“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2000-03

Design, implementation, and analysis of the
Personnel, Operations, Equipment, and Training
(POET) database and application program for the
Turkish Navy Frigate

Can, Yuksel

Maonterev. California. Naval Postaradiiate Schoonl

goals of open government and government transparency. All information contained

m KN DK herein has been approved for release by the NP5 Public Affairs Officer.
LIBRARY

ﬂ‘“‘: D U DLEY Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE
PERSONNEL, OPERATIONS, EQUIPMENT, AND TRAINING (POET)
DATABASE AND APPLICATION PROGRAM FOR THE
TURKISH NAVY FRIGATES

by
Yuksel Can

March 2000

Thomas Wu

Thesis Advisors:
Lee Edwards

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTRED §

20000622 028

:

_

REPORT DOCUMENTATION PAGE OMB N, 07000158

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) . 2. REPORT DATE) 3. REPORT TYPE AND DATES COVERED
. March 2000 Master’s Thesis
4. TITLE AND SUBTITLE: DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE PERSONNEL, 5. FUNDING NUMBERS

OPERATIONS, EQUIPMENT, AND TRAINING (POET) DATABASE AND APPLICATION PROGRAM
FOR THE TURKISH NAYY FRIGATES

6. AUTHOR Can, Yuksel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of

Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT) 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words) -

The Turkish Navy frigates have a challenging mission, which encompasses tactical, operational and
administrative tasks. Lacking an automated information infrastructure hinders the ships’ ability to efficiently perform the
administrative activities, to generate the required reports quickly and to make effective decisions based on this
information. The objective of this thesis is to design and implement the Personnel, Operations, Equipment, and Training
(POET) Database and Application Program for the Turkish Navy frigates and to analyze the potential benefits that will
be obtained by using this system. The POET database system will provide the Turkish Navy frigates with an automated
information system that will support the administrative activities, release manpower to perform other duties and reduce
the productive power loss by increasing the availability, accuracy, and consistency of the data. The thesis covers the
analysis of requirements, conceptual database design using Semantic Data Model, logical database design on Microsoft
Access DBMS, and implementation of the application program using Java and JDBC API. The result of this study is a
functional application that will eliminate most of the current problems onboard the frigates and result in considerable
savings of personnel power and time while providing the required information to the command quickly.

14. SUBJECT TERMS Database, Relational Database System, Semantic Data Model, Java, JDBC, 15. NUMBER OF PAGES
System Maintenance, Design, Implementation and Analysis of Information Systems 293

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFI- 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE CATION OF ABSTRACT UL
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

ii

Approved for public release; distribution is unlimited

DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE

PERSONNEL, OPERATIONS, EQUIPMENT, AND TRAINING (POET)

DATABASE AND APPLICATION PROGRAM FOR THE
TURKISH NAVY FRIGATES

Yuksel Can
Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and
MASTER OF SCIENCE IN SYSTEMS MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author: _

Yeksel Can

Approved by:

omputer Science

Reuben Harris, Chairman, Systems Management Department

i

iv

ABSTRACT

The Turkish Navy frigates have a challenging mission, which encompasses
tactical, operational and administfative tasks. Lacking an automated information
infrastructure hinders the ships’ ability to efficiently perform the administrative activities,
to generate the required reports quickly and to make effective decisions based on this
information. .

' The objective of this thesis is to design and implement the Personnel, Operations,
Equipment, and Training (POET) Database and Application Program for the Turkish
Navy frigates and to analyze the potential beneﬁts that will be obtained by using this
system.‘ The POET database system will provide the Turkish Navy frigates with an
automated information system that will support the administrative activities, release
manpower to perfofm other duties and reduce the productive power loss by increasing the
availability, accﬁracy, and consistency of the data.

The thesis covers the analysis of requirements, conceptual database design using
Semantic Data Model, logical database design on Microsoft Access DBMS, and
implementation of the application program using Java and JDBC API. The result of this
study is a functional application that will eliminate most of the current problems onboard
the frigates and result in considerable savings of personnel power and time while

providing the required information to the command quickly.

Vi

TABLE OF CONTENTS

I. INTRODUCTION ‘ - 1
A. BACKGROUND........cooceumrrunn. et eevereneeeasennane 1
B. OBJECTIVEcooviiiiicreenreeeeenrenesncnineneens reerteretee ettt ettt ese st e aeeeesaens 2
C. METHODOLOGY ereereereerere ettt ettt s et ne s e e assaeae b e saten e senen 3

1. Requirements ANalysiscccccocoevreeiniennnniniiieencieseesaee s 3
2. = Conceptual Database Designccocovvevevivienrivennnncne RP—— 4
3. Logical Database DeSignccccoevivivierinirciriiirininenintcenereeeereesseaaes 4
4. Physical Database Desigh.......ccccrceruerverernrrceenrseerniesensenssesesnesesssesesenenns 5
5. System Aﬁalysis and Evaluation.........ccceceevvierreerneeniensiessnessnecsssnseesensenes 5
D. ORGANIZATION OF THESISccccvviniiniriimnnriinetessesnesensessessessssenesas 5
II. BACKGROUND 9
A. DATABASE SYSTEMS......ccooevvvvininnan cesvssnaserssussnsssisserssnssnrensuesnetnes s asasssanees 9
1. Benefits of the Database Appro'ach..........................; 11
2. Data Models, Schemas, and INStANCEScccueeveeeerrreceereereeseereerueseeseeneens 20
3. DBMS AICRItECIUTEeovrereeneeeceeenriiesteicsie et eree s enns 22
B. THE RELATIONAL DATABASE MODEL.........ccccovnmiinmnirinreerieeceenenes 23
1. Relational Model COncepts........cccouiverrerrenuiinimesiinineticnneresreseesresnennens 24
2. Relational Model Constraintsc.ccoeeeviivivieienineinnerieneesenineeseensennens 31
3. Update Operations on Relationsccoeeeeevivieinrnennecinrenieneciiennnns 34
4. Relational Algebra................. e eee et s et s et 36
C. STRUCTURED QUERY LANGUAGEcccocoovivminireieeeieeteteeaes 40
1. Data Definition in SQL.....ovuiriinieieiisssis s 41
2. QuerieS in SQL ..ottt 43
3. Update Statements in SQL.......ccccoiviiminiininiiinreeecee e, 46
4. Viewsin SQL....cucirriiiieiirriinineiecncine et ennan e reeeeens 48

vii

5. Processing SQL Statementscoevvveceveverenerereeeeeeeseeeesssessssseenens ...49

6. SQL TeChNIGUES.......ceerrirererrrerrereeesieceeesceeseensene e eeeeeeeesssesesesessanens 51

D. NORMALIZATIONcootmtmerrrrrtetereeerereeeeereeseesseseseesessesesssssssesessssesesssssons 56
1. Functional Dependencies............ccuoeurrecuremcreeeereecnrireeeeeeeeneeeesessssesenn, 57

2. KYS ettt s e er e 59

3. Update ANOmAlies......ccoveruireeererireeirieceersieceeeeeeseneeesseseseseesessssesesseseess e 60

4. NOMAl FOIMS ..ottt et sses s 62

5o SUMMATY ..ottt ettt e e ee e e sesesassenans 69

E. ACCESS 7 ottt et es s s 70
1. Features 0f ACCESS 97 ...ouuvvueuirereeeeeieeccee et ees e ess s 71

2. Requirements fOr ACCESS 97vuvurveerrreeeceerieieceesee e eeseeseeeesseesseseen 77

3. Database Objects and Views in Access 97coou....... ereereeeeaaeas 78

III. SEMANTIC DATA MODEL 83
A. INTRODUCTION ... ereebeaes et et et et ta e re s s enenes 83
B. SEMANTIC OBJIECTSoovoiirieeeetererereeeecessseseseeeesesese e s s s sessssssssesesaens 85
Lo ABIIDULES. ...ttt et e e e 86

2. Attribute Cardinalitycceceeeemevereueeeeieiieeeeeeeeeeeeeeee e eesesees e 88

3. Paired AtIIDULES c.oveveevieittc e, ceeeerenaa 89

4. Object IAENtifIersccocvvrereeeeitiececcceete et esere e ses e 89

5. Attribute DOmAInS.c.cecuiuiueereeeeieeeiieeeeeeeeeeeeeee e e e e 90

C. TYPES OF SEMANTIC OBJECTS........ eeeserus st et stsnasreses s dosaseessanseesens 90
L. SimPIE OBJECTS ..ucuveeeciereiriteteeeeeeeeeeeeete e es e s ees e e ses e eenaes 90

2. ComPOSItE OBJECES ..vverrerererereerieeereteeeeeaceeeseseeeeessesseseeseesesesesesesssesesaens 91

3. Compound ObJECtS.....cc.ocuruerurmrrrrereercrereeeececeeeseeeceseeseeeeessesesesessessessens 92

4. Hybrid OBJECTS ..cevrreiirririereteieecee et es e eneeseees et e seesessssssesesseenens 92

5. AsSOCIAtioN ODBJECES ..c.vovurueeirereireretececttcteeece e e s ee e eeteseseser s 93

6. Parent/Subtype ODJECES....cccerieiirerierrensenierieciniesicsseseeses et nenes 95

7. Archetype/Version ObJectSmvimmiieiriinisiinirissiiss s 97

D. TRANSFORMATION OF SEMANTIC OBJECTS INTO RELATIONS98
1. Transformation of Simple ObJects.......ccererivenircrereniireennrrcsirnrcineees 98

2. Transformation of Composite ObJects.......ccceevererririrvinnvcsinriniiseninnas 99

3. Transformation of Compound ObjJectsc.cccoeemerrivninincsnnnnnininenn. 100

4. Transformation of Hybrid ObJects.........crmmermmnimimiiinisiiinninnes 103

5. Transformation of Association ObJECtSc...ecerveerirrecrerrreereererercenennene 106

6. Transformation of Parent/Subtype Objects.......cccccvvvvivvniervirenninneannes 108

7. Transformation of Archetype/Version Objects.......cccocevueverucrmvreinnennes 109

IV. JAVA AND JAVA DATABASE CONNECTIVITY (JDBC) 111
Al TAVA .ottt ettt ettt e bt s s 111
B. ADVANTAGES OF JAVA......... crrrsseseussestasnsr st s s bA s s s a0 113
1. JavaisPortable................ eereeseeessresressaasansasanesteassassreaestsesaesasrertsasatenen 114

2. Javais Object-Oriented........cccooniriniririninniinininiieciee et 114

3. Java Makes It Easy to Write Correct Code.......ccoccevrnviinicnunnincnnnnnne. 115

4. JavaIncludes a Library of Classes and Interfacesccccceevcercvnceneencns 117

5. Javais EXtensible........cooiieniiininniniiiintc e, 118

6. JAVA QS SECUTE....ccvurrrernreancrmrencemcessinrassnsessseneasenss e 118

7. Javais MUltHIEadedccccccvevvreeveereseeeesesessessssssssssseesesesssesessesssessene 119

8. JavaPerforms Well.....ccooeeeiiveeniiciiiinicntcnce e ..120

9. Java Scales Well ...ttt 120

10. Javais Distributed.........cccevveeicreanunnnne terreeeerrnee et e ettt s et s e e et eassaaeas 121

11, JAVA IS RODUSE c..veeeeeerceceeecseeeeeeecensseessesseseesassessesassassessssssassesssssansanses 121

12, JAV QS DYDAITHC croevoreeresees e sesseessseessessssereessneseesssneesssreesneess 121

ix

1. Loading the DIIVET.......cccocoueiueieevereveceececeeeeeereee e eeeeesaeeeseses s 122
2. Establishing a Connection with the Database...................oooevovoorovoo. 123
3. Sending SQL Statementscceevueeeemeneeeeeeemsseessesesesessssessssssssonns 123
4. Processing the ReSUIS.........ccccuvivevieiieeeeeeeeeeeeeeeeeeees e se e 124
D. JDBC CLASSES AND INTERFACES.........coeoneveeeeeeeeeesieeeeeseeressessesennn. 125
1., DriverManager Classc.coueeueueveriveeeeeeeeisiceeceeeeseseeseseeeesesseesssssesens 125
2. Connection INTEIface.........ouuereereeurerreerieeineet e eeeseeeesseeseesseseenons 126
3. Statement INtEIFACEocovvverirerrirereivnee e seeereesaes e, 126
4. PreparedStatement INtEIfaceoveveeeeemreeeereeereeeeesseseres e resenons 128
5. CallableStatement INEIfACEucvvecveierierceereeeeeceeeeeeeeeeeessees e, 129
6. ResultSet INtErface.....c.ovvmuuivereireeecieceeeeeeeereee e eseee s ceees e cesses s 129
7. ResultSetMetaData INterfaceoceoemereeeeeceeeeereereseseeeese e, 131
8. DatabaseMetaData INterface...............ouveueeeeeeeeereeeetreeesseeeesesseresesenenns 132
E. JDBC AND CLIENT/SERVER MODELS........cooeeeeeeeeeeeeeeeeseseseereeon, 133
F. JDBC DRIVERS........cootermnereteeee et ssersssesseseesassses s s ees s s s 135
1. JDBC-ODBC Bridge plus ODBC DIiVercovueermeeeereereeeeeeseernnn 136
2. Native-API partly-Java DIIVET...........ccoeieivreereeeeereeeeeeeese oo esenesans 137
3. JDBC-Net pure Java Driver........... e eeeeeeeeeee e seese e s 138
4. Native-protocol pure Java DITVET..........ccoeeeeeeeeeeeeeesersesesessereresenens 138
5. Driver Selectioncuoveveunenen... et ee e 139
V. REQUIREMENTS ANALYSIS FOR POET DATABASE 141
A. DATABASE DEVELOPMENT PROCESS ...t 141
1. Requirements Collection and Analysis.............ccivueuemeeeeemeereeesrersnnnnn, 141
2. Conceptual Database DeSignc.eueueecureeeerereeeeereeeeeeeesseressessenns 144
3. Logical Database DeSignccovmvurveveureeenreesieerreennnn, reeresreresaneens 145

4. Physical Database DeSigh.......coccvuvirmmmmmireinminiiniisissenisissennss 146
B. REQUIREMENTS ANALYSIS FOR POET DATABASE.........cccovemenne. 147
1. Ship ObJECt...ciiriieirerireeerereeieireeeeeecceenenesssissasensiaes rererereseaeteae e 147
2. Department Object................... eeerteeteeete e et e s bt e s et s be s s e b e s aesaeas 148
3. Division Objept ... 148
4. Personnel Object.............. teeereereeseeete e be st e et R s s bt e a e b s R et as 148
5. Training Object......... et essmeees s 150
6. OPEIAHON ObJECt .rrrerereserrsesssesesesssrsssesseseseseseos 150
7. Equipment ODBJECtcccvuvvimiuiniimrmiiiiiiite ettt 151
C. DATADICTIONARY FOR POET DATABASEccccoviiniiiceirencenes 152
VL. LOGICAL DATABASE DESIGN FOR POET DATABASK......cccccceiveanene 153
A. RELATIONAL TABLES OF POET DATABASE........ocerierneerennen. 153
1. Ship Relation......cocouimrieriiiiciintntecsinin et rsnaens 155
2. Overhauls Relation........cccecceveverrmnuesncncninnninninnineensesnenes reeeneeeeeeene 156
3. Department Relationccccccuiriiminmninrneeinnnse st 156
4. Division Relationcocevceevueerericiiinsiininnirccirciciccteccnes e 157
5. Personnel Relationc.coceevvierienieeenensennseeeeniinenecnnenenneesnnesssssnenenes 157
6. Courses-To-Take Relation..........ccocevvvvenmiinneenieenninennns eveeeneeesesseeesesene 158
7. Courses-Taken Relation.........cccocvvvucvuvcencrennenne. retere e et e ne e sa e aeans 159
8. Assignments Relationccocciriviiiiinivinnienennieeesneseniesee e 159
9. Foreign-Languages Relation..........cocvevivieimnmniicennienieeneieececreee, 160
10. Training Relationccccoeeuvecrcineeninicninnneennens oot ee e e 160
11. Operation Relation.........ccccoveviriininniniieinreicieieeeseesr e s 161
12. Events Relation.......cccoveeccreieniiecneimnnnnccninecininiensnennesaeens crereeeeennens 161
13. Port-Visits Relation........ccoceeeercmeeeenenneniiincntisiiiieiesiesssesessessnesnnenans 162
14. Equipment Relationcoouviiiinuniiininninineiressesssssnss s 162
15. Failures Relationoc..ocorsvern — T, 163

xi

B. POET DATABASE RELATIONSHIPSococooeemreeeeeeeeemeeerssreeseeseeneeesesssenon

VII. IMPLEMENTATION OF POET DATABASE AND

DEVELOPMENT OF APPLICATION PROGRAM
A. POET DATABASE IMPLEMENTATIONccoooeiieeeeeceeeerceeeeeeeeseenes
B. APPLICATION PROGRAM IMPLEMENTATION........cccocosruniemecmrermrennns
L. INPut FOIMS...ccooeviirireitcrceeeeecte ettt reeeeeereaeanens
2. Update FOImS.......oocceuirinrinnisicinsi st ssesasssiins
3. TableS.ce et R —
A, REPOTIES ..coceeneeereecicnreteintereetssese et s se s st sessssessnse et ssssssssssensnens
5 QUETIES ..ottt ettt st e e e e e eseesee s e eneesneaes

VIII. SYSTEMS IMPLEMENTATION AND SUPPORT

A. SYSTEMS MAINTENANCEccommnnnrrvvvmminesrsisssssssessssssssesssssssssssssssnnnnns
' B. QUALITY ASSURANCE.......ooecierereeerereeeereeereresene st ese e esse st sesesasenee
L TESHNG ceciiceeriieinieieirertreste ettt ssessse s s ses e besssasanssesssensonen

2. VErfiCaAtiON ...c.cviueuiiririireeetecerteer et s st s e

3. Validation........cccooveeeeeeeririeneeenisseisaetesese e enese e s snaens

4. CertifiCatIONcouerrrererererereeeree ettt eae s s sa s eee

5. Testing SIrategies.......ccccvvermirirrereerrieeeieesteserere e rese et seaeeses s

C. TRAINING ...ttt ieretrtese e e e sae s se st es et ese s s sensassesenan
D. CONVERSION.......ccistritrinietrrrntrentsereensseevesse e sesese s e esesss s ssesssssssesssesesses
1. Paralle]l SyStems......cccoceveeiriieereereeeiceeteeeerereere e eess e neneneseaes

2. DiIrect CONVETSIONccuiotrereiriernrereeriereenteneeeteseseeseseeseesessesessesesssesenees

3. Pilot APPIOAChccocuierctrteiirteieeeete et

xii

4.. Phase-In Methodc.eeeeeeeeienerreieeeennceenecnnenenne st snessassssessenes 189

E. SYSTEMS RELIABILITYoooovoooumeumemeseseesessesssssssssessssssssssssssssssesssssssssssses 190
IX. ANALYSIS OF POET DATABASE SYSTEM 191
A. CURRENT SITUATION.....ccooereeritiinricienninrinereste s ssssesessesessees 191
B. FILE PROCESSING SYSTEMS....cccneiurimimmmmmmssssssssssssssssssssssesssssssssssess 193
1. Data RedUNAnCYccccoveeirinminmisieiriinenreeresesrsnessescsnssestssensstenenene 193

2. Data INCONSISIENCY wcuvreveverreeeeeseeruiinseisisseseesessessssnessssssstsessssnessnsseans 193

3. Limited Sharing 0f Data..........ccoowvvruemeeeseressssessssseseesesmseeecessssenecens194

4. Program/Data Dependencyccoevemmnneiicnincnensincccncccinniiieens 194

5. Inflexibility of InfOrmation..........ccccevuiureniemienresseiec et 195

6. Data ISOlAtiONceereeereereereereereseecreeseerisessessesnessesesessessesnassssassasessens 195

7. Difficulty in Representing Data.......cooevevvenienreninienieniincnnecnnnees 195

8. Difficulty in Information Resource Management..........ccococeencneeee. w196

C. DATABASE PROCESSING SYSTEMS.....oooviiiinininnnnesinresiiesnsennenens 196
1. Minimum Data Redundancyccccecveviniiiiniininniesieninienescnencennens 197

2. Improved Data Sharing.........ccovvimmmrmeienineeeirtseet e 198

3. Increased Data Availability.........ccccoverviiiiiiiiniinieninieneceeeesinnne ..198

4. Cost Reductioh .. 198

5. Flexibility in Data ACCESS....coceveruimerrrmrieireireestesnsnsesesisnccceescnnes 198

6. Advanced Security and Integrity.........ccveuererrmrirecieninenrerenncnesercenen 199

7. Program/Data Independence............cocvuerveeeeueinsnniennninenecnceninescsisinnns 199

8. DynamicC StIUCIUIEccivrvuiveeririrenteteeneenstesesst st seeestsssessnenennes 200

D. BENEFITS OF THE POET DATABASE SYSTEM.....cccoommieeeininne 200
1. Technical ASPECE......cccvviricmemisviriirinienieresistnese s snsstesse s sss e esesasts e ene 200

2. ManpOWET ASPECE.....ccoeruermerrerrerinrinteiisesenesesssnessessssenetrassesssssnsasons 201

3. Decision MaKing ASPECL.....ccceecrrerirrmeririsiisieirseesieeesnsnsssssessessessesseses 202

1. Tra1mng .. 203
2. COMVETSION ...ueueueuerereretescteecteeetereeeeeeesessessesessessesasessesssesssenssssssessessao 204
3. INEEIALION ... cueeceeeiceeieteee ettt ee s eee s s eeen s 206

F. ASSESSING THE IMPACTS OF COMPUTER

TECHNOLOGY IN ORGANIZATIONSocvvererererrenrerreereeeeeceenseneesnenne. 206

G. CONCLUSION.........coomturimerinesrrtsssssnssiesses s sasssess s sssssssssassssesssesesenees w208

X. CONCLUSIONS ‘ 211
A, SYNOPSIS........outiremceeireeiesestse et sses s tsss s sesesea s ses s esens 211

B. FUTURE ENHANCEMENTSoecovemriereeruenrectseeseescescnsssesnssassnsessessssens 213
APPENDIX A: SEMANTIC OBJECTS 215
APPENDIX B: DOMAIN SPECIFICATIONS 225
APPENDIX C: RELATIONAL TABLES 239
APPENDIX D: RELATIONSHIP DIAGRAM ...243
APPENDIX E: APPLICATION PROGRAM SCREEN SHOTS 245
APPENDIX F: APPLICATION PROGRAM CODE 267
LIST OF REFERENCES 429
INITIAL DISTRIBUTION LIST 431

Xiv

LIST OF FIGURES

Figure 2.1: University Database ... 26
Figure 2.2: STUDENT Relationc.ccovuiinieiiininiitiiiiiiniiieeseeeceeeeesesenne e esssssnesens 28
Figure 2.3: ACTIVITY Relation........ccccovcennece. eusssrsasnenesnastsnsersesst stsasase sttt sRsLO St sReees 60
Figure 3.1: Semantic Object DIiagramccccecevcvvriirniiinineincienieeneeneresnesesenes 87
Figure 3.2: EQUIPMENT Simple Object................. rteeeeerereet et re s e e e et e s neeseneteneenent 91
Figure 3.3: HOTEL-BILL Composite Object........ccccvvvininriinriiniiinieeeinnnens e 91
Figure 3.4: BOOK and AUTHOR Compound Objectscovvvriinuiriesunnnireeninenenenene 92
Figure 3.5: SALES-ORDER Hybrid Object........cccviiiiniiniiiniiieiecienieeeieneseeennees 93
Figure 3.6: FLIGHT, AIRPLANE, and PILOT Semantic Objects........cccecevvvrererenrnrenenene. 94
Figure 3.7: EMPLOYEE Supertype and MANAGER Subtype Objectscoceuvvvuirinnnens 95
Figure 3.8: EXCIUSIVE SUDLYPES.....ccoovrereeiiirieniticiitiniictnteritse s 96
Figure 3.9: TEXTBOOK Archetype and EDITION Version Objecté 97
Figure 3.10 (a): EQUIPMENT Simple ODBJECL ..ttt aeanens 98
Figure 3.10 (b): EQUIPMENT Relation.........cccoveeieurriiniiiininninniinnrcnnceieseessssesseseseans 98
Figure 3.11 (a): HOTEL-BILL Composite ObJeCtcceviieivirenrininreeinrierenneisneinenns 99
Figure 3.11 (b): HOTEL-BILL and LINEITEM Relationsccocoveruerenveririenennenencnne. 100
Figure 3.12 (a): One-t0-One Compound ObJECEScevurmruriiereiveerenesieennntennerenenenes 101
Figure 3.12 (b): MEMBER and LOCKER Relations..........ccocevivniiivueninniecnennneeneninnne 101
Figure 3.13 (a): One-to-Many Compound Objects.........c.cccovvvmnrireninreeenniennseeneeenennes 102
Figure 3.13 (b): EQUIPMENT and REPAIR Relations.........cccccevuuiernnneene rereeeeraeeeeeeaes 102
Figure 3.14 (a): BOOK and AUTHOR Compound Objects........ccocevrerierreneinnnecreeennene 103
Figure 3.14 (b): BOOK, AUTHOR, and BOOK-AUTHOR-INTERSECTION

REIALIONScveveveererreeneeeriererreneresensesecseesenteseesessssessssesssssssssessessossssnns 103
Figure 3.15 (a): SALES-ORDER Hybrid Object and ITEM, CUSTOMER

and SALESPERSON Compound Objectscccceuveruerrucnirinnnnnnennnnnn. 104
Figure 3.15 (b): SALES-ORDER, ITEM, CUSTOMER,

SALESPERSON, and LINEITEM Relationsccocecveviinicininiennnenns 105

XV

Figure 3.16 (a): FLIGHT Association Object and AIRPLANE and

PILOT Compound ObBJECESccuevevueeiuerreecereerieeeeseeeessseeeeesseesessesens 107
Figure 3.16 (b): AIRPLANE, PILOT, and FLIGHT Relationsoevvveveemreresrennn. 108
Figure 3.17 (a): EMPLOYEE Supertype and MANAGER Subtype Objects.................. 108
Figure 3.17 (b): EMPLOYEE and MANAGER Relations.............ovvvvooeooooooooooo 109
Figure 3.18 (a): TEXTBOOK Archetype and EDITION Version Objects 109
Figure 3.18 (b): TEXTBOOK and EDITION Relations.......... eerert ettt e ettt renrens 110
Figure 4.1: Typical JAVA Environment....................... ettt e s e e s e e e benenren 113
Figure 4.2: JDBC TWO-TI€r MOELcuvueeeeeeceieeeeeeeeeeeeeeetee e res e seeese e 134
Figure 4.3: JDBC Three-Tier MOGELoouuveeeeieeceeeeeeeseeeessessssssesessesseses e 135
Figure 4.4: JDBC Driver Implementationceceveeeereeesereeeesesresseseseesesesessessessons 136
Figure 6.1: Semantic Object — Relational Table Transformation...................oveevvovonn. 155
Figure 6.2: POET Database Relationship DiaGramooooveevvvveervvessoersreseosssoooo. 164
Figure 7.1: Data Types Available in MiCTOSOft ACCESSuvuvueverereeeresreresereseeeeeresseseenns 166
Figure 7.2: Table Design View for Operation Relation...........c.cvvevevevveeeeeevererereererernn. 167
Figure 7.3: QBE Window for Previous Assignments Query................... et 168
Figure 7.4: POET Application Program Architectureoceveevevevreeereereeseresseernnnns 169
Figure 7.5: Operation INPUt FOITML...........c.cvvueuiieieeiteeeteeeeeeseeeeeeeeeee oo 171
Figure 7.6: Select Exercise Dialog Box for Operation Update Form.............ooevue...... 172
Figure 7.7: Operation Update FOrM............c.ovoieuiieiniteeeeeeeeeeeeeee e eeeeeesesevesesesesee e e, 172
Figure 7.8: Training Table......................... ettt e st e st e et e teeete e e esaerensestenne 173
Figure 7.9: POrt ViSit REPOIt......ccvveuiiriurueierieierieteetesctetseesceseeeeeseeeesesessssesesesesesseses s sas 175
Figure 7.10: Select Exercise Dialog BoX.........cvveeeeveeeeuverreeerennnn. oo eeeeese s eeeeesennnn 177

Figure 7.11: EXEICISE/EVENt QUETYooveveuimeeieeeeeereresesesesesesesesesseseesssessssssessessesens 177

xvi

LIST OF TABLES

Table 4.1: SQL and Java Data Types and Recommended Conversion Methods

xvii

............

Xviii

ACKNOWLEDGEMENT / DEDICATIONS

Oné of the great pleasures of finishing up this thesis is acknowledging the support
of people whose names may not appear any where in the thesis,‘but whose. cooperation,
friendship, understanding and patience were crucial for me to prepare this thesis and
successfully publish it.

I would like to extend my sincere gratitude to my thesis advisors, Professor C.
Thomas Wu and Prof. Lee Edwards, for assisting me in deciding a thesis topic that will
satisfy the requirements of both Computer Science and Systems Management
departments, helping me throughout the study and making it a beneﬁcial experience.
Additionally, I would like to thank my wife, Sibel Can, for enduring the entire thesis
process.

* Finally, I would like to dedicate this thesis to my daughter, Rana Deniz Can, who

is born during my thesis study.

Xix

I. INTRODUCTION

A. BACKGROUND

The Turkish Navy frigates, in their present étate, lack the automated information
infrastructure required to efficiently perform their administrative tasks. This hinders the
ships’ ability to generate the required reports rapidly and to make decisions effectively

| based on this administrative information. The lack of an adequate information technology
system results in redundant and imprecise data maintained at different field sites and in
different file formats. This ultimately leads to a waste of computer resources, manpowef
and time.

The management of the administrative activities is a difficult and time-consuming
job in terms of report and message preparation, maintenance of data at different sites, and
access to information. Furthermore, the large volume of daily, weekly, monthly, and
annual reports required either for submission to the higher command or for the ship's
internal use, makes the administrative tasks very difficult. In addition, the command
needs timely and accurate information in decision making.

In the current situation, it is a time consuming process to prepare the required
documents, because each department in the ship keeps its data in a different format and
environment and the information needed is not stored in a central database. There is
neither a standard format nor a software program to store, manipulate, and access the

data.

As a solution to the problems discussed in the previous paragraphs, a database
that will store information about Personnel, Operations, Equipment, and Training (POET)
and an application program that will provide the graphical user interface will be
developed for the Turkish Navy frigates. The POET database system will provide the
Turkish Navy ships with an automated information system to perform their primary
administrative functions. POET will support this mission by keeping track of all the
personnel, op;rations, equipment, and training records, maintaining them, producing
standard reports and providing the command with ad hoc information. This program is
expected to eliminate most of the current problems and to result in considerable savings
of personnel power and time while providing the required information to the command

quickly.

B. OBJECTIVE

The objective of this thesis’ is to design and implemeht the Personnel, Operations,
Equipment, and Training (POET) Database and Application Program for the Turkish
Navy ﬁgates and to analyze the potential benefits that will be obtained by using this
system. The main goal of developing the POET database system is to support the
administrative activities, to release manpower to perform other duties and to reduce the
productive power loss by increasing the availability, accuracy, efficiency, and
consistency of the data needed to generate the documents and reports. The use of the
POET database system will greatly reduce the work hours spent on spéciﬁc

administrative tasks and provide more time to maintain an efficient operational level.

The design of the database system takes the Turkish Navy frigates’ functional
requirements into consideration. The primary function of the database system is to store
the personnel, operations, equipment, training and other relevant information in a central
database, to provide an easy-to-use graphical intérface, to generate some standard reports

and ad hoc queries, and to help the administrative office personnel.

C. METHODOLOGY

There are different methodologies for developing systems. The process that will
be followed in this thesis captures the essence of most development methodologies. The
fuﬁdamental phases of the systerﬁ development process are explained briefly in the
following subsections: Requirements Analysis; Conceptual Database Design; Logical

Database Design; Physical Database Design; Systems Analysis and Evaluation.

1. Requirements Analysis

The major task of the first step in database development process is collecting
information content and the processing requirements from all the identified énd potential
users of the database. During this step, database users are interviewed to understand and
document the data requirements. In parallel with specifying the data requirements, it is
useful to specify the known functional requirements of the application. During the
requirements analysis phase, the tasks are to create the user's data model, determine the
functional compbnents of the application, and use prototypes to help determine user

requirements.

2. Conceptual Database Design

Once all the requirements have been collected and analyzed, the next step is to
create a conceptual schema for the database, using a high-level conceptuall data model,
such as Entity-Relationship Model or Semantic Data Model. The conceptual schema is a
concise description of the data requirements of the user and iﬁcludes detailed descriptions
of the data typés, relationships, and constraints; these are expressed using the concepts
providec} by the high-level data model. Semantic Data Model will be used as the high-

level data model to represent the conceptual schema for the POET database.

3. Logical Da'tabase Design

The next step in the database design is the actual implementation of the database,
using a commercial DBMS. The major goal of the logical database design phase is to use
the results of the conceptual design phase and the pro'cessing requirements as input to
create a DBMS-processible schema as output. During this phase, the tasks are to develop
the database design and the application design. The database design consists of
structuring the relations, and establishing the relationships among them. The application
design deals with the design of the forms, reports, and tables as well as the specification
of update, display, and control mechanisms.

POET database system will be developed by using Microsoft Access database

management system.

4. Physical Database Design

During the physical database design phase, the internal storage structures and file
organizations for the database are specified. Physical database design is the process of
developing an efficient and implementable physical database structure from a given
- logical database structure that has been shown ;to satisfy user information requirements.
In parallel with thése activities, application programs are implemented as database
transactions corresponding to the high-level transaction specifications.

The application program will be implemented with Java programming language

and JDBC application programming interface.

S. System Analysis and Evaluation

Upon completion of the implementation, POET database system will be evaluated
and the possible benefits and advantages that would be gained by using the system will
be analyzed from manpower, management, and techhical perspectives. In this phase,
systems implementation and support issues, such as conversion, training, testing, and

systems reliability and maintenance, are discussed.

D. ORGANIZATION OF THESIS

This thesis is organized into the following chapters:

e Chapter I: Introduction. This chapter gives an overview of the problem,
motivation, purpose and general outline of the thesis. It provides information

about the background, objective, and methodology of the study.

* Chapter II: Background. This chapter is intended to provide an overview of
the concepts used throughout the thesis. An explanation of the Database
Systems, Relational Database Model, S&uctured Query Language,
Normalization, and Microsoft Access Database Management System will be

provided.

» Chapter III: Semantic Data Model. This chapter describes the Semantic Data

Model, a high-level semantics-based data model that enables the semantics of
a database to be incorporated directly into its schema. The semantic object
types as well as the transformation of semantic objects into the relational

tables are explained in this chapter.

e Chapter IV: Java and JDBC. Java and the JDBC package provide a concise
and efficient way to access and manipulate data stored in a Relational
Database Management System (RDBMS); The interaction between the user
interface and back-end data sources of the POET database system is based on
JDBC. This chapter will describe how to use Java and JDBC application
programming interface (API) to provide this type of interaction. It will
summarize the attributes of Java programming language and outline the JDBC
AP], classes, methods, and how they can be used by applications to directly

access a RDBMS.

Chapter V: Requirements Analysis for POET Database. This chapter first

provides a general description of the database development process and
briefly explains the phases of the process. Then, data requirements for the
POET database system are explained by' giving information about the

semantic objects that constitute the data model.

Chapter VI: Logical Database Design for POET Database. In this chapter, the
logical database design for POET database is described. Logical database
design phase covers the transformation of the semantic objects into the
relational model. The POET database tables and the relationships among them

are defined in Chapter VI.

Chapter VII: Implementation for POET Database and Application Program.

This chapter takes the reader through the database and application program
design for the POET system. It explains how the relational database tables are
implemented in Microsoft Access RDBMS and provides information about

the forms, reports, tables, and queries supported by the application program.

Chapter VIII: Systems Implementation and Support. This chapter will discuss
the systems implementation and support issues in general. Five aspects of
systems implementation and support; including system maintenance, quality

assurance, system reliability, training, and conversion will be described.

o Chapter IX: Analysis of POET Database System. Chapter IX provides an

analysis and evaluation of the POET database system. First, a brief
introduction about the current situation of information processing in the
Turkish Navy frigates is given and the ﬁlé—proc_essing systems is compared
with the database processing systems. Then, it analyzes the benefits of the
system from managerial, manpower, and technical aspects. Finally, the system
implementation and installation issues are explained for the POET database

system.

¢ Chapter X: Conclusions. This chapter provides a short summary of the thesis
and addresses possible future enhancements that might be made to the

developed system.

e Appendices A through F supplement the chapters by providing complete

diagrams, specifications, and program code.

Appendix A: Semantic Objects
Appendix B: Domain Specifications
. Appendix C: Relational Tables
Appendix D: Relationship Diagram
Appendix E: Application Program Screen Shots

Appendix F: Application Program Code

I. BACKGROUND

This chapter provides the background information necessary to understand the
thesis and the POET database application program. Hence, informat’ion will be presented
about database systems, relational database model, structured query language,
normalization, Microsoft Access, and systems implementation and support in the

~ following subsections.

A. DATABASE SYSTEMS -

Databases and database technology are having a major impact on the growing’use
of computers. Databases play a critical role in almost all areas where computers are used,
including business,‘ engineering, medicine, law, education, and intelligence, to name a
few. The word database is in such common use that we must begin by defining what a
database is. A database is a collection of related data. By data, we mean known facts that
can be recorded and that have implicit meaning.

The preceding definition of database is quite general; for example, one may
consider the collection of words that make up this page of text to be ¥elated data and
hence to constitute a database. However, the common use of the term database is usually

more restricted. A database has the following implicit properties: [Réf. 1]

e A database represents some aspect of the real world, sometimes called the

miniworld or the Universe of Discourse (UoD). Changes to the miniworld are '

9

reflected in the database.

e A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a

database.

® A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in which

these users are interested.

In other words, a database has a source from which data are derived, some degree
of interaction with events in the real world, and an audience that is actively interested in
the contents of the database. [Ref. 1]

A database management system (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is a general-purpose software system
that facilitates the processes of defining, constructing, and manipulating databases for
'various applications. Defining a database involves specifying the data types, structures,
and constraints for the data to be stored in the database. Constructing the database is the
'process of storing the data itself on some storage medium that is controlled by the
DBMS. Manipulating a database includes such functions as querying the database to
retrieve specific data, updating the database to reflect changes in the miniworld, and
generating reports from the data.

It is not necessary to use general-purpose DBMS software for implementing a

computerized database. The programmer could write his or her own set of programs to

10

create and maintain the database, in effect creating a special-purpose DBMS software, as
it is done in the implementation of the POET database application program. The database

and the software together are called a database system.

1. Benefits of the Database Approach

A number of characteristics distinguish the database approach from the traditional
approach of programming with files. In traditional file processing, each user defines and
implements the files needed for a specific application. This redundancy in defining and
storing data results in wasted storage space and in redundant efforts to maintain the data .
up-to-date.

In the database approaéh, a single repository of data is maintained that is defined
once and then is accessed by various users. The main properties of the database approach

versus the file processing approach are described as follows.

a. Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database
system contains not only the database itself, but also a complete definition or description
of the database. This definition is stored in the system catalog, which contains
information such as the struéture of each file, the type and storage format of each data
item, and various constraints on the data. The information stored in the catalog is called
metadata, and it describes the structure of the primary database. [Ref. 1]

The catalog is used by the DBMS software and occasionally by database
users, who need information aboqt the database structure.

11

The DBMS software is not written fof any specific database application,
and hence it must refer to the catalog to know the structure. of the files in a specific
database, such as the type and format of data it will access.

In traditional file processing, data definition is tﬁicﬂly part of the
application programs. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. Whereas file-
processing software can only access specific databases, DBMS software can access
diverse databases by extracting the database definitions from the catalog and then using

these deﬁnitions.

b. Data Abstraction

In traditional file processing, the structure of data files is embedded in the
~ access programs, so any changes to the structure of a file may require changing all
programs that access this file. By contrast, DBMS access programs are written
independently of any specific files. The structure of data files is stored in the DBMS
catalog separately from the access programs. This property is normally called program-
data independence.

Recent developments in object-oriented databases and programming
languages allow users to define operations on data as part of ‘the database definitions. An
operation (also called a function) is specified in two parts. The interface (or signature) of
an operation includes the operation name and the data types of its arguments (or
parameters). The implementation (or method) of the operation is specified separately and
can be changed without affecting the interface. User applicatibn programs can operate on

12

the data by invoking these operations through their names and arguments, regardless of
how the operations are implemented. This may be termed program-operation
independence. [Ref. 1] |

The characteristic that allows program-data independence and program-
operation independence is called data abstraction. A DBMS provides users with a
conceptual representation of data that does not include many of the details of how the
data is stored. informally, a data model is a type of data abstraction that is used to provide
this conceptual representation. The data model uses logical concepts, such as objects, |
their properties, and their interrelationships, that may be easier for most users to
understand than computer storage concepts. Hence, the data model hides storage details

that are not of interest to most database users.

c Support of Multiple Views of the Data

A database typically has many users, each of whom may require a
different perspective or view of the database. A view may be a subset of the database or it
| may contain virtual data that is derived from the-database files, but not explicitly stored.
A multi-user DBMS whose users héve a variety of applications provides facilities for

defining multiple views. [Ref. 1]

d. Sharing of Data and Mulﬁ-user Transaction Processing

A multi-usef DBMS, as its name implies, must allow multiple users to
access the database at the same time. This is essential if data for multiple applications is
to be inteérated and maihtained in a single database; The DBMS must include

13

concurrency control software to ensure that several use}s trying to update the same data
do so in a controlled manner so that the result of the updates is correct. An example is
when several reservation clerks try to assign a seat on an airline flight; the DBMS should
ensure that each seat can be accessed by only one clerk at a time for passenger
assignment. These are generally called transaction-processing épplications. “A
| fundamental role of multi-user DBMS software is to ensure that concurrent transactions

operate correctly without interference. [Ref. 1]

e. Controlling Redundancy

In traditional software development utilizing file processing, every user
group maintains its own files for handling its data-processing applications. Much of the
data is stored twice: once in the files of each user group. Additional user groups may
further duplicate some or all of the same data in their own files.

This redundancy‘in storing the same data multiple times leads to several
problems. First, there is the need to perform a single logical update -- such as entering
data on a new tuple -- multiple times. This leads to duplication of effort. Second, storage
space is wasted when the same data is stored repeatedly, and this problem may be serious
for large databases. Third, files that represent the same data may become inconsistent.
This may happen because an update is applied to some of the files, but not to others.

In the database approach, the views of different user groups are integrated
during database design. For consistency, we should have a database design that stores
each logical data item in only one place in the database. This does not permit any

inconsistency and it saves storage space. [Ref. 1]

14

A Restricting Unauthorized Access

When multiple users share a database, it is likely that some users will not
be authorized to access all information in the database. For example, financial datak is
often considered confidential, and hence only authorized persons are allowed to access
such data. In addition, some users may be permitted only to retrieve data, whereas others
are allowed both to retrieve and to input; i.e., updates. Hence, the type of access operation
-- retrieval or update -- must also be controlled. Typically, users or user groups are given
account numbers protected by passwords, which they can use to gain access to the
database. A DBMS should prox}ide a security and authorization subsystem, which the
database administrator (]jBA) uses to create accounts and to specify account restrictions.

The DBMS should then enforce these restrictions automatically. [Ref. 1]

g Persistent Storage for Program Objects and Data Structures

A recent application of databases is to. provide persistent storage for
program objects and data structures. This is one of the main reasons for the emergence of
the object-oriented DBMS. Programming languages typically have complex data
structures, such as record types in PASCAL or class definitions in C++. The values of
program variables are discarded once a program terminates, unless the programmer
explicitly stores them in permanent files, which often involves converting these complex
structureé into é format suitable for file storage. When the need again arises to read this

data, the programmer must convert from the file format to the program variable structure.

15

Object-oriented database systems are compatible with programming
1anguages such as C++ and Java, and the DBMS software automatically performs any
necessary conversions. Hence, a complex object in C++ can be stored permanently in an
object-oriented DBMS. Such an object is said to be persistent, since it survives the
termination of program execution and can later be directly retrieved by another C++

program. [Ref. 1]

h. Database Inferencing Using Deduction Rules

Another recent application of database systems is to provide capabilities
for 'deﬁning deduction rules for inferencing new information from the stored database
facts. Such systems are called deductive database systems. For example, in education
there may be complex rules in the miniworld application for determining when a student
is on probation. These can be specified declaratively as deduction rules, which when
executed can determine all students on probation. In a traditional DBMS, an explicit
procedural program code would have to be written to support such applications. But if the
miniworld rules change, it is generally more convenient to change the declared deduction

rules than to recode procedural programs. [Ref. 1]

L Providing Multiple User Interfaces

Because many types of users, with varying levels of technical knowledge,
use a database, a DBMS should provide a variety of user interfaces. These include query
languages for casual users, programming language interfaces for application

programmers, forms and command codes for parametric users, and menu-driven

16

interfaces and natural language interfaces for stand-alone users. [Ref. 1]

Je Representing Complex Relationships Among Data

A database may include numerous varieties of data that are interrelated in
many ways. A DBMS must have the capability to represent a variety of complex
relationships among the data as well as to retrieve and update related data easily and

efficiently. [Ref. 1]

k. | Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must
hold for the data. A DBMS should provide capabilities for defining and enforcing these
constraints. The simplest type of integrity constraint involves specifying a data type for
each data item. A more complex type of cpnstraint that occurs frequently involves
specifying that a record in one file must be related to records in other files. Another type
of constraint specifies uniqueness on data item values. These constraints are derived from
the meaning or semantics of the data and of the miniworld it represents. It is the database

designers' responsibility to identify integrity constraints during database design. [Ref. 1]
L Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software

failures. The backup and recovery subsystem of the DBMS is responsible for recovery.

17

For example, if the computer system fails in the middle of a complex update program, the
recovery subsystem is responsible for making sure that the database is restored to the
state it was in before the program started executing.

Alternatively, the recovery subsystem could ensure that the program is
resumed from the point at which it was interrupted so that its full effect is recorded in the

database. [Ref. 1]

m. Potential for Enforcing Standards

The database approach permits the DBA to define and enforce standards
among database users in a large organization. This facilitates communication and
cooperation among various departments, projects, and users within the organization.
Standards can be defined fo; names and formats of data elements, display formats, report
structures, terminology, and so on. The DBA can enforce standards in a centralized
database environment more easily than in an environment where each user group has

control of its own files and software. [Ref. 1]

n. Reduced Application Development Time

A prime feature of the database approach is vthat developing a new
application takes very little time. Designing and implementing a new database from
scratch may take more time than writing a single specialized file application. However,
once a database is up and running, substantially less time is generally required to create
new applications using DBMS facilities. Development time using a DBMS is estimated

to be one-sixth to one-fourth of that for a traditional file system. [Ref. 1]

18

o. Flexibility

It may be necessary to change the structure of a database as requirements
change. For example, a new user group may emerge that needs additional information not
currently in the database. In response, we may need to add a new file to the database or to
extend the data elements in an existing file. Database systems allow such changes to the
structure of the database without affecting the stored data and the existing application

programs. [Ref. 1]

P Availability of Up-to-Date Information

A DBMS makes the database available to all users. As soon as one user's
update is applied to the database, all other users can immediately see this update. This
availability of up-to-date information is essential for many transaction processing
applications, such as reservation systems or banking databases, and it is made possible by

the concurrency control and recovery subsystems of a DBMS. [Ref. 1]

q. Economies of Scale
The DBMS approach permits consolidation of data and applications, thus
reducing the amount of wasteful overlap between activities of data-processing personnel

in different projects or departments. This reduces overall costs of operation and

management.

19

2. Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some
level of data abstraction by hiding details of data storage that are not needed by most
database users. A data model is the main tool for providing this abstraction. A data model
is a set of concepts that can be used to describe the structure of a database. By structure
of a database, it is meant data types, relationships, and constraints are used to
configure/organize the data. Most data models also include a set of basic operations for
specifying retrievals and updates on the database. It is gradually becoming common
practice to include concepts in the data model to specify behavior; this refers to
specifying a set of valid user-defined operations that are allowed on the database in

addition to the basic operations provided by the data model.

a. Categories of Data Models

It is possible to categorize data models based on the types of concepts they
provide to describe the database structure. High-level or conceptual data models provide
concepts that are close to the way many users perceive data, whereas low-level or
physical data models provide concepts that describe the details of how data is stored in
the computer. Between these two extremes is a class of representational (or
implementation) data models, which provide concepts that may be understood by end
users but that are not too far removed from' the way data is organized within the
computer. Representational data models hide some details of data storage, but can be

implemented on a computer system in a direct way.

20

High—lével data models use concepts such as entities, attributes, and
relationships. An entity represents a real-world object or concept, such as an employee Aor
a project, which is stored in the database. An attribute represents some property of
interest that further describes an entity, such as the employee's; name or salary. A
relatiénship among two or more entities represents an inferaction among the entities; for
example, a works-on relationship between an employee and a project.

Representational or implementation data models are the ones used most
frequently in current commercial DBMSs, and they include the four most widely used
data models: Relational, network, hierarchical, and object-oriented. They represent data
by using record structures and hence are sometimes called record-based data models. We
can regard object-oriented data models as a new family of higher-level implementation
data models that are closer to conceptual data models.

Physical data models describe how data is stored in the computer by
representing information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records efficient.

[Ref. 1]

b. Schemas and Instances

In any data model it is important to distinguish between the description of
the database and the database itsélf. The description of a database is called the database
| schema (or the ﬁetadata). A database schema is specified during database deéign and is

not expected to change frequently.

21

However, the actual data in a database may change frequently. The data in
the database at a particular moment in time is called a database state (or set of
occurrences or instances). The distinction between database schema and database state is
very important. When we define a new database, we only specify its database schema to |
the DBMS. At this poiht, the corresponding database state is the "empty state" with no
data. The DBMS stores the schema in the DBMS catalog so that DBMS software can

refer to the schema whenever it needs to.

3. DBMS Architecture

Described in this section is the architecture for database systems, called the three-
schema architecture that is proposed to separate the user applications and the physical
database. In this architecture, schemas can be defined at the following three levels:

internal; conceptual; and external schema. [Ref. 1]

a Internal Schema
The internal level has an internal schema, which describes the physical
storage structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

b. Conceptual Schema
The conceptual level has a conceptual schema, which describes_ the

- structure of the whole database for a community of users.

22

The conceptual schema hides the details of physical storage structures and concentrates
on describing entities, data types, relationships, user operations, and constraints. A high-

level data model or an implementation data model can be used at this level.

G External Schema

The external level includes a nuxﬁber of external schemas or user views.
Each external schema describes the part of the database that a particular user group is
interested in and hides the rest of the database from that user group. A high-level data

model or an implementation data model can be used at this level.

B. THE RELATIONAL DATABASE MODEL

Within the realm of database engineering, there are four basic types of database
models: Relational, Network, Hierarchical, and Object-Oriented database models. The
relational model represents the database as a collection of tables, where each table can be
stored as a separate file. The network model represents data as record types and also
represents a limited type of one-to-many relationship, called a set type. The network has
an associated record-at-a-time language that must be embedded in a host programming
language. The hierarchical model represents dafa as hierarchical tree structures. Each
hierarchy represents a number of related records. There is no standard language for the
| hierarchical model, although most hierarchical DBMSs have record-at-a-time languages.
The object-oriented model defines a database in terms of objects, their properties, and

their operations. Objects with the same structure and behavior belong to a class, and

23

classes are organized into hierarchies. Tﬁe operations of each class are specified in terms
of predefined procedures, called methods.

Most of the commercial database management systems implement the relational
database model, which is the most common model in use today. Tﬂerefore, the focus of
this section and the implementation of the POET database system will be the relational
database model.

The relational model was introduced by E.F. Codd in 1970 and it is based on a
simple and uniform data structure, called the relation, and has a solid theoretical
foundation. The relational model represents the database as a collection of relations.
Informally, each relation resembles a table or, to some extent, a simple file. [Ref. 11 For
example, the database of tables shown in Figure 2.1 is considered to be in the relational

model.

1. Relational Mbdel Concepts

When a relation is thought of as a table of values, each row in the table represents
a collection of related data values. These values can be interpreted as facts describing a
real-world entity or relationship. The table name and column names are used to help in
interpreting the meaning of the values in each row of the table. An example is presented
here for explanation. The first table of Figure 2.1 is called STUDENT, because each row
represents facts about a particular student entity. The column names - StudentName,
StudentNumber, Cla;ss, Major - specify how to interpret the data values in each row,

based on the column each value is in. All values in a column are of the same data type.

24

STUDENT Relation

Flowers 17 4 CS

Dowler 25 3 CS

Tidwell 36 4 EE
COURSE Relation

CourseName CourseNumber CreditHours Department

Database CS3320 4 CS

Networks 1IS3502 4 I™

Computer Security | CS3600 3 CS

Calculus MA3200 5 MATH
SECTION Relation

| SectionID CourseNumber Quarter Instructor

85 CS3320 Summer 99 Wu

88 CS3320 Summer 99 Eagle

56 1S3502 Fall 99 Lundy

42 MA3200 Spring 99 Rasmussen

44 MA3200 Summer 99 Carlos

GRADE Relation

StudentNumber SectionlD Grade
17 85 |A
17 ' 56 B
25 88 B
25 44 C
PREREQUISITE Relation
CourseNumber PrerequisiteNumber
CS3320 CS3300 .
1S3502 182502
CS3600 MA3200
MA3200 MA1100

Figure 2.1: University Database [Ref. 1]

In relational model terminology, a row is called a tuple, a column header is called
an attribute, and the table is called a relation. The data type describing the types of values
that can appear in each column is called a domain. The following subsections will define

these terms more precisely.

26

a Domains, Tuples, Attributes, and Relations

A domain is a set of atomic values. By atomic, we mean that eéch value in
the domain is indivisible as far as the ;elational model is concerned. A common method
of specifying a domain is to specify a data type from which the data values forming the
domain are drawn. It is also useful to specify a name for‘ the domain, to help in

interpreting its values.

e United States (USA) Phone Numbers: The set of 10-digit phone
numbers valid in the United States.

e Social Security Numbers: The set of valid 9-digit social security
numbers.

e Grade Pqint Averages: Possibie mean values of computed grade point
averages; each must be a value between 0 and 4.

e Employee Ages: Possible ages of employees of a Company; each must

be a value between 16 and 80 years.

The preceding are logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain US phone
numbers can be declared as a character string of the form (ddd) ddd-dddd, where each d
is a numeric (dpcimal) digit and the first three digits form a valid telephone area code. A
domain is thus given a name, data type, and format.

A relation schema R, denoted by R (A;, A,,..., A,), is made up of a

relation called R and a list of attributes A,, A, ..., A, A relation schema is used to

27

de;cribe arelation; R is called the name of this relation. Each attribute A is the name of a
role played by some domain D in the relation schema R. P is called the domain of A and
is denoted by dom (A;). The degree of a relation is the number of attributes n of its
relation schema. [Ref. 1]

An example of a relation schema for a relation of degree 7, which

describes university students, is the following:

STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)

Figure 2.2: STUDENT Relation

b. Characteristics of Relations

A relation is defined as a set of tuples. Mathematically, elements of a set
have no order among them; hence, tuples in a relation do not have any particular order.
Tuple ordering is not part of a relation definition, because a relation attempts to represent
facts at a logical or abstract level. When a relation is implemented as a file, a physical
ordering may be specified on the records of the file. [Ref. 1]

According to the preceding definition of a relation, an n-tuple is an
ordered list of n values, so the ordering of values in a tuple - and hence of attributes in a
relation schema definition - is important. However, at a logical level, the order of
attributes and their values are not really important as long as the correspondence between
attributes and values is maintained.

Another property of the relation is that there are no duplicate tuples in a

relation. This property follows from the fact that the body of the relation is a

28

mathematical set (i.e., a set of tuples), and sets in mathematics by definition do not
include duplicate elements. An important corollary of this fact is that there is always a
primary key. Since tuples are unique, it follows that at least the combination of all
attributes of the relation has the ﬁniqueness property. [Ref. 2]

Each value in a tuple is an atomic value; that is, it is not divisible into
components within the framework of the relational model. Hence, composite and
multivalued attributes are not allowed in a relation. Multivalued attributes must be
represented by separate relations, and composite attributes are represented only by their
simple component attributes. [Ref. 1]

The values of some attributes within a particular tuple may be unknown or
may not apply to that tuple. A special value, called null, is used for these cases. In
general, we can have several types of null values, such as “value unknown”, “attribute
does not apply to this tuple”, or “this tuple has no value for this attribute”. -

As a summary, for a table to be a relation the following must hold: The
cells of the table must be single valued (atomic), and neither repeating groups nor arrays
are allowed as values. All entries in any column must be of the same kind. Each column
must have a unique name, but the order of the columns in the table is insignificant.
Finally, no two rows in a table may be identical, and the order of the rows is not

important. [Ref. 3]

29

c Types of Relations

There are three types of relations that can exist in a relational system: Base
relations, views, snapshots, query results, intermediate results, and temporary relations.
[Ref. 2]

(1) Base Relations: A base relation corresponds to a table
whose tuples are physically stored in the database; that is, it is a named, autonomous
relation. In other words, base relations are those relations that are sufficiently important
that the database designer has decided that it is worth giving them a name and making

them a direct part of the database.

(2) Views: A view is a named, derived relation that is
represented within the system purely by its definition in terms of other named relations. It

does not have any separate, distinguishable stored data of its own (unlike a base relation).

(3) Snapshots: A snapshot is also a named, derived relation,
like a view. Unlike a view, however, a snapshot is real, not virtual. It is represented not

only by its definition in terms of other named relations, but also by its own stored data.
(4) Query Results: A query result is, as the name implies,

simply the final output relation resulting from some specified query. It may or may not be

named. Query results have no persistent existence within the database.

30

(5) Intermediate Results: An intermediate result is a relation
(typically unnamed) that results from some relational expression that is nested within a

larger expression.

(6) Temporary Relations: A temporary relation is a named
relation, like a base relation or view or snapshot, but unlike a base relation or view or

snapshot, it is automatically destroyed at some appropriate.

2. Relational Model Constraints

The various types of constraints that can be specified on a relational database
schema include domain constraints, key constraints, entity integrity, and referential
integrity constraints. Other types of constraints, called data dependencies (which include
functional dependencies and multivalued dependencies), are used mainly for database

design by normalization and will be discussed in Section D of this chapter.

a. Domain Constraints

Domain constraints specify that the value of each attribute “A” must be an
atomic value from the domain dom(A) for that attribute. The data types associated
with domains typically include standard numeric data types for integers (such as short- -
integer, integer, long-integer) and real numbers (float and double-precision float).
Characters, fixed-length strings, and variable-length strings aré also available, as are
date, time, timestamp, and money data types. Other possible domains may be

described by a subrange of values from a data type or as an enumerated data type

31

where all possible values are explicitly listed. [Ref. 1]

b. Key Constraints

A relation is defined as a set of tuples. By definition, all eléments of a set
are distinct; hence, all tuples in a relation must also be distinct. This means that no two
tuples can have the same combination of values for all their attributes. Usually, there are
other subsets of attributes of a relation schema R with the property that no two tuples in
any relation instance r of R should have the same combination of values for these
attributes. Any such set of attributes is called a superkey of the relation schema R. Every
relation has at least one superkey -- the set of all its attributes. A superkey can have
redundant attributes, however, so a more useful concept is that of a key, which has no
redundancy. Hence, a key is a minimal superkey, a superkey from which we cannot
remove any attributes and still have the uniqueness constraint hold.

For example, cénsider the STUDENT relation of Figure 2.2. The attribute
set {SSN} is a key of STUDENT, because no two-student tuples can have the same-value
for SSN. Any set of attributes that includes SSN -- for example {SSN, Name, Age} --is a
superkey.

The value of a key attribute can be used to identify uniquely a tuple in the
relation. For example, the SSN identifies uniquely each tuple in the STUDENT relation.
Notice that a set of attributes constituting a key is a property of the relation schema; it is a
constraint that should hold on every relation instance of the schema. A key is determined

from the meaning of the attributes in the relation schema.

32

In general, a relation schema may have more than one key. In this case,
each of the keys is called a candidate key. It is common to designate one of the candidate
keys as the primary key of the relation. This is the candidate key whose values are used to

| identify tuples in the relation.

c. Entity Integrity Constraint

The entity integrity constraint states that no primary key value can be null.
This is because the primary key ;/alue is used to identify individual tuples in a relation;
having null values for the primary key implies that we cannot identify some tuples. For
example, if two or more tuples had null for their SSN values in the STUDENT relation of

| Figure 2.2, we might not be able to distinguish them.

d Referential Integrity Constraint

Key constraints and entity integrity constraints are specified on individual
relations. The referential integrity constraint is specified between two relations and is
used to maintain the consistency among tuples of the two relations. Informally, the
referential integrity constraint states that a tuple in one relation that refers to another
relation must refer to an existing tuple in that relation. For example, in Figure 2.1, the
attribute StudentNumber of GRADE relafion stores the student number for which the |
grade is recorded; hence, its value in every GRADE tuple must ﬁatch the StudentNumber
value of some tuple in the STUDENT relation.

To define referential integrity more formally, we must first define the

concept of a foreign key. When the key of one relation is stored in a second relation, it is

33

called a foreign key. The attributes in the foreign key must have the same domain as the
primary key attributes and the foreign key is said to reference or refer to a second
relation.

Refgrential integrity constraints typically arise from the relationships
among the entities represented by the relation schemas. Notice that a foreign key can
refer to its own relation. For example, the attribute SUPERSSN in EMPLOYEE relation
refers to the supervisor of an employee, which is another employee represented by a tuple
in the EMPLOYEE relation. Hence, SUPERSSN is a foreign key that references the

EMPLOYEE relation itself.

3. Update Operations on Relations

There are three basic update operations on relations: insert, delete, and modify.
Insert is used to add a new tuple or tuples in a relation; delete is used to remove tuples;
and modify is used to change the values of some attributes. Whenever update operations
are applied, the integrity constraints specified on the relational database schema should

not be violated. [Ref. 1]

a. Insert Operation

The insert operation provides a list of attributé values for a new tuple that
is to be inserted into a relation. Insert can violate any of the four types of constraints
discussed in the previous section. Domain constraints can be violated if an attribute value
is given that does not appear in the corresponding domain. Key constraints can be

violated if a key value in the new tuple already exists in another tuple. in the relation.

34

Entity integrity can be violated if the primary key of the new tuple is null. Referential
integrity can be viola’;ed if the value of any foreign key refers to a tuple that does not
exist in the referenced relation. [Ref. 1]

If an insertion violates one or more constraints, two options are available.
The first option is to reject the insertion. The second option is to attempt to correct the

reason for rejecting the insertion.

,b' Delete Operation

This operation is used to remove the specified tuples from a relation. The
delete operation can violate only referential integrity, if the tuple being deleted is
referenced by the foreign keys from other tuples in the database. To specify deletion, a
céndition on the attributes of the relation selects the tuple to be deleted. [Ref. 1]

Three options are available if a deletion operation causes a violation. The
first option is to reject the deletion. The second option is to attempt to cascade (or
propagate) the deletion by deleting tuples that reference the tuple that is being deleted. A
third option is to modify the referencing attribute values that cause the violation; each

such value is either set to null or changed to reference another valid tuple.

c Modify Operation
The modify operation is used to change the values of one or more
attributes in a tuple (or tuples) of a relation. It is necessary to specify a condition on the

attributes of the relation to select the tuple (or tuples) to be modified. [Ref. 1]

35

Modifying an attribute that is neither a primary key nor a foreign key
usually causes no problems; the DBMS need only check to confirm that the new value is
of the correct data type and domain. Modifying a primary key value is similar to deleting
one tuple and inserting another in its place, because we use the priﬁqary key to identify

tuples.

4. Relational Algebra

The relational algebra is a collection of operations that are used to manipulate
entire relations. These operations are used to select tuples from individual relations and to
combine related tuples from several relations for the purpose of specifying a query on the
database. The result of each operation is a new relation, which can be further
manipulated. Relational algebra is closed, which means that the results of one or more
relational operations are always in a relational state.

The relational algebra operations are usually divided into two groups. One group
includes set operations frém mathematical set theory; these are applicable because each
relation is defined to be a set of tuples. Sef operations include UNION, INTERSECTION,
DIFFERENCE, and CARTESIAN PRODUCT. The other group consists of operations
developed specifically for relational databases;‘ these include SELECT, PROJECT, and

JOIN.

a. Set Operations
Set theoretic operations apply to the relational model, because a relation is

defined to be a set of tuples and can be used to process the tuples in two relations as sets.

36

Several set theoretic operations are used to merge the elements of two sets in various
" ways, including UNION, INTERSECTION, and DIFFERENCE. These operations are
binary; that is, they are applied to two sets. In order to apply any of these three operations
on the relational model, it is necessary that the relations have the Same type of tuples; this

condition is called union compatibility.
Two relations are said to be union compatible if they have thé same

number of attributes and that each pair of corresponding attributes have the same domain.

We can define the three oOperations UNION, INTERSECTION, and

DIFFERENCE on two union-compatible relations, “R” and “S”, as follows:

(1) Union: The result of this operation is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate tuples are

eliminated.

(2) Intersection: The result of this operation is a relation that

includes all tuples that are in both R and S.

(3) Difference: The result of this operation is a relation that

includes all tuples that are in R but not in S.

(4) Cartesian Product: The result of this operation is a relation

that includes one tuple for each combination of tuples — one from R and one from S; that

37

is every tuple from R is combined with every tuple from S. The relations on which

CARTESIAN PRODUCT operation is applied do not have to be union compatible.

b. SELECT Operation

The SELECT operation is used to select a subset of the tuples in a relation
that satisfy a selection condition. In general, the SELECT operation is denoted by

G<selection condition> (<relation name>)

The relation resulting from the SELECT operation has the same attributes
as the relation on which this operation is applied. The Boolean expression specified in the
selection condition is made up of a number of clauses of the form:

<attribute name> <comparison operator> <constant value>, or
<attribute name> <comparison operator> < attribute name >
where <attribute name> is the name of an attribute of <relation name>, <comparison
operator> is one of the operators =, <, <, >, >, # and <constant value> is a constant
value from the attribute domain. Clauses can be connected by the Boolean operators
AND, OR, and NOT to form a general condition.
The SELECT operator is unary; that is, it is applied on a single relation.

Hence, SELECT cannot be used to select tuples from more than one relation.

¢. - PROJECT Operation
If one might think of a relation as a table, the SELECT operation selects
some of the rows from the table while discarding other rows. The PROJECT operation,

on the other hand, selects certain columns from the table and discards the other columns.

38

If we are interested in only certain attributes of a relation, we use the PROJECT operation
to "project” the relation over .these attributes. Projection can also be used to change the
order of attributes in a relation. The general form of a PROJECT operation is

Ti<attribute list> (<relation name>)
where <éttribute list> is a list of attributes of the relation specified by <relation name>.
The resulting relation has only the attributes specified in <attribute list> and in the same
order as they appear in the list. The PROJECT operation implicitly removes any duplicate

tuples, so the result of the PROJECT operation is a set of tuples and a valid relation.

d. JOIN Operation

The JOIN operation, denoted by 1 , is used to combine related tuples
from two relations into single tuples. This operation is very important for any relational
database with more than a single relation, because it allows us to process relationships
among relations. Essentially, JOIN operation is the same as a Cartesian Product followed
by a SELECT operation. The general form of a JOIN operation on two relations R and S
is

R ™ Soin condition> S

The resulting relation has one tuple for each combination of tuples
whenever the combinétion satisfies the join condition. The most common JOIN involves
join éonditions with eéuality comparisons only. Such a JOIN, where the only comparison
operator used is =, is called an Equijoin. In the result of an Equijoin, there are always one

or more pairs of attributes that have identical values in every tuple.

39

Because one of each pair of attributes with identical values is superfluous,
a new operation, called Natural Join, was created to get rid of the second attribute in an

equijoin condition.

C. STRUCTURED QUERY LANGUAGE (SQL)

SQL is a declarative database language designed for use with relational databases.
It has been endorsed by the American National Standards Institute (ANSI) as the
language for manipulating relational databases, and it is the data access language used by
many commercial DBMS products, including DB2, ORACLE, INGRES, SYBASE, SQL
Server, dBase, Microsoft Access, Paradox, and many others. Originally, SQL was called
Structured English Query Language (SEQUEL) and was designed and implemented at
IBM Research as the interface for an experimental relational database system.

SQL is a comprehensive database language; it has statements for data definition,
query, and update. Hence, it is both a Data Definition Language (DDL) and a Data
Manipulation Language (DML). In addition, it has facilities for defining views on the
database, for creating and dropping indexes on the files that represent relations, and for
embedding SQL statements into a general purpose programming language, such as C++,
Java or Pascal. [Ref. 1]

SQL consists of a set of standard commands that can be understood by all
compliant Relational Database Management Systems (RDBMS). The following is a list

of more commonly used SQL commands.

40

1. Data Definition in SQL
SQL uses the terms table, row, and column for relation, tuple, and aftribute,
respectively. The SQL commands for data definition are CREATE, ALTER, and DROP.

These commands are used to create or modify tables and other database objects and are

explained in the following subsections.

a. CREATE TABLE Command
The CREATE TABLE command is used to specify a new»relation by
giving it a name and specifying its attributes and constraints. The attributes are specified
first; and each attribute is given a name, a data type to specify its domain of values, and
possibly some constraints. The key, entity integrity, and referential integrity constraints
are the specified. [Ref. 1]

The following is the command used to define a table with the name

Department:
CREATE TABLE Department
(DepartmentName VARCHAR(10) v NOT NULL,
ManagerName , CHAR (15) NOT NULL,
DepartmentNumber INT NOT NULL,

PRIMARY KEY (DepartmentNumber),

FOREIGN KEY (ManagerName) REFERENCES Employee (Name));

41

The data types that are available for attributes in SQL include numeric,
character string, bit string, date, and time. Numeric data types include integer numbers of
various sizes (INTEGER AND SMALLINT), and real numbers of various precisions
(FLOAT, REAL, DOUBLE). Formatted numbers can be declared by using DECIMAL
@i, j) or NUMERIC (i,j), where “i” is the total number of decimal digits, and “j” is the
number of digits after the decimal point. Character string data types are either fixed-
length (CHAR (n), where n is the number of characters) or varying-length (VARCHAR
(n), where n is the maximum number of characters). Bit string data types are either of
fixed length n (BIT (n)) or varying-length (BIT VARYING (n), where n is the maximum

number of bits. [Ref. 1]

b. DROP TABLE Command

This command is used to delete a table definition and all rows in the table.
There are two drop behavior options: CASCADE and RESTRICT. For example, if we no
longer need to keep track of departments in our database, we can get ﬁd of the

Department table by issuing the following command:
DROP TABLE Department CASCADE;

With the CASCADE option, all constraints and views that reference the
Department table are dropped automatically from the database schema, along with the
table itself. If the RESTRICT option is chosen instead of CASCADE, Department table is
deletea only if it is not referenced in any constraints (such as by foreign key definitions in

another relation) or views. [Ref. 1]

42

c. = ALTER TABLE Command

The definition of a table can be changed by using the ALTER TABLE
command. It is possible to add or drop a column, change a column definition, or
add/remove constraints defined for the table. The following example shows the

command used to add another column to the Department table defined above.
- ALTER TABLE Department ADD ManagerStartDate DATE;

To drop a column from a table, one must choose either CASCADE or
RESTRICT for drop behavior. For example, the following command removes the

attribute ManagerName from the Department table.

ALTER TABLE Department DROP ManagerName CASCADE;

2. Queries in SQL
SQL has one basic statement for retrieving information from a database: the
SELECT statement. Tﬁis is the most commonly used SQL command and is used to query
the database and display selected data to the user. The SELECT statement is formed of
the three clauses SELECT, FROM, and WHERE and has the following form:
 SELECT <attribute list>
FROM <table list>

WHERE <condition>

43

e <attribute list> is a list of attribute names whose values are to be retrieved by
the query.

e <table list> is a list of the relation names required to process the query.

® <condition> is a Boolean search expression that identifies the tuples to be

retrieved by the quéry. [Ref. 1]

The following query retrieves the names ahd numbers of the departments that are

managed by John Lewis.

SELECT DepartmentName, DepartmentNumber
FROM Department

WHERE ManagerName = ‘John Lewis’;

SQL provides five built-in functions COUNT, SUM, AVG, MAX, and MIN that
can be used in query statements. For example, the following query finds the sum of all
employees of the ‘Research’ department, as well as the maximum, minimum, and the

average salary in this department.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM Department, Employee

WHERE DepartmentName = ‘John Lewis” AND DNO = DepartmentNumber;

44

'It is also possible to apply built-in functions to groups of rows within a table. If
we want to apply the aggregate functions to subgroups of tuples in a relation, based on
some attribute values, we can use the GROUP BY clause for this purpose. The following

query retrieves the department name, the number of employees in the department, and

their average salary.

SELECT DepartmentName, COUNT (*), AVG (Salary)

FROM Employee

GROUP BY DepartmentName;

Finally, SQL allows the user to to order the tuples in the result of a query by the
values of one or more attributes, using the ORDER BY clause. For example, suppose one
wants to retrieve a list of employees but wants the list ordered by the employees’

departments and may want the names within each department ordered alphabetically.

SELECT DepartmentName, LastName, FirstName
FROM Employee, Department
WHERE DNO = DepartmentNumber

ORDER BY DepartmentName, LastName, FirstName;

45

3. Update Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE,

and UPDATE.

a. INSERT Command

The INSERT command is used to add a new row to a table. The relation
name and a list of values for the tuple must be specified. It can be used to fill a new table
with data or add ﬂew data to an already existing table. When the user of the POET
database system performs an operation to input new data into the database, the request is
carried out by means of an INSERT command. The example below adds new department

to the table defined above.

INSERT INTO Department (DepartmentName, ManagerName, DepartmentNumber)

VALUES (“Research”, "John Lewis”, 32015);

A second form of the INSERT statement allows the user to specify explicit
attribute names that correspond to the values in the INSERT command. In this case,
attributes not specified in the INSERT statement are set to their DEFAULT values or
NULL, and the values are listed in the same order asvthe attributes ‘are listed in the

INSERT command itself. [Ref. 1]

46

b. DELETE Command

The DELETE command removes tuples from a relation. It includes a
WHERE clause, similar to that used in SQL query, to select the rows to be deleted.
Depending on the number of tuples selected by the condition in the WHERE clause, zero,
one, or several tuples can be deleted by a single DELETE command. A missing WHERE
clause specifies that all rows in the table are to be deleted; however, the relation remains
in the database as an empty table. [Ref. 1] The following query can be used to delete the

department whose manager is “John Lewis”.

DELETE FROM Department

WHERE ManagerName = “John Lewis”;

c¢. = UPDATE Command
‘ This command is used to modify attribute values of one or more selected
tuples. As in the DELETE coﬁ1mand, a WHERE clause in the UPDATE command
selects the rows to be modified from a single relation. An additional SET clause speciﬁes
the attributes to be mpdiﬁed and their new values. UPDATE queries are us¢d in the
POET to modify existing data in the back-end database. The following query can bé
used, for example, to change the manager name of the department that has a Department

Number of 32014.

47

UPDATE Department
SET ManagerName = ‘Adam Smith’

WHERE DepartmentNumber = 32014;

4, Views in SQL

A view in SQL is a single table that is derived from other base tables or
previously defined views. A view does not necessarily exist in physical form; it is
considered a virtual table, in contrast to base tables whose tuples are actually stored in the
database. This limits the possible update operations that can be applied to views, but it
does not provide any limitations on querying a view.

A view is a way of specifying a table that is needed to be referenced frequently,
even though it may not exist physically. For example, frequent issue queries that retrieve
the employee name and the project names that the employee works on. /Rather thaﬁ
having to specify the join of the EMPLOYEE,.WORKS_ON, and PROJECT tables every
time that query is issued, a view can be defined that is a result of these joins and, hence,

already includes the attributes to be frequently retrieved.

CREATE VIEW EMPLOYEE PROJECT
AS SELECT FirstName, LastName, ProjectName, Hours
FROM Employee, Project, Works On

WHERE SSN = ESSN AND PNO = PNumber;

48

The view is specified by the CREATE VIEW command. The view is given a
virtual table name, a list of attribute names, and a query to specify the contents of the
view. If new attribute names are not specified for the view, as in the above example, then

the view inherits the names of the view attributes from the defining tables. [Ref. 1]

S. Processing SQL Statements

SQL statements can result in computationally expensive function calls; for
example, a complex jcﬁn operation between two or more large tables. It is important that
system designers have a general understanding of how a database management system
processes an SQL statement. To process an SQL statement, a DBMS performs four basic
steps: Parse the SQL statement, Validate the statement, Generate an Access Plan, and

Execute the Plan. [Ref. 4]

a Parse the SQL Statement |

The DBMS first parses the SQL statement. It breaks the statement up into
individual words, called tokens, and makes sure that the statement has a valid verb and
valid clauses, and so on.' Syntax errors and misspellings can be detected in this step.
Parsing a SQL statement does not require access to the database and typically can be

done very quickly. This phase ensures that the statement is syntactically correct. [Ref. 4]

49

b. Validate the SQL Statement

The second step in executing a Query is validating the statement. The
DBMS checks the statement against the system catalog. The system catalog contains
database metadata, including table names, attributes and types. This phase ensures the
statement parameters are semantically correct. Do all the tables named in the SQL
statement exist in the database? Do all of the columns exist and are the column names
unambiguous? Does the user have the required privileges to execute the statement?

Certain semantic errors can be detected in this step. [Ref. 4]

c Generate an Access Plan

The DBMS is responsible for managing the data stored in the database. In
this phase, based upon the statement, the DBMS generates an access plan. The access
plan is a binary representation of the steps that are required to execute the statement. The
DBMS optimizes the access plan. It explores various ways to carry out the access plan.
Can an index be used to speed a search? Should the DBMS first apply a search condition
- to Table A and then join it to Table B, or should it begin with the join and use the search
condition afterward? Can a sequential search through a fable be avoided or reduced to a
subset of the table? After exploring the alternatives, the DBMS chooses one of them.

Optimization is a very CPU-intenstve procesé and requires accéss to the
system catalog. For a complex, multi-table query, the optimizer may explore thousands of
different ways of carrying out the same query. However, the cost of executing the query
inefficiently is _usually, so high that the time spent in optimization is rega;ined in increased
query execution speed. |

50

This is even more significant if the same optimized access plan can be reused to perform

repetitive queries. [Ref. 4]

d. Execute the Access Plan

In this step, the DBMS will execute the access plan, producing a result set

that can be passed to the user.

6. SQL Tech’niqiles

There are a variety of ways to use SQL to define and manipulate data in a
Database Management S}‘/stem. This section will briefly present embedded SQL, stored
procedures, and call level interface. The implementation details of the following are

usually specific to each DBMS. [Ref. 5]

a. Embedded SQOL

One way is to embed SQL statements in a high—levél programming
language. This is called Embedded SQL. Embedded SQL allows programmers to place
SQL statements into a host language, such as Java or C++. The SQI; Statement can be
static or dynamic. Static SQL is effective if the data access can be determined at program
design time and is used when speed is important.

Each SQL statement starts with an introducer and ends with a terminator,
which serves as a ﬁag. The code is processed by a SQL pre-compiler (provided by the
DBMS yendor); which separates the source code and the SQL request. The pre-compiler

substitutes calls to proprietary DBMS routines that provide the run-time link between the .

51

program and the DBMS. The revised source code is then compiled and ultimately linked
with the proprietary DBMS library producing the executable. [Ref. 4]

The SQL requests that were extracted from the program form a database
request module, which is processed by a binding utility. This utility examines the SQL
statements, parses, validates, and optimizes them, and produces an access plan for each
statement. Because the SQL Statement is hard coded, this processing only needs to occur
at compile timé, not at run time, resulting in faster run time query execution.-

Dynamic SQL is effective when the data access cannot be determined 1n
advance, such as allowing a user to enter a SQL statement in which the results will be
displayed in a grid object. The application uses a flag, éuch as a question mark as a place
holder for parameters that will be supplied later. The SQL statement with the embedded
flags is then sent to the DBMS, via a PREPARE (string name) method. This allows the
DBMS to parse the string, and prepare an access plan. [Ref. 4]

When the user enters the input parameters in the client program the
application will call EXECUTE (string name), passing the DBMS the valid parameters.
The DBMS can then execute the query and provide the result set back to the user. This
technique is not as fast as Static Embedded SQL, because of the need to bind the input

parameters.

52

b. Stored Procedures

Another way to execute SQL statements is to have pre-defined and
compiled procedures, which reside on the database and can be called by clients. These
procedures are commonly referred to as stored procedures. A étored procedure is pre-
compiled SQL code that resides on’the database server. Stored procedures take input
parameters and return a result. A number of procedures can be packaged to form an SQL
Module, which can be stored in the DBMS or linked to the application. A module
provides logical separation of SQL.statements and the programming language/statements.
[Ref. 4] |

Stored procedures are a form of query optimization. They are used for
efficiency, for SQL statements that are frequently executed and bare computationally
expensive. The database administrator (DBA) creates and stores the procedures in thé
DBMS. Once they are stored, those procedures can be invoked by a client. So, instead of
submitting a SQL statement, the client will simply invoke the stored procedure the DBA
has élready defined. The database management system can develop, optimize and store
an access plan for executing the stored procedure, therefore decreasing response time
when the client invokes the procedure, because the access plan will not have to be
regenerated. Stored procedures can also reduce network congestion, by returning only the
result set of an operation rather than entire tables that the client may further process.

Triggers are another form of stored procedures. Triggers are special, user
defined actions in the form of a stored procedure, that are automatically invoked by the

server based upon data related events.

53

An example of a trigger might be the automatic generation of a parts order if the
inventory level of widgets falls below a certain level. [Ref. 4]

The problem with stored procedures is that they are vendor-specific,
totally non-standard, not portable across platforms, and have no standard interface
definition- language or stub compiler. Therefore, there is no standard way to pass or

define parameters. [Ref. 5]

C. Call Level Interface

Another alternative to Embedded SQL is to use a callable SQL
Application Programming Interface (API)b for database access, providing the application
with a library of DBMS functions that can be called by the application program. The
database aware application calls CLI functions on the locai system, and the calls are sent
across the network and processed by the DBMS. The initial call may be to establish a
connection with the remote database. The application builds its SQL statements, places
the statement in a buffer then makes a call to send the statement to the DBMS for
processing. Then the application makes a CLI call to disconnect from the DBMS. [Ref. 4]

An API does not require a pre-compiler to convert SQL statements into a
high-level language, which can then be compiled and executed on the database. Instead,
an API allows the user to create and execute SQL statements at run time. A standard API
can be used to produce portable applications that are independent of any database
product. The SQL Access Group Call Level Interface (SAG CLI) specifies a common
API for accessing multiple databases. It provides common SQL semantics and syntax,
codifies the SQL data types, and provides common error handling and reporting.

54

The SAG API enables the client to connect to a database, execute requests, retrieve the

results and terminate the connection. Table 3.2 provides a comparison of the features of
CLI and Embedded SQL. [Ref. 5]

Microsoft’s ODBC is a Windows API fhat is an extended version of the
SAG CLI. In addition to its basic functionality, it provides methods to retrieve
information about the database and handle multimedia types of data. ODBC offefs the
ability to connect to multiple kinds of databases on different platforms. However, the

following are its drawbacks: [Ref. 5]

[]

It is procedure oriented and thus does not mold with most of the

application programs written in an object-oriented language.

e ODBC standards are controlled by one vendor and are subject to
change(s) at the vendor’s wish.

e ODBGC is difficult to learn and debug. It mixes simple and advanced
features together.

e ODBC driver manager and drivers must be installed on every client

machine. This means it might be a poor choice for a web-based
database system.

e ODBC has drawbacks in the security, robustness and portability of

applications.

55

Because of these drawbacks, and since Java is the natural language of -
choice for an Internet based database system, JDBC was developed by Sun Microsystems
as a high-level API for invoking SQL commands directly on different vendor databases.
JDBC provides the security, robustness and portability that ODBC lacks. JDBC is a Java
API that enables large-scale applications to provide pure Java solutions. Java and JDBC

will be explained in Chapter IV.

D. NORMALIZATION

Relational database tables sometimes suffer from some rather serious problems in
terms of performance, integrity, and maintainability. For example, when the entire
database is defined as a single large table, it can result in a large amount of redundant
data and lengfhy searches fbr just a small number of target rdws. It can also result in loﬁg
and expensive updates and deletions in particular can result in the elimination of useful
data as an unwanted side effect.

If we had a method of breaking up such a large table into smaller tables so that
these types of problems wbuld be eliminated, the database would be much moré efficient
and reliable. Classes of relational database schemes or table definitions, called normal
forms, are commonly used to accomplish this goal. The creation of a normal form
database table is called normalization. It is accomplished by analyzing the
interdependencies among individual attributes associated with those tables and taking

projections (subsets of columns) of larger tables to form smaller ones. [Ref. 6]

56

Normalization éf data can be looked on as a process during which unsatisfactory
relation schemas are decomposed by breaking up their attributes into smaller relation
schemas that possess desirable properties. The normalization process, as first proposed by
E. F. Codd in 1972, takes a relation schema through a series of tests to certify whether or
not it belongs to a certain normal form. [Ref. 1]

To understand the normalization, it is important to define three important terms,

functional dependency, key, and update anomaly.

1. Functional Dependencies

A functional dependency is a relationship Between or among attributes. In a
situation given the value of one attribute, one can obtain the value of another attribute.
For example, if we know the value of Social Security Number, we can find the value of
the Employee Name. If this is true, it is surmised that EmployeeName is functionally
dependent on SocialSecurityNumber or SocialSecurityNumber functionally (or uniquely)
determines EmployeeName. [Ref. 3]

In more general terms, attribute Y is functionally dependent on attribute X, if the
value of X uniquely determines the value of Y. The functional dependency between X
and Y is denoted by the notation X —> Y. The attributes on the left side of the arrow are
called determinants. [Ref. 1] |

A functional dependenéy is a property of the meaning or semantics of the

attributes. We use our understanding of the semantics of the attributes of a relation, that is

57

how they relate to one another, to specify the functional dependencies that should hold on

all relation states. Consider the following EMPLOYEE-PROJECT relation schema:

EMPLOYEE-PROJECT (SSN, ProjectNo, Hours, EmployeeName, ProjectName,

ProjectLoaction)

From the semantics of the attributes, we know that the following functional dependencies

should hold:

(a) SSN —> EmployeeName
(b) ProjectNo —= {ProjectName, ProjectLocation}

(c¢) {SSN, ProjectNo} — Hours

These functional dependencies specify that (a) the value of an employee’s social
security number (SSN) uniquely determines the employee’s name (EmployeeName); (b)
the value of a project’s number (ProjectNo) uniquely determines the project name
(ProjectName) and location (ProjectLocation); and (¢) a combination of SSN and
ProjectNo values uniquely determines the number of hours the employee works on the

project per week (Hours).

58

2. Keys

A key is a group of one or more attributes that uniquely identifies each row in a
relation. A key is determined from the meaning of the attributes in the relation schema. A
set of attributes constituting a key is a property of the relation schéma; it is a constraint
that should hold on every relation instance of the schema. Consider the following

ACTIVITY relation schema:
ACTIVITY (StudentlID, Activity, Fee)

The meaning of a row is that a student engages in the named activity for the spec-
ified fee. Assume that a student is allowed to pé.rticipate in only one activity ata timé. In
this casé, a value of StudentID determines a unique row, and so it is a key. [Ref. 3]

Keys can also be composed of a group of attributes taken together. For example,
if students were allowed to enroll in many activities at the same time, it would be
possible for one value of StudentID to -appear in two or more rows of the table, so
StudentID could not uniquely identify the row. In this case, the combination of
(StudentID, Activity) can uniquely identify each row.

In general, a relation schema may have more than one key. In this case, each of
the keys is called a candidate key. It is common to designate one of the candidate keys as
the primary key of the relation. This is the candidate key whose values are used to

identify tuples in the relation. [Ref. 1]

59

3. Update Anomalies

A table that meets the minimum definition of a relation may not have an efféctive
or appropriaté structure. For some relations, changing the data can have undesirable
consequences, called update anomalies. These can be classified into insertion anomalies,
and modification anomalies. Anomalies can be eliminated by redefining the relation into

two or more relations. [Ref. 3]

a Insertion Anomalies

Consider the ACTIVITY relation that is shown in Figure 2.1.Suppose we
want to store the fact that scuba diving costs $175, but we can not enter this data into the
ACTIVITY relation until a student takes up scuba diving. This restriction is called an
insertion anomaly. A fact about one entity can not be inserted until we have an additional

fact about another entity.

StudentID Activity

100 Skiing 200
150 Swimming 50
175 Squash 50
200 Swimming 50

Figure 2.3: Activity Relation [Ref. 3]

60

b. Deletion Anomalies

If the tuple is deleted for Student 100 from the ACTIVITY relatioﬁ shown
in Figure 2.1, it might be lost that Student 100 is a skier, but also the fact that skiing costs
$200. This is called a deletion anomaly;‘that is, by deleting the facts about one entity, one
might inadvertently delete facts about another entity. With one deletion, facts about two

entities might be lost.

c. Modification Anomalies

In the ACTIVITY relation shown in Figure 2.1, if the value of fee attribute
of a particular activity is changed -- for example, the fee for swimming is $75 -- one must
update the tuples of all students who eﬁroll in that activity; otherwise, the‘database will
become inconsistent. A failure to update some records, the same activity will be shown to
have different fees for different students, which should not be the case. [Ref. 1]

One can eliminate the insertion, deletion and the modification anbmalies
by dividing the ACTIVITY relation into two relations, each one dealing with a different
theme. For example, the StudentID and Activity attributes can be put into one relatién,
‘called STUDENT-ACTIVITY and the Activity and Fee attributes can be put into another
relation called ACTIVITY-COST. Now, if Student 100 is deleted from STUDENT-
ACTIVITY, the fact that skiing costs $200 is not lost. Furthermore, scuba diving can be
added and its fee to the ACTIVITY—COST relation before the studervxt enrolls. Also, one
update in ';he ACTIVITY-COST relation will be sufficient to change the fee of the
swimming activity. Thus, the insertion, deletion and the modification anomalies have

been eliminated.

61

4. Normal Forms

Relations can be classified by the types of update anomalies to which they are
vulnerable. These classes of rélations and the techniques for preventing anomalies are
called normal forms. —

Initially, Codd proposed three normal forms in 1970, which he called first,
second, and third normal form. A’ stronger definition of 3NF was proposed later by Boyce
and Codd and is known as Boyce-Codd normal form (BCNF). Later, a fourth normal
form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of
multi-valued dependencies. [Ref. 1]

These normal forms are nested; that is, a relation in second normal form is also in
first normal form, and a relation in 5NF is also in 4NF, BCNF, 3NF, 2NF and INF. A
serious limitation of these normal forms was that no theory guaranteed that any of them
would eliminate all anomalies; each form could eliminate just certain ones. This changed,
however, in 1981 when R. Fagin defined a new normal form called domain/key normal
form (DK/NF). Fagin showed that a relation in domain/key normal form is free of all
modification anomalies, regardless of their type and that any relation that is free of

modification anomalies must be in domain/key normal form. [Ref. 3]

a. First Normal Form (INF)

\ First normal form was defined to disallow multi-valued attributes,
composite attributes, and their combinations. It states that the domains of the attributes
must inclﬁde only atomic (simple, indivisible) valués and that the value of any attribute in
a tuple must be a single value from the domain of that attribute. Hence, INF does not

62

allow having a set of values, a tuple of values, or a combination of both as an attribute
value for a single tuple. The only attribute values permitted by INF are single atomic

values. [Ref. 1]

INF is now considered to be part of the formal definition of a relation.
Any table of data that meets the definition of a relation is said to be in first normal form.

For a table to be a relation, the following rules must hold: [Ref. 3]

e The cells of the table must be single valued, andv neither repeating
groups nor arrays are allowed as values.

e All entries iﬁ any column (attribute) must be of the same kind.

e FEach column must have a unique name, but the order of the columns in
the table is insignificant.

e No two rows in a table may be identical, and the order of the rows is

not important.

The advantages of INF over unnormalized tables are its representational
simplicity and the ease with which one can develop a query language for it. The

disadvantage is the requirement of duplicate data. [Ref. 6]

b. Second Normal Form (2NF)
- Second normal form is based on the concept of full functional dependency.
A functional dependency X — Y is a full functional dependency if removal of any

attribute from X means that the dependency does not hold any more. A functional

63

dependency X —> Y is a partial dependency if some attribute can be removed from X

and the dependency still holds. [Ref. 1]

EMPLOYEE-PROJECT (SSN, ProjectNo, Hours, EmployeeName, ProjectName,

ProjectLoaction)

In the above EMPLOYEE-PROJECT relation, {SSN, ProjectNo} —> Hours is a full
functional dependency, because neither SSN — Hours nor ProjectNo—> Hours holds.
However, the dependency {SSN, ProjectNo} EmployeeName is a partial
dependency, because EmployeeName is dependént on only SSN.

A table is in second normal form (2NF) if and only if it is in INF and every
non-key attribute is fully dependent on the primary key [Ref. 6]. According to this
definition, if a relation has a single attribute as its key, then it is automatically in second
normal form. Since the key is only one attribute, by default, every non-key attribute is
dependent on the primary key; there can be no partial dependencies. Thus, second normal
form is of concern only in relations that have composite keys.

If a relatibn schema is not in 2NF, it can be further .normalized into a
number of 2NF relations in which non-key attributes are associated only with the part of

the primary key on which they are fully functionally dependent.

c Third Normal Form (3NF)
The tables in 2NF represent a significant improvement over INF tables;
however, they still suffer from the anomalies, but for different reasons associated with

transitive dependencies. If a transitive dependency exists in a table, it means that two

64

separate facts are represented in that table, one fact for each functional dependency

involving a different left side. [Ref. 6] Consider the following HOUSING relation

schema:

HOUSING (StudentID, Building, Rent)

The primary key of this relation is StudentID, and the functional dependencies are
StudentID —> Building and Building —> Rent. These dependencies arise because each
student lives in only one building and each building charges only one rent. Since
StudentID determines Building and Building determines the value of Rent, then
StudentID indirectly determines the Rent. An arrangement of functional dependencies
like this is called a transitive dependency, since StudentID determines Rent through the
attribute Building.

To eliminate the anomaliés from a relation in 2NF, the transitive
dependency must be removed, which leads to a definition of 3NF: A relation is in third
normal form if it is in second normal form and has no transitive dependencies. [Ref. 3]

Third normal form, which eliminates most of the anomalies known in
databases today, is the most common standard for normalization in commercial
databases. The few remaining anomalies can be eliminated by the Boyce-Codd normal

form and higher normal forms, which will be defined in the following subsections.

65

d Boyce-Codd Normal Form (BCNF)

Boyce-Codd normal form is a stronger form of normalization than 3NF,
because it does not allow the right side of the functional dependency to be a candidate
key. Thus, every left side of a functional dependency in a table must be a candidate key.
[Ref. 6]

A relation is in Boyce-Codd normal form, if the determinants in each of
the functional dependencies are candidate keys. Relations in BCNF have no anomalies in

regard to functional dependencies.

e Fourth Normal Form (4NF)

Fourth normal form is related with the concept of multivalued
dependency. Multivalued dependencies are a consequence of first normal form, which
disallowed an attribute in a tuple to have a set of values. If we have two or more
multivalued independent attributes vin the same relation schema, we get into a problem of
having to repeat every value of one of the attributes with every value of the other attribute
to keep the relation instances consistent. This constraint is specified by a multivalued
dependency. In other words, whenever two independent one to many relationships are
mixed in the same relation, a multivalued dependency may arise. [Ref.. 1]

In general, a multivalued dependency exists when a relation has at least
three attributes, two of them are multivalued and their values depend on only the third

attribute. For example, consider the following relation:

EMPLOYEE (EmployeeName, ProjectName, Dependent)

66

A tuple in this EMPLOYEE relation represents the fact that an employee
may work on several projects and may have several dependents, and the employees, proj-
ects and dependents are not directly related to one another. To keep the tuples in the
relation consistent, we must keep a tuple to represent every combination of an employee's
dependent and an employee's project.

The deﬁnition of 4NF, which is violated when a relation has undesirable
multivalued dependencies, and hence can be used to identify and decompose such rela-

tions. A relation schema is in 4NF, if it is in BCNF and has no multivalued dependency.

f Fifth Normal Form (5NF)

Fifth normal form is based on the concept of join dependency and lossless
decomposition. A table is in fifth normal form if it can not have a lossless decomposition
by the projection operation into any number of smaller tables. [Ref. 6]

A lossless decomposition of a table implies that it can be decomposed by
two or more projections, followed by a natural joinv of those projections (in any order)
that results in the original table, without any spurious or missing rows. The general
lossless decomposition constraint, involving any number of projections, is also known as
a loin dependency. In other words, a table is not in 5NF if it can be lossless
decomposed/joined via some projections. [Ref. 1]

If a table is already 4NF, with at least some of the functional dependencies
preserved, then the most appropriate decomposition to SNF is by candidate key, with
eéch smaller table having the candidate key replicated and one non-key associated with
the candidate key. If there is only one candidate key - the composite of all aftributes -

67

further decomposition is accomplished by trial and error using various (more than two)
subsets of the table's attributes.

Discovering join dependencies in practical databases with hundreds of
attributes is difficult; hence, current practice of database design pays scant attention to

them. [Ref. 1]

g. Domain-Key Normal Form (DKNF)

The idea behind domain-key normal form is to specify, (theoretically, at
least) the "ultimate normal form" that takes into account all possible types of
dependencies and constraints. A relation is said to be in DKNF if all constraints and
dependencies that shouid hold on the relation can be enforced simply by enforging the
domain constraints and the key constraints specified on the relation. For a relation in
DKNF, it becomes very straightforward to enforce the constraints by simply checking
that each attribute value in a tuple is of the appropriate domain and that every key
constraint on the relation is enforced. However, it seems unlikely that complex con-
straints can be included in a DKNF table; hence, its préctical utility is limited. [Ref. 1]

In 1981, R. Fagin showed that a relation in domain/key normal form has
no modification anomalies, and furthermore, that é relation having no modification
anomalies must be in domain-key normal form. This finding establishes a bound on the
definition of normal forms, and so no higher normal form is needed, at least in order to
eliminate modification anomalies. Equally important, DKNF involves only the concepts
of key and domain, concepts that are fundamental and close to the heart of database

practitioners. Informally, a relation is in DKNF if enforcing key and domain constraints

68

causes all of the constraints to be met. Moreover, since relations in DKNF can not have
modification anomalies, the DBMS can prohibit them by enforcing key and domain

restrictions. [Ref. 3]

5. Summary

Normalization is a process in which larger tables are decomposed to form smaller
ones in order to eliminate update anomalies. It is accompliéhed by analyzing the
interdependencies among individual attributes associated with those tables and taking
projections of larger tables to create smaller ones.

In some cases, normalizaﬁon may not be desirable. Whenever a table is spilt into
two or more tables, referential integrity constraints are created. If the cost of the extra
processing of the two tables and their integrity constraint is greater than the benefit of
avoiding modification anomalies, then normalization is not recommended.

Database designers need not normalize the tables to the highest normal form.
Relations may be left in lower normal forms for performance reasons. In some cases,

creating repeating columns is preferred to the standard normalization techniques.

69

E. ACCESS 97

Microsoft Access is essentially a database management system. Like other
products in this category, Access stores and retrieves data, presents information, and
automates repetitive tasks. It is used to create, control; and manipulate one of the most
common forms of information system: a database. A database system is a collection of
~ integrated information that vdescribes a particular object. Microsoft Access is a very
flexible program that can be used to manage simple database applications or to build
complex cofporéte management information systems.

Microsoft Access is well suited for both creating new database systems and for
expanding or upgrading current systems. Microsoft Access can accept data from a wide
variety of file formats, which makes it ideal for converting data stored in a different
system. There is complete interoperability between Access and Word, Excel, and
PowerPoint. Also, the program has an easy-to-master graphical interface, which makes it
an ideal tool for less experienced users. [Ref. 7]

Using Object Linking and Embedding (OLE) objects in Windows 95/98 and
Microsoft Office 97 products (Excel, Word, PdwerPoint, and Outlook), one can extend
Access into being a true database operating environment through integration with these
products. With the new Internet extensions, it is possible to create forms that interact with
data directly from the World Wide Web and translate the forms airectly into HTML that
works with products like Microsoft Internet Explorer and Netscape Navigator. [Ref. 8]

Even so, Access is more than just a database manager. As a relational database
management system, it gives the user access to all types of data and makes it possible to

use more than one database table at a time. One can link an Access table with mainframe

70

or server data or use a table created in Paradox or dBase. The user can take the results of
the link and combine the data with an Excel worksheet quickly and easily. [Ref. 8]

At the lowest level, Access gives the end user the capability of creating tables,
queries, f&ms, and reports easily. One can perform simple I;rocessing by using
expressions, also known as functions, to validate data, enforce a business rule, or display
a number with a currency symbol. Macros allow for automation without programming,
whereas VBA (Visual Basic for Applications) code lets the user program complex
processes. Finally, by using Windows API calls to functions or DLLs written in other
languages such as C++, Java, or even Visual Basic, a programmer can write interfaces to
other f)rograms and data sources. [Ref. 8]

Access is a set of tools for end-user database management. Access has a table cre-
ator, a form designer, a query manager, and a report writer Access is also an environment
for developing applications. By using macros or modules to automate tasks, it is possible
to create user-oriented applications as powerful as those created with programming

languages - complete with the buttons, menus, and dialog boxes. [Ref. 8]

1. Features of Access 97

The following paragraphs will briefly describe some key features in Access 97:
True Relational Database Management; Ease-of-Use Wizards and Builciers; Importing,
Exporting, and Linking External Files; Powerful Forms and Reports; Multiple-Table
Queries and Relationships; Business Graphs and Charts; DDE and OLE Capabilities;

Built-in Functions; and Context-Sensitive Help and Office Assistant.

71

a. True Relational Database Management

Access provides true relational database management. Access includes
definitions for primary and foreign keys and has full referential integrity built in at the
level of the database engine itself, which prevents inconsistent updates or deletions. In
additiofl, tables in Access have data-validation rules to prevent inaccurate data regardless

of how data is entered, and every field in a table has format and default definitions for

more productive data entry. Access supports all the necessary field types, including Text,

Number, AutoNumber (counter), Currency, Date/Time, Memo, Yes/No, Hyperlink, and
OLE objects. When values are missing in special processing, Access provides full
support for null values.

The relational processing in Access fills many needs with its flexible

architecture. It can be used as a stand-alone database management system, in a file-server

configuration, or as a front-end client to products such as an SQL server. In addition,
Access features ODBC (Open Database Connectivity) that makes it possible to connect to
many more external formats.

The program provides complete support for transaction processing,
ensuring the integrity of transactions. In addition, user level security provides control

over assigning user and group permissions to view and modify database objects. [Ref. 8]

b. Ease-of-Use Wizards and Builders
A Wizard can turn hours of work into minutes. Wizards ask the user
questions about content, style, and format; then they build the object for you

automatically. Access features nearly 100 Wizards to design databases, applications,

72

tables, forms, reports, graphs, mailing labels, controls, and properties. The user can even
customize Wizards for use in a variety of tasks. [Ref. 8] |

In some areas, such as programming buttons on forms and reports, wizards
make the core so easy that even a fairly naive Access user can make applications that
work just like the ones done by experts. There is nothing one can do with a wizard that he

can not do manually, but using wizards can save a lot of time. [Ref. 7]

c Importing, Exporting, and Linking External Files

Access lets the user import from or export to many common formats,
including dBase, FoxPro, Excel, SQL Server, Oracle, Btrieve, many ASCII text formats
(including fixed width and delimited), as well as data in HTML format. Importing creates
an Access table; exporting an Access table creates a file in the native file format that is
being exported to.

Linking (formally known as attaching) means that one can simply use
external data without creating an Access table. One can link to dBase, FoxPro, Excel,
ASCII, and SQL data. Linking to external tables and then relating them to other tables is

a powerful capability. [Ref. 8]

d Powerful Forms and Reports

The Form and Report Design windows share a common interface and
power. The user can add labels, text data fields, option buttons, tab controls, check boxes,
lines, boxes, colors, shading -- even pictures, graphs, subforms, or subreports -- to the
forms and reports. As the user add each control, he can see the form take shape as he

73

builds the design. In addition, he has complete control over the style and presentation of
data in a form or report. In Access, forms can have multiple pages and reports can have
many levels of groupings and totals. The user can also view the report with sample data
when he is in design mode so that he does not waste valuable timé waiting for a large
data file to be processed. [Ref. 8] |
Most important, the Report Writer is very powerful, allowing up to ten
levels of aggregation and sorting. The Report Writer performs two passes on the data;
one can create reports that show the row percentage of a group total, which can be done
only by having a calculation based oﬁ a calculation that requires two passes through the

data.

e. Multiple-Table Queries and Relationships

One of the most powerful features in Access 97 is also the most important.
The relationship lets the user link his tables graphically. The user can even link tables of
different file types (such as an Access table and a dBase table); when linked, these tables
act as a single entity that he can query about his data. It is possible to select specific
fields, define sorting orders, create calculated expressions, and enter criteria to select
desired records. The user can display the results of a query in a datasheet, form, or report.
[Ref. 8]

Queries have other uses as well. One can create queries that calculate
totals, display ;:ross—tabulations, and then make new tablyes from th¢ results. The user can

even use a query to update data in tables, delete records, or append one table to another.

74

FA Business Graphs and Charts

Access 97 has the same graph application found in Microsoft Word,
Excel, PowerPoint, and Project. The user can create hundreds of types of business graphs
and customize the display to meet his every business need. He can create bar charts,
column charts, line charts, pie charts, and area charts in two and three dimensions.

It is possible to add free-form text, change the gridlines, adjust the color
and pattern in ;1 bar, display data values on a bar or pie slice, and even rotate the viewing
angle of a chart from within then Access Graph program. In addition, the user can link his
graph with a form to get a powerful graphic data display that changes from record to

record in the table. [Ref. 8]

g DDE and OLE Capabilities

Through the capabilities of Dynamic Data Exchange (DDE) and Object
Linking and Embedding (OLE), the user can add exciting new objects to his Access
forms and reports. Such objects may be sound, pictures, graphs, and even video clipé. He
can easily embed OLE objects (such as a bitmap picture) or documents from word-
processors (such as Word or WordPerfect) or link to a range of cells in an Excel
spreadsheet. By linking these objects to records in his tables, the user can create dynamic

database forms and reports and share information between Windows applications.

75

h. Accessing the Internet

Access 97 has features that allow the user to eésily make his applications
Internet/intranet ready. It is véry easy to save tables, queries, reports, and form datasheets
as HTML. The Publish to the Web Wizard allows even a neophyte to place the HTML
code generated from an object out on a Web site, ready for the perusal of all who surf the
Internet. The Publish to the Web Wizard walks you through the steps of creating the
HTML for selected database objects and of placing the generated HTML out on your
Web site. Hyperlinks allow others to access the published data as hypertext links, directly
from the Access forms. Using the Wizard, it is possible to create either static or dynamic

publications, publish them to the Web, create a home page, and even use templates to

obtain a standard look and feel for all HTML publications. [Ref. 8]

L Built-in Functions

Access contains more than 100 functions (small built-in programs that
return a value). These functions perform tasks in a wide variety of categoﬁes. Access
includes database, mathematics, business, financial, date, time, and string functions. The

user can use them to create calculated expressions in his forms, reports, and queries.

J. Context-Sensitive Help and Office Assistant

Access provides context-sensitive help; the user can press the Fl key
whenever he is stuck. Help information about the item he is working on appears instantly
Access also has an easy-to-use table of contents, a search facility, a history log, and

bookmarks.

76

The Office Assistant is Microsoft’s attempt to incorporate artificial
intelligence into its help systems. Office Assistant responds in plain English when the
user asks for help. Screen Tips, also known as What is This, give short, on-screen

explanations of what something is. [Ref. 7]

2. Requirements for Access 97
Access 97 requires specific hardware and software to run. The following

subsections will describe the hardware and software requirements needed for Access 97.

a. Hardware Requirements

To use Access 97 successfully, one will need an IBM compatible personal
computer (PC) with an 80486SX-33 or higher processor and 12MB of RAM. To get
reasonable performance from Access 97, an 80486DX-66 computer with at least 16MB
of RAM is recommended. With more memory, the user will be able to run more
applications simultaneously, and overall performance will be increased. A fast video card
is also recommended to display pictures and graphs.

The user will also need between 60MB and 191MB of hard disk space for
a typical installation of Microsoft Office 97. If the user is installing only Access 97, he or
she will still need about 50MB, because many of the Office shared files are used by
Access and are loaded in the stand-alone version.

Access needs a VGA monitor as a minimum requirement, but an SVGA
(or better) display is recommended. This configuration allows the user to view more

information at one time and to get a sharper resolution.

77

A mouse or some other compatible pointing device (trackballs and pens

will work) is mandatory to be able to use Access 97. [Ref. 8]

b. Software Requirements
Access requires that Microsoft Windows 95/98 or Windows NT be

installed on the computer. Microsoft Office 97 does not run on OS/2 or Windows 3.1.

3. Database Objects and Views in Access 97
The Access database contains six objects; these consist of the data and tools one

needs to use Access:

. Table: Used to hold the actual data (uses a datasheet to display the raw
data)

. Query: Used to search, sort, and retrieve specific data

o Form: Used to enter and display data in a customized format

. Report: Used to display and print formatted data, including calculations
and totals

. Macro: Used to automate tasks without programming via easy-to-use
commands

) Module: Program written in VBA

78

The following subsections wﬂl explain each one of these database objects in detail.

a. Tables

A table is a container for raw data. When the user enters data in Access, a
table stores it in logical groupings of similar data. The table’s design organizes the
information into rows and columns. A database contains one or more tables. Most
applications in Access have several related tables to present the information efficiently.

Multiple tables simi)lify data entry and reporting by decreasing the input
of redundant data. By defining two tables for an application that uses customer informa-
tion, for example, one does not need to store the customer's name and address every time
the customer purchases an item. By separating the data into multiple tables within the
database, the system is easier to maintain,‘ because all records of a given type are within
the same table. [Ref. 8]

Datasheets are one of the many ways to view data. Although not a
database object, a datasheet displays a list of records from the table in a format
commonly known as a browse screen, or table view. A datasheet displays data as a series

of rows and columns.

b. Queries

Queries are used to extract information from a database. A query can
select and define a group of records that fulfill a certain condition. One can use queries
before printing a report so that only the desired data is printed. Forms can also use a
query so that only certain records that meet the desired criteria will appear on-screen. The

79 -

user can use queries within procedures that change, add, or delete database records.

Access uses the method Query By Example (QBE), to execute the queries.
In this method, the user first selects the tables that will be used in the query. When the
user enters instructions into the QBE window, Access translates them into SQL
statements and retrieves the desired data by filtering the records, selecting only those
meeting the query criteria. Finally, the records appear on the screen in a datasheet.

These selected records are known as a dynaset - a dynamic set of data that
can change according to the raw data in the original tables. After running a query, the
user can use the resulting dynaset in a form, which displays the data in a specified format.
In this way, one can limi;c user access to only the data that meets the criteria in the

dynaset. [Ref. 8]

c Forms

Forms help users get information into a database table in a quick, easy,
and accurate manner. Data entry and display forms provide a more structured view of the
data than does a datasheet. From this structured view, it is possible to view, add, change,
or delete database records. Entering data through the data entry forms is the most
common way to get the data into the database table.

Data entry forms can be used to restrict access to certain fields within the
table. One cah also use these forms to check thé validity of the data before one accepts it

into the database table.

80

Display-only screens and forms are solely for inquiry purposes. These
forms allow for the selective display of certain fields within a given table. Displaying
some fields and not others means that the database administrator can limit a user's access

to sensitive data while allowing inquiry into other fields. [Ref. 8]

d. Reports

Reports present the data in printed format. It is possible to create several
different types of reports within a database management system. This is accomplished by
incorporating a query into the report design. The query creates a dynaset consisting of the
records that satisfy the conditions.

Reporfs can combine multiple tables to present complex relationships
among different sets of data. An éxample is printing an invoice. You access the customer
table to obtain the customer's name and address and other pertinent data and the sales
table to print the individual line item information for the products ordered. You can then

have Access calculate the totals and print them in a specific format on the form. [Ref. 8]

e. Macros

A macro is a set of one or more actions that each performs a particular
operation, such as opening a form or printing a report. Macros can help the user to
automate common tasks. For example, one can run a macro that prints a report when a

user clicks a command button.

81

A macro can be one macro composed of a sequence of actions, or it can be
a macro group. You can also use a conditional expression to determine whether in some

cases an action will be carried out when a macro runs.

A Modules

A module is a collection of Visual Basic for Applications declarations and
procedures that are stored together as a unit. There are two basic types of modules: class
modules and standard modules.

Form and report modules are class modules that are associated with a
particular form or report. Form and report modules often contain event procedures that
run in response to an event on the form or report. One can use event procedures to control
the behavior of forms and reports, and their response to user actions such as clicking the
mouse on a command button.

Standard modules contain general procedures that aren't associated with
any other object and frequently used procedures that can be run from anywhere within the

database.

82

‘III. SEMANTIC DATA MODEL

A. INTRODUCTION

The Semantic Database Model (SDM) is a high-level, semantics-based database
model that will enable the database designer to naturally and directly incorporate the
semantics of a database into its schema. This database model is designed to capture more
of the meaning of an application environment than is possible with‘other database
models. An SDM speciﬁcatioﬁ describes a database in terms of the kinds of entities that
exist in the application environment, the classifications and groupings of those entities,
and the structural interconnections among them. SDM provides a collection of high-level
modeling primitives to capture the semantics of an application environment. By
accommodating derived information in a database structural specification, SDM allows
the same information to be viewed in several ways; this makes it possible to directly
accommodate the variety of needs and processing requirements typically present in
database applications. [Ref. 9]

SDM is designed to enhance the effectiveness and usability of database systems.
SDM database description can serve as a formal specification and documentation tool for
a database; it can provide a basis for supporting a variety of powerful user interface
facilities; and, it can serve as a conceptual database model in the database design process.

SDM has been developed to satisfy a number of criteria that are not met by
contemporary database models, but which are essential in an effective Aatabase

description and design. [Ref. 9]

83

(D The constructs of the database model should provide for the explicit
specification of a large portion of the meaning of a database. Other data models employ
overly simple data structures to model an application environment. In so doing, they
inevitably lose information about the database; they provide for the expression of only a
limited range of a designer's knowledge of the application environment. However, it is
essential that the database model provide a rich set of features to allow the direct

modeling of application environment semantics.

@) A database model must support a relativist view of the meaning of a
database, and allow the structure of a database to support alternative ways of looking at
the same information. In order to accommodate multiple views of the same data and to
enable thé evolution of new perspectives on the data, a database model must support
schemata that are flexible, logically redundant, and integrated. Flexibility is essential in
order to allow for multiple and coequal views of the data. In a logically redundant
database schema, the values of some database components can be algorithmically derived
from others. Finally, an integrated schema explicitly describes the relationships and

similarities between multiple ways of viewing the same information.

(3) A database model must support the definition of schemata that are based
on abstract entities. Specifically, this means that a database model must facilitate the
description of relevant entities in the application envifonment, collections of such
entities, relationships (associations) among entities, and structural interconnections

among the collections. Moreover, the entities themselves must be distinguished from

84

their syntactic identifiers (names),; the user-level view of a database should be based on

actual entities rather than on artificial entity names.

B. SEMANTIC OBJECTS

A semantic object can be defined as a representation of some identifiable thing in
ihe real world. More formally, a semantic object is a named collection of attributes that
sufficiently describes a distiﬁct identity. Semantic objects are grouped into cl&sses. An
object class has a name that distinguishes it from other classes and that corresponds to the
names of the thingé it represents. [Ref. 3] Thus, a database that supports users who work
with student records, has an object class called STUDENT. A particular semantic object
is an instance of the class. Thus, ‘Yuksel Can’ is an instance of the STUDENT class.

Like entities, a semantic object has a collection of attributes. Each attribute
represents a characteristic of the identity being represented. For instance, the STUDENT
object could have attributes like Name; HomeAddress; CampusAddress; DateOfBirth;
and Major.

Objects represent distinct identities; that is, they are something that users rec-
ognize as independent and separate and that users want to track and 'report-. These
identities are the nouns about which the information is to be produced. The identities that
the objects represent may or may not have a physical existence. For example, STUDENT

object represents identities that physically exist, but COURSE does not.

85

1. Attributes
. Semantic objects have attributes that define their characteristics. There are three

types of attributes: Simple attributes, Group attributes, and Semantic object attributes.

a. Simple Attributes
Simple attributes have a single value. Examples are DateOfBirth,

InvoiceNumber, and CourseName.

b. Group Attributes
Group attributes are composites of other attributes. One example is
Address, which contains the attributes {Street, City, State, Zip}; another example is

FullName, which contains the attributes {FirstName, Middlelnitial, LastName}.

C. Semantic Object Attributes

Semantic object attributes are attributes that establish a relationship
between one semantic object and another.

Attributes may be either single-valued or multi-valued. A single-valued
attribute is an attribute whose maximum cardinality is 1. A multi-valued attribute is one
whose maximum cardinality is greater than 1. |

Semantic objects are shown in semaﬁtic object diagrams, which are
pomait-oriented rectangles, in which the name of the object appears at the top and the
attributes are written in order after the object name. Figure 3.1 shows an example of a
sémantic object diagram.

86

SALES-ORDER

ID SalesOrderNumber 1 1

Date 1.1

CUSTOMER iy

SALESPERSON

1.1

D

Lineltem . —

ITEM

1.1

Quantity 1 4 ‘
ExtendedPrice 1.1

Subtotal 1 1
Tax o.1

Total 1.1

O.N

Figure 3.1 Semantic Object Diagram

The SALES-ORDER object contains an example of each of the three types of
attributes: SalesOrderNumber, Date, Subtotal, Tax, and Total are all simple attributes,
each of which represents a single data element. Lineltem is a group attribute containing
the simple attributes Quantity and ExtendedPrice, and the semantic object attribute:
ITEM. CUSTOMER, SALESPERSON, and ITEM each are semantic object attributes,

which means that these objects are related to and logically contained in SALES-ORDER.

87

2. Attribute Cardinality

Each attribute in a semantic ébject has both a minimum cardinality and a
maximum cardinality. The minimum cardinality indicates the number of instances of the
attribute that must exist in order for the object to be valid. Usually this number is either
“0” or “1”. If it is 0, the attribute is not required to have a value. If it is 1, the attribute
must have a value. The maximum cardinality indicates the maximum number of instances
of the attribute that the object may have. It is usually either 1 or N. If it is 1, tﬁe attribute
can have no more than one instance; if it is N, the attribute can have many values.
[Ref. 3]

Cardinalities are shown as subscripts of attributes in the format n.m, wheré nis
the minimum cardinality and m is the maximum. In Figure 3.1, the minimum cardinality
of SalesOrderNumber is 1 and vthe maximum is also 1, which means that exactly one
value of SalesOrderNumber is required. The cardinality of 0.1 in Tax means that a
SALES-ORDER may have either zero or one Tax.

The cardinalities of group attributes and the attributes inside groups can be
interpreted as follows: The cardinality of Lineltem groui) attribute is 0.N, meaning that a
SALES-ORDER may have zero or more line items. However, each attribute within this
group has a cardinality of 1.1, meaning that these attributes are required. One might
wonder how a group could- be optional if the attributes in that group are required. The
answer is that the cardinalities operate only between the attribute and the container of that
‘attribl.lte. Thus, a Lineltem group need not appear in a SALES-ORDER, but if it does,

then it must have a value for Item, Quantity, and ExtendedPrice attributes.

88

3. Paired Attributes

The semantic object model has no one-way relationships. If an object contains
another object, the second object will ;ontain the first one. For example, if SALES-
ORDER contains the object attribute SALESPERSON, then SALESPERSON will
contain the matching object attribute SALES-ORDER. The object attributes always occur
as a pair, because if Object A has a relationship with Object B, then Object B will have a

relationship with Object A. [Ref. 3]

4. Object Identifiers

An object identiﬁér is one or more object attributes that the users employ to
identify object instances. In SALES-ORDER semantic object, for example, the object
identifier is SalesOrderNumber, an attribute that uniquely identifies each Sales-Order
instance. A group identifier is an identifier that has more than one attribute. Examples are
{FirstName, LastName}, {Firstname, PhoneNumber}, and {State, LicenseNumber}.

Object identifiers may or may not be unique, depending on the type of the data.
For example, SalesOrderNumber is a unique identifier for SALES-ORDER, but
StudentName is not a unique identifier for STUDENT, because there may be two
students named ‘Mary Smith’.

In semantic object diagrams, object identifiers are denoted by the letters ID in
front of the attribute. If the identifier is unique, these letters will be underlined. In Figure
3.1, for 'example, the attribute SalesOrderNumber is a unique identifier of SALES-

ORDER object class.

89

5. Attribute Domains

The domain of an attribute is a description of an attribute's possible values. The
characteristics of a domain depend on the type of the attribute. The domain of a simple
attribute consists of both a physical and a semantic description. The physical description
indicates the type of data (for example, nmﬁeﬁc versus string), the length of the data, and
other restrictions or constraints (such as the value must not exceed 100). The semantic
description in;iicates the function or purpose of the attribute-it distinguishes this attribute
from other attributes that might have the same physical description. [Ref. 3]

The domain of a group attribute also has a physical and a semantic description.
The physical description is a list of all of the attributes in the group and the order of those
attributes. The semantic description is the function or purpose of the group.

The domain of an object attribute is the set of object instances of that type. In
Figure 3.1, for example, the domain of the CUSTOMER object attribute is the set of all

CUSTOMER object instances in the database.

C. TYPES OF SEMANTIC OBJECTS

This section describes and illustrates seven types of semantic objects. [Ref. 3]

1. Simple Objects

A simpie object is a semantic object that contains only single-valued, non-object
attributes. [Ref. 3] Figure 3.2 shows a simple object, EQUIPMENT, that models
Equipment Tag. None of the attributes of this object is multi-valued, and none is an
object attribute.

90

EQUIPMENT
1D EquipmentNumber 1 4
Description ¢ 1
AcquisitionDate o1

PurchaseCost g1

Figure 3.2: EQUIPMENT Simple Object

2. Composite Objects

A composite object is a semantic object that contains one or more multi-valued,
non-object attributes. [Ref. 3] The HOTEL-BILL object, shown in Figure 3.3, is a

composite object that contains a multi-valued group attribute, Lineltem.

HOTEL-BILL
D InvoiceNumber 4 4
ArrivalDate 1 4

CustomerName 4 4

Lineltem
i ServiceDate 1 1
ServiceDescription 1 4

Price 14

TotalDue 1 4

Figure 3.3: HOTEL-BILL Composite Object

91

3. Compound Objects

A compound object is a semantic object that contains at least one object attribute.
The relationship between two compound objects can be one to one (1:1), one to many
(1:N), or many to many (M:N). [Ref. 3] An illustration of compound objects that have a
M:N relatiénship appears in Figure 3.4. From these object diagrams, we can deduce that
one book can be written by many authors and that one author can write many books,
because BOOK 6bject contain_s many values of AUTHOR, and AUTHOR contains many
values of BOOK. Hence the relationship from BOOK to AUTHOR is many to many or
N:M. Furthermore, a BOOK must have an AUTHOR, and van ‘AUTHOR (to be an author)
must have written at least ‘one BOOK. Therefore, both of these objects have a minimum

cardinality of one.

BOOK AUTHOR
D ISBN 4 4 ID SSN 4 4
Title 1.4 AuthorName 4 4
Publisher g 4 Address g 1
CopyrightDate g 4 Phone ¢ 1
AUTHOR BOOK
1N 1N

Figure 3.4: BOOK and AUTHOR Compound Objects

4. Hybrid Objects
Hybrid objects are combinations of compound and composite objects. In

particular, a hybrid object is a semantic object with at least one multi-valued group

92

attribute that includes a semantic object attribute. Figure 3.5 is an object diagram that
models a hybrid object. SALES-ORDER contains a multi-valued group attribute,
Lineltem, with both the object attribute ITEM and the non-object attributes Quantity and

ExtendedPrice. This means that Quantity and Extendchrice are paired with ITEM in the

context of SALES-ORDER.

SALES-ORDER
1D SalesOrderNumber 4 4

Date 1.1

CUSTOMER

1.1

SALESPERSON iy

Lineltem —_—

o | ITEM

1.1

QUantity 11 -
ExtendedPrice 1.4

— ON

Subtotal 1.1
Tax 0.1

Total 11

Figure 3.5: SALES-ORDER Hybrid Object

5. Association Objects

An association object is an object that relates two or more objects and stores data

that are peculiar to that relationship. [Ref. 3] In Figure 3.6, the object FLIGHT is an

93

association object that associates the two objects AIRPLANE and PILOT and stores data
about their association. FLIGHT contains one each of AIRPLANE and PILOT; but both
AIRPLANE and PILOT contain multiple values of FLIGHT. This particular pattern of
associating two or more objects with data about the association occurs frequently in

applications that involve the aséignment of two or more things.

AIRPLANE PILOT
ID TailNumber 4 1 ID SocialSecurityNumber 4 4
Manufacturer 1 4 Name 1 4
Type o.1 Address ¢ 1
PassengerCapacity g 1 | PhoneNumber ¢4
FreightCapacity ¢ 1 . FlightHours g 4
FLIGHT ‘ FLIGHT
O.N O.N
FLIGHT

i FlightNumber + ;
Date 1 1
OriginatingCity ¢.1

DestinationCity g 1

AIRPLANE ‘1

PILOT
1.1

Figure 3.6: FLIGHT, AIRPLANE, and PILOT Semantic Objects

94

6. Parent/Subtype Objects

Parent/Subtype Objects model generalization, inheritance and is;a relationships.
[Ref. 3] An example is shown in Figure 3.7, in which the EMPLOYEE object contains a
subtype object, MANAGER. EMPLOYEE object has the common attributes of all
employees, while MANAGER object having manager-oriented attributes. In this
example, the EMPLOYEE object is called a parent object or supertype object, and the
MANAGER object is called a subtype object.

The first attribute of a subtype object is the parent object attribute and is denoted
by the subscript P. Parent attributes are always required in subtype objets. The identifiers
of the subtype are the same as the identifiers of the parent.

Subtype attributes are shown with the subscript 0.ST or 1.ST. The first digit is the
minimum cardinality of the subtype. If it is 0, the subtype is optional, and if it is 1, the

subtype is required. The ST indicates that the attribute is a subtype, or IS-A attribute.

EMPLOYEE ' MANAGER

ID SocialSecurityNumber 1 4 EMPLOYEE

EmployeeName 1 1

ManagerTitle »

HireDate ¢.1 ManagementLevel 1 1
Salary .1 ' StartDate 0.1
MANAGER Office 0.1
0.5T

Figure 3.7: EMPLOYEE Supertype and MANAGER Subtype Objects

v

95

Parent/subtype objects have an important characteristic, called inheritance. A
subtype acquires, or inherits all of the attributes of its parent, and therefore a MANAGER
inherits all of the attributes of an EMPLOYEE.

A semantic object may contain more than one subtype attribute. In this case, the
parent object contains each subtype as an attribute. If the subtypes exclude one another,
they are placed into a subtype group, and the group is assigned a subscript of the format
X.Y.Z. X is the minimum cardinality and is O or 1, depending on whether or not the
subtype group is required. Y and Z are counts of the number of attributes in the group
that are allowed to have a value. Y is the minimum number required, and Z is the
maximum number allowed. [Ref. 3]

Figure 3.8 shows three types of CLIENT as a subtype group. The subscript of the
group, 0.1.1, means that fhe subtype is not required, but if it exists, a miﬁimum of one

and a maximum of one (or exactly one) of the subtypes in the group must exist.

CLIENT

ID ClientNumber 4 4

ClientName 14

PhoneNumber ¢ 1

INDIVIDUAL

0.ST
PARTNERSHIP

0.8T
CORPORATION

0.ST

0.1.1

Figure 3.8: Exclusive Subtypes
96

Each of the subtypes has the subscript 0.ST, meaning that they all are optional.
This notation is robust enough to allow fur situations in’which three out of five or seven

out of ten of a list of subtypes must be required.

7. Archetype/V e;'sion Objects
' An archetype object is a semantic object, which produces other semantic objects
that represent versions, releases, or editions of the archetype. [Ref. 3] For example, in
Figure 3.9, the archetype object TEXTBOOK produces the version object EDITION.
According to this model, the attributes Title, Author, and Publisher belong to the object
TEXTBOOK, and the attributes EditionNumber, PuBlication Date, and NumberOfPages
belong to the EDITION of the TEXTBOOK.
The ID group in EDITION has two portions, TEXTBOOK and EditionNumbher;
this is the typical pattern for an ID of a version object. One part of the ID contains the

archetype object, and the second part is a simple attribute that identifies the version

within the archetype.
TEXTBOOK EDITION
IDISBN 14 10 EditionID -
Title 1 1 TEXTBOOK |
Author 1.1 EditionNumber 11 |
Publisher o.1 PublicationDate 1 ; ‘
EDITION IN ~ NumberOfPages .1

Figure 3.9: TEXTBOOK Archetype and EDITION Version Objects

97

D. TRANSFORMATION OF SEMANTIC OBJECTS INTO
RELATIONS

This section discusses the transformation of semantic object models into relational

database designs by describing the transformation of each semantic object type.

1. Transformation of Simple Objects

Recall that a simple object has no multi-valued attributes and no object attributes.
Consequently, a simple object can be represented by a single relation in the database.
Figure 3.10 (a) is an example of a simple object, EQUIPMENT, which can be rep-
resented by é single relation, as shown in Figure 3.10 (b). Each attribute of the object is
defined as an attribute of the relation, and the identifying attribute, EquipmentNumber,
becomes the primary key of the relation, denoted by underlining and making

EquipmentNumber boldface.

EQUIPMENT
ID EqUipmentNumber 11
Description ¢ 1
AcquisitionDate ¢ 1

PurchaseCost ¢4

Figure 3.10 (a): EQUIPMENT Simple Object

EQUIPMENT (EquipmentNumber, Description, AcquisitionDate, PurchaseCost)

Figure 3.10 (b): EQUIPMET Relation

98

In general, simple objects are transformed into relations by creating a relation for

each simple object.

2. Transformation of Composite Objects

‘A composite object is an object that has one or more multi-valued simple or group
attributes but no object attributes. Figure 3.11 (a) shows an example composite object,
HOTEL-BILL. To represent this object, one relation is created for the base object,
HOTEL-BILL, and an additional relation is created for the repeating group attribute,
" Lineltem. This relational design is shown in Figure 3.11 (b). In the key of LINEITEM,
InvoiceNumber is underlined becaﬁse it is part of the key, and it is italicized because it is

also a foreign key.

HOTEL-BILL
ID InvoiceNumber 4 1
ArrivalDate 1 4

CustomerName 1 1

Lineltem
o ServiceDate 1
ServiceDescription 1 4

Price 1.1

TotalDue 1.1

Figure 3.11 (a): HOTEL-BILL Composite Object

99

HOTEL-BILL (InvoiceNumber, ArrivalDate, CustomerName, TotalDue)

LINEITEM (InvoiceNumber, ServiceDate, ServiceDescription, Price)

Figure 3.11 (b): HOTEL-BILL and LINEITEM Relations

In general, composite objects are transformed by defining one relation for the
object itself and another relation for each multi-valued attribute. The key of the tables
constructed for the multi-valued attributes is the composite of the identifier of the object

plus the identifier of the group.

3. Transformation of Compound Objects

A compound object, OBJECT]1, can contain one or many instances of a second
object, OBJECT2, and OBJECT2 can contain one or many instances of the first object,
OBJECTI. This leads to three types of relationships between compound objects: one to

one (1:1), one to many (1:N), and many to many (M:N).

a. Representing 1:1 Compound Objects

Figure 3.12 (a) shows the object diagrams for one to one compound
objects MEMBER and LOCKER. To represent these objects with relations, a relation for
each object is defined, and a key of either relation is placed in the other relation. That is,
one can place the key of MEMBER in LOCKER or the key of LOCKER in MEMBER.
Figure 3.12 (b) shows the placement of the key of LOCKER in MEMBER. Note that
LockerNumber is underlined in LOCKER because it is the primary key of LOCKER and

is italicized in MEMBER because it is a foreign key in MEMBER.

100

MEMBER LOCKER
ID MemberNumber 1 1 ' ID LockerNumber 4 4
MemberName 1 1 LockerType 1.1
Address g.1 Combination g1
Phone ¢ Location ¢4
LOCKER g MEMBER g

Figure 3.12 (a): One-to-One Compound Objects

MEMBER (MemberNumber, MemberName, Address, Phone, LockerNumber)

LINEITEM (LockerNumber, LockerType, Combination, Location)

Figure 3.12 (b): MEMBER and LOCKER Relations

In general, for a 1:1 relationship between two compound objects, we define one relation
for each object, and we place the key of either relation as a foreign key in the other

relation

b. Representing 1:N Compound Objects

Figure'3.13 (a) shows an example of a 1:N object relationship between
EQUIPMENT and REPAIR. An item of EQUIPMENT can have many REPAIRs, but a
REPAIR can be related to only one item of EQUIPMENT. The objects in Figure 3.13 (a)
are represented by the relations in Figure 3.13 (b). Observe that the key of the parent (the
objéct on the one side of the relationship) is placed in the child (the object on the many

side of the relationship).
101

EQUIPMENT REPAIR
ID SerialNumber ¢4 - ID InvoiceNumber 1 4
Type 11 Date 1 4
Model ¢ 1 Description g 4
Location g1 : Cost ¢4
REPAIR EQUIPMENT
ON 1.1

Figure 3.13 (a): One-to-Many Compound Objects

EQUIPMENT (SerialNumber, Type, Model, Location)

REPAIR (InvoiceNumber, Date, Description, Cost, SerialNumber)

Figure 3.13 (b): EQUIPMENT and REPAIR Relations

One to many compound objects are transformed into relations by representing
each object with a relation and placing the key of the parent (the object on the one side of

the relationship) in the child (the object on the many side of the relationship).

c Representing M:N Compound Objects

Figure 3.14 (a) shows the M:N relationship between BOOK and
AUTHOR. Figure 3.14 (b) depicts the three relations that represent these objects: BOOK,
AUTHOR, and BOOK-AUTHOR-INTERSECTION. The attributes of BOOK-
AUTHOR- INTERSECTION relation are underlined and in italics, because they both are

local and foreign keys.

102

BOOK ~ AUTHOR
1D ISBN 44 ID SSN ¢ 4
Title 1.1 AuthorName 1 1
Publisher .1 Address g 1
CopyrightDate g1 - Phone ¢.1
AUTHOR BOOK
1N 1N

Figure 3.14 (a): BOOK and AUTHOR Compound Objects

BOOK (ISBN, Title, Publisher, CopyrightDate)
AUTHOR (SSN, AuthorName, Address, Phone)
BOOK-AUTHOR-INTERSECTION (ISBN, SSN)

Figure 3.14 (b): BOOK, AUTHOR, and BOOK-AUTHOR-INTERSECTION
Relations

In general, for two objects that have an M:N relationship, it is necessary to define
three relations; one for each of the objects and a third intersection relation. The
intersection relation represents the relationship of the two objects and consists of the keys

of both of its parents.

4. Transformation of Hybrid Objects
Hybrid objects can be transformed into relational designs using a combination of
the techniques for composite and compound objects. Figure 3.15 (a) shows SALES-

ORDER hybrid object, and related objects.

103

SALES-ORDER ITEM
ID SalesOrderNumber 1 1 o ltemNumber s 1
Date 11 ItemDescription 4 1
UnitPrice}oJ
CUSTOMER 1.1 SALES-ORDER oN
SALESPERSON i1
Lineltemn — CUSTOMER
o | ITEM 01 ID CustomerSSN 1 4
Quantity CustomerName 1.4
ExtendedPrice 1 1 _ Address o
O.N SALES-ORDER oN
Subtotal 4 1
Tax g1
SALESPERSON
Total 11
ID SalesPersonSSN 1 4
SalesPersonName 1 4
SalespersonCode g 1
SALES-ORDER oN

Figure 3.15 (a): SALES-ORDER Hybrid Object and ITEM, CUSTOMER, and

SALESPERSON Compound Objects

104

SALES-ORDER (SalesOrderNumber, Date, Subtotal, Tax, Total,
CustomerSSN, SalesPersonSSN)

CUSTOMER (CustomerSSN, CustomerName, Address)

SALESPERSON (SalesPersonSSN, SalesPersohName,
SalespersonCode) '

ITEM (ItemNumber, ItemDescription, UnitPrice)

LINEITEM (SalesOrderNumber, ItemNumber, Quantity, ExtendedPrice)

Figure 3.15 (b): SALES-ORDER, ITEM, CUSTOMER, SALESPERSON, and

LINEITEM Relations

To represent this object by means of relations, we establish one relation for the objeét
itself and another relation for each of the contained objects CUSTOMER and
SALESPERSON. Then, as with a composite object, it is needed to define a relation for
the multi-valued group, which is Lineltem. Since this group contains another object,
ITEM, a relation is created for ITEM. All of the one to many relationships are

represented by placing the key of the parent relation in the child relation, as shown in

Figure 3.15 (b).

105

5. Transformation of Association Objects

An association objéct is an object that associates two other objects. It is a special
case of compbund objects that most often occurs in assignment situations. Figure 3.16 (a)
shows a FLIGHT object that associates an AIRPLANE with a PILOT. To represent
association objects, we define a relationship for each of the three objects, and then we
represent the relationships among the objects using one of the strategies used with
compound objects. In Figure 3.16 (b), one relation is defined for AIRPLANE, one for
PILOT and one for FLIGHT. The relationships between FLIGHT and AIRPLANE and
between FLIGHT and PILOT are 1:N, so we place the key of the AIRPLANE and the
key of the PILOT in the FLIGHT.
| In general, when transforming association object structures into relations, one
‘relation is defined for each of the objects participating in the relationship. The key of
each of the parent relations appears as foreign key attributes in the relation representing
the association object. If the association object has no unique identifying attribute, the
combination of the attributes of the parent relations will be used to create a unique

identifier.

106

AIRPLANE | ~ PILOT
i TailNumber 14 ID SocialSecurityNumber 1 1
Manufacturer 14 PilotName 1 4
Typeo1 - Address o1
PassengerCapacity .1 PhoneNumber g 1
FreightCapacity ¢.1 ' FlightHours ¢.1
FLIGHT | FLIGHT
O.N 0.N
FLIGHT

1D FlightNumber 14
Date 11
OriginatingCity ¢.1

DestinationCity ¢4

AIRPLANE 1

PILOT

1.1

Figure 3.16 (a): FLIGHT Association Object and AIRPLANE and PILOT

Compound Objects

107

AIRPLANE (TailNumber, Manufacturer, Type, PassengerCapacity,
FreightCapacity)

PILOT (SocialSecurityNumber, PilotName, Address, PhoneNumber,
FlightHours)

FLIGHT (ElightNumber, Date, OriginatingCity, DestinétionCity,
TailNumber, SocialSecurityNumber)

Figure 3.16 (b): AIRPLANE, PILOT, and FLIGHT Relations

6. Transformation of Parent/Subtype Objects

To transform parent/subtype objects into relations, it is necessary to define a
relation for the parent object and‘ one for each of the subtype objects. The key of each of
these relations is the key of the parent object.

Figure 3.17 (a) shows a parent object, EMPLOYEE, and a subtype object,
MANAGER. Figure 3.17 (b) ShO\‘VS the relational representation of these two objects.

Each object is represented by a table, and the primary key of all of the tables is the same.

EMPLOYEE MANAGER

1D SocialSecurityNumber 1 4 EMPLOYEE

EmployeeName « 1 ManagerTitle 1 4

HireDate ¢ 1 ManagementLevel 1 4
Salary g 1 StartDate ¢
MANAGER Office ¢.1
. 0.5T

Figure 3.17 (a): EMPLOYEE Supertype and MANAGER Subtype Objects
108

EMPLOYEE (SocialSecurityNumber, EmployeeName, HireDate, Salary)

MANAGER (SocialSecurityNumber, ManagerTitle, ManagementLevel,
StartDate, Office)

Figure 3.17 (b): EMPLOYEE and MANAGER Relations

7. Transformation of Archetype/Version Objects

Archetype/version objects are compound objects that model various iterations, re-
leases, or instances of a basic object. The objects in Figure 3.18 (a) model textboos for
which there are various editions. The relatiohal representation of TEXTBOOK and
EDITION is shown in Figure 3.18 (b). One relation is created for TEXTBOOK, and
another is created for EDITION. The primary key of EDITION is the combination of the

key of TEXTBOOK and the local key (EditionNumber) of EDITION.

TEXTBOOK EDITION
1D ISBN 1 1 1D EditioniD -
Title 1 1 | | TEXTBOOK 3
Author 1.1 EditionNumber 14 g
Publisher o1 PublicationDate 1 4 '
EDITION N NumberOfPages o.1

Figure 3.18 (a): TEXTBOOK Archetype and EDITION Version Objects

109

TEXTBOOK (ISBN, Title, Author, Publisher)

EDITION (ISBN, EditionNumber, PublicationDate, NumberOfPages)

Figure 3.18 (b): TEXTBOOK and EDITION Relations

110

IV. JAVA AND JAVA DATABASE CONNECTIVITY (JDBC)

The user will interact with the back-end dataBase of the POET database system by
using the application program which is developed in Java programming language. The
application program written in Java will communicate with the database by using Java
Database Connectivity (JDBC) application program interface. This chapter will describe
Java and JDBC application programming interface (API) and how they can be used to
provide this type of interaction. It will summarize the amibuteg of Java programming
language and outline the JDBC API, classes, methods, and how they can be used by

applications to directly access a RDBMS.

A. JAVA

Java is a powerful and fully object-oriented programming language that makes it
possible to program for the Internet by creating applets, programs that can be embedded
in a web page. Instead of web pages with text and st;tic graphics, Java applets can .make
use of audio, animation, interactivity and video imaging.

But Java is more than a programming language for writing applets. It is being
used extensively for writing standalone applications as well. It is becoming so popular
that many people believe it will become the standard language for both general-purpose
and Internet programming.

Java is actually a platform consisting of three components: (1) the Java pro-
gramming language, (2) the Java 1ibrary of classes and interfaces, and (3) the Java Virtual
Machine.

111

Java programs go through five phases in order to be executed. These are edit,
compile, load, bytecode verify, and execute. Figure 4.1 describes the specifics of a Java

development environment.

1. Editing

The Java source code is created and saved on disk with the file extension .Jjava.

2. Compiling

The Java compiler creates the bytecode for the program and stores it on disk.

3. Loading

The class loader loads the bytecode into memory. The Java interpreter acts as the

class loader for Java applications
4, Bytecode verification

Bytecode verifier confirms that all bytecode is valid and does not violate any of

Java’s security restrictions

5. Execution

Interpreter reads the bytecode and translates it into a machine language that the

computer can understand.

112

Editor &

Compiler |« p—————

Class Loader |¢——»p

Bytecode Verifier |¢——p Primary Memory

I l Primary Memory

Interpreter

Figure 4.1: Typical Java Environment [Ref: 5]

B. ADVANTAGES OF JAVA

Java builds on the strengths of C++. It has taken the best features of C++ and
discarded the more problematic and error-prone parts. To this lean core it has added
garbage collection (automatic memory management), multithreading (the capacity for
one program to do more than one thing at a time), and security capabilities. The result is
that Java is simple, elegant, powerful, and easy to use. [Ref. 10]

The following section will explain twelve features and advantages of Java in

detail.

113

1. Java Is Portable

One of the biggest advantages Java offers is that it is portable. Therefore, an
application written in Java is platform independent. Any computer with a Java-based
browser can run the applications or applets written in the Java programming language.
Developers don’t need to modify applets or stand-alone applications code when changing
platforms.

The Ja;va Virtual Machine is what gives Java its cross-platform capabilities.
Rather than being compiled into a machine language, which is different for each operat-
ing system and computer afchitecture, Java code is compiled into bytecodes.

With other programming languages, the compiler creates platform specific
machine language code. The problem is that other computers with different machine
instruction sets cannot understand that language. Java code, on the other hand, is
compiled into bytecodes rather than a machine language. These bytecodes go to the Java
Virtual Machine, which executes them directly or translates them into the language that is
understood by the machine running it. [Ref. 10]

In summary, this means that with the JDBC API extending Java, é programmer
writing Java code can access all of tﬁe major relational databases on any platform that

supports the Java Virtual Machine.

2. Java Is Object-Oriented
The Java programming language was designed from the start as an object-oriented
programming language. . Simply stated, object-oriented design is a technique for

programming that focuses on the objects and on the interfaces to that object. Object-

114

oriented languages make program design focus on what to deai with rather than on how
to do something and enable designers to break up large projects into easily manageable
components. Another big benefit is that these components can then be reused. [Ref. 10]

Object-oriented languages use the paradigm of classes. In simplest terms, a class
includes both data and the functions to operate on that data. One can create an instance of
a class, also called an object, which will have all the data members and functionality of
its class. Because of this, it is possible to think of a class as being like a template, with
each object being a specific instance of a particular type of class.

The class paradigm allows one to encapsulate data so that specific data values or
function implementations cannot be seen by those using the class. Encapsulation makes it
possible to make changes in code without breaking other programs, which use that code.
If, for example, the implementation of a function is changed, the change is invisible to
another programmer who might invoke that function, and it doesn't affect his/her
program. |

Java includes inheritance, or the ability to derive new classes from existing
classes. The derived class, also called a subclass, inherits all the data and functions of the
existing class, referred to as the parent class. A subclass can add new data members to
those inherited from the parent class. As far as methods are concerned, the subclass can

reuse the inherited methods, as is, change them, and/or add its own new methods.

3. Java Makes It Easy to Write Correct Code
In addition to being portable and object-oriented, Java facilitates writing correct

code. Programmers spend less time writing Java code and a lot less time debugging it.

115

The following is a list of some of Java's features that make it easier to write correct code:

[Ref. 10]

a. Garbage collection

With other programming languages a significant burden on the
programmer is the allocation and de-allocation of memory. Memory leaks in a program
can cause an application to crash. In Java, if an object is no longer being used, it is
automatically removed from memory by the Java garbage collector. Programmers don't
have to keep track of what has been allocated and deallocated, but, more importantly, it

stops memory leaks. [Ref. 10]

b. No Pointers

The No Pointers feature removes a significant source of errors in computer
programming. Java utilizes “object references” instead of memory pointers. This
eliminates problems concerning pointer arithmetic and “out of bounds” memory access

€ITOrS.

c. Strong Typing

Java enforces strong type checking, therefore many errors are caught at
compile time. Dynamic binding is possible and often very useful, but static binding with
strict type checking is used when possible. This significantly cuts down on run-time

€1rors.

116

d. Simplicity

Java keeps it simple by having one way to do something instead of haviﬁg
several alternatives, as in some languages. The syntax for Java is a cleaned-up version of
the syntax for C++. There is nc; need for header files, pointer arithmetic (or even a pointer
syntax), structures, unions, operator overloading, virtual base classes, and so on. Java also
stays lean by not including multiple inheritance, which eliminates the errors and
ambiguity that arise when you create a subclass that inherits from two or more classes. To
replace the capabilities multiple inheritance provides, Java lets you add functionality to a
class through the use of interfaces. Such capabilities make Java easier to learn and use

correctly.

4. Java Includes a Library of Classes and Interfaces

The Jéva platform includes an extensive class library so that programmers can use
already-existing classes as is, create subclasses to modify existing classes, or implement
interfaces to augment the cé.pabilities of classes. [Ref. 10]

Both classes and interfaces contain data members (fields) and functions
(methods), but there are major differences. In a class, fields may be either variable or
constant, and methods are fully implemented. In an interface, fields must be constants,
and methods are just prototypes with no implementations. To use an interface, a
programmer deﬁnés a class, declares that it implements the interface, and then
implements all of the methods in that interface as part of the class. In.other words,
interfaces provide most of the advantages of multiple inheritance without its

disadvantages.

117

S. Java Is Extensible
A big plus for Java is the fact that it can be extended. It was purposely written to
be lean with the emphasis on doing what it does very well; instead of trying to do
everything from the beginning, it was written so that exte;nding it is easy. Programmers
can modify existing classes or write their own new classes, or they can _v;'rite a whole new
package. The JDBC API, the java.sql pkackage, is one example of a foundation upon

which extensions are being built. [Ref. 10]

6. Java Is Secure

It is important that a programmer not be able to write subversive code for applica-
tions or applets. This is especially true with the Internet being used more and more
extensively for services such as electronic commerce and electronic distribution of
software and multimedia content.

The Java platform builds in security in four ways:

a The way memory is allocated and laid out
In Java, an object's location in memory is not determined until run time, as
;o
opposed to C and C++, where the compiler makes memory layout decisions. As a result,
a programmer cannot look at a class definition and figure out how it might be laid out in

memory. Also, since Java has no pointers, a programmer cannot forge pointers to

memory. [Ref. 10]

118

b. The way incoming code is checked

The Java Virtual Machine does not trust any incoming code and subjects it
to what is called bytecode verification. The bytecode vveriﬁer, part of the Virtual Machine,
checks that (1) the format of incoming code is correét, (2) incoming code doesn't forge -
pointers, (3) it doesn't violate access restrictions, and (4) it accesées objects as what they

are€.

c The way classes are loaded

The Java bytecode loader, another part of the Virtual Machine, checks
whether classes loaded during program execution are local or from across a network.
Imported classes cannot be substituted for built-in classes, and built-in classes cannot

accidentally reference classes brought in over a network.

d The way access is restricted for untrusted code
The Java security manager allows users to restrict untrusted Java applets

so that they cannot access the local network, local files, and other resources.

7. Java Is Multithreaded

Multithreading is simply the ability of a program to do more than one thing at a
time. The benefits of multithreading are better interactive responsiveness and real-time
behavior [Ref. 11]. For“ example, an application could be faxing a document at the same

time it is printing another document.

119

Or a program could process new inventory figures while it maintains a feed of current
prices. Threads in Java also have the capacity to take advantage of multiprocessor

systems.

8. Java Performs Well

Java's many advantages, such as having built-in security and being interbreted as
well as compiled, do have a cost attached to them. However, various optimizations have
been built in, and the bytecode interpreter can run fast because it does not have to do any
checking. For situations that require unusually high performance, bytecodes can .be
translated on the fly, generating the final machine code for the particular CPU on which
the application is running, at run time. Java offers good performance with the advantages

of high-level languages but without the disadvantages of C and C++. [Ref. 10]

9. Java scales Well

The Java platform is designed to scale well, from portable consumer electronic
devices (PDAs) to powerful desktop aﬁd server machines. The Java Virtual Machine
takes a small footprint, and Java bytecode is optimized to be small and compact. As a
result, Java accommodétcs the need for low storage and for low bandwidth transmission
over the niternet. This makes Java ideal for low-cost network computers whose sole

purpose is to access the Internet. [Ref. 10]

120

10. Java Is Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net via URLs
with the same ease as when accessing a local file system. The netw;)rking capabilities of
Java is both strong and easy to use. Java even makes Common Gateway Interface (CGI)
scripting easier, and an elegant mechanism called serviets, makes server-side processing
in Java extremely efficient. The Remote Method Invocation (RMI) mechanism enables

communication between distributed objects. [Ref. 11]

11. JavaIs Robust

Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic (run-
time) checking, and eliminating situations that are error-prone. The Java compiler detects

many problems that, in other languages, would only show up at run time. [Ref. 11]

12. JavaIs Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It is
designed to adapt to an evolving environment. Class libraries can freely add new methods
and instance variables without any effect on their clients. This is an important feature in

those situations where code needs to be added to a running program. [Ref. 11]

121

C. JDBC

Java Database Connectivity (JDBC) is an Application Program Interface (API)
developed by Sun Microsystems, that allows a Java program to communicate with a
database server using Structured Query Language (SQL) commands. It provides Java
programs the ability to communicate with relational database management systems
similar to Microsoft's Open Database Connectivity (ODBC) API [Ref. 4].

Java, being robust, secure, easy to use, easy to understand, and automatically
downloadable on a network, is an excellent language basis for database applications.
What is needed is a way for Java applications to talk to a variety of different databases.
JDBC is the mechanism for doing this. Using JDBGC, it is easy to send SQL statements to
virtually any relational database. [Ref. 10]

There are four main steps in accessing a database using JDBC:

) Load the driver

° Establish a connection with the database
o Send SQL statements
) Process the results

The following section describes each step in detail:

1. Loading the driver
Loading the driver is accomplished by asking for an instance of the driver

explicitly, as in the following line:

Class.forName (“sun. jdbc.odbc.JdbcOdbcDriver”) ;

122

There is no need to create an instance of a driver and register it with the Driver

Manager class because calling Class.forName will do that automatically.

2, 'Establishing a connection with the database
A connection is established by using the appropriate driver to connect to the
DBMS. The corresponding sub-protocol identifier is appénded after the keyword jdbc:.

The following code explains how this is accomplished:

String user = “yuksel”;

String password = “poet”;

String url = “jdbc:odbc:POETDB”;

Connection con = DriverManager.getConnection

(url, user, password);

‘3. Sending SQL statements

In order to execute a SQL statement on a relational database using JDBC, a
statement object must be created. The SQL statement to be executed is supplied as an
argument to the proper method of the' statement object. The type of method differs
according to the query being executed. The following code shows how to create a

statement object and execute a simple UPDATE query:

123

String query = "UPDATE Personnel " +
"SET PhoneNumber = ‘(831)372-4408" " +
"WHERE LastName = ‘Can’ ";

Statement stmt = con.createStatement();

stmt.executeUpdate (query) ;

4. Processing the Results

When a SELECT statement is executed, the results of the query will be returned
in a ResultSet .object defined in the JDBC package. The tuples in the ResultSet can be
retrieved using the next() method defined in the ResultSet class. The following code
shows how to create and execute a SELECT statement, retrieve the results and display

the tuples in the ResultSet object to the screen.

String query = "SELECT LastName FROM " +
"Personnel " +
"WHERE Department = ‘Operations’";
ResultSet rs = stmt.executeQuery(query) ;
while (rs.next()) {
String name = rs.getString("LastName");

System.out.println (name);

124

D. JDBC CLASSES AND INTERFACES

1. DriverManager Class

The DriverManager class keeps track of available drivers and handles the creation
of connections between databases and appropriate drivers. By invoking the
getConnection() method of this class, a valid connection with the database can be
established. |

The DriverManager class contains methods that are used to manage a set of JDBC
drivers. Each JDBC driver must provide a clags that implements the Driver interface,
which is used by the DriverManager. As part of initialization, a program can explicitly
tell the DriverManager what driver to load, by using the Class.forName(<driver name>)
call. If the user does not usé this call and attempts to create a connection object, the
DriverManager class will check with each registered driver to see if it can connect to the
given URL. If more than one driver can connect to the URL, the DriverManager will
invoke the first compatible driver encountered. [Ref. 4]

Connection objects are generated from the class DriverManager. When
getConnection() is called, the DriverManager will attempt to locate a suitable driver from
those loaded at initialization and those loaded explicitly using the same class loader as the
current applet"or application. The URL provided to the getConnection() function names
the driver to be used to establish the connection. The connection protocol supported by

Sun is:

jdbc:<subprotocol>://<host>: <portnumber>/<datasource>

125

For example: String url = "jdbc:dbaw://131.120.1.91:8899/companyDB" uses jdbc
| protocol with a dbaw (dbAnywhere) sub protocol to connect to port 8899, on host
131.120.1.91, and then presents the data source name companyDB to the port to locate
the specific database. The DriverManager uses this URL to find a registered Driver who
can connect to the source.

All DriverManagér methods are declared static, which means that they operate on

the class as a whole, not on particular instances.

2. Connection Interface

A connection object represents a connection of your application to a database and
is used to execute the next phase of database access, creating a statement object, which
will allow the user to execute a SQL command. It can also be used to commit a change to
the database, as well as rollback.

An application can have one or more connections with a single database or it can
have simultaneous connections with multiple databases. The established connection

passes SQL statements to the connected database.

3. Statement Interface

There are three statement objects of which the inheritance hierarchy is: Statement,
PreparedStatement and CallableStatement. To obtain a statement object the user can call
Connection method createStatement(). The statement object can be used to execute a

SQL statement. This type of statement object is useful for SQL statements that will only

126

be generated once. There are three types of execute methods that can be used with

statement objects:

a. Execute()
boolean execute(String arg) throws SQLException;

This method executes arg, which is a SQL statement that may return one or more
result sets, one or more update counts, or any combination of these. This method is
useful if the designer doesn’t know whether the statement will be an update or a query
operation. A call to this meﬂqod executes a SQL statement and returns true if the result is

a ResultSet and returns false if the result is an update count.

b. ExecuteQuery()

ResultSet executeQuery(String arg) throws SQLException;

This method executes arg, which is a SQL statement that returns a single result set

representing the results of the provided query.

c ExecuteUpdate()

int executeUpdate(String arg) throws SQLException;

This method executes a SQL INSERT, UPDATE, or DELETE statement that
doesn’t have parameter placeholders. It may also be used to execute SQL statements

which return no value, such as CREATE TABLE or DROP TABLE.

127

4. PreparedStatement Interface

If the same SQL statement is executed many times, it is more efficient to use a
PreparedStatement. A SQL statément with or without IN parameters can be pre-
compiled and stored in a PreparedStatement object. A PreparedStatement object can be
more efficient than a Statement object, because it has been pre-compiled and stored by
the datab‘ase. [Ref. 5]

To bix;d input parameters, setXXX methods are used where XXX can be any
primitive type or a String. The setXXX methods for setting IN parameter values must
specify types that are compatible with the defined SQL type of the input parameter. For
instance, if the IN parameter has SQL type Integer then setInt() should be used. Columns
can be referenced by column index, which begin with one, for greater efficiency, or by
column name for convenience. The following example demonstrates how a
PreparedStatement can be effectively used to populate a table with 100 items, each with a

unique partID.

PreparedStatement pstmt = con.prepareStatement (
"INSERT INTO Parts (partType, partlD, gquantity) " +

"VALUES (2?2, 2?2, 2) ");

pstmt. setString (1, "Tire");

pstmt.setInt (3, 4);

128

for(partID = 1; partID <= 100; partID++) {
pstmt.setShort (2, partlD);

pstmt. executeUpdate (); .

5. CallableStatement Interface
‘CallableStatement extends PreparedStatement and is used to execute stored
procedures. Stored procedures are blocks of SQL code that are stored in the database and
executed on the server. This increases efficiency for SQL Statements that are‘executed
often, by reducing the overhead of regenerating an access plan. The DBMS generates and
stores the access plan once, and other applications can use the procedure. [Ref. 4]
JDBC provides a stored procedure SQL escape that allows stored procedures to be
called in a standard way for all RDBMS's. This escape syntax has one form that includes
a result parameter and one that does not. If used, the result parameter must be registered

as an OUT parameter. The other parameters may be used for input, output or both.

6. ResultSet Interface

A ResultSet object provides access to a table of data generated by executing a
SQL statement. Table rows are retrieved in sequence. Within a row, column values can
be accessed in any order. The object maintains a cursor that points to the current row of
data, which can be traversed via the next() method. The method next() moves the cursor
to the next row, and returns true if the row exists. ResultSet class provides methods that

allow access to the results of a query.

129

SQL Data Type JAVA data type Recommended getXXX
CHAR String ‘ getString()
VARCHAR String getString()
LONGVARCHAR String getAsciiStream()
getUnicodeStream()
NUMERIC java.math.BigDecimal getBigDecimal()
DECIMAL java.math.BigDecimal getBigDecimal()
BIT boolean getBoolean()
TINYINT byte getByte()
SMALLINT short getShort()
INTEGER ‘int getint()
BIGINT | long getLong()
REAL float - | getFloat()
DOUBLE double getDouble()
FLOAT double getDouble()
BINARY byte[] - getBytes()
VARBINARY byte[] getBytes()
LONGVARBINARY byte[] getBinaryStream()
DATE java.sql.Date getDate()
TIME java.sql.Time getTime()
TIMESTAMP java.sql. Timestamp getTimestamp()

Table 4.1: SQL and Java Data Types and Recommended Conversion Methods

130

A ResultSet is automatically closed by the statement that generated it when that
Statement is closed, re-executed, of is used to retrieve the next result from a sequence of
multiple results. Various getXXX() methods can be invoked to retrieve different column
values. The SQL data types, the corresponding Java data types, and the recommended

method calls for conversion are shown in Table 4.1.

7. ResultSetMetaData Interface

The interface ResultSetMetaData provides information about the types and
properties of the columns ’in a ResultSet object. An instance of ResultSetMetaData
actually contains the information, and ResultSetMetaData methods give access to that
information.

The following code fragment, where stmt is a Statement object, illustrates creating

a ResultSetMetaData object:

ResultSet rs = stmt.executeQuery ("SELECT * FROM

Parts"); ResultSetMetaData rsmd = rs.getMetaData():;

The ResultSetMetaData getMetaData() method returns a ResultSetMetaData
object which can provide detailed information about the ResultSet, to include column

information. This information is useful in presenting the ResultSet in an interface.

131

8. DatabaseMetaData Interface

The interface DatabaseMetaData provides information about a data;base as a
whole. One creates an instance of DatabaseMetaData and then uses that instance to call
methods that retrieve information about a database.

A DatabaseMetaData object is created with the Connection method getMetaData,

as in the following code, where con is a Connection object:
DatabaseMetaData dbmd = con.getMetaData();

The variable dbmd contains a DatabaseMetaData object that can be used to get
information about the database to which con is connected. This is done by calling a

DatabaseMetaData method on dbmd as in the following code fragment:

int length = dbmd.getMaxTableNameLength() ;
Many of the DatabaseMetaData methods return lists of information in Resultset

objects. Data is retrieved from these Resultset objects using the normal ResultSet

getXXX methods, such as getString() and getInt().

132

E. JDBC AND CLIENT/SERVER MODELS

The JDBC API supports database access, utilizing both two-tier aqd three-tier
models. In the two-tier model, a Java applet or application communicates directly with
the database. This requires a JDBC driver that can communicate with the particular
DBMS being accessed. The user’s SQL statements are delivered to the database and the
results of the statement are returned to the user. The database may be located on a remote
niachine to which the user is connected via a ‘network. This is refelfred to as a
Client/Server Configuration, with the user’s machine as the client, and th¢ machine
hosting the database as the server. The network in question can be an Intranet or an
Internet.

One issue that makes the client/server model attractive is that an organization can
store its business logic, a set of rules that enforce or implement an organization’s policies,
on a central server. As with all corporate policies, the rules may change. Also, sine the
business logic can be fairly complex and lengthy, enforcing it in the client will make the
client code very large. So, by encapsulating all business logic on the server, organizations
can store and change the rules at one location, which reduces administrative costs.

Figure 4.2 describes the two-tier model using JDBC.

133

Java Application Client Machine

JDBC

DBMS-proprietary protocol

Database server

Figure 4.2: JDBC Two-Tier Model [Ref: 10]

In the three-tier model, commands are sent to a middle tier of services, which then
sends SQL statements to the database. The database processes the SQL statements and
sends the results back to the middle tier, which then passes them to the user. This makes
the three-tier model very attractive, because the middle tier makes it possible to maintain
control over access and the type of updates that can be made to the data. Another
advantage is that when there is a middle tier, the user can employ an easy-to-use higher-
level API, which is translated by the middle tier into appropﬁate low-level calls. The
client can operate as a multi-threaded application and let the intermediate server handle
the synchronization. In a three-tief architecture the middle layer can hide information
about the database server from the applet. Only the middle tier knows how to find and

manipulate the data. The secure intermediate server can provide the means to shield the

134

client from direct access to DBMS by providing a username and password because the
identification and authentication is accomplished at the server level. Figure 4.3 describes

the three-tier model using JDBC.

Java Applet or
HTML browser Client Machine (GUI)

A

HTTP, RMI, CORBA, or other calls

Application Server
(Java)

JDBC

Server machine
(business logic)

DBMS-proprietary protocol

Database server

Figure 4.3: JDBC Three-Tier Model [Ref: 10]

F. JDBC DRIVERS

Database drivers provide the implementation of the abstract classes provided by
the JDBC API. The driver resides on the Java client machine and is used to establish a
connection to a relational database. The JDBC driver can be a JDBC/ODBC bridge, a
middleware protocol library, or a native database driver. The driver provides the interface
that accepts JDBC input from the Java application, and understands the vendor specific

relational database language and network protocols. It accepts the JDBC input from the
' 135

client application, translates it to a vendor specific protocol, and uses a vendor supporting
networking protocol to transmit the request across the network. [Ref: 4]

Figure 4.4 depicts the JDBC driver implementation.

Java Application
JDBC
API
JDBC Driver Manager
JDBC Driver
API
JDBC-Net| |JDBC-ODBC| |Drver| |Driver
Driver Bridge Driver A B JDBC
ODBC and implementation
DB Dlrivers alternatives
JDBC Proprietary database access protocols
Middleware .
Protocol

Figure 4.4: JDBC Driver Implementation [Ref: 5]

There are four categories of JDBC drivers as designated by JavaSoft. [Ref. 12]

The following are the various classes of JDBC drivers available:

1. JDBC-ODBC Bridge plus ODBC Driver
The JDBC/ODBC Bridge was designed to take advantage of the large number of
ODBC enabled drivers. The bridge was intended to provide aninitial solution until

database vendors could produce their own vendor specific JDBC drivers. Basically the

136

bridge converts the JDBC calls into ODBC calls. The ODBC driver manager, will invoke
the database vendor specific ODBC driver, and pass the calls to database driver for
further processing.

The client side application or applet uées the JDBC API to load the
"sun.jdEc.odbc.JdchdbcDriver". This driver translates the Java SQL statements into
ODBC format, then invokes the ODBC Driver Manager (odbc32.d1l) which refers to the
odbc.ini file tilat contains a data source name and vendor speciﬁc'driver it is associated
with. The vendor specific driyer, or DLL, then translates the ODBC call into a vendor
specific call, and sends the request across the network to the database manager. The
prbcess is reversed when a response is sent from the database manager back to the client

application. [Ref. 4]

2. Native-API partly-Java Driver

This type of driver converts JDBC calls on the client API to a vendor specific
query language and communication protocol for use on a DBMS [Ref. 5]. The drivers are
usually written in C, accept the Java calls, then map them to vendor specific calls. The
call then gets processed by the vendor specific driver, translating it into the DBMS's
specific query language and communication protocol. This is a partly Java driver, that
requires a vendor supplied library to translate JDBC functions into the DBMS's specific

query language, such as Oracle's OCI [Ref. 4].

137

3. JDBC-Net pure Java Driver

The JDBC-Net pure Java Driver trahslates JDBC calls into a database
independent network protocol, and passes this request to a middle tier server, which then
translates the request into a DBMS specific protocol. These drivers are attractive for
Internet/Intranet based multi-user data intensive applications (requiring access to multiple
databases). The JDBC-Net pure Java Driver contains a number of vendor specific drivers,
or can use the ODBC/JDBC driver to provide database access. The bridge can connect
the client to local databases, which must reside on the same machine aé the middleware
server, such as MS Access, or to remote databases such as Oracle, MS SQL Server,
SyBase, InterBase, or IBM DB/2, stored on another machine. As can be expected, this
driver is slower than other JDBC drivers. However, this is the most flexible of all driver

implementations. [Ref. 4]

4. Native-protocol pure Java Driver

Native-protocol pure Java drivers convert the JDBC calls directly into the
network protocol used by the specific DBMS. This allows a direct call from the client
machine to the DBMS servér and is a practical solution for Internet access. These drivers
can be written entirely in Java, and can provide just in time delivery of applets. The
Native-protocol pure Java drivers provide for the best database access because of the
direct translation, unfortunately they can only be supplied by the vendor and can only
in;terface with the vendor specific database. For example, Sybase jConnect is a Native-
protocol pure Java JDBC driver written entirely in Java and communicates directly to
Sybase data sources such as Sybase SQL Anywhere. Since many of these protocols are

138

proprietary in nature, the driver can only interface with vendor specific databases. The
most significant advantage of this driver is its speed, where the biggest disadvantage is

the loss of flexibility [Ref. 5].

5. Driver Selection

The selection of which type of driver to employ depends upon a number of
factors: number of databases requiring access, performance requirements, financial, and
system administration requirements. In the POET Database Application Program, I am
using the JDBC-ODBC Bridge plus ODBC Driver, which translates the Java SQL
statements into ODBC foxlmat and invokes the ODBC Driver Manager.

A JDBC/ODBC bridge is effective for an application server. A middleware server
provides the database access, so all ODBC drivers reside on that machine. The client
makes a call to the application server, which establishes the database connection -and

returns a string or data stream to the client.

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

V. REQUIREMENTS ANALYSIS FOR POET DATABASE

This chapter provides information about both the database development process

and the requirements analysis for the POET database system.

A. DATABASE DEVELOPMENT PROCESS

The database development process described here consists of four phases:
requirements collection and analysis, conceptual database design, logical database

design, and physical database design.

1. Requirements Collection and Analysis

The first step in the database development process is requirements collection and
analysis. Requirements collection and analysis phase constitute the most important step
of the entire database design process, because most subsequent design decisions: are |
" based on this step. The major task is collecting information content and processing
requirements from all the identified and potential users of the database. Analysis of the
requirements ensures the consistency of users’ objectives as well as the consistency of
their views of the organization's information flow.

During this step, the database designers interview prospective database users to
understand and document their data requirements. These requirements should be
specified in as detailed and 'coxrllialete a form as possible. In parallel with specifying the
data requirements, it is useful to specify the known functional requirements of the

application. These consist of the user-defined operations that will be applied to the

141

database, and they include both retrievals and updates. [Ref. 1]

The purpose of this phase is to determine, as specifically as possible, what the
system must do. There are two tasks in this phase:

e Specify the data requirements.

e Determine the functional requirements.

a. Data Requirements

During the data requirements phase, the major goals are to build a data
model that documents the "things" that are to be represented in the database, to determine
the characteristics of thése "things" that need to be stored and to determine the
relationships among them. The user's data model describes the objects that must be stored
in the database, along with their structure and the relationships that they have with one
another. The output of the data requirements phase is a statement of requirements. This
statement can take a variety of forms: a verbal description, an entity-relationship diagram,
semantic object diagram, one or more prototypes, or any combination of the above.

The "things" that are represented in the database are referred to as either
entities or semantic objects, depending on the modeling technique that the designer
follows. In this thesis, the semantic data model will be used as the high-level modeling

technique. Semantic Data Model was described in Chapter III.

142

b. Data Dictionary

" A data dictionary is a catalog of requirements and specifications for a new
information system. It provides definitions of all the data items in the database. During
the definition phase, the analysts try to capture and store the data in the system, and find
the inputs and outputs that the system will generate. These are represented with pictorial
models such as data flow diagrams, relation diagrams, entities, data stores, etc. The data
dictionary expands this pictorial model and as a system analysis tool, captures the
detailed requirements for every input, output and data store. The suggested approach fpr
building the data dictionary should be in terms of "what” data are handled and not in

terms of "how" data are presented or formatted.

c Process Requirements

All systems process data to pfoduce information and maintain stored data.
These requirements should be logically modeled. In order to implement processes as
programs, a i)rocess model is needed. A process model is a picture of the flow of ciata
through the system énd the processing that must be performed on that data. These
processes interact or interface with one another. These interactions take the form of data
' flows between processes and is the reason that they are sometimes called data flow

models.

143

2. Conceptual Database Design

Once all the requirements have been collected and analyzed, the next step is to
create a conceptual schema for the databaée, using a high-level conceptual data model,
such as Entity-Relationship Model or Semantic Data Model. This step is called
conceptual database design. The conceptual schema is a concise description of the data
requirements of the user and includes detailed descriptions of the data types,
relationships, and constraints; these are expressed using the concepts provided by the
high-level data model. Because these concepts do not include any implementation details,
they are usually easier to understand and can be used to communicate with non-technical
users. The high-level conceptual schema can also be used as a reference to ensure that all
of the requirements are met and that the requirements do not include any conflicts. This
approach enables the database designers to concentrate on specifying the properties of the
data, without being concerned with storage details. [Ref. 1]

The main purpose of conceptual design is to represent information in a form that
is comprehensible to the user, independent of system specifics, but implementable on
several systems. The resﬁlt of conceptual desigﬁ is called the conceptual schema, because
it is a representation of the user's “world” view and independent of any DBMS software
or hardware considerations.

In order to build an effective database and related applications, a data model that
captures the users’ perceptions closely is of great importance. The data model should
identify the entities and their attributes to be stored in the database and should define

their structure and the relationships among them.

144

After the éonceptual schema has been designed, the basic data model operations
can be used to spécify high-level transactions corresponding to the user-defined
operations identified during functional analysis. This also serves to confirm that the
conceptual schema meets all the identified functional requirements..Modiﬁcations to the
conceptual schema can be introduced if some functional requirements can not be

specified in the initial schema.

3. Logical Database Design

The next step in the database design is the actual implementation of the database,
using a commercial DBMS, such as Oracle, Sybase, Informix, DB2, or Access. The
major goal of the logical database design phase is to use the results of the conceptual
design phase and the processing ;equirements as input to create a DBMS-processible
schema as output. |

Most currently available commercial DBMSs use an implementation data model,
such as Relational, Network, Hierarchical, or Object-Oriented, so the conceptual schema
is transformed from the high level data model into the implementation data model. This
step is called logical database design, and its result is a database schema in the
implementation data model of the DBMS. [Ref. 1]

After the semantic objects are developed in the conceptual database design phase,
these objects are transformed into an ilhplementation data model during this phasé. In fhis
thesis, the relational model, which is the most common data model used in commercial
DBMSs, will be used as the implementation data model. Therefore, the semantic objects

will be transformed into relations as described in Chapter III. After the relations are

145

created, they are then normalized. This is a very important part of the design, because we
need to be sure that the relations will not suffer from any update anomalies. The process

of normalization was discussed in Chapter II.

4. Physical Database Design

Finally, the last step is the physical database design phase, during which'the
internal storage structures and file organizaﬁions for the database are specified. Physical
database design is the process of developing an efficient and implementable physical
database structure from a given logical database structure thaf has been shown to satisfy
user information requirements.

In parallel with these activities, application programs are designed and
implemented as database transactions corresponding to the high-level transaction
specifications. An application is the collection of menus, forms, reports, and programs
that provide a means of update, display, and control the objects of the data\ model.
During the application design, the specific structure of forms, reports, menus, and query
facilities are defined.

The application program for the POET database system is developed by using
Java, an object-oriented programming language, and JDBC, an Application Program
Interface (API) that allows a Java progfam to communicate with a database server using
Structured Query Language (SQL) commands. Chapter IV describes Java programming

language and JDBC Application Program Interface.

146

B. REQUIREMENTS ANALYSIS FOR POET DATABASE

Data requirements for the POET database system are captured in the form of
semantic objects and associated data dictionary. This application consists of seven
semantic objects, which are ship, department, division, personnel, operation, equipment,

and fraining, and the semantic object diagrams of these objects are shown in Appendix A.

1. | Ship Object

The ship object represents the frigate on which the POET database system will be
installed. The ship is uniquely identified by its international call sign. Ship object has
International Call Sign, Ship Name, Hull Number, Ship Class, Keel Laying Date, Launch
Date, and Commission Date simple attributes that provide information about the ship’s
identity and history. It also has Length, Width, Mast Height, Keel Depth, and
Displacement simple attributes that describe the ship’s physical dimensions.

In order to keep track of the overhaul information, multivalued group attribute
Overhauls containing simple attributes Overhaul Number, Start Date, End Date, Shipyard
Name, and Overhaul Duration is placed within the ship object. The ship belongs to a
higher command, and the attribute Immediate-Superior-In-Command keeps this data.
Another attribute of the ship is the name of its Homepoﬁ.

The group attribute Planned Manning stores the number of the personnel‘ that
should be stationed on the ship and it has the attributes Planned Officers, Planned Petty
Officers, and Planned Enlisted. Present Manning group attribufe, on the other hand, stores
the actual number of the personnel currently stationed onboard and it has the attributes

Present Officers, Present Petty Officers, and Present Enlisted.
147

2, Department Object

The Turkish Navy frigates are organized into six departments; Operations,
Engineering, Weapons, Electronics, Navigation, and Supply. The Department object
represents the departments within the ship and stores the department' specific information
needed by the command. A department is uniquely identiﬁea by its name and it is
éontrolled by the Department Head, who is an officer. Department object has the simple
attribute Department Name, and group attributes Planned Manning and Present Manning.

Every department contains zero or more DIVISIONS and one or more PERSONNEL.

3. Division Object

The departments on the Turkish Navy frigates are organized into divisions. The
Division object represents the divisions within the ship and stores the division specific
information needed by the command. Similar to a department, a division is uniquely
identified by its name and it is controlled by the Division Officer. Division object has the
simple attribute Division Name, and group aftributes Planned Manning and Present
Manning. Every division contains one or more PERSONNEL and it belongs to one and

only one DEPARTMENT.

4, Personnel Object
The Personnel object represents the crewmembers who consist of officers, petty
officers, and enlisted people stationed on the ship. Every person has a unique military

identification number.

148

The personnel onboard the ship work for a department and a division under that
department; therefore, the Personnel object contains semantic object attributes
DEPARTMENT and DIVISION.

Personnel object has the following simple '.attributes that provide personal
information: Military Identification Number, First Name, Last Name, Rank, Rating, Date
of Birth, Place of Birth, Father’s Name, Mother’s Néme, Active Duty Service Date, Date
of Rank, Sex, Mantal Status, Spouse Name, Number of Children, Street, City, State, Zip
Code, and Phone Number.

The command is also interested in other personal data, like the person's training, .
previous assignments, and foreign languages. The multivalued grc;up attribute Courses-
To-Take specifies the military courses that the person should take according to his/her
career. Courses-Taken, which is another multivalued group attribute, describes the
courses taken by the person and it includes TRAINING object, Start Date, End Date, and
Grade attributes. The person may have been assigned to zero or more previous duties
before the ship, so Previous Assignments group attribut@ with the simple attributes
Assignment Number, Station, Position, and Duration, stores this information. Language
Name and Degree represent the foreign languages that the person knows.

| Another useful data about the personnel is the Specialty and background
Education. As soon as the person embarks, he/she is assigned a Cabin Number and
Cabin Phone Number. Also, the Current Assignment and Start Date of the current duty

are stored within the Personnel object.

149

S. Training Object

The training of crewmembers is of great importance for their career and it is a
continual activity. There are required military coursés that crewmembers have to attend
in order to get prométed and to be assigned to some duties. The ship's command needs to
know what courses the personnel have attended, the start date, the end date, and the
degree or grade that the person obtained. It is also necessary to keep track of the courses
that the person must take in order to perform his/her task successfully.

Each course is uniquely identified by the course name. The Training object has
the simple attributes Course Name, Training Center, Course Duration, and Course

Description, which provide the needed information by the command about the courses.

6. Operation Object

The data about the operations is one of the most frequently searched information,
because most of the reports and messages are related with the ship’s operations. The
exercises in which the ship has participated constitute the main part of the operations
-information. The command needs to know the Exercise Name, Exercise Type, Start Date,
End Date, Duration of the Exercise, and. Place of the Exercise, which are the simple
attributes of the Operations object.

It is also required to store data about the specific events executed during the
exercises. Therefore, the multivalued group attribute Events serves this purpose, while
containing Event Name, Event Type, Event Duration, and}Number of Events attributes.

Port Visits group attribute keeps the data about the ports that have been visited by the

150

ship during an exercise. It includes Port Name, Visit Staﬁ Date, Visit End Date, and Visit
Duration simple attributes.

The command also keeps track of the Underway Hours, separating them as
Daytime and Nighttime Underway Hours. Another property of an operation is its cost.
So, Cost of Exercise group attribute provide t)he Fuel Cost, Ammunition Cost, and
Amortization Costs.

The frigates generally host helicopters during the operations. Helicopter group
attribute, which contains Helo Tail Number, Flying Duration, Number of Dippings, and

Dipping Duration, keeps the helicopter information needed by the command.

7. Equipment Object

The ship contains a lot of equipment that have critical role in the functionality of
the ship. The ship’s immediate-superior-in-command wants to know the status of the
ship’s equipment, such as which of them are out-of-order, which are operatiné efficiently,
which one has frequent failures. In order to serve this purpose, Equipment object is
defined as part of the POET database. Every equipmg:nt has a Serial Number, a Stock
Number, an Equipment Name, an Equipment Type, a Manufacturer, a Model, a
Production Date, and Runtime that showé the total number of operating hours since the
equipment’s installation. Serial Number is an attribute that can uniquely identify each

equipment.

151

Since the failures constitute a substantial fraction of the necessary information
about equipment, a multivalued group attribute, Failures, is included within the
Equipment object. Failure Number, Failure Description, Diagnosis, Failure Date, and

Failure Duration are the simple attributes contained within Failures group attribute.

C. DATA DICTIONARY FOR POET DATABASE

The data. diction&y presents a tabular specification of the POET data model and it
consists of two parts: Semantic Object Specifications and Domain Specifications. The
semantic objects, their attributes, minimum, and maximum cardinalities are defined in the
Semantic Object Specifications table. This table is an alternative presentation of the
information provided by the semantic object diagrams, and it is shown in Appendix B:

The Domain Specifications table describes the domains of the objects and
attributes. This table, however, supplies information about domains that is not available
from the semantic object diagrams. The semantic and physical description of each

domain is provided in this table, which is shown in Appendix C.

152

VI. LOGICAL DATABASE DESIGN FOR POET DATABASE

This chapter discusses the logical database design for the POET database system.
In logical database design, the semantic object model developed in the previous chapter is
transformed into a relational schema, in preparation for the database implementation
using a specific DBMS. The POET database will be implemented in Microsoft Access
97, which is an easy-to-use, affordable, and true relational database rrianagement éystem.

The seven semantic objects describing the‘personnel, operations, equipment, and
training subjects onboard Turkish Navy frigates are transformed into relational tables.
The semantic objects are transformed into relations by using the rules described in
Chapter III. As a result of the conversion process, fifteen relational tables are obtained.
The semantic objects and the corresponding relations that are defined are shown in Figure
6.1. The relatibnships amoﬂg the tables are represented using foreign keys and are als;)
shown explicitly on the relational schema. In this diagram, which is shown in Appendix
D, primary keys are uﬁderlined and made boldface while foreign keys are italicized in
order to distinguish them from other atfributes. The relations shown in Appendix D, their

attributes, and relationships among them are discussed in the following sections.

A. RELATIONAL TABLES OF POET DATABASE

The transformation of seven semantic objects has yielded the following fifteen
relations: SHIP, OVERHAULS, PERSONNEL, COURSES-TO-TAKE, COURSES-
TAKEN, ASSIGNMENTS, FOREIGN-LANGUAGES, DEPARTMENT, DIVISION,

TRAINING, OPERATION, EVENTS, PORTVISITS, EQUIPMENT, and FAILURES.

153

SEMANTIC OBJECT RELATIONAL TABLE

SHIP : > - SHIP

» OVERHAULS

PERSONNEL > PERSONNEL

p| COURSE-TO-TAKE

—p{ COURSES-TAKEN

»| ASSIGNMENTS

» FOREIGN-LANG.

OPERATION —» OPERATION

> EVENTS

5| PORT-VISITS

154

SEMANTIC OBJECT RELATIONAL TABLE

EQUIPMENT - » EQUIPMENT

» FAILURES

DEPARTMENT DEPARTMENT
DIVISION > DIVISION
TRAINING » TRAINING

o

Figure 6.1: Semantic Object — Relational Table Traﬁsformation

1. Ship Relation

The SHIP relation contains information about the frigate on which the POET
database system will be installed and it is derived from the SHIP object. Each attribute of
the semantic object is defined as an attribute of the relation, and the identifying attribute,

International Call Sign, becomes the primary key of the relation.

155

The SHIP table consists of the following attributes: International Call Sign, Ship
Name, Hull Number, Ship Class, Keel Laying Date, Launch Date, Commission Date,
Length, Width, Mast Height, Keel Depth, Displacement,' Homeport, Immediate Superior
In Command, Planned Officers, Planned Petty Officers, Planned Enlisted, Present

Officers, Present Petty Officers, and Present Enlisted.

2. Overhauls Relation

The OVERHAULS relation provides the necessary data needed by the command
about the overhauls of the ship. This relation is derived from the SHIP object. Since
Overhauls is a multivalued group attribute of the SHIP object, a new relation is defined in
order to translate the semantic data model correctly into relational model. The primary
key of the OVERHAULS table is International Call Sign and Overhaul Number, which is
the composite of the identifier of the SHIP object plus the identifier of the Overhauls
group attribute.

The other attributes of this relation are Start Date, End Date, Shipyard Name, and
Overbaul Duration. There is a one-to-many relationship between the SHIP table and the

OVERHAULS table, because the ship may have zero or more overhauls.

3. Department Relation

This relation contains information about the departments of the ship. It is derived
from the DEPARTMENT object. Each attribute of the semantic object is defined as an
attribute of the relation. The primary key of the DEPARTMENT table is Department

Name, and the other attributes are Planned Officers, Planned Petty Officers, Planned

156

Enlisted, Present Officers, Present Petty Officers, and Present Enlisted.

Every department contains zero or more divisions, so the DEPARTMENT table
has a one-to-many relationship with the DIVISION table. It has also one-to-many
relationship with the PERSONNEL table, because each department has one or more

crewmembers working for it.

4. Division Relation

The DIVISION relation contains information about the divisions, the
organizational unit under the departments. It is derived from thé semantic object,
DIVISION. Each attribute of the semantic object is defined as an attribute of the relation,
and the identifying attribute, Division Name, becomes the primary key of the relation. It
also contains the foreign key, Department Name, which establishes the 1:M relationship
between DEPARTMENT and DIVISION tables.

Planned Officers, Planned Petty Officers, Planned Enlisted, Present Officers,
Present Petty Officers, and Present Enlisted are the other attributes contained in this
relation. Similar to the DEPARTMENT table, it has one-to-many relationship with the

PERSONNEL table.

S. Personnel Relation

The PERSONNEL relation contains information about the ship’s crewmembers,
including the officers, petty officers, and the enlisted. It is. derived from the
PERSONNEL semantic object. The primary key of this relation is the Military
Identification Number.

157

The PERSONNEL table consists of the following attributes that provide personal
information: Military Identification Number, First Name, Last Name, Department Name,
Division Name, Rank, Rating, Date of Birth, Place of Birth, Father’s Name, Mother’s
Name, Active Duty Service Date, Date of Rank, Gender, Marital Status, Spouse Name,
Number of Children, Street, City, State, Zip Code, Phone Number, Specialty, Education,
Current Assignment, Start Date, Cabin Number, and Cabin Phone Number.

This relation has many-to-one relationships with DEPARTMENT andbDIVISION
relations, because a crewmember wo;ks for a department and a division under that
department. For each multivalued group attribute of the PERSONNEL object, a new table
is defined. Therefore, COURSES-TO-TAKE, CORSES-TAKEN, ASSIGNMENTS, and
FOREIGN-LANGUAGES tables are created. Since all of these tables represent specific
personal information, the PERSONNEL table has one-to-many relationships with
COURSES-TO-TAKE, CORSES-TAKEN, ASSIGNMENTS, and | FOREIGN-

LANGUAGES relations.

6. Courses-To-Take Relation

This relation provides information about the military courses that the personnel
should take. It is derived from the PERSONNEL object, because Courses-To-Take is a
multivalued gfoup attribute of the PERSONNEL semantic object. The primary key of the
COURSES-TO-TAKE table is Military Identification Number and Course Name, which
- is the composite of the identifier of the PERSONNEL object plus the identifier of the

TRAINING object. This relation does not include any attributes, but the primary key.

158

COURSES-TO-TAKE table has many-to-one relationships with PERSONNEL
and TRAINING tables. It can also be viewed as an association table between
PERSONNEL and TRAINING tables, that converts a many-to-many relationship to two

one-to-many relationships. |

7. Courses-Taken Relation
COURSES-TAKEN relation contains information about the military courses that
the personnel have previously téken. Like COURSES-TO-TAKE relation, it is derived
from the PERSONNEL object, because Courses-Taken is a multivalued group attribute of
the PERSONNEL semantic object. The primary key of the CORSES-TAKEN table i§
Military Identification Number and Course Name, which is the composite of the
identifier of the PERSONNEL object plus the identifier of the TRAINING object. Unlike
the COURSES-TO-TAKE table, this relation also includes three more attributes, which
are Start Date, End Date, and Grade.
- COURSES-TAKEN table has many-to-one relationships with PERSONNEL and
TRAINING tables. It can also be viewed as an association table between PERSONNEL
and TRAINING tables, that converts a many-to-many relationship to two one-to-many

relationships.

8. Assignments Relation
This relation provides information about the previous assignments of the
personnel. ASSIGMENTS relation is derived from the PERSONNEL object, because

Assignments is a multivalued group attribute of the PERSONNEL semantic object and

159

for each multivalued attribute, a new relation must be defined. The primary key of the
ASSIGMENTS table is Military Identification Number and Assignment Number that is
composed of the identifier of the PERSONNEL object plus the identifier of the
Assignments group. -

The other attributes of the relation are Station, Position, and Duration.

ASSIGMENTS table has a many-to-one relationship with PERSONNEL table.

9. Foreign-Languages Relation

FOREIGN-LANGUAGES relation contains information about which foreign
languages are known by which crewmembers. It is derived from the PERSONNEL
object, because Foreign-Languages is a multivalued group attribute of the PERSONNEL
semantic object. The identifier of the PERSONNEL object énd the identifier of the
Foreign-Languages group constitute the primary key of the FOREIGN-LANGUAGES
table. Hence, the primary key is Military Identification Number plus Language name. It
also includes the attribute Degree, which shows the status of the person’s language level.

FOREIGN-LANGUAGES table has a many-to-one relationship. with

PERSONNEL table.

10. Training Relation
This relation stores information about the military courses that are related with the
personnel’s training. It is derived from the TRAINING semantic object. The primary key

of TRAINING relation is Course Name.

160

Other attributes of this relation are Training Center, Course Duration, and Course
Description. TRAINING table has one-to-many relationships with COURSES-TO-TAKE
and COURSES-TAKEN tables, ‘because both of these two tables include the Course

Name, the primary key of TRAINING table, as foreign key.

11. Operation Relation |

The 6PERATION relation contains inf:onnation about the operations and
exercises that the ship has participated in. This relation is derived from the OPERATION
semantic object. Exercise Name is the primary key of OPERATION relation.

Exercise Type, Start Date, End Date, Duration, Place, Daytime Underway Hours,
Nighttime Underway Hours, Helo Tail Number, Flying Duration, Number of Dippings,
Dipping Duration, Fuel Cost, Amﬁmﬁtion Cost, Amortization, and Cost of Exercise are
the other attributes that are included in the OPERATION table.

OPERATION relation has one-to-many relationships with PORT-VISITS and
EVENTS relations, because during an operation, zero or more ports may be visited and

zero or more events may be executed.

12. Events Relation

This relation provides information about the events that are performed during
exercises and operations. EVENTS relation is derived from the OPERATION object,
becausé Events is a multivalued group attribute of the OPERATION semantic object and
for each multivalued attribute, a new relation must be defined. The primary key of the

EVENTS table is Exercise Name and Event Name that is composed of the identifier of

161

the OPERATION object plus the identifier of the Events group.
The other attributes of the relation are Event Type, Number of Events, and Event

Duration. EVENTS table has a many-to-one relationship with the OPERATION table.

13. Port-Visits Relation

The PORT-VISITS relation contains information about the port visits that are
carried out during exercises and operations. Similar to EVENTS relation, this relation is
also derived from the OPERATION object, because Port-Visits is a multivalued group
attribute of the OPERATION object. The identifier of the OPERATION object and the
identifier of the Port-Visits group constitute the primary key of the PORT-VISITS table.
Therefore, the primary key is Exercise Name and Port Name.

The PORT-VISITS relation also includes Visit Start Date, Visit End Date, and
Visit Duration attributes. PORT-VISITS table has a many-to-one relationship with the

OPERATION table.

14. Equipment Relation

The EQUIPMENT relation provides information about the equipment onboard the
ship and their status. It is derived from the EQUIPMENT semantic object. The primary
key of the EQUIPMENT relation 'is Serial Number, a unique identiﬁér for every item of
equipment. |

Serial Number, Stock Number, Equipment Namg, Equipment Type,
Manufacturer, Model, Production Date, Location and Runtime are the other attributes that

are included in the EQUIPMENT table.

162

EQUIPMENT table has a one-to-many relationship with FAILURES table,

because equipment may have zero or more failures.

15. Failures Relation

This relation stores information about the equipment failures. It is derived from
the EQIPMENT object, because Failures is a multivalued group attribute of the
OPERATION semantic object. The primary key of the FAILURES table is the
combination of Serial Number, the identifier of the EQUIPMENT object and Failure
Number, the identifier of the Failures group.

The other attribu';es of the FAILURES table are ‘Failure Description, Failure

Diagnosis, Failure Date, and Failure Duration. FAILURES table has a many-to-one

relationship with the EQUIPMENT table.

B. POET DATABASE RELATIONSHIPS

The relationships among the fifteen relational tables described in the previous

section are shown in the following figure.

163

£

rosoft Access - {Relationships]

HullNumber
:: {shipClass

PresentOfficers

HvistStartDate
visitEndDate
VisitDuration

+ NumberOfEvents
EventDuration

 Coutseslia g
" irﬁarym
CourseName
StartDate
EndDate

RS

=~y |

Assignmentikamb |
Station
Position

Duration

CourseDuration

- {CourseDescriptior ‘

Figure 6.2: POET Database Relationship Diagram Expressed in Relational

Database Referential Integrity Constraints

164

VII. IMPLEMENTATION OF POET DATABASE AND

DEVELOPMENT OF APPLICATION PROGRAM

This chapter will discuss the implementation issues for both POET database and

the application program.

A. POET DATABASE IMPLEMENTATION

In POET database implementation, the relations and their attributes developed
during the logical database design are fransformed into tables and data fields,
respectively. As stated earlier, Microsoft Access database management system is used as
the DBMS of choice for POET database implementation. Therefore, the relational tables
are created in Microsoft Access by choosing Tables/New/Design View from the database
dialog box.

The struéture of the new empty table, which matches th;e corresponding relation
developed during the design phase, is then specified. For each attribute of the relation,
field name, data type, and optional description are entered. After the field name and data
type are described, by using ;he field properties section of the table design grid, more
specific properties can be defined; such as Field Size, Format, Input Mask, Caption,
Default Value, Validation Rule; Validation Text, Required, Allow Zero Length, Indexed,
and Lookup. Upon definition of all attributes of the relation, the primary key is specified

and the new table is saved by giving it a name; i.e., Personnel.

165

Brief descriptions of the field type choices are displayed on the table design grid

to assist the user in creating the new table. The data types supported by Microsoft Access

are shown in Figure 7.1.

Data Type Type of Data Stored Storage Size
Text Alphanumeric characters 0-255 characters
Memo Alphanumeric characters 0-64,000 characters
Number | Numeric Values 1,2, 4, or 8 bytes

| Date/Time Date and Time 8 bytes
Currency Monetary data 8 bytes
Auto Number Automatic number increments 4 bytes
Yes/No Logical values: True/False 1bit(Oorl)
OLE Object Pictures, graphs, sound, video | Upto 1GB
Hyperlink Link to an Internet source 0-6,144 characters
Lookup Wizard Displays data from another table Generally 4 bytes

Figure 7.1: Data Types Available in Microsoft Access

Once the definition of a table is completed, the user can enter values in the table
directly in datasheet format or through a form. In this implementation, the user will be
using data entry forms provided by the application program, instead of MS Access forms.

The following figure shows the table definition for Operation relation.

166

A\ Microsoft Access - [Operation : Table]}

0 e £ You st o i b

EAT)
ST Fisld Name™ L Data Type i
g! ExerciseName Text
| - |ExerciseType Text . B .
| StartDate T A L
oEndDate L L TEE e e - RS-
. {DurationNumber o S . . e e
| i|Place . _Text
.| DayTimeUnderwayHours | _Number
|| Night TimeUnderwayHours o Number
] HeloTaillNumber L Text "
.. -{FlyingDuration Number B
321 NumberOf Dippings ~ Number ;
- | DippingDuration Number .
] FuelCost Number
| AmmunitionCost ... Number
.| Amortization _Number
.} CostOfExercise . e Number

Figure7.2: Table Design View for Operation Relation

POET database also includes thirteen predefined queries that will support the
reports and the static queries of the application program. These queries are created with
the Access method Query by Example (QBE). In this ‘method, the user first selects the
tables that will be used in the query. When the usef enters instructions into the QBE
window, Access translates them into SQL statements and retrieves the desired data by
filtering the records, selecting only those meeting the query criteria. Figure 7.3 shows the

QBE window for the Previous Assignments Query.

167

@, Microsoft Access - [As: gnmentQuery : Select Query]
. 7y o

el [MitaryiD FistName LastName Station Posiion
Assignments Petsonne! Personnel Assignments Assignments

™ M] g} o]

Figure7.3: QBE Window for Previous Assignments Query

B. APPLICATION PROGRAM IMPLEMENTATION

The purpose of developing an application program is to allow the ship personnel
to access the information in a windows-based environment without the need of a database
management system environment, and thus to eliminate the need for learning a database'
management system. The architecture of the POET application program is shown -in

Figure 7.4.

168

Application Program

-

Control Logic

End User
User &= Interface

Data
Access
(JDBC)

JDBC-ODBC
Bridge

Stored
Database

Figure 7.4: POET Application Program Architecture

The application program is developed by using Java programming language and
Java Database Connectivity (JDBC), an Application Program Interface (API) that allows
a Java program to communicate with a database server using Structured Query Language
(SQL) commands. JDBC provides the object-oriented application program the ability to
communicate with Microsoft Access relational database management system via JDBC-
ODBC Bridge. Java and JDBC were described in Chapter IV. The complete Java code for
the POET application program is included in Appendix F.

169

The application program consists of a graphical user interface (GUI) and a control
logic that allows the users to access the data stored in MS Access relational DBMS. It
provides data input forms, data update forms, tables, reports, and queries that are similar
to the ones supported by MS Access. The following section will discuss each of these

components in detail.

1. Input Forms
Data Input Forms are used to add new records into a database table in a quick,
easy, and accurate manner. POET application program includes the following input

forms. Figure 7.5 shows one of these forms, Operation Input Form.

e Personnel Input Form

e Operation Input Form

e Equipment Input Form

e Training Input Form

e Overhaul Input Form

e Courses-To-Take Input Form

e Courses-Taken Input Form

® Previous Assignments Input Form
¢ Foreign Languages Input Form
e Event Input Form

e Port Visit Input Form

e Failure Input Form

170

[&5 OPERATION FORM
E:eercxseName :
:Exermse‘!ype : a
:Stanoate i
E,Enduate) 5
E:Durahon(nays)

;maee (seasocean)

.:Daymveumemayms
i 5,?:‘

Eﬁe!o Yail Number
3Hela Fiying Time (Houts) ’

;'Number of. Dmpmgs

Figure 7.5: Operation Input Form

2. Update Forms

Data Update Forms are the user’s primary interface for modifying and deleting

records in a table. POET application provides the same number of update forms with the

same names as input forms. On the one hand, updates forms are similar to input forms,

because they have the same labels, tekt fields, and layout. On the other hand, their

purpose and use are different. Update forms are used to modify or delete records from

tables, whereas input forms are used to enter new records to tables. Also, the user has to

specify an identifying attribute of the record to be updated in a preceding dialog box.

Figure 7.6 shows the “Select Exercise” dialog box for the Operation Update Form.

171

Figure 7.6: Select Exercise Dialog Box for Operation Update Form

When the user specifies the name of the exercise to be updated in the Exercise Name text

field, the update form with “Delete Record”, “Update Record”, and “Cancel” options

appear on the screen. Figure 7.7 shows the Operation Update Form.

E4 OPERATION FORM
rcotiet’
xrcise Type:

‘StartBate's U

Duraﬁa_n (aays) LR

Prace (SeaiOcean:
‘Daytime Underway Hours : *
Nighttime Underway Hours :

Helo Tail Number -
mlo Fhying Time {H_ours) H
‘Number Of Dippings

Total Dipping Time (Hours} :

- 106/02/1984

+106/30/1984

428

; Mediterranean Sea, Aegean Sea, Marmara Sea

482

a9

4150

25

o 65

4210000.0

11800008

£ 1110000.0

+1400000.0

Figure 7.7: Operation Update Form

172

3. Tables

Tables in the POET application program display all the records in a database table
as a series of rows and columns, similar to the MS Access datesheet format. When the
user clicks on the appropriate button, the corresponding table appears with its records.

The following figure shows the Training Table.

[;:'mAmmG TABLE
O meerelrSpamg = '

ey

COurseDescrlptson

CeurseName . ! j TralningCe T ; :

Communications KARAMURSEL TRAINING CENTER’ i AR ,ommumcaﬁonsCourse prepares the nemy
ciC 1KARAMURSEL TRAINING CENTER | 8‘ CIC Course gives the necessary background..
W’é’,’;a}ns - KARAMURSELTRNNING CENTERM i o BWeapons Ceerseeducetes’ the Weeens Cm,‘..
Operatxons‘Electromcs o DERTNCE TRA!N!NG CENTER . 320peratlonsElec1r0nwsCoursetrams The Ofﬁ
:Weapons Electronics o DERINCETRA!NING CENTER I 3 Wepaons Electromcs Coursetralns the Offc |
‘Helitopter"Controller o YILDIZLARTRNNH\G CENTER I N 4 HencopterControﬂer(:ourse prepares the CL.,
Corﬁmaﬁd&néI Oﬁcer - YILDIZLAR TRAINING CENTERM ~ v ommandmg Omcer Course educates the C |
Executive omcer o WYlLDIZLAR TRAINlr\G CENTER - 4 Executlve Omcer Course educatesthe Execut

Chief Engineer DERINCE TRAINING CENTER 6 Chief Engrneer Course educates the ChiefE...

Figure 7.8: Training Table

173

4. Reports

Reports are the main outputs that the POET database system generates for
viewing the information in desired format. Reports can combine multiple tables to
present the final output, which is created from different sets of data. 'l;his is accomplished
by incorporating a query into the report design. POET application program provides the
following reports, all of which contain data from two or more tables and all of which

employ a static query.

e Overhaul Report

e Division Report

e Training Repdrt

e Previous Assignment Report
e Foreign Language Report

e Event Report

e Port Visit Report

e Failure Report

The reports present the information in tabular format, as in Figure 7.9 for Port

Visit Report.

174

[E2PORT VISIT REPORY _ -
_EXERCISENAME ~ PORTNAME

 DYNAMICMIX$3

Figure 7.9: Port Visit Report

5. Queries

Queries are used to extract information from the database. A query can select and
define a group of records that fulfill a certain condition. The POET application program
uses both dynamic and static queries to retrieve the information. In dynamic query case,

the user can write the actual SQL statements that will return the desired records.

175

However, in static query case, the SQL code is already defined in the application
program. The only thing that the user has to do is to specify the required selection
condition, such as the last name in a query that shows the previous assignments of the
person.

POET application pfograrn provides the following seven static queries, as well as

the dynamic query.

e Courses-To-Take Query

e Courses-Taken Query

e Previous Assignments Query
J Foreigﬁ Languages Query

e Port Visits Query

e Events Query

e Failures Query

Similar to update forms, before executing the query, the user has to specify a
selection condition in a dialog box. Upon entering the identifying criteria, the result of the
query is presented in a datasheet format, which consists of a number of rows and
columns. As an example, the dialog box and the result of the Exercise/Event Query are

shown in Figure 7.10 and Figure 7.11, respectively.

176

1 5EA WORM-94

[Select Exercise

Figure 7.10: Select Exercise Dialog Box

| K EXERCISE/EVENT QUERY

Inter-Celf Spacing ==

" ExerciseName | EvenName

SEAWORMSS ' SURFEX310 © . IANTISURFACE WARFARE

“EventDuration

SEAWORM-84 :SURFEX-316 - ANTISURFACE WARFARE

SEAWORM-84 ‘CASEX C-5 | ANTISUBMARINE WARFARE
SEAWORM-84 JEWX-320 { ANTIAIR WARFARE

| NAVCOMEX-408 - COMMUNICATIONS

SEAWORM-94 NAVCOMEX-805 : COMMUNICATIONS

Y

Figure 7.11: Exercise/Event Query

177

THIS PAGE INTENTIONALLY LEFT BLANK

178

VIII. SYSTEMS IMPLEMENTATION AND SUPPORT

The quality of an information system depeﬁds on its design, development, testing,
and implementation. One aspect of systems quality is its reliability. A system is reliable if
it does not produce dangerous or costly failures when used ih a reasonable manner. An
additional aspect of quality assurance is avoiding the need for enhancement on the one
hand developing software that is maintainable on the other. The need for maintenance is
high and impedés new.developments. Maintenance and quality assurance needs are also
better met when a structured development and documentation tool is used.

Quality assurance also includes testing to ensure that the system performs
properly and meets its requirements. The purpose of testing is to find errors, not to prove
correctness.

Implementation includes all those activities that take place to convert from the old
system to the new. The new system may be totally new, replacing an existing manual or
automated system, or it may be a major modification to an existing system. In either case,
proper implementation is essential to provide a reliable system to meet organization
requirements.

This chapter discusses the five aspects of systems implementation and support;

including maintenance, quality assurance, reliability, training, and conversion.

179

A. SYSTEMS MAINTENANCE

When systems are installed, they generally are used for long periods of tifne. The
average life of a system is four to six years, with the oldest applications often in use for
over 10 yéar's. However, this period of use brings with it the need to continually maintain
the system. Because of the uée a system receives after it is fully implemented, analysts
must take precautions to ensure that the need for»maintenance is controlled through
design and testing and the ability to perform it is provided through proper design
practices.

Many private, university, and government studies have been conducted to learn

about maintenance requirements for information systems. The studies have generally

concluded that: [Ref. 13]

e From 60 to 90 percent of the overall cost of software during the life of a
system is spent on maintenance.
e Often maintenance is not done very efficiently. In documented cases, the
cost of maintenance when measured on a per instruction basis is more than
50 times the cost of developing it in the first place.
- & Software demand is growing at a faster rate than supply. Many pro-
grammers are spending more time on systems main‘tenance than on new
development. Studies have documented that in some sites, two-thirds of the

programmers are spending their time on the maintenance of software.

180

Information systems and the organizations they serve are in a constant state of

flux. Therefore, the maintenance of systems also involves adaptations of eaﬂier versions
of the software. Approximately one-fifth of all maintenance is performed to
accommodate changes in réports, files, and data.

The greatest amount of maintenance work is for user enhancement, improved
documentation, or recording systems components for greater efficiency. Sixty percent of
all maintenance is for this purpose. Yet, many of the tasks in this category can be avoided
if systems’ engineering is carried out properly. The design practices followed for

software dramatically affect the maintainability of a system: good design practices

produce a product that can be maintained.
The keys to reducing the need for maintenance, while making it possible to do

essential tasks more efficiently, are: [Ref. 13]

e More accurately deﬁning user requirements during systems development
* Assembling better systems documentation
. Using more effective methods for designing processing logic and
communicating it to project team members
- @ Making better use of existing tools and techniques

® Managing the systems engineering process effectively

181

B. QUALITY ASSURANCE

Quality assurance is the review of software products and related documentation
for completeness, correctness, reliability and maintainability. And it, of course, includes
assurance that the system meets the specifications anci requirements for its intended use
and performance.

There are four levels of quality assurance: testing, verification, validation, and

certification.

1. Testing

Systems testing is an expensive, but critical, process that may take as much as 50
percent of the budget for program development. The common view of testing is that it is
performed to prove that there are no errors in a program. However, as indicated earlier,
this is virtually impossible since analysts cannot prove that software is free and clear of
errors.

Therefore, the most useful and practical approach is with the understanding that
testing is the process of executing a program with the éxplicit intention of finding errors,
that is, making the program fail. The tester, who may be an analyst, programmer, or
specialist trained in software testing, is actpally trying to make the program fail. A

successful test, then, is one that finds an error.

2. Verification
Like testing, verification is also intended to find errors. It is performed by

executing a program in a simulated environment. When commercial systems are

182

developed with the explicit intention of distributing them to dealers for sale or marketing
them through offices, they first go through verification, which is sometimes, called alpha

testing.

3. Validation

Validaﬁon refers to the process of using software in a live environment in order to
find errors. The feedback from the validation phase generally produces changes in the
software to deal with errors and failures that are uncovered. Then a set of user sites is
selected that put the system into use on a live basis. These beta test sites use the system in
day-to-day activities; they process live transactions, and produce normal‘ system output.
The system is live in every sense of the word, except that the users are aware they are
using a system that can fail. Validation may continue for several months. During the

course of validating the system, failure may occur and the software will be changed.

4. Certification
Software certification is an endorsement of the correctness of the program. This is
an issue that is rising in importance for information systems applications. To certify the
software, the agency appoints a team of specialists who carefully examine the
" documentation for the system to determine what the vendor claims the system does and
how it is accomplished. Then they test the software against those claims. If no serious
discrepancies or failures are encountered, they will certify that the software does what the
documentation claims. They do not, however, certify that the software is the right

package for a certain organization. [Ref. 13]

183

5. Testing Strategies

It is already indicated that the philosophy behind testing is to find errors. Test
cases are devised with this purpose in mind. A test case is a set of data that the system
will process as normal input. However, the data is created with the intent of determining
whether the systen'; will process it correctly. Each test case is designed with the intent of
finding errors in the way the system will process it.

There are two general strategies for testing software. This section examines both;

the strategies of code testing and specification testing.

a. Code Testing

The code-testing strategy examines the logic obf the program. To follow
this testing method, the analyst develops test cases that result in executing every
instruction in the program or module. That is, every path through the program is tested. A
pathisa speciﬁd combination of conditions. [Ref. 13]

On the surface, code testing seems to be an ideal method for testing
software. The rationaie that all software errors can be uncovered by checking every path
in a program is faulty. First of all, in even moderately large programs of the size used in
typical business situations, it is virtually impossible to do exhaustive testing of this
nature. Financial and time limitations alone will usually preclude executing every path
through a program since there may be several thousand.

However, even if code testing can he performed in its entirety, it does not
guarantee against software failures. This testing strategy does not indicate whether the

code meets its specifications nor does it determine whether all aspects are even

184

implemented. Code testing also does not check the range of data that the program will
accept even though when software failures occur in actual use, it is frequently because

users submitted data outside of expected ranges.

b. Specification Testing

To perform specification testing, the analyst examines the specifications
stating what the program should do and how it should perform under various conditions.
Then test cases are developed for each condition or combination of conditions and
submitted for processing. By examining the results, the analyst can determine whether the
program performs according to its specified requifements. [Ref. 13]

Thj‘s strategy treats the program like a black box. That is, the analyst does
not look into the program to study the code and is not concerned about whether every
instruction or path tﬁrough the program is tested.

Neither testing strategy is ideal. However, specification testing is a better

strategy since it focuses on the way software is expected to be used.

C. TRAINING

Even well designed and te'chnicall.y elegant systems succeed or fail because of the
way they are operated and used. Therefore, the quality of training the personnel involved |
with the system in various capacities helps or hinders, and may even prevent, the
successful implementation of an information system. Those who will be associated with
or affected by the system must know in aetail what their roles will be, how they may use

the system, and what the system will or will not do.

185

User training must ensure that they are able to handle all possible operations, both
routine and extraordinary. Training involves familiarizafion with run procedures, that is,
working through the sequence of activities needed to use a new system on an ongoing
basis. The operators should also be instructed in the common rﬁalfunctions that can
occur, how to recognize them, and what steps to take when they arise.

User .training must also instruct individuals in troubleshooting the system,
determining whether a problem arising is caused by the equipment or software or by
something they have done in using the system. Including a troubleshooting guide in
systems documentation will provide a useful reference long after the training period is
over. There is nothing more ffustrating than working with a system, encountering a
problem, and not being able to determine whether it is your fault or a problem with the
system itself. The place to prevent this frustration is during training.

As the above discussion demonstrates, there are two aspects to user training:
familiarization with the processing system itself (that is, the equipment used for data
entry and processing) and training in using the application (that is, the software that
accepts the data, processes it, and produces the results). Weaknesses in either aspect of
training are likely to lead to awkward situations that produce user frustration, errors, of
both. Good documentation, although essential, is not a substituté for training. There is no
substitute for hands-on oberation of the system while a person is learning how to use the

program.

186

D. CONVERSION

Conversion is the process of changing from the old system to the new one. There
are four methods of handling a systems conversion. Each method should be considered in
light of the opportunities it offers and problems that it may cause. However, some
situations force one method to be used over others, even thoﬁgh other methods r/nay be
more beneﬁcigd. In general, systems conversion should be accomplished as quickly as
possible. Long conversion periods increase the possible frustration and difficulty of the

task for all people involved. [Ref. 13]

1. Parallel Systems

The most secure method of converting from an old to new system is to run both
systems in parallel. That is, users continue to operate the old system in the accustomed
manner but they also begin using the new system. This method is the safest conversion
approach since it guarantees that, should probléms arise in using the new system, such as
errors in processing or inability to handle certain types of transaétions, the organization
éan still fall back to the old system without loss of time, revenue, or service.

The disadvantages of the parallel systems approach are significant. First of all, the
system costs double since there are now two sets of systems costs. In some instances, it is
necessary to hire temporary personnel to assist in operating both systems in parallel.
Second, the fact that users know they can fall back to the old ways may be a disadvantage

if there is potential resistance to the change or if users prefer the old system. [Ref. 13]

187

All in all, the parallel method of systems conversion offers the most secure
implementation plan if things go wrong, but the costs and risks to a fair trial cannot be

overlooked.

2. Direct Conversion

The direct conversion method converts from the old to the new system abruptly,
sometimes over a weekend or even overnight. The old system is used until a planned
conversion day. Then it is replaced by the new system. There are no parallel activities.

If the managemént must make the change and wants to ensure that the new
system fully replaces the old one so that users do not rely on the previous methods, direct
conversion will accomplish this goal. Psychologically, it forces all users to make the new
system work; they do not have any other method to fall back on. The advantage of not
having a fallback system can turn into a disadvantage if serious problems with the new
system arise. In some instances, organizations even stop operations when problems arise
so that difficulties can be corrected. [Ref. 13}

Direct conversion requires careful advanced planning. Training sessions must be
scheduled and maintained. The installation of all equipment must be on time, with ample
days allowed in the schedule to correct any difficulties that occur. Any site preparation

must be complete before the conversion can be done.

188

3. Pilot Approach

When new systems also involve new téchniques or drastic changes in
organization performance, the pilot gpproach is often preferred. In this method, a working
version of the system is implemented in one part of the organization, such as a single
work area or department. The users in this area typically know that they are piloting a
new system and changes may be made to improve the system.

When the system is deemed complete, it is installed throughout the organization,
either all at once (direct conversion) ér gradually (phase-in). [Ref. 13]

This approach has the advantage of providing a sound proving ground before full
implementation. However., .if the implementation is not properly handled, users may
develop the impression that the system continues to have problems and cannot he relied

on.

4. Phase-In Method

The phase-in method is used when it is not possible to install a new system
throughout an organization all at once. The conversion of files, training of personnel, or
arrival of equipment may forc.e thé staging of the implementation over a period of time,
ranging from weeks to months. Some users will begin to take advantage of the new
system before others. [Ref. 13]

Long phase-in periods create difficulties for analysts, whether the conversions go
well or not. If the system is working well, early users will communicate their enthusiasm
to others who are waiting for implementation. In fact, enthusiasm may reach such a high

level that when a group of users does finally receive the system, there is a letdown. Later,

189

when conversion occurs, the staff finds out that the system, even though working
properly, does not do the processing instantly.

On the other hand, if there are problems early in the phased implementation, word
of difficulties will spread also. Then the users may expe'ct difficulties when they are

converted and react negatively to the smallest mistakes, even their own.

E. SYSTEMS RELIABILITY

A reliable system is one that does not produce dangerous or costly failures when
used in a reasonable manner, that is, in a manner that a typical user expects is normal.
This definition recognizes that systems may not always be used in the ways that designers
expect.

There are two levels of reliability. The first is that the system meeting the right
requirements. If it is expected to have specific security features or controls, but the design
fails to specify them, then the system is not reliable. Reliability at the design level is only
possible if a through and effective determination of systems requirements was performed
by the analyst. A careful and through systemé study is needed to satisfy this aspect of
reliability.

The second level of systems reliability is the actual working of the system

delivered to the user. At this level, systems reliability is interwoven with software

engineering and development. [Ref. 13]

190

IX. ANALYSIS OF POET DATABASE SYSTEM

This chapter analyzes the use, benefits and installation of the POET Database
System that will support the administrative activities on the Turkish Navy frigates by
storing, processing, and accessing the personnel, operations, equipment, material and
training data. |

The chapter is divid‘ed into four sections. In the first section, the chapter gives a
brief introduction about the current situation of information processing in the Turkish
Navy frigates and then compares the file-processing systems with the database processing
systems. The second section provides an analysis of the benefits of the system from
managerial, manpower, and technical aspects. The third section analyzes the system
implementatiop and installation issues by explaining the training and conversién phases
in detail. In the last section, the impact of the computer technology in the organizations is

examined.

A. CURRENT SITUATION

Today, the frigates are the most effective, powerful, and capable vessels among
the warships. The modern frigates are designed as multi-purpose combatants, which can
be used in anti-air, anti-surface, and anti-submarine warfare. They can serve as both
offensive and defensive vehicles according to the needs of the circumstances.
As it is the case in most navies, the frigates constitute the main force of the Turkish Fleet.
The Turkish Navy frigates have a challenging mission, which encompasses tactical,

operational, and administrative tasks. Because of their powerful weapons and

191

maneuvering capabilities, the frigates are also the most active warships in the Turkish
Navy. They participate in lots of operations, exercises, and maneuvers while conducting a
number of deployments. This intense tempo causes a heavy burden of administrative and
bureaucratic tasks. There is a large volume of reports, messages, and documents that are
required either for the submission to the higher command or for the ship’s internal use.
The documents to be generated may be periodic reports, prepared daily, weekly, monthly,
bimonthly, and annually, or they may be ad hoc reports that may be requested anytime.

In the Turkish Navy frigates, it is a time consuming process io prepare some
documents, because the information needed is not stored in a single and central database
management system. The‘ organization of the frigates consists of six departments, which
are Operations, Engineering, Electronics, Navigation, Weapons, and Supply
Departments. Each department in the ship keeps its data in different formats and
environments, such as Microsoft Word, Microsoft Excel, Word Perfect, Frame Maker, or
other special application programs. There is neither a standard format nor a software
program to store, manipulate, and access the data. When it is required to generate a
report, which will include information from two or more departments, a person from the
administrative office has to collect that data from the departments manually.

This technique, which is known as File-Processing System, has many drawbacks

compared to the Database Processing Systems.

192

B. FILE-PROCESSING SYSTEMS

The file-processing systems, which predated the use of database processing
systems, are a great improvement over manual record keeping systems, however they

have the following limitations. [Ref. 3]

1. Data Redundancy

The first drawback of file-processing systems is uncontrolled redundancy of data
and data duplication. Since every department keeps the data ’in a different environment
and different file, generally the same information s stored in more than one department’s
files. For instance, both the Operations and the Navigation departments store the data
about the exercises and navigation times. This results in the same data being stored in

separate files that must exist for each different system.

2. Data Inconsistency

Although the duplicate data wastes personnel time and file space, that is not the
most serious problem,; rather, the biggest problem with the duplicate data concerns data
consistency and data integrity. Poor data integrity can often be seen in file-processing
systems, because it is very difficult to keep the redundant data consistent. The greater the
degree of redundant data, the more difficult it becomes to insure that the data is accurate
and timely. For example, if the start and end times of an exercise change, then each file
containing this data must be updated, but the danger is that all of the files might not be

updated, causing discrepancies among them.

193

Therefore, a report from the Operations Department may disagree with a report
from the Navigation Department. When the retrieved information are inconsistent, the

credibility and the reliability of the stored data comes into question.

3. Limited Sharing of Data

Another disadvantage of file-processing systems is the limited sharing of data.
Because of their different formats and file structure incompatibilities, the data files can
not be readily combined or compared. This limitation restricts the extent to which
applications are able to share each other’s data. The difference in the definitions of déta
among the various files will result in difficulty for users to cross-reference data elements
in other files. Suppose that it is necessary to compare the electronic equipment inventory
of the Supply Department to that of the ElectrQnics Department. Since they store their
inventories in different environments and different file structures, this would be a

burdensome and time-consuming process.

4. Program/Data Dependency

In file-processing systems, application programs depend on the file formats,
because the physical formats of files and records are usually part of the application code.
Therefore, individual data structures were de'veloped for specific applications, and each
program within each system has been designed to process the records and data items of
its corresponding files. The problem with this arrangement is that when changes are made
in the file formats and data structures, such as adding a new record type, the application

programs also must be changed.

194

This makes it difficult to introduce changes and results in high maintenance

programming costs to cope with the inevitability of such changes.

5. Inflexibility of Information

fnﬂexibility‘ of available information is another drawback of file-processing
systems. Files tend to isolate the information and restrict what can be retrieved. It is not
possible to get the information in a modified format, which can be quite useful for some
administrative purposes. The effectiveness of an organization’s daté resources require
flexibility, accuracy, the abiliiy to support adequate response levels to inquiries, and a

large degree of data sharing across various applications.

6. Data Isolation

In file-processing systems, data are separated and isolated. Sometimes it may be
desiréble to combine two or more files into a single file to retrieve the required
information, but with file processing, this is a very exhausting process. Generally, the

information that requires the combination of two or more files is gathered by a person

_ instead of the computer.

7. Difficulty in Representing Data

It is difficult to represeht file-processing data in a form that seems natural to
users. Users want to see all related data in a single document, but in order to show the
data in this way, several different files need to be combined and the result is to be

presented together. For example, if a higher command wants a report from the ship after

195

each deployment that includes information about conducted exercises and training,
navigational and operational data, and the amount of ammunition and fuel used during
the deployment. In order to prepare such a report, it is necessary to combine all of the

departments’ files together.

8. Difficulty in Inf(')rmaiion Resource Management

Information resource management is more difficult in file-processing systems.
Especially, data security is very difficult to achieve, because multiple files in separate
places cause more vulnerability. On the other hand, it is a big problem to enforce some

ship-wide and navy-wide standards on data storage systems.

‘C. DATABASE PROCESSING SYSTEMS

The database concept not only offers distinct advantages from the conventional
file processing approach, but also results in added value to an organization in what it can
realize from its data résources. A database system can significantly enhance the quality of
information, provide the basis for increased efficiency in programming, and introducé
tools for the effective management of information at all levels of an organization.
Database processing systems overcome the limitations of file-processing systems,
because ﬁle-processihg programs store the data in different files and directly access the
files of stored data, while database-processing programs keep the data in a single
database and invoke the Database Management System (DBMS) to access the stored
data. DBMS is a set of programs used to define, administer, and process the database and

its applications. [Ref. 3]

196

In a database system, all of the data is stored in a single facility, called the
database. When this approach is applied to the Turkish Navy frigates, the departments in
the ship will no longer have separate data files; on the contrary, there will be a centralized
database, which will store information about personnel, operations, equipment, training,
and logistics, and an application program with a graphical user interface that will allow
the users to access the data in a windows-based environment. The application program
retrieves the required data by‘ invoking the DBMS, which accesses and manipulates the
databas;. The following section explains the advantages of database processing systems

over the file processing systems in detail.

1. Minimum Data Redundancy

With database -processing, the data redundancy is minimal as a result of the
centralization and the increased capability of data sharing. It is no longer necessary to
store the same information for different applications, because all programs have access to
the same data. The decrease in data redundancy results in greater data accuracy. Since the
data is stored in only one place, data integrity problems are less common. There is less
opportunity for inconsistency among multiple copies of the same data item, because
whenever the data is modified, only one update is sufficient. By integrating data into a

common location, standard program definitions of data can be established to satisfy

multiple uses.

197

2. Improved Data Sharing

Sharing of data is improved with the database processing approach. Data are
organized into a single, centralized database that allows combination of files and separate
views of the data. With database processing, jt is possible to prodﬁce more information
from a given amount of data, because the tables/files are related to each other via

common data fields and they can be easily combined.

3. Increased Data Availability

Improved data sharing, searching versatility, and multiple views of data present to
programrﬁers and users a data resource that can satisfy their demands for information.
The database, through ease of access, can increase data availability. Throughout the
organization, data will no longer be thought of as something that is the exclusive

province of the computer ahd the people who help run it.

4. Cost Reduction

A database environment increases the potential for the reduction of cost,
especially in one significant area: maintenance programming. Maintenance programming
costs are minimized through data independence by elim.inating re-programming due to

changes in physical and logical data definitions.

5. Flexibility in Data Access
Database processing systems provide more flexibility in data access and retrieval.

Ad hoc reports as well as routine ones can be quickly prepared with this approach,

198

because the DBMS supports programmed and unprogrammed queries via Structured
Query Language (SQL). For example, it takes a few minutes to generate the deployment
report, since the tables can be joined together and the DBMS can be used to make the

appropriate query.

6. Advanced Security and integrity

Anothér significant advantage of database processing systems is the advanced
security, privacy, and integrity controls. Since the data is stored in a centralized database,
security issues can be more effectively supported by giving accounts and passwords to
the authorized users. Also, navy-wide standards can be enforced in this system. An
integrated database vviﬂ allow an organization to establish stringent access controls for
specific entities and their data items. For example, if personnel evaluation information is
not to be divulged, security provisions such as passwords can be assigned to segments of
the database. User or program access to this data, therefore, would only be allowed if the

proper authorization (e.g., use of a passWord) was established.

7. Program/Data Independence

Database processing reduces the dependency of application programs on file
formats, because a database can insulate an application program from changes made to
the structure of the data it uses. All record formats, along with the data, are stored in the
database itself, and they are accessed by the DBMS, not by the application programs.
Program/data independence minimizes the impact of data format changes on application

programs and provides great flexibility and efficiency. The data processing environment

199

is never static and the need for new information is ever present. By protecting existing
programs from these requirements, it is possible to satisfy these demands without
investing the people resources and money to changé existing programs. In a conventional
file environment, changes to data structures almost always result in changes to those

application programs.

8. Dynamic Structure

Data independence also provides for the introduction of new technology and
processing techniques without the necessity of constant re-programming. A database can
be transferred to new storage devices or re-organized in ways that will enﬁance access

response time while leaving application programs unaffected.

D. BENEFITS OF THE POET DATABASE SYSTEM

{

1. Technical Aspect

The purpose of the database system is to store information about personnel,
operations, equipment, ‘and training in a centralized database, to generate standard
reports, to provide ad hoc queries, and to support the administrative activities onboard the
~Turkish Navy frigates. The database program will minimize the data redundancy and
increase the availability, accuracy, consistency, security, and integrity of data.

The database management system can be implemented cost effectively by using
Microsoft Access, which is a popular and economical Commercial Of The Shelf (COTS)

product. The épplication program that will provide the graphical user interface between

200

the user énd the database management System can be developed with Java, which is a
very powerful and efficient yet free object-oriented programming language. The system
can be operated on a Personal Computer (PC), preferably the computer in the
administrative office. The administrative office personnel can be granted user accounts
and passwords, which will provide the control and security for the classified data.

The system can be designed with a user friendly graphical user interface, and
therefore the users of the system will be able to learn the program.without the need of an
extreme training and advanced computer experience. As a result, this database
application program will provide the Turkish Navy with an affordable and efficient
system that will support ‘administrative activities on the frigates and enforce the navy-

wide standards.

2. Manpower Aspect

In the current situation, at least one person is assigned to input, manipulaie, and
analyze the data in each department. Besides, there is an administrative office that is .
responsible for generating ship-wide reports and documents and for conducting the
common managerial tasks. There are four crewmembers stationed in this office, a petty
officer and three enlisted personnel. The Communications Officer, who is responsible for
all incoming and outgoing documeﬁts and messages, is in charge of the administrative
office. The main function of this office is to keep track of incoming documents and to

prepare the required documents and reports.

201

Since the ship lacks a centralized database system to store and access the data,
the administrative office personnel spend almost one-half of their time to gather the
necessary information from the departments. Counting the personnel responsible for data
storage and retrieval in six departments, there are about twelve crewmembers who strive
to achieve the same task: keep the data in a file, process it, and access the information
needed. This task is the main functionality of a database system, which provides much
more cépabilities.

The use of a database system would greatly reduce the productive power loss and
work hours spent on administrative tasks that are instrumental in acconﬁplishing the
Turkish navy frigates’ principal tasks. In order to run such a database system effectively,
the administrative office personnel would be sufﬁcignt, because with this system they
could save a lot of time and would not have to collect the information manually.. This
means that by using this database system, the other six crewmembers may be employed

more efficiently in other tasks, which results in considerable saving in personnel power.

3. Decision Méking Aspect

The Commanding Officer (CO), the Executive Officer (XO) and the Department
Heads may need to make decisions in a short per_iod of time. As managers of the ship,
they want to analyze the situation by examining the available information that will help
them make their decisions. The decision making process is based on two decision
elements —~ the amount of information used in making a decision and the number of
alternatives considered [Ref. 14]. With respect ‘to information use, the person in the

decision-making role, wants as much relevant information as possible before reaching a

202

decision. Nobody, it seems, wants to make a decision without having the necessary
information, because it increases the possibility of choosing the wrong alternative.

If the CO needs information to make a decision, having personnel collect the data

“in order to propose a suggestion is a time-consuming process and it might produce

inconsistent and unreliable results. However, the use of a database system can help the

decision making process in the ship by providing accurate and timely information.

E. INSTALLATION OF THE POET DATABASE SYSTEM

1. Training
The training for the da‘tabase system should be designed so that every user of the
system knows the system’s features and functions and has knowledge about how to use
the system. The success of any information system depends on the skills of the operators.
In the Turkish Navy frigates, the main users of the database system will be the personnel
working in the ship’s administrative office, who are familiar with the computers and
procedures on the ship and who only need to be trained on how the new system operates.
The Communications Officer leads the administrative office, whose personnel normally
consist of one petty officer and three enlisted personnel.
- An important factor that can affect the success of the system and the training
phase is the design and implementation of the system. The database system and the
application program should be' designed so that it is easy-to-use and does not require the

operators to have any advanced computer science knowledge. However, matching basic

203

human characteristics and skills with a job’s requirements is essential, especially when
an automated system is to replace a manual one.

The training should make the users of the system familiar with the system’s
interface as well as its functions and capabilities. Once the frig';ltes have their
administrative office personnel trained, educating the other potential users on how to use

the system can be handled within the ship.

2. Conversion

The conversion from the old system to the new one is one of the most important
phases of the installation‘ from a managerial perspective. This normally because human
nature is inclined to resist changes, especially if they are not ready or prepared for these
changes. Factors such as organizational structure, human resources, and cultural climate
all come into play. Managers sometimes have to restructure the organization chart when a
computerized system is impleménted. Human resources are often reallocated to and from
the new system in order to increase the efficiency of the new system. Conflicts among the
users and the personnel who don’t believe in the benefits of the new system should be
expected. Furthermore, some people view training programs as a threat, because they
believe that evaluations made at the énd of the training may be a negative factor in their
career.

When the new database system is built on the Turkish Navy frigates, the
crewmembers assigned to data storage tasks in the departments can be assigned to new

jobs.

204

Once the administrative office personnel are trained and gained the skills to use the new
system, they can handle the administrative activities by themselves without any extra
personnel support. [Ref. 15]

The four conversion strategies that can be used to install a new system in an
organjzation are already explained in Chapter II. For the POET Database Application
program, the Pilot Approach is proposed as the most appropriate strategy for the Turkish
Navy frigates. Two frigates must be selected as the pilot units in order to get sufficient
feedback. The conversion method to be applied to the pilot ships should be the Parallel

Systems approach for the following reasons.

. Risk is significantly minimized;

o Testing the system on two ships over a period of time will provide sufficient
information to evaluate the system before complete implementation on all
ships;

. Manpower need is reasonable;
e Surfaced vproblems can be worked out by the personnel of both ships;
. Time to shift is bredicted to be two months, which is a reasonable interval for

checking monthly reports and for reassigning personnel from/to the ship.

As soon as the system operates efficiently on the pilot units, a decision for full

implementation on all ships can be made.

205

3. Integration

Integration of the converted files and applications into the database enviroﬁment
has to be plahned. For some period of time, there will be two sets of applications that will
run concurrently. Personnel must be trained for the new environment. The organization
can't be closed for the conversion and integration phases. The file environment is most
probably the production environment, and the data base environment will be the test
environment. The updates performed to the production files have to be transferred to the
test environment. It is important that the two systems represent the same information at

all times.

F. ASSESSING THE IMPACTS OF COMPUTER TECHNOLOGY
IN ORGANIZATIONS '

Computer is often identified as the key device in the third revolution of
humankind. There are two powerful and contrary images widely linked with the use of
computer technology in organizations. In one view, the computer is the great problem
solver, producing important gains in the efficiency and effectiveness of personnel in their
work. In the contrasting view, computer is a problem generator — an expensive and
disruptive technology that has often failed to match its promises in many of the actual
tasks to which it has been applied. [Ref. 16]

There are some reasons why an organization might adopt computer technology.
The organizétion might use computers in order to symbolize its commitment to modern

management practices or to advanced technology. Or the organization might want to

206

indicate that its decisions and actions are guided by information systems, which can
process large amounts of data, rather than relying upon manual methods of information
'storage and retrieval. Actually, the major reasons for computer utilization usually involve
expectations that computers will generate real benefits in information processing, and
ultimately in organizational performance.

With more than 200 crewmembers as the personnel and the CO and the XO as the
managers, the Turkish Navy frigates are no different than the other organizations in the
business world. Until now, the use of computer technology in the Turkish Navy frigates
have increased the techr;ical and managerial capabilities of the ships, while helping the
managers in their decision making process and providing more time for the necessary
exercises that must be conducted by the personnel. Actually, the phenomenal expansion
in the use of computer technology is a significant proof that computers have generally
produced successful results in the organizations.

Among the benefits that might be anticipated from the use of computers in
organizations, those that improve the information environment are perhaps the most
obvious. The extensive information handling capabilities of computers are often ﬁsed in
the field of data processing and database applications. The database system that would be
installed on the Turkish Navy frigates is expected to enhance the ship’s administrative
capabilities to save personnel po;)ver and time, to improve data accuracy, consistency and

timeliness, and to provide the Turkish Navy with an affordable and efficient system.

207

The potential benefits of such a database system can be listed as follows:

the high speed with which information can be obtained

. the ease of access to information

. the availability of new information

o the timeliness of the information

. the accuracy and the consistency of information
) the savings in the personnel employment

) the improvements in the decision making process

G. CONCLUSION

From personal experience, the author served as a Communications Officer on
TCG YILDIRIM (F-243), one of the newest frigates of the Turkish Navy, for more than
three years. As the Communications Officer of the ship, the position included leadership
of the administrative office, in which one petty officer and two enlisted personnel were
stationed. When the ship is at the port, 80% of the time was spent on administrative tasks,
which mostly consisted of preparing reports and documents, and collecting the
information needed to generate these documents.

While doing/managing these activities, it was noticed by the personnel in the
administrative office as they felt the need for an information/database system that could

be used to store, process and access required the data.

208

By using such a database system that automates most of the manual tasks, it
could possibly save valuable time and personnel power while increasing the work volume

and efficiency of the administrative office.

As a result of having such an experience, it was desired that Turkish Navy frigates
had had this database application program to produce effective, quality reports that could

be analyzed with accuracy toward continual improvement in ship operations.

209

THIS PAGE INTENTIONALLY LEFT BLANK

210

X. CONCLUSIONS

A. SYNOPSIS

This thesis presented the design, development, implementation, and analysis of
the Personnel, Operations, Equipment, and Training (POET) Database and Application
Program for the Turkish Navy frigates on a standalone computer. The POET database
system will plgovide the Turkish Navy ships with an automated system to perform their
primary administrative functions. POET will support this mission by keeping track of all
the personnel, operations, equipment, and training records, maintaining them, producing
standard reports and providing the command with ad hoc information.

Besides implementing a database and an application program, this thesis has also
specified the current situation and the need for such a database application program
onboard Turkish Navy frigates. The main goal of developing the POET datébase system
is to release manpower to perform other duties and to reduce the productive power loss
by increasing the availability, accuracy, efficiency, and consistency of the data needed in
administrative activities. This program is expected to eliminate most of the current
problems and to result in considerable savings of personnel power and time while
providing the required information to the command quickly.

After examining the current methods used to store and retrieve information in the
Turkish Navy frigates, requirements bcollection and analysis phase was performed to
determine the expected functionality of the POET database system. This is the most
important step of the entire database design process, because most subsequent design

decisions are based on this step.

211

The major tasks of this phase are to specify the data requirements and to determine the
functional requirements.

Once all the requirements I'/;ave been collected and analyzed, a conceptual schema
was created for the database by using Semantic Object Modeling technique to capture the
user requirements. In order to build an effective database and related applications, a data
model that captures the users’ perceptions closely is of great importance. The data model
should identify the entities and their attributes to be stored in the database and should
define their structure and the relationships among them.

After the data model is developéd as semantic objects in the conceptual database
design phase, these objects were transformed into an implementation data model. In this
thesis, the relational model, which is the most common data model used in commercial
DBMSs, was used as‘the implementation data model. Then, the POET database was
implemented in Microsoft Access.

Java programming language and Java Database Connectivity (JDBC) appliéation
program interface was used as a tool for developing an application program, which will
eliminate the need for a Database Management System environment.

Upon completion of the program and implementation, an evaluation and analysis
the possible benefits and advantages that would be gained by using POET system from
manpower, management, and technical perspectives was done.

It is hoped that this system, as an initial effort, will be the motivator for other
efforts to develop new systems and benefit other branches of the Turkish Navy and as an

inspiration to develop additional dedicated, focused systems.

212

B. FUTURE ENHANCEMENTS

The POET database system is developed in order to help a shié’s personnel
perform the administrative activities by implementing a centralized database. The system
is designed as a single-ship system to be used on individual frigates. As a future
enhancement, it can be expanded and redesigned so that it can be employed in Destroyer
Division Commands and Fleet Command. In such a case, the personnel in Fleet
Command will be able to store and access the required information about all of the ships.

A program that will provide all message and report formats in a text editor
environment and that wi11. produce the staﬂdard reports by integrating the format with the
data from POET database may be developed. Combining the capabilities of these two
programs, the command can save a lot of manpower by automating the report generation
process.

Another research area is to make the reports and messages produced by the POET
database system available in the military network. This facility will allow the ships to
electronically transfer their réports and messages to the higher command éfﬁcienﬂy and

quickly while reducing the amount of paper work at the point of origin and receiving unit.

213

THIS PAGE INTENTIONALLY LEFT BLANK

214

APPENDIX A: SEMANTIC OBJECTS

SHIP
ID InternationalCallSign 1 1
ShipName 1 4
HuliNumber 4 4
ShipClass 14
KeellLayingDate ;4
LaunchDate 1,
CommissionDate 1 4
ShipLength ¢
ShipWidth o ;
MastHeight ¢ 4
KeelDepth ¢4
Disﬁlacement 01
HomePort 44

SuperiorinCommand 1 4

Overhauls
1D OverhaulNumber 1 1
StartDate 1 4
EndDate 4 1
ShipyardName 1 4

OverhaulDuration 4 1
O.N

215

SHIP

PlannedManning
PlannedOfficers 1 1
PlannedPettyOfficers 1 4

PlannedEnlisted 1 4

1.1

PresentManning
PresentOfficers 1.4
PresentPettyOfficers 11

PresentEnlisted 1 4

1.1

216

DEPARTMENT

ID = DepartmentName 1 4

_PlannedManning
PlannedOfficers 1 1
PlannedPettyOfficers 1 4

PlannedEnlisted 1 4

1.1

PresentManning
PresentOfficers 4 1
PresentPettyOfficers 14

PresentEnlisted 1 1

1.1

DIVISION

O.N

PERSONNEL

1N

217

DIVISION
ID DivisionName 1 1

Planne_dManning
PlannedOfficers 1 4
PlannedPettyOfficers 1 1

PlannedEnlisted 4 4

PresentManning
PresentOfficers 4 4
PresentPettyOfficers 1 4

PresentEnlisted 4 4

DEPARTMENT
1.1

PERSONNEL

1.N

1.1

1.1

218

PERSONNEL.

iD MilitarylD 11 .

FirstName 1 4
LastName 11
Rank 1

Rating 14
DateOfBirth 4 4
PlaceOfBirth 11
FatherName ¢,
MotherName g 4
ActiveDutyServiceDate ¢ 4
DateOfRank ¢
Gender 14
MaritalStatus 4 1
SpouseName o:,

NumberOfChildren ¢

‘Address
Street. 1.1
City 1.1
State 1 1
ZipCode 1 1

1.1

219

PERSONNEL
PhoneNumber 1 4
Speciality 14
Education 4
CurrentAssignment ; 4
StartDate
CabinNumber 4,

CabinPhone ; 4

PreviousAssignments
ID AssignmentNumber 1 4
Station 1 4 |
Position 1 1

Duration 1 4
oON

Courses_Taken
ID | TRAINING
StartDate 1.1
EndDate 1 4

1.1

Grade 1.1
0.N

Courses_To_Take

ID | TRAINING

1.1

O.N

Foreign_Languages

ID Language 11

Degree 1 1
O.N

220

TRAINING

iID CourseName 11

TrainingCenter 14
Duration 1 1

CourseDescription ¢.1

PERSONNEL
O.N

PERSONNEL

O.N

221

EQUIPMENT

1D SerialNumber 1 4

StockNumber 1 4

EquipmentName 4

EquipmentType 4

Manufacturer 4 4

Model 4

ProductionDate ; 4

Location g4

Runtime 4 4

Failures
ID FailureNumber 1 4
Description 1 1
Diagnosis 1.1

FailureDate 1 4

FailureDuration 4 4

O.N

222

OPERATION
ID ExerciseName 1 1
ExerciseType 14
StartDate 4,
EndDate 4,
Duration 4 4

Place 44

Events
1D EventName 1 1
EventType 1.1
EventDuration 1 4

NumberOfEvents 1 1

1.N
Port_Visits
1D PortName 1 4
VisitStartDate 1 4
VisitEndDate 4 1
VisitDuration 11
ON

Underway_Durations
DaytimeHours 1 4

NighttimeHours 1 4

1.1

223

OPERATION

Cost_Of_Exercise
FuelCost 1 1
AmmunitionCost 1 1
Amortization 1 4

CostOfExercise 1 4

Helicopter ‘

ID HelotailNumber 4 4
FlyingDuration 1.1
NumberOfDippings 1 1
DippingDuration 1 1

1.1

0.1

224

APPENDIX B: DOMAIN SPECIFICATIONS

A. SHIP OBJECT

Domain Name

Semantic Description

Physical Description

International Simple Attribute | International Call Sign | Text 4; Capital
CallSign of the Ship Letters
ShipName | Simple Attribute | Name of the Ship Text 30
HullNumber Simple Attribute | Hull Number of the Text 4; One capital
Ship letter and three digits
ShipClass Simple Attribute | Class of the Ship Text 50
KeelLayingDate | Simple Attribute | Keel Laying Date Text 10; format
| 00/00/0000
LaunchDate Simple Attribute | Launch Date Text 10; format
00/00/0000
CommisionDate | Simple Attribute | Commission Date Text 10; format
00/00/0000
Length Simple Attribute | Length of the Ship in Integer
vMeters
Width Simple Attribute | Width of the Shipin | Integer
Meters
MastHeight Simple Attribute | Mast Height of the Integer
Ship in Meters
KeeIDépth Simple Attribute | Keel Depth of the Ship | Integer
in Meters
Displacement Simple Attribute | Displacement of the Integer
Ship in Tons
HomePort Simple Attribute | Home Port of the Ship | Text 30

225

Domain Name Semantic Description Physical Description

Superiorin Simple Attribute | Immediate Superior In | Text 50

Command Command

Overhauls Group Attribute | Overhauls of the Ship | OverhaulNumber
StartDate
EndDate
ShipyardName
OverhaulDuration

OverhaulNumber | Simple Attribute | Identifying Number Byte

Given to each Overhaul

StartDate Simple Attribute | Start Date of the Text 10; format
Overhaul 00/00/0000

EndDate Simple Attribute | End Date of the Text 10; format
Overhaul 00/00/0000

ShipyardName Simple Attribute | Shipyard Name Where | Text 50 °
Overhaul Took Place

OverhaulDuration | Simple Attribute | Overhaul Duration in Integer
Days

PlannedManning | Group Attribute | Planned Manning of PlannedOfficers
the Ship PlannedPettyOfficers

PlannedEnlisted

PresentManning | Group Attribute | Present Manning of the | PresentOfficers
Ship PresentPettyOfﬁcefs

PresentEnlisted

PlannedOfficers Simple Attribute | Number of the Planned | Integer

Officers Onboard Ship
PlannedPetty Simple Attribute | Number of the Planned | Integer
Officers Petty Officers Onboard

Ship

226

Domain Name

Semantic Description

Physical Description

PlannedEnlisted | Simple Attribute | Number of the Planned | Integer
Enlisted Onboard Ship
PresentOfficers Simple Attribute | Number of the Present | Integer
Officers Onboard Ship
PresentPetty Simple Atfribute Number of the Present | Integer
Officers Petty Officers Onboard
Ship |
PresentEnlisted Simple Attribute | Number of the Present | Integer
Enlisted Onboard Ship

227

B. DEPARTMENT OBJECT

Domain Name

Semantic Description

Physical Description

DepartmentName | Simple Attribute | Name of a Department | Text 30
Onboard Ship
PlannedManning | Group Attribute | Planned Manning of PlannedOfficers
the Department PlannedPettyOfficers
PlannedEnlisted
PresentManning | Group Attribute | Present Manning of the | PresentOfficers
Department PresentPettyOfficers
| PresentEnlisted
PlannedOfficers Simple Attribute | Number of the Planned | Integer
Officers in Department
PlannedPetty Simple Attribute | Number of the Planned | Integer
Officers Petty Officers in
Department
PlannedEnlisted Simple Attribute | Number of the Planned | Integer
Enlisted in Department
PresentOfficers Simple Attribute | Number of the Present | Integer
Officers in Department
PresentPetty Simple Attribute | Number of the Present | Integer
Officers Petty Officers in
Department
PresentEnlisted Simple Attribute | Number of the Present | Integer
Enlisted in Department
PERSONNEL Semantic Object | Personnel Assignedto | PERSONNEL Object
Attribute Department
DIVISION Semantic Object | Divisions within the DIVISION Object

Attribute

Department

228

C. DIVISION OBJECT

Domain Name

Type

Semantic Description

Physical Description

DivisionName Simple Attribute | Name of a Division Text 30
Within a Department
PlannedManning | Group Attribute | Planned Manning of PlannedOfficers
the Division PlannedPettyOfficers
PlannedEnlisted
PresentManning | Group Attribute | Present Manning of the | PresentOfficers
Division PresentPettyOfficers
PresentEnlisted
PlannedOfficers | Simple Attribute | Number of the Planned | Integer
Officers in Division
PlannedPetty Simple Attribute | Number of the Planned | Integer
Officers Petty Officers in
_ Division
PlannedEnlisted | Simple Attribute | Number of the Planned | Integer
Enlisted in Division
PresentOfficers Simple Attribute | Number of the Present | Integer
Officers in Division
PresentPetty Simple Attribute | Number of the Present | Integer
Officers Petty Officers in |
Division
PresentEnlisted Simple Attribute | Number of the Present | Integer
Enlisted in Division |
PERSONNEL Semantic Object | Personnel Assigned to | PERSONNEL Object
Attribute Division ‘ |
DEPARTMENT | Semantic Object | Department to which DEPARTMENT
Attribute Division Belongs Object

229

D. PERSONNEL OBJECT

Domain Name

Semantic Description

Physical Description

MilitaryID Simple Attribute | Military Identification | Text 10
Number of Personnel
Name Group Attribute | First and Last Names FirstName
of Personnel LastName
FirstName Simple Attribute | First Name of the Text 30
Personnel
LastName Simple Atfribute Last Name of the Text 30
Personnel
Rank Simple Attribute Rani(of the Personnel | Text 50
Rating Simple Attribute | Rating of the Personnel | Text 50; values
{Officer, Petty
Officer, Enlisted}
DateOfBirth Simple Attribute | Birth Date of Personnel | Text 10; format
| 00/00/0000
PlaceOfBirth Simple Attribute | Place of Birth of Text 30
Personnel
FatherName Simple Attribute | Father’s Name of Text 30
Personnel '
MotherName Simple Attribute | Mother’s Name of Text 30
Personnel |
ActiveDuty Simple Attribute | Active Duty Service Text 10; format
ServiceDate Date of Personnel 00/00/0000
DateOfRank Simple Attribute | Date of Rank of Text 10; format
Personnel 00/00/0000
Gender Simple Attribute | Gender of Personnel Text 20; values {Male,
Fémale}

230

Domain Name

Semantic Description

Physical Description

MaritalStatus Simple Attribute | Marital Status of Text 50; values
Personnel {Married, Single}
SpouseName Simple Attribute | Spouse’s Name f Text 30
Personnel
NumberOf Simple Attribute | Number of Children of | Byte
Children Personnel |
Address Group Attribute | Home Address of Street
Personnel City
State
ZipCode
Street Simple Attribute | Street Address of Text 50
Personnel
City Simple Attribute | City where Personnel Text 30
Lives
State Simple Attribute | State where Personnel | Text 30
Lives
ZipCode Simple Attribute | Zip Code of the Text 10; format
Personnel’s Address 00000-9999
PhoneNumber Simple Attribute | Phone Number of Text 15; format
Personnel’s House (000) 000-0000
Specialty Simple Attribute | Specialty of Personnel | Text 50
Education Simple Attribute | Education of Personnel | Text 30
Current | Simple Attribute | Current Assignment of | Text 100
Assignment Personnel
StartDate Simple Attribute | Start Date of Current Text 10; format
Assignment 00/00/0000
CabinNumber Simple Attribute | Cabin Number of Text 10
Personnel

231

Domain Name

Semantic Description

Physical Description

CabinPhone Simple Attribute | Cabin Phone of Integer; format 000
Personnel
CoursesToTake | Group Attribute | Military Courses that TRAINING Object
Personnel should take
TRAINING Semantic Object | Military Course TRAINING Object
Attribute
Previous Group Attribute | Previous Assignments | Assignment Number
Assignments of Personnel Station
Position
Duration
Assignment Simple Attribute | Identifying Number of | Byte
Number _ Assignment
Station Simple Attribute | Station Name of the Text 50
Previous Assignment
Position Simple Attribute | Position Name of the Text 50
Previous Assignment
Duration Simple Attribute | Duration of Previous Byte
| Assignment in Years
Foreign Group Attribute | Foreign Languages Language
Languages Known by Personnel Degree
Language Simple Attribute | Name of the Foreign Text 30
Language
Degree Simple Attribute | Degree of the Foreign | Text 1; values {A, B,
| Language C D, F}
CoursesTaken Group Attribute | Military Courses that TRAINING Object
Personnel has taken StartDate
EndDate
Grade

232

Domain Name

Semantic Description

Physical Description

StartDate Simple Attribute | Start Date of Course Text 10; format
00/00/0000

EndDate Simple Attribute | End Date of Course Text 10; format
00/00/0000

Grade Simple Attribute | Course Grade Byte; values {0 to
100}

DIVISION Semantic Object | Division for which DIVISION Object

| Attribute Personnel works
DEPARTMENT | Semantic Object | Department for which | DEPARTMENT
Attribute Personne] works Object

233

E. TRAINING OBJECT

Domain Name

Semantic Description

Physical Description

CourseName Simple Attribute | Name of the Military Text 50
Course
TrainingCenter Simple Attribute | Training Center where | Text 50
Course is given
Duration Simple Attribute | Course Duration in Byte
Weeks
Course Simple Attribute | Brief Description of Text 200
Description Course
PERSONNEL Semantic Object | Personnel who should | PERSONNEL Object
Attribute take the Course
PERSONNEL Semantic Object | Personnel who has PERSONNEL Object
Attribute taken the Course

234

F. EQUIPMENT OBJECT

Domain Name

Semantic Description

Physical Description

SerialNumber Simple Attribute | Serial Number of Text 20
Equipment
StockNumber Simple Attribute | Stock Number of Text 20
Equipment
EquipmentName | Simple Attribute | Equipment Name Text 50
EquipmentType Simple Attribute | Equipment Type Text 50
Manufacturer Simple Attribute | Manufacturer Name Text 30
Model Simple Attribute | Equipment Model Text 30
ProductionDate Simple Attribute | Production Date of Text 10; format
_ Equipment 00/00/0000
Location Simple Attribute | Location of Equipment | Text 10
Runtime Simple Attribute | Run Time of Long Integer
Equipment in Hours
Failures Group Attribute | Failures of Equipment | Failure Number
Description
Diagnosis
Failure Date
Failure Duration
Failure Number Simple Attribute | Identifying Number.of | Byte
Failure
Description Simple Attribute | Failure Description Text 100
Diagnosis Simple Attribute | Diagnosis of Failure Text 100
FailureDate Simple Attribute | Failure Date Text 10; format
00/00/0000
FailureDuration Simple Attribute | Failure Duration in Byte

Hours

235

G.

Domain Name

OPERATION OBJECT

Semantic Description

Physical Description

ExerciseName Simple Attribute | Name of Exercise T;xt 30
ExerciseType Simple Attribute | Type of Exercise Text 50
StartDate Simple Attribute | Start Date of Exercise | Text 10; format
00/00/0000
EndDate Simple Attribute | End Date of Exercise Text 10; format
00/00/0000
Duration Simple Attribute | Duration of Exercise in | Byte
Days
Place Simple Attribute | Name of the Seas that | Text 100
Exercise took place
Events Group Attribute | Events Executed during | EventName
Exercise EventType
EventDuration
NumberOfEvents
EventName Simple Attribute | Name of Event Text 50
EventType Simple Attribute | Type of Event Text 30
NumberOfEvents | Simple Attribute | Number of Events Byte
EventDuration Simple Attribute | Total Duration of Event | Integer
in Hours

236

Domain Name

Semantic Description

Physical Description

PortVisits Group Attribute | Ports Visited during PortName
Exercise VisitStartDate
VisitEndDate
VisitDuration
PortName Simple Attribute | Name of Port Text 50
VisitStartDate Simple Attribute | Start Date of Port Visit | Text 10; format
00/00/0000
VisitEndDate Simple Attribute | End Date of Port Visit | Text 10; format
| 00/00/0000
VisitDuration Simple Attribute | Duration of Port Visit | Byte
in Days
Underway Group Attribute | Underway Duration of DaytimeHours
Durations Exercise in Hours NightTindeHours
DaytimeHours Simple Attribute | Daytime Underway Integer
Hours
NighttimeHours Simple Attribute | Nighttime Underway Integer
Hours
CostOfExercise Group Attribute | Cost of Exercise FuelCost
AmmunitionCost
Amortization
FuelCost Simple Attribute | Cost of Fuel Cofzsumed Double
AmmunitionCost | Simple Attribute | Cost of Ammunition bDouble
Amortization Simple Attribute | Amortization Cost Double
CostOfExercise Simple Attribute | Cost of Exercise Double

237

Domain Name Type Semantic Description Physical Description
Helicopter Group Attribute | Helicopter Stationed HeloTailNumber
Onboard during the FlyingDuration
Exercise NumberOfDippings
DippingDuration
HeloTailNumber | Simple Attribute | Tail Number of Text 10
Helicopter
FlyingDuration Simple Attribute | Flying Duration of Integer
Helicopter in Hours
NumberOf Simple Attribute | Number of Dippings Byte
Dippings that Helicopter made
DippingDuration | Simple Attribute | Dipping Duration of Integer

Helicopter in Hours

238

APPENDIX C: RELATIONAL TABLES

SHIP (InternationalCallSign, ShipName, HullNumber, ShipClass, KeelLayingDate,

LaunchDate, CommissionDate, Length, Width, MastHeight, KeelDepth,
Displacement, Homeport, SuperiorlnCommand, PlannedOfficers,
PlannedPettyOfficers, PlannedEnlisted, PresentOfficers, PresentPettyOfficers,

PresentEnlisted)

OVERHAULS (InternationalCallSign, OverhaulNumber, StartDate, EndDate,

OverhaulDuration, ShipyardName)

PERSONNEL (MilitaryID, FirstName, LastName, DepartmentName, DivisionName,
Rénk, Rating, DateOfBirth, PlaceOfBirth, FatherName, MotherName,
ActiveDutyServiceDate, DateOfRank, Gender, MaritalStatus,
SpouseName, NumberOfChildren, Street, City, State, ZipCode,
PhoneNumber, Speciality, Education, CurrentAssignment, StartDate,

‘CabinNumber, CabinPhone)

COURSES_TO_TAKE (MilitaryID, CourseName)

COURSES_TAKEN (MilitaryID, CourseName, StartDate, EndDate, Grade)

ASSIGNMENTS (MilitaryID, AssisnmentNumber, Station, Position, Duration)

239

FOREIGN_LANGUAGES (MilitaryID, Language, Degree)

DEPARTMENT (DepartmentName, PlannedOfficers, PlannedPettyOfficers,
PlannedEnlisted, PresentOfficers, PresentPettyOfficers,

PresentEnlisted)

DIVISION (DivisionName, DepartmentName, PlannedOfficers, PlannedPettyOfficers,

PlannedEnlisted, PresentOfficers, PresentPettyOfficers, PresentEnlisted)

TRAINING (CourseName, TrainingCenter, CourseDuration, CourseDescription)

OPERATION (ExerciseName, ExerciseType, StartDate, EndDate, Duration, Place,
DaytimeUnderwayHours, NighttimeUnderwayHours, HeloTailNumber,
FlyingDuration, NumberOfDippings, DippingDuration, FuelCost,

AmmunitionCost, Amortization, CostOfExercise)

EVENTS (ExerciseName, EventName, EventType, NumberOfEvents, EventDuration)

PORT_VISITS (ExerciseName, PortName, VisitStartDate, VisitEndDate,

VisitDuration)

240

EQUIPMENT (SerialNumber, StockNumber, EquipmentName, EquipmentType,

ProductionDate, Manufacturer, Model, Location, Runtime)

FAILURES (SerialNumber, FailureNumber, FailureDescription, FailureDiagnosis,

FailureDate, FailureDuration)

241

THIS PAGE INTENTIONALLY LEFT BLANK

242

APPENDIX D: RELATIONSHIP DIAGRAM

& Microsoft Access - [Relationships]

+ JShipName
. JHuBNumber
{ShipCiass -
KeelayingDate wi}*) . . ; : : &
- s —1 e S : - i TrainingCenter
: ¢ : ; ; e 3 ’) CourseDuration
- CourseDescriptior

StockNumber
“JEquipmentar.

VisitStartDate
visitEndDate
- JvisitDuration

243

THIS PAGE INTENTIONALLY LEFT BLANK

244

APPENDIX E: APPLICATION PROGRAM SCREEN SHOTS

A. CONNECTION PANEL

[S4POET DATABASE CONNECTION

USERNAME [Yuksel
%= .. PASSWORD [

245

246

247

248

23 POET

249

250

251

C.

[ZPERSONNEL TABLE

TABLES

e
[19837025 Unal - midas . oper e e ~ OFFICER
19947280 :Yuksel iCan :Operations ‘Communications LTJG OFFECER
1_9;47.358 Ozc;n h :\ltunbulak Weapons o "Antil ;rwmar;are o LTJG - OFFICER '
199 517’9w AhTarkan - Gurul mWeapons o :ntx Submarme W;};;MKWET‘.JG T OFFICERW N
: 19804029 . Recep ;Gul) MOperanons Commumcanons <SEN10R CHIEF PETTY OFFICER PETTY OFFICER’
19804288 Mehmel Tkarvuaman : Operatlons M rClC SENIOR CHIEF PE‘ITY OFF!CER PETTY 0FF1C~R
19742550 '1-;;“»%“««'“'\,;\,; o - Admlmsﬂtrail.o‘r; COMMANDER wBFFICER
19752955 Mucahxt Slslxoglu zh.lavig‘ation) wAdmmlstratlonm T :”CaMr;AANDER “““ OFFICER «««««
19783055 Selahatlm ‘Deniz ﬁEngmeermg ‘ wMam Propulsuon . ’LTCDR OFFICER)
19793123 lsmet 'kl-vle;;ur;sen ’Operatxons) EC!C LTCDR ~OFFICEER
19823562 T"Kemal hEvc:oqu ZWeapons - ‘wAntI Surface Warfare LIEUTENANT OFFICER o
19833698 aYucea ”Atalay " Eectonics mm{;\le";;ons Ei;c“tromcs) MUEUTENANT’ *OFFICER
; 19833602 ABulent Otcay Ne ‘ :LIEUTENANT. OFF!CER
; ;985;1023 Aydm Yl!maz » *LIEUTENANT » OFFICER -
1 998;90; ;A“hmet ' Cank:m h Englneermg o ;Eléctncali N o T géNLISTED

252

TABLE
DYNAMIC MX-83 FLEET EXERCISE 1

| OPERATION

7 Mediterranean Sea, Aegean Sea -

{SEAWORM-84 FLEET EXERCISE '06/0211994 28 Mediterranean Sea, Aegean Sea, Marmara Sea
FRIENDSHIP-97 "SQUADRON EXERCISE :04/12/1997 4526/1997 : 14:Black Sea, Marmara Sea

SEAVWORM-96 FLEET EXERCISE .06/10/4986 07/09/1896 28 Mediterranean Sea, Aegean Sea, Marmara Sea

DISTANT THUN... .FLEET EXERCISE 04/12/1998 :04/28/1398 165Aegean Sea, Mediterranean Sea

SEA STAR-95 SQUADRON EXERCISE :09/06/1995 ;:09124!1 985 18§ Black Sea, Marmara Sea

253

FZSEQUIPMENT TABLE

BE]

rer | Wooel | Locaion | Rurime |
©sasss . scos 1753

14526947822 1004567106 'DECCA 'ERADAR 592“511993 Decca TN 2001 50308 19,852

1599630457 2008521138 HF-1 | COMMUNICATL... 10/1811996 Marconi HF 7003 02H4 © 5823

14522106897 2005691255 UHF-3 éCOMMUNlCATL.. 112/051992 Marconi SS 12 14,200

18,610

MT 900

18652496520 3001447845 GPS INAVIGATION | 03/1411882 Magnavox |

254

[g}rmmmﬁ TABLE

H=E

Hehcopter Controner
Commanding Officer
Executive Officer

Chief Engineer

Operations Electronics

Weapons Electronics

D:RlNCE TRA]NING CENTER

ERINCE TRAINING" C::NTER

YILDIZLAR TRAINING CENTER

YlLDlZLAR TRAINING CENTER

: DERINCE TRAINING CENTER

LDIZLAR TRAINING CENTER

NS Intec.Cell Spaomg

CourseName i i %uxseDescriptmn
Communications KARAMURSEL TRNN!NG CENTER' ' 8 Commumcanons Course prepares the ne...
cic KARAMURSEL TRAINING CENTER ; 8 CIC Caurse gwes the necessary backgrou ”
Wepaons _ KARAMURSEL TRAINING CENTER 6 Weapons Course educatesthe Wepons Of.

.,..,,A«M. ¢ c—— 1 v L wa a e wd

32 Operations Eiectromcs Course trains the O..]

32 Wepaons Electromcs Course tfrains the Oﬁ'

4 Hehcopter Controﬂer Course prepares the

4 Commandmg Officer Course educates the .,

4 xecutwe Officer Course educates the Exe...

i

i s+ o Ao o 37

83 Chief Englneer Course educates the Chief ..

255

D. REPORTS

omsmn REPORT _ ‘ l i
_ DEPARTMENT ~_ DIVISION ' OFFICERS]

P jmeering o I[Pro ! BE
o Hewl
> Damageconn-ol T

Wespons ~ AuiSufaceWarfwe 1

L

256

[TRAINING REPORT

_FIRSTNAME

Yuksel S

- Lutﬁ »‘,‘i :

| Mucahit
Tsmet -

257

%ASINMENEPDRT » »] N i A

. TCGMUAVENET CICOffcer

 Fire Control Officer

258

[& LANGUAGE REPORT

FIRSTNAME . =

Unal

259

FS EXERCISE/EVENT REPORY

 SEAWORM94

'FRIENDSHIP-97

awomess

COMMUNICATIONS .~

260

[Z5PORT VISIT REPORT ; v v —

_ STARTDATE

261

fZJEQUIPMENT FAILURE REPORT

Pii[s1 B3

ANSQSSS

THES

___ DURATION({Hours)

262

EEE|

 GOLCUK NAVAL SHIPYARD

263

E. FORMS

[EJPERSONNEL FORM Bi=]
aitaryD: S e e
FirsstNamme: -0 : ~A{Yuksel
LastName:. /. =" oo o dlcan
“Departinent:. i g ' w5 | operations
Ronk: e
Date OfBirth: . 0 [oamsner2
Ploce Of Birth: " Ll e Kastamony
‘FathersName:: Ui el “Jismail
; FiNan TE DS R L s
-108/3011994
+7108/30/1997
cAMALE
J MARRIED
ISihe!
:'}’1
1277 Spruance Road
- {Monterey
“Acalifomia 1
'+ [93940-4830
:1(831) 372-4408
- |Computer Science
-5 JCOMMUNICATIONS OFFICER
- [o9r30r1984
12K11

Rk

‘Spouse'sName: © .
‘Number Of Children: = -

264

2% OPERATION FORM
Exercise ﬂéme &
Exerc:se Iype
s:annate- &
‘End Dme b
Durauon(says}. .

Paace {SezﬁOcean):

:ngxttxme Underwaynouls

Heh'l'asl meber

meg’f’m(imzrsi’ »

Numtler Ofmppmgs

To(al Dxppmg Time (Hours) :

Fue! Cost
Ammunawn Cost

amomzatmn

CostOfExemse' n

DISTANTTHUNDER-QS '

~~loarnanaes

116

1041281 998

Aegean Sea, Mediterranean Sea

'fDa)ﬁme' !mderway !-lours i

360

314

H45

f*v 142

8

35

 |1800000

200000.0

:4220000.0

-+-1600000.0

265

EQUIPMENT FOR
}serié Nomber -
sgockNumber
S
Eqmpmm'l'me
&hnm‘acmrex
ﬁqummuode!

‘Equipment Rmtme (Hiours):

1254698210 .

v 100-425-4125

JAN/SQS-56

11011201992

-{Signaal

266

APPENDIX F: APPLICATION PROGRAM CODE

[//==mmm—— - e e e e
// File : POETApplication.java

// Author : LTJG. Yuksel CAN

// Date : June 22, 1999 . '

// Description : POETApplication class provides a database frontend
// application with a graphical user interface to

// access a Microsoft Access database called POET.mdb
// that stores and manipulates personnel, operation,

// equipment, and training information about a ship.

// The application program uses the JDBC-ODBC Bridge

// for connecting to the database and swing objects

// and methods for graphical user interface.

// Compiler : JDK 1.2.1

// Comments : . POETApplication program can be run as an application
// or as an applet.

[e e -

import java.awt.*;

import java.awt.event.*;
import java.sql.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.*;
import javax.swing.border.*;

~
* % %k ok ok ok o ¥ ¥ *
*

~

The POETApplication class implements a database frontend
application to access a Microsoft Access database that stores
and manipulates personnel, operation, equipment, and training
information about a ship. The application program uses the
JDBC-ODBC Bridge for connecting to the database and swing objects
and methods for graphical user interface.

Qauthor LTJG. Yuksel Can

public class POETApplication extends JApplet {

// Menu Bar
JMenuBar menuBar;

// Menus
JMenu fileMenu;
JMenu helpMenu;

// CardLayout panels

static JPanel deck;
static JPanel welcome;

267

static JPanel mainMenu;
static JPanel tableMenu;
static JPanel inputFormMenu;
static JPanel updateFormMenu;
static JPanel reportMenu;
static JPanel queryMenu;

//CardLayout Manager
static CardLayout cardManager;

// Menu Items
‘JMenultem exit;
JMenultem contents;
JMenultem about;

// Main Menu Buttons
JButton tableButton;
JButton inputButton;
JButton updateButton;
JButton reportButton;
JButton queryButton;
JButton stopButton;

// Table Menu Buttons
JButton personnelTable;
JButton operationTable;
JButton equipmentTable;
JButton trainingTable;
JButton departmentTable;
JButton divisionTable;
JButton mainMenuTable;

// Input Form Menu Buttons
JButton personnellInputForm;
JButton operationInputForm;
JButton equipmentInputForm;
JButton trainingInputForm;
JButton overhaullInputForm;
JButton courseToTakeInputForm;
JButton courseTakenInputForm;
JButton assignmentInputForm;
JButton languageInputForm;
JButton eventInputForm;
JButton visitInputForm;
JButton failureInputForm;
JButton mainMenulnputForm;

// Output Form Menu Buttons
JButton personnelUpdateForm;
JButton operationUpdateForm;
JButton equipmentUpdateForm;
JButton trainingUpdateForm;
JButton overhaulUpdateForm;
JButton courseToTakeUpdateForm;

268

JButton courseTakenUpdateForm;
JButton assignmentUpdateForm;
JButton languageUpdateForm;
JButton eventUpdateForm;
JButton visitUpdateForm;
JButton failureUpdateForm;
JButton mainMenuUpdateForm;

// Report Menu Buttons
JButton divisionReport;
JButton overhaulReport;
JButton trainingReport;
JButton assignmentReport;
JButton languageReport;
JButton eventReport;
JButton visitReport;
JButton failureReport;
JButton mainMenuReport;

// Query Menu Buttons
JButton courseToTakeQuery;
JButton courseTakenQuery;
JButton assignmentQuery;
JButton languageQuery;
JButton eventQuery;
JButton visitQuery;
JButton failureQuery;
JButton newQuery;

JButton mainMenuQuery;

// Connection Panel object
static ConnectionPanel connectionPanel;

// String array for connectionPanel dialog box
static String[] connectOptionNames = { "Start",

// Query Window Components

JPanel queryPanel;
JPanel leftPanel;

JFrame queryFrame;
JButton fetchButton;
JLabel selectLabel;
JLabel fromLabel;

JLabel wherelabel;
JLabel grouplabel;
JLabel havinglabel;
JLabel) orderLabel;

JTextArea selectArea;
JTextArea fromArea;
JTextArea wherelArea;
JTextArea groupArea;
JTextArea havingArea;
JTextArea orderArea;
JComponent queryAggregate;

269

"Cancel”

}i

JScrollPane tableAggregate;

// Static fonts and colors
static Font labelFont;
static Font textFont;
static Font headerFont;

static Color labelColor;
static Color areaColor;

static Color panelColor;
static Color buttonColor;

// Table Model object
JDBCAdapter dataBase;

// JFrame object
static JFrame frame;

/**

* Method main initializes the frame for the GUI.
* @param args command line arguments

* @Qreturn void

*/
public static void main(String[] args) {

labelFont = new Font("Serif", Font.BOLD, 18);
textFont = new Font("Serif", Font.BOLD, 16);
headerFont = new Font ("Arial", Font.BOLD, 44);:

labelColor = new Color (170, 200, 170);
areaColor = new Color (233, 229, 185);
panelColor = new Color (197, 216, 234);
buttonColor = new Color (160, 220, 245);

frame = new JFrame ("POET");

// Handle the window closing event
frame.addWindowListener (new WindowAdapter ()

{ public void windowClosing(Win&owEvent e)
System.exit (0);

});

// Set Metal Look and Feel

String metalClassName =
"javax.swing.plaf.metal.MetallLookAndFeel";

270

/**

* Method init initializes the GUI components and registers
* event listeners for the menu items.

* @param args command line arguments

* @return void

try {
UIManager.setLookAndFeel (metalClassName) ;
SwingUtilities.updateComponentTreeUI (frame);

frame.pack():
}

catch (Exception e) {
JOptionPane.showMessageDialog(null, "ERROR",

"Metal Look And Feel could not be loaded",
JOptionPane.ERRCR_MESSAGE) ;

}

POETApplication poetApplication = new POETApplication();
connectionPanel = new ConnectionPanel();

if (JOptionPane.showOptionDialog(null, ,

) connectionPanel, "POET DATABASE CONNECTION",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.INFORMATION MESSAGE,
null, connectOptionNames,
connectOptionNames[0]) == 0) {

deck = new JPanel();

cardManager = new CardLayout();
deck.setlayout (cardManager) ;
frame.getContentPane().édd(poetApplication);
poetApplication.init();
poetApplication.start();

// Add panel deck to the applet
poetApplication.getContentPane () .add(deck);

frame.setSize (800, 600);
frame.setVisible (true) ;

} // end if

} // end main()

271

public void init{() {

// Initialize the menus
fileMenu = new JMenu("File");
helpMenu = new JMenu("Help");

// Initialize the menu items

exit = new JMenultem("Exit");

about = new JMenultem("About");
contents = new JMenultem{"Contents");

// Initialize the welcome panel and its components
welcome = new JPanel();

welcome.setLayout (null) ;

welcome.setSize (800, 600);
welcome.setBackground(panelColor);

String filename "images/meko.jpg";
ImageIcon image new ImageIcon(filename);
JLabel shipLabel = new JLabel (image);
shipLabel.setSize (800, 300);
shiplLabel.setLocation(0, 0);

JLabel header = new JLabel ("POET DATABASE APPLICATION",
JLabel.CENTER) ;

header.setForeground{Color.blue);

header.setFont (headerFont) ;

header.setSize (800, 200);

header.setLocation (0, 300);

JButton startButton = new JButton("START");
startButton.setBackground (panelColor) ;
startButton.setForeground(Color.blue);
startButton.setSize (100, 50);
startButton.setLocation (250, 475);

JButton exitButton = new JButton ("EXIT");
exitButton.setBackground (panelColor);
exitButton.setForeground(Color.blue);
exitButton.setSize (100, 50);
exitButton.setLocation (450, 475);

welcome.add (shipLabel) ;
welcome.add (header) ;
welcome.add (startButton);
welcome.add (exitButton);

deck.add (welcome, "welcome");

// Initialize the main menu and its components
mainMenu = new JPanel();

mainMenu.setLayout (null);
mainMenu.setSize (800, 600);
mainMenu.setBackground (panelColor);

272

String filen

ImageIcon imagel = new ImageIcon(filenamel);

JLabel shipl
shipLabell.s
shiplLabell.s

tableButton

tableButton.
tableButton.
tableButton.
tableButton.

inputButton

inputButton.
inputButton.
inputButton.
inputButton.

updateButton

updateButton.
updateButton.
updateButton.
updateButton.

reportButton

reportButton.
reportButton.
reportButton.
reportButton.

queryButton

queryButton.
queryButton.
queryButton.
queryButton.

stopButton =
stopButton.s
stopButton.s
stopButton.s
stopButton.s

"images/mekol.jpg";

amel

abell = new JLabel (imagel);
etSize (800, 350);
etLocation(0, 0);

= new JButton ("TABLES");
setBackground (panelColor) ;
setForeground(Color.blue);
setSizeé (150, 50);
setLocation (150, 350);

= new JButton ("INPUT FORMS"):;
setBackground (panelColor) ;
setForeground(Color.blue);
setSize (150, 50);
setLocation(150, 420);

= new JButton ("UPDATE FORMS");
setBackground (panelColor);
setForeground(Color.blue);
setSize (150, 50);

setLocation (450, 420);

= new JButton("REPORTS");
setBackground (panelColor) ;
setForeground(Color.blue);
setSize (150, 50):;
setLocation (450, 350);

= new JButton ("QUERIES");
setBackground (panelColor);
setForeground (Color.blue);
setSize (150, 50);
setLocation (150, 490);

new JButton ("EXIT");
etBackground (panelColor);
etForeground(Color.blue);
etSize (150, 50);
etLocation (450, 490);

mainMenu.add(shipLabell);
mainMenu.add(tableButton);
mainMenu.add (inputButton);
mainMenu.add (updateButton);
mainMenu.add (reportButton);
mainMenu.add(quexryButton);
mainMenu.add(stopButton);

deck.add (mai

nMenu, "mainMenu"):;

273

// Initialize
tableMenu
tableMenu
tableMenu
tableMenu

personnelTable

the table menu and its components

new JPanel();
.setlLayout (null);
.setSize (800,
.setBackground (panelColor);

600) ;

new JButton ("PERSONNEL TABLE");

personnelTable. setBackground (buttonColor) ;

personnelTable.setSize (200,
personnelTable.setLocation (150,

operationTable

50);
100);

new JButton ("OPERATION TABLE");

operationTable.setBackground (buttonColor) ;
operationTable.setSize (200, 50);
operationTable.setLocation (450, 100);

equipmentTable

new JBu%ton("EQUIPMENT TABLE") ;

equipmentTable.setBackground (buttonColor) ;
equipmentTable.setSize (200, 50):;
equipmentTable.setLocation (150, 250);

trainingTable
trainingTable
trainingTable
trainingTable

departmentTable

new JButton ("TRAINING TABLE");
.setBackground (buttonColor) ;
.setSize (200, 50);

.setLocation (450, 250);

new JButton ("DEPARTMENT TABLE");

departmentTable.setBackground (buttonColor) ;

departmentTable
departmentTable

divisionTable

divisionTable.
divisionTable.
divisionTable.

mainMenuTable

mainMenuTable.
mainMenuTable.
mainMenuTable.

tableMenu.
tableMenu.
tableMenu.
tableMenu.
tableMenu.
tableMenu.
tableMenu.

add
add
add

add
add

.setSize (200, 50);

.setLocation (150, 400);

= new JButton("DIVISION TABLE") ;
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (450, 400);

new JButton("RETURN TO MAIN MENU");
setBackground (buttonColor) ;

setSize (200, 50);

setLocation (300, 500);

(personnelTable);
(operationTable);
(equipmentTable) ;

add{(trainingTable);

(departmentTable) ;
(divisionTable) ;

add (mainMenuTable) ;

deck.add (tableMenu, "tableMenu");

// Initialize
inputFormMenu
inputFormMenu

the input form menu and its components
= new JPanel();
.setLayout (null);

274

inputFormMenu.setSi
inputFormMenu.setBa

personnelInputForm

personnelInputForm.
personnelInputForm.
personnelInputForm.

operationInputForm

operationInputForm.
operationInputForm.
operationInputForm.

equipmentInputForm

equipmentInputForm.
equipmentInputForm.
equipmentInputForm.

trainingInputForm

ze (800, 600);
ckground (panelColor);

new JButton ("PERSONNEL INPUT FORM");
setBackground (buttonColor) ;

setSize (200, 50);

setLocation (150, 20);

new JButton ("OPERATION INPUT FORM");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (450, 20);

new JButton ("EQUIPMENT INPUT FORM");
setBackground (buttonColor) ;

setSize (200, 50);
setLocation (150, 100);

new JButton ("TRAINING INPUT FORM");

trainingInputForm.
trainingInputForm.
trainingInputForm.

overhaulInputForm
overhaulInputForm.

setBackground (buttonColor) ;
setSize (200, 50);
setLocation (450, 100);

new JButton ("OVERHAUL INPUT FORM");
setBackground (buttonColor);

setSize (200, 50);
setlLocation (150,

overhaulInputForm.

overhaulInputForm. 180);

courseToTakeInputForm new JButton ("COURSE~TO-TAKE INPUT FORM"):;
courseToTakeInputForm.setBackground (buttonColor);
courseToTakeInputForm.setSize (200, 50);
courseToTakeInputForm.setLocation (450, 180);

= new JButton("COURSE-TAKEN INPUT FORM");
.setBackground (buttonColor);
.setSize (200, 50);

.setLocation (150, 260);

courseTakenInputForm
courseTakenInputForm
courseTakenInputForm
courseTakenInputForm

assignmentInputForm = new JButton ("ASSIGNMENT INPUT FORM");
assignmentInputForm.setBackground (buttonColor);
assignmentInputForm.setSize (200, 50);

assignmentInputForm.setLocation (450, 260);

new JButton ("LANGUAGE INPUT FORM"):;
setBackground (buttonColor);

setSize (200, 50);

setLocation (150, 340);

languageInputForm

languageInputForm.
languageInputForm.
languageInputForm.

new JButton ("EVENT INPUT FORM");
.setBackground (buttonColor) ;
.setSize (200, 50);
.setLocation (450,

eventInputForm
eventInputForm
eventInputForm

eventInputForm 340);

visitInputForm

new JButton ("PORT VISIT INPUT FORM"):;
visitInputForm

.setBackground (buttonColor) ;

275

visitInputForm.setSize (200, 50);
visitInputForm.setLocation (150, 420);

failureInputForm = new JButton ("FAILURE INPUT FORM");
failureInputForm.setBackground (buttonColor);
failureInputForm.setSize (200, 50);
failureInputForm.setLocation (450, 420);

mainMenuInputForm = new JButton("RETURN TO MAIN MENU");
mainMenuInputForm.setBackground(buttonColor);
mainMenuInputForm.setSize (200, 50);
mainMenuInputForm.setLocation (300, 500);

7

)
inputFormMenu.add (operationInputForm) ;
)

inputFormMenu.add (personnellInputForm
(
inputFormMenu.add (equipment InputForm
(
(

inputFormMenu.add(trainingInputForm);
inputFormMenu.add (overhaul InputForm) ;
inputFormMenu.add (courseToTakeInputForm) ;
inputFormMenu.add(courseTakenInputForm);
inputFormMenu.add (assignmentInputForm) ;
inputFormMenu.add (languageInputForm) ;
inputFormMenu.add(eventInputForm);
inputFormMenu.add(visitInputForm);
inputFormMenu.add(failureInputForm) ;
inputFormMenu.add (mainMenuInputForm) ;

deck.add (inputFormMenu, "inputFormMenu");

// Initialize the update form menu and its components
updateFormMenu = new JPanel();

updateFormMenu. setLayout (null);
updateFormMenu.setSize (800, 600);

updateFormMenu. setBackground (panelColor) ;

personnelUpdateForm = new JButton("PERSONNEL UPDATE FORM") ;
personnelUpdateForm. setBackground (buttonColor) ;
personnelUpdateForm.setSize (200, 50);
personnelUpdateForm.setLocation (150, 20);

operationUpdateForm = new JButton("OPERATION UPDATE FORM") ;
operationUpdateForm.setBackground (buttonColor) ;
operationUpdateForm.setSize (200, 50);
operationUpdateForm.setLocation (450, 20);

equipmentUpdateForm new JButton ("EQUIPMENT UPDATE FORM");
equipmentUpdateForm. setBackground (buttonColor) ;
equipmentUpdateForm.setSize(200, 50} ;
equipmentUpdateForm.setLocation (150, 100);

trainingUpdateForm = new JButton("TRAINING UPDATE FORM");
trainingUpdateForm. setBackground (buttonColor) ;
trainingUpdateForm.setSize (200, 50);

trainingUpdateForm. setLocation (450, 100);

276

overhaulUpdateForm new JButton ("OVERHAUL UPDATE FORM"):;
overhaulUpdateForm.setBackground (buttonColor});
overhaulUpdateForm.setSize (200, 50);

overhaulUpdateForm.setLocation (150, 180);

new JButton ("COURSE-TO-TAKE UPDATE
FORM") ;
.setBackground (buttonColor) ;
.setSize (200, 50);
.setLocation (450, 180);

courseToTakeUpdateForm
courseToTakeUpdateForm
courseToTakeUpdateForm
courseToTakeUpdateForm

courseTakenUpdateForm = new JButton ("COURSE-TAKEN UPDATE FORM") ;
courseTakenUpdateForm. setBackground (buttonColor) ; :
courseTakenUpdateForm.setSize (200, 50);
courseTakenUpdateForm.setLocation (150, 260);

assignmentUpdateForm new JButton ("ASSIGNMENT UPDATE FORM");
assignmentUpdateForm.setBackground(buttonColor) ;

assignmentUpdat
assignmentUpdat

languageUpdateF
languageUpdateF
languageUpdateF
languageUpdateF

eventUpdateForm

eventUpdateForm.
eventUpdateForm.
eventUpdateForm.

visitUpdateForm

visitUpdateForm.
visitUpdateForm.
visitUpdateForm.

failureUpdateFo
failureUpdateFo
failureUpdateFo
failureUpdateFo

mainMenuUpdateF
mainMenuUpdateF
mainMenuUpdateF
mainMenuUpdateF

updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.

.setSize (200, 50);
.setLocation (450, 260);

eForm
eForm

= new JButton ("LANGUAGE UPDATE FORM");
setBackground (buttonColor);

setSize (200, 50);
setLocation (150,

orm
orm.
orm.

orm. 340);

new JButton ("EVENT UPDATE FORM");
setBackground (buttonColor) ;

setSize (200, 50);

setLocation (450, 340);.

new JButton ("PORT VISIT UPDATE FORM");
setBackground (buttonColor);
setSize (200, 50);

setlocation (150, 420);

rm new JButton ("FAILURE UPDATE FORM"):;
rm.setBackground (buttonColor);
rm.setSize (200, 50);

rm.setLocation (450, 420);

new JButton ("RETURN TO MAIN MENU");
.setBackground (buttonColor);
.setSize (200, 50);

.setLocation (300,

orm
orm
orm
orm 500} ;
add (personnelUpdateForm) ;
add (operationUpdateForm) ;
add (equipmentUpdateForm) ;
add(trainingUpdateForm) ;

add (overhaulUpdateForm) ;

add (courseToTakeUpdateForm) ;
add (courseTakenUpdateForm) ;
add (assignmentUpdateForm) ;

277

updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.
updateFormMenu.

deck.add (updateFormMenu,

add (languageUpdateForm) ;
add (eventUpdateForm) ;
add (visitUpdateForm);
add (failureUpdateForm) ;
add (mainMenuUpdateForm) ;

"updateFormMenu") ;.

// Initialize the report menu and its components
reportMenu new JPanel();
reportMenu.setLayout (null);
reportMenu.setSize (800, 600);
reportMenu.setBackground (panelColor);

divisionReport
divisionReport.
divisionReport.
. divisionReport.

overhaulReport
overhaulReport
overhaulReport.
overhaulReport.

trainingReport

trainingReport.
trainingReport.
trainingReport.

assignmentReport

assignmentReport.
assignmentReport.
assignmentReport.

languageReport

languageReport.
languageReport.
languageReport.

eventReport
eventReport.
eventReport.

eventReport.set

visitReport
visitReport.
visitReport.

visitReport.

set

failureReport
failureReport.s
failureReport.s
failureReport.s

setLocation (150,

= new JButton("DIVISION REPORT");
setBackground (buttonColor);
setSize (200, 50);

setLocation (150, 50);

new JButton ("OVERHAUL REPORT"):;

.setBackground (buttonColor) ;

setSize (200, 50);
setLocation (450, 50);
= new JButton ("TRAINING REPORT");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (150, 170);

= new JButton ("ASSIGNMENT REPORT");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (450, 170);

new JButton ("LANGUAGE REPORT");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (150, 290);

new JButton ("EVENT REPORT");
setBackground (buttonColor) ;
setSize (200,

50);
Location (450, 290);

new JButton("PORT VISIT REPORT"):;
setBackground (buttonColor) ;

Size (200, 50);

410);

new JButton ("FAILURE REPORT"):;
etBackground (buttonColor) ;
etSize (200, 50);

etLocation (450, 410);

278

mainMenuReport

new JButton ("RETURN TO MAIN MENU");

mainMenuReport.setBackground (buttonColor);

mainMenuReport.setSize (200,

50);

mainMenuReport.setLocation (300, 500);

reportMenu.
reportMenu.
reportMenu.
reportMenu.
reportMenu.
reportMenu.
reportMenu.
reportMenu.
reportMenu.

deck.add (reportMenu,

add(divisionReport) ;
add{overhaulReport);
add(trainingReport);
add (assignmentReport);
add (languageReport) ;
add (eventReport) ;
add(visitReport);
add(failureReport);
add (mainMenuReport) ;

"reportMenu") ;

// Initialize the query menu and its components

queryMenu
queryMenu
gueryMenu

new JPanel () ;

.setLayout (null) ;
.setSize (800,

600) ;

queryMenu

.setBackground (panelColor);

courseToTakeQuery = new JButton ("COURSE-TO-TAKE QUERY");
courseToTakeQuery.setBackground (buttonColor);
courseToTakeQuery.setSize (200, 50);
courseToTakeQuery.setLocation (150, 50);

courseTakenQuery new JButton ("COURSE-TAKEN QUERY"):;
courseTakenQuery.setBackground (buttonColor);
courseTakenQuery.setSize (200, 50);
courseTakenQuery.setLocation (450, 50);

assignmentQuery

assignmentQuery.
assignmentQuery.
assignmentQuery.

languageQuery

languageQuery.
languageQuery.
languageQuery.

eventQuery

eventQuery.
eventQuery.
eventQuery.

visitQuery

visitQuery.
visitQuery.
visitQuery.

new JButton ("ASSIGNMENT QUERY");
setBackground (buttonColor);
setSize (200, 50);

setLocation (150, 170);

new JButton ("LANGUAGE QUERY");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (450, 170);

= new JButton ("EVENT QUERY");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (150, 290);

new JButton ("PORT VISIT QUERY");
setBackground (buttonColor) ;
setSize (200, 50);

setLocation (450, 290);

279

failureQuery = new JButton("FAILURE QUERY");
failureQuery.setBackground (buttonColor) ;
failureQuery.setSize (200, 50);
failureQuery.setLocation (150, 410);

newQuery = new JButton("NEW QUERY");
newQuery.setBackground (buttonColor);
newQuery.setSize (200, 50);
newQuery.setLocation (450, 410);

mainMenuQuery = new JButton("RETURN TO MAIN MENU");
mainMenuQuery.setBackground (buttonColor);
mainMenuQuery.setSize (200, 50);
mainMenuQuery.setLocation (300, 500);

queryMenu.add (courseToTakeQuery) ;
queryMenu.add (courseTakenQuery) ;
queryMenu.add(assignmentQuery) ;
queryMenu.add (languageQuery) ;
gueryMenu.add (eventQuery) ;
queryMenu.add(visitQuery) ;
queryMenu.add(failureQuery);
queryMenu. add (newQuery) ;
queryMenu. add (mainMenuQuery) ;

deck.add(queryMenu, "queryMenu"):;

// Add the menu items to the appropriate menus
fileMenu.addSeparator();

fileMenu.add(exit);

fileMenu.addSeparator();
helpMenu.add(contents);

helpMenu.addSeparator();
helpMenu.add (about) ;

menuBar = new JMenuBar():;
// Add menus to the menu bar
menuBar.add(fileMenu);
menuBar.add (helpMenu) ;
setJMenuBar (menuBar) ;
// Add action listeners to menu items to handle action events
exit.addActionListener(new ActionListener ()
{
public void actionPerformed(ActionEvent e)

System.exit (0);

)

280

contents.addActionlListener{ new ActionListener ()

{

public void actionPerformed(ActionEvent e)

JOptionPane.showMessageDialog(null,
"FOR HELP, CONSULT WITH LTJG.
Yuksel Can",
"HELP TOPICS",
JOptionPane.INFORMATION MESSAGE) ;

}):

about.addActionListener{ new ActionlListener()

{

public void actionPerformed(ActionEvent e)

JOptionPane.showMessageDialog(null,
"POET DATABASE APPLICATION PROGRAM FOR " +
"THE TURKISH NAVY FRIGATES, Written By " +
"LTJG. Yuksel Can", "ABOUT THE PROGRAM",
JOptionPane.INFORMATION MESSAGE) ;

1)

// Add action listeners to buttons to handle action events
exitButton.addActionlListener(new ActionListener ()

{ public void actionPerformed(AcfionEvent e)
System.exit (0);

}):

startButton.addActionListener(new ActionlListener()

{

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "mainMenu");

)i

tableButton.addActionlListener (new ActionListener()
{

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "tableMenu");

281

inputButton.addActionListener (new ActionlListener ()
{
public void actionPerformed(ActionEvent e)

cardManager.show(deck, "inputFormMenu");

}):
updateButton.addActionListener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "updateFormMenu");

by
reportButton.addActionListener(new ActionlListener()
{

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "reportMenu");

IS
queryButton.addActionListener(new ActionListener ()
{ N

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "queryMenu");

}Ys

stopButton.addActionListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
System.exit (0);

}):

personnelTable.addActionlistener(new ActionlListener ()

{ public void actionPerformed(ActionEvent e)

personnelTable();

})s

282

operationTable.addActionListener(new ActionListenef()
{
public void actionPerformed(ActionEvent e)

operationTable();

}):

equipmentTable.addActionListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
equipmentTable () ;

}):

trainingTable.addActionListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
trainingTable();

})i:

departmentTable.addActionListener(new Actionlistener()

{ public void actionPerformed(ActionEvent e)
departmentTable();

})i

divisionTable.addActionListene;(new ActionListener()

{ public void actionPerformed(ActionEvent e)
divisionTable();

}):

mainMenuTable.addActionlistener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "mainMenu");

}):

personnelInputForm.addActionListener(new ActionListener ()
{
public void actionPerformed(ActionEvent e)

personnelInputForm();

283

}):

operationInputForm.addActionListener(new ActionListener()

{ public void actionPerformed(Actionﬁvent e)
operationInputForm();

})i

equipmentInputForm.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

equipmentInputForm() ;

by

trainingInputForm.addActionListener{ new ActionListener()

{ public void actionPerformed(ActionEvent e)
trainingInputForm() ;

}):

overhaulInputForm.addActionListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)

overhaulInputForm() ;

)

courseToTakeInputForm.addActionListener(new ActionListener ()

{
public void actionPerformed(ActionEvent e)

courseToTakelInputForm();

}):

courseTakenInputForm.addActionListener(new ActionListener ()

{

public void actionPerformed(ActionEvent e)

{
courseTakenInputForm();

}):

assignmentInputForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{ -

284 .

assignmentInputForm();

}):

languageInputForm.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{
languageInputForm()};

}):

eventInputForm.addActionListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
eventInputForm();

)i

visitInputForm.addActionListener(new ActionListener ()
{
public void actionPerformed(ActionEvent e)
visitInputForm();

}):

failureInputForm.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)
failureInputForm();

}):

mainMenuInputForm.addActionListener (new ActionListener()
{)
public void actionPerformed(ActionEvent e)

cardManager.show(deck, "mainMenu");

}):

personnelUpdateForm.addActionListener(new ActionListener ()
{ .
public void actionPerformed(ActionEvent e)

personnelUpdateForm() ;

}):

285

operationUpdateForm.addActionListener(new ActionListener ()

{
public void actionPerformed(ActionEvent e)

operationUpdateForm();

13N
equipmentUpdateForm.addActionListener(new ActionListener ()

{
public void actionPerformed(ActionEvent e)

equipmentUpdateForm();
})i

trainingUpdateForm.addActionListener (new Actionlistener ()

{

public void actionPerformed(ActionEvent e)
trainingUpdateForm();

}):
overhaulUpdateForm.addActionListener(new ActionListener ()
{ .

public void actionPerformed(ActionEvent e)

overhaulUpdateForm() ;

s

courseToTakeUpdateForm.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)
courseToTakeUpdateForm() ;

}):
courseTakenUpdateForm.addActionLisfener(new ActionListener ()

{

public void actionPerformed(ActionEvent e)
courseTakenUpdateForm() ;

}):

assignmentUpdateForm.addActionListener(new ActionListener ()

{
public void actionPerformed(ActionEvent e)
{

assignmentUpdateForm{() ;

}):

286

languageUpdateForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

languageUpdateForm() ;

)i

eventUpdateForm.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)
eventUpdateForm() ;

}):

i

visitUpdateForm.addActionListener(new ActionListener ()
{

public void actionPerformed (ActionEvent e)

visitUpdateForm() ;

});

failureUpdateForm.addActionListener(new ActionListener()

{ public void actionPerformed(ActionEvent e)
failureUpdateForm() ;

}):

mainMenuUpdateForm.addActionlistener (new ActionListener()

{

public void actionPerformed(ActionEvent e)

cardManager.show(deck, "mainMenu");

.});

divisionReport.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)
{ ’ '

divisionReport():;

)

overhaulReport.addActionListener (new ActionListener()
{

public void actionPerformed(ActionEvent e)

overhaulReport () ;

287

}):

trainingReport.addActionlListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
trainingReport();

}):

assignmentReport.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)
assignmentReport () ;

)

languageReport.addActionlistener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)
languageReport () ;

}):
eventReport.addActionlistener(new ActionListener ()
{ .

public void actionPerformed(ActionEvent e)

eventReport () ;

}):
visitReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)

visitReport();

}):
failureReport.addActionListener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)

failureReport();

1)
mainMenuReport.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

288

cardManager.show (deck, "mainMenu");

1)

courseToTakeQuery.addActionlListener(new ActionListener()

{

public void éctionPerformed(ActionEVent e)

{ .
courseToTakeQuery () ;

b

courseTakenQuery.addActionlistener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

courseTakenQuery();

1)

assignmentQuery.addActionlistener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
assignmentQuery();

3

languageQuery.addActionListener(new ActionListener()

{ public void actionPerformed(ActionEvent e)
languageQuery();

.)

})i:

eventQuery.addActionListener(new ActionListener ()

{ public void actionPerformed(ActionEvent e)
eventQuery () ;

}):

visitQuery.addActionlistener (new ActionListener()

{ public void actionPerformed(ActionEvent e)

visitQuery():

})s

289

failureQuery.addActionListener (new ActionLlistener ()

{

public void actionPerformed (ActionEvent e)

{

failureQuery();

)i

newQuery.addActionListener(new ActionListener()

{ ,
public void actionPerformed(ActionEvent e)

showQueryWindow () ;

}):

mainMenuQuery.addActionListener(new ActionListener ()

{
public void actionPerformed{ActionEvent e)

{

cardManager. show(deck, "mainMenu");

|

} // end init ()

/**

* Method personnelTable retrieves all records from Personnel table.
* @param none

* @return void

*/

public void personnelTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver (),
connectionPanel.getUserID(),

connectionPanel.getPassword());
dbadapter.connect () ;

String tableQuery = "SELECT * FROM Personnel";
dbadapter.executeQuery(tableQuery);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

290

JPanel controlPanel = new JPanel();

JLabel cellSpacinglLabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacinglabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().
setAccessibleName ("Inter-Cell Spacing"):;
cellSpacinglabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelistener (new ChangeListener()
{
public void stateChanged(ChangeEvent e)
{ ,
int spacing = ((JSlider) e.getSource()).getValue();
table.setIntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}):

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel) ;

JSlider rowHeightSlider = new JSlider(
JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangelListener (new ChangeListener ()

{
public void stateChanged(ChangeEvent e)

{

int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height); ‘
table.repaint();

b

JFrame frame = new JFrame ("PERSONNEL TABLE");
frame.setSize (800, 600);

- frame.setBackground(Color.lightGray):
frame.getContentPane () .setLayout (new BorderLayout ());
frame.getContentPane() .add(scrollPane, BorderLayout.CENTER);
frame.getContentPane () .add(controlPanel, BorderLayout.NORTH);

frame.show();

} // end personnelTable()

291

/**

* Method operationTable retrieves all records from Operation table.
* @param none R

* @return void

*/
public void operationTable() {

JDBCAdapter dbadapter;
dbadapter = new .JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver (),
connectionPanel.getUserID(),

connectionPanel.getPassword());
dbadapter.connect () ;

String tableQuery = "SELECT * FROM Operation";
dbadapter.executeQuery (tableQuery);

final JTable table = new JTable(dbadapter);
JScrollPane scrollPane = new JScrollPane (table);
JPanel controlPanel = new JPanel ();

JLabel cellSpacinglabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().
setAccessibleName ("Inter-Cell Spacing");
cellSpacinglLabel.setlabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelistener (new ChangelListener ()

{
public void stateChanged(ChangeEvent e)

{

int spacing = ((JSlider) e.getSource()).getValue();
table.setIntercellSpacing(new Dimension(spacing,
spacing));

table.repaint ();

}s

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20):

. 292

rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height"):;

rowHeightLabel.setLabelFor (rowHeightSlider);

controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener (new Changelistener ()

{
public void stateChanged(ChangeEvent e)

{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight (height);
table.repaint ();

)

JFrame frame = new JFrame ("OPERATION TABLE"):;
frame.setSize (800, 600);
frame.setBackground{(Color.lightGray):
frame.getContentPane () .setLayout (new BorderLayout());
frame.getContentPane () .add(scrollPane, BorderLayout.CENTER);
frame.getContentPane () .add (controlPanel, BorderLayout.NORTH) ;

_frame.show();

} // end operationTable ()

/**

* Method equipmentTable retrieves all records from Equipment table.
* @param none

* @return void

*/ '

public void equipmentTable () {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver(),
connectionPanel.getUserID(),

connectionPanel.getPassword());
dbadapter.connect () ;

String tableQuery = "SELECT * FROM Equipment”;.
dbadapter.executeQuery (tableQuery);

final JTable table = new JTable(dbadapter);
JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanel();

293

JLabel cellSpacinglabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JS1lider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().
setAccessibleName ("Inter-Cell Spacing"):
cellSpacingLabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener (new Changelistener ()

{
public void stateChanged(ChangeEvent e)

{

int spacing = ((JSlider) e.getSource()) .getValue();
table.setIntercellSpacing(new Dimension{spacing,
spacing));

table.repaint();

})s

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JS1lider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext (). ,
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangelistener (new ChangeListener ()

{
public void stateChanged(ChangeEvent e)

{
int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height) ;
table.repaint();

});

JFrame frame = new JFrame ("EQUIPMENT TABLE");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray);

frame.getContentPane () .setLayout (new BorderLayout());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER) ;
frame.getContentPane().add(controlPanel,.BorderLayout.NORTH);

frame.show();

} // end equipmentTable()

294

/**

* Method trainingTable retrieves all records from Training table.
* @param none

* @return void

*/

public void trainingTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver (),
connectionPanel.getUserID(),

connectionPanel.getPassword()};
dbadapter.connect();

String tableQuery = "SELECT * FROM Training";
dbadapter.executeQuery(tableQuery);

final JTable table = new JTable(dbadapter):;
JScrollPane scrollPane = new JScrollPane({table);

JPanel controlPanel = new JPanel();
[

JLabel cellSpacingLabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacinglabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0, 10, 1);

cellSpacingSlider.getAccessibleContext ().
setAccessibleName ("Inter-Cell Spacing");

cellSpacingLabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelistener (new Changelistener ()

{
public void stateChanged(ChangeEvent e)

{
int spacing = ((JSlider) e.getSource()).getValue();

table.setIntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}):

JlLabel rowHeightLabel = new JLabel ("Row Height"):
controlPanel.add (rowHeightLabel);

JSlider rowHeightSlider = new JSlider

295

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add (rowHeightSlider) ;

rowHeightSlider.addChangeListener (new ChangeListener ()

{
public void stateChanged(ChangeEvent e)

{

int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint();

}):

JFrame frame = new JFrame ("TRAINING TABLE");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray);

frame.getContentPane() .setLayout (new BorderLayout());
frame.getContentPane() .add(scrollPane, BorderLayout.CENTER);
frame.getContentPane().add(controlPanel, BorderLayout .NORTH) ;

frame.show();

} // end trainingTable ()

/**

* Method departmentTable retrieves all records from Department
* table.

* @param none

* @return void

*/

public void departmentTable() {

JDBCAdapter dbadaptef;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver(),
connectionPanel.getUserID(),

connectionPanel.getPassword());
dbadapter.connect () ;

String tableQuery = "SELECT * FROM Department";
dbadapter.executeQuery (tableQuery);

final JTable table = new JTable (dbadapter);

JScrollPane scrollPane = new JScrollPane (table);

296

JPanel controlPanel = new JPanel();

JLabel cellSpacinglabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0O, 10, 1):
cellSpacingSlider.getAccessibleContext ().
setAccessibleName ("Inter-Cell Spacing"):
cellSpacinglabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelistener (new Changelistener()

{ ,
public void stateChanged(ChangeEvent e)

{ ‘

int spacing = ((JSlider) e.getSource()).getValue();
table.setIntercellSpacing(new Dimension (spacing,
spacing));
table.repaint();

)

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel) ;

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");

rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add (rowHeightSlider);

rowHeightSlider.addChangelListener (new ChangelListener()

{
public void stateChanged(ChangeEvent e)

{

int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint();

}):

JFrame frame = new JFrame ("DEPARTMENT TABLE");
frame.setSize (800, 600);

frame.setBackground (Color.lightGray);

frame.getContentPane() .setLayout (new BorderLayout()):;
frame.getContentPane() .add(scrollPane, BorderLayout.CENTER);
frame.getContentPane () .add(controlPanel, BorderLayout.NORTH);

frame.show();

} // end departmentTable()

297

/**

* Method divisionTable retrieves all records from Division table.
* @param none

* Rreturn void

*/

public void divisionTable() ({

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL{(),

connectionPanel.getDriver(),
connectionPanel.getUserID(),

connectionPanel.getPassword());
dbadapter.connect () ;

String tableQuery = "SELECT * FROM Division";
dbadapter.executeQuery (tableQuery);

final JTable table = new JTable(dbadapter);
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel = new JPanel();

JLabel cellSpacinglabel = new JlLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().
setAccessibleName ("Inter-Cell Spacing");
cellSpacinglabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener (new ChangeListener ()

{
public void stateChanged(ChangeEvent e)

{

int spacing = ((JSlider) e.getSource()).getValue();
table.setIntercellSpacing(new Dimension (spacing,
spacing)); '
table.repaint();

|

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

298

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener (new ChangelListener()
{
public void stateChanged(ChangeEvent e)
{ A
int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint ()

b i

JFrame frame = new JFrame ("DIVISION TABLE");
frame.setSize (800, 600);

frame.setBackground (Coloxr.lightGray):;
frame.getContentPane () .setLayout (new BorderLayout());
frame.getContentPane () .add(scrollPane, BorderLayout.CENTER);
frame.getContentPane () .add (controlPanel, BorderLayout.NORTH);

\

frame.show();

} // end divisionTable()

/**

* Method personnellnputForm adds a new record to the Personnel
* table. : '

* @param none

* @return void

*/

public void personnellnputForm() {

final PersonnelForm form = new PersonnelForm("PERSONNEL FORM");
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);

form.addButton.addActionListener (new Actionlistener ()

{
public void actionPerformed(ActionEvent e)

{

String insertQuery = "INSERT INTO Personnel " +
IIVALUES (” + myw +
form.militaryIDField.getText () + "', '" +
form.firstNameField.getText () + "', '" +
form.lastNameField.getText() + "', '" +

299

form.
form.
form
form.

form.
form.
form.
form.
form.

form.
form.
L] +
form.
T +
form
form.
form.
form.
form.
form.
form.
form.
) form.
"l, |"+
form.
form.
form.
form.

departmentField.getSelectedItem() +

divisionField.getSelectedItem() +

.rankField.getSelectedItem() + "', '"

ratingField.getSelectedItem() + "',

birthDateField.getText () + "', '" +
birthPlaceField.getText () + "', '" +
fatherField.getText () + "', '" +
motherField.getText () + "', ' +
serviceDateField.getText () + "', '"

rankDateField.getText () + "', '" +
genderField.getSelectedItem() + "',

maritalField.getSelectedItem() + "',

.spouseField.getText () + "', " +

childrenField.getText () + ", '" +
streetField.getText () + "', '" 4+
cityField.getText () + "', '" +
stateField.getText() + "', '™ +
zipField.getText () + "', '™ +
phoneField.getText () + "', '" +
specialityField.getText () + "', '" +
educationField.getSelectedItem() +

assignmentField.getText () + "', '" +
startDateField.getText () + "', '" +

cabinNumberField.getText () + "', " +
cabinPhoneField.getText () + ")";

. updateQuery(insertQuery);

form.dispose();

}):

form.cancelButton.addActionListener (new ActionListener ()

{
t
form.dispose();

}
}):

} // end personnellnputForm()

300

public void actionPerformed(ActionEvent e)

/**

* Method operationInputForm adds a new record to the Operation
* table. '

* @param none

* @Qreturn void

*/

public void operationInputForm() {
final OperationForm form = new OperationForm("OPERATION FORM");
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);

form.addButton.addActionListener (new ActionlListener ()

{
public void actionPerformed(ActionEvent e)

{

String insertQuery = "INSERT INTO Operation " +
"VALUES (" + mrn +
form.nameField.getText() + "', '™ +
form.typeField.getSelectedItem() + "', '"

form.startDateField.getText () + "', '" +
form.endDateField.getText() + "', " +
form.durationField.getText() + ", '" +

form.placeField.getText () + "', " +
form.daytimeField.getText () + ", " +
form.nighttimeField.getText () + ", '" +
form.heloField.getText() + "', " +
form.flyingField.getText () + ", " +
form.dippingNumberField.getText () + ", "

form.dippingTimeField.getText () + ", " +
~ form.fuelCostField.getText() + ", " +
form.ammoCostField.getText () + ", " +
form.amortizationField.getText () + ", " +
form.costField.getText() + ")";

updateQuery(insertQuery);
form.dispose();

}):

form.cancelButton.addActionListener (new ActionListener ()

{
public void actionPerformed(ActionEvent e)

{

form.dispose();
}
})i

301

} // end operationInputForm()

/**

* Method equipmentInputForm adds a new record to the Equipment
* table.

* @return void

*/

public void equipmentInputForm() {
final EquipmentForm form = new EquipmentForm ("EQUIPMENT FORM") ;
form.ﬁpdateButton.setEnabled(false);
form.deleteButton.SetEnabled(false);

form.addButton.addActionListener (new ActionListener ()
{
public void actionPerformed(ActionEvent e)
{
String insertQuery = "INSERT INTO Equipment " +
"VALUES ((1] + mn +
form.serialNumberField.getText () + "', '"

form.stockNumberField.getText () + "', '"

form.nameField.getText () + "', '™ +
form.typeField.getSelectedItem() + "', '"

form.dateField.getText () + "', '" +
form.manufacturerField.getText () + "',

”

form.modelField.getText () + "', '" +
form.locationField.getText () + "', " +
form.runtimeField.getText () + ")";

updateQuery (insertQuery) ;
form.dispose();

)

form.cancelButton.addActionListener (new ActionListener ()

{
public void actionPerformed(ActionEvent e)

{

form.dispose();
}
})i

} // end equipmentInputForm()

302

/**

* Method trainingInputForm adds a new record to the Training
* table. '

* @param none

* @return void

*/

public void trainingInputForm() {
final TrainingForm form = new TrainingForm("TRAINING FORM");
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);

form.addButton.addActionListener (new Actionlistener()
{.
public void actionPerformed(ActionEvent e)

{

String insertQuery = "INSERT INTO Training " +
"VALUES (" + mweaw +
form.nameField.getText () + "', '" +
form.placeField.getSelectedItem(} + "',

form.durationField.getText() + ", '" +
form.descriptionField.getText () + "')";

updateQuery (insertQuery);
form.dispose();

})s

form.cancelButton.addActionListener (new ActionListener () '

{

public void actionPerformed(ActionEvent e)

{

form.dispose();
}
}):

} // end trainingInputForm()

303

* % .

* Method overhaullnputForm adds a new record to the Overhaul
* table.

* @param none

* @return void

*/

public void overhaulInputForm() {
final OverhaulForm form = new OverhaulForm("OVERHAUL FORM");
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);

form.addButton.addActionListener (new ActionListener ()
{
public void actionPerformed(ActionEvent e)
{
String insertQuery = "INSERT INTO Overhauls " +
"VALUES (" + mrn +
form.shipField.getSelectedItem() + "', "

form.numberField.getText () + ", '" +
form.startDateField.getText() + "', '" +
form.endDateField.getText () + "', " +
form.durationField.getText() + ", '™ +
form.shipyardField.getText() + "'}";

updateQuery (insertQuery);
form.dispose();

1)

form.cancelButton.addActionListener (new ACtionListener()

{

public void actionPerformed(ActionEvent e)

{

form.dispose();
}
|

} // .end overhaulInputForm()

304

/**

* Method courseToTakeInputForm adds a new record to the
* CoursesToTake table.

* @param none

* @return void

*/
public void courseToTakeInputForm() {

final CourseToTakeForm form = new CourseToTakeForm/(
' "COURSE-TO~-TAKE FORM");

form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);
form.addButton.addActionListener (new ActionListener ()

{

public void actionPerformed(ActionEvent e)

{

String insertQuery = "INSERT INTO CoursesToTake " +

"VALUES (” + mrw +
form.militaryIDField.getText () + "',
form.courseField.getText () + "')";

updateQuery (insertQuery);
form.dispose();

}):

form.cancelButton.addActionlListener (new ActionListener()
{
public void actionPerformed(ActionEvent e)
y .
form.dispose();
'}
}):

} // end courseToTakeInputForm()

/**

* Method courseTakenInputForm adds a new record to the
* CoursesTaken table.

* @param none

* @return void

*/

305

e -+

public void courseTakenInputForm() {

final CourseTakenForm form = new CourseTakenForm(
"COURSE-TAKEN FORM") ;

form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false) ;"

form.addButton.addActionListener (new ActionListener ()
{ .
public void actionPerformed (ActionEvent e)
{
String insertQuery = "INSERT INTO CoursesTaken " +

"VALUES (” + mwrwn +
form.militaryIDField.getText () + "', '" +
form.courseField.getText () + "', '" +
form.startDateField.getText () + "', '" +
form.endDateField.getText () + "', " +-
form.gradeField.getText () + ")";

updateQuery(insertQuery) ;
form.dispose();

)

form.cancelButton.addActionlListener (new ActionListener ()
{
public void actionPerformed(ActionEvent e)
{
form.dispose();
}
1)

} // end courseTakenInputForm()

/**

* Method assignmentInputForm adds a new record to the
* Assignments table.

* @param none

* @return void

*/
public void assignmentInputForm() {

final AssignmentForm form = new AssignmentForm(
"ASSIGNMENT FORM");

306

form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);

form.addButton.addActionListener (new ActionListener ()

{
public void actionPerformed(ActionEvent e)

{
String insertQuery = "INSERT INTO Assignments " +
. "VALUES (" + mew +

form.militaryIDField.getText() + "', " +
form.numberField.getText () + ", '" +
form.stationField.getText () + "', '" +
form.positionField.getText () + "', " +

form.durationField.getText () + ")";

|

\

|

|

\

|

updateQuery (insertQuery);
form.dispose();

}):

form.cancelButton.addActionlListener (new ActionListener ()

{ .
public void actionPerformed(ActionEvent e)

{

form.dispose();

}
}):

} // end assignmentInputForm{)

/**

* Method languageInputForm adds a new record to the
* ForeignLanguages table.

* @param none

* @return void

*/

public void languageInputForm() {

final LanguageForm form = new LanguageForm("LANGUAGE FORM");
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);
form.addButton.addActionListener (new ActionListener ()

{

public void actionPerformed(ActionEvent e)

{

307

String insertQuery = "INSERT INTO ForeignLanguages "

+
"VALUES (" + mrn +
form.militaryIDField.getText () + "', '" +
form.languageField.getSelectedItem() +
"l' T +
- form.degreeField.getSelectedItem() +
"1)";
updateQuery (insertQuery);
form.dispose();
}
by
form.cancelButton.addActionListener (new ActionListener ()
{
public void actionPerformed(ActionEvent e)
{
form.dispose();
}
})i:
} // end languageInputForm/()
/**
* Method eventInputForm adds a new record to the Events table.
* @param none
* @return void
*/
public void eventInputForm() {
final EventForm form = new EventForm("EXERCISE/EVENT FORM") ;
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);
form.addButton.addActionlistener (new ActionListener ()
; :
public void actionPerformed(ActionEvent e)
{ ‘
String insertQuery = "INSERT INTO Events " +
"VALUES (” + mweraw + . .
form.exerciseField.getText () + "', '" +
form.eventField.getText () + "', '" +
form.typeField.getSelectedItem() + "', "
+

form.numberField.getText () + ", " +
form.durationField.getText () + ")";

308

updateQuery (insertQuery);
form.dispose();

}y:

form.cancelButton.addActionListener (new Actionlistener ()

{
public void actionPerformed(ActionEvent e)

{
form.dispose();

}
}):

} // end eventInputForm()

/**

* Method visitInputForm adds a new record to the PortVisits table.
* @param none

* @return void

*/

public void visitInputForm() {
final PortVisitForm form = new PortVisitForm("PORT VISIT FQRM");
form.updateButton.setEnabled(false);
form.deleteButton.setEnabled (false);
form.addButton.addActionListener(new ActionListener ()

{

public void actionPerformed(ActionEvent e)

{
String insertQuery = "INSERT INTO PortVisits " +

"VALUES (" + "'" +
form.exerciseField.getText () + "', '" +
form.portField.getText () + "', '" +
form.startDateField.getText () + "', '" +
form.endDateField.getText () + "', " +

form.durationField.getText () + ")";
updateQuery (insertQuery);
form.dispose();

|

309

form.cancelButton.addActionListener (new ActionListener ()

{

public void actionPerformed(ActionEvent e)
{

form.dispose();
‘ }
}):

} // end visitInputForm()

/**

* Method failureInputForm adds a new record to the Failures table.
* @param none

* @return void

*/

public void failureInputForm() {

final FailureForm form = new FailureForm(
"EQUIPMENT FAILURE FORM");

form.updateButton.setEnabled(false);
form.deleteButton.setEnabled(false);

form.addButton.addActionListener (new ActionListener()

{

public void actionPerformed(ActionEvent e)

{ ,
String insertQuery = "INSERT INTO Failures " +

"VALUES (” + mrn +
form.serialField.getText () + "', " +
form.failureField.getText () + ", '" +

form.descriptionField.getText () + "', 'v

form.diagnosisField.getText () + "', " +
form.dateField.getText () + ", " +
form.durationField.getText () + ")";

updateQuery(insertQuery);
form.dispose():

|

form.cancelButton.addActionListener (new ActionlListener ()

{

public void actionPerformed(ActionEvent e)

{
form.dispose();

}

310

} // end failureInputForm()

/**

* Method personnelUpdateForm retrieves and displays a personnel
* record, which can then be modified or deleted.

* @param none

* @return void

*/

s

public void personnelUpdateForm (). {

JPanel getPanel = new JPanel():;
JLabel getNameLabel = new JLabel ("Enter Military ID : ");
JTextField getNameField = new JTextField(25);

getPanel.add (getNameLabel) ;
getPanel.add (getNameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel”,
JOptionPane.YES_NO_CANCEL OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames[0]) == 0) ({

String query = "SELECT * FROM Personnel WHERE " +
"MilitaryID = " 4 mew 4
getNameField.getText () + "'";

il

ResultSet rs selectQuery(query);

try {
if (rs != null) {

rs.next ();

final PersonnelForm form = new PersonnelForm/(
"PERSONNEL FORM");

form.militaryIDField.setText (rs.getString(1));

form.firstNameField.setText (rs.getString(2)):

form.lastNameField.setText (rs.getString(3));
form.departmentField.setSelectedItem(rs.getString(4));

form.divisionField.setSelectedItem(rs.getString(5));

form.rankField.setSelectedItem(rs.getString(6));

311

form.ratingField.setSelectedItem(rs.getString(7));

form.
form.
form.
form.

birthDateField.setText (rs.getString(8));
birthPlaceField.setText(rs.getString(9));
fatherField.setText (rs.getString(10)):;
motherField.setText (rs.getString(11));

form.serviceDateField.setText (rs.getString(12));

form.

rankDateField.setText (rs.getString(13));

form.genderField.setSelectedItem(rs.getString(14));

form.maritalField.setSelectedItem(rs.getString(15));

form.
form.
form.
form.
form.
form.
form.
form.

spouseField.setText (rs.getString(16)):;
childrenField.setText (rs.getString(17));
streetField.setText (rs.getString(18));
cityField.setText (rs.getString(19));
stateField.setText (rs.getString(20));
zipField.setText (rs.getString(21));
phoneField.setText (rs.getString(22));
specialityField.setText (rs.getString(23));

form.educationField.setSelectedItem(rs.getString(24));

form.
form.

assignmentField.setText(rs.getString(25));
startDateField.setText (rs.getString(26));

form.cabinNumberField.setText (rs.getString(27));

form.

form.

form.

form.

cabinPhoneField.setText (rs.getString(28));
militaryIDField.setEditable (false);
addButton.setEnabled(false);

updateButton.addActionListener (new

ActionListener ()

{

Personnel SET " +

public void actionPerformed (ActionEvent
e)
{

String updateString = "UPDATE

"FirstName = " + "'" +

form.firstNameField.getText() + "', " +
. "LastName - ” + myn +

form.lastNameField.getText ()
+ wr , " +

"DepartmentName = " + "'" +
form.departmentField.getSelectedItem() + "', " +

"DivisionName = " + "'" +
form.divisionField.getSelectedItem() + "', " +

"Rank = " + nmr +

312

form.rankField.getSelectedItem() + "', " +

form.ratingField.getSelectedItem{) + "', "

form.birthDateField.getText () + "', " +

form.birthPlaceField.getText () + "', " +

mr +

form.serviceDateField.getText () + "', " +

+ "l, LY
"

form.genderField.getSelectedItem() + "',

form.maritalField.getSelectedItem() + "',

"l’ " +
+",0" 4
"|' ” +
we , " +
"" ”w +
"'l " +
"l’ " +

form.specialityField.getText () + "', " +

313

+

+

+

"Rating = " + "'V +
"DateOfBirth = " + "'" +
"PlaceOfBirth = " + "'" +
"FatherName = " + "'" +

form.fatherField.getText () +

"MotherName = " + "'" +
form.motherField.getText () +

"ActiveDutyServiceDate = " +

"DateOfRank = " + "'" +
form.rankDateField.getText ()

llGender =" + new +

"MaritalStatus = " + "'" +

"SpouseName = " + "'" +
form.spouseField.getText () +

"NumberOfChildren = " +
form.childrenField.getText ()

HStreet = " + nyn +
form.streetField.getText () +

"City =" 4 wrw 4
form.cityField.getText () +

"State =" + my + .
form.stateField.getText () +

"ZipCode = " 4 wviw
form.zipField.getText () +

"PhoneNumber = " + "'" +
form.phoneField.getText () +

"Speciality =" 4 win

"Bducation = " + "'" +

form.educationField.getSelectedItem() + "', " +

"CurrentAssignment = " + "'"
+ .
form.assignmentField.getText () + "', " +
- "StartDate —-— " + myaw +
form.startDateField.getText () + "', " +
"CabinNumber = " + "'" +
form.cabinNumberField.getText () + "', " +
"CabinPhone = " +
form.cabinPhonéField.getText() +
" WHERE MilitaryID =" + "'»
+
form.militaryIDField.getText () + "'";
updateQuery (updateString) ;
form.dispose();
}
P
form.deleteButton.addActionlListener (new
ActionListener () :
{
public void actionPerformed(ActionEvent
e)

{
String deleteString = "DELETE FROM
Personnel " +
‘ "WHERE MilitaryID
=" 4 nmyw

form.militaryIDField.getText () + "'";
updateQuery(deleteString);
form.dispose();

})s

form.cancelButton.addActionListener (new
Actionlistener ()

{

public void actionPerformed(ActionEvent
e)

{

form.dispose();

314

}
else {

JOptionPane.showMessageDialog(this,
"Unable to find record in
database”,

"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;

} // end if
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR _MESSAGE) ;

} // end catch
} // end if

} // end personnelUpdateForm()

/**

* Method operationUpdateForm retrieves and displays an exercise
* record, which can then be modified or deleted.

* @param none

* @return void

*/
public void operationUpdateForm() {

JPanel getPanel = new JPanel();
JLabel getNameLabel = new JLabel ("Enter Exercise Name : ");
JTextField getNameField = new JTextField(25);

getPanel.add(getNamelabel) ;
getPanel.add (getNameField);

String[] optionNames = { "OK", "Cancel"” }:

if (JOptionPane.showCptionDialog(this, getPanel,
"Select Exercise",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,

315

optionNames[0]) == 0) {

String query = "SELECT * FROM Operation WHERE " +

ResultSet rs

try {

"ExerciseName = " + "'n 4
getNameField.getText () + "'";

selectQuery(query);

if (rs !'= null) {

rs.next();

final OperationForm form = new OperationForm(

form.

form
form.
form.
form.
form.
form.
form.
form.
form.
form.

))i

form.
form.
form.
form.

)i

form.
form.

form.

form.

"OPERATION FORM");

nameField.setText (rs.getString(1));

.typeField.setSelectedItem(rs.getString(2))

startDateField.setText (rs.getString(3));
endDateField.setText (rs.getString(4));
durationField.setText (rs.getString(5));
placeField.setText (rs.getString(6));
daytimeField.setText (rs.getString(7));
nighttimeField.setText (rs.getString(8));
heloField.setText (rs.getString(9));
flyingField.setText (rs.getString(10));
dippingNumberField.setText (rs.getString (11

dippingTimeField.setText (rs.getString(12))
fuelCostField.setText (rs.getString(13));
ammoCostField.setText (rs.getString(14));
amortizationField.setText (rs.getString(15)
costField.setText (rs.getString(16));
nameField.setEditable (false);
addButton.setEnabled(false);

updateButton.addActionlListener (new

ActionlListener ()

{

Operation SET " +

N

form.typeField.getSelectedItem() +

public void actionPerformed(ActionEvent
e)
{ -
String updateString = "UPDATE

"ExerciseType = " + "'" 4

"o "
’ +

"StartDate = " 4 wrw 4

316

form.startDateField.getText () + "', "

+ ", 4
+ ", "4
we R " +
+",0" 4+
+

form.dippingNumberField.getText () + ", " +

"

form.dippingTimeField.getText () + ",

form.amortizationField.getText () + ",

wn +

mwenw.,
’

317

+

"EndDate = ” + mn +
form.endDateField.getText ()

"Duration = " +
form.durationField.getText ()

llPlace =" + nmyw +
form.placeField.getText () +

"DaytimeUnderwayHours = " +
form.daytimeField.getText ()

"NighttimeUnderwayHours = "

"HeloTailNumber = " + """ +
form.heloField.getText () +

"FlyingDuration = " +
form.flyingField.getText () +

"NumberOfDippings =" 4
"DippingDuration = " +

"FuelCost = " +
form.fuelCostField.getText ()

"AmmunitionCost = " +
form.ammoCostField.getText ()

"Amortization = " +

"CostOfExercise = " +

form.costField.getText () +

" WHERE ExerciseName = " +

form.nameField.getText () +

updateQuery (updateString);

form.dispose();

, form.deleteButton.addActionListener (new
ActionListener ()

public void actionPerformed(ActionEvent
e)

{

String deleteString = "DELETE FROM
Operation " +

"WHERE ExerciseName =
” + mnmrn +

form.nameField.getText () + "'";

updateQuery(deleteString);
form.dispose();

)i

form.cancelButton.addActionListener (new
ActionListener ()

{

public void actionPerformed(ActionEvent
e)

{
form.dispose();
}
P

}
else {

JOptionPane.showMessageDialog(this,

"Unable to find record in
database",

"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;

} // end if
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end if

} // end operationUpdateForm()

318

/**

* Method equipmentUpdateForm retrieves and displays an egipment
* record, which can then be modified or deleted.

* @param none

* @return void

*/
public void equipmentUpdateForm() {

JPanel getPanel = new JPanel(): _
JLabel getNamelLabel = new JLabel ("Enter the Serial Number : ");
JTextField getNameField = new JTextField(25);

getPanel.add(getNameLabel) ;
getPanel.add(getNameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Equipment",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames([0]) == 0) ({

"SELECT * FROM Equipment WHERE " +
"SerialNumber = " + "'" +
getNameField.getText () + "'";

String gquery

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final EquipmentForm form = new EquipmentForm({
"EQUIPMENT FORM");

form.serialNumberField.setText (rs.getString(1l))

form.stockNumberField.setText(rs.getString(Z));
form.nameField.setText (rs.getString(3));

form.typeField.setSelectedItem(rs.getString(4))
form.dateField.setText (rs.getString(5));
form.manufacturerField.setText (rs.getString(6})
form.modelField.setText (rs.getString(7)):

form.locationField.setText (rs.getString(8))}:
form.runtimeField.setText (rs.getString(9));

319

form.serialNumberField.setEditable (false);
form.addButton.setEnabled(false);

form.updateButton.addActionListener (new
ActionListener ()

{

public void actionPerformed(ActionEvent

e)
{
String updateString = "UPDATE

Equipment SET " +

"StockNumber = " + "'" ¢
form.stockNumberField.getText () + "', " +

"EquipmentName = " + "'" 4

form.nameField.getText () +
"l’ " + .

"EquipmentType = " + "'" +
form.typeField.getSelectedItem() + "', " +

‘ "ProductionDate = " + "'" +

form.dateField.getText () +
"I' " +

"Manufacturer = " + "'" +
form.manufacturerField.getText () + "', " +

"Model = " 4+ "'w 4

form.modelField.getText () +
"l' "v+

"Location P " + mrn +

form.locationField.getText ()
+ "', ”n +

"Runtime = " +
form.runtimeField.getText ()

" WHERE SerialNumber = " +
wrew o4
form.serialNumberField.getText () + "'";
updateQuery (updateString);
form.dispose();
}):

form.deleteButton.addActionlListener (new
ActionlListener ()
{ i
public void actionPerformed(ActionEvent
e) .

320°

{ .
String deleteString = "DELETE FROM
Equipment " +

"WHERE
SerialNumber = " + "'" +
form.serialNumberField.getText () + "'";
updateQuery(deleteString);
form.dispose();
}
})i
form.cancelButton.addActionListener (new
ActionListener () '
{
public void actionPerformed(ActionEvent
e) '
{
form.dispose();
}
}Yi
}
else {

JOptionPane.showMessageDialog(this,
"Unable to find record in

database", .
"Record Not Found",

JOptionPane.ERROR_MESSAGE);
} // end if
} // end try
- catch (SQLException e) {

JOptionPane.showMessageDialog(this,
"SQL Exception : " +

e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;
} // end catch
} // end if

} // end equipmentUpdateForm()

321

/**

* Method trainingUpdateForm retrieves and displays a course
* record, which can then be modified or deleted.

* @param none

* @return void

*/

public void trainingUpdateForm() ({

JPanel getPanel = new JPanel();
JLabel getNameLabel = new JLabel ("Enter the Course Name : ");
JTextField getNameField = new JTextField(25);

getPanel.add (getNameLabel) ;
getPanel.add (getNameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Course",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Training WHERE " +
"CourseName = " + "'n 4
getNameField.getText () + "'";

I

ResultSet rs selectQuery(query);

try {
if (rs !'= null) {

rs.next():;

final TrainingForm form = new TrainingForm(
"TRAINING FORM");

form.nameField.setText (rs.getString(1l));

form.placeField.setSelectedItem(rs.getString(2)
)i

form.durationField.setText (rs.getString(3));

form.descriptionField.setText (rs.getString(4));

form.nameField.setEditable (false);
form.addButton.setEnabled (false);

form.updateButton.addActionListener (new
ActionListener ()

{
public void actionPerformed(ActionEvent
e)

322

Training SET " +

wrn,
r

Training " +
=" 4 wew 4

form.nameField.getText ()

String updateString = "UPDATE

"TrainingCenter = " + "'" +
form.placeField.getSelectedItem() +

"', " + "CourseDuration = "
+ B,

form.durationField.getText ()
+ ” ’ ” + ‘

"CourseDescription = " + "'"
+
form.descriptionField.getText () + "'" +

" WHERE CourseName = " + "'"
+

form.nameField.getText () +

updateQuery (updateString) ;
form.dispose():

}):

form.deleteButton.addActionListener (new
ActionListener ()

{

public void actionPerformed(ActionEvent
e) ’

{

String deleteString = "DELETE FROM

"WHERE CourseName

+ "l";
updateQuery(deleteString);
form.dispose();

}):

form.cancelButton.addActionListener (new
ActionlListener ()

{

public void actionPerformed(ActionEvent
e)
{

form.dispose():

}

323

}

else {
JOptionPane.showMessageDialog(this,
"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch
} // end if

} // end trainingUpdateForm{()

J**
* Method overhaulUpdateForm retrieves and displays an overhaul
* record, which can then be modified or deleted.

* @param none
* @return void

*/
public void overhaulUpdateForm() {
JPanel getPanel = new JPanel()

JPanel labelPanel new JPanel (
JPanel fieldPanel new JPanel (

]

)i
)

JLabel signlabel = new JLabel ("Enter the Ship's Call Sign : ");
JTextField signField = new JTextField(25);

JLabel numberlLabel = new JLabel ("Enter the Overhaul Number : ")
JTextField numberField = new JTextField(25);

labelPanel.setLayout (new GridLayout (0, 1));

labelPanel.add(signLabel);
labelPanel. add (numberLabel);

324

mern +

fieldPanel.setLayout(hew GridLayout (0, 1))
fieldPanel.add(signField);
fieldPanel.add(numberField);

getPanel.setLayout (new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Overhaul"”,
JOptionPane.YES NO_CANCEL_OPTION,
JOptionPane.QUESTION_ MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Overhauls WHERE " +
"InternationalCallSign = " +

signField.getText () + "' AND

"OverhaulNumber = " +
numberField.getText () ;

ResultSet rs selectQuery(query);

try {
if (rs !'= null) {

rs.next();
final OverhaulForm form = new OverhaulForm(
"OVERHAUL FORM");
form.shipField.setSelectedItem(rs.getString(l))
form.numberField.setText (rs.getString(2));
form.startDateField.setText (rs.getString(3));
form.endDateField.setText (rs.getString(4));
form.durationField.setText (rs.getString(5));
form.shipyardField.setText (rs.getString(6));
form.shipField.setEditable(false);
form.numberField.setEditable (false);

form.addButton.setEnabled(false);‘

form.updateButton.addActionListener (new
ActionListener()

{ .

325

public void actionPerformed (ActionEvent

e)
{
String updateString = "UPDATE
Overhaul SET " +
"StartDate = " + "'" 4
form.startDateField.getText () + "', " +
"EndDate - " + LU +
form.endDateField.getText ()
+ "we , n +
"OverhaulDuration = " +
form.durationField.getText ()
+ ” ’ " +
"ShipyardName = " + "'" 4+
form.shipyardField.getText ()
+ nmerw +
" WHERE
InternationalCallSign = " + "'" 4
form.shipField.getSelectedItem() + "' AND " +
"OverhaulNumber. = " +

form.numberField.getText () ;
updateQuery (updateString);
form.dispose();

};

form.deleteButton.addActionListener(new
ActionListener ()

{
public void actionPerformed (ActionEvent
e)
- { :
String deleteString = "DELETE FROM
Overhauls " +
"WHERE

InternationalCallSigﬁ ="+ "oy
form.shipField.getSelectedItem() +
"' AND OverhaulNumber
= " 4
form.numberField.getText ();
updateQuery(deleteString);

form.dispose();

}):

326

form.cancelButton.addActionListener (new

ActionListenerx ()
{
public void actionPerformed(ActionEvent
e)
{
form.dispose () ;
}
b
}
else { :
JOptionPane.showMessageDialog(this,
"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;
} // end if
} // end try
catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;
} // end catch
} // end if

} // end overhaulUpdateForm()

*

Method courseToTakeUpdateForm retrieves and displays a course
record that sould be taken by a person, which can then be
modified or deleted.

@param none

@return void

* % ok k% * F

~

public void courseToTakeUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel new JPanel();
JPanel fieldPanel new JPanel();

[}

JLabel idLabel = new JLabel ("Enter the Military ID : ");

327

final JTextField idField = new JTextField(25);

JLabel namelabel = new JLabel ("Enter the Course Name : ");
final JTextField nameField = new JTextField(25);

labelPanel.setLayout (new GridLayout (0, 1));
labelPanel.add(idLabel);
labelPanel.add (namelabel) ;

fieldPanel.setlayout (new GridLayout (0, 1));
fieldPanel.add(idField);
fieldPanel.add (nameField);

getPanel.setLayout (new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add (labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select CourseToTake",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM CoursesToTake WHERE " +
"MilitaryID = " + mrn +
idField.getText () + "' AND "

"CourseName = " + "'" 4
nameField.getText () + "'";

ResultSet rs

selectQuery (query);

try {
if (rs !'= null) {

rs.next();

final CourseToTakeForm form = new
CourseToTakeForm ("COURSE-TO-TAKE FORM");

form.militaryIDField.setText (rs.getString(1l));
form.courseField.setText (rs.getString(2));

form.militaryIDField.setEditable(false);
form.addButton.setEnabled(false);
form.updateButton.addActionListener (new

Actionlistener ()

{
public void actionPerformed(ActionEvent
e)

328

String updateString = "UPDATE

CoursesToTake SET " +
"CourseName = " + "'" +

form.courseField.getText () +
wtn +

" WHERE MilitaryID = " + "'"
idField.getText () + "' AND "

"CourseName = " + "'" +
nameField.getText () + "'";

updateQuery(updateString);
form.dispose();

}):

form.deleteButton.addActionListener (new
ActionListener()

{ .
- public void actionPerformed (ActionEvent

e)
{
String deleteString = "DELETE FROM " +
" "CoursesToTake " +
"WHERE MilitaryID = "

+ my +

| idField.getText () + "'
AND " + .
7 "CourseName = " + "'

+
nameField.getText () +

mwenw,
’

updateQuery(deleteString);

form.dispose();

})s

’

form.cancelButton.addActionListener (new
ActionListener ()
{
public void actionPerformed (ActionEvent
e)
{
form.dispose():;

}
}):

329

}

else {

JOptionPane.showMessageDialog (this,
"Unable to find record in
database”,

"Record Not Found", :
JOptionPane.ERROR_MESSAGE) ;

} /) end if
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end if

} // end courseToTakeUpdateForm()

Method courseTakenUpdateForm retrieves and displays a course
record that was taken by a person, which can then be
modified or deleted.

@param none

@return void

/

LIS S IR N .

public void courseTakenUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel ();
JPanel fieldPanel new JPanel ();

JLabel idLabel = new JLabel ("Enter the Military ID : "):
final JTextField idField = new JTextField(25);

JLabel namelabel = new JLabel ("Enter the Course Name : ");
final JTextField nameField = new JTextField(25);

labelPanel.setLayout (new GridLayout (0, 1));

labelPanel.add (idLabel);
labelPanel.add (namelabel);

330

fieldPanel.setLayout (new GridLayout (0, 1)):
fieldPanel.add (idField);
fieldPanel.add (nameField);

getPanel.setLayout (new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames =

{ "OK", "Cancel"” };

if (JOptionPane.showOptionDialog(this, getPanel,

"Select CourseTaken”,
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames[0]) == 0} {

String query = "SELECT * FROM CoursesTaken WHERE " +

ResultSet rs

try {

"MilitaryID = " + "'" +
idrield.getText () + "' AND "
"CourseName = " + "'" +
nameField.getText () + "'";

selectQuery(query);

if (rs != null) {

rs.next():;

final CourseTakenForm form = new
CourseTakenForm ("COURSE~TAKEN FORM");

form.
form.
form.
form.
form.

form.
form.

form.

nilitaryIDField.setText (rs.getString(1l));
courseField.setText (rs.getString(2));
startDateField.setText (rs.getString(3));
endDateField.setText (rs.getString(4));
gradeField.setText (rs.getString(5));

militaryIDField.setEditable(false);
addButton.setEnabled(false);

updateButton.addActionListener (new

ActionListener()

{

public void actionPerformed (ActionEvent
e)
{
String updateString = "UPDATE
CoursesTaken SET " +
"CourseName = " + "'" +

331

form.courseField.getText () + "', "
+

"StartDate = " + "'" 4

form.sta;tDateField.getText() + "r,o" o+

+ "l, "w +

ActionlListener ()

e)

+ mrw +

AND " +

myw,
7

ActionListener ()

e)

"EndDate = " + mrw +
form.endDateField.getText ()

"Grade = " +

form.gradeField.getText () +
" WHERE MilitaryID = " + "'n
idrield.getText() + "' AND "

"CourseName = " + "'" 4+
nameField.getText () + "'";

updateQuery(updateString);
form.dispose();

}):

form.deleteButton.addActionListener (new

{
public void actionPerformed(ActionEvent

{

String deleteString = "DELETE FROM "
"CoursesTaken " +
"WHERE MilitaryID "

+

idField.getText () + "'
"CourseName = " + "'"

nameField.getText () +

updateQuery(deleteString);
form.dispose();

)

form.cancelButton.addActionListener (new

{
public void actionPerformed(ActionEvent

332

form.dispose();

}

else { .
JOptionPane.showMessageDialog(this,
. "Unable to find record in
database",
"Record Not Found”,
JOptionPane.ERROR_MESSAGE) ;

} // end if
} // end try
catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);
} // end catch
} // end if

} // end courseTakenUpdateForm()

/**

* Method assignmentUpdateForm retrieves and displays a previous
* assignment record for a person, which can then be modified

* or deleted.

* @param none

* @return void

*

/

public void assignmentUpdateForm() {
JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

JLabel idLabel = new JLabel ("Enter the Military ID : ");
final JTextField idField = new JTextField(25);

JLabel numberLabel = new JLabel ("Enter the Assignment Number

")

final JTextField numberField = new JTextField(25);

333

labelPanel.setLayout (new GridLayout (0, 1));
labelPanel.add (idLabel) ;
labelPanel.add (numberlabel) ;

fieldPanel.setLayout (new GridLayout(0, 1));
fieldPanel.add(idField);
fieldPanel.add (numberField);

getPanel.setLayout (new BoxLayout (getPanel, BoxLayout.X AXIS)):;
getPanel.add{labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Previous Assignment",
JOptionPane.YES_NO CANCEL OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

‘String query = "SELECT * FROM Assignments WHERE " +
"MilitaryID = " + "'" +
idField.getText () + "' AND "

"AssignmentNumber = " +
numberField.getText ();

ResultSet rs

selectQuery(query);

try {
if (rs != null) {

rs.next ():;

final AssignmentForm form = new AssignmentForm(
"ASSIGNMENT FORM");

form.militaryIDField.setText (rs.getString(1));
form.numberField.setText (rs.getString(2));
form.stationField.setText (rs.getString(3));
form.positionField.setText (rs.getString(4));
form.durationField.setText (rs.getString(5));

form.militaryIDField.setEditable(false);
form.addButton.setEnabled(false);

form.updateButton.addActionListener (new
ActionListener ()
H
public void actionPerformed(ActionEvent
e)

{

334

Assignménts SET " +

+ "ne ' L\ +

+ "l’ " +

ActionListener ()

e) .

4 omrn g
AND " +

+

})s

{

s

String updateString = "UPDATE

"AssignmentNumber = " +
form.numberField.getText () +

"Station =" + "'V +
form.stationField.getText ()

"Position = " + nyn +
form.positionField.getText ()

"Duration = " +
form.durationField.getText ()

" WHERE MilitaryID = " 4 mm
idField.getText() + "' AND "

"AssignmentNumber = " +
numberField.getText ()’

updateQuery (updateString);

form.dispose();

'~ form.deleteButton.addActionListener (new

public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

' "Assignments " +
"WHERE MilitaryID

idField.getText() + "'

"AssignmentNumber
numberField.getText () ;
updateQuery(deleteString);

form.dispose();

form.cancelButton.addActionListener (new
ActionListener ())

335

public void actionPerformed(ActionEvent
e) i

form.dispose();

}

else {

JOptionPane.showMessageDialog(this,
"Unable to find record in
database",

"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;

} // end if
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end if

} // end assignmentUpdateForm/()

/**
* Method languageUpdateForm retrieves and displays a language
* record for a person, which can then be modified or deleted.
* @param none

- * @return void
*/

public void languageUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel{():

JLabel idLabel = new JLabel ("Enter the Military ID : ");
final JTextField idField = new JTextField(25);

JlLabel nameLabel = new JLabel ("Enter the Foreign Language : ");

336

final JTextField nameField = new JTextField(25);

labelPanel.
labelPanel.
labelPanel.

fieldPanel.
.add(idField);

fieldPanel

fieldPanel.

setLayout (new GridLayout (0, 1));
add (idLabel) ;

add (nameLabel) ;

setLayout (new GridLayout (0, 1));

add(nameField)}

getPanel.setLayout {(new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,

"Select Foreign Language",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_ MESSAGE, °
null, optionNames,

. optionNames[0]) == 0) {

String query = "SELECT * FROM ForeignlLanguages WHERE " +

"™ilitaryID =" + "'" +
idField.getText () + "' AND "

"Language = " 4 mrw 4
nameField.getText() + "'";

ResultSet rs = selectQuery(query);

try {

if (rs != null) {
rs.next():

final LanguageForm form = new LanguageForm(
"LANGUAGE FORM");

form.militaryIDField.setText (rs.getString(l)):

form.languageField.setSelectedItem(rs.getString
(2)):

form.degreeField.setSelectedItem(rs.getString(3
})i

form.militaryIDField.setEditable(false);
form.addButton.setEnabled (false);

form.updateButton.addActionListener (new
ActionListener()
{

337

public void actionPerformed(ActionEvent
e)

{
String updateString = "UPDATE

ForeignLanguages" +

" SET Language = " + "'" 4
form.languageField.getSelectedItem() +
’ "', " + "Degree =" + "'" 4+
form.degreeField.getSelectedItem() + "'" +
" WHERE MilitaryID = " + "'n
+
idField.getText() + "' AND "

"Language =" 4 wrw 4
nameField.getText () + "'";

updateQuery (updateString);
form.dispose();

})

form.deleteButton.addActionListener (new

ActionListener ()
{
public void actionPerformed(ActionEvent
e)
{
String deleteString = "DELETE FROM " +
"ForeignLanguages " +
"WHERE MilitaryID = "
+ LI} +
idField.getText () + "'
AND " +
"Language - " + mwrn +
nameField.getText () +
mwenw,
updateQuery(deleteString);
form.dispose () ;
}
}Y:
) form.cancelButton.addActionListener (new
ActionListener()

{

338

}

" public void actionPerformed(ActionEvent
e) ‘
{
form.dispose();
}
})i

else. {

JOptionPane.showMessageDialog (this,
"Unable to find record in
database"”,

"Record Not Found"”, :
JOptionPane.ERROR_MESSAGE) ;

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage (),

"SQL ERROR",
JOptionPane.ERROR MESSAGE) ;

} // end catch

} // end if

} // end languageUpdateForm/()

/**

* Method eventUpdateForm retrieves and displays an exercise
* event record, which can then be modified or deleted.

* @param none
* @return void

*/

public void eventUpdateForm() {

JPanel getPanel =

JPanel labelPanel
JPanel fieldPanel

new JPanel();
= new JPanel();
new JPanel();

JLabel exerciselabel = new JLabel ("Enter the Exercise Name : ");
final JTextField exerciseField = new JTextField(25);

JLabel eventlabel

= new JLabel ("Enter the Event Name : "};

339

final JTextField eventField = new JTextField(25);

labelPanel.
labelPanel.
labelPanel.

fieldPanel.
fieldPanel.
fieldPanel.

setLayout (n

ew GridLayout(O, 1)):

add (exerciselabel);
add (eventLabel) ;

setLayout (new GridLayout (0, 1));
add (exerciseField);
add (eventField);

getPanel.setLayout (new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,

String query

ResultSet rs

try {

s

"Select Exercise Event",
JOptionPane.YES_NO_CANCEL OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,

optionNames[0]) == 0) {

"SELECT * FRCM Events WHERE " +
"ExerciseName = " + "'" 4
exerciseField.getText () + "'
AND " +
"EventName = " + "' 4
eventField.getText () + "'";

electQuery(query);

if (rs !'= null) {

rs.next();

fina

form.
form.

form.

form.
form.

form.

form.

form
Acti
{

1 EventForm form = new EventForm/(
"EXERCISE/EVENT FORM");

exerciseField.setText (rs.getString(1));
eventField.setText (rs.getString(2));

typeField.setSelectedItem(rs.getString(3))

numberField.setText (rs.getString(4));
durationField.setText (rs.getString(5));

exerciseField.setEditable (false);
addButton.setEnabled(false);

~updateButton.addActionListener (new
onListener()

340

public void actionPerformed{(ActionEvent
e)
{.

String updateString = "UPDATE

Events SET " +
"EventName = " + "'" 4

form.eventField.getText () +

"EventType =" 4 wrw 4

form.typeField.getSelectedItem() + "', " + ‘
"NumberOfEvents = " +

form.numberField.getText () +
” ’ " +

"EventDuration = " +

form.durationField.getText ()

" WHERE ExerciseName = " +

myn +
exerciseField.getText () + "'

AND " +
"EventName = " + "'"

eventField.getText () + "'";
updateQuery (updateString);
form.dispose();

s

form.deleteButton.addActionListener (new
Actionlistener() :

{

public void actionPerformed(ActionEvent

e)
{
String deleteString = "DELETE FROM " +
"Events " +
"WHERE ExerciseName =

L + mnmew +

exerciseField.getText () + "' AND " + x
"EyventName = " + "'" +

eventField.getText () +

updateQuery (deleteString);

form.dispose();

341

form.cancelButton.addActionListener (new

ActionListener ()
{
public void actionPerformed(ActionEvent
e)
{
form.dispose();
}
)i
}
else {
JOptionPane.showMessageDialog (this,
"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;
} // end if
} // end try
catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);
} // end catch
} // end if

} // end eventUpdateForm()

/**

* Method visitUpdateForm retrieves and displays a port visit
* record, which can then be modified or deleted.

* @param none

* @return void

*/
public void visitUpdateForm() {
JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
l=

JPanel fieldPane new JPanel();

JLabel exerciselabel = new JLabel ("Enter the Exercise Name : ");

342

AND " +

1

final JTextField exerciseField = new JTextField(25);

JLabel portLabel = new JLabel ("Enter the Port Name : ")
final JTextField portField = new JTextField(25);

labelPanel
labelPanel.
labelPanel.

fieldPanel.
fieldPanel.
fieldPanel.

add (exerciselabel);
add (portLabel) ;

.setLayout (new GridLayout (0, 1)):;

setLayout (new GridLayout (0, 1)):

add (exerciseField);
add (portField);

getPanel.setlLayout (new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel});

String[] optionNames = {V"OK", "Cancel” };

if (JOptionPane.showOptionDialog(this, getPanel,

"Select Port Visit",
JOptionPane.YES_NO_ CANCEL_OPTION,
JOptionPane.QUESTION MESSAGE,

String query

ResultSet rs

try {

null,

optionNames,

optionNames[0]) == 0) {

I

if (rs !'= null) {

rs.next ();

"SELECT * FROM PortVisits WHERE " +

"ExerciseName = " + "'" +
exerciseField.getText () + "'

"PortName = " + "'" +
portField.getText () + "'";

selectQuery(query);

final PortVisitForm form = new PortVisitForm(

"PORT VISIT FORM");

form.exerciseField.setText (rs.getString(l)):
form.portField.setText (rs.getString(2));
form.startDateField.setText (rs.getString(3));
form.endDateField.setText (rs.getString(4));
form.durationField.setText (rs.getString(5));

form.exerciseField.setEditable (false);

form.addButton. setEnabled(false);

form.updateButton.addActionlListener (new

Actionlistener ()

343

public void actionPerformed(ActionEvent
e) :

{ .
String updateString = "UPDATE
PortVisits SET " +

"PortName e U + wrrn +
form.portField.getText () +

"VisitStartDate = " + "'v 4

form.startDateField.getText () + "', " +
"VisitEndDate = " + "'" +
form.endDateField.getText ()
+ me " + .
14
"VisitDuration = " +
form.durationField.getText ()

" WHERE ExerciseName = " +
merw +

exerciseField.getText () + "'
AND " +
"PortName = " + "'" 4+
portField.getText () + "'";
updateQuery (updateString) ;

form.dispose();

b

form.deleteButton.addActionlListener (new
ActionListener ()

{

public void actionPerformed(ActionEvent
e)
{
String deleteString = "DELETE FROM " +
"PortVisits " +

"WHERE ExerciseName =
” + myw +

exerciseField.getText () + ™' AND " +

"PortName = " + "'" +
portField.getText () +

m"wrw,
’

updateQuery (deleteString);
form.dispose();

}):

344

form.cancelButton.addActionListener (new

Actionlistener ()
: {
public void actionPerformed(ActionEvent
e)
{
form.dispose();
}
}):
}
else {
JOptionPane.showMessageDialog{this,
"Unable to find record in
database"”,
"Record Not Found"”,
JOptionPane.ERROR_MESSAGE) ;
} // end if
} // end try
catch (SQLException e) {
JOptionPane.showMessageDialog(this,
' "SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;
} // end catch
} // end if

} // end visitUpdateForm()

/**

* Method failureUpdateForm retrieves and displays an equipment
* failure record, which can then be modified or deleted.

* @param none

* @return void

*/

public void failureUpdateForm() {
JPanel getPanel = new JPanel():

JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

345

AND " +

JLabel equipmentLabel = new JLabel ("Enter the Serial Number : ");
final JTextField equipmentField = new JTextField(25);

JLabel numberLabel = new JLabel ("Enter the Failure Number : "y,
final JTextField numberField = new JTextField(25);

labelPanel.setLayout (new GridLayout (0, 1));
labelPanel.add(equipmentLabel) ;
labelPanel.add (numberLabel) ;

fieldPanel.setLayout (new GridLayout (0, 1));
fieldPanel.add(equipmentField);

fieldPanel.add (numberField);

getPanel.setLayout (new BoxLayout (getPanel, BoxLayout.X AXIS));
getPanel.add(labelPanel);

getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Equipment Failure",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Failures WHERE " +
. "SerialNumber = " + "'" 4
equipmentField.getText () + "'

"FailureNumber = " +
numberField.getText ();

ResultSet rs selectQuery(query) ;

try {
if (rs !'= null) {

rs.next ();

final FailureForm form = new FailureForm(
"EQUIPMENT FAILURE FORM");

form.serialField.setText (rs.getString(1l));
form.failureField.setText (rs.getString(2));
form.descriptionField.setText (rs.getString(3));
form.diagnosisField.setText(rs.getString(4));
form.dateField.setText (rs.getString(5));
form.durationField.setText (rs.getString(6));

form.serialField.setEditable (false);

form.addButton.setEnabled(false) ;

346

form.updateButton.addActionListener (new
ActionListener()

{

public void actionPerformed(ActionEvent
e)

{
String updateString = "UPDATE

Failures SET " +
"FailureNumber = " +

form.failureField.getText ()
+ ", " +

"FailureDescription = " +

wen +

form.descriptionField.getText () + "', " +
"FailureDiagnosis = " + "'"

+

form.diagnosisField.getText() + "', " + .
"FailureDate = " + "'" +
form.dateField.getText () +

"FailureDuration = " +
form.durationField.getText ()

" WHERE SerialNumber = " +

mwrn +
equipmentField.getText () +

"y AND ” +
"FailureNumber = " +

numberField.getText ()
updateQuery(updateString);
form.dispose();

1)

form.deleteButton.addActionListener (new
ActionListener ()

{
public void actionPerformed(ActionEvent

e)
{ :
String deleteString = "DELETE FROM " +
"Failures " +
"WHERE SerialNumber =

” + LU] +

equipmentField.getText() + "' AND " +
"FailureNumber = " +
numberField.getText ();

347

updateQuery(deleteString);
form.dispose();

s

form.cancelButton.addActionListener (new

ActionListener ()
{
public void actionPerformed(ActionEvent
e)
{
form.dispose();
}
});
}
else {
JOptionPane.showMessageDialog(this,
"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;
} // end if
} // end try
catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;
} // end catch
} // end if

} // end failureUpdateForm()

/**

* Method divisionReport retrieves information about the divisions

* under each department.
* @param none
* @return void

*/

348

public void divisionReport () {

JFrame reportFrame = new JFrame ("DIVISION REPORT") ;
reportFrame.setSize (800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();
labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout (1, 0)):

JLabel departmentlabel = new JLabel ("DEPARTMENT",
SwingConstants.CENTER) ;
departmentLabel.setFont (labelFont);

JLabel divisionLabel = new JLabel ("DIVISION",
SwingConstants.CENTER) ;
divisionLabel.setFont (labelFont);

JlLabel officerlabel = new JLabel ("OFFICERS",
SwingConstants.CENTER) ;
" officerlabel.setFont (labelFont) ;

JlLabel pettylLabel = new JLabel ("PETTY OFFICERS"[
SwingConstants.CENTER) ;
pettyLabel.setFont (labelFont);

JLabel enlistedlLabel = new JLabel ("ENLISTED",
SwingConstants.CENTER) ;
enlistedLabel.setFont (labelFont);

labelPanel.add (departmentLabel);
labelPanel.add(divisionLabel) ;
labelPanel.add(officerLabel);
labelPanel.add(pettyLabel);
labelPanel.add(enlistedLabel) ;

String query = "SELECT * FROM DivisionQuery";

final ResultSet rs = selectQuery(query):;

if (rs == null) {
return;
} // end if

JPanel textPanel = new JPanel()
{
public void paint (Graphics g)
{
int yPos = 30;
String department = " ";

try {
while(rs.next()) {
g.setFont (textFont);
String str = rs.getString(l):;

349

if (str.equals(department) == false) {
department = str;
yPos += 10;

g.drawString(str, 10, yPos);
g.drawString(rs.getString(2), 190,

yPos);
g.drawString(rs.getString(3), 410,
yPos);
g.drawString(rs.getString(4), 550,
yPos) ;
g.drawString(rs.getString(5), 720,
yPos) ; .
yPos += 30;
} .
else {
g.drawString(rs.getString(2), 190,
yPos);
g.drawString(rs.getString(3), 410,
yPos) ;
g.drawString(rs.getString(4), 550,
yPos) ;
g.drawString(rs.getString(5), 720,
yPos) ;
yPos += 30;
} // end if

} // end while
} // end try
/
catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint{()
}:

JScrollPane pane = new JScrollPane();

pane.setViewportView (textPanel);
reportFrame.getContentPane () .setLayout (new BorderLayout());
reportFrame.getContentPane() .add (labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane() .add (pane, BorderLayout.CENTER);

reportFrame.show();

} // end divisionReport()

350

/**

* Method overhaulReport retrieves information about the
* overhauls of the ship.

* @param none

* @return void

*/
public void overhaulReport () {
JFrame reportFrame = new JFrame ("OVERHAUL REPORT"):

reportFrame.setSize (800, 600);
reportFrame. setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();
labelPanel.setSize {800, -100);
labelPanel.setLayout (new GridLayout (1, 0));
JLabel numberLabel = new JLabel ("OVERHAUL",

SwingConstants.CENTER); -
numberLabel.setFont (labelFont);

JLabel startLabel = new JLabel ("START DATE",

SwingConstants.CENTER) ; .
startLabel.setFont (labelFont);

JLabel endLabel = new JLabel ("END DATE",

SwingConstants.CENTER) ;
endLabel.setFont (labelFont); -

JLabel shipyardlLabel = new JLabel ("SHIPYARD",

SwingConstants.CENTER) ;
shipyardLabel.setFont (labelFont);

labelPanel.add(numberLabel);
labelPanel.add(startLabel);

labelPanel.add (endLabel) ;
labelPanel.add(shipyardLabel);

String query = "SELECT * FROM OverhaulQuery";

final ResultSet rs = selectQuery(query):

if (rs == null) {
return;
} // end if

JPanel textPanel = new JPanel ()

public void paint (Graphics g)

351

{
int yPos = 40;
try {
while(rs.next ()) {
g.setFont (textFont);
g.drawString(rs.getString(l), 70, yPos):
g.drawString(rs.getString(2), 200, yPos);
g.drawString(rs.getString(3), 400, yPos);
g.drawString(rs.getString(4), 550, yPos);
yPos += 40;
} // end while
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint()
}i

JScrollPane pane = new JScrollPane();
pane.setViewportView (textPanel);

reportFrame.getContentPane().setLayout (new BorderLayout());
reportFrame.getContentPane() .add (labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane () .add (pane, BorderLayout.CENTER) ;
reportFrame.show();

} // end overhaulReport ()

/**

* Method trainingReport retrieves information about the courses
* taken by the personnel.

* @param none

* @return void

*/

‘public void trainingReport () {
JFrame reportFrame = new JFrame ("TRAINING REPORT");
reportFrame.setSize (800, 600);
reportFrame. setBackground(Color.lightGray) ;
JPanel labelPanel = new JPanel();

labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout (1, 0));

352

JLabel firstlabel = new JLabel ("FIRST NAME",

SwingConstants.CENTER) ;
firstlabel.setFont (labelFont);

JLabel lastLabel = new JLabel ("LAST NAME",

SwingConstants.CENTER) ;
lastlLabel.setFont (labelFont);

JLabel courselabel = new JLabel {("COURSE NAME",

SwingConstants.CENTER) ;
courselabel.setFont (labelFont) ;

JLabel gradelabel = new JLabel ("GRADE",

SwingConstants.CENTER) ;
gradelabel.setFont (labelFont);

labelPanel.add(firstLabel);
labelPanel.add(lastLabel);
labelPanel.add(courselabel);
labelPanel.add(gradelabel);

String query = "SELECT * FROM TrainingQuery";

final ResultSet rs = selectQuery(query)};

if (rs == null) {
return;
} // end if

JPanel textPanel = new JPanel()
{
public void paint (Graphics g)
{
int yPos = 30;
String militaryID = " ";

try {
while(rs.next ()) {
g.setFont (textFont) ;
String str = rs.getString(l);

if (str.equals(militaryID) == false) {
militaryID = str;
yPos += 10;
g.drawString(rs.getString(2), 20, yPos):
g.drawString(rs.getString(3), 210,

yPos):;
' g.drawString(rs.getString(4), 400,
yPos);

g.drawString(rs.getString(5), 700,
yPos);

353

yPos += 30;
;lse {
g.drawString(rs.getString(4), 400,
yros)s g.drawString(rs.getString(5), 700,
yros)s yPos += 30;

} // end if
} // end while
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog (this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch
} // end paint ()
}:

JScrollPane pane = new JScrollPane();
pane.setViewportView (textPanel);

reportFrame.getContentPane() .setLayout (new BorderLayout ());
reportFrame.getContentPane() .add(labelPanel, BorderLayout.NORTH) ;
reportFrame.getContentPane() .add (pane, BorderLayout.CENTER);
reportFrame.show();

} // end trainingReport ()

/**

* Method assignmentReport retrieves information about the

* previous assignments of the personnel.

* @param none

* @return void

*/

public void assignmentReport () {
JFrame reportFrame = new JFrame ("ASSIGNMENT REPORT") ;
reportFrame.setSize (800, 600);
reportFrame.setBackground{Color.lightGray) ;
JPanel labelPanel = new JPanel();
labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout(l, 0));

Jlabel firstLabel = new JLabel ("FIRST NAME",

354

SwingConstants.CENTER) ;
" firstlabel.setFont(labelFont);

JLabel lastlabel = new JLabel ("LAST NAME",

SwingConstants.CENTER) ;
lastLabel.setFont (labelFont);

JLabel stationLabel = new JLabel ("STATION",

SwingConstants.CENTER) ;
stationlabel.setFont (labelFont);

JLabel positionLabel = new JLabel ("POSITION",

SwingConstants.CENTER);
positionLabel.setFont (labelFont) ;

labelPanel.add(firstLabel);
labelPanel.add(lastLabel);
labelPanel.add(stationlLabel);

labelPanel.add (positionLabel) ;

String query = "SELECT * FROM AssignmentQuery";

final ResultSet rs = selectQuery(query):

if (rs == null) {
return;
} // end if

JPanel textPanel = new JPanel()
{
public void paint (Graphics g)
{
int yPos = 30;
String militaryID = " ";

try {
while(rs.next ()) {
g.setFont (textFont) ;
String str = rs.getString(l);

if (str.equals(militaryID) == false) {
militaryID = str;
yPos += 10;

g.drawString(rs.getString(2), 20, yPos);
g.drawString(rs.getString(3), 200,

yPos) ;

g.drawString(rs.getString(4), 380,
yPos) ;

g.drawString{(rs.getString(5), 600,
yPos);

yPos += 30;

355

yPos);

vPos) ;

};‘

}
else {
g.drawString(rs.getString(4), 380,

g.drawString(rs.getString(5), 600,

yPos += 30;
} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint ()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame.getContentPane() .setLayout (new BorderLayout{));
reportFrame.getContentPane() .add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane () .add (pane, BorderLayout.CENTER) ;
reportFrame.show();

} // end assignmentReport ()

/**

* Method languageReport retrieves information about the
* foreign languages known by the personnel.

* @param none

* @return void

*/

public void languageReport() {

JFrame reportFrame = new JFrame ("LANGUAGE REPORT") ;
reportFrame.setSize (800, 600);
reportFrame.setBackground(Color.lightGray) ;

JPanel labelPanel = new JPanel();
labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout (1, 0));

JLabel firstLabel = new JLabel ("FIRST NAME",

356

SwingConstants.CENTER) ;
firstLabel.setFont (labelFont);

JLabel lastLabel = new JLabel ("LAST NAME",
SwingConstants.CENTER) ;

lastLabel.setFont (labelFont);

JLabel languagelabel = new JLabel ("LANGUAGE",

SwingConstants.CENTER) ;
languagelabel.setFont (labelFont);

JLabel degreelabel = new JLabel ("DEGREE",

SwingConstants.CENTER) ;
degreelabel.setFont (labelFont});

labelPanel.add(firstLabel);
labelPanel.add(lastLabel);
labelPanel.add(languagelabel) ;
labelPanel.add(degreelabel);

String query = "SELECT * FROM LanguageQuery";

final ResultSet rs = selectQuery(query):;

if (rs == null) {
‘ return;
} // end if

JPanel textPanel = new JPanel ()

public void paint (Graphics g)
-

int yPos = 30;

String militaryID = " ";

try {
while(rs.next()) {
g.setFont (textFont); _
String str = rs.getString(l);

if (str.equals{militaryID) == false) {
militaryID = str;
yPos += 10;

g.drawString(rs.getString(2), 20, yPos);
' g.drawString (rs.getString(3), 200,

yPos) ;

g.drawString (rs.getString(4), 420,
yPos);

g.drawString(rs.getString(5), 680,
yPos) ;

yPos += 30;

357

yPos) ;

yPos) ;

/**

* Method eventReport retrieves information about the events
* executed during the exercises.

* @param none

* @return void

}:

else {
g.drawString(rs.getString(4), 420,

g.drawString(rs.getString(5), 680,
yPos += 30;

} // end if
} // end while
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint()

JScrollPane pané = new JScrollPane();
pane.setViewportView (textPanel);

reportFrame.getContentPane () .setLayout (new BorderLayout());
reportFrame.getContentPane () .add(labelPanel, BorderLayout .NORTH) ;
reportFrame.getContentPane () .add (pane,. BorderLayout.CENTER) ;
reportFrame.show();

} // end. languageReport ()

public void eventReport() {

JFrame reportFrame = new JFrame ("EXERCISE/EVENT REPORT");
reportFrame.setSize (800, 600);
reportFrame. setBackground (Color.lightGray) ;

JPanel labelPanel = new JPanel();
labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout (1, 0)):

JLabel exerciselabel = new JLabel ("EXERCISE NAME",

SwingConstants.CENTER);
exerciselLabel.setFont (labelFont);

358

JLabel eventLabel = new JLabel ("EVENT NAME",

SwingConstants.CENTER) ;
eventLabel.setFont (labelFont) ;

JLabel typéLabel = new JLabel ("EVENT TYPE",

SwingConstants.CENTER) ;
typelabel.setFont (labelFont);

JLabel durationlabel = new JLabel ("DURATION (Hours)",

SwingConstants.CENTER) ;
durationlLabel.setFont (labelFont);

labelPanel.add(exerciselabel);
labelPanel.add(eventLabel);
labelPanel.add (typelabel);

labelPanel.add (durationLabel);

String query = "SELECT * FROM EventQuery";
final ResultSet rs = selectQuery(query):

if {(rs == null) {
return;
} // end if

JPanel textPanel = new JPanel ()

public void paint (Graphics g)
{ .
int yPos = 30;
String exercise = " ";

try {
while(rs.next ()) {
g.setFont (textFont) ;
String str = rs.getString(l):;

if (str.equals(exercise) == false) {
exercise = str;
yPos += 10;

g.drawString(str, 20, yPos);
g.drawString(rs.getString(2), 200,

yPos) ;
g.drawString(rs.getString(3), 400,
yPos) ; '
g.drawString(rs.getString(4), 690,
yPos) ;
yPos += 30;
}

else {

359

g.drawString(rs.getString(2), 200,

yPos); .
g.drawString(rs.getString(3), 400,
ypos)s g.drawString(rs.getString(4), 690,
yrosts yPos += 30;
} // end if

} // end while
} // end try

catch (SQLException e) ({
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint ()
}:

JScrollPane pane = new JScrollPane();
pane.setViewportView (textPanel);

reportFrame.getContentPane () .setLayout (new BorderLayout());
reportFrame.getContentPane () .add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane () .add(pane, BorderLaycut.CENTER);
reportFrame.show() ;

} // end eventReport()

/**

* Method visitReport retrieves information about the port visits

* made during the exercises.

* @param none

* @return void

*/

public void visitReport() {
JFrame reportFrame = new JFrame ("PORT VISIT REPORT"):;
reportFrame.setSize (800, 600);
reportFrame. setBackground(Color.lightGray);
JPanel labelPanel = new JPanel();
labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout (1, 0));

JlLabel exerciselabel = new JLabel ("EXERCISE NAME",

360 (\

SwingConstants.CENTER) ;
exerciseLabel.setFont (labelFont);

JLabel portLabel = new JLabel ("PORT NAME",

SwingConstants.CENTER) ;
portLabel.setFont (labelFont);

JLabel startlabel = new JLabel ("START DATE",

SwingConstants.CENTER) ;
startlLabel.setFont (labelFont);

JLabel endLabel = new JLabel ("END DATE",

SwingConstants.CENTER) ;
endLabel.setFont (labelFont);

labelPanel.add(exerciseLabel);
labelPanel.add(portlLabel) ;
labelPanel.add(startLabel);

labelPanel.add (endLabel) ;

String query = "SELECT * FROM VisitQuery";

‘final ResultSet rs = selectQuery(query):;

if (rs == null) {
return;
} // end if

JPanel textPanel = new JPanel()

public void paint(Graphics g)
{
int yPos = 30;
String exercise =" ";

try {
while (rs.next ()) {
g.setFont (textFont);
String str = rs.getString(l):

if (str.equals(exercise) == false) ({
exercise = str;
yPos += 10;

g.drawString(stxr, 20, yPos): A
g.drawString{rs.getString(2), 230,

yPos) ;
g.drawString(rs.getString(3), 430,
yPos) ; .
g.drawString(rs.getString(4), 650,
yPos) ;

yPos += 30;

361

yPos) ;
yPos) ;

yPos) ;

/**
* Method failureReport retrieves information about the failures
* of equipment.
* @param none
* @return void

}:

else {
g.drawString(rs.getString(2), 230,

g.drawString(rs.getString(3), 430,
g.drawString(rs.getString(4), 650,
yPos += 30;

} // end if
} // end while
} // end try

catch (SQLException e) ({
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint ()

JScrollPane pane = new JScrollPane();
pane.setViewportView (textPanel);

reportFrame.getContentPane () .setLayout (new BorderLayout ());
reportFrame.getContentPane().add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane () .add(pane, BorderLayout.CENTER);
reportFrame.show();

} // end visitReport ()

public void failureReport() {

JFrame reportFrame = new JFrame ("EQUIPMENT FAILURE REPORT") ;
reportFrame.setSize(SOO,'600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();

labelPanel.setSize (800, 100);
labelPanel.setLayout (new GridLayout (1, 0));

362

yPos);
yPos);

yPos);

JLabel equipmentLabel = new JLabel ("EQUIPMENT NAME",

SwingConstants.CENTER) ;
equipmentLabel.setFont (labelFont);

JLabel typelabel = new JLabel ("EQUIPMENT TYPE",

SwingConstants.CENTER) ; _
typelabel.setFont (labelFont) ;

JLabel descriptionLabel = néw JLabel ("FAILURE",

SwingConstants.CENTER) ;
descriptionLabel.setFont (labelFont) ;

JLabel durationlLabel = new JLabel ("DURATION (Hours)",

SwingConstants.CENTER) ;
durationlLabel.setFont (labelFont);

labelPanel.add(equipmentLabel);
labelPanel.addd(typeLabel);
labelPanel.add(descriptionLabel) ;
labelPanel.agd(durationLabel);

String query = "SELECT * FROM FailureQuery";

final ResultSet rs = selectQuery(query):;

if (xrs == null) {
return;
} // end if

JPanel textPanel = new JPanel ()

public void paint (Graphics g)
{
int yPos = 30; 7
String equipment = " ";

try {
while(rs.next()) {
.g.setFont (textFont) ;
String str = rs.getString(l);

if (str.equals(equipment) == false) {
equipment = str;
yPos += 10;

g.drawString(str, 20, yPos):
g.drawString(rs.getString(2), 200,
g.drawString(rs.getString(3), 420,

g.drawString(rs.getString(4), 700,

363

yPos);

yPos) ;

/**

* Method courseToTakeQuery retrieves information about the courses
* that should be taken by the personnel. '
* @param none

* @return void

}:

yPos += 30;
}
else {
g.drawString(rs.getString(3), 420,

g.drawString(rs.getString(4), 700,
yPos += 30;

} // end if
} // end while
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage(),
"SQL ERROR", _
JOptionPane.ERROR_MESSAGE) ;

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView (textPanel);

reportFrame.getContentPane () .setlayout (new BorderLayout());
reportFrame.getContentPane().add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane () .add(pane, BorderLayout.CENTER);
reportFrame.show () ;

} // end failureReport ()

public void courseToTakeQuery() {

JLabel namelabel = new JLabel ("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add(nameLabel) ;
getPanel.add(nameField);

Stringl] optionNamés = { "OK", "Cancel" };

364

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel”,
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

JDBCAdapter dbadapter:
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver(),
connectionPanel.getUserID(),
connectionPanel.getPassword());

dbadapter.connect();

String query = "SELECT * FROM CourseToTakeQuery WHERE " +
"LastName - " + mwrn +
nameField.getText () + "'";

dbadapter.executeQuery(query);

final JTable table = new JTable (dbadapter):;
JScrollPane scrollPane = new JScrollPane(table);
JPanel éontrolPanel = new JPanel();

JLabel cellSpécingLabel = new JLabel ("Inter-Cell Spacing”);
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1):
cellSpacingSlider.getAccessibleContext ().

setAccessibleName ("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelListener (new ChangeListener()
(:
public void stateChanged(ChangeEvent e)

{
int spacing = ({(JSlider) e.getSource()).getValue();

table.setIntercellSpacing(new
Dimension(spacing, spacing));
table.repaint{();

}):

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel);

365

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add (rowHeightSlider);

rowHeightSlider.addChangelistener (new Changelistener ()

{
public void stateChanged(ChangeEvent e)

{

int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint();

1)

JFrame frame = new JFrame ("COURSES TO TAKE QUERY");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray) ;
frame.getContentPane () .setLayout (new BorderLayout());
frame.getContentPane () .add(scrollPane, BorderLayout.CENTER

frame.getContentPane () .add{controlPanel,
BorderLayout .NORTH) ;
frame.show();

} // end if

} // end courseToTakeQuery()

/**

* Method courseTakenQuery retrieves information about the courses
* that were taken by the personnel.

* @param none

* @return void

*/

public void courseTakenQuery() {

JLabel namelabel = new JLabel ("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add (namelabel);
getPanel.add (nameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,

366

"Select Personnel”,
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver(),
connectionPanel.getUserID(),
connectionPanel.getPassword());
dbadapter.connect ();
String query = "SELECT * FROM CourseTakenQuery WHERE " +

"LastName = " + "'" +
nameField.getText () + "'";

dbadapter.executeQuery(query);

final JTable table = new JTable(dbadapter);.
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel = new JPanel();

JLabel cellSpacinglabel = new JLabel ("Inter-Cell Spacing”);
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().

setAccessibleName ("Inter-Cell Spacing”):
cellSpacingLabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener (new ChangeListener()
{
public void stateChanged(ChangeEvent e)
{ .
int spacing = ((JSlider) e.getSource()).getValue();
table.setIntercellSpacing(new
Dimension (spacing, spacing));
table.repaint():;

)z

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add(rowHeightLabel);

367

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener (new ChangeListener ()

{ .
public void stateChanged(ChangeEvent e)

{ ,
int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height); :

table.repaint ();

}):

JFrame frame = new JFrame ("COURSES TAKEN QUERY");
frame.setSize (800, 600); :
frame.setBackground(Color.lightGray);
frame.getContentPane () .setLayout (new BorderLayout ());
frame.getContentPane () .add (scrollPane, BorderLayout.CENTER

frame.getContentPane () .add (controlPanel,
BorderLayout.NORTH) ;
frame.show();

} // end if

} // end courseTakenQuery ()

/**

* Method assignmentQuery retrieves information about the previous
* assignments of the personnel.

* @param none

* @return void

*/

public void assignmentQuery() {

JLabel namelabel = new JLabel ("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add (nameLabel) ;
getPanel.add (nameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel",

368

JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames{0]) == 0) {

JDBCAdapter dbadapter; :
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver (),
connectionPanel.getUserID(),

connectionPanel.getPassword());
dbadapter.connect () ;

String query = "SELECT * FROM PreviousQuery WHERE " +

"LastName = " + "'" +
nameField.getText () + "'";

dbadapter.executeQuery(query) ;

final JTable table = new JTable (dbadapter);
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel = new JPanel();

JLabel cellSpacinglabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacinglLabel) ;

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0O, 10, 1);
cellSpacingSlider.getAccessibleContext ().

setAccessibleName ("Inter-Cell Spacing");
cellSpacinglabel.setlabelFor{cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelistener (new ChangeListener()

{
public void stateChanged(ChangeEvent e)

{
int spacing = ((JSlider) e.getSource()).getValue();

table.setIntercellSpacing (new
Dimension(spacing, spacing)):;
table.repaint (),

}):

JlLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel) ;

JSlider rowHeightSlider = new JSlider{

369

{

)i

frame
frame
frame
frame

)i

‘frame

JSlider .HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().

setAccessibleName ("Row Height");

rowHeightLabel.setlabelFor (rowHeightSlider) ;
controlPanel.add(rowHeightSlider):;

rowHeightSlider.addChangeListener (new ChangéListener()

public void stateChanged(ChangeEvent e)

{

int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint();

JFrame frame = new JFrame ("PREVIOUS ASSIGNMENTS QUERY");

.setSize (800, 600);

.setBackground (Color.lightGray);
.getContentPane () .setLayout (new BorderLayout()):;
.getContentPane () .add(scrollPane, BorderLayout.CENTER

.getContentPane () .add(controlPanel,

BorderLayout .NORTH) ;

frame

} // end if

.show () ;

} // end assignmentQuery()

/**

* Method languageQuery retrieves information about the foreign

* languages known
* @param none

* @return void

*/

by the personnel.

public void languageQuery() {

JLabel namelabel = new JLabel ("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add (namelLabel);
getPanel.add (nameField);

String[) optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog{this, getPanel,

"Select Personnel"”,
JOptionPane.YES_NO CANCEL_OPTION,

370

JOptionPane.QUESTION_MESSAGE,
null; optionNames,
optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(cpnnectionPanel.getURL(),

connectionPanel.getDriver (),
connectionPanel.getUserID(),

connectionPanel.getPassword()):;
dbadapter.connect () ;

String query = "SELECT * FROM ForeignQuery WHERE " +

"TastName = " + "'" +
nameField.getText () + "'";

dbadapter.executeQuery (query);

final JTable table = new JTable(dbadapter);
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel = new JPanel();

JLabel cellSpacingLabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacinglLabel) ;

JSlider cellSpacingSlider = new JSlider (

JSlider.HORIZONTAL, O, 10, 1); ;
cellSpacingSlider.getAccessibleContext ().

setAccessibleName ("Inter-Cell Spacing”); .
cellSpacingLabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelListener (new ChangeListener ()

{
public void stateChanged(ChangeEvent e)

{

int spacing = ((JSlider) e.getSource()).getValue();
table.setIntercellSpacing (new
Dimension(spacing, spacing));
table.repaint ()

}):

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);

371

rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");

rowHeightLabel.setLabelFor (rowHeightSlider) ;

controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener (new ChangelListener()
{ .
public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint();

)

JFrame frame = new JFrame ("FOREIGN LANGUAGE QUERY");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray) ;
frame.getContentPaneé () .setLayout (new BorderLayout());
frame.getContentPane () .add(scrollPane, BorderLayout.CENTER

frame.getContentPane () .add (controlPanel,
BorderLayout.NORTH) ;- '
frame.show();

} // end if

} // end languageQuery()

/**

* Method eventQuery retrieves information about the events
* executed during the exercises.

* @param none

* @return void

*/
public void eventQuery() {

JLabel nameLabel = new JLabel ("Enter the Exercise Name : ") ;
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel{():
getPanel.add(namelabel);
getPanel.add(nameField);

String[] optionNames = { "OK", "Cancel"” };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Exercise",
JOptionPane.YES_NO_CANCEL_ OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,

372

optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver(),
connectionPanel.getUserID(),

) connectionPanel.getPassword());
dbadapter.connect () ;

String query = "SELECT * FROM EventQuery WHERE " +
"ExerciseName = " + "'" +
nameField.getText () + "'";

dbadapter.executeQuery(query);

final JTable table % new JTable (dbadapter);
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel = new JPanel():;

JLabel cellSpacingLabel = new JLabel ("Inter-Cell Spacing”);
controlPanel.add(cellSpacingLabel) ;

JSlider cellSpacingSlider = new JSlider (

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().

setAccessibleName("Inter-Cell Spacing”);
cellSpacingLabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider) ;

cellSpacingSlider.addChangelistener (new ChangelListener ()

{
public void stateChanged(ChangeEvent e)

{
int spacing = ((JSlider) e.getSource()).getValue();

table.setIntercellSpacing (new
Dimension(spacing, spacing)):
table.repaint():;

});

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(
JSlider.HORIZONTAL, 5, 100, 20):;

rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");

373

rowHeightLabel.setLabelFor (rowHeightSlider) ;
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangelistener (new Changelistener ()
{
public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height) ;
table.repaint ();

})s

JFrame frame = new JFrame ("EXERCISE/EVENT QUERY");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane () .setLayout (new BorderLayout ());
frame.getContentPane () .add (scrollPane, BorderLayout.CENTER

frame.getContentPane () .add (controlPanel,
BorderLayout .NORTH) ;
frame.show();

} // end if

} // end eventQuery()

/**»

* Method visitQuery retrieves information about the port visits
* made during the exercises.

* @param none

* @return void

*/

public void visitQuery() {

JLabel nameLabel = new JLabel ("Enter the Exercise Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add (nameLabel) ;
getPanel.add (nameField);

String[] optionNames = { "OK",,"Cancel" };

if (JOptionPane.showOptionDialog{this, getPanel,
"Select Exercise",
JOptionPane.YES NO CANCEL_OPTION,
JOptionPane.QUESTION MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

374

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

connectionPanel.getDriver (),
connectionPanel.getUserID(),

connectionPanel.getPassword()):;
dbadapter,connect();

String query = "SELECT * FROM VisitQuery WHERE " +
"ExerciseName = " + "'" +
nameField.getText () + "'";

dbadapter.executeQuery(query);

final JTable table = new JTable(dbadapter):;
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel = new JPanel();

JLabel cellSpacinglabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1); -
cellSpacingSlider.getAccessibleContext ().

setAccessibleName ("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add (cellSpacingSlider);

cellSpacingSlider.addChangelistener (new ChangeListener ()

{
public void stateChanged(ChangeEvent e)

{
int spacing = ((JSlider) e.getSource()).getValue();

~ table.setIntercellSpacing(new
Dimension(spacing, spacing));
table.repaint ();

)

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add (rowHeightLabel); :

JSlider rowHeightSlider = new JSlider(

JSlider .HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add(rowHeightSlider); .

375

rowHeightSlider.addChangelistener (new ChangelListener ()
{
public void stateChanged(ChangeEvent e)
{ .
. int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight (height);
table.repaint();

}):

JFrame frame = new JFrame ("PORT VISIT QUERY");
frame.setSize (800, 600);

frame.setBackground (Color.lightGray);
frame.getContentPane () .setLayout (new BorderLayout());
frame.getContentPane () .add(scrollPane, BorderLayout.CENTER

frame.getContentPane () .add (controlPanel,
BorderLayout .NORTH) ;
frame.show() ;

}.// end if

} // end visitQuery()

/**

* Method failureQuery retrieves information about the failures
* of equipment.

* @param none

* @return void

*/
public void failureQuery() {

JLabel nameLabel = new JLabel ("Enter the Equipment Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add(namelabel);
getPanel.add(nameField);

String([] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Equipment",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter (connectionPanel.getURL(),

376

'connectionPanel.getDriver(),
connectionPanel.getUserID{(),

connectionPanel.getPassword());
dbadapter.connect () ;

String query = "SELECT * FROM EquipmentFailureQuery WHERE "
' . + "EquipmentName = " + "'" +
nameField.getText () + "'";

dbadapter.éxecuteQuery(query);

final JTable table = new JTable (dbadapter);
JScrollPane scrollPane = new JScrollPane(table);
JPanel controlPanel ; new JPanel();

JLabel cellSpacingLabel = new JLabel ("Inter-Cell Spacing");
controlPanel.add(cellSpacinglabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().

setAcceésibleName("Inter—Cell Spacing”);
cellSpacinglabel.setLabelFor (cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangelistener (new Changelistener ()

{
public void stateChanged(ChangeEvent e)

{
int spacing = ((JSlider) e.getSource()).getValue();

table.setIntercellSpacing (new -
Dimension (spacing, spacing));
table.repaint();

s

JLabel rowHeightLabel = new JLabel ("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext () .
setAccessibleName ("Row Height");
rowHeightLabel.setLabelFor (rowHeightSlider);
controlPanel.add (rowHeightSlider);

377

rowHeightSlider.addChangelistener (new ChangeListener ()
{

public void stateChanged(ChangeEvent e)

{ .
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight (height);

table.repaint ();

)

JFrame frame = new JFrame ("EQUIPMENT FAILURE QUERY") ;
frame.setSize (800, 600); '
frame.setBackground(Color.lightGray);

frame.getContentPane () .setLayout (new BorderLayout ()) ;
frame.getContentPane () .add(scrollPane, BorderLayout.CENTER

frame.getContentPane () .add (controlPanel, :
BorderLayout .NORTH) ;
frame.show();

} // end if

} // end failureQuery()

/**

* Method showQueryWindow creates and displays a window for writing
* SQL queries and fetching query results from the database.

* @param none

* @return void

*/
public void showQueryWindow() {

Color labelColor = new Color(144, 216, 234);
Font labelFont = new Font("Serif", Font.BOLD, 16);
Font areaFont = new Font ("Serif", Font.PLAIN, 14);

if (queryFrame == null) {

// Create the query labels

selectLabel = new JLabel ("SELECT");
selectLabel.setBackground(labelColor);
selectLabel.setFont (labelFont) ;

fromLabel = new JLabel ("FROM");
fromLabel. setBackground(labelColor) ;
fromLabel.setFont (labelFont);

whereLabel = new JLabel ("WHERE") ;

whereLabel.setBackground (labelColor) ;
whereLabel.setFont (labelFont) ;

378

grouplabel = new JLabel ("GROUP BY");
groupLabel.setBackground({labelColer);
groupLabel.setFont (labelFont) ;

havingLabel = new JLabel ("HAVING");
havingLabel.setBackground(labelColor);
havingLabel.setFont (labelFont);

orderLabel = new JLabel ("ORDER BY"):;
orderLabel.setBackground(labelColor);
orderLabel.setFont (labelFont);

// Create the query text areas

selectArea = new JTextArea(" ", 2, 30);
selectArea.setFont (areaFont) ;

fromArea = new JTextArea("™ ", 2, 30);
fromArea.setFont (areaFont) ;

whereArea = new JTextArea(" ", 2, 30);
whereArea.setFont (areaFont) ;

groupArea = new JTextArea(" ", 2, 30);
groupArea.setFont (areaFont) ;
havingArea = new JTextArea(" ", 2, 30);

havingArea.setFont (areaFont);
orderArea = new JTextArea("™ ", 2, 30);
orderArea.setFont (areaFont) ;

fetchButton = new JButton("RUN QUERY");
fetchButton.setFont (labelFont);
'fetchButton.setBackground(labelColor);

leftPanel = new JPanel();
leftPanel.setLayout (new GridLayout (0, 1));
leftPanel.setSize (200, 600);
leftPanel.setLocation (0, 0);

leftPanel.add (selectLabel);
leftPanel.add(selectArea);
leftPanel.add(fromLabel);
leftPanel.add(fromArea);
leftPanel.add(wherelabel);
leftPanel.add(whereArea);
leftPanel.add(groupLabel) ;
leftPanel.add(grouphArea);
leftPanel.add(havingLabel) ;
leftPanel.add(havingArea);
leftPanel.add{orderLabel);
leftPanel.add(orderArea);
leftPanel.add{fetchButton);

fetchButton.addActionListener (new ActionListener()

{

public void actionPerformed (ActionEvent e)

{
String query = "SELECT " + selectArea.getText()

379

= 0) {

whereText) ;

0) {

groupText);

= 0) {

havingText);

orderText);

" FROM " + fromArea.getText();
String whereText = whereArea.getText();
String groupText grouplArea.getText () ;
String havingText = havingArea.getText();
String orderText = orderArea.getText ();
String emptyString = " ";

[

if (whereText.compareToIgnoreCase (emptyString)
query = query.concat (" WHERE " +
}
if (groupText.compareToIgnoreCase (emptyString) !=
query = quefy.concat(" GROUP BY " +

}
if (havingText.compafeToIgnoreCase(emptyString)
query = query.concat (" HAVING " +

}
if (orderText.compareTolIgnoreCase (emptyString)

query = query.concat (" ORDER BY " +

dataBase.executeQuery (query) ;

}
}):

// Create the table scrollpane

dataBase = new JDBCAdapter (connectionPanel.getURL(),
connectionPanel.getDriver (),
connectionPanel.getUserID(),
connectionPanel.getPassword());

dataBase.connect () ;

JTable table = new JTable(dataBase);

tableAggregate = new JScrollPane (table);
tableAggregate.setBorder (new BevelBorder (BevelBorder.LOWERED));
tableAggregate.setSize (600, 600);
tableAggregate.setLocation (200, 0);

// Add all components to the query panel
queryPanel = new JPanel();
gueryPanel.setLayout (null) ;
queryPanel.add(leftPanel);

380

queryPanel.add(tableAggregate) ;

// Create a frame and put the queryPanel on it
queryFrame = new JFrame ("QUERY WINDOW");
queryFrame.setSize (800, 600);
queryFrame.setBackground (Color.lightGray);
queryFrame.getContentPane () .add (queryPanel);

queryFrame.addWindowListener (new WindowAdapter ()

{

public void windowClosing (WindowEvent e)

{

queryFrame.removeNotify();

}
)i

queryFrame.show();

}
// A queryFrame already exists, just make it visible

else {
queryFrame.setVisible (true);

} // end if

} // end showQueryWindow ()

/** e
* Method updateQuery executes an update operation.
* @param none
* @return void

*/
public void updateQuery (String query) {
try {

Class.fdrName(connectionPanel.getDriver());
}

catch (ClassNotFoundException cnf) {
System.err.println("Can not find database driver classes");
System.err.println(cnf);

try {
. Connection connection = DriverManager.getConnection (

connectionPanel.getURL(),

connectionPanel.getUsexrID(),

381

connectionPanel.getPassword());

Statement statement = connection.createStatement();
statement.executeUpdate (query);

statement.close();

connection.close();

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
"SQL Exception : " +
e.getMessage (),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

B

} // end updateQuery()

[** .

* Method selectQuery executes a query and returns the result.
* @param none

* @return void

*/
public ResultSet selectQuery (String query) {
try {

Class.forName (connectionPanel.getDriver());

}

catch (ClassNotFoundException cnf) ({

System.err.println("Can not find database driver classes");

System.err.println(cnf);
return null;

ey Connection connection = DriverManager.getConnection (
connectionPanel.getURL(),
connectionPanel.getUserID(),
connectionPanel.getPassword());
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery(query);

return rs;

382

catch (SQLException e) {
JOptionPane.showMessageDialog(this,
_— "SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;
return null;

}

} // end selectQuery()

} // end class POETApplication

383

import javax.swing.*;
import java.awt.*;

J**
* The ConnectionPanel class inherits from the JPanel class and
* implements a graphical user interface for the connections to
* the POET Database.

*
* @author LTJG. Yuksel Can
*/

public class ConnectionPanel extends JPanel {

JLabel userNameLabel;
JTextField userNameField;
JLabel passwordLabel;
JPasswordField passwordField;
JPanel namePanel;
JPanel fieldPanel;
String server;

String driver;

public ConnectionPanel () {

server = "jdbc:odbc:POETDB";

driver = "sun.jdbc.odbc.JdbcOdbcDriver";

userNameLabel = new JLabel ("USER NAME ", JLabel.RIGHT) ;
userNameField = new JTextField(15);

passwordLabel = new JLabel ("PASSWORD ", JLabel.RIGHT) ;
passwordField new JPasswordField(15);

namePanel = new JPanel();
namePanel.setlayout (new GridLayout(0, 1));:
namePanel.add(userNameLabel);
namePanel.add(passwordLabel);

fieldPanel = new JPanel{();

fieldPanel.setLayout (new GridLayout(0, 1));
fieldPanel.add(userNameField);

fieldPanel.add{ passwordField);

setLayout (new BoxLayout(this, BoxLayout.X AXIS));

add(namePanel);
add(fieldPanel);

} // end ConnectionPanel ()

384

public String getUserID() {
return (userNameField.getText()):

} // end getUserID()

public String getPassword() {

char[] array = passwordField.getPassword();
return (String.copyValueOf (array)):

} // end get?assword()

public String getURL() {

return (server);

} // end getURL()

public String getDriver() {
return (driver);

} // end getDriver ()

} // end class ConnectionPanel

385

import java.sql.*;

import java.util.Vector;

import javax.swing.JOptionPane;

import javax.swing.table.AbstractTableModel;
import javax.swing.event.TableModelEvent;

/**) .

* The JDBCAdapter class inherits from AbstractTableModel class and
* provides the TableModel implementation for retrieving the query
* results from the POET Database.

*

* @author LTJG. Yuksel Can

*/

public class JDBCAdapter extends AbstractTableModel {

Connection connection;

Statement statement;

String url, driver, userid, password;
ResultSet queryResult;
ResultSetMetaData metaData;

String[] columnNames = {};

Vector rows = new Vector();

public JDBCAdapter (String URL, String driverName,
String user, String passwd) {

url = URL;

driver = driverName;
userid = user;
password = passwd;

} // end JDBCAdapter ()

public void connect () {

try {
Class.forName (driver);
connection = DriverManager.getConnection(url,
userid, password);
statement = connection.createStatement();
}

catch (ClassNotFoundException ex) {
System.err.println("Cannot find database driver classes™):
System.err.println(ex);

386

catch (SQLException ex) {
System.err.println("Cannot connect to this database.");
System.err.println(ex);

} // end connect ()

public boolean isConnected() {

if (connection == null) {
return false;

}
else {
return true;
} // end if ‘

} // end isConnected()

public void executeQuery(String query) throws NullPointerException {

if(connection == null || statement == null) {
System.err.println("Unable to execute query. " +
"No connection exists"):
}
else {
try { ’

queryResult = statement.executeQuery(query):;
metaData = queryResult.getMetaData();

}
catch (SQLException ex) {
JOptionPane.showMessageDialog(null,
"SQLException: " +
ex.getMessage(),
_"SQL Error",

JOptionPane.ERROR_MESSAGE) ;
}

} // end if

try {

387

int numberOfColumns = metaData.getColumnCount();
columnNames = new String[numberOfColumns];

for (int column = 0; column < numberOfColumns;
column++) {

columnNames| column] =
metaData.getColumnLabel (

column + 1);
} // end for

rows = new Vector():;
while (queryResult.next()) {
Vector newRow = new Vector():

for (int i = 1; i <= getColumnCount(); i++)

newRow.addElement (
queryResult.getObject(i));

} // end for
rows.addElement (newRow)z
} // end while

// Tell the listeners a new table has arrived.
fireTableChanged(null);

}

catch (SQLException ex) {
System.err.println(ex);

}

} // end execﬁteQuery()

public void close() throws SQLException {
queryResult.close();
statement.close();

connection.close():;

} // end close()

protected void finalize() throws Throwable {

388

close();
super.finalize();

} // end of finalize()

public String getColumnName (int column) {

if (columnNames[column] != null) {
return columnNames{column];
}
else {
return "";
} // end if

} // end getColumnName ()

public Class getColumnClass(int column) {

int type:
try {
type = metaData.getColumnType (column+l);
} . .
catch (SQLException e) {
return super.getColumnClass (column);

}

switch(type) {

case Types.CHAR:

case Types.VARCHAR:

case Types.LONGVARCHAR:
return String.class;

case Types.BIT:
return Boolean.class;

case Types.TINYINT:

case Types.SMALLINT:

case Types.INTEGER:
return Integer.class;

case Types.BIGINT:
return Long.class;

case Types.FLOAT:
case Types.DOUBLE: ’
return Double.class;

case Types.DATE:
return java.sqgl.Date.class;

default:

389

return Object.class;
}

} // end getColumnClass ()

public boolean isCellEditable(int row, int column) {
try {

return metaData.isWritable (column+1);
}
catch (SQLException e) {

return false;

}

} // end isCellEditable ()

public int ggtColumnCount() {
return columnNames.length;

} // end getColumnCount ()

public int getRowCount () {
return rows.size();

} // end getRowCount ()

public Object getValueAt(int aRow, int aColumn) {

Vector row = (Vector)rows.elementAt (aRow) ;
return row.elementAt (aColumn);

} // end getValueAt ()

public String dbRepresentation(int column, Object value) {
-int type;

if (value == null) {
return "null";

}
try {

type = metaData.getColumnType (column+l);
}

390

catch (SQLException e) {
return value.toString();

}

switch(type) {
case Types.INTEGER:
case Types.DOUBLE:
case Types.FLOAT:
return value.toString();

case Types.BIT:
return ((Boolean)value).booleanValue() ? "1" : "0";

case Types.DATE:
return value.toString():;

default:
return "\"" + value.toString() + "\"";

} // end switch

} // end dbRepresentation()

public void setValueAt (Object value, int row, int column) {
try {
String tableName = metaData.getTableName (column+l);

if (tableName == null) {
System.out.println("Table name returned null.");
}

String columnName = getColumnName (column);
String query =
"update " + tableName +
" set " + columnName + " =" +
dbRepresentation (column, value)
" where ";

// We don't have a model of the schema so we don't know the
// primary keys or which columns to lock on. To demonstrate
// that editing is possible, we'll just lock on everything.
for(int col = 0; col < getColumnCount(); col++) {
String colName = getColumnName (col);
if (colName.equals("")) {
continue;
}
if (col != 0) {
query = query + " and ";
}
query = query + colName + " = " +
dbRepresentation(col, getValueAt(row, col});

391

System.out.println(query);
System.out.println("Not sending update to database");

statement.executeQuery(query);

}
catch (SQLException e) {

e.printStackTrace();
System.err.println("Update failed");

}

Vector dataRow = (Vector)rows.elementAt (row);
dataRow.setElementAt (value, column);

} // end setValueAt ()

} // end class JDBCAdapter

392

import javax.swing.*;
import java.awt.*;

/**

* The AssignmentForm class inherits from the JFrame class and provides

* a graphical representation,

which consists of labels, fields, and

* combo boxes, for the Assignments Table in the POET Database.

*

* Qauthor LTJG. Yuksel Can
*/

public class AssignmentForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militaryIDF
JLabel militaryIDLabel

JTextField numberField
JLabel numberlLabel;

ield;

)
’

.
14

JTextField stationField;

JLabel stationlabel;

JTextField positionFie
JLabel positionLabel;

JTextField durationFie
JLabel durationLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

1d;

1d;

Color buttonColor = new Color (160, 220, 245);

public AssignmentForm(
super (title);

militaryIDFiel
militaryIDLabe

numberField
numberLabel

stationField
stationLabel

String title) {

new JTextField(25);
new JLabel (" Personnel Military ID :

d
1

new JTextField(25);
new JLabel (" Assignment Number : ");

new JTextField(25);
new JLabel (" Station Name : ");

393

")

positionField new JTextField(25);
positionlabel = new JLabel (" Position Name : ");

durationField
durationlabel

new JTextField(25);
new JLabel (" Duration (Years) : ");

il

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout (new GridLayout (0, 1));
fieldPanel.setLayout (new GridLayout (0, 1));

namePanel.add (militaryIDLabel);
namePanel.add (numberLabel) ;
namePanel.add(stationLabel);
namePanel.add(positionLabel);
namePanel.add (durationLabel);

fieldPanel.add(militaryIDField);
fieldPanel.add (numberField) ;
fieldPanel.add(stationField);
fieldPanel.add(positionField);
fieldPanel.add(durationField);

box = new Box(BoxLayout.X AXIS);
box.add (namePanel) ;
box.add(fieldPanel);

addButton = new JButton ("ADD RECORD");
addButton.setBackground (buttonColor) ;

deleteButton = new JButton ("DELETE RECORD");
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton ("UPDATE RECORD");
updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL");
cancelButton.setBackground (buttonColor) ;

buttonPanel = new JPanel ();
buttonPanel.add(addButton) ;
buttonPanel. add(deleteButton);
buttonPanel.add (updateButton);
buttonPanel.add(cancelButton);

this.setSize (800, 600);
this.getContentPane().setLayout (new BorderLayout()):;
this.getContentPane().add(box, BorderLayout.CENTER) ;

this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);

this.show();

} // end AssignmentForm()

} // end class AssignmentForm

394

import javax.swing.*;
import java.awt.*;

*

The CourseTakenForm class inherits from the JFrame class and
provides a graphical representation, which consists of labels,
fields, and comboc boxes, for the CoursesTaken Table in the
POET Database.

@author LTJG. Yuksel Can

* % % % ok o % o

~

public class CourseTakenForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militaryIDField;
JLabel militaryIDLabel;

JTextField courseField;
JLabel courselabel;

JTextQield startDateField;
JLabel startDatelabel;

JTextField endDateField;
JLabel endDatelLabel;

JTextField gradeField;
JLabel gradelabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Colof(lGO, 220, 245);

public CourseTakenForm(String title) {
super(title);

militaryIDField = new JTextField(25);
militaryIDLabel new JLabel (" Personnel Military ID : ");

new JTextField(25);
new JLabel (" Course Name : ");

courseField
courseLabel

new JTextField(25);
new JLabel (" Course Start Date : ");

fl

startDateField
startDatelabel

395

endDateField = new JTextField(25);

endDatelabel = new JLabel (" Course End Date : ");
gradeField = new JTextField(25);
gradelabel = new JLabel (" Course Grade (1..100) : ");

namePanel = new JPanel();
fieldPanel = new JPanel():

namePanel.setlLayout (new GridLayout (0, 1)):
fieldPanel.setLayout (new GridLayout (0, 1));

namePanel.add (militaryIDLabel) ;
namePanel.add (courselabel);
namePanel.add(startDateLabel);
namePanel.add (endDateLabel) ;
namePanel.add (gradelLabel) ;

fieldPanel.add (militaryIDField);
fieldPanel.add(courseField);
fieldPanel.add(startDateField);
fieldPanel.add (endDateField);
fieldPanel.add(gradeField);

box = new Box(BoxLayout.X_ AXIS);
box.add (namePanel);
box.add(fieldPanel);

addButton = new JButton ("ADD RECORD");
addButton. setBackground (buttonColor) ;

deleteButton = new JButton ("DELETE RECORD");
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton ("UPDATE RECORD");
updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL"):;
cancelButton.setBackground (buttonColor) ;

buttonPanel = new JPanel();
buttonPanel. add (addButton) ;
buttonPanel.add(deleteButton);
buttonPanel.add (updateButton) ;
buttonPanel.add (cancelButton);

this.setSize (800, 600);

this.getContentPane().setLayout (new BorderLayout ()) ;
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH) ;
this.show();

} // end CourseTakenForm/{)

} // end class CourseTakenForm

396

import javax.swing.*;
import java.awt.*;

/**

* The CourseToTakeForm class inherits from the JFrame class and
* provides a graphical representation, which consists of labels,
fields, and combo boxes, for the CoursesToTake Table in the

POET Database.

Qauthor LTJG. Yuksel Can
/

*
*
*
*
*

public class CourseToTakeForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militaryIDField;
JLabel militaryIDLabel;

JTextField courseField;
JLabel courselabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);

public CourseToTakeForm(String title) {

super (title);

militaryIDField = new JTextField(25);
militaryIDLabel =
courseField = new JTextField(25):;

courselabel

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout (new GridLayout (0,

fieldPanel.setLayout (new GridLayout (0,

namePanel.add(militaryIDLabel);
namePanel.add(courselabel) ;

397

new JLabel (" Personnel Military ID :

new JLabel (" Course Name

") i

fieldPanel.add (militaryIDField);
fieldPanel.add(courseField);

box = new Box(BoxLayout.X_AXIS);
box.add (namePanel) ;
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground (buttonColor) ;

deleteButton = new JButton ("DELETE RECORD") ;
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton ("UPDATE RECORD");
updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL");
cancelButton.setBackground (buttonColor) ;

buttonPanel = new JPanel();
buttonPanel.add (addButton) ;
buttonPanel.add(deleteButton);
buttonPanel.add (updateButton);
buttonPanel.add(cancelButton);

this.setSize (800, 600);
this.getContentPane () .setLayout (new BorderLayout ());
this.getContentPane () .add (box, BorderLayout.CENTER) ;

this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH) ;
this.show();

} // end CourseToTakeForm()

} // end class CourseToTakeForm

398

import javax.swing.*;
import java.awt.*;

/**

* The EquipmentForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and

* combo boxes, for the Equipment Table in the POET Database.

*

* Q@author LTJG. Yuksel Can

*

~

public class EquipmentForm extends JFrame {

Box boﬁ;
JPanel namePanel;
JPanel fieldPanel;’

JTextField serialNumberField;
JLabel serialNumberLabel;

JTextField stockNumberField;
JLabel stockNumberLabel;

JTextField nameField;
JLabel namelabel;

JComboBox typeField;
JLabel typelabel;

JTextField dateField;
JLabel datelabel;

JTextField manufacturerField;
JLabel manufacturerLabel;

JTextField modelField;
JLabel modellabel;

JTextField locationField;
JLabel locationLabel;

JTextField runtimeField;
JLabel runtimelabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);

399

static String[] type = { "COMMUNICATIONS", "RADAR",

"ELECRONIC WARFARE", "NAVIGATION",
"WEAPONS", "ENGINE" };
public EquipmentForm{String title) {

super (title);
serialNumberField = new JTextField(25);
serialNumberLabel = new JLabel (" Serial Number : ");
stockNumberField = new JTextField(25);
stockNumberLabel = new JLabel (" Stock Number : ");
nameField = new JTextField(25);
nameLabel = new JLabel (" Equipment Name ");
typeField = new JComboBox (type);
typeField.setEditable (false);
typelabel = new JLabel (" Equipment Type : ");
dateField = new JTextField(25);
dateLabel = new JLabel (" Production Date : ");
manufacturerField = new JTextField(25);
manufacturerlabel = new JLabel (" Manufacturer : ")
modelField = new JTextField(25);
modelLabel = new JLabel (" Equipment Model : ");
locationField = new JTextField(25);
locationLabel = new JLabel (" Equipment Location: ");
runtimeField = new JTextField(25);
runtimelabel = new JLabel (" Equipment Runtime (Hours)
namePanel = new JPanel();
fieldPanel = new JPanel();
namePanel.setlayout (new GridLayout (0, 1));

fieldPanel.setLayout (new GridLayout (0, 1));

namePanel.
namePanel.
namePanel.
namePanel.
namePanel.
namePanel.
namePanel.
namePanel.
namePanel.

add (serialNumberLabel) ;
add (stockNumberlabel) ;
add (namelabel) ;

add (typeLabel) ;

add (datelabel) ;

add (manufacturerLabel) ;
add{modellabel) ;
add(locationLabel);

add (runtimeLabel) ;

400

")

fieldPanel.add(serialNumberField);
fieldPanel.add(stockNumberField) ;
fieldPanel.add (nameField);
fieldPanel.add(typeField);
fieldPanel.add(dateField);
fieldPanel.add (manufacturerField):;
fieldPanel.add (modelField);
fieldPanel.add(locationField);
fieldPanel.add(runtimeField);

box = new Box(BoxLayout.X AXIS);
box.add (namePanel) ;
box.add(fieldPanel)

addButton = new JButton ("ADD RECORD");
addButton.setBackground (buttonColor) ;

deleteButton = new JButton ("DELETE RECORD");
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton ("UPDATE RECORD");
updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL");
cancelButton. setBackground (buttonColor) ;

buttonPanel = new JPanel();
_buttonPanel.add(addButton);
buttonPanel.add (deleteButton);
buttonPanel.add (updateButton);
buttonPanel.add (cancelButton);

this.setSize (800, 600);
this.getContentPane () .setlayout (new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane() .add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end EquipmentForm()

} // end class EquipmentForm

401

import javax.swing.*;
import java.awt.*;

*

/

* % ok ok ok ok

*/

The EventForm class inherits from the JFrame class and provides
a graphical representation, which consists of labels, fields, and
combo boxes, for the Events Table in the POET Database.

@author LTJG. Yuksel Can

public class EventForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField exerciseField;
JLabel exerciselabel;

JTextField eventField;
JLabel eventlabel;

JComboBox typeField;
JLabel typeLabel;

JTextField numberField;
JLabel numberLabel;

JTextField durationField;
JLabel durationLabel;

JPanel buttonPanel;

JButton addButton;

JButton deleteButton;

JButton updateButton;

JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);

static String{] type = { "ANTISURFACE WARFARE",
"ANTISUBMARINE WARFAREY,
"ANTIAIR WARFARE", "COMMUNICATIONS",

"ELECTRONIC WARFARE", "MISCELLANEOUS"

public EventForm(String title) {

super (title);

402

}:

exerciseField = new JTextField(25);
exerciselabel = new JLabel (" Exercise Name : ");
eventField = new JTextField(25);

eventLabel = new JLabel (" Event Name : ");

typeField = new JComboBox(type):’
typeField.setEditable(false);

typeLabel = new JLabel (" Event Type : ");
numberField = new JTextField(25);

numberLabel = new JLabel (" Number Of Events : ");
durationField = new JTextField(25);

i

durationlabel new JLabel (" Event Duration (Hours)
namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout (new GridLayout(0, 1));
fieldPanel.setLayout (new GridLayout (0, 1));

namePanel.add(exerciselLabel);
namePanel.add (eventlLabel);
namePanel.add(typelabel);
namePanel.add (numberLabel) ;
namePanel.add (durationLabel);

fieldPanel.add(exerciseField);
fieldPanel.add(eventField);
fieldPanel.add(typeField);
fieldPanel.add (numberField);
fieldPanel.add (durationField);

box = new Box(BoxLayout.X AXIS);
box.add (namePanel) ; ‘
“box.add (fieldPanel);

addButton = new JButton ("ADD RECORD"):;
addButton.setBackground (buttonColor);

deleteButton = new JButton ("DELETE RECORD"):;
deleteButton.setBackground (buttonColor);

updateButton = new JButton ("UPDATE RECORD") ;
updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL");
cancelButton.setBackground (buttonColor);

buttonPanel = new JPanel();

buttonPanel.add{addButton) ;
buttonPanel.add (deleteButton);

403

")

buttonPanel.add(updateButton) ;
buttonPanel.add(cancelButton);

this.
this.

this
this

setSize (800, 600);
getContentPane () .setLayout (new BorderLayout ());

-getContentPane () .add(box, BorderLayout.CENTER);

.getContentPane().add(buttonPanel, BorderLayout.SOUTH) ;
this.

show () ;

} // end EventForm().

} // end class EventForm

404

import javax.swing.*;
import java.awt.*;

/** :
* The FailureForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Failures Table in the POET Database.

*

* @author LTJG. Yuksel Can

*/

public class FailureForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField serialField;
JLabel seriallabel;

JTextField failureField;
JlLabel failurelabel;

JTextField descriptionField;
JLabel descriptionLabel;

JTextField diagnosisField;
JLabel diagnosisLabel;

JTextField dateField;
JLabel datelabel;

JTextField durationField;
JLabel durationlLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);

public FailureForm(String title) {

super(title);

serialField = new JTextField(25);

seriallabel = new JLabel (" Equipment Serial Number :
failureField = new JTextField(25);

failurelabel = new JLabel (" Failure Number : ");

405

")s

descriptionField
descriptionlLabel

il

new JTextField(25);
new JLabel (" Failure Description : ");

fl

diagnosisField = new JTextField(25);
diagnosisLabel = new JLabel (" Failure Diagnosis : ");

dateField =

datelabel

durationFi
durationla

namePanel
fieldPanel

namePanel.
fieldPanel

namePanel
namePanel.
namePanel.
namePanel.
namePanel.
namePanel

fieldPanel.
fieldPanel.
fieldPanel.

fieldPanel
fieldPanel

fieldPanel.

box = new

new JTextField(25):;
= new JLabel (" Failure Date : ");

eld
bel

new JTextField(25);

= new JPanel ();

= new JPanel();
setLayout (new GridLayout (0, 1));
.setlayout (new GridLayout (0, 1));

.add(seriallabel);

add(failurelabel);

add (descriptionLabel);
add (diagnosislabel) ;
add (datelabel) ;

.add (durationLabel);

add(serialField);
add(failureField);
add{descriptionField);
.add(diagnosisField);
.add(dateField);
add(durationField);

Box (BoxLayout.X AXIS);

box.add (namePanel);

box.add(fieldPanel) ;
addButton = new JButton ("ADD RECORD");
addButton.setBackground (buttonColorx) ;

deleteButt
deleteButt

updateButt
updateButt

cancelButt
cancelButt

on = new JButton ("DELETE RECORD");
on.setBackground (buttonColor) ;

on = new JButton ("UPDATE RECORD");
on.setBackground (buttonColor);

on = new JButton ("CANCEL");
on.setBackground (buttonColor);

new JLabel (" Failure Duration (Hours) : ");

buttonPanel = new JPanel():
buttonPanel.add(addButton) ;
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton) ;
buttonPanel.add{cancelButton);

406

this.setSize (800, 600);
this.getContentPane () .setLayout (new BorderLayout()):;
this.getContentPane () .add(box, BorderLayout.CENTER);
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH);

this.show();

} // end FailureForm()

} // end class FailureForm

407

import javax.swing.*;
import java.awt.*;

/**

*

The LanguageForm class inherits from the JFrame class and provides

* a graphical representation, which consists of labels, fields, and

*
*
*

*/

combo boxes, for the Foreignlanguages Table in the POET Database.

Qauthor LTJG. Yuksel Can

public class LanguageForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militaryIDField;
JLabel militaryIDLabel;

JComboBox languageField;
JLabel languagelabel;

JComboBox degreeField;
JLabel degreelLabel;

JPanel buttonPanel;

JButton addButton;

JButton deleteButton;

JButton updateButton;

JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);

static String[] language = { "English*, "French”, "Germah",
"Spanish", "Russian", "Japanese",

"Turkish", "Chinese" };

static String[] degree = { "a", "B", "C", "D", "F" };

public LanguageForm(String title) {

super (title);

militaryIDField
militaryIDLabel

new JTextField(25);

languageField = new JComboBox(language);
languageField.setEditable (true);
languagelabel = new JLabel (" Foreign Language : ");

408

new JLabel (" Personnel Military ID :

"):

degreeField = new JComboBox (degree);
degreeField.setEditable(false);
degreelabel = new JLabel (" Degree : ");

namePanel = new JPanel();
fieldPanel = new JPanel():;

namePanel.setLayout (new GridLayout{(0, 1));
fieldPanel.setLayout (new GridLayout (0, 1)):;

namePanel.add (militaryIDLabel);
namePanel.add (languagelabel);
namePanel.add (degreelabel) ;

fieldPanel.add{militaryIDField);
fieldPanel.add (languageField);
fieldPanel.add (degreeField);

box = new Box (BoxLayout.X AXIS);
box.add (namePanel) ;
box.add (fieldPanel);

addButton = new JButton ("ADD RECORD");
addButton.setBackground (buttonColor) ;

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton ("UPDATE RECORD");
updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL"):;
cancelButton.setBackground (buttonColor);

buttonPanel = new JPanel();
buttonPanel.add (addButton);
buttonPanel.add (deleteButton);
buttonPanel.add (updateButton);
buttonPanel.add (cancelButton);

this.setSize (800, 600);

this.getContentPane ().setLayout (new BorderLayout()):
this.getContentPane () .add (box, BorderLayout .CENTER) ;
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH) ;
this.show(); .

} // end LanguageForm()

} // end class LanguageForm

409

import javax.swing.*;
import java.awt.*;

/**
* The OperationForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Operation Table in the POET Database.

*

* @author LTJG. Yuksel Can
*/

public class OperationForm extends JFrame {
Box box;
JPanel namePanel;

JPanel fieldPanel;

JTextField nameField;
JLabel namelabel;

JComboBox typeField;
JLabel typelabel;

JTextField startDateField;
JLabel startDatelabel;

JTextField endDateField;
JLabel endDatelabel;

JTextField durationField;
JLabel durationLabel;

JTextField placeField;
JLabel placelabel;

JTextField daytimeField;
JLabel daytimeLabel;

JTextField nighttimeField;
JLabel nighttimeLabel;

JTextField heloField;
JLabel heloLabel;

JTextField flyingField;
JLabel flyingLabel;

JTextField dippingNumberField;
JLabel dippingNumberLabel;

JTextField dippingTimeField;
JLabel dippingTimeLabel;

410

JTextField fuelCostField;
JLabel fuelCostLabel;

JTextField ammoCostField;
JLabel ammoCostlabel;

JTextField amortizationField;
JLabel amortizationLabel;

JTextField costField;
JLabel costLabel;

JPanel buttonPanel;

JButton
JButton
JButton
JButton

addButton;

deleteButton;
updateButton;
cancelButton;

Color buttonColor = new Color(l60, 220, 245);

static String([] type = { "INDEPENDENT", "TYPE EXERCISE",

"SQUADRON EXERCISE", "FLEET EXERCISE" };

public OperationForm(String title) {

super(title);

new JTextField(25);
new JLabel (" Exercise Name : "):;

nameField
namelLabel

typeField = new JComboBox(type):
typeField.setEditable(false);
typelabel = new JLabel (" Exercise Type : ");

startDateField = new JTextField(25);
startDatelabel = new JLabel (" Start Date : ");
endDateField = new JTextField(25); .
endDatelabel = new JLabel (" End Date : ");
durationField = new JTextField(25);

durationlLabel = new JLabel (" Duration (Days) : "):

placeField = new JTextField(25);

placelabel = new JLabel(" Place (Sea/Ocean): ");
daytimeField = new JTextField(25);

daytimeLabel = new JLabel (" Daytime Underway Hours : "};
nighttimeField = new JTextField(25);

nighttimelLabel new JLabel (" Nighttime Underway Hours : ");

411

heloField new JTextField(25); - _
heloLabel = new JLabel (" Helo Tail Number : ");

flyingField = new JTextField(25);
flyingLabel = new JLabel (" Helo Flying Time (Houxrs) : ");

dippingNumberField = new JTextField(25);
dippingNumberLabel = new JLabel (" Number Of Dippings : ");

new JTextField(25);
new JLabel (" thal Dipping Time (Hours)

dippingTimeField
dippingTimeLabel

fuelCostField
fuelCostlLabel

new JTextField(25);
new JLabel (" Fuel Cost : ");

ammoCostField = new JTextField(25);
ammoCostLabel new JLabel (" Ammunition Cost : ");

[

amortizationField
amortizationLabel

new JTextField(25);
new JLabel (" Amortization : ");

[l

costField new JTextField(25);
costLabel = new JLabel (" Cost Of Exercise : ");

namePanel new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout (new GridLayout (0, 1));
fieldPanel.setLayout (new GridLayout (0, 1)):

namePanel.add (namelabel) ;
namePanel.add{typelLabel);
namePanel.add (startDateLabel) ;
namePanel.add(endDateLabel) ;
namePanel.add (durationlLabel);
namePanel.add{placeLabel);
namePanel.add(daytimelabel) ;
‘namePanel.add (nighttimelLabel);
namePanel.add (heloLabel) ;
namePanel.add(flyingLabel);
namePanel.add (dippingNumberLabel) ;
namePanel.add(dippingTimeLabel) ;
namePanel.add{fuelCostlLabel);
namePanel.add (ammoCostLabel) ;
namePanel.add(amortizationLabel);
namePanel.add(costLabel);

fieldPanel.add (nameField) ;
fieldPanel.add(typeField);
fieldPanel.add (startDateField);
fieldPanel.add (endDateField);
fieldPanel.add(durationField);
fieldPanel.add(placeField);
fieldPanel.add (daytimeField) ;
fieldPanel.add (nighttimeField);

412

fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.

box

add (heloField) ;

add (flyingField);

add (dippingNumberField);
add (dippingTimeField);
add (fuelCostField);

add (ammoCostField) ;

add (amortizationField);
add(costField);

new Box (BoxLayout.X AXIS);

box.add {namePanel) ;

box.add(fie

addButton
addButton.s

ldPanel) ;

new JButton ("ADD RECORD") ;
etBackground (buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground (buttonColor);
updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground (buttonColor);
cancelButton = new JButton ("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton):;
buttonPanel.add(updateButton);
buttonPanel.add{cancelButton):;

this.setSize (800, 600);

this.getContentPane ().setLayout (new BorderLayout());
this.getContentPane () .add(box, BorderLayout.CENTER);
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH);
this.show();

} // end OperationForm()

} // end class OperationForm

413

import javax.swing.*;
import java.awt.*;

/**

* The OverhaulForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Overhaul Table in the POET Database.

. .

* @author LTJG. Yuksel Can

*/

public class OverhaulForm extends JFrame {
Box boi;
JPanel namePanel;

JPanel fieldPanel;

JComboBox shipField;
JLabel shiplLabel;

JTextField numberField;
JLabel numberLabel;

JTextField startDateField;
JLabel startDatelabel;

JTextField endDateField;
JLabel endDateLabel;

JTextField durationField;
JLabel durationLabel;

JTextField shipyardField;
JLabel shipyardLabel;

JPanel buttonPanel;

JButton addButton;

JButton deleteButton;

JButton updateButton;

JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);

static String[] ship = { "TBUP" };

publié OverhaulForm(String title) {
super (title);
shipField = new JCoﬁboBox(ship);

shipField.setEditable (false);
shipLabel = new JLabel(" Ship's Int'l Callsign : ");

414

numberField = new JTextField(25);

numberLabel = new JLabel (" Overhaul Number : ");
startDateField = new JTextField(25);

startDatelabel = new JLabel (" Overhaul Start Date : ");
endDateField = new JTextField(25);

endDatelabel = new JLabel (" Overhaul End Date ");
durationField = new JTextField(25);

durationLabel = new JLabel (" Overhaul Duration (Days)
shipyardField = new JTextField(25);

shipyardLabel = new JLabel(" Shipyard Name ")
namePanel = new JPanel();

fieldPanel = new JPanel():;

namePanel.setlLayout (new GridLayout (0, 1));

fieldPanel

namePanel.
namePanel.
namePanel.
namePanel.
namePanel.

.setlayout (new GridLayout (0, 1));

add (shipLabel);

add (numberLabel) ;
add (startDatelabel);
add (endDatelabel) ;
add (durationLabel);

~ namePanel.add(shipyardLabel);

fieldPanel.add(shipField);
fieldPanel.add (numberField);
fieldPanel.add(startDateField);
fieldPanel.add (endDateField);
fieldPanel.add(durationField);
fieldPanel.add(shipyardField);

box = new Box(BoxLayout.X AXIS);
. box.add (namePanel) ;
box.add(fieldPanel);

addButton = new JButton("ADD RECORD"):;
addButton.setBackground {buttonColor);

deleteButton = new JButton ("DELETE RECORD");
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton ("UPDATE RECORD");
updateButton. setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL"):;
cancelButton.setBackground (buttonColor);

buttonPanel = new JPanel();

buttonPanel.add (addButton);
buttonPanel.add (deleteButton);

415

")

buttonPanel.add (updateButton);
buttonPanel.add(cancelButton) ;

this.setS8ize (800, 600);

this.getContentPane () .setLayout (new BorderLayout ());
this.getContentPane () .add (box, BorderLayout .CENTER) ;
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH) ;
this.show();

} // end OverhaulForm()

} // end class OverhaulForm

416

import javax.swing.*;
import java.awt.*;

*

The PersonnelForm class inherits from the JFrame class and provides
a graphical representation, which consists of labels, fields, and
combo boxes, for the Personnel Table in the POET Database.

@author LTJG. Yuksel Can

* % F Ok Ok * F

~

public class PersonnelForm extends JFrame {
Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militaryIDField;
JLabel militaryIDLabel;

JTextField firstNameField;
JLabel firstNameLabel;

JTextField lastNameField;
JLabel lastNamelabel;

JComboBox departmentField;
JLabel departmentLabel;

JComboBox divisionField;
JLabel divisionLabel;

JComboBox rankField;
JLabel rankLabel;

JComboBox ratingField;
JLabel ratingLabel;

JTextField birthDateField;
JLabel birthDateLabel;

JTextField birthPlaceField;
JLabel birthPlacelabel;

JTextField fatherField;
JLabel fatherlabel;

JTextField motherField;
JLabel motherLabel;

JTextField serviceDateField;
JLabel serviceDatelLabel;

JTextField rankDateField;

417

JLabel rankDateLabel;'

JComboBox genderField;
JLabel genderlabel;

JComboBox maritalField;
JLabel maritallabel;

JTextField spouseField;
JLabel spouselabel;

JTextField childrenField;
JLabel childrenLabel;

JTextField streetField;
JLabel streetlabel;

JTextField cityField;
JLabel cityLabel;

JTextField stateField;
JLabel stateLabel;

JTextField zipField;
JLabel zipLabel;

JTextField phoneField;
JLabel phonelabel;

JTextField'specialityField;
JLabel specialityLabel;

JComboBox educationField;
JLabel educationLabel;

JTextField assignmentField;
JLabel assignmentlLabel;

JTextField startDateField;
JLabel startDatelabel;

JTextField cabinNumberField;
JLabel cabinNumberLabel;

JTextField cabinPhoneField;
JLabel cabinPhonelabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

418

Color buttonColor = new Color (160, 220, 245);

static String[] department = { "Operations", "Engineering",
"Weapons", "Electfonics",
"Navigation", "Supply"‘};
static String[] division = { "CIC", "Communications",
"Electronic Warfare",
"Main Propulsion”, "Electrical”,
"Damage Control"”,
"Anti Surface Warfare”,
"Anti Submarine Warfare",
"Anti Air Warfare", "Fire Control”,
"Weapons Electronics",
"CIC Electronics",
"Communications Electronics”,
"Administration”, "Navigation”,
"Deck", "Supply", "Medical" };
static String[] rank = { "ENSIGN", "LTJG"”, "LIEUTENANT",
"LTCDR", "COMMANDER", "CAPTAIN",
"PETTY OFFICER 2ND CLASS",
"PETTY OFFICER 1ST CLASS",
"CHIEF PETTY OFFICER 2ND CLASS",
"CHIEF PETTY OFFICER",
"SENIOR CHIEF PETTY OFFICER",
"MASTER CHIEF EETTY OFFICER" };

"OFFICER", "PETTY OFFICER",

It
——

static String[] rating

"ENLISTED" };

Il
-

static String[] gender "MALE", "FEMALE" };

419

static String[] marita

1 =

{ "SINGLE", "MARRIED" };

static String[] education = { "HIGH SCHOOL"™, "COLLEGE",

"UNIVERSITY", "MASTER" };

public PersonnelForm(String title) {

super (title);

militaryIDField = new JTextField(25);
militaryIDLabel = new JLabel (" Military ID : ");

firstNameField
firstNameLlabel

lastNameField
lastNameLabel

departmentFiel

n
n

= ne
= ne

d=

ew JTextField(25);
ew JLabel (" First Name : ");

w JTextField(25);
w JLabel (" Last Name : ");

new JComboBox (department);

departmentField.setEditable (false);

departmentLabe

divisionField
divisionField.
divisionLabel

1l =

= ne
setE
= ne

new JLabel (" Department : ");

w JComboBox (division);
ditable(false);
w JLabel (" Division : ");

rankField = new JComboBox (rank);
rankField.setEditable (false);
rankLabel = new JLabel(" Rank : ");

ratingField = new JComboBox (rating);
‘ratingField.setEditable(false);

ratingLabel =

birthDateField
birthDateLabel

birthPlaceFiel
birthPlaceLabe

fatherField =
fatherLabel

motherField
motherLabel

serviceDateFie
serviceDateLab

rankDateField
rankDateLabel

new

n
n

d=
1

new
new

new
new

ld =
el =

1l

ne
ne

JLabel (" Rating : ");

ew JTextField(25);
ew JLabel (" Date Of Birth : ");

new JTextField(25);
new JLabel (" Place Of Birth : ");

JTextField (25);
JLabel (" Father's Name : ");

JTextField (25); .
JLabel (" Mother's Name : ");

new JTextField(25);)
new JLabel (" Active Duty Service Date

w JTextField(25);
w JLabel (" Date Of Rank : ");

420

genderField = new JComboBox{gender) ;
genderField.setEditable(false);
genderLabel = new JLabel (" Gender : ");

maritalField = new JComboBox (marital);
maritalField.setEditable(false);
maritallabel = new JLabel (" Marital Status : ");

fl

new JTextField(25);
new JLabel (" Spouse's Name : ");

spouseField
spouselabel

new JTextField(25);
new JLabel (" Number Of Children :

childrenField
childrenlabel

1t

streetField new JTextField(25);
streetLabel = new JLabel (" Street : ");

new JTextField(25);
new JLabel (" City : ");

0l

cityField
cityLabel

new JTextField(25);
new JLabel (" State : ");

it

stateField
stateLabel

new JTextField(25);
new JLabel (" Zip Code : ");

zipField
zipLabel

]

phoneField = new JTextField(25);
phoneLabel new JLabel (" Phone Number : ");

specialityField new JTextField(25);
specialityLabel = new JLabel (" Speciality : ");

it

educationField = new JComboBox{education);
educationField.setEditable (false);

educationLabel = new JLabel (" Education : ");
assignmentField = new JTextField(25);
assignmentlLabel = new JLabel (" Current Assignment
startDateField = new JTextField(25);

" startDatelabel = new JLabel (" Start Date : ");
cabinNumberField = new JTextField(25);
cabinNumberlabel = new JLabel (" Cabin Number : ");
cabinPhoneField = new JTextField(25);
cabinPhonelabel = new JLabel (" Cabin Phone : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setlLayout (new GridLayout (0, 1

))
fieldPanel.setlayout (new GridLayout (0, 1)

) :
namePanel.add(militaryIDLabel);

421

")

")

namePanel.
namePanel
namePanel.
namePanel
namePanel
namePanel
namePanel
namePanel.
namePanel
namePanel
namePanel.
namePanel
namePanel.
namePanel
namePanel.
namePanel
namePanel
namePanel.
namePanel.
namePanel
namePanel
namePanel.
namePanel
namePanel
namePanel.
namePanel
namePanel.

fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.

fieldPanel

fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.

add (firstNameLabel) ;

.add(lastNameLabel) ;

add (departmentLabel);

.add(divisionLabel) ;
.add (rankLabel) ;
.add(ratingLabel);
.add

(
(
(birthDateLabel);
add(birthPlaceLabel) ;
(

.add(fatherLabel);
.add (motherLabel) ;

add (serviceDateLabel) ;

.add(rankDatelabel);

add (genderLabel) ;

.add(maritallabel);

add (spouseLabel) ;

.add(childrenLabel);
.add(streetlLabel);

add(cityLabel);
add (stateLabel);

.add(zipLabel);
.add (phoneLabel) ;

add (specialityLabel) ;

.add (educationlabel);
.add (assignmentLabel) ;

add(startDateLabel);

.add (cabinNumberLabel) ;

(
(
(
add (cabinPhonelabel) ;

add(militaryIDField);
add{firstNameField);
add (lastNameField) ;
add (departmentField);
add(divisionField);
.add(rankField);

add (ratingField) ;

add (birthDateField);
add(birthPlaceField);
add(fatherField);

add (motherField);

add (serviceDateField);
add (rankDateField);
add (genderField) ;

add (maritalField);
add (spouseField) ;

add (childrenField);
add(streetField);
add(cityField);
add(stateField);

add (zipField);

add (phoneField);

add (specialityField);
add (educationField);
add(assignmentField);
add(startDateField);
add (cabinNumberField) ;

422

fieldPanel.add (cabinPhoneField);
box = new Box(BoxLayout.X AXIS);
box.add (namePanel) ;
box.add (fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.SetBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton("UPDATE RECORD");

_ updateButton.setBackground (buttonColor);

cancelButton = new JButton("CANCEL"):;
cancelButton.setBackground (buttonColor) ;

buttonPanel = new JPanel();
buttonPanel.add (addButton);
buttonPanel.add(deleteButton);
buttonPanel. add (updateButton);
buttonPanel.add(cancelButton);

this.setSize (800, 600);

this.getContentPane () .setLayout (new BorderLayout());
this.getContentPane () .add (box, BorderLayout.CENTER);
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH);
this.show();

} // end PersonnelForm()

} // end class PersonnelForm

423

import javax.swing.*;
import java.awt.*;

VAL 3
* The PortVisitForm class inherits from the JFrame class and provides ‘
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the PortVisits Table .in the POET Database.

*

* @Qauthor LTJG. Yuksel Can :
* / !

public class PortVisitForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField exerciseField;
JLabel exerciseLabel;

JTextField portField;
JLabel portLabel;

JTextField startDateField;
JLabel startDatelLabel;

JTextField endDateField;
JLabel endDatelabel;

JTextField durationField;
JLabel durationlLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;
Color buttonColor = new Color (160, 220, 245);
public PortVisitForm(String title) {
super (title);

new JTextField(25);

exerciseField =

exerciseLabel = new JLabel (" Exercise Name : ");
portField = new JTextField(25);

portlabel = new JLabel (" Port Name : ");
startDateField = new JTextField(25);

startDatelabel = new JLabel (" Visit Start Date : ");

endDateField = new JTextField(25);

424

new JLabel (" Visit End Date

endDateLabel = ")
durationField = new JTextField(25);

durationlLabel = new JLabel (" Visit Duration (Days) ");
namePanel = new JPanel();

fieldPanel = new JPanel();

namePanel.s
fieldPanel.

namePanel.
namePanel.
namePanel.
namePanel.
namePanel.

a
a
a
a
a

fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.
fieldPanel.

box new B

etLayout (new GridLayout (0, 1});
setlayout (new GridLayout (0, 1));
dd (exerciselabel);

dd (portLabel);
dd(startDatelLabel);

dd (endDateLabel) ;

dd (durationlLabel);

add (exerciseField);
add(portField);
add(startDateField);
add (endDateField);
add(durationField);

ox (BoxLayout.X AXIS);

box.add (namePanel) ;

box.add(fie

addButton

1dPanel);

new JButton ("ADD RECORD") ;

addButton. setBackground (buttonColer) ;

deleteButton new JButton ("DELETE RECORD");
deleteButton.setBackground (buttonColor);

updateButton new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton new JButton ("CANCEL");
cancelButton.setBackground (buttonColor);

buttonPanel

buttonPanel.
buttonPanel.
buttonPanel.
buttonPanel.

this.setSiz
this.
this.
this.

this.

getCon
getCon
show ()

getContentPane() .

new JPanel();
add (addButton);
add (deleteButton);
add (updateButton);
add (cancelButton):;
e (800, 600);

setLayout (new BorderLayout()):;
add(box, BorderLayout.CENTER);

add (buttonPanel, BorderLayout.SOUTH);

tentPane ().
tentPane ().

.
’

} // end PortVisitForm()

} // end class PortVisitForm

425

import javax.swing.*;
import java.awt.*;

/**

* The TrainingForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Training Table in the POET Database.

*

* @author LTJG. Yuksel Can
*/

public class TrainingForm extends JFrame {

Box boé;
JPanel namePanel;
JPanel fieldPanel;

JTextField nameField;
JLabel namelLabel;

JComboBox placeField;
JLabel placeLabel;

JTextField durationField;
JLabel durationLabel;

JTextField descriptionField;
JLabel descriptionlLabel; '

JPanel buttonPanel;
JButton addButton;
- JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color (160, 220, 245);
static String[]) place = { "YILDIZLAR TRAINING CENTER",
"KARAMURSEL TRAINING CENTER",
"DERINCE TRAINING CENTER" };
public TrainingForm(String title) {
super (title);

nameField new JTextField(25);
nameLabel = new JLabel (" Course Name : ");

placeField = new JComboBox (place);
placeField.setEditable(false);
placelabel = new JLabel(" Training Center : ");

426

durationField = new JTextField(25);

durationlabel = new JLabel (" Course Duration (Weeks) : ");
descriptionField = new JTextField(25);

descriptionlLabel = new JLabel (" Course Description : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout (new GridLayout (0, 1));
fieldPanel.setLayout (new GridLayout (0, 1));

namePanel.add (namelLabel) ;
namePanel.add (placelabel);
namePanel.add(durationLabel);
namePanel.add (descriptionLabel);

fieldPanel.add (nameField);
fieldPanel.add(placeField);
fieldPanel.add (durationField);
fieldPanel.add(descriptionField);

box = new Box(BoxLayout.X AXIS);
box.add (namePanel) ;
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
_addButton.setBackground (buttonColor);

deleteButton = new JButton ("DELETE RECORD"):;
deleteButton.setBackground (buttonColor) ;

updateButton = new JButton ("UPDATE RECORD");
"updateButton.setBackground (buttonColor) ;

cancelButton = new JButton ("CANCEL");
cancelButton.setBackground(buttonColor) ;

buttonPanel = new JPanel();
buttonPanel.add (addButton);
buttonPanel.add(deleteButton);
buttonPanel.add (updateButton);
buttonPanel.add(cancelButton);

this.setSize (800, 600);

this.getContentPane () .setLayout (new BorderLayout()):;
this.getContentPane () .add (box, BorderLayout.CENTER);
this.getContentPane () .add (buttonPanel, BorderLayout.SOUTH);
this.show(); .

} // end TrainingForm()

} // end class TrainingForm

427

THIS PAGE INTENTIONALLY LEFT BLANK

428

LIST OF REFERENCES

1. Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems, 2" Edition,
Addison-Wesley Publishing Company, Inc., 1994.

2. Date, C. J., An Introduction to Database Systems, 5™ Edition, Addison-Wesley
Publishing Company, Inc., 1990.

3. Kroenke, D. M., Database Processing, Fundamentals, Design, and
Implementation, 6t Edition, Prentice Hall, 1998. :

4. Akin, R., and O’Brian, F.P., Analysis of Java Distributed Architectures in
Designing and Implemenrzng a Clzent/Server Database System, Master’s Thesis, Naval
Postgraduate School, Monterey, California, June 1998.

5. Akbay, M., and Lewis, S.C., Design and Implementation of an Enterprise
Information System Utilizing a Component Based Three-Tier Client/Server Database
System, Master’s Thesis, Naval Postgraduate School, Monterey, California, March 1999.

6. Teorey, T. J., Database Modeling and Design: The Fundamental Principles, 2m
Edition, Morgan Kaufmann Publishers, Inc., 1994.

7. Cassel, P., Teach Yourself Access 97 in 14 Days, 4% Edition, Sams Publishing,
1996.

8. Prague, C. N., and Irwin, M. R., Access 97 Bible, IDG Books Worldwide, Inc.,
1997.

9. Hammer, M., and McLeod, D., Database Description with SDM: A S’emantz'c
Database Model, ACM Transactions on Database Systems, Vol. 6, No. 3, September
1981.

10. Hamilton, G., Cattel, R., Fisher, M., JDBC Database Access with Java, Addison-
Wesley Publishing Company, Inc., 1997.

11. Horstmann, C. S., and Cormell, G., Core Java 2, Sun Microsystems, 1999.
12. JavaSoft, JDBC: A Java SQL API, Sun Microsystems, January 1997.

13. Senn, James A., Analysis and Design of Information Systems, McGraw-Hill Book
Company, 1984.

429

| 14. Daft, R. L., Organization Theory and Design, 6™ Edition, South-Western College
Publishing, 1998.

15. Whitten, J.L., Bentley, L.D., Barlow, V.M., Systems Analysis and Design
Methods, 3" Edition, Irwin, 1994.

16. DanZiger, J.N., and Kraemer, K. L., People and Computers, Columbia University
Press, 1986.

430 .

INITIAL DISTRIBUTION LIST

Defense Technical INfOrmation CentETouvvveeveeeeeeereereererresreesesssessesseessssssssssesssons 2
8725 John J. Kingman Road, Ste 0944

~ Ft. Belvoir, VA 22060-6218

Dudley Knox LIDIATYcccvceermmurueereeneernirrnniessesssssnsssesssssssssssessssessssssessssssessessssnes 2
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

Deniz Kuvvetleri KOmutanligi.........ccocerieveecreetnreninerenininieeeseeseersesessessesesesssesessesenes 1
Personel Daire Baskanligi

Bakanliklar

Ankara, TURKEY

.. Deniz Kuvvetleri KOmUtanligi..........cocoveverereierniesrersinnressnsssnsseseseseressssessseesssesesssenees 1

Kutuphanesi
Bakanliklar -
‘Ankara, TURKEY

Deniz Harp OKUIUcoccverinieirrenieetrtcteserieeses e saessseseesesssesesssssseeseessessesssssessnsensaes 2
Kutuphanesi

Tuzla
Istanbul, TURKEY

Chairman, Code CS e eeeeeeseeeees e seeesseseees s snnns R —— 1
Naval Postgraduate School
Monterey, CA 93943-5101

431

10.

11.

Chairman, Code SM.......cuuieieiiceiieiieeetecereseesresesesesessseesseesseossesssesessasesesssssessssssessens 1

Naval Postgraduate School
Monterey, CA 93943-5101

Prof. C. Thomas Wu (CS/WU)....cccocvveerrererrenennnes bttt sa s et eees 1

Naval Postgraduate School
Monterey, CA 93943-5100

Prof. Lee EAWAIAS (SM/EQ)..ooooooooeooeoooeoeoeoeeoeooeeoeoeoeeeeseseessseeeeeeeeeeeeeeeeeessseseees s 1

Naval Postgraduate School
Monterey, CA 93943-5100

Yazilim Gelistirme Grup Baskanligi
Deniz Harp Okulu Komutanligi
Tuzla

Istanbul, TURKEY

LTIG. YUKSEl Canlccoviniiiiiiiiiiieciccciinienctencsennetesese et eseeracessesessseessnesesssssesncn 2

Findikli Mahallesi

Limon Sokak No: 14 Daire 3
Maltepe

Istanbul, TURKEY

432

