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ABSTRACT

Nanometer scale fabrication and experimental investigations into the magnetic

properties of mesoscopic molecular clusters have specifically addressed the need for

theoretical models to ascertain thermodynamic properties. Technological applications

germane to these inquiries potentially include minimum scale ferromagnetic data storage

and quantum computing. The one-dimensional nearest neighbor Heisenberg spin system

accurately models the energy exchange of certain planar rings of magnetic ions. Seeking

the partition function from which a host ofthermodynamic quantities may be obtained, this

thesis contrasts two transfer matrix formulations of a classical Heisenberg ring in a

magnetic field. Following a discussion of the transfer matrix technique in an Ising model

and a review of material magnetic characteristics, a Heisenberg Hamiltonian development

establishes the salient integral eigenvalue equation. The 1975 technique of Blume et al

turns the integral equation into a matrix eigenvalue equation using Gaussian numerical

integration. This thesis alternatively proposes an exactly formulated matrix eigenvalue

equation, deriving the matrix elements by expanding the eigenvectors in a basis of the

spherical harmonics. Representing the energy coupling of the ring to a magnetic field with

symmetric or asymmetric transfer operators develops pragmatically distinctive matrix

elements; the asymmetric yielding a simpler expression. Complete evaluation will require

follow-on numerical analysis.
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I. THE PURPOSE OF MAGNETIC MODELS

A. INTRODUCTION

In matter, magnetic phenomena both originate from fundamental forces, and serve

in ever increasing technological applications. Surprisingly however, there is no single

comprehensive theory that can fully explain or accurately predict the full variety of

material magnetic manifestations. For example, the entire theoretical edifice of Quantum

and Statistical Mechanics cannot answer with certainty detailed questions of

ferromagnetic coupling. It is known that ferro- and antiferromagnetism arise from short

range interaction energy that forces spins of unpaired electrons into spontaneous

alignment. [Ref 1] More fundamentally, permanent magnetic moments are located in

atoms or molecules and originate from the circling ofthe electrons around the nuclei

(orbital moments) and from the spin of the electrons themselves (spin moments). These

magnetic moments are proportional to angular momentum which is quantized as integral

or half integral multiples of h, (Planck's constant h + 2n). Particularly in the solid state,

where electron orbits may be "quenched", the often intractable many body problem of

"quantized gyroscope coupling", or energy exchanges in crystalline lattice structures has

motivated a variety of models to explain experiment. [Ref. 2]

1. Historical Snapshot

In 1907 following Curie's work, Pierre Weiss [Ref. 3] proposed a theory of

ferromagnetism in which magnetic moments interact with each other through an artificial

molecular field proportional to the average magnetization. This type of theory is referred

to as a "mean-field" theory; mean field theories have only limited accuracy but are often

1



useful as a first approach. Subsequent theories incorporated pairwise interaction of

magnetic moments localized on fixed lattice sites with an energy that achieves a

maximum value, J, when the moments are either aligned or anti-aligned. Two particular

models characterizing this energy interaction are the Ising and the Heisenberg models.

The Ising model assumes the magnetic moments are classical, one dimensional "sticks"

capable of only two orientations. This mimics the behavior of S=2 quantum spins. Later it

was found that the Ising model could be applied to a wide range of systems that have an

essential two-valued nature, such as binary alloys. The Heisenberg model regards the

magnetic moments as being related to three-component quantum mechanical spin

operators and assumes the interaction energy is proportional to the scalar product ofthese

operators. There are other "spin" dimensional models but only a select few have been

solved exactly for various space dimensionalities and external magnetic fields. Stanley

[Ref. 4] provides an excellent comprehensive summary ofthese models, their

applicability and limitations.

Neither the Ising nor the Heisenberg model has yielded as yet to an exact solution

for a three dimensional (3-space) lattice. In 1944, in a landmark in the history ofphase

transitions and critical phenomena, Onsager [Ref. 5] solved the two-dimensional Ising

model. An infinite-spin version ofthe 1-D Heisenberg model with free boundary

conditions was solved by Fisher [Ref. 6] in 1964. Fisher showed that an infinite-spin

Heisenberg model was equivalent to a classical version of the Heisenberg model in which

the quantum spin operators are replaced by classical vectors of length JS(S + 1) that are

free to orient in any direction. This classical counterpart to the quantum Heisenberg

model is called the classical Heisenberg model. The classical Heisenberg model should



apply to high-spin magnetic systems for all but extremely low temperatures. Fisher's

student Joyce [Ref. 7] in 1967 published an exact solution to the zero-field one

dimensional isotropic classical Heisenberg model with cyclic boundary conditions

employing Wigner 3/ symbols. Blume et al [Ref. 8] in 1975 employed a transfer-matrix

integral equation method and extended Joyce's work to tackle a 1-D classical Heisenberg

system in an applied magnetic field. This thesis will follow and compare this latter

method with a currently proposed method by Auslender [Ref. 9].

2. Models and Thermodynamics

These Ising and Heisenberg "toy models" enable reasonably accurate theoretical

descriptions of certain physical systems and, significantly, shed valuable thermodynamic

insight on some fluid and magnetic phase transformations. Statistical mechanics

establishes a connection between the microscopic and macroscopic, or bulk,

thermodynamic descriptions of a system. Central to statistical mechanical formulations is

the partition function,

Z=2>P(-M<>-)) ,
where /? =T^ (U)

all a Kb*

£b is the Boltzmann constant, T is the absolute temperature, and 30 is the energy

Hamiltonian for each available quantum state, a As a summation of all Boltzmann

factors, the partition function is the inverse proportionality factor between the probability

of a particular energy state, P(o) and each Boltzmann factor,

P(a) =—— (1.2)



If ascertainable, the partition function is a very useful result. In fact, the partition

function can be called the holy grail of equilibrium statistical mechanics because

essentially an entire thermodynamic description of a system can be derived from this

function. The generalized ensemble theory of Gibbs enables computing the complete set

ofthermodynamic quantities from purely mechanical properties of its microscopic

constituents assuming only a "mechanical" structure, and obedience ofLagrange and

Hamilton's equations of motion [Ref. 10]. Thermodynamic averages such as entropy,

average energy, heat capacity, magnetization and susceptibility, as well as the Gibbs

potential and particularly the Helmholtz free energy are derived directly from the

partition function. Of course, the essential completeness of the partition function

necessitates a summation over all states; therefore, obtaining the partition function is no

small challenge. This underscores the value of models that permit an exact determination

of the partition function. A model can enable a theoretical calculation of state variables.

Of course, a model's validity and utility corresponds directly with its fidelity to reality.

B. MESOSCOPIC MOLECULAR CLUSTERS

Recently, fascinating experiments with large molecular clusters of metal ions

provide an opportunity to employ a one dimensional Heisenberg spin model. Of interest

is both the extremely clever and revealing experimental techniques and the particular

scale (nanometer) ofthese investigations, where renormalization group theory [Ref. 11]

had heretofore "coarse grained", between atomic and bulk scales. These "mesoscopic"

magnetic molecular clusters are enabling investigation of such behavior as quantum

tunnelling of magnetization [Refs. 12, 13]. Some authors have forecast technological

applications ofthese ultrasmall complexes in the field of both data storage and quantum



computing [Refs. 14, 15, 16] . Two molecular structures, depicted in Figure 1, are

particularly noteworthy for their symmetry, high spin and revealing characteristics. The

first contains twelve manganese ions, arranged in a ring of eight Mn3+
ions with spin S=2

aligned parallel, enveloping the remaining four manganese Mn +
atoms which form a

tetrahedron with spins S=§ in the opposite direction to the encircling octagon. This

manganese acetate, MN12 Oi2(CH3 COO)i6 (H2 0)4 is described as superparamagnetic,

Schematic view of the core of a

[Mn12 12(carboxyiato)16 ] cluster in which only the

metal atoms and the bridging oxygen atoms
(small circles) are shown. The manganese(IV) at-

oms are enhanced by the shadowing.

View of the ring structure of the Fen0 clus-

ter, where the dotted circles represent the iron

atoms and the empty circles are. in order of de-

creasing size, chlorine, oxygen, anrj carbon.

Figure 1. Two Mesoscopic molecular clusters, the manganese acetate on the left and the

ferric wheel, right. (From Ref. 15)



having a ground state of S=10 and the measured spin dynamics of this cluster in varying

magnetic field reveals a hysteretic magnetic relaxation ascribed to resonant tunneling

between quantum spin states. [Refs. 17, 18, 19] The second noteworthy molecular

cluster is [Fe(OCH3)2(02CCH2CL)]io, known as a "ferric wheel". It contains 10 nearly

coplanar Fe
3+

ions each of spin S=% , symetrically positioned on what constitutes a

Heisenberg ring, a planar, one-dimensional spin system. In addition to this "ferric wheel"

decagon, other iron molecular clusters have been synthesized, (e.g. Fes , Fen ,Fi9 , as

well as Feio).

These molecular clusters would therefore seem to contain sufficiently few

magnetic constituents that an exact determination of the partition function could be

attempted. According to Gatteschi et al, however, [Ref. 15] when commenting on the

quantum mechanical energy computations of these ferric rings:

A quantitative interpretation ofthe magnetic properties ofthese

compounds has been possible only for Feg, and this at the cost of some

effort [Ref. 20], the total number of states being 1,679,616. Exploiting

symmetry allows the reduction of the problem to that of calculating 81

matrices, ranging in dimension from 1 to 4,170. A similar analysis proved

to be impossible for the Fen or Fei9 clusters. Even with use of all the

possible symmetries, the dimensions of the matrices remain much too

large to be tackled with the standard approach. In this field, theoretical

developments are strongly needed, so that we can interpret the

thermodynamic properties ofthe new materials.

This clarion invitation to employ the theoretical Heisenberg spin model has been

answered by Luscombe et al, [Ref. 21] astutely developing approximations for the

relevant thermodynamic qualities. In [Ref. 21] it was shown that the classical Heisenberg

model well approximated the observed thermodynamic properties of the "ferric wheel"



cluster with 10 Fe
3+

ions of spin S=5/2. This collaboration between theoretician and

experimentalist was acknowledged by the latter in January, 1998, when Lasciafari et al,

[Ref. 22] the leading research team in the field, effectively employed theoretical

thermodynamic results from [Ref. 21] to advance the macromolecular magnetic frontier.

The continued development of these molecular magnetic systems, hopefully into

useful nanomagnetic technologies, will clearly require reliable and robust theoretical

techniques for predicting their thermodynamic properties. As noted above, it has been

shown [Refs. 21 & 22] that approximate treatments based on classical Heisenberg spins

can predict extremely well the observed magnetic behavior of small quantum Heisenberg

systems. It is thus worthwhile to search for improved theoretical approaches to modeling

the thermodynamic properties of classical Heisenberg spin systems. As will be discussed

below, Blume's method [Ref. 8] for evaluating the partition function ofthe 1-D classical

Heisenberg model in an applied magnetic field involves solving numerically an

eigenvalue integral equation based on what is known as the transfer-matrix operator as its

kernel. Using a numerical Gaussian integration technique, Blume et al transform the

eigenvalue integral equation into a matrix eigenvalue equation. Auslender, [Ref. 9], has

recently proposed an alternate strategy for solving the integral equation. Auslender'

s

proposal is to represent the transfer-matrix operator in a basis set of spherical harmonics.

As will be shown below, the spherical harmonics are the eigenvectors of the transfer-

matrix operator for zero magnetic field in this basis set. Whether Auslender' s proposal

results in a more efficient method from a numerical point ofview remains to be seen. In

this thesis, we will, for the first time, set up the matrix representation ofthe transfer-



matrix operator in the spherical harmonic basis set. Since the transfer matrix method is

key to the results of this thesis, we will review this method in the next section.

C. TRANSFER MATRIX FOR AN ISING MODEL

Attributed to Kramers and Wannier [Ref 23], the simplest illustration of the

transfer-matrix technique is its application to the one dimensional nearest neighbor N-

spin Ising model in a magnetic field. The physical justification will be presented in the

next chapter, what follows simply demonstrates the math.

The 1-D nearest neighbor Ising Hamiltonian is defined by

* = -jf,vt
<TM ~£,h+<rM ), ( 1.3)

where <j
i
= ±1 is the randomly up or down oriented spin i 1sing variable at lattice site /',

\<i<N , and where J is the nearest neighbor exchange parameter, and H is the applied

static magnetic field which is parallel or antiparallel to the moment of each "invertable"

spin. Although an open Ising chain is solvable without recourse to the transfer-matrix

method (e.g. Stanley [Ref. 4]), here we will instead assume periodic boundary conditions

and define. <jn+x
= <j

x
. Recalling equation (1.2), thermodynamic averages are constructed

from the probability distribution P(a) = Z^1

exp(- ft&(<j)) , where fi = {kBT)~
x

,

and Zn is the partition function,

IA \

{a} {a} \ H * H

The notation {a} indicates a summation over 2
N
spin configuration, i.e.

(1.4)

2^= ^ ^ , and K = pJ and L = fiH are dimensionless coupling constants.



Using the fact that Ising variables are classical "sticks" that will commute, the

exponential of the sum is a product of the exponentials and (1.4) may be written,

ZN (K,L) =Yd
T(c7,a

2
)T(a

2
,a

3 ). T{cjn_„(jn )t(ctn cj
x ), (1.5)

where T(a
i
a

i+l )
= expjXovcr,.,., +— (cr. + <J

i+l )]
which written out explicitly is a 2x2

transfer matrix with elements 7"(cr,cr'), each spin cr having possible values ± 1,

T =
fr(+i,+i) t(+\-\J]

rt-1,+1) t(-\-\\

f'K+L -k \

\e e
(1.6)

Then, summing over spins 2,. . .,N in (1.5) the partition function is given by

Z* = tH(<w)= TraceT", (1.7)

<T,=-1

that is the partition function of the N-spin Ising model with periodic boundary conditions

is given as the trace of the N* power of the transfer matrix. Since the trace of a matrix is

equal to the sum of its eigenvalues, and the eigenvalues ofTN are Xfand A" where these

are determined by the equation,

e
K+L -X e

-K

.-K .K-L
e
R ~L -X

= with solutions y \
= e

K
cosh L ± [e

2K
sinh

2 L + e~
2K

)
2

, (1.8)

we finally arrive at the result Zn= A, + J% = Af 1- (1.9)

Since Xi>A.2, the second term in the parenthesis in (1.9) goes to zero for largeN and can



be neglected. In zero magnetic field, H=0=L, (1.9) including both eigenvalues, yields

ZN = 2
N
{Cosh

NK + Sinh
N
K). (1.10)

This nearest neighbor Ising discrete spin system engenders a "2 by 2" transfer

matrix. The nearest neighbor classical Heisenberg model however, has a continuously

directable, all aspect spin system and the transfer "matrix" for continuous spins is an

infinite matrix - or the kernel of an integral equation. Nevertheless, the eigenvalues of

the transfer matrix allow one to obtain the partition function. We will discuss in Chapter

m the application ofthe transfer-matrix method to the classical Heisenberg model.

D. THESIS OBJECTIVES

This thesis will contrast two methods of solving the one dimensional classical

Heisenberg spin model. Blume and Auslender are the authors of the two techniques, the

former acknowledged as the accepted method and the latter, a proposed alternative. Both

Auslender' s and Blume's methods are concerned with obtaining eigenvalues to the

transfer matrix associated with the one-dimensional, nearest neighbor classical

Heisenberg model in a magnetic field. Both methods seek the solutions of the eigenvalue

equation:

\ds' T(s,s') Yjf)=\jrtJ?) 9 (111)

where T(s, s') = exp Ks-s' + —L(s
z
+s'

! )\; ds = sin 6d6d<f> , and s,
s' are adjacent three

component spin vectors. Both methods seek the partition function for the N- spin system

with periodic boundary conditions, which is given in terms ofthe eigenvalues

z*=2X„- 0.12)
l.m

10



For zero magnetic field, the eigenvalues and eigenvectors are exactly obtainable as first

shown by Joyce. [Ref. 7] In this case Xhm = 47tf,(K) where// (K) are the modified

spherical Bessel functions, and y/lm {s)= Y, m (0,<fi), the spherical harmonics.

Blume et al, (Heller and Lurie coauthors)[Ref.8], turn the integral eigenvalue

equation into an M x M matrix eigenvalue equation using M-point Gaussian integration.

With a matrix size of 16x16, this technique results in a convergence to seven significant

figures for the values ofthe Hamiltonian. Auslender also turns the integral equation into

a matrix equation. The matrix in this case is obtained by expanding the eigenvectors

using the spherical harmonics as a basis set. That is, he suggests expanding the

eigenvectors in a magnetic field using zero-field eigenvectors. In principle, Auslender's

matrix is infinite dimensional and must be truncated at some point. It is likely that a

comparison of merit will only result from detailed numerical computations; however, this

thesis will merely discuss formulations that reduce the integral equations to matrix

eigenvalue equations employing both methods. Leading up to these formulations, any

discussion of equilibrium statistical mechanics ofthe classical Heisenberg spin model

must commence with formulating the energy exchange Hamiltonian. The transfer matrix

will then lead to setting up the eigenvalue equation. There will be some discussion of

zero magnetic field behavior and necessary discussion of integral equations, especially

the role of a symmetric kernel. Representing the energy coupling of the Heisenberg ring

to a magnetic field with symmetric or asymmetric transfer operators will be shown to

result in mathematically equivalent but pragmatically distinctive element formulations.

11



Prior to this theoretical development in Chapter HI, Chapter II will consist of a

cursory review of the magnetic properties of matter following largely the excellent if old

treatments ofVon Hippel [Refs. 1&24], Kittel [Ref. 25], and Ashcroft & Mermin [Ref.

26].

12



H. MAGNETIC PROPERTIES OF SOLIDS

A. OVERVIEW

The magnetic properties of solids originate in the motion of the electrons and in

the permanent magnetic moments of the atoms and electrons. This chapter will provide a

review of magnetic characteristics and hopefully lead to a "motivation" of the Heisenberg

model. Diamagnetism, which is very weak, arises from changes in the atomic orbital

states induced by an applied magnetic field. Paramagnetism results from the presence of

permanent atomic or electronic magnetic moments. Ferromagnetism, which is very

strong, occurs when quantum mechanical exchange interactions align adjacent magnetic

moments in the same direction. If the exchange interaction aligns the moments in

opposite directions, and only one type of moment is present, cancellation occurs and the

material is called anti-ferromagnetic. Iftwo or more types of moments are present, there

is a net moment equal to the difference and the material is called ferrimagnetic. Above

some critical temperature, a phase transformation occurs and a ferro-, antiferro-, or

ferrimagnetic material becomes paramagnetic. Ferro- and ferrimagnetic materials consist

of domains or regions of completely magnetized material, separated by boundaries

known as Bloch walls. According to Kittel [Ref. 25], and Hippel [Ref 1], domain

structure, dynamics, and boundary displacements are determined by various types of

energies, such as magnetostatic energy, crystal anisotropy and magnetorestrictive energy.

The complexity of these resultant forces contribute to the scientific and technological

richness in this field. The succeeding paragraphs merely scratch the surface of these

topics.

13



B. ANGULARMOMENTUM AND MAGNETISM

The relation between angular momentum and magnetism is based on the mac-

roscopic observation that a current / circling an area. A creates a magnetic field identical

to that of a magnetic dipole. As such, the Bohr hydrogen atom's magnetic dipole,

\{i\ = IA = ev7ir
2

, (2.1)

applies for an electron circling the proton v - times per second in an orbit of radius r.

For this same orbit the classical mechanical angular momentum,

|L| = \m\ x r| = m27ir v r. (2.2)

This angular momentum L is antiparallel to m and combining (2. 1) and (2.2) shows the

g
magnetic and angular moments are related as p. L

.

2m

Thus the magnetic and mechanical moments of circling electrons are interdependent and

the gyromagnetic ratio y is classically defined y = ^~- (23)
2m

At atomic scales, the Bohr magneton is considered an elementary magnetic moment with

\juB \

= = yh = 9.21X\0~
2A

in units amperes meter
2
or joules/tesla (2.4)

2m
e

(Note: of course, in measuring magnetic moments of nuclei, the nuclear magneton would

be a preferred unit and with a mass substitution, \mu \

=
\Mb\)

1836

Ifthe magnetic moment is measured in Bohr magnetons and angular momentum in units

of h, the ratio of magnetic to mechanical moment, known as the dimensionless ^-factor,

a ft ft

(for the classically single orbiting electron), g = = y— = 1

L Mb Mb

14



In a magnetic field B , the permanent magnetic moments will experience a torque

- - ^ fiflL , T - 2/w _ , , du. -e _ _ /* -*
'

r = /ixB =— , but L =
fj., and thus-£1 =— /ixB = -y/ixB (2.5)

<# e df 2m

For a static field applied in the +z direction, taking the cross product followed by the

second time derivatives, yields the component equations of (2.5):

Mx = -fa)
2

Mx . My = -fa)
2

My , A = • (26)

Solutions of (2.6) are:/i^ = ,4cos<y
r
/

,
/i^, = ^ Sin co

z
t , and mz

= co/w/, where

<y, = t# and<y
r
/2;r = vm is called the Larmor frequency. Hence these two oscillating

components are 90° out of phase and add to a circular rotation in the x-y plane. The

magnetic moment precesses around the magnetic field axis with a frequency proportional

to the field strength but independent of position.

The Larmor frequency is not quantized but three quantum numbers are integer

multiples of h. The boundary conditions on the time independent Schrodinger wave

equation restrict the quantum numbers as follows. The principle quantum number n is

allowed positive integer values 1,2,3,. . . The orbital angular momentum quantum number

£ can take integer values 0</<n. Quantum mechanically the total orbital angular

momentum = L = J£(£ + \)h . The magnetic field directed component ofL=Lz=mh,

where the magnetic quantum number,

m = yj£(£ + l) cos#, (2.7)

with m = £,£-\, -(^-l), -£, and the quantized polar angle between the B field

andL.

15



The quantized magnetic moment in the magnetic field has a potential energy

U= -/i • B= fjBcosO = -Je{e + \)\mb \B\Cos0 = xx\jiBB. (2.8)

The electron itself, has intrinsic angular momentum and thus creates a magnetic

moment p. = -ge
— S where the electronic"^" factor was predicted by Dirac to equal
2m

approximately 2, has been measured experimentally to 2.0023, and is given [Ref.26] by,

Using the electronic spin "g" factor equal to twice the orbital, then classically the

2n
, a, the fine structure constant = «

. (2.9)
4as hc 137

permanent magnetic dipole moment ju = -y{L + 2S)

.

(2. 10)

C. SPIN ORBIT COUPLING, SHELL MODEL, AND HUND'S RULES

The combined angular momentum produced by the spin and orbital motion is

J=L+S. The total angular momentum J is always a good quantum number, (i.e.

commutes with the Hamiltonian), but L and S are good only to the extent that spin - orbit

coupling is unimportant[Ref. 26]. Both the spin and orbital angular moments will tend to

precess around / and,

J 2 =(L + Sj = L2 + S 2 + 2L-S = t(t + l)h
2 +-h 2 +2L-S (2.11)

The vector addition first solved by Lande results in the g - factor for L-S coupling

g = (L+ 2S)W/J'=l+^ +1>+5
(f

+ 1\- £(£ + l)
(2.12)S V }

2./(./ + l)

where this Lande g- factor is relevant in the expression //= -g/JB J/h

.
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Glibly allowing that the colossal variety of not only magnetic effects, but of all

nature's splendor derives quantum mechanically from the atomic shell model, angular

momenta coupling and shell filling configurations are key to understanding this process.

Deriving from the Pauli exclusion principle or the antisymmetry of fermion wave

functions, the underlying quantum mechanical justification of shell filling, selection

rules, ionization potentials, electron affinities and atomic bonds are beyond the scope of

this thesis, but brief essentials relevant to magnetic properties follow. Filled shells will

have zero orbital, spin, and total angular momentum, and consequently zero permanent

magnetic moment. For ground states in partially filled shells, the order of filling obey the

Pauli exclusion principle and is roughly governed by Hund's rules which are as follows:

Rule 1. In placing n electrons into the 2(l£ + 1) levels of the partially filled shell,

those that lie lowest in energy have the largest total spin S; thus if possible, the

first 2/+1 of allowed electrons in a shell will align spin-up.

Rule 2. The total orbital angular momentum L of the lowest lying states has the

largest value that is consistent with Rule 1 and the exclusion principle

Rule 3. Total angular momentum J = JJ{J + 1) where J takes on integral values

between \L - S\ if the shell is less than half full and L + S if more than half full.

Russel-Saunders coupling applicable to lighter elements and favored in the d-shell and f-

shell, is represented by a term in the Hamiltonian ofthe form X{L • S) This spin-orbit

coupling will favor maximum J (parallel orbital and spin angular momenta) if A, is

negative, and minimum J (antiparallel orbital and spin momenta) if X is positive. As it

turns out, X is positive for shell that are less than half filled and negative for shells more
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than half filled. The configurations ofground state d-shell and f-shell ions are tabulated

below. The "multiplets" notation
" 2S+,ZJ

", where (X=L in the 'SPDF' spectroscopic

code), conveys S, L, and J, and the shell filling order for solids of magnetic interest

illustrate Hund's rules.

d-shdl (I = 2)

-1, -2 S L = |2/.| SYMBOLn '.-2, I. o, - J

1 i 1/2 2 3/21 2
£>3/2
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3

i
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5
fl.
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it
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xt ir

T

T
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T

3/2

1

3

3 :

/2h L+s
4r-
r 9/2

3F4

9 xt iT . iT iT T 1/2 2 5/2J
2

5/2

10 it iT iT iT ir ° %
/-shell (/ = 3)

-2, -3 s L = |I/-| jn 1.-3, 2, 1, 0,-1,

1 i 1/2 3 5/2
-

2f5 /2

2 1 i 1 5 4 3H4

3

4
I

i

i i

i i i

3/2

2

6

6

9/2

4
>J = \L- S\

4 r
'9/2

5 i 1 i i i 5/2 5 5/2 #5/2

6 1 i i i i i 3 3 ,
7 Ff

7 i i i i i i i 7/2 7/2 J7/2

8 IT T T T T T T 3 3 6 '

I

F6

9 IT iT T T T T T 5/2 5 15/2 ^1512

10

11

IT

iT

iT iT T T

iT JT iT T

T

T

T

T

2

3/2

6

6

8

15/2
>J = L + 5

•'15/2

12 XT it iT ir ir T T 1 5 6 3H6

13 IT iT iT ir iT iT T 1/2 3 7/2
d ^7/2

14 iT ir ir ir ir iT iT %
°T = spin i;i == spin —7.

_

Table 1. Ground states of ions with partial d- or/-shells per Hund's rules
a
[From Ref26]
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D. MAGNETIZATION AND DIAMAGNETISM

The magnetic induction B in free space is related to the field strength or magnetic

intensity by B = // H where /i = 4;rxl0~
7
henry/meter is called the permeability of

vacuum. In a solid material B = fJS. , which alternatively can be expressed as,

Bs/i (H + M)=/iH. (2.13)

(Note: Of course, // here is the permeability of the solid not a dipole moment.) M is

called the magnetization ofthe solid, the term p M equals the extra magnetic induction

due to the material. M in fact, is equivalent to the density of magnetic dipole moment or

dipole moment per unit volume. The magnetization is also proportional to the applied

field and the factor of proportionality is called the susceptibility. The magnetic

susceptibility per unit volume is defined as j=M/H. (2. 14)

Substances with a negative magnetic susceptibility demonstrate diamagnetism

which is a material manifestation ofLenz's Law, which in effect orients Faraday

induction such that "a current induced by a changing field will always oppose the change

that induces it." With zero angular momentum, fully closed shells have zero permanent

moments, (eq 2.10), but in an external magnetic field, there is an induced moment. The

averaged induced magnetic moment for each electron equals,

e
2
(r)

2

^ i«w=-7J-B, (2.15)

where e and m equal the electron charge and mass and (r) is the average electron orbital

radius. Diamagnetism in most solids is very weak with susceptibilities on the order of

10"5
. It is generally only observed when other types of magnetism are totally absent. The

variety of net magnetic susceptibilities in matter is illustrated by Figure 2.
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Figure 2. Diamagnetic elements in lower portion, paramagnetic in upper [From Ref. 27]

E. PARAMAGNETISM

Positive susceptibilities (x>0) are generally termed paramagnetic. Permanent

magnetic moments give rise to paramagnetism, and per Kittel [Ref. 25] , electronic

paramagnetism is found in :

a) All atoms and molecules possessing an odd number of electrons, since the

total spin of the system cannot go to zero.

b) All free atoms and ions with a partly filled inner shell: transition elements,

rare earth and actinide elements.

c) A few miscellaneous compounds with an even number of electrons, including

molecular oxygen and organic biradicals.

d) Most but not all metals as depicted in Figure 2.
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What follows is a Maxwell Boltzmann distribution treatment of the Langevin Theory of

paramagnetism.

1. Langevin Function

Permanent magnetic moments tend to orient in magnetic fields. With N atoms per

unit volume, each bearing a magnetic moment ju, magnetization results from the

orientation of these moments in an applied field. Thermal disorder resists this orientation

tendency. The energy of interaction with an applied magnetic fieldH is

E=-fi- H = -juHcosO, where 9 is between the moment and the field direction. The

magnetization will be M=N/i cos# whereN is the density and cos# is the average over

a distribution in thermal equilibrium. According to Boltzmann distribution, the relative

probability of finding a molecule in a solid angle element dQ is proportional to

-E/ f
-E/

f
-E/

e /kJ
, and cos# = I e /kT cos6tiQ. •%

I e /kTdCl Over all solid angles,

n n

~^9 = \2n^G cosee^^^dO +jlasmee^^^de (2.16)

letting r=cos# and a - /jHfkT , then

i i j i ,

cos0= [e^xdx-r \e
ax
dx =— In \e

ax
dx = cotha = L(a). (2.17)

r • da , a

L(a) is called the Langevin function. When the field energy is small in comparison with

kT, a «1, then L(a)~a/3 and M « Nn 2K/3kT (2. 1 8)

The magnetic susceptibility in the limit as fjH/kT«l is

X =M/H = Np 2 /3kT = C/T

,

(2.19)

where the Curie constant C = N/u
2
/3k . The inverse temperature dependence is known
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as the Curie law and the entire expression is called the Langevin equation. This Langevin

derivation is entirely classical with unrestricted space orientation of the moments in a

magnetic field and furthermore, depends intrinsically on the Maxwell Boltzmann

distribution. A quantum theory of paramagnetism still employing the Boltzmann

distribution uses the Lande g factor (2.12) and what is known as the Brillouin function

for calculating the 2J+1 discrete and equally placed energy levels in the field.

Essentially equivalent to the Curie Law, the calculation yields X-Np 1

!*^ /3kT , where

the effective number ofBohr magnetons is defined as p - g[f(J + 1)]2 .

2. Pauli Paramagnetism

The Langevin equation does not apply to conduction electrons which obey the

Fermi-Dirac distribution. Conduction electrons are neither spatially localized like

electrons in partially filled ionic shells, nor because of stringent constraints of the

exclusion principle, do they respond independently like electrons localized on different

ions [Ref. 26]. Although small, Pauli paramagnetic susceptibility results from the

coupling of intrinsic electron spins with an applied field H. There is also a diamagnetic

effect arising from the coupling of the field to the orbital electron motion. This is called

Landau diamagnetism and forfree electrons in metals, the susceptibility,

XLandau
=—XPauli The resulting net susceptibility for vV conduction electron is

X = N/j.b
2
/Ef , where £> is the Fermi level. Pauli paramagnetism is independent of

temperature and even at room temperature is hundreds of times smaller than the

paramagnetism of magnetic ions. Paramagnetism usually masks the atomic

diamagnetism present in solids. In practice, it is the total susceptibility that is revealed by
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a measurement of bulk moment induced by a field and this is a combination of the Pauli

paramagnetic susceptibility, the Landau diamagnetic susceptibility, and the Larmor

diamagnetic susceptibility (of the closed-shell ion cores). As a result, isolating

experimentally these particular terms of the susceptibility is not at all straightforward.

Nuclear magnetic resonance (NMR) is one such technique that enables experimental

discrimination of these susceptibilities. Like NMR which can measure spin-lattice

relaxation rates, another technique called muon spin relaxation, also is central to the

current investigations of magnetic molecular clusters cited in the introduction [Ref. 22].

Unlike these recent frontier if somewhat esoteric inquiries, the next section will attempt

to describe a more prosaic phenomena, namely refrigerator magnets.

F. FERROMAGNETISM

The transition metals Fe, Co and Ni, rare earth metals such as Gd and a few

oxides such as Cr02 and ErO display very large magnetization. These ferromagnetic

materials contain permanent atomic magnetic dipoles, the difference from a paramagnetic

substance being that, below a certain temperature, the dipoles retain parallel orientation

even in the absence of an external field. Figure 3a. depicts a magnetization curve of a

ferromagnetic material. This hysteresis loop characterizes the magnetic induction B as a

"function" of the applied field H. As the applied field H is increased, B begins to

increase slowly. The slope rises sharply as B rapidly increases until the saturation

induction. Upon decreasing the field, the original curve is not retraced. At H equal to

zero, the specimen is still magnetized with the remanent induction. Here is the reason

that zero field permanent magnets are able to emblazon refrigerators. IfH is now made
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negative, when B=0 indicates the coercive force required to de-magnetize the material.

The symmetric curve depicts saturation, remanence and coercive force for negative

induction values. This irreversible double valued hysteresis is the signature behavior of

ferromagnetic materials. The work required to go around the hysteresis loop

once is proportional to the enclosed area. Technologically an alloy with a fat loop

(Figure 3b.) makes a good permanent magnet; whereas a thin loop, (Figure 3c.) with

small area, demagnetizes rapidly and makes an efficient AC transformer element.

€>1 994 Ffw^cfepa^ii^ BrilanftK-a, foe

Figure 3. Hysteresis curves for (a) soft iron, (b) a good permanent magnet, and (c) an

alloy suitable for use in a power transformer. [From Ref. 27]

The source of ferromagnetism is a parallel alignment of unpaired electron spins.

As noted in the introduction, Weiss (1907) postulated a molecular field to explain ferro-

magnetism and he further postulated domain formation to explain the hysteretic magnet-

ization curve. The molecular Weiss field was formulated as Hw=^M, where X is termed

the Weiss constant and this field is added to the applied field H in Curie's Law (eq 2. 18).
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Then the magnetization,

s~i
llVli \A C C

M = — (H + AM), and solving for \-j =— = y = =
, (2.20)

where Tc the Curie temperature, is where the transformation from the paramagnetic to the

ferromagnetic occurs. The domain hypothesis can be inferred from the hysteresis curve

and were observed in fact some twenty five years later in 1931. Within domains, all

moments are aligned but there is random orientation of the domains resulting in a net

magnetization of zero. The external magnetic field induces magnetization via domain

wall motion. The applied external field will cause favorably aligned domains to grow

thereby shrinking unfavorably oriented domains. Rotation of other domain moments

maximizes the magnetization. The saturation value corresponds essentially to single

domain status. When the field is removed, the specimen remains magnetized. Although

domains typically tend to rotate back, the large aligned domains do not easily revert to

the original random arrangement. Reduction and reversal of the field allow a domain

pattern to return, depending on the ease with which domain walls can nucleate, move

through the material, and again be ejected.

G. ANTDFERROMAGNETISM AND FERRTMAGNETISM

There are two other important classes of magnetic behavior. When adjacent

unpaired spins are aligned in an opposite fashion, the resultant phenomenon is called

antiferromagnetism. The susceptibility is then positive and increases as the temperature

increases since thermal energy as always disrupts long range order. Figure 4. compares

alignment of magnetic moments and temperature effects on ferro- and antiferromagnetic

materials. The peak in the susceptibility % versus temperature T in Figure 4b. is called
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the Neel temperature 0n and corresponds to the Curie temperature in ferromagnetic

materials. A class of complex oxides known as spinels, having the composition

XOFe203 (where X is a metal), exhibit ferromagnetic interaction yet have anti-parallel

spins as depicted in Figure 4c. A net moment results since the opposite spins are

unequal. The magnetization of these spinels, known as ferrites, have wide application in

the electronics industry.

;, M M ,1 /I

M i, A ,,

I 1
, r |

Figure 4. Magnetic susceptibility versus T for (a) ferromagnetic, (b) antiferro-

Magnetic, and (c) ferrimagnetic materials, with magnetic moment alignments

indicated for each case. [After Ref. 1]

H. QUENCHED ORBITS AND THE HEISENBERG MODEL

The moments of ferromagnetic arrays could in principle stem from orbital

moments as well as spin moments of individual electrons. However, since crystal

structures are held together by electron bonds, it is not surprising to discover from

magnetomechanical measurements that the orbital moments are essentially quenched by

such bond formation. The gyromagnetic ratio for orbital moments is e/2m (eq. 2.3); for
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ferromagnetics, it proves to be about e/m, the value of electron spins. Although the

contribution of orbital moments to the saturation magnetization is generally only 5-10%

of the total, they are nonetheless important as a source of magnetic crystal anisotropy

[Ref 1]. A quantum mechanical explanation for the Weiss field proposed by Heisenberg

(1928), involves an exchange interaction between neighboring electron spins. The

exchange energy explanation may be motivated by the Pauli exclusion principle and

corresponding Fermi Dirac statistics requiring distinction of each electronic state by its

own unique set of quantum numbers. Overlapping wave functions can lead to a decrease

in over-all energy in certain cases, and therefore favor a parallel alignment of spins. The

spin quantum number corresponds to up or down, hence inversion from parallel to

antiparallel leads to a new electron cloud of different electrostatic energy. Bohm

[Ref.28] concurs and attributes the antisymmetry of the complete electronic wave

function with prescribing parallel or antiparallel spin alignments. Furthermore the

energy, apparently a result of spin interactions, is actually a result of the correlation

between mean coulomb energy and spin.

Ashcroft and Mermin [Ref. 26] construct a spin Hamiltonian for a two electron

1

system noting that each individual electron spin operator satisfies S
t

-

so that total S satisfies

rH=x

S 2 =(S]+ S2f=^ + 2Sr S 2 , (2.21)

since S
2
has eigenvalues S(S+1) in states of spin S, the operator S, • S

2
has eigenvalue -4

in the singlet (S=0) state and +4 in the triplet (S=l) states. Consequently the operator
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jtf
spm =—(E

s
+ 3E

t
)-(E

s
-

E

t
)S, • S

2
has eigenvalue Es in the singlet and Et in each of

4

the triplet states and is the desired Hamiltonian. By redefining the zero of energy, the

constant, common to all four states, (E
s
+3E

t
)/4 can be omitted and the spin

Hamiltonian is <#?
spin = -7S, S

2 , J =ES -Et
. (2.22)

Seeking lowest energy, the scalar product of the vector spin operators will favor parallel

spins if J is positive and antiparallel if J is negative. It is also noteworthy that in contrast

to dipolar interaction, the coupling in this spin Hamiltonian depends only on the relative

orientation of the two spins and not on the vector difference between the spins. It is

remarkably true that in many cases of interest, the form of the spin Hamiltonian is simply

that for the two spin case summed over all pairs of ions,

^spi„ =_£y„S,..S
;

(2.23)

This expression (2.23) is called the Heisenberg Hamiltonian and the J
i}
are the exchange

coupling constants. Stanley [Ref. 4] points out that this model is not valid for a wide

variety of real magnetic materials as it assumes:

a) Well localized spins (i.e. small wave function overlap)

b) Complete isotropy of interaction.

The 3d transition metals have overlapping wave function and rare earth metals are

generally anisotropic. Nonetheless, the Heisenberg spin Hamiltonian formulation can

yield fruitful theoretical information in many cases, one such being the mesoscopic

"Ferric" Wheels.
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m. HEISENBERG SPIN SYSTEM FORMULATIONS

A. OUTLINE

This chapter will contrast two theoretical approaches to obtaining the partition

function for a one-dimensional nearest neighbor classical Heisenberg spin system in a

magnetic field. At the outset, section B will develop the symmetric and non-symmetric

transfer operators, and show that the partition function for an N-spin system is equal to

the sum of the "N^-power raised" transfer matrix eigenvalues. Next section C will

delineate the zero field analytic solution of a classical Heisenberg ring. Then, tackling a

finite magnetic field in Section D, the numerical integration approach ofBlume et al will

be described, following directly the authors' formulation. Section E will suggest a new

approach to solving the classical Heisenberg spin system. The matrix eigenvalue

equation will be constructed by representing the transfer operator kernel in a basis of

spherical harmonics, (which are the zero field eigenvectors in the analytic solution). The

infinite matrix that results will be examined qualitatively for both zero and non-zero field

characteristics. Development using first a symmetric magnetic field transfer operator,

followed by and compared with a non-symmetric transfer operator expansion, employ

both integral equation and rotation group mathematics. The non-symmetric transfer

operator surprisingly yields a simpler matrix construction and both formulations enable a

conceptual contrasting to Blume et al while setting the stage for an actual calculational

comparison.
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B. TRANSFER MATRIX FOR CLASSICAL HEISENBERG SPINS.

The starting point in this development is the Heisenberg Hamiltonian, which is a

summation ofquantum spin operators in units of h:

N

otf= -J^S, -S J+1,
where S^+1

= S, (periodic boundary conditions), and J is the
j=i

unique exchange interaction energy applicable to each adjacent pair. It is noteworthy to

recall equation (2.22), that in this formulation (J<0) J>0 promotes (anti-) ferromagnetic

ordering at low temperatures. To incorporate system coupling with the magnetic field,

the potential energy of a magnetic moment fi in a magnetic field B, is -fiB . Quantum

mechanically, /j=-gfiBJ fa where g is the Lande g-factor, //b is the Bohr magneton and J

is the total angular momentum. This treatment will assume that orbital angular

momentum L is completely quenched by the crystal fields (i.e. L=0), so the potential

N

energy term, (also in units of ft), is given by g/isB •V S, . Ifwe take the B field as

N

defining the z-axis, then the magnetic field energy term is given by g/iBB^Sf , where
i=i

Sf is the z-component ofthe spin at site /. For later convenience and without any loss of

generality, we define m = -gfiB and thus the total Hamiltonian is given by

N N

«# = -/£S,.S,
+i -ih*5X. (3.1)

»=1

Now the classical spin approximation, (which is necessarily invalid at low tem-

peratures), recognizes that quantum spins of spin quantum number S can orient in 2S+ 1

directions in real space. The spin vectors have length -yJS(S + 1) in units of h. We now
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replace the quantum spins S, —

>

-yJS(S + l)s. by classical vectors of length t]S(S + 1)

,

where s, is a unit vector at site /', free to point in any direction.

The classical Heisenberg Hamiltonian is now

Cte = -JS(S + l)£ s, • s I+1
- mByJS{S + l)J^ sf . (3.2)

i=i 1=1

To simplify the notation, establish effective dimensionless coupling constants and

create simplified Boltzmann factors, we will define K = pJS(S + 1) = JS(S + l)/(kBT),

where T is the absolute temperature and kB = 1.38 xlO
-23 ^-^ -1

. Similarly, we define

L = pmByjS(S + \) = mByjS(S+)lkBT . The Boltzmann factor, from statistical

mechanics is then expressed as,

f N N \

exp(- (tie) = exp K]T s, • sM +L^sf . (3.3)

V i=t i=i )

The partition function as the sum ofthe Boltzmann factors becomes an integral

since the classical spins are continuous,

Z =
J Jn</s ;

.exp(-£*0=
J \f\ds

x
expf*f>, -„ +rf>f

a

], (3.4)

S
l

Ss '=1 S, Ss
«'=1 V »=1 i=l J

where ds,. = sm9
i
dO

i
d(f>

i
, is the element of solid angle about "spin" s,. In parallel with

our treatment ofthe Ising model in Chapter I, since the spins are classical variables, and

hence commute with each other, we can express the exponential of the sum in (3.4) as a

product of exponentials,

z =
\ jf[&i

r(5
1
,52 )r(52 ,53)....T(^.1

,^)r(5
Ar ,5I ), (3.5)

5, SN '=1
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where T(s,s') is the transfer operator. In what follows, we examine some ofthe

mathematical properties of the transfer operator. We then show that knowledge of the

eigenvalues of T enable us to find the partition function.

One way to write T(s,s') is as a symmetric function of its arguments,

T(s,s
,

) = exp\Ks-s' + -L(s 2
+s'

2

)\. (3.6)

This form is not necessary, however; one could also contrive the following non-

symmetric transfer operators:

T+ (s,s') = exp(Ks-s' + Ls z

) or T_(s,s')=exp(Ks-s' + Ls'
!

); (3.7)

these non-symmetric operators are in fact transpose pairs since T+ (s',s) = T_ (s,s')

.

In Chapter KL, Section E we will return to these non-symmetric forms of T. Here we will

explore the mathematical consequences of employing the symmetric version of T, (3.6).

Ifwe consider the integral equation

jds'T(s,s')rn (s') = KVn(s), (3-8)

this defines the eigenfunctions if/n (s) an<̂ eigenvalues A„of T, where n= 1,2,.... is a

discrete index. If T[s,s') is symmetric, (e.g. equation (3.6)), then Hilbert-Schmidt

theory [Ref.29] guarantees that the eigenvectors are a complete orthonormal set and that

the eigenvalues are real. The completeness and orthonormality of the eigenvectors on the

unit sphere means:

I ds y/*
n
(s) y/m (s) = S^ (orthonormal) and (3 .9a)

Z V» (*) V* (*') = *(s - s') (complete) (3 .9b)

It is shown in the theory of integral equations [Ref.29] that because (3.6) is real and
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symmetric, we may expand the transfer operator in terms of its eigenvalues and

eigenvectors,

rfcjO-Z^r.torfM- (31 °)

With this expansion, one can show that the partition function for the N-spin system is

given by,

V=2X- (3.11)
71=1

To see how (3.11) arises, let us work out the details for the case of the N=2

system. Starting from (3.5) we have

Z
2
=jjds

l
ds

2
T(s

x
s
2
)T(s

2
s

l ). (3.12)

Substituting the expansion (3.10) in (3.12), we have

00 00

00 CO

n,m=l s,
e, n,m=\

where we have used the orthonormality properties given in (3.9a). It is thus clear how to

extend the treatment to general values ofN and arrive at (3. 1 1). Just as we obtained in

the analysis of the Ising model, obtaining the partition function ofthe classical

Heisenberg system is tantamount to finding the eigenvalues ofthe transfer operator.
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C. ZERO-FIELD EIGENVALUES

At this point, it will be useful to show how one may obtain analytically the

eigenfunctions and eigenvalues of T for zero applied magnetic field. The key to the

subsequent development is the use of the following expansion

* ;

expfe .s2)= 4;r£ E/ito^fofcfc). (3.14)
/=0 m=-l

where /,(*) =^ I^K), (3.15)

is a modified spherical Bessel function and Ylm is the standard spherical harmonic

function. For future reference in characterizing matrix symmetry, we note the Bessel

function parity property f, (- K) = (- 1)' f, (k). In addition, another essential result,

commonly called the Condon Shortley phase convention, is the fact that the spherical

harmonics obey Y'm = (- l)
m
Y,_m . In what follows, we will work with spherical polar

coordinates (#, <f). The angle between the two "spins" (unit vectors) is given by

Sj -s
2
= cos0 = cos#, cos#

2
+sin#, sin#

2
cos(^, -^

2 ), (3.16)

which is a standard result from vector analysis. We will use the shorthand notation

Ylm (s) to denote Ylm ($,4>). Equation (3.14) follows from combining two results from

mathematics. The first is the expansion,

exp(zcos#)= 2(2/ + l)/;(^(cos^), (3.17)
;=o

which is a special case of the Gegenbauer addition theorem for Bessel functions.
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The second is the addition theorem for spherical harmonics,

P
;
(cos0)= 4^- ^fa.Ajrfe,^). (3.18)

Combining (3.17) and (3.18) leads to (3.14).

Comparing (3.14) with (3.10), we can identify the eigenvalues ofT as

XXm - Anf
l
(K). Note that in this zero-field case each eigenvalue is (2/+l)-fold

degenerate. When we turn on a B field, the degeneracy is lifted. We also identify the

eigenfunction ofT in the zero-field limit as yUm {s) = Ylm (s). Note that, as opposed to

(3.8) in which a single generic index is used to label the eigenfunctions, in this case we

must employ two indices to label the eigenfunctions and eigenvalues. We can verify that

the Y
{ m 's are the correct eigenfunctions with the f, (^)'s as the eigenvalues as follows.

Let's assume this assertion to be true and substitute into the eigenvalue integral equation,

Jexp(*Sl -s2)YrM (s2 )ds2 = Xrm,YVm.{s x ). (3.19)

Now employing the expansion (3. 14), and the (3.9a) orthonormality property we have

**\*2z /,(*. (*,k& y>w& )

=

4^z fi (*k« (*>)Kc&yFJ*&

)

l.m l.m ,

32Q
.

= 4*£ f, (K)Yim (s, )5hrSmM = Anfv (K)YIW (s
x
).

l.m

Thus, as demonstrated by Joyce [Ref. 7], in zero applied field, the partition function is

ZN {K)= (4*)"± (2/+l)/
z
* (K). (3.21)

;=o

We can check that (3.21) properly reduces to the correct high-temperature limit

ZN (6)= (47tY upon using the property of the modified spherical Bessel function

/,(o)=<V
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D. BLUME, HELLER, AND LURIE METHODOLOGY

Published in 1975 [Ref. 8], this numerical method achieved the first theoretical

results of the thermodynamic properties for the classical Heisenberg magnetic chain in an

applied magnetic field. Using the transfer matrix method and numerical Gaussian

integration, this achievment extended the zero field analytic solution of Joyce to the non-

zero field case. In a magnetic field, formulating a numerical evaluation of the

eigenfunction, Blume et al [Ref. 8] first noted that the eigenfunction can, by symmetry,

be written in the form ^/^(s) = y/lm (cos#l V

i

—
\
e ""*

> where 9 and ^ are the polar

and azimuthal angles respectively of spin s. This separation of variables recognizes that

even in the presence of an external field, the azimuthal parameter m remains a good

quantum number. Letting x = cos# , utilizing (3.16), and using the symmetric kernel

(3.6), equation (3.8) (with indices l,m in lieu ofn) becomes,

J
dx'

J
d<f>

' exp Kx x' + K [(l - x
2

X - x'
2

)f cos ($ -
<f>
')+ — (x + x')

j

- 1

°
^

^(3.22)
p ,m *'

1

The integral over
<f>'

can be carried out analytically with the result,

Inj^'exPffe' + |(x + xO)l^[(l-x
2

Xl-x'
2)^V (x')dx' =\m ^». (3.23)

-i

i
2* '

Here Im (x) =— fexp(x cos^ - im(f)d(f> = Im (- x) = I_m (x) is the Bessel function of

imaginary argument. This one-dimensional integral equation can now be solved

numerically by converting it to a matrix equation. The integral over x' is performed by
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I

Ni -point Gaussian integration, using the approximation
j

f{x)dx « X^y-A*; )» where
/-i

the weights Wj and the points Xj are tabulated. [Ref. 30] The integral equation then

becomes,

['dxVm (x,x')^Jx') = AlmWJx)^wfim {x,xJ )^lm {xJ ), (3.24)

where Gm (x, x') = 2ne* ^ *Vf^[(l - x
2
)(l - x'

2
)]^Y Ifwe look for solutions ofEq.

(3.23) only at the points x = x. of the numerical integration, the integral equation

becomes a matrix eigenvalue equation: ]Tw
J
Gm [x. , x, J^/m

(x
;
) = A/fll ^/m (x, ) . To make

this more symmetric, we multiply both sides of the equation by -fw] , obtaining

S^Vf^^^, (3-25)

where ^m)
=firGm (x

i
,x

j \f^~ and ^
(ta) = ifi~yln (xi

). Equation (3.25) is an

N
;
x A^ matrix eigenvalue equation with Nj determined by the number of points used in

the numerical integration. As stated in the introduction, (and assuredly worth repeating),

a value ofNi=16 suffices to give convergence to seven significant figures for all values

ofK and L. The largest eigenvalue of equation (3.25) occurs for m=0. This is in

consonance with the fact that the eigenfunction belonging to the largest eigenvalues has

no nodes. In a sufficiently large spin system, only the largest eigenvalue survives, that is

Z -> XN for N -> oo . The free energy appropriate to an infinite-site system can be

obtained from this eigenvalue and other thermodynamic quantities can be found by

numerical differentiation with respect to the appropriate variables.
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E. REPRESENTATION IN SPHERICAL HARMONICS

Mark Auslender, an Israeli physicist, has suggested, in a private communication,

[Ref. 9], an alternate numerical strategy for solving the eigenvalue problem associated

with the transfer-operator, (3.8). Auslender' s suggestion consists of representing the

transfer operator in terms of a spherical harmonic basis set. Since the spherical

harmonics are the eigenvectors ofthe transfer operator for zero magnetic field, it is

possible that Auslender's suggestion could prove numerically more efficient or flexible

than the Gaussian integration approach discussed above for the case of non-zero magnetic

field. We stress that Auslender has merely suggested this approach; we are here working

out the details.

Thus, we first expand the eigenfunctions of Tin terms of spherical harmonics,

^) =Z r̂>). (3-26)
V.m'

Substituting (3.26) into (3.8), we have

£C&]ds'T{siSyr^s') =XXC^YrM {s) (3-27)

V.m V.m'

Then, multiplying (3.27) by Y*m (s) and integrating overs, we obtain

^C^]ds\dsX,As)T{s,s%,m.{s')= XnC\i, (3.28)

V.m'

We now define the matrix elements,

T(l,m,l',m') = jjcisck%:m (syr(s, S%,m.(s'), (3.29)

in terms ofwhich (3.28) becomes

27-(/,m;/',m')cW=A
n
CW. (3.30)

I'.m'
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For each n=\,2 , (3.30) has the form of a matrix eigenvalue problem. In what follows,

we will simplify our notation and suppress the index n. As previously, the goal will be to

obtain the eigenvalues of T, now in a matrix representation given by (3.29).

The form of (3.30), however, is slightly unusual because the components of the

eigenvectors are labeled by a double index set. We can cast (3.30) into standard form by

lining up all of the eigenvector components into a column vector,

(C N

c =

1.1

(3.31)
^1,0

r̂
2.2

V : J

The column vector C is infinite dimensional and the eigenvalue condition becomes a

matrix eigenvalue equation, T- C = AC, where T is an infinite-dimensional matrix, the

first few elements ofwhich would be,

fj(0,0;0,0)
r(o,o

;
i,i) r(o,o

;
i,o) r(0,0;l,-l) r(0,0;2,2) -)

r(l,l;0,0) r(l,l;l,l) r(l,l;l,0) r(l,l;l,-l) 7(1,1,2,2)

7(l,0;0,0) r(l,0;l,l) 7(l,0;l,0) r(l,0;l,-l) 7(l,0;2,2)

7(l,-l;0,0) r(l-l;l,l) 7(1,-1,1,0) r(l-l;l-l) T(l -1;2,2)-

J(2,2;0,0) 7(2,2;l,l) 7(2,2;1,0) r(2,2;l-l) 7(2,2;2,2)

(3.32)

We have thus formally reduced the integral eigenvalue equation (3.8) to a matrix

eigenvalue equation,where, however, the matrix is infinite dimensional. Clearly, some

practical means of truncating the matrix must be developed. This remains to be done.

We note that, in principle, the Gaussian integration scheme also produces an infinite
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matrix to diagonalize. There it was found empirically, that a 16 x 16 matrix produced

satisfactory results.

It will be instructive to first evaluate the matrix elements of T for the case of zero

magnetic field by substituting (3.14) in (3.29)

T(l, m; /', m') = \ds\dsX,m (s)t(s,s%,m . (s')

= 4*TA (K)jdsjds%:m {s)Y^ (,>£.,&¥„&) (3.33)

h."h

= 4xfl
(K)8

lsSmtm..

Not surprisingly, yet reassuringly, this shows the matrix is diagonal with the zero field

eigenvalues along the diagonal.

To incorporate the magnetic field into the matrix construction, either a symmetric

or a non-symmetric approach is possible. We will explore both avenues, but before

proceeding, we list the following results that will prove useful in our subsequent analysis.

The first derives from the addition theorem for Legendre polynomials:

exp(Ls
z

)= exp(Zcos0)= V47]rpj + 1 /; (fy. (s) . [Ref. 30 p.445] (3.34)

We will also require the general integral over three spherical harmonics,

j /,.m,V ) /2 .m2 V r h.m,\J ^ ^ \

Q Q Q
II IV

V"l "*2 '"3 7

where
/, l

2
/
3 ^

\m \
m

2 m 3j

is the Wigner 3/-symbol. [Ref. 3 1 p63] The Wigner 3/ symbol

is a symmetric form of the Clebsch-Gordan coefficient that arises frequently in contexts
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involving coupling of angular momenta in quantum mechanics and other applications of

the rotation group. The 3j symbols are non-zero only when m
]

+m
2
+m

3
= and the top

row satisfies a triangle condition, |/,
- /

2 |

< /
3
< /, + 1

2 . When the bottom row is

identically zero, there is an additional rule that the top row must sum to an even integer.

1. The Symmetric Kernel

Since (3.6), the original transfer operator T(s,s') is symmetric, we expect the

matrix T to be Hermitian. This will ensure that the eigenvalues X are real. Following

(3.29), we need to evaluate the matrix elements,

T(l, m,/>') = jds\ds%:m (syr(s,*%.* (*')

= jdsjds%'m (s)exp{Ks-s'^L{s^ +s")K>')-

We now substitute in the expansions (3.14) and (3.34),

exp(^s-s')=4^/,(^,n,(*;(s') and

(3.36)

(3.14)

exp{±Ls
z
)= V47|]/

/
(i:/2)>/27TT7;o (5).

;=o

The expression for the matrix element then becomes,

T(l, m; V, m') = jdsjds'Y^ (s)exp(*s • s' + \ l{s
z + s'

z

)>r<m, {s')

=J*J*7^{4;r£A (K)Y^ (s'>U (s)

/,,/n,

^^/(L/2y2!~^Y
hfi

(s)

/,=0

YrM)

(3.34)
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Collecting terms, we have,

t(i,»;/>')= (4*f111AMA{mWT^k(ffiW^i

Employing (3.25), the integral over 3 spherical harmonics and using the fact that

Y*m = (- l)
m
Y

l_m , we obtain the ponderous expression,

T(l, m, V, m') = (4*)
2£IIA (*K (L/2)^Tlfh (Z./2X/^TI)(- l)" (- 1)-

/• ,m, /, /

(3.37)

1 •ml '2 '3

(2/ + lX2/
1
+lX2/2 +l)^f/ A W A O

4;r "J ^0 J(^- m m
x

•

(27, -HX2/3 +1X2/^1)^/' /3 rY /] '
3

r

4;r J [0 oJI^-tw, m'

We can simplify this beast somewhat,

T(l, m- V, m')= (4^)XYLA (*K (L/2)A (L/2^ +^ +^ + l)>/(2/ + #2/' + 1)

fi /, /2Y / /, /2YA A /'Y A 7
3 '' ^

^0 0){-m 7W, -mj m'

/_ j^+mi

(3.38)

Utilizing the properties ofthe 3/ symbol discussed above, we have for the symbols

appearing in (3.38),

(11 l\

-m m
x

'l *3 '

-m
x

w^

= £
K
-m m

j

(I I V\

-m' m'

We can thus instantly sum over m\
t
(using the fact that ^S^^S^^, = Smm.\ and the

m,
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matrix elements become,

ao oo oo

T{1, m- 1\ m')= 4xSm .m ,J@ + Ipl' + l)££ IA (*)/,, fc/2)/,, (1/2X2/, + lX2/2 +^ +
j, ;

2
=o /,=o

(I l LY / /, /2YA '3 >'Y A '3 ''^

vo o yy-mmO y Oy^-/W /Wy

(3.39)

Equation (3.39) seemingly involves a triple infinite sum. The "triangle" properties of the

3/ symbols probably restrict some or all of these summations to be finite sums. We will

not further analyze (3.39) because, as it turns out, a considerably simpler expression for

the matrix elements can be obtained by working with the asymmetric form of the transfer

operator (3.7) mentioned in chapter m, section A.

2. The Non-Symmetric Kernel

We now obtain the matrix elements associated with the asymmetric form of the

transfer operator, T(s, s') = exp^s • s' + Ls z

)
. First, however, we note that one might be

concerned that a non-symmetric kernel would not have real eigenvalues. (Recall, as

discussed above, that Hilbert-Schmidt theory guarantees that a real symmetric kernel has

real eigenvalues). In this particular case, however, we can show that the non-symmetric

kernel is related to the symmetric form ofthe kernel by a similarity transformation, and

hence has the same eigenvalues as the symmetric kernel. Consider that the eigenvalue

equation, (3.8), is equivalent to the following

\g{s)T(s,s')g-
l

(s')g(s%
n
(s')ds' = Kglfrnk) (38')

or \T{?j)&JfiU = Xu9S?)

where f(s,s')=g(s)T{s,s')g-
x

(s') and yn
(s) = g(s)y/n (s).
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So long as a function g(s) can be found such that T is symmetric, 7/ and T will have the

same (real) eigenvalues. In our case, it is easy to find the transformation function,

g(s)= exp(
-
^%). Thus, the (3.7) non-symmetric kernels T± (s,s') have the same

eigenvalues as the (3.6) symmetric T(s,s').

Utilizing now T+(s,s') from (3.7), we have from (3.29),

T(l, m-V, m') =
J
Jffcfr'C {s)exp{Ks -s' + Ls z

)-,,„. (*')

= (4^ZZA^K(iX/27^T(f^,;(*,.,(^,o(4
/,,m, ;=0

x(f*'i'^(^K..-(4 (3.40)

= (4^)^/rw|;//
(LX/27TT(f<fer,;„(,)r,.,.(,)r, (5))

;=0

7 V jV I V f
rm m' 0J

where, in arriving at the last line, we have used the phase convention that

Y'.m = (~~ ^T^i-m We now utilize the "selection rule" properties of the 3y'-symbols: The

3/'-symbols are non-zero only when the sum ofthe bottom row is zero, and when the

upper row satisfies the triangle inequality, \l-l'\<j <I + Y. These two facts: (1) restrict

the sum overhand, (2), makes the matrix element diagonal in the variable m:

7 /' N i V A
m m

r(/,w;/',i«') = 4^(-l)"^/r(^W(2/ + lX2/' + l)S/y
(iX27 + i

j=\i-r\ vv v VV"'"
(3.41)

We note the additional rule for 3/'-symbols that when the bottom row is all zero, the

symbol is non-zero only when the upper row sums to an even integer. Thus, the sum

overy in (3.41) is further restricted to values such that / + /' + y = 2p, where/? is an

integer. We note that the fact that T(l,m;I',m') is diagonal in m, makes sense; the
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azimuthal quantum number remains a good quantum number in the presence of the field.

Finally, we note that utilizing the other asymmetric form for the kernel

(7(5, s') = exp(Ks • s + Ls'
z
)) merely produces the transpose of T(l, m, V, m'}

It is easy to verify that the correct zero-field limit results from (3.41). Using the

fact that fj (0) = Sj0 and the 3/'-symbol,

f
i i ow-iy~"

-m m OJ V2/ + 1'

we obtain the zero-field limit, T\[,m;l'tm') = 47tf, {K]5iv8mml as derived previously (3.33).

One can also show that (3.39) properly reduces to (3.33) in the zero-field limit.

Using the symmetry properties of the 3/-symbols, it is simple to show that the

transpose of T(l,m;l',m') is given by, T(l',m', I, m) = [fl
(K)/fr (K)] T(l,m\l',m').

Since we started from an asymmetric version of the transfer operator, it is not surprising

that T is not symmetric. We note that the transpose relation implies that the matrix

elements have the symmetry property, frT(l',m',l,m) = ft
T(l,m;l',m').
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rv. DISCUSSION

The purpose of this thesis has been to investigate a method for obtaining the

thermodynamic partition function for classical Heisenberg spins that interact with

isotropic nearest-neighbor exchange interactions and which are coupled to an external

magnetic field. Equation (3.41) is the main result of this thesis. It provides an expression

for the matrix elements of the transfer operator for classical Heisenberg spins that result

upon utilizing a basis of spherical harmonic functions. The motivation for pursuing this

new matrix representation is ultimately to assess its numerical efficiency, as compared

with Blume's Gaussian quadrature method, in determining the eigenvalues of the transfer

operator. Within the transfer matrix formalism for calculating the equilibrium properties

of interacting spins on a lattice, the "matrix" in this case being an operator, the partition

function is obtained from the eigenvalues of the transfer operator. We emphasize that the

Gaussian integration method is the only other numerical method available in the physics

literature ofwhich we are aware for obtaining the eigenvalues of the transfer operator for

classical Heisenberg spins in an external magnetic field. Moreover, we note that the

transfer matrix method is the only general method for treating the statistical mechanics of

interacting spins; there are only a handful of exceptional cases where the partition

function can be obtained directly, without recourse to the transfer-matrix method.

As discussed in the introduction, great progress is being made in the ability to

fabricate molecular clusters containing a small number of magnetic ions (e.g., as few as

four). Recent advances in the fabrication of molecular magnets portend an

unprecedented ability to control the placement of magnetic moments in molecular

structures and hence to design and produce nanometer-scale magnetic systems. As
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molecular magnetic systems continue to be explored for their possible applications,

robust and reliable numerical methods will be required to model their thermodynamic

properties. In the past, physicists have explored spin models for their ability to

characterize phase transitions. Phase transitions and critical phenomena, however, require

that the "thermodynamic limit" be taken at the end of the calculation, which, for spins on

a lattice, means that the number of spins in the system becomes infinite, (i.e.,N —> oo ). In

this limit, only the largest eigenvalue of the transfer matrix becomes relevant. We note

that specialized numerical methods exist for seeking either the smallest or the largest

eigenvalue of a given matrix. For the development of nanomagnetism, however, we are

concerned with the opposite limit to that attendant to the study of phase transitions, (i.e.,

here TV—

»

finitefew). To obtain the partition function for systems with just a few magnetic

atoms, we will require an indefinite number of the transfer matrix eigenvalues and hence

it is worthwhile to explore new methods for calculating these quantities. We note that the

number of eigenvalues of the transfer operator is independent ofthe size of the system.

In some sense, we have entered an era of "applied statistical physics," and appropriate

tools are required.

Without a detailed numerical investigation, it is difficult to assess the utility of

(3.41) vis-a-vis Gaussian quadrature. We can offer the following observations. First, it is

exact. Equation (3.41) provides the exact matrix elements of the transfer operator in the

basis of spherical harmonics, and this fact alone may offer insights. Stated differently,

the Gaussian integration method is purely numerical, whereas (3.41) is based on an exact

theoretical expression, which in and of itself may prove useful. Second, one hopes that

(3.41) will prove advantageous at least for the case of relatively small magnetic fields.
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Because (3.41) is diagonal for zero magnetic field, (since the spherical harmonics are the

zero-field eigenfunctions of the transfer operator), one would expect for non-zero

magnetic field that the off-diagonal terms would remain relatively small, and, moreover,

to become progressively smaller as one proceeds away from the diagonal. This follows

from the properties of the modified spherical Bessel functions in (3.41). These functions

have the property that they become monotonically smaller as a function of the order for

fixed values of the argument. In particular, when the value of the order exceeds the value

of the argument, the value of the function vanishes (approximately) exponentially as an

increasing function of the order. From (3.41), we see that the lower limit of the

summation is given by |/
- 1'\

, i.e., the order of the first (and largest) term in the

summation is directly given by the distance to diagonal. Hopefully, such considerations

will prove useful in developing "rules ofthumb" for deciding how to truncate the matrix

for the purpose of numerically obtaining the eigenvalues. In a similar way, we note that

the number of terms to include along the diagonal is governed by the overall, field-

independent, modified spherical Bessel function in (3.41) which is a function of AT, the

dimensionless nearest-neighbor coupling constant. It thus seems likely that with suitable

numerical experimentation, one can develop practical schemes for truncating the matrix

for given values ofK and L. Finally, a decided advantage of (3.41) is that it provides a

systematic way for increasing the accuracy of the eigenvalues, if such is desired. It was

noted in Chapter III that a 16x16 matrix was sufficient to guarantee seven digit accuracy

with Gaussian integration. It is a feature of Gaussian integration, however, that one

cannot systematically obtain more accuracy by increasing the number of integration

points. For numerical reasons, the accuracy of Gaussian integration "saturates" for a
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relatively small number of integration points. Thus, while seven-digit accuracy is

commendable, if for some reason one wanted higher accuracy, it could probably not be

obtained using Gaussian integration.

As surmised at the outset, only performing the actual calculations will convey

"the rest of the story". In general, computational efficiency yardsticks, like the means of

matrix truncation and the ends of convergence results, must of course await actual

programming and calculation. Application accuracy, as well as flexibility are key factors

in adjudging the utility of any tool. So it is with models; in this case the efficacy,

versatility, and robustness of the spherical harmonic representation is yet to be

determined. Although pragmatic results will remain the preeminent objective, when an

intrinsically exact and high fidelity model formulation can engender an illustrative

understanding of the phenomenon examined, this is a welcome bonus. Finally, as for the

macromolecular magnetic frontier, the nanometer investigation and fabrication

technologies undoubtedly will encourage a convergence of scientific disciplines. The

chemist, physicist, and "nanotechnologist" will merge here to both gain an understanding

and inevitably utilize these ultra-small complexes.
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