably

quickly but the liquid was still quite stable with regard to

violent internal motions. The velocity of the flow was measured

over a range of frequencies from about cps. to 5*5 cps in inter-

vals of about 0.5 cps. This range of frequency was used because

of physical limitations imposed by the design of the commutator con-

tacts.

In both of the experiments described here, the temperature

gradient which was established across the channel was constant,

so that the gradient in electrical conductivity was the same.

Another experiment which would vary the gradient in conductivity

could be envisioned but was not performed. The results of the

experiments measuring velocity as a function of frequency and of

voltage are shown in Figs. 8 and 9 in Chapter V.
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CHAPTER V

RESULTS

A. Introduction

In this chapter the results of the experiment described in Chapter

IV will be presented and discussed in relation to the predictions of

the theory presented in Chapter II. A program for further experimenta-

tion will be introduced as well as some ideas for examining the theory-

pertinent to this area of EHD induction in the context of modifications

to the experiments presented in this thesis.

B. Experimental Results

Figure 8 presents the results of the experiment which measured the

velocity as a function of frequency. The data indicates that for

frequency the flow velocity is 0. This result is predicted by the

theory. The data indicates that maximum v is achieved at a frequency

of 1.5 cps.,and that u gradually decreases at higher frequency. The

2
theory indicates that v is strongly dependent on the factor T]S/(l+S)

2 2
which may be rewritten as a-, u>/<y) + (ute) ). Notice that there are also

frequency terms in the expression for f(£) on frequency in this experiment

// 2
"will probably not, however, be as strong as the dependence on ct u)e/(o" +

2
(1% ) ). A theoretical curve is plotted on the data in Fig. 8 showing the

degree of similarity. The exact theoretical prediction of the frequency
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velocity v^ m cm/sec

!...

L2.

1.0..

o.O..

0.6 ..

0.4-..

O.d...

FLOW VELOCITY

vs

TRAVELING WAVE. FRELaUELNCY

1.0

CWtttX co«.

TKeoi'etical curve of tkc {orm c^ * (a>0*

2.0 3.0 +.0 3.0 frequency
in c.p.s.

Figure 8. Results of experimental measurement of flow velocity as
a function of frequency for V - 10.0 kilovolts with a
100 C AT between top and "bottom of pumping channel.
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dependence involves a computational problem of modest complexity which

could be done easily on a digital computer but was not done for this

thesis.

As mentioned in Chapter III, the existence of the peak in the

data of Fig. 8 "was used as a key to determining a likely value for

cr . It is of interest that the value of a predicted by this peak
o o

is within the range of values generated during the independent measure-

ment of a by the method of Chapter III.

Fig. 9 presents the results of the experiment which measured the

velocity as a function of the voltage. These results are plotted against

2
as V . The data clearly justifies the theoretical prediction that

the velocity is linearly dependent on the voltage squared. The con-

stant of proportionality which is the slope of the estimated line

-10 2
through the data points is 1.2 x 10 volt sec/meter. This data

could be plotted not against the peak voltage of the wave form shown

in Fig. 7 . of Chapter IV, but instead against the peak value of the

first fourier component of the voltage. The first fourier component

St

has a peak of 0.66V . In this case the slope of the line of u versus

(0.66V ) would be 2.75 x 10"10 volt sec/meter.

Computed for the same wave shape by J.R. Melcher in "Traveling Wave
Induced Electroconvection", to be published in Physics of Fluids . ,
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Figure 9. Results of experiment measurement of flow velocity as a function of

traveling vave potential V- . Plotted as velocity vs. voltage squared.

Measurements made at a frequency of 1.5 c.p.s.





Turning nov to the theory, the predicted slope of the line of

v versus V~ may be computed. Using the values for a and o. ofX o o 1

Chapter III, the value of T] is 2.36. The wave number k for this

experiment is computed from k = 2rr/\ where X, the wave length of

the traveling wave, is the mean circumference of the channel. By

this means k is determined to be 7*1 meters . Since the data was

taken at a frequency of 1.5 cps., which is the frequency for maximum

v , S = cup/o- = 1. With these values and the values for u and ex' ' o ' o

from Chapter III, Equ. (33) may be numerically integrated. The value

of Q used for the integration is 0.7 which corresponds to the approxi-

mate position at which the particles used to measure the velocity were

observed to float. Incidentally, some error is introduced here since

particles often floated at varying depths but mostly with in a range

of C = 0.5 to £ = 0.8. In any case, performing the numerical integration

for C = 0.7 by Simpson's Rule gives that the slope of the line for v at

C = .7 versus v should be -1.17 x 10~ V . Notice the minus sign,
o o

After all, the theory predicted that with a positive conductivity gradient,

inducing a positive charge in the liquid, the flow should be in the

direction opposite to the direction of travel of the traveling potential

wave. The magnitude of the slope certainly agrees closely with the ex-

periment. However, in the experiment the liquid proceeded in the wrong
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direction, which at first glance is somewhat alarming.

The resolution of this discrepancy between the theory and the

experiment may be found in a closer examination of the exact thermal

conditions in the channel. Unfortunately , in the experiment as per-

formed and described in Chapter IV, the measurement of the actual tem-

perature profile in the liquid was never done. The thermal relaxation

3time for AROCLOR is approximately 2 x 10 seconds for distance on the

order of 3 or h mm. , which would be a reasonable dimension for the kinds

of swirling motion observed in the liquid during various experiments.

This long thermal relaxation time means that when the liquid in a tem-

perature gradient is stirred, the gradient will not re-establish itself

in the liquid for some considerable time. As mentioned in Chapter II,

the electric field imposed on the liquid has a strong tendency to levitate

the liquid against the force of gravity and make it internally unstable.

It may be that the field induces charge in the liquid as expected by the

positive gradient in a and then the electric forces on this induced charge

cause it to displace some of the warmer liquid near the top of the channel

with cooler liquid from the bottom. Then, because of the long thermal

relaxation time the original temperature gradient is not re-established.

This is the same as saying that the internal instability of the liquid

allows the formation of a temperature inversion layer. In this case, a

region exists in the flow which has a negative conductivity gradient and
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the induced motion of the liquid is in the positive direction, as the

theory predicts. The liquid very near the top would still have a positive

gradient in conductivity as well as that near the bottom. In the experi-

ment performed, for the most part velocity measurements were only made

in a range near the mid-depth of the channel. Besides, the very cold

liquid near the bottom is quite viscous so that velocities there would

be small in any case.

It is of great interest that the following observations were made

during the experimentation. Early in the experiment process, before

the theory had been fully developed, it was observed that in the pre-

sence of a gradient of about 30 C, where the liquid was only cooled on

the bottom but "was near room temperature at the top, the liquid was

observed to flow very slowly in the direction opposite to that of the

traveling wave. The velocities were small and it was thought that a

larger temperature gradient would produce greater velocities. A larger

gradient was applied and indeed larger velocities resulted and in the

same direction as the traveling wave. Unfortunately, the author's in-

tuition that the induced flow ought to be in the direction of the travel-

ing wave, led him to continue working with the larger temperature gradient.

No meaningful data was taken for the backward flow case.

During the measurement of u versus frequency some particles, which

were floating just below the mid-depth of the channel, were observed to move
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very slowly backward at the higher frequencies. This is another

indication of the worth of the theory but this situation has not

yet been pursued in detail.

C. Further Work

This experiment has shown that electroconvection can be induced.

A theory now exists which correlates with the experiment in some ways.

Further experiments are indicated, however. If the temperature gradient

which actually exists in the liquid under the conditions described in

Chapter IV were carefully measured, the results of this experiment

could be better interpreted in relation to the theory.

Another experiment might be done to demonstrate the flow in the

backward direction. The distribution of positive charge which results

in the liquid "with a positive conductivity gradient is different than

the distribution of negative charge which results with a negative con-

ductivity gradient. This may be seen in Equ. (3I1 ) of Chapter II.

Therefore, if the sign of the conductivity gradient changes but the

absolute magnitude remains the same, both the sign and the magnitude of

the velocity will change. That is pumping backward is not exactly the

reverse of pumping forward.

The most interesting extension of the theory which should be made

is to do what might be called a multi-region analysis. This would only

be a matter of considering the liquid in the channel sliced into different
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regions. The conductivity approximation o = o + cr (C~C ) could

be very accurate in each region. With proper sized slices a would

be sufficiently larger than o so the approximation in Equ.(9 ) that

a = a but \7 a = a would be very good. The appropriate boundary con-

ditions would be to match fields and velocities at each interface be-

tween regions. This problem would require computer solutions.

The theory of Chapter II is the theory for the long wave limit

which is the case for which the term 2dk « T)/l + jS. The short wave

limit which is the reverse inequality is presented in a very brief form

in Appendix B. An experiment might also be performed where this limit

is valid to test the theory through its entire scope.

Another major area of interest was mentioned briefly in Chapter III.

The schemes discussed in this thesis for EHD induction pumping have possi-

bilities as methods for further definition of the mechanism for conduction

in liquids and for the investigation of electrically induced internal

instabilities in liquids.
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APPENDIX A

SOLUTION FOR A SINGULAR CONDUCTIVITY GRADIENT

A problem similar to the bulk EHD induction pump

would be a pump operating with two liquids of differing

a's and e's. Consider a device with the same electrical

arrangement as that described in Chapter IV but with a

liquid in the upper region of parameters a and e and

a liquid in the lower region of a, and £.. (See Figure

10) . In this case the induced charges will relax to the

interface forming a sheet of charge at y = 0. Solving

Maxwell's equations for the electric case will result

in potential's in the two regions of the form:

= Re [A sinh ky + B cosh ky] eJ ^t-kx)
(1)

the resulting field will be

E = -kf A cosh ky + B sinh kyl (2)

E = jkj^A sinh ky + B cosh ky] (3)

The boundary conditions are:

at y = a = V

=hS-





yaa

j/ = o_

ys-b

V = ReVo*

(Tu, 6

j(<ot-kx)

<ri,€,

\ \ \ \ \ \ \\

\

(T-* °°

Figure 10. Coordinate system for the two fluid problem with
a singularity in conductivity gradient at the
interface.
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at y = Ex = Ex „ and

a Ey - cr.Ey. + f- (e Ey - e .Ey J + U |- (e Ey -£ JEy.) =
u J u H J

I ot u y u I
J l ox u J u I J &'

at y = -b $ =

where the u and I indicate the upper and lower regions

and U is the velocity in the x direction at the interface

Matching these conditions with the expressions for the

potential and the fields in each region, equations (1)

,

(2) , and (3) gives:

V = A sinh ka + B cosh ka
o u u

= B - B.
u X>

(4)

(5)

= (a + j(a>-kU)e ) A - (a ,+j (a>-kU)e ) A, (6)u u u i
J 11

= - A sinh kb + B cosh kb (7)

The time-average electric traction at the surface will

be given by the Electric Stress Tensor and will be:

< T > = Re ^xy 2

A a ik A A ?^

e Ey Ex - e „Ey Ex

„

u ; u u S, SL £
(8)
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After solving for the A's and B's from equations (4) to

(7) , then combining equations (2) and (3) with (8) , the

time-average traction becomes:

2 2,
k V (cosh kb sinh kb)e (co-kU) (a„e -a e „)

„ _ O U I U U V
^ 2 fa cosh ka sinh kb + a . sinh ka cosh kbj

r
+ (co-kU) Te.sinh ka cosh kb + e cosh ka sinh kbl

(9)

If equation (9) is taken in the limit where a -> and

e -> e , then the result is the same as that derived by
u o J

•k

Melcher for the single liquid with an air interface.

That is, for cu > kU the traction is positive. If, however,

£ = e. but a > a „ , conditions which would approximate
u I u £

those under which the experiment of this thesis was done,

then the time-average electric traction is negative. In

that case, U would surely be negative. The sign of the

charge induced on the interface would be negative. Thus

the result derived here for an exact solution agrees with

the solution for the continuous gradient in conductivity

of Chapter II.

*Melcher, op. cit.
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APPENDIX B

Solution For Small Conductivity Gradient

From Equ. (28) of Chapter II a general expression for the time-

average electric traction may be written in terms of the a's and b's,

before taking the limit that 2dk« 7]/l+jS. That expression is:

_ ekV e r^ ' b sin b.C-b.sinh b ^ + a. (cosh b C - cos b.C)^ E^ o r i 1 r i
v r i

'

xy
k& (cosh b - cos b. )\ r i'

If instead of the above limit one takes the limit that 2dk» T]/l+jS

then the a's and b's are (from Equ. (26) ):

a = b. = 0; b = 2dk; a. = - VS/ (l + S
2

)r l r i ri v '

Substituting these values into the above expression for T. . gives:

<T
E > = - ekV TiS (cosh 2dkC - l)

xy o K '

k& (l+S
2

) (cosh 2dk -l)

Now if 2dk«L this may be further approximated as

:

ekV
2

T1SC'-t
<C ~ > = - -
xy

k& (1+S^)

F -h.
With this new T and u - u C" the velocity Equ. (30) may be integrated

-i*
(J U
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to give

:

e k V
2

T1S C
7

L
C a C

5

•«----V- — +C£

k)i l+s 7 u 5

When C and Cp
are evaluated for the no -slip condition at Q = and

C = 1 the result is:

a/r^5
(c
2

- 1)
V
* 28 ju (1 +S)

2

o v
'

This equation for the limit of small conductivity gradient shows that

in the limit where S becomes very large that the velocity -^ which

means that the relaxation time is too long for the device to work at

high frequencies. The equation also predicts that v < for 7] >

and v > for Tl < 0.
x '
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