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ABSTRACT

This thesis investigates the use ofthe step frequency waveform, its design and analysis

using the ambiguity function. The step frequency waveform consists of a series ofN pulses

each with a pulse width of x, and whose frequency is increased from pulse to pulse in steps

of Af. A design procedure for detection of small targets with a surface (land or sea) based

step frequency radar employing a high pulse repetition frequency (PRF) waveform is

developed. The proposed method determines the waveform parameters for given radar

specifications. A simple graphical implementation as well as a computer implementation are

presented. The theoretical dimensions ofthe step frequency waveform are defined and verified

for some waveforms with parameters similar to the waveform of interest. Finally, the

ambiguity function is used to analyze the step frequency waveform.
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I. INTRODUCTION

A. BACKGROUND

Over the past few years the applications for imaging or multidimensional high

resolution radar systems have expanded greatly. This has been primarily due to the

improvements in both the waveform generation and the signal processing needed to support

the radar imaging technology. Higher resolution measurements give more information about

the target, but also require more detailed measurements of the target, thus translating into

increased radar system requirements and complexity. The theory of high resolution radar has

been around for some time, but extensive applications ofthe technology have appeared only

recently due to new developments in technology. Recent applications of high resolution

techniques have appeared in a variety of areas, including:

• Modeling and analysis or radar targets;

• Diagnostic methods for target radar cross section reduction;

• Development of target detection, discrimination, recognition, and

classification techniques;

• Improved radar detectability performance;

• Diagnostic methods to support the medical and physical sciences.

High range resolution (HRR) in radar has many good uses. Among these a few are

listed below:

• Enhancement of target-to-clutter ratio;

• Accurate range measurement;

• Resolution of multiple targets - raid count;
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• Target range profile and size;

• Target classification;

• Recognition and avoidance of deception ECM;

• Measurement of range rate without doppler.

HRR is achieved by using a large bandwidth. In ultrawideband (UWB) waveforms, large

bandwidth is obtained by decreasing the pulse width. However, when the pulse width is too

narrow, sampling becomes problematic and is limited by existing analog-to-digital (A/D)

technology. In conventional pulse compression (PC), a large bandwidth is obtained by

modulation inside the pulse. In both approaches, the instantaneous bandwidth is large which

requires a high A/D sampling rate. In the step frequency waveform, the bandwidth is

increased sequentially (instead of instantaneously as in the previous cases) over many pulses

within a burst by stepping the frequency of each pulse. By keeping the instantaneous

bandwidth low, the requirements for A/D sampling rates are lowered considerably. The A/D

sampling rate is a bottleneck in HRR radar design. Thus , the step frequency seems to be a

good waveform for HRR.

A step frequency radar operates by transmitting a waveform composed of a number

of increasing stepped frequencies. A coherent I-Q detector measures both the in-phase and

in-quadrature components of the received signal at each of the frequency steps. The phase

information included in this complex sequence allows for accurate distance measurements.



B. OVERVIEW

This thesis discusses the step frequency waveform design and its analysis using the

ambiguity function. In Chapter II the fundamental principles of the step frequency radar are

explained. The step frequency waveform is defined and the waveform processing is explained.

Also in this chapter the implementation of the radar system is described. In Chapter EQ the

waveform design method is developed. Both graphical and computer implementations are

shown and used to compute the waveform parameters. The ambiguity function is introduced

in Chapter IV. Some important examples ofthe ambiguity function are shown. The theoretical

dimensions of the ambiguity diagram are defined and then verified with a few cases of

interest. These theoretical dimensions are then used to define the ambiguity diagram of a

waveform with a large number ofpulses, which for this reason is difficult to compute and plot

with the desired resolution. Finally, in Chapter V the conclusions of this thesis are presented.

The MATLAB codes used are given in Appendix B.





II. STEP FREQUENCY RADAR - OPERATING PRINCIPLE

A. STEP FREQUENCY WAVEFORM

The step frequency waveform consists ofa series ofN pulses each with a pulse width

oft, and whose frequency is increased from pulse to pulse in steps of Af, as shown in Figure

1. The frequency of the /7
th
transmitted pulse is given by

fn = /0+ (n-l)A/, (2.1)

where

f = nominal carrier frequency;

A/= frequency step size;

ii«1,2»3,...,N.

/• foW ft +2 A/

PRI

f = Nominal carrier frequency

A/= Frequency step size

t = Pulse width

PRI = Pulse repetition interval

N

/e +(N-l)A/

Figure 1 . Step Frequency Waveform.



The total effective bandwidth of the step frequency waveform is given by

B
eff

= NAf. (2.2)

The range resolution for this waveform is not the conventional value of cr/2. The

synthetic range resolution obtained by coherently processing a series ofN returns from the

target is given by

AP =
C

=
C

"
2B

eff

' 2NAf <2 -3 >

where AR is the processed range resolution in meters and c is the speed of light (3xl08
m/sec).

As can be seen from Equation 2.3, the range resolution can be improved by either increasing

the number of pulses or the frequency step size.

The coherent processing interval (CPI) is the total time duration in which returns

from a target are collected for signal processing. Thus the CPI is just the product of the

number of pulses N, and the pulse repetition interval (PRI);

CPI = N{PRI). (2.4)

The coherent processing interval is also known as the burst time.

B. SYSTEM DESCRIPTION AND IMPLEMENTATION

The implementation of the step frequency radar is similar to the coherent Pulse-

Doppler radar. The system implementation can be observed in Figure 2. The core of the

system is a coherent step frequency synthesizer with an output frequency called^, which



J* JSTAIO
+
JSTN

+
JCl

STALO

Up-converter

Mixer

Stepped

Frequency

Synthesizer

COHO

Pnlse

Modulator

fsm +
/tsm T Jcoho

Amplifier Circulator

Antenna

rti Receiver

Protection

Mixer

jsys
+ hm^ Jcoso

Coherent

Detector

I

Figure 2. Block Diagram of a Step Frequency Radar.



is stepped from pulse to pulse by a fixed step size, A/ Therefore, we can write

fsyr, = ("-W- (2.5)

The frequency of a local coherent oscillator (COHO),fcoho, is first mixed with the

output frequency ofthe step frequency synthesizer,^ . Then the sum frequency is converted

to the final transmitted frequency by mixing it with the frequency of the stable local oscillator

(STALO), fstalo . The sum frequency of this second mixer is then pulse modulated and

amplified before the transmission occurs. Each transmitted pulse will have a carrier frequency

comprised ofthree different components: the fixed IF frequency,fcoho, the fixed RF frequency,

fstah, and the variable frequency ofthe stepped frequency synthesizer,^, . Thus, the carrier

frequency of the «* pulse is given by the following equation:

A =
fstalo

+
fcoho

+
fsyn

=
/()

+ (»"W- (2.6)

In the receiver side, the return signal is first down converted by mixing it withfstah .

The resulting signal is further down converted to intermediate frequency (IF) by mixing with

fsyn . The output signal obtained after the second mixer is the IF signal. The signal is then

divided into two different channels, the in-phase channel (I), and the quadrature channel (Q).

Both, the in-phase and the quadrature signals are mixed with the output signal of the

coherent oscillator. The first is mixed directly and the second is mixed with the COHO signal

after this last one has been shifted 90 degrees. The I and Q components, both in the video

frequency range, are sampled by an A/D converter at a rate equal to the inverse of the pulse

width.
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Each complex sample is usually called range bin, thus range bin may be defined as a

memory location for temporary storage ofsuccessive pairs of numbers representing the I and

Q samples of the radar return received at a given point in the interpulse period. A separate

bin therefore must be provided for each sampling interval (range gate). To the extent that

range is unambiguous, the numbers stored in any one bin represent successive returns from

a single range increment, hence the name range bin. Because of the correspondence of the

range bins to the sampling intervals (when AID conversion follows I and Q detection), range

bin has come to be used synonymously with sampling interval as well as range gate.

Sampled returns from incoming pulses are stored im memory until all the pulses within

the same burst have been received and can be processed. Figure 3 describes the organization

of sample storage in memory. Complex samples for each range bin are transformed by taking

the FFT of samples in each range bin, resulting in a high resolution range profile (HRR

profile).

One important advantage of the step frequency radar compared with other radars

which also use wideband waveforms, is that in the former the narrow instantaneous bandwidth

does not require a high analog to digital sampling rate which can be a major limitation in the

system design. On the other hand, the step frequency radar may require more complex signal

processing.



u

fo+Af

f +2Af

f +3Af

f +4Af

f„+5Af

f +(N-l)Af

1

2

3

4

5

6

•

•

•

N

N sam

r —
pies

• • •

la • •

• • •

• • •

ilflj
• 4 •

iltlj • • •

•

•

t

•

•

•

Range cells

Range bin

Figure 3. N samples from a target are collected and stored in memory for

processing.
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C. WAVEFORM PROCESSING

The radar return signal at the output ofthe coherent detector can be written as

s(n) = I(n)+jQ(n) = A
n
exp(j$„)

> (2.7)

where

A„ = the magnitude of the w* pulse;

(pn
= the phase of the /7

th
pulse.

A„ represents an amplitude factor which depends on the transmitted power, the size of the

target, its dielectric constant (relative to that ofthe medium where it is embedded), and the

propagation losses in the medium. The signal components are shown in Figure 4.

a a
A„

I (n) = A„ cos (f>n

Q(n) = A, sm
<J>n

Figure 4. Vector Representation of the Signal Components
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The phase of the «* pulse can be written as

1R

c
(2.8)

where/, is the carrier frequency of the /7
th
pulse and t

r
is the round trip time from the target

measured by the w* pulse. This time is equal to IRJc , with Rn being the range between the

target and the radar. For a target with constant velocity toward the radar, the range Rn is

given by

R
n
=R -(n-l)vT, (2.9)

where

R = initial target range;

T = pulse repetition interval;

v = relative radial velocity between target and radar.

The overall expression for the baseband return signal can now be determined by

substituting the instantaneous frequency from Equation 2.1, and the target range from

Equation 2.9 in Equation 2.8, and then substituting the resulting expression in Equation 2.7.

The resulting equation is as follows:

s{n) = A
n
exp

^„exp

j—fRJ J n n
C

4k
J— (/o

+(P-IW) {R
Q
-(ri-l)vT)

(2.10)
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The set ofN sampled baseband signals s(n) from a given range bin is converted to the

time domain range profile by taking the FFT;

1

N
H

k
= — V s(n) exp
N Z

j2^L\ with 0<k<N-\. (2.11)
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III. STEP FREQUENCY WAVEFORM DESIGN

A radar can be classified as low PRF, high PRF or medium PRF. A low PRF is, by

definition, one for which the maximum range the radar is designed to handle lies in the first

range zone - the zone from which first-time-around echoes are received. Range for low PRF

is unambiguous and doppler frequency is ambiguous. A high PRF is one for which the

observed doppler frequencies of all significant targets are unambiguous and range is

ambiguous. Finally, a medium PRF is one for which neither of these conditions is satisfied.

Both range and doppler frequency are ambiguous. In this thesis the interest is the high PRF

radar.

The purpose of this chapter is to develop a design procedure for detection of small

targets with a surface (land or sea) based step frequency radar which employs a high PRF

waveform. The disadvantage of high PRF is that the range ambiguity has to be resolved.

However, several advantages result from high PRF. The unambiguous doppler leads to

advantages such as elimination of clutter and absence or minimization of the blind doppler

problem. It also improves the signal-to-noise (S/N) ratio by integration of larger number of

pulses. For a constant frequency high PRF waveform, multiple time around clutter (from

ambiguous regions due to different pulses) adds up and thus decreases the signal-to-clutter

(S/C) ratio and increases the dynamic range of the receiver and associated A/D. Though the

S/C ratio can be improved by doppler filtering, receiver and A/D will still require a large

dynamic range as a large magnitude of folded clutter has to be accommodated in the receiver

and A/D. The step frequency waveform reduces the folded clutter and thus the dynamic range

by decreasing the number of range ambiguities. Range ambiguities in the step frequency

15



waveform depend upon the number of pulses which will pass through the IF filter

simultaneously. This number is given by l/(xA/). By proper choice of the product xA/, range

ambiguities and thus clutter and dynamic range can be reduced. However, this advantage

comes about at the cost of limiting the range coverage. This feature of the step frequency

waveform provides a good tradeoff as high resolution radars are often limited by A/D

technology. The waveform design involves the selection ofPRF (/r), number of pulses (N),

frequency step (A/) and pulse width (x). It is assumed that the following radar performance

related parameters are available: range resolution (AR), nominal carrier frequency (f ), time-

on-target (tot), minimum and maximum radial velocity (v,^ and v^ ) and the maximum

number of pulses (N^J. The design of constant frequency waveforms is relatively simple and

well documented. However, the design of step frequency waveforms is complex due to the

conflicting effect ofwaveform parameters on various desired performance goals. Thus, in this

chapter effort is made to systematize the design process for the high PRF step frequency

waveform. The main point behind the design of high PRF waveforms is to keep the target in

clutter free area and the target doppler unambiguous. This involves selection ofPRF based

on minimum and maximum target velocities and other parameters. PRF should be large

enough that target at maximum expected velocity stays unambiguous in doppler. The other

constraint is based on the fact that target doppler from minimum target velocity exceeds the

clutter doppler. These constrains along with resolution requirements lead to the high PRF

waveform design.

In this chapter, the method used to compute the desired parameters for the high PRF

design case will be explained, but first two parameters will be defined and the expression for

constraints on PRF will be derived.
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1. Definition of two constants

A dimensionless parameter P that relates the radial target motion over the time

duration of the step frequency waveform to the resolution of the profile can be defined as:

p - UT' <31>

where:

v = the radial velocity between the radar and the target (closing velocity);

NT = the duration of the step frequency waveform;

AR = the processed range resolution.

This is the ratio ofhow far the target moved with respect to the range resolution cell during

the integration time. For all velocities with magnitude greater than zero, this represents a

mismatch in the DFT (which acts like a matched filter), resulting in attenuation and dispersion

of the HRR profile. In addition to the attenuation and dispersion that will result in a reduction

in range resolution and S/N ratio, the uncompensated radial velocity will shift the HRR

profiles by L FFT bins, where L is given by:

L =
f±P, (3.2)

where:

f = the nominal transmitter frequency (center frequency);

B = the total processed bandwidth.

17



2. Derivation of PRF constraints

To get a moving target in clutter free zone after DFT processing, the motion induced

doppler shift should be such that shift L exceeds the clutter extent,

L > NxAf. (3.3)

From Equations 3.1, 3.2 and 3.3

—r— * NxAf. (3.4)

From above v,^ is obtained as

V .mm
X

IT
xA/

X

IT

c

2NAR
X ex 1

" If In ~Kr

(3.5)

The constraint for maximum velocity can be derived by considering the worst case

scenario for a target located at the end of the range gate (of width cr/2) at the maximum

speed. To keep the doppler unambiguous, doppler shift and spread together should not

exceed the PRF and therefore

L+P < N-NxAf. (3.6)

Substituting the value ofL and P into this last equation,



2NTv vNT ^ . r/1 A ~+ < JV(1 -t A/)
A A/?

2 7v v7

X Art
< 1-xA/ (3.7)

V + < — -xA/
Art 27 27 27

Last term in right hand side of above equation can be recognized as the minimum velocity

from Equation 3.5 and therefore

v 1 + .

A ^

2Art
< v

r\ rp nun

i + _A_| + v . < _L = i/
{ 2AR) mn 27 2

r

(3.8)

Now, solving for/r :

/, 1+-

2Art
v .

nun (3.9)

Equality will give the minimum PRF (f^n^J. If the factor A/(2AR) « 1, then the previous

equation can be reduced to

f > — [v + v . 1.J r
y [

max min
J

(3.10)

3. Design Method

The initial specifications are the nominal carrier frequency (f ), range resolution (AR),

maximum radial velocity (vmax ), minimum radial velocity (ymin ), time on target (tot) and due
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to processing constraints, the maximum number of pulses (Nmax). The waveform parameters

that we want to calculate are the PRF (/.), number of pulses (TV), frequency step size (Af)

and the pulse width (r).

The proposed method consists of five steps, as follows:

1. Selection ofPRF from given equation . This equation gives the minimum PRF and

the exact value can be determined using an iterative procedure later.

2. The number of pulses is determined from tot and/
r

:

N > (tot)f =
/ ft ^

Be
f (311)
J r '

where 6B is the antenna beamwidth and 6S is the scan rate.

3. The frequency step size is calculated from

a/
^JWKr' (312>

where c is the speed of light (3 x 10
8
m/sec).

4. The pulse width is chosen from Equation 3.5, which can be rewritten as

7 v .

x < L _^
. (3 13)

N and r will impact the S/N ratio which determines the radar performance, that is

probability of detection and probability of false alarm for given radar parameters. Therefore

it should be ascertained from the following equation that chosen N and r yield adequate S/N
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ratio to satisfy the radar performance requirements.

S P.G 2 X2 o(zN)

77
=—r^ ' (314)N (4TzfR

A kT FL

where

P
t
= the transmitted peak power (watts);

G = the antenna gain of the transmitter/receiver;

A = the wavelength (meters);

a= the radar cross section of the target (square meters);

r = the pulse width (meters);

N= the number of pulses coherently integrated within one scan;

R = the detection range of the target (meters);

k = Boltzmann's constant (1.38 x 10'23 watt-second/°K);

T = the noise temperature (°K );

F = the receiver noise figure;

L = a loss factor incorporating all system losses.

By convention, T is taken to be 290°K, which is close to room temperature (300°K)

and conveniently makes the product kT a round number (4 x 10"21 watt-second/°K).

5. Flexibility in PRF constraint can be used to satisfy other design objectives such as

the search range;
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Search range = number of Ru
's . R

u

IF
B

R
A/ "

A/ "

k c

(3.15)

whereRu is the unambiguous range and Bff is the intermediate frequency bandwidth.

N,f, rand Afare changed iteratively such that the required search range is obtained.

Extent ofi^ should not increase clutter as range resolution is already fixed. However

the number ofRu 's will increase clutter (which should not matter if cancellation is

adequate).

The initial specifications and the final calculated design parameters can be summarized

in the following table:

Specifications Calculated Design Parameters

Range resolution (AR)

Nominal carrier frequency (f )

Time-on-target (tot)

Minimum radial velocity (vmm )

Maximum radial velocity (vmax)

Maximum number of pulses (Nmax )

Minimum PRF (f)

Number of pulses (N)

Frequency step size (Af)

Pulse width (v)

Table 1. Summary of specifications and design parameters.
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4. Graphical implementation of the Design Method

Using the equations mentioned in the previous section, a graphical method to design

the waveform was developed. The first graph is a plot of the range resolution versus minimum

PRF, for four different nominal carrier frequencies.

ft) = nominal carrier frequency

n r

fb= 10GHz

fo=7GHz

fb=5GHz

fo=3GHz

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Range Resolution (meters)

Figure 5. Minimum PRF versus range resolution for four different nominal carrier

frequencies.

This graph was created using Equation 3.9 and it can be observed that as the value

of the desired range resolution decreases (corresponding to an improvement in the range

resolution), the minimum PRF increases. This graph is used to determine the PRF for a given

range resolution and carrier frequency.
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The next graph, Figure 6, is a plot of the PRF versus the number of pulses, and was

generated using Equation 3.11.

2500

i i - —i
1

tot = time-on-target

i i i

tot=15ms^^_

2000

tot=10ms^"'

1500 ^^-"""^

1000
tot=5ms^

•

500

n i i i i i i

20 40 60 80 100 120 140 160 180

PRF (KHz)

Figure 6. Number of pulses versus PRF for three different times-on-target (5, 10,

and 15 ms).

This plot is used to determine the number of pulses for a given time-on-target (tot)

and PRF, computed in the previous step from Figure 5. Then, and using Equation 3.12, the

frequency step size was plotted versus the number of pulses, for three different values of

range resolution (0.3, 0.5, and 1 meter) as can be observed in Figure 7. This graph is used

to determine the frequency step for a given range resolution and number of pulses computed

in the previous step from Figure 6. The frequency step size required for the same number of
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pulses increases as the desired range resolution decreases. Therefore, the better range

resolution is desired, the higher the frequency step size must be.

1

0.9

0.8

-mO.71-
x
— 0.6
Q.

co 0.51-

| 0.4

cr

£ 0.3 h

0.2

0.1 h

dr= range resolution

500 1000

N
1500 2000

Figure 7. Frequency step versus number of pulses for three different range resolutions

(0.3, 0.5, and 1 meter).

Finally, the last step is to compute the pulse width using Equation 3.13, and all the calculated

design parameters from Table 1 will be obtained.

Note that in all the calculations and plots above described vmin was considered to be

1 50 m/s and vmax , 1000 m/s. The value considered forNmax was 2048.

Consider an example to determine the design parameters for a step frequency radar

with a nominal carrier frequency of 1 GHz, time-on-target of 1 5 ms and a desired range

resolution of 0.3 m. From Figure 5 a minimum PRF of 80 KHz would be obtained. Using this
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value and Figure 6, N would be approximately equal to 1200. Now with N=1200, dr=0.3m

and using Figure 7, the frequency step would be approximately 0.42 MHz. The last step is to

compute the value of the pulse width using Equation 3.14 and the result would came up to

be t=298 ns.

Interpolation should be used in this plots whenever the specifications are different

from the values in the plots. However some times the desired values are beyond the plotted

values. Additionally, not only we want to compute the desired parameters that satisfy the

initial specifications, but also we may want to satisfy some parameter constraints. Therefore

a MATLAB code was written in order to fulfill this requirement. This program can be found

in Appendix B.

5. Computer implementation of the Design Method

The waveform design parameters are constrained to the following values:

- Pulse width - between 50 nsec and 5000 nsec

- Frequency step - should be 0.4, 0.6, 0.8 or 1 MHz

- PRF - should be an integer multiple of 5 KHz

The program is written in a way so that it will ask for the desired range resolution, nominal

carrier frequency, and the time-on-target and these data should be entered from the keyboard.

With this input data the program will compute the minimum values using the equations

previously presented. These values are iterated until the constraints mentioned above are all

satisfied and the desired design parameters obtained. The minimum values are shown in

brackets. The program will also compute the actual range resolution and time-on-target

corresponding to the rounded values ofthe PRF, frequency step, pulse width and number of
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pulses. Figure 8 illustrates how the screen will appear.

Enter the desired range resolution in meters : 0.3

Enter the nominal carrier frequency in GH z: 10

Enter the time-on-target in msec : 15

The calculated design parameters are : (minimum values)

-PRF = 140.00 KHz (80.00 KHz)
- Frequency step = 0.40 MHz (0.42 MHz)
- Pulse width - 180.00 nsec (300.00 nsec)

- Number of pulses = 2048 (1200)
- Actual range resolution = 0.19 m
- Actual time-on-target = 14.63 msec

Figure 8. Example of the screen when running program2.m
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IV. STEP FREQUENCY WAVEFORM ANALYSIS USING THE
AMBIGUITY FUNCTION

A. INTRODUCTION

In this chapter, the ambiguity function for a specific step frequency waveform will be

determined. The waveform with the following parameters is of practical interest:

t
s
= 0. 1 usee,

T = 5 usee,

Af= 1 MHz,

N = 500,

where t
s

is the pulse width, T is the PRI, Af is the frequency step, and N is the number of

pulses. However, it is difficult to compute and plot this ambiguity function with the desired

resolution because of the very large amount of computations involved. Not only the amount

of computations is large but also the plotting is hard to handle because the files can easily

reach several megabytes. Therefore, waveforms with parameters similar to the waveform of

interest but easier to compute will be investigated, to bring out the key characteristics of the

waveform under investigation. First, theoretical dimensions will be verified with a few cases.

Then, these theoretical dimensions will be used for a particular case of interest which is

difficult to compute directly.

Since the ambiguity function of the step frequency waveform contains elements of

ambiguity functions of linear frequency modulated (LFM) pulses and train of constant

frequency pulses, the ambiguity functions of these waveforms will be introduced first, along

with the general introduction to ambiguity function.
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B. DEFINITION OF AMBIGUITY FUNCTION AND ITS PROPERTIES

1. Definition of Ambiguity Function

A radar waveform's ambiguity function is probably the most complete statement of

the waveform's inherent performance. It is a formula that quantitatively describes the

interference caused by a point target return located at a different range and velocity from a

reference target of interest. It reveals the range-doppler position of ambiguous responses and

defines the range and doppler resolution. [Ref 2, pp. 74]

This quantitative description ofthe ability ofa waveform to resolve two or more radar

reflectors at arbitrarily different ranges and velocities, constitutes an important feature for

quick assessment ofthe interference level with which a target of interest must compete when

it is in the vicinity of the other radar reflectors. Although it is seldom used as a basis for

practical radar system design, it provides an indication of the limitations and utility of

particular classes of radar waveforms, and gives the radar designer general guidelines for the

selection of suitable waveforms for various applications.

The ambiguity function of the waveform s(t) can be defined in terms of the cross-

correlation of a doppler-shifted version of the waveform, that is s(t) exp(j27rfd t) with the

unshifted waveform. Using the definition of cross-correlation, it follows that

+°o

X (*,/„) = / Wt)e
j2nfdt

]
[s \t-x)] dt

, (4.1)

where r is the delay time and/, is the doppler frequency shift. Rearranging the terms in the

integral produces a common form of the ambiguity function as shown in Equation 4.2.



IX(^)I =
1/ Kt)s*(t-T) e

}2^dt\ . (4.2)

A normalized expression is obtained by requiring that

jWfdt=\ . (4.3)

With this normalization, the magnitude of the ambiguity function has a value of unity at the

origin.

2. Properties of the Ambiguity Function

The ambiguity function has the following properties:

Peak value of \x{z,fd )\
=

|X(0,0 )|
= E

, (4.4)

IX(-V/,)I = lx(*,/r)l

,

(4-5)

|X(T,0)| = \Js(t)s*(t-x)dt\ , (4.6)

— oo

.2/A J2nfd l

lx(0JiW = \fs\f)e™'dt\, (4.7)

/ \\li^fd)\dzdfd = E (4.8)

Equation 4.4, states that the peak value of the ambiguity function occurs at the origin and it

is equal to E, the energy contained in the echo signal. Equation 4.5 shows the ambiguity
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function's symmetry. Equation 4.6 indicates that the ambiguity function along the time delay

axis is the auto-correlation function of the complex envelope of the transmitted signal.

Equation 4.7 states that along the frequency shift axis the ambiguity function is proportional

to the spectrum of s
2
(t). Finally, Equation 4.8 states that the total volume under the ambiguity

surface is a constant equal to E.

3. Ambiguity Diagram

It is common to refer to \x{t,fd )\ as the ambiguity surface of the waveform. The

shape of this ambiguity surface depends entirely on the waveform parameters. The plot of the

ambiguity surface is called ambiguity diagram. The ideal ambiguity diagram consists of a

single spike of infinitesimal thickness at the origin and is zero everywhere else. The single

center spike eliminates any ambiguities, and its infinitesimal thickness at the origin permits the

frequency and the echo delay time to be determined simultaneously to an high degree of

accuracy. It also permits the resolution oftwo targets no matter how close together they are

on the ambiguity diagram. Naturally, this ideal diagram does not exist. The two reasons for

this can be found in the properties: first, and accordingly with Equation 4.4, the maximum

height ofthe ambiguity function is E and secondly the volume under the surface must be finite

and equal to E, as stated by Equation 4.8. However, a reasonable approximation is given in

Figure 9. This ambiguity function only has one peak and therefore does not cause any

ambiguity. However the single peak might not be narrow enough to satisfy the requirements

ofaccuracy and resolution. Ifthe single central peak is made too narrow, it may cause other

smaller peaks to occur in regions other than the origin, and therefore cause ambiguities. The

requirements for accuracy and unambiguity are not always possible to satisfy simultaneously.
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Figure 9. An approximation to the ideal ambiguity diagram "After Ref. [1].

The particular waveform transmitted by a radar is chosen to satisfy the requirements

for (1) detection, (2) measurement accuracy, (3) resolution, (4) ambiguity, and (5) clutter

rejection. The ambiguity diagram may be used to assess how well a waveform can achieve

these requirements. Each of these will be discussed briefly.

The requirements for detection do not place any demands on the shape of the

transmitted waveform except that it be possible to achieve with practical radar transmitters,

and the maximum value ofthe ambiguity function is an indication of the detection capabilities

of the radar. The accuracy with which the range and the velocity can be measured by a

particular waveform depends on the width of the central spike along the time and frequency

axis. The resolution is also related to the width of the central spike, but in order to resolve

two closely spaced targets the central spike must be isolated. It cannot have any high peaks

nearby that can mask another target close to the desired target. A waveform that yields good

resolution will also yield good accuracy, but the reverse is not always so.
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A continuous waveform (a single pulse) produces an ambiguity diagram with a single

peak. A discontinuous waveform can result in peaks in the ambiguity diagram at other values

ofz,fd . The pulse train is a common example. The presence of additional spikes can lead to

ambiguity in the measurement of target parameters. An ambiguous measurement is one in

which there are several choices available for the correct value of a parameter, but only one

choice is appropriate. Thus the correct value is uncertain. The ambiguity diagram permits a

visual indication of the ambiguities possible with a particular waveform. The ambiguity

problem, detection and accuracy are related to a single target, whereas resolution applies to

multiple targets.

The ambiguity diagram may be used to determine the ability of a waveform to reject

clutter by superimposing on the x, fd plane the regions where clutter is found. If the

transmitted waveform is to have good clutter-rejection properties the ambiguity function

should have little or no response in the regions of clutter.

The problem of synthesizing optimum waveforms based on a desired ambiguity

diagram specified by operational requirements is not normally feasible. The approach to

selecting a waveform with a suitable ambiguity diagram is not systematic but rather by trial

and error.

The name ambiguityfunction is somewhat misleading since this function describes

more about the waveform than just its ambiguity properties. This name was given to this

function in order to demonstrate that the total volume under it, is a constant equal to E,

independent of the shape of the transmitted waveform. Thus the total area of ambiguity, or

uncertainty, is the same no matter how the ambiguity surface is distributed over the x,fd

plane. [Ref. 1, pp. 418-420]
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C. AMBIGUITY FUNCTION OF A SINGLE PULSE

The unmodulated single pulse is widely used in old generation radars for search and

track functions (as magnetrons are not easily modulated) and where range accuracy and

resolution requirements can be met with a pulse wide enough to provide sufficient energy for

detection. It has the minimum ratio of time sidelobe extent to compressed pulse width and is

used in inexpensive radars where signal generation and processing costs must be minimized.

The single pulse of a sine wave can be defined as

S(t) = s(t)e
j2nf t

(4.9)

where s(t) is the complex envelope of the signal, defined as follows:

s(t) = 1, if 0< t< t
s,

= 0, elsewhere, (4.10)

with t
s
equal to the pulse width.

Using Equation 4.2, the ambiguity function of the single pulse can be written as

follows:

|x(t,/„)| = |/ifWdt

1-
sin[7i/

5 (l-|T|/Q/J

H(i-M/y>i
if l^>.

zero elsewhere. (4.11)

The figures for this section are in Appendix A. The ambiguity diagram of the single

pulse is shown in Figure A. 1 and the contour plot can be observed in Figure A. 2. Profiles of



the ambiguity function, taken through its peak, are shown in Figures A3 and A. 4. The time

profile is a triangle (the autocorrelation of a rectangle is a triangle) with a half-voltage width

equal to the pulse width. The frequency profile is a sine function whose main lobe width is

twice the reciprocal of the pulse width.

D. AMBIGUITY FUNCTION OF THE LINEAR FREQUENCY MODULATED

PULSE

The linear frequency modulated (LFM) pulse is commonly used to increase range

accuracy and resolution when long pulses are required to get reasonable signal-to-noise ratios

(10 to 20 dB). This waveform can be used for detection of targets with unknown velocity

since the doppler sensitivity is low.

The LFM pulse can be represented mathematically as

j2n\fQ t

S(t) = s(t) e \~ 2 I

^[s(t)e^
2

]e
j2nfot

,

(4.12)

where s(t) is the same as defined in Equation 4.10, and k is the rate of frequency change in

Hz/sec. The ambiguity function of the LFM pulse can be written as in Equation 4. 13.

X(*,fd)\ = \fs(t)s*(t-x)e
j2n(fd -kz)tdt

i-H
sin[it/,(HT|//,)(/

</
+*'i:)]

if\i\ * t
a ,

zero elsewhere. (4.13)
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Comparing this equation with Equation 4.2, we can see that they are identical, except thatfd

is replaced by fd - kx. Therefore , we can conclude that the ambiguity function of the LFM

pulse is a shifted version of the ambiguity function of a single pulse. This relation is

represented graphically in Figure 10 and it can be seen that the ambiguity function of the LFM

pulse is just a rotated version of the ambiguity function of the single pulse.

A

LFM praise

Figure 10. Contour comparison for the single pulse and the LFM pulse.

The figures for this section are in Appendix A. Figures A. 5, A. 6, A. 7, and A. 8,

represent the ambiguity diagram, contour plot, and time and frequency profiles (taken through

the peak), respectively.
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E. AMBIGUITY FUNCTION OF THE CONSTANT FREQUENCY PULSE TRAIN

Practical radars employ waveforms consisting of constant frequency pulse trains and

therefore it is important to study their ambiguity functions. The ambiguity functions for these

pulse trains reveal ambiguous responses in range and doppler. Performance for specific

surveillance applications can be understood in terms ofunambiguous range-doppler regions

of operation determined by radar pulse repetition frequency, pulse duration, and pulse

bandwidth. For high resolution applications, the ambiguity surface of individual pulses of the

pulse train is also of interest. [Ref. 2, pp. 74-75]

For single pulse delay and frequency measurement accuracies depend on the single

parameter of pulse width. With the pulse train this situation can be avoided. The delay

accuracy depends on the pulse width as before, but the frequency accuracy is now determined

by the total duration of the pulse train. Therefore, both accuracies are independent of one

another. The price that has to be paid for this capacity of independently controlling delay and

frequency accuracies is that additional peaks occur in the diagram, which in turn cause range

and doppler ambiguities. In practice, the radar designer tries to select the PRI in order to

make all targets of interest appear in the vicinity of the central peak, and all the other peaks

occur as far from this region as possible.

Most radars use this type ofwaveform, which can be mathematically represented as

follows:

S(t) = J>(/-«7V
2lt/o

'

,

(4.14)

n=0

where s(t) is the complex envelope of the single pulse of the transmitted signal, defined as
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s(t-nT) = 1, if nT< t< nT^t
s ,

= 0, elsewhere. (4.15)

In this equation, N\s the number of pulses, T\s the PRI and t
s
is the pulse width. The

ambiguity function of the constant frequency pulse train can be written as

Ix(t,/,)I =
I f £ *{t-nT) tisXt-mT-^e^'dt] .

(4.16)

Changing variables ( t-nT=t

'

), Equation 4. 16 becomes

N-\ N-\ ™
,

Ixfr/Jl - IE E '™d"T
(*«') s\t'-(m-n)T-x) «** rfr'|

. (4 17)

Figure 1 1 is a level contour of the ambiguity surface of a constant frequency pulse

train. This figure shows that the width of the central peak along the delay axis is

approximately twice the pulse width, and that along the frequency axis is 2/NT. The

interpeak distance along the delay axis is equal to the PRI, and along the frequency axis

1/PRI, which is the PRF of the waveform. The total non-zero extent along the delay axis is

2NT and along the frequency axis is 2/t
s

. Figure 12 represents an example of an ambiguity

diagram for the constant frequency pulse train. The contour plots in Figures 13 and 14 show

that the results obtained agree with the theoretical ones previously defined. This can also be

observed in Figures 15 and 16, which represent the time and frequency profiles, respectively.

The time profile of the central pulse is a triangle and the frequency profile is a sine function,

as expected.
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Figure 1 1 . Level contour of the ambiguity surface of a constant frequency pulse train.
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frequency [MHz
delay [microsec]

Figure 12 Ambiguity diagram of a constant frequency pulse train

(N~5, pulse width^l microsec, PFU=5 microsec, Af=0)
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Figure 13. Contour plots ofthe ambiguity diagram of a constant frequency pulse train.

(N=5, pulse width=l microsec, PRI=5 microsec, Af=0)

(a) Global view.

(b) Magnified view.
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Figure 14. Contour plots ofthe ambiguity diagram ofa constant frequency pulse train.

(N=5, pulse width =1 microsec, PRI=5 microsec, Af=0)

(a) Magnified view.

(b) Magnified view of the central peak.
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Figure 15. Time profiles ofthe ambiguity diagram of a constant frequency pulse train.

(N=5, pulse width =1 microsec, PRJN5 microsec, Af=0)

(a) Global view.

(b) Magnified view.
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Figure 16. Frequency profile of the ambiguity diagram of a constant frequency pulse

train . (N=5, pulse width =1 microsec, PRI=5 microsec, Af=0)

(a) Global view.

(b) Magnified view.
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F. AMBIGUITY FUNCTION OF THE STEP FREQUENCY WAVEFORM

The transmitted signal of the step frequency radar (as shown in Figure 1) can be

represented mathematically as follows:

AM
S

t
(t) =A

t
Yls(t-nT)e

JJnf°
+j2K(frn*f)t

(4.18)
w=0

with s(t) defined in Equation 4. 15, and n = 0, ... , N-l. A, is the amplitude of the transmitted

signal. Equation 4. 18 can be rewritten as follows:

AM

EW = A
t

= A
t
S(t) e

Y, s{t-nT) eJ
'

2nnAft

JWo'

J 2*fo'

(4.19)

The expression in brackets is the complex envelope ofthe pulse sequence represented by S(t).

The received signal can be written as

S
r
(i) = A

r
S(t-x) e

j2n(f ^fd)(t-x)
(4.20)

Substituting the complex envelope S(t) into Equation 4.2, will give an expression for

the ambiguity function

X(*,fd)\ = 1/

AM

E
m=0

N-l

E
«=0

Y,s(t-mT) e^
21""^ J^s*(t-nT-x) e -fl»W-*i e

2nfj
'dt\ . (4.21)
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Changing variables ( t-mT = t '

), the final expression for the ambiguity function of the step

frequency waveform is obtained:

N-\ N-\

m=0 «=0

(4-22)

x (s(t') s\t'-{n-m)T-x) eM»>-"Wt' eW dt '

\

-co

The theoretical dimensions of the contours of the ambiguity surface for the step

frequency waveform are shown in Figure 17. The overall dimensions are of length 2NT along

the delay axis and 2NA/ along the frequency axis. It can be observed that the distance

between component contours along the delay axis is equal to the PRI of the waveform and

along the frequency axis is equal to the inverse ofthe PRI. The ambiguity diagram of the step

frequency waveform can be obtained from the ambiguity diagram of the constant frequency

pulse train (same parameters), by rotating the delay axis by A/7T. This can be stated more

accurately by saying that the ambiguity function of the step frequency radar is x(t, (&f/T)fd)

where xC^ fd) 1S tne ambiguity function of the constant frequency pulse train. Apart from

rotation ofhorizontal axis (and all cuts parallel to it) the individual spikes also rotate. This is

similar to linear frequency modulation pulses. The extent ofthe central column of spikes along

the frequency axis for zero delay is 2/t
s , value which decreases when we move away from the

center. The central spike as shown in Figure 1 7 is inclined A/7T with respect to the horizontal

axis, indicating the range-doppler coupling ofthe step frequency waveform. The projection

ofthe central peak on the delay axis is 2t
s , which is the overall delay uncertainty. However

ifthe doppler is known, the delay uncertainty is given by 2/(NA/) as indicated in the figure.

The projection ofthe central peak on the frequency axis is also indicated in the figure. If the
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Figure 17. Level contour of the ambiguity surface of a step frequency waveform.
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delay is known, the frequency uncertainty is 2/NT which is the same as for the constant

frequency pulse train. However if target delay is not known, frequency uncertainty is much

larger due to range-doppler coupling.

G. AMBIGUITY FUNCTION OF STEP FREQUENCY WAVEFORMS

Four waveforms will be studied in this section. These waveforms are defined by the

following parameters:

1. N=5, t
s
=1 us, PRI =5 us, Af=1 MHz.

2. N=10, t
s
=1 us, PRI =5 us, Af=1 MHz.

3. N=10, ts =0.1 its, PRI =5 us, Af =1 MHz.

4. N=500, t
s
=0.1 us, PRI =5 us, Af =1 MHz.

1. First waveform

The results for this waveform are shown in Figures 1 8 through 22. The ambiguity

diagram is represented in Figure 18. It can be observed that it is spiky like the one for the

constant frequency pulse train, but now it is tilted at an angle. The global view ofthe contour

plot ofthe ambiguity function for this waveform is shown in Figure 19(a). The rotation of the

plot with respect to the axes is obvious in the figure and the rotation angle is given by A/7T.

The delay and frequency axis dimensions match the theoretical values as from -NT to NT and

from -NA/to NA/. Figure 19(b) is a close up view of the contour plot. Figure 20(a) is a

further magnification of the contour plot and Figure 20(b) shows the details of the central

peak. From the contour plot it is clear that the central peak is a inclined ridge with the highest

magnitude in the center of the contour. Figure 21(a) is a cut of the ambiguity surface along
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frequency [MHz
delay [microsec]

Figure 18 Ambiguity diagram of a step frequency waveform

(N=5, pulse width- 1 microsec. PRI=5 microsec, AtHMHz)
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delay [micros ec]

(a)

delay [microsec]

(b)

Figure 19. Contour plots of the ambiguity diagram of a step frequency waveform.

(N=5, pulse width=l microsec, PRI=5 microsec, Af=l MHz)
(a) Global view.

(b) Magnified view.

51



delay [micros ec]

(a)

-0.5 0.5

delay [micros ec]

1.5

(b)

Figure 20. Contour plots of the ambiguity diagram of a step frequency waveform.

(N=5, pulse width =1 microsec, PRI=5microsec, Af=l MHz)
(a) Magnified view.

(b) Magnified view of the central peak.
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Figure 21 . Time profiles of the ambiguity diagram of a step frequency waveform.

(N=5, pulse width =1 microsec, PRI=5 microsec, Af=lMHz)
(a) Global view.

(b) Magnified view.
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Figure 22. Frequency profile of the ambiguity diagram of a step frequency waveform.

(N=5, pulse width =1 microsec, PRI=5 microsec, AfMMHz)
(a) Global view.

(b) Magnified view.
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the delay domain atfd=0, which portrays only one peak. This suggests that there is no range

ambiguity for the waveform ifthe target doppler is known. Figure 21(b) is a magnification of

Figure 21(a) which gives null-to-null width of 0.4 which is the same as computed from the

formula 2/(NA/). Note that this is also the output of the matched filter in the time domain.

The range resolution ofthis waveform is 0.2 as given by 1/(NA/). Figure 22(a) is a cut of the

ambiguity surface along the frequency domain at x=0. Theory suggests that there should be

(2T/t
s
)-l peaks in the frequency domain, which is matched by the actual value of 9. Figure

22(b) is a detail of the central peak and should have a null-to-null width of 2/(NT) which

matches with the actual value of 0.08.

2. Second waveform

For the second case, the waveform has the same parameters as in the previous one

except that the number of pulses is increased to 10. This would affect the range resolution

(1/NAf) and the doppler resolution (1/NT) which are now 0.1 and 0.02 respectively.

However, some other quantities of interest such as the component contours in the frequency

axis stay the same. The results can be observed in Figures 23 through 26. Figure 23(a) gives

the global view of the contour plot of the ambiguity diagram for this waveform. Figures

23(b), 24(a) and 24(b) are successively increasing magnifications of the contour plot. Figure

24(b) is a detailed plot ofthe central peak giving a range resolution and frequency resolution

of 0.1 and 0.02, respectively. This can be confirmed in Figures 25(b) and 26(b) which are

magnified views of the time and frequency profiles, respectively.
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Figure 23. Contour plots of the ambiguity diagram of a step frequency waveform.

(N=10, pulse width=l microsec, PRI=5 microsec, AfM MHz)
(a) Global view.

(b) Magnified view.
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(b)

Figure 24. Contour plots of the ambiguity diagram of a step frequency waveform.

(N=10, pulse width=l microsec, PRI=5 microsec, Af=l MHz)
(a) Magnified view.

(b) Magnified view of the central peak.
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Figure 25. Time profiles (cut at zero frequency) of the ambiguity diagram of a step

frequency waveform. (N=10, pulse width=l microsec, PRI=5 microsec,

AfMMHz)
(a) Global view.

(b) Magnified view.
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Figure 26. Frequency profiles ofthe ambiguity diagram ofa step frequency waveform.

(N=10, pulse width =1 microsec, PRT=5 microsec, AfMMHz)
(a) Global view.

(b) Magnified view.
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3. Third waveform

For this waveform the pulse width is reduced to 0. 1 us and the rest of the parameters

are the same as in the previous case. The results can be observed in Figures 27 through 32.

Figure 29 represents the central peak of the ambiguity diagram of this step frequency

waveform which is similar to the one in Figure A. 5.

Now that all the theoretical dimensions previously defined were verified, they can be

used to calculate the dimensions of any particular case of interest. This will be done for the

fourth and last case.

4. Fourth waveform

Using the results from Section F, which have been confirmed for the waveforms

discussed so far, ambiguity diagram figures were sketched for a waveform with 500 pulses.

The amount of computations required to generate the ambiguity surface by computer is

enormous. The 3D ambiguity diagram of this waveform is several magnitudes more complex

than 3D pictures of midtown Manhattan. One can realize the problem of resolution of this

figure and its printing on a normal size paper or even in a much larger size of paper.

A contour plot ofthe ambiguity diagram is sketched in Figure 33. Each short slant line

is a spike. In doppler dimension the spikes are PRF (200 KHz) apart and spread over 2/t
s (20

MHz). In delay dimension (atfd=0) there are about ten significant spikes (in reality there are

more but others will be small in magnitude). This means that the IF filter will pass ten

frequency lines, which implies that the return from ten different ranges due to separate pulses

may arrive at the same time. Thus, one may say that the target will be ambiguous in range and

that it can lie in any ofthe ten range zones. Apart from the fact that the target range ambiguity
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Figure 27. Contour plot of the ambiguity diagram of a step frequency waveform.

(N=10, pulse width=0.1 microsec, PRI=5 microsec, Af=l MHz)
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Figure 28. Time profile (cut at zero frequency) of the ambiguity diagram of a step

frequency waveform. (N=10, pulse width=0. 1 microsec, PRI=5 microsec

Af^l MHz)

61





frequency [M Hz] -0.1 -0.1
dela y [microsec]

Figure 29. 3D plot of the central peak of the ambiguity diagram of a step frequency

waveform. (N=10, pulse width=0.1 microsec, PRI=5 microsec,Af=l MHz)

delay [microsec]

Figure 30 Contour plot of the central peak of the ambiguity diagram of a step

frequency waveform. (N=10, pulse width=0. 1 microsec, PRI=5 microsec,

AfMMHz)
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-0.1 -0.05

delay [micros ec]

Figure 3 1 . Time profile (cut at zero delay) of the central peak ofthe step frequency

waveform. (N=10, pulse width = 0.1 microsec, PRI = 5 microsec,

AfMMHz)

-0.05

frequency [M Hz]

Figure 32. Frequency profile (cut at zero delay) of the central peak of a step

frequency waveform. (N=10, pulse width=0. 1 microsec, PRI=5 microsec,

Af=l MHz)
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Figure 33. Contour plot of the ambiguity diagram of a step frequency waveform.

(N=500, pulse width=0.1 microsec, PRI=5 microsec, Af=l MHz)

64



needs to be resolved it will also compete against clutter from ten different range zones.

If the waveform parameters are picked up judiciously, the doppler from a target

moving at the highest expected velocity may be kept unambiguous. In such cases, spikes

along the doppler dimension may be ignored, otherwise they have to be considered for clutter

calculations. Figures 34 and 35 represent cuts along the delay and frequency dimensions

indicating the potential range and doppler ambiguities, respectively. Figure 36 gives the detail

of the central peak (note that other peaks or spikes are of similar shape but may be of

different magnitude and located at different places in range-doppler map). Atfd =0 the peak

is 4 ns wide (null-to-null) in delay dimension. Similarly, the width of the peak in frequency

dimension (at T=0) is given by 2/NT which comes out to be 800 Hz.

65



I « M 1,1 i
l

l I
I

l L+J » —

V

,

-50 -45 -10 -5 5 10 45 50 |is

Figure 34. Time profile (cut at zero frequency) ofthe ambiguity diagram of a step frequency

waveform. (N=500, pulse width=0.1 microsec, PRI=5 microsec, Af=l MHz)
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Figure 35. Frequency profile (cut at zero delay) ofthe ambiguity diagram of a step frequency

waveform. (N=500, pulse width=0.1 microsec, PRI=5 microsec, Af=l MHz)
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Figure 36. Dimensions of the central peak for the case N=500, pulse width = 0. 1 us,

PRI = 5 us, Af= 1 MHz. (Values indicated are null-to-null; generally 3dB

values are given which are a little less than half of the indicated.)
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V. CONCLUSIONS

This thesis investigates the use of the step frequency waveform, its design and

analysis using the ambiguity function. The step frequency waveform achieves a high range

resolution by coherently processing the returns from N transmitted pulses, each with a

different carrier frequency, monotonically increased from pulse to pulse. This waveform has

two main advantages over the conventional high resolution waveforms. First, the narrow

instantaneous bandwidth does not require a high A/D sampling rate which can be a major

limitation in the system design and secondly, the step frequency waveform can be

implemented on existing radar equipment using a step frequency synthesizer.

A design procedure for detection of small targets with a surface (land or sea) based

step frequency radar which employs a high PRF waveform was developed. The proposed

method determines the waveform parameters for given radar specifications. Two different

implementations of this method were presented: the graphical and the computer

implementation. The graphical implementation is a simple and quick way of calculating the

minimum design parameters. The computer implementation considers the parameter

constraints that are present when designing a waveform and associated equipment.

The ambiguity function, an important tool for the analysis of any waveform, was

defined along with its properties. A practical step frequency waveform may include hundreds

of pulses. It is difficult to compute the ambiguity function of a waveform with a large number

of pulses. Waveforms with parameters close to the waveform of practical interest but easier

to compute were investigated, in order to bring out the key characteristics of the waveform

of interest. The theoretical dimensions of the step frequency waveform were defined and
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verified with a few different cases. Once this was done, any particular case of interest could

be investigated. The ambiguity diagram of one step frequency waveform of interest was

sketched. The ambiguity function of the step frequency waveform contains elements ofthe

ambiguity function ofa single LFM pulse and train of constant frequency pulses. The 3D plot

of the ambiguity function of a step frequency waveform is spiky like the one of a constant

frequency pulse train and is tilted at an angle like LFM. The width of the central spike along

the delay axis at zero frequency is 2/(NA/) as compared to 2t
s
for the constant frequency

pulse train, therefore allowing to decrease the width of the spike by increasing the product

NA/. This permits increasing the range resolution without increasing the instantaneous

bandwidth. For the constant frequency pulse train, high range resolution can only be achieved

ifthe pulse width is decreased. This will cause the increase of the instantaneous bandwidth

and therefore a higher A/D sampling rate. On the frequency axis, the spike width at zero delay

is equal to 2/(NT) as it also for the constant frequency pulse train case. Therefore, the

frequency resolution is not improved with the step frequency waveform.

Further work on the comparative analysis of step frequency waveform should be

performed to compare it with conventional high PRF and medium PRF waveforms for

detection of small targets. Its use in inverse synthetic aperture radar (ISAR) for target

identification should also be investigated.
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APPENDIX A

This appendix contains the figures for Chapter IV, Section C - Ambiguity function of

a single pulse, which are Figures A. 1 through A. 4. It also contains the figures for Section D -

Ambiguity function of the linear frequency modulated pulse, which are Figures A. 5 through

A.8.
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frequency [MHz] 10 -1

delay [microsec]

Figure A. I Ambiguity diagram of a single pulse,

(pulse width-= I microsec)
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Figure A.2. Contour plot of the ambiguity diagram of a single pulse,

(pulse width=l microsec)
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delay [micros ec]

Figure A3. Time profile ofthe ambiguity diagram of a single pulse,

(pulse width =1 microsec)

doppler frequency [MHz]

Figure A.4. Frequency profile of the ambiguity diagram of a single pulse.

(pulse width =1 microsec)
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frequency [MH
delay [microsec]

Figure A 5 Ambiguity diagram of a LFM pulse

(pulse width 1 microsec)
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Figure A.6. Contour plot of the ambiguity diagram of a LFM pulse,

(pulse width= 1 microsec)
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delay [microsec]

Figure A. 7. Time profile of the ambiguity diagram of a LFM pulse,

(pulse width =1 microsec)

Figure

frequency [M Hz]

A. 8. Frequency profile of the ambiguity diagram of a LFM pulse,

(pulse width =1 microsec)
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APPENDIX B. MATLAB SOURCE CODES

% File name: programl.m

% Title: Plot generation

% Date of last revision: 4 Mar 1996

% Written by: Paulo A. Soares

% Comments: This program generates 3 plots for the SFWF design.

%*****j*****************************************************************************

clear

% specifications

vmin=150;vmax=1000;

fO 1 =3e9;f02=5e9;f03=7e9J04= 10e9;

tot 1 =5e-3 ;tot2= 1Oe-3 ;tot3= 1 5e-3 ;tot4=20e-3

;

% computations & plots

c=3e8;

Iambdal=c/f01;lambda2=c/f02;

Iambda3=c/f03 ;lambda4=c/f04;

_o/ plot #1

dr=0.01:0.01:l;

fr 1 =(drAvmax)+((2/lambda 1 )*(vmax+vmin));

fr2=(dr.\vmax)+((2/lambda2)*(vmax+vmin));

fr3=(dr.\vmax)+((2/lambda3)*(vmax+vmin));

fr4=(drAvmax)^(2/lambda4)*(vmax+\Tmin));

figure(l)

plot(dr,frl/le3,'w'),hold on

plot(dr,fr2/le3,W)Jiold on

plot(dr^-3/le3,V),hold on

plot(dr,fr4/le3,W)

axis([0.01, 1,10,1 10])

xlabel('Range Resolution (meters)')

ylabel('Minimum PRF (Khz)')

text(0.75,27,'fo=3GHz'),text(0.75,42,*fo=5GHz')

text(0.75,57,'fo=7GHz'),text(0.75,8 1 ,'fo= 10GHz')

text(0.2,100,'fo = nominal carrier frequency')

o/ plot #2 —
lambda=0.03:0.001:0.129;

k=(dr.\vmax);

fr 1 =(lambda.\2)*(\Tnax+vmin)+k;

Nll=totl*frl;

N21=tot2*frl.

N31=tot3*frh

figure(2)

plot(frl/le3,Nl l,W),hold on

plot(frl/le3,N21,W),hold on

plot(frl/le3.N3 l,W),hold on

axis([20,180,0,3000])

xlabel('PRF (KHz)')
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ylabel('N')

text( 1 40,900,'tot=5ms'),text( 1 40, 1 700,'tot= 1 0ms')

text( 1 40,2550,'tot= 1 5ms')

text(50,2500,'tot = time-on-target')

o/ plot #3

deltar1=0.3;

deltar2=0.5;

deltar3=l;

N=l: 1:2048;

deltafl =(2*N*deltarl * 1 e6).\c;

delta£2=(2*N*deltar2* 1 e6).\c;

deltaf3=(2*N*deltar3* le6).\c;

figure(3)

plot(N,deltafl,'w'),hold on

plot(N,deltaf2,'w'),hold on

plot(N,deltaf3,*w')

axis([0,2 100,0,1])

xlabel('N')

ylabel('Frequency Step (MHz)')

text(1700,0.12,'dr=lm'),text(1700,0.21,'dr=0.5m'),text(1700,0.33,'dr=0.3m*)

text(1200,0.8,'dr = range resolution')
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% Filename: program2.m

% Title: Main program for SFWF design

% Date of last revision: 28 Feb 1996

% Written by: Paulo A. Soares

% Comments: This program computes the exact design parameters firmin, df, N and tau, and then

% rounds it in accordance with previously defined criteria.

clear

c=3e8;Nmax=2048;

vmin= 1 50;vmax= 1 000;

dr=input(' Enter the desired range resolution in meters :

');

while dr <=

dr=input(' You must enter a positive value. Please try again :

')

end

f0=input(' Enter the nominal carrier frequency in GHz :

');

while fO <=

f0=input(' You must enter a positive value. Please try again :

')

end

Iambda=c/(f0*le9);

tot=input(' Enter the time-on-target in msec :

');

while tot <=

tot=input(' You must enter a positive value. Please try again :

')

end

fhnm=(((2/lambda)*(vmax+vmin))+(vmax/dr))/le3;

fr=K5eU(frmin);

while rem(fr,5) ~=

fr=fr+l;

end

Nmin=ceil(tot*fr)

;

N=Nmin;

ifN<=2

N=2;

end

elseifN=3 | N=4
N=4;

end

elseifN>4 & N<=9
N=8;

end

elseifN>9&N<= 17

N=16;

end

elseifN>17 & N<=34
N=32;

end

elseifN>34 & N<=68
N=64;

end

elseifN>68&N<=1 36

N=128;

end

elseifN>136&N<=272

N=256;

end
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elseifN>272 & N<=544
N=512;

end

elseifN>544&N<= 1088

N=1024;

end

elseifN> 1088

N=Nmax;
end

Nround=N;

frround=Nround/tot;

finround=ceil(frround)

;

while rem(frround,5) ~=0

£rround=fiTound+l

;

end

totround=Nround/frround;

dfinin=c/(2*Nmin*dr* le6);

df=c/(2*Nround*dr* le6);

stepsizedf=0.2;

dfround=ceil(df/stepsizedf);

dfround=Hifround*stepsizedf;

taumin=(2 :HTnin)/(lambda*dfniin*frmin);

tau=(2*vmin)/(lambda*dfround*fiTound);

stepsizetau=10;

tauround=ceil(tau/stepsizetau)

;

tauround=tauround*stepsizetau;

acdr=(c/(2*Nround*dfround))* le-6;

stepsizeacdr=0.0 1

;

acdrround=ceil(acdr/stepsizeacdr);

acdrround=acdrround*stepsizeacdr;

fprintf('\n The calculated design parameters are:\n')

fprintfC (minimum values in brackets)\n\n')

fprintfC -PRF = %3.2fKHz (%3.2fKHz)W^ound^-min);

fprintfC -Frequency step = %3.2fMHz (%3.2fMHz)W,dfround,dfmin);

fprintfC -Pulse width = %3.2fnsec (%3.2fnsec)\n',tauround,taumin);

fprintfC -Number ofpulses = %4.0f (%4.0f)\n*,Nround,Nmin);

fprintfC -Actual range resolution = %3 .2f m\n',acdrround);

fprintfC -Actual time-on-target = %3 .2fmsec ',totround)

;
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% Filename: program3.ni

% Title: Ambiguity function of the simple pulse by correlation method

% Date of last revision: 6 Apr 1 996

% Written by: Paulo A. Soares

% Comments: This program draws four plots of the ambiguity function for a single pulse.

%*****************************************************

clear;

tau=l;

nx=50;

ny=201;

t=[0:nx-l]*tau/nx;

dt=t(2)-t(l);

z=D;
fd=linspace(- 1 0/tau, 1 0/tau,ny)

;

ul=ones(l,nx);

form=l:ny

u2=ul .*exp(j*2*pi*fd(m)*t);

c=xcorr(u2,ul).*dt;

z=[z;abs(c)];

end

t=[fliph(-t),t(2:nx)];

figure(l)

mesh(t,fd,z),grid

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

zlabel('magnitude')

figure(2)

contour(tT«lz,7),grid

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(3)

plot(U((ny+l)/2,:),V)

xlabel('delay [microsec]')

ylabel('magnitude')

figure(4)

plot(fdrz(: ynx),'w')

xlabel('frequency [MHz]')

ylabel('magnitude')
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% Filename: program4.m

% Title: Ambiguity function of the LFM pulse by correlation method

% Date of last revision: 6 Apr 1996

% Written by: Paulo A. Soares

% Comments: This program draws four plots of the ambiguity function for a LFM pulse.

<yo
*********************************************************************************

clear;

tau=T;

mu=4;

nx=50;

ny=201;

t=[0:nx-l]*tau/nx;

dt=t(2)-t(l);

z=D;
fd=linspace(- 1 0/tau, 1 0/taujiy);

form=l:ny

ul=exp(j*pi*mu.*t.*t);

u2=conj(u 1 ) . *exp(j *2*pi*fd(m)*t)

;

c=conv(u2iliph(u 1 )). *dt;

z=[z;abs(c)];

end

t=[fliph(-t),t(2:nx)];

figure(l)

mesh(t,fd,z),grid

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

zlabel('magnitude')

figure(2)

contour(tT(Lz,5),grid

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(3)

plot(t^((ny+l)/2,:),V)

xlabel('delay [microsec]')

ylabel('magnitude')

figure(4)

plot(f(Lz( :,nx),'w')

xlabel('frequency [MHz]')

ylabel('magnitude')
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% Filename: program5.m

% Title: Ambiguity function of the step frequency radar by the correlation method

% Date of last revision: 26 Apr 1996

% Written by: Paulo A. Soares

% Comments: This program computes and plots several figures of the ambiguity function of the

% step frequency radar, using the correlation method.
O.^********** ********************************************************* **************

%

clear;

tau=l;

T=5;

N=10;

df=l;

sampfreq=40;

NT=N*T;
nsamptau=sampfreq*tau;

nsamptO=sampfreq*(T-tau);

nsamptau=floor(nsamptau)

;

nsamptO^oorCnsamptO);

nsampT=nsamptau+nsamptO

;

Parameters initialization

% clears all variables

% tau=pulse width

% T=period or pulse repetition interval (PRI)

% N=number of pulses

% df=frequency step

% sampfreq=sampling frequency

% NT=total period of the waveform

% nsamptau=number of samples in one pulse width

% nsamptO=number of samples in the interpulse period

% nsampT=number of samples in one PRI

%

%
Definition of axis and resolution

P=[ones( 1 ,nsamptau),zeros( 1 ^lsamptO)]

;

t=linspace(0,NT,N*nsampT);

ny=301;

fd=linspace(-5/T,5/T4iy);

dt=t(2)-t(l);

% time axis definition

% number of points in the fireq. axis

% freq. axis definition

% dt=time interval

% Computations

%.

m=l:l:N;

forn=l:N

s=[s,exp(j *2*pi*(m(n)- 1 )*df*t(nsampT*(n- 1 )+l :nsampT*n)).*P]

;

end

forL=l:ny

f=fda);

sl=conj(s).*exp(j*2*pi*f*t);

s2=s;

c=conv(s 1 ,fliph(s2)). *dt;

%z=[z;(abs(c)).A2];

z=[z;abs(c)];

end

[U]=size(z);

t=[fliph(-t),t(2 :N*nsampT);
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%_

% Plotting of the results and axis labeling

%.

figure(l)

mesh(t,fd,z),grid

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(2)

contour(tJfd,z,5)

axis([-10 10-l 1])

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(3)

plot(t,z((ny+l)/2,:))

axis([-30 30 12])

xlabel('delay [microsec]')

ylabel('magnitude')

figure(4)

plot(fd' rz(:,(H-l)/2),*w')

xlabel('frequency [MHz]')

ylabel('magnitude')

figure(5)

contour(tjiLz,5)

axis([-1.5 1.5-0.2 0.2])

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(6)

plot(t^((ny+l)/2,:))

axis([-1.5 1.5 12])

xlabel('delay [microsec]')

ylabel('magnitude')

figure(7)

plot(fd'^(:,(r+l)/2)')

xlabel('frequency [MHz]')

axis([-0.12 0.12 6])
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% Filename: prograra6.ni

% Title: Ambiguity function of the step frequency radar by the equation method

% Date of last revision: 26 Apr 1996

% Written by: Paulo A. Soares

% Comments: This program computes and plots several figures of the ambiguity function of the

% step frequency radar, using the equation method.
0,,^*** ***************************************************** *************************

%.

% Parameters initialization

%.

clear; % clears all variables

tau= 1

;

% tau=pulse width

T=5; % T=pulse repetition interval (PRI)

N= 10; % N=number of pulses

df= 1

;

% df=frequency step

d=tau/T; % d=duty cycle

% Defrnition of axis and resolution

%.

nx=10 1

;

% nx=number of points in the time axis

t=linspace(-N*T,N*T,nx); % time axis definition

ny=300 1

;

% ny=number of points in the freq. axis

fd=linspace(-5/T,5/T,ny); % freq.axis definition

%.

% Computations

%.

p=floor(t/T);

r=(t^)-p;

z=[];

form=l:ny

x=G;
f=fd(m);

forn=l:nx

pp=p(n);

rr=r(n);

fl=f-pp*df;

f2=f-(2*pp+rr)*df;

f3=f-(pp+l)*df;

f4=f-(2*pp+rr+l)*df;

if rr>=0 & rr<d

iffl==0

xl=l;

else

xl=(sin(pi*fl *(tau-rr*T)))./(pi*n *(tau-rr*T));

end

ifrem(f2*T,l)=0

x2=N-abs(pp);

else

x2=(sin(pi*f2*(N-abs(pp))*T))./(sin(pi*f2*T));

end

x=[x,(tau-rr*T).*xl *x2];

elseifrr<l&rr>=(l-d)

ifD=0
xl=l;
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else

x l=(sin(pi*D *(tau-Krr- 1 )*T)))./(pi*f3 *(tau+(rr- 1 )*T));

end

ifrem(f4*T,l)=0

x2=N-abs(pp+l);

else

x2=(sin(pi*f4*(N-abs(pp+l))*T))./(sin(pi*f4*T));

end

x=[x,(tau+(iT- 1 )*T).*xl *x2];

else

x=[x,0];

end

end

z=[z;x];

end

z=abs(z);

%.

% Plotting of results and axis labeling

%_

figure(l)

mesh(tfd^z),grid

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(2)

contour(ti"d^,5)

axis([-6 6 -0.2 0.2])

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(3)

plot(t,z((ny+l)/2,:))

xlabel('delay [microsec]')

ylabel('magnitude')

figure(4)

plot(fd',z(:,(nx+l)/2)')

xlabel('frequency [MHz]')

ylabel('magnitude')

figure(5)

contoinXtJd^S')

axis([-0.7 0.7 -0.05 0.05])

xlabel('delay [microsec]')

ylabel('frequency [MHz]')

figure(6)

plot(U((ny+l)/2,:))

axis([-1.5 1.5 12])

xlabel('delay [microsec]')

ylabel('magnitude')

figure(7)

plot(fd',z(:,(nx+l)/2)')

axis([-0.05 0.05 0.5])

xlabel('frequency [MHz]')

ylabel('magnirude')
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