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ABSTRACT

The double barrier resonant tunneling diode (DBRTD) is one of several

devices currently being considered by the semiconductor indue stry as a

replacement for conventional very large scale integrated (VLSI) circuit

technology when the latter reaches its currently perceived scaling limits. The

DBRTD was one of the first and remains one of the most promising devices to

exhibit a room temperature negative differential resistance (NDR); this non-

linear device characteristic has innovative circuit applications that will enable

further downsizing. Due to the expense of fabricating such devices, however, it

is necessary to extensively model them prior to fabrication and testing. Two

techniques for modeling these devices are discussed, the Thomas-Fermi and

Poisson-Schroedinger theories. The two techniques are then coompared using a

model currently under development by Texas Instuments, Incorporated.
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I. INTRODUCTION

Microprocessor chips have doubled in speed approximately every 18

months since the mid 1980's. [Ref. 1] This increase in speed is due to improved

circuit designs and smaller, more efficient very-large-scale-integrated (VLSI)

circuit chips. The continued downsizing of these microprocessor chips certainly

has a tangible limit; precisely when this limit will be realized is unknown at

present. It is important, however, that the limit to continued miniaturization of

VLSI technology will probably occur when device sizes have reached

dimensions sufficiently small that quantum effects become significant. In Chapter

II, several theoretical limits to continued downsizing of VLSI devices will be

discussed. Among these is the need for an advanced lithography technique that

can etch circuit designs onto chips and be commercially feasible. Assuming that

advances in lithography are made, one alternative technology that utilizes the

quantum mechanical properties of charge carriers is the evolving science of

nanoelectronics. In Chapter III the basic building block of nanoelectronics, the

double barrier resonant tunneling diode (DBRTD), will be discussed.

Understanding the theory and operating characteristics of this device is

important to assessing the potential impact of this new technology. Chapter IV

will present two techniques for determining the flow (or confinement) of electrons

in this basic device structure: the Thomas-Fermi and the Poisson-Schroedinger

theories. The results of simulations using these two techniques will be

compared. Specifically, the profiles of the electron potential energy and electron



densities throughout the device structure as well as the current-voltage

characteristic will be shown for a typical GaAs / AIGaAs DBRTD.



II. LIMITS TO MICROPROCESSOR DOWNSIZING

A. THE TRANSISTOR AND PRESENT MICROPROCESSORS

The transistor is the basis for modern digital technology. It is effectively

an electrical switch which when properly biased will either prevent or allow

current to flow. Under the appropriate bias the saturation flow of current is

typically considered a logical on or T state, whereas the lack of current is

typically considered a logical off or '0' state. Combinations of these states ('1'

and '0') are used to describe numbers and letters in binary, decimal, or

hexadecimal representation. Groupings of these representations are then used

via higher level languages (C, Pascal, Fortran, etc) to characterize the objects

and occurrences in our world. Transistors grouped together and interconnected

can be given a particular function. A 32 bit adder, for instance, typically requires

on the order of 700 transistors. Figure 1 shows only one cell of 32 which are

needed to construct a single parallel adder. Any number of other special

purpose circuits can also be fabricated by properly interconnecting a sufficient

number of transistors.

The modern microprocessor is effectively a very large number of

transistors that are interconnected and placed on a silicon wafer. Fabricating all

circuit elements on the same piece of silicon is referred to as an integrated

circuit (IC). The science/art of integrated circuit technology is to maximize the

operations performed by a given set of transistors. The improvement of

microprocessors is, therefore, done in two basic ways: improve the circuit design

to minimize interconnects and improve efficiency, or increase the number of



transistors for a given microprocessor. In the computer industry, both techniques

are used simultaneously. For example, the Intel Pentium and Pentium Pro are

generate

mode

mode * 0: ADD itnde - 1: SUB

Figure 1 - A propagate/generate cell. 32 cells are

needed to construct a single 32 bit adder. From Ref. [2]

fabricated with transistor element dimensions on the order of 0.35 micrometers

(|i) as shown in Figure 2. This dimension is considerably smaller than previous

generation processors whose transistor element dimensions were on the order

of 0.65 (i. Pentium microprocessors also utilize superscalar concepts and

parallel execution of instructions. Presently, the Pentium Pro chips have on the

order of 5.5 million transistors arranged on a single chip. Future generations of

chips are planned to scale down to transistor element dimensions of

approximately 0.1 - 0.2 u..



B. OBSTACLES TO FURTHER DOWNSIZING

As transistor dimensions have shrunk dramatically in the past 10 years,

the question naturally arises of how small conventional transistors can be

fabricated before the underlying physics will no longer support a continued

reduction in size. At best, this is a very difficult question to answer and at the

writing of this report the answer is not known. A first attempt at solving this

problem is to simply employ the knowledge base currently used to develop VLSI

Figure 2 - State of the Art transistor with element dimensions of 0.35 \i

From Ref. [1].



circuits and simply scale the circuits to smaller dimensions. This approach

unfortunately is not reliable simply because much of our understanding of device

technology is experimentally derived and empirical in nature. It is difficult to

generalize such empirically derived knowledge as succeeding device

generations are made progressively smaller. In particular, these empirical

relations do not apply to device dimensions much below 0.3 microns. [Ref. 3] It

is, however, interesting to discuss a few of the limitations which are known but

not completely understood or quantified.

One limitation to the downsizing of transistors in VLSI circuits is the need

for input-output isolation. Figure 3 is a diagram of a basic enhancement

source 9

H-change on gate

o drain

a r i r
hi * i •*

la j k j lb

substrate

Ifj > Vos positive

j

induced charge

in SiOJayer

induced n channel

Figure 3 - Enhancement n-channel MOSFET. From Ref. [4]



n-channel metal oxide semiconductor field effect transistor (MOSFET). With no

bias applied to the gate, the device is off. When a positive bias is applied to the

gate (with respect to the source), the device is on and current flows. The gate

bias induces a positive charge in the silicon oxide layer which in turn induces a

negative charge near the oxide/p-type boundary. This induced negative charge

creates a channel through which current can flow. In order for the effect to occur,

however, the silicon oxide layer must be thick enough to electrically isolate the

gate from the p-type layer. This thickness is known to be limited to 30 angstroms

or greater before tunneling will occur between the gate and p-type substrate. If

such tunneling were to occur, it would form a leakage path through the device,

effectively preventing the device from being in an off state.

Another isolation related phenomenon is gate-induced drain leakage. As

the overall dimensions of the transistor are reduced, the width of the silicon

dioxide layer, which isolates the gate from the drain, is also reduced. As this

width is reduced, the effect is a gradual reduction in the threshold gate voltage.

In the case of the n-channel enhancement MOSFET, the device will eventually

not be capable of turning off. Conversely, in the case of the n-channel depletion

MOSFET, the device will not be capable of turning on.

Still another effect of down-scaling transistors is a reduction in the junction

depths. In other words there is simply less material between the source and

substrate or the drain and substrate. One effect of reduced junction depth is a

lower breakdown voltage between source/substrate and drain/substrate. Another

effect is that the series resistance of these transistors is increased due to the



smaller surface areas of the contacts. Finally, with shallower junction depths, the

probability of leakage due to fabrication flaws is dramatically increased.

Only a few of the effects of down-scaling transistors have been discussed

here. In a comprehensive study several other effects must also be studied. Such

effects, though very important, will not matter unless an advanced lithography

technique for manufacturing scaled-down devices is discovered. VLSI circuit

chips are currently mass produced using photolithography.

In photolithography, light is used to transfer circuit patterns from a quartz

template, or mask, onto the surface of a silicon chip. The technique now
fashions chip features that are some 0.35 micron wide. Making features

half as wide would yield transistors four times smaller, since the device is

essentially two-dimensional. [Ref. 5]

Making devices substantially smaller will become increasingly difficult as the

diffraction limit of conventional lithographic light sources is approached. Many

companies have invested in x-ray lithography as an alternative. At present,

however, it does not appear that x-ray lithography can be commercially feasible.

Another technique is known as electron beam lithography. Currently, however,

electron beam lithography must be done serially, one "line" at a time, similar to

writing the circuit diagram onto a chip. This process is slow and not practical for

mass production of VLSI chips, for which a parallel writing technology would

have to be developed.

C. NANOELECTRONICS

The limits to downsizing of VLSI technology may not be reached for

several years to come, but eventually they will be reached. There are alternative

technologies currently under research to replace conventional transistors. One



such technology has been termed nano-electronics, indicating the scale of

device structure that is envisioned. As alternative fabrication techniques are

explored it is prudent to develop a working knowledge of the device physics

through a joint effort of modeling and fabrication. In this way, when practical

mass fabrication processes do become available, there will already be in place

an understanding of the individual devices and circuit designs. Such circuit

designs will have to include a method for interconnecting individual elements.

Currently, all approaches for developing a practical, room-temperature

nanoelectronic technology are based on the device structure depicted in Figure 4

which is commonly called the double barrier resonant tunneling diode. The

DBRTD has transfer characteristics which make it desirable for use in high

speed switching applications (on the order of 10 12
Hz). [Ref. 6] Of greater

importance from a research standpoint is that it is the building block for

developing a resonant tunneling transistor, in analogy with the conventional

diode structure (a simple p-n junction device) which is the building block for

various types of conventional transistors. The DBRTD is referred to as a

heterostructure device. Semiconductor heterostructures are formed from

dissimilar semiconductors with differing band gaps. At the bottom of Fig. 4 is

shown the conduction band profile that arises as an electron moves vertically

through the sequence of semiconductor layers shown in the top half of the figure.

In the next chapter some of the basic physical principles underlying the operation

of resonant tunneling diodes will be discussed.
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Figure 4 - Structure and conduction band profile of a

typical GaAs / AIGaAs DBRTD. From Ref. [6].
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III. THE DOUBLE BARRIER RESONANT TUNNELING DIODE

A. ELECTRON TRANSPORT IN SEMICONDUCTORS

The electron is classically considered a particle but quantum

mechanically described as a particle and a wave. Electrons, therefore, can

exhibit wavelike characteristics such as diffraction and interference. The

deBroglie wavelength of a free electron at room temperature (300 K) with an

energy of 0.025 eV can be determined using Eq. 1 to be approximately 10 nm.

In semiconductors this

\J2mE

wavelength is even larger because of the electron's relatively small effective

mass. In GaAs, for example, X - 30 nm at room temperature. The electron

wavelength sets a rough distance scale at which a quantum description of a

device becomes necessary. At these size scales, quantum mechanics must be

used to understand how electrons will behave. Using quantum mechanics, a

wave function (¥) is associated with a particle with the interpretation that the

square of the wave function is the probability density of finding the particle at a

location (z). ^(z) is obtained from the solution to Eq. 2 (Schroedinger's Eq.).

-h2

,
&¥

V x¥ + l/
y

i' = ih— (2)
2m dlt

h = Planck's Constant (6.626 x 10"34 J - s) / 2 n

m = electron mass (9.1 x 10"31
kg)

U = potential energy function

n



To understand the transport of electrons in semiconductors it is necessary

to first understand their allowed energy bands which are determined from the

time-independent Schroedinger equation with a periodic potential energy

function appropriate to crystalline solids. Basically, if several atoms of a

semiconductor are brought together to form a crystal, the discrete energy levels

of the atoms broaden to form energy bands in the crystal. Each of the quantum

states of the free atoms gives rise to one energy band in the solid. "The bonding

combinations of states that were occupied by the valence electrons in the atom

become the valence bands of the crystal. The anti-bonding combination of these

states become the conduction bands". [Ref. 6] The form of the wave function in

the periodic potential energy environment of a crystal is specified by the Bloch

theorem (Eq. 3). [Ref. 7]

^„Ar) = u
k
(r)e-

k"
(3)

n = energy band index

k = wave vector

u k(r)
= u k(r+a) = periodic function of the crystal lattice

a = lattice constant of the solid

These wave functions (TJ are found from the solution to the Schroedinger

equation. If the energy levels associated with the energy bands (n) are plotted

with respect to the wave vector (k), the resulting graph represents the energy

band structure, E n(k).

12



Energy band theory only applies for perfectly periodic crystals and strictly

only under zero bias. A practical semiconductor device will, of course, be subject

to different bias states and will consist of compound materials, breaking perfect

periodicity. Instead of seeking rigorous solutions to the Schroedinger equation

for these situations, a more useful but approximate theory is used that accounts

for the potential due to a periodic lattice (as band structure does), the potential

due to an applied bias and the effects of compound materials.

The "effective mass" theory approximates the wave function as the

product of an atomic part and a more slowly varying envelope function, with the

electron mass in the Schroedinger equation replaced by the effective mass (m*),

a material dependent parameter. The resulting form of the effective-mass

Schroedinger equation is given in Eq. 4. [Ref. 6]

h
2 d 2 dW

-—7-3V + [En -qV(z)]V = ih— (4)
2m az at

h = Planck's constant (6.626 x 10"34 J - s) / 2 n

m* = effective mass (GaAs m* = 0.067 x me)

En
= energy at edge of the n

th band

q = 1.6 x 10 19 coulombs

V = electrostatic potential function

¥ = wave function or envelope function

The effective mass theory is an approximation and may not be valid under a

large applied bias or for very a small length scale, e.g., at the level of a few

atoms. The effective mass theory, however, enables us to analyze a variety of

13



compound-semiconductor device structures. In essence this theory replaces the

full energy band structure of the electron, which arises from the rigorous solution

of the Schroedinger equation, with a parameter, m\ describing the effective

inertia of the electron in a given energy band. Effective mass theory treats the

electron in an energy band as if it were a fictitious free particle with an altered

mass, m*. Thus, effective mass theory assumes the energy-wavevector relation

h
2

.

is given by E(k) »—r& . [Ref. 6] This approximation can, therefore, be
2m

expected to be most accurate at the extremum of an energy band; for example,

at the bottom of the conduction band for electrons. Having made the effective-

mass approximation, we can readily analyze heterojunction devices using the

familiar methods of elementary quantum mechanics.

B. RESONANT TUNNELING IN DOUBLE BARRIER HETEROJUNCTIONS

Quantum mechanical tunneling is a process whereby a particle passes (or

"tunnels") from one classically allowed region to another through a classically

forbidden region. Resonant tunneling is an enhanced tunneling process that can

occur when the wavelength of the electron is approximately matched to the

dimensions of the tunnel barriers. To understand nanoelectronics, it is necessary

to first understand how an electron can tunnel through the double barrier

structure (see, for example Fig. 4) since "resonant tunneling provides the basis

for nanoelectronic logic and memory applications". [Ref. 8]

A key feature of heterostructures is that the semiconductor materials have

different band gaps. For an electron in the conduction band, say, these

14



differences in band gaps present large variations in potential energy as electrons

pass through the layers of a heterostructure device. The designer, therefore,

has control over the type and thickness of material used in each layer of a

heterostructure device, thus allowing the design of a specific response within the

limits of the materials and the fabrication process. In order to understand the

operation of heterojunction devices it is necessary to understand how these

layers effect electron transport through the double barrier heterostructure.

The conduction band profile of Figure 4 shows the change in electron

potential energy in the vertical (z) or epitaxial direction. This double barrier,

quantum well structure gives rise to quasibound states in the quantum well

whose energies can be found by solving the time independent Schroedinger

equation for the structure. We first recall that for an infinitely deep quantum well,

the bound energy levels would be given by Eq. 5. [Ref. 6]

(nxhf
E
" = 1^K (5)

h =6.626x10-34 J-s/2tt

m* = effective mass

L^, = quantum well width

For each of these energy levels, there are precisely a half-integer multiple of the

electron wavelength that fit in the width of the quantum well. For the quantum

well in the double barrier structure, however, the electrons are not truly bound as

in the above example. Rather, they will be "quasi-bound", having a large lifetime

in the quantum well, before the electron tunnels out. It is more appropriate, for

15



this statement, using the time independent Schroedinger equation, to solve for

the probability that an electron will be transmitted through the structure. This

transmission probability is given by Eq. 6. [Ref. 9]

T(EZ ) =
A RAE

AL
E

A R
'"E _ -ik(2d+D)

A
L=e

AE

2E -V
cosh(A;J) - i

—
,

z = sinh(fc/)
2jEz(V-Ez )

(6)

^^E^)^^
yl2m(Ez -V)

A R
E
= fraction of electrons at collector

Aj: = fraction of electrons at emitter

Ez = electron energy

V = height of the potential barrier

d = width of barrier

D = width of quantum well

Figure 5 shows the transmission probability vs. energy (Ez)
under zero bias for a

typical GaAs / AIGaAs heterostructure computed from Eq. 6. For most energies,

there is a very small probability of electron transmission. Over a few narrowly

defined ranges of energy, however, there are resonances in the transmission

coefficient. At these resonant tunneling energies, the electron will essentially

pass through the structure unimpeded. The resonance is determined by the

action of constructive interference, where the wavelength of the electron

16



approximately matches the dimension of the quantum well. "Resonant tunneling

is the electron analog of the Fabry-Perot resonator in optics." [Ref. 8]

Transmission probability

Figure 5 - Transmission probability versus energy for a

GaAs / AIGaAs DBRTD under zero bias. From Ref. [9]

In Fig. 5, the transmission probability is shown as a function of electron

energy. These resonances can effectively be used as an energy filter in a device

application to control resonant transmission in the double barrier heterostructure.

It is not practical to appreciably modulate the energy of individual electrons.

Instead the device is biased (across the emitter and collector) to allow electrons

(whose energies are a design criteria) to tunnel through the device. The action of

the bias in essence modulates the energy of the transmission resonance relative

17



to the fixed (Fermi) energy of the electrons in the "leads" to the device. Figure 6

shows the conduction band profile of a typical GaAs / AIGaAs DBRTD under four

bias states ( (a)zero (b)threshold (c)resonance and (d)post resonance ).

barriers

Emitter

contact

:iiXJ

well

Collector

contact „

as

(a) (b)

^ F

N

Efln

N
N

E.

N
(c)

E*

N

.h.

(d) :ec
r

Figure 6 - DBRTD under four bias states, (a) no bias, (b)threshold

bias, (c) resonance, (d) post resonance. From Ref. [9].

Here E^{ E* ) is the Fermi energy level or lowest unoccupied electron energy

level in the emitter (collector). E is the energy level at which resonant tunneling

occurs, and E^{ E* ) is the conduction band minimum of the emitter (collector)

material. Figure 6a shows the conduction band energy for an unbiased double

barrier device. The energy of electrons in the emitter will typically be between

18



E{: and E L

F , which we note are below the resonant tunneling energy, E . Hence

no current flows in this configuration. In Figure 6b, a bias is applied such that

the resonant tunneling energy level now lies just above E'F ; hence, some

electrons may tunnel through the barriers. In Figure 6c, a larger bias is applied

such that the resonant tunneling energy level now lies between E L

C and E'F . At

this level of bias (resonance), a large fraction of the emitter electrons have their

energy aligned with the tunneling resonance; there is now a substantial amount

of tunneling and a maximum amount of current through the device. As the bias is

increased further, the resonant tunneling level falls below the emitter band edge

and the current flow drops precipitously (depicted in Figure 6d).

Just as the operation of the transistor is characterized by its response

under an applied bias, the DBRTD is characterized in a similar way. It is,

therefore, necessary to be able to calculate the current flow through a device in

order to characterize its operation. The current flow (ie, the number of electrons

transmitted through the structure) is determined by the number of electrons

available to tunnel (Eq. 8) as well as the probability for transmission (Eq. 6). The

total current [Ref. 9] is thus given as an integral over all electron energies,

J(V) = \T(E
z
)S{E

z
)dE

2 (7)

where T(E) is given by Eq. 6 and where S(E), the "supply" function, is given by

Eq. 8. [Ref. 9]

19



S(E
Z ) =

m'ek DT

2n l
h
2*3 In

1 + exp
( F L - F

1 + exp

(
' FR -F N

UF ^Z

I kBT )

(8)

m* = effective mass

e = 1.6 x 10 19 coulombs

T = absolute temperature (K)

h =6.626x10-34 J-sec

kB = 1 .381 x 1Cr3
J/K Ez = electron energy

Note that the bias across the device is the difference in Fermi levels between

emitter and collector. Figure 7 shows the current voltage response for a typical

GaAs / AIGaAs DBRTD at 300 K. The graph has a close correspondence with

Figure 6 where the current flow (level of resonant tunneling) can be discerned at

each of the four bias states. In the unbiased as well as threshold biased states

(Fig. 6a and Fig. 6b), there is effectively no current flow through the device. At

resonance (Fig. 6c, 0.2V) there is a peak current flow. Finally, there is

Current-Voltage Response of a DBRTD

<
E
u
5

O

in o m o
CM CM CO

in
CO

o in o
in

o o o o
Voltage (V)

o o O o

Figure 7 - Current versus Voltage for a GaAs / AIGaAs DBRTD.
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dramatically diminished current flow in the post resonance bias state (Fig 6d,

0.3V).

As discussed earlier, the effective mass Schroedinger equation (Eq. 4) is

an approximation used to determine the flow of electrons through the double

barrier heterostructure. When solved it will give the probability that an electron

will be at a specific location. One factor in the equation that is not yet known is

the electrostatic potential. Determination of this single variable is no simple

matter and is the discussion of the subsequent chapter.

21
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IV. MODELING THE DOUBLE BARRIER RESONANT TUNNELING DIODE

A. FINITE TEMPERATURE THOMAS-FERMI THEORY

In order to determine the electrostatic potential in a heterostructure

device, it is necessary to model the density of free electron charge carriers of

each of the layers. One technique which has produced good results is the

Thomas-Fermi theory. In this model the local electron density is taken to be that

of a free electron gas in thermal equilibrium with the local value of the potential

energy at temperature T(K) and under zero bias. In this model the electron

density function is given by [Ref. 10]:

n(z)= N
c
(z)F

]

{fi-eV(z))

kB T
(9)

N
c
(z)= 2

m\z)m
e
k B T

2Kh 2 (10)

FM =
nhv)\\1 + exp(x - rj)\

\dx
(11)

N c
= density of states in the conduction band (Eq. 10)

Fa = Fermi-Dirac integral (Eq. 11)

m* = effective mass me
= electron mass

\i = chemical potential kB
= 1.381 x 10"31

J/K

V(z) = electrostatic potential h = 6.626 x 1
0"34

J - sec / 2n

As mentioned earlier the effective mass is a material dependent parameter and

will be different for each layer of the double barrier heterostructure thus changing
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the density of the free electron gas in each layer. Once the electron density

function is given, the electrostatic potential (V) can be determined using a form of

Poisson's equation given below as Eq. 12 [Ref. 10].

l
£(z)

^dF)
=AN°&- n&] (12)

dz
]

s{z) = dielectric constant

e = 1 .6 x 1
19 coulombs

N D = number density of donors ( -1
18 /cm 3

)

n(z) = density of the free electron gas (Eq. 10)

With the electrostatic potential function known, the transmission coefficient can

be calculated using the time-independent Schroedinger equation, and, finally,

the current flow through the device can be determined as discussed in the

previous chapter.

B. POISSON-SCHROEDINGER THEORY

Another method for determining the potential in a heterostructure device is

the self-consistent or Poisson-Schroedinger method. This method entails solving

two distinct but also interconnected problems. As with the Thomas-Fermi theory,

the electron density function must be determined in order to arrive at the

potential function. In this model, the electron density is determined using Eq. 13

[Ref. 8].

k >0 * <0
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/,(*) = I -^T2*. 2
4;T/*

f E L
F -E(k)

1 + exp
l *.r

( yfc.r 1 .

1 + exp

' E R
F E(k)

kj

(14)

(15)

n(z) = electron density (cm 3

)

k = wave number

T = temperature (K)

h = 6.626 x10"34 J-sec/27i

v[/k
= wave function

kB
= 1.381 x10"31

J/K

m* = effective mass (kg)

EF
= Fermi energy level (eV)

E(k) = electron energy (eV)

Once the electron density is determined, using a given set of wave functions

(v|/K), the electrostatic potential can be determined from the Poisson equation

using Eq. 17 [Ref. 8].

d (
{^

dV
sc {zf

dz\ dz j

-e ND (z)-n(Vsc
(z))] (16)

Vsc = self consistent electrostatic potential (V)

N D = number density of donor atoms ( cm"
3

)

n = number density of electrons ( cm"
3

)

Eq. 13 and Eq. 16 are dependent upon each other and must be solved

recursively using iterative techniques. In addition, the wave functions in Eq. 13

are dependent upon the effective-mass Schroedinger equation (Eq. 4) and must

also be solved recursively. Thus, there are three inter-connected equations

which must be solved simultaneously in order to obtain the electrostatic potential.

Numerical techniques for gaining convergence to a solution will not be
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discussed here but can be found in [Ref. 9]. As with the Thomas-Fermi theory,

the electrostatic potential can now be used to determine the transmission

coefficient using the Schroedinger equation and finally the current flow through

the device.

The self-consistent method is computationally intensive and considerably

more complex to employ than the Thomas-Fermi method. It is, however, the

more accurate of the two and should be considered a baseline from which to

evaluate the Thomas-Fermi method. Also, it is important to understand the limits

of the Thomas-Fermi theory in modeling double barrier heterestructures.

C. COMPARISON OF THOMAS-FERMI AND POISSON-SCHROEDINGER

THEORIES.

In order to compare the two solution methods, simulations were run using

a nanoelectronic modeling program currently under development by Texas

Instruments Incorporated and made available to the Naval Postgraduate School.

Both simulations were run using the same structure at 300 K and an x-mole

fraction in the AIGaAs of 0.4. Table 1 below shows a summary of the device

structure. One simulation was run using the Thomas-Fermi method to model the

potential profile in a 1-D double barrier heterojunction, while the second

simulation was run using the Poisson-Schroedinger method.
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Layer Material Thickness(nm) doping (cm-3)

1 GaAs 3.00298 1x1018

2 GaAs 2.01143 2x1015

3 AIGaAs 0.45328 2x1015

4 GaAs 0.62326 2x1015

5 AIGaAs 0.45328 2x1015

6 GaAs 2.01143 2x1015

7 GaAs 3.00298 1x1018

Table 1 - Device structure used for simulations.

Figure 8 shows the electron density as a function of position in the device

under four bias states. The peak bias state refers to the peak current or
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Figure 8 - Electron Density versus Location for the Thomas-Fermi and

Poisson-Schroedinger Models.

27



resonance state. The valley bias state refers to the valley current or lowest

current in the device at post resonance bias states. Each graph has a plot

derived from the Thomas-Fermi model as well as from the Poisson-Schroedinger

model. The two models have such similar results that it appears there is only one

plot in all but a few places.
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Figure 9 - Potential Energy versus Location for the Thomas-Fermi and

Poisson-Schroedinger Models.

Figure 9 shows the total potential as a function of position in the device

under four bias states. The bias states are similar to those seen in Figure 8

where the peak bias state refers to resonance and the valley bias refers to the
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lowest current at post resonance states. At all four bias states the plots are very

similar with a slight divergence in the collector at higher bias states.

Figure 10 is a comparison of the current-voltage characteristics of the two

potential models computed using Eq. 7. The current-voltage characteristics of a

device are, effectively, what the designer sets out to achieve when designing a

device. The two plots are now discernible from each other but still very similar.

Current-Voltage Response (TF vs PS I no scattering)

1200

0.05 0.1 0.15 C.2 0.25 0.3 0.35 0.4 0.45

Voltage (V)

Figure 10 - Current versus Voltage Response for the Thomas-
Fermi and Poisson-Schroedinger Models.

Under the conditions used for this comparison, the Thomas-Fermi theory

provides a sufficiently robust theoretical basis upon which to determine the

response of a device.
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V. CONCLUSION

The continued downsizing of digital technology will require break

throughs in device modeling, design and fabrication. Nanoelectronics and the

use of the phenomenon of quantum mechanical resonant tunneling provides one

possible alternative. Modeling the DBRTD is only the first step in developing this

technology. Future efforts will need to validate nanoelectronics models by

fabricating devices similar to those modeled (or vice versa). If successful, this

effort can be expanded to model other device structures which can then be

incorporated in the design of future generation microprocessors. Though still in

its early stages, nanoelectronics and its use of quantum mechanical resonant

tunneling may be the source of tomorrow's microprocessor technology.
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