
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1998-03

Real-time modeling of cross-body flow for torpedo

tube recovery of the Phoenix Autonomous

Underwater Vehicle (AUV)

Byrne, Kevin Michael

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/8888

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

Naval Postgraduate School
Monterey, California

Thesis

Real-Time Modeling of Cross -Body Flow
for Torpedo Tube Recovery of the

Phoenix Autonomous Underwater Vehicle (AUV)

by

Kevin Michael Byrne

March 1998

Thesis Advisor:

Second Reader:

Don Brutzman

Robert B. McGhee

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden lor this collection of information is estimated to average 1 hour per response, including the time lor reviewing instruction, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Proiect (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

March 1998

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

REAL-TIME MODELING OF CROSS-BODY FLOW FOR TORPEDO
TUBE RECOVERY OF THE PHOENIX AUTONOMOUS
UNDERWATER VEHICLE (AUV)

6. AUTHOR(S)

Kevin Michael Byrne

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
A virtual world provides an exceptional resource for the testing and development of an Autonomous

Underwater Vehicle (AUV). The difficulties associated with the underwater environment are numerous and complex.

In order to properly verify vehicle results in the laboratory such a world must accurately model the physics associated

with the vehicle, its submerged hydrodynamics characteristics, and interactions with the environment. Environmental

effects such as wave motion, currents, and flow forces created by bodies moving through the water can cause

unpredicted performance variations and failures in the ocean environment. The current Phoenix AUV virtual world

includes steady-state ocean currents, but does not take into account the environmental effects of waves and flow forces

induced by adjacent vehicles (such as a moving submarine docking target).

This work provides a thorough real-time simulation of these complex factors using physically based models.

The problem is broken down into wave motion effects, submarine-induced flow fields, and virtual sensors to improve

AUV motion control. Simulated testing is performed across a range of easy to worst-case scenarios in order to justify

assumptions. Extensive testing using virtual sensors is used to develop adequate control algorithms in the presence of

turbulent cross-body flow.

The result of this research is an enhanced virtual world which more accurately depicts the ocean environment,

along with the models and control algorithms required to design and operate an AUV (continued next page)

14. SUBJECT TERMS

Virtual environment, simulation-based design, cross-body flow, autonomous underwater

vehicle (AUV), platform-independent simulation.

15. NUMBER OF PAGES

228

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard From 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

298-102

-1-

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

13. ABSTRACT (Continued)

during submarine launch and recovery. A platform independent approach to virtual environment simulation is

presented through the use of the Virtual Reality Modeling Language (VRML) and Java. Finally, simulation test results

provide strong evidence that AUV control with actual cross-body flow sensors can enable stable navigation, first

through a turbulent flow field and then for subsequent docking with a moving submarine.

Standard Form 298, (Reverse) SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

-11-

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATF SCH<
MONTEREY, CA 93943

Approved for public release; distribution is unlimited

REAL-TIME MODELING OF CROSS-BODY FLOW
FOR TORPEDO TUBE RECOVERY OF THE

PHOENIX AUTONOMOUS UNDERWATER VEHICLE (AUV)

Kevin Michael 3yrne

Lieutenant, United States Navy

B.S., State University of New York Maritime College, 1991

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science

from the

Naval Postgraduate School
March 1998

ABSTRACT

A virtual world provides an exceptional resource for the testing and development of an

Autonomous Underwater Vehicle (AUV). The difficulties associated with the underwater

environment are numerous and complex. In order to properly verify vehicle results in the laboratory

such a world must accurately model the physics associated with the vehicle, its submerged

hydrodynamics characteristics, and interactions with the environment. Environmental effects such as

wave motion, currents, and flow forces created by bodies moving through the water can cause

unpredicted performance variations and failures in the ocean environment. The current Phoenix AUV

virtual world includes steady-state ocean currents, but does not take into account the environmental

effects of waves and flow forces induced by adjacent vehicles (such as a moving submarine docking

target).

This work provides a thorough real-time simulation of these complex factors using physically

based models. The problem is broken down into wave motion effects, submarine-induced flow fields,

and virtual sensors to improve AUV motion control. Each set of forces are thoroughly analyzed and

realistically simulated in real-time through the algorithms developed. In order to maintain real-time

response, perturbations in the flow field caused by the AUV itself are assumed to be negligible.

Simulated testing is performed across a range of easy to worst-case scenarios in order to justify

assumptions. Extensive testing using virtual sensors is used to develop adequate control algorithms in

the presence of turbulent cross-body flow.

The result of this research is an enhanced virtual world which more accurately depicts the

ocean environment, along with the models and control algorithms required to design and operate an

AUV during submarine launch and recovery. A platform independent approach to virtual environment

simulation is presented through the use of the Virtual Reality Modeling Language (VRML) and Java.

Finally, simulation test results provide strong evidence that AUV control with actual cross-body flow

sensors can enable stable navigation, first through a turbulent flow field and then for subsequent

docking with a moving submarine.

-v-

-VI-

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. MOTIVATION 2

1

.

Mine Warfare 2

2. Platform Independence 3

C. OBJECTIVES 3

D. THESIS OUTLINE 4

n. RELATED WORK 7

A. INTRODUCTION 7

B. PHOENIX AUV 7

1

.

Hardware Architecture 7

2. Software Architecture 10

C. PHOENIX AUV VIRTUAL ENVIRONMENT 11

D. DISTRIBUTED ANALOG/DIGITAL CONTROL DEVELOPMENT 15

E. VIRTUAL REALITY MODELING LANGUAGE 16

F. JAVA 19

G. DISTRIBUTED INTERACTIVE SIMULATION (DIS) PROTOCOL 20

H. DIS-JAVA-VRML 21

I. COMPUTATIONAL FLUID DYNAMICS 23

J. SUMMARY 24

m. PROBLEM STATEMENT 25

IV. HYDRODYNAMICS MODELING 27

A. INTRODUCTION 27

B. OVERVIEW 27

C. BUOYANCY MODEL 29

D. WAVE MOTION SIMULATION 34

E. COMPLEX FLOW-FIELD SIMULATION 39

1. Flat-Plate Fluid-Flow Theory 47

2. Tube-Level Fluid Flow 50

F. EQUATIONS OF MOTION (EOM) 53

1

.

Round Hull Derivation 54

2. Square Hull Derivation 56

G. SUMMARY 58

V. IMPLEMENTATION 59

A. INTRODUCTION 59

B. C++ AND OPEN INVENTOR 59

C. JAVA AND VIRTUAL REALITY MODELING LANGUAGE 64

-vii-

D. SUMMARY 66

VI. EXECUTION LEVEL AND VIRTUAL DOPPLER SONAR 67

A. INTRODUCTION 67

B. TRITECH DS30 PRECISION DOPPLER SONAR 67

C. SONTEK ACOUSTIC DOPPLER VELOCIMETER (ADV) 70

D. VIRTUAL SIMULATION OF DOPPLER SONAR 72

E. ENHANCED CONTROL LAWS 73

F. SUMMARY 74

Vn. SIMULATION RESULTS 77

A. INTRODUCTION 77

B. DESIGN OF EXPERIMENTS 77

C. RESULTS 79

D. SUMMARY 82

Vm. CONCLUSIONS AND RECOMMENDATIONS 85

A. CONTEXT 85

B. RESEARCH CONTRIBUTIONS AND CONCLUSIONS 85

C. RECOMMENDATIONS FOR FUTURE WORK 86

APPENDIX A. VIRTUAL ENVIRONMENT C++ CODE 89

1. UUVBody.C Excerpt 89

APPENDIX B. VIRTUAL ENVIRONMENT JAVA/VRML CODE 127

1. Java Source Code 127

2. AUVvirtual.wri 128

3. Oil_rig.wri 132

4. 688.wri 137

5. Phoenix_auv.wri 155

APPENDIX C. EXPERIMENTAL SCRIPTS AND RESULT DATA 165

1. Mission.script.SeaStateTest 165

2. Mission.script.FlowFieldTestLoop 166

3. SEA STATE 1 SIMULATION DATA 168

4. SEA STATE 2 SIMULATION DATA 170

5. SEA STATE 3 SIMULATION DATA 172

6. SEA STATE 4 SIMULATION DATA 174

7. SEA STATE 5 SIMULATION DATA 176

8. X VERSUS Y FOR NO-FLOW SIMULATION 177

9. X VERSUS Y FOR NORMAL FLOW SIMULATION 178

10. X VERSUS Y FOR EXTREME FLOW RUN 179

-vm-

APPENDIX D. FLOW GENERATION CODE 181

APPENDIX E. SIMULATION VIDEO 201

1. INTRODUCTION 201

2. SURFACE BUOYANCY AND WAVE MOTION 201

3. PUMP OUTLETS/INLETS 201

4. COMPLETE MISSION 201

5. INVOCATION INSTRUCTIONS 201

LIST OF REFERENCES 203

INITIAL DISTRIBUTION LIST 207

-IX-

-X-

LIST OF FIGURES

Figure 1.1 The Phoenix AUV deployed for in-water testing (Brutzman, 1998) 2

Figure 2.

1

Internal View of the Phoenix AUVs component layout (Marco, 1996) 8

Figure 2.2 External View of the Phoenix AUVs component layout (Marco, 1996) 9

Figure 2.3 The Rational Behavior Model Architecture Pyramid (Brutzman, 1998) 10

Figure 2.4 The Phoenix AUV virtual world 12

Figure 2.5 Phoenix AUV in the virtual environment demonstrating use of thrusters and main

motors 14

Figure 2.6 Phoenix AUV using sonar to detect and classify a torpedo tube (Davis, 1996) 15

Figure 2.7 VRML source code hello_world.wri taken from (brutzman, 1998a) 17

Figure 2.8 OutputofHello_world.wri 18

Figure 2.9 Network connectivity of a DIS simulation 21

Figure 2.10 Dis-Java-VRML interaction layout 22

Figure 4. 1. Flow of information within hydrodynamic model of the Phoenix AUV virtual

environment 29

Figure 4.2 AUV broken into buoyancy model slices 30

Figure 4.3 Effect of submerged body exiting the water on center of buoyancy (Bacon, 1996) 3

1

Figure 4.4 Phoenix AUV size (center of image) versus 688 class submarine 41

Figure 4.5 Side view of 688 class submarine surrounded by its field of influence 42

Figure 4.6 Front view of 688 class submarine surrounded by its field of influence 43

Figure 4.7 AUV docking with outward opening torpedo tube door 44

Figure 4.8 Grid level inside submarine flow field 45

Figure 4.9 Phoenix AUV against the hull of a 688 class submarine : 48

Figure 4.10 Flat plate flow profile (generated by flow generation code) versus distance from the

hull of a 688 class submarine at 5 locations along the hull 49

Figure 4.1

1

Flow interaction as it approaches an open torpedo tube door 51

Figure 4.12 Flow movement after the torpedo tube door 52

Figure 4.13 Flow force incident upon around body 54

-xi-

Figure 4. 14 Flow force incident upon a non-spherical rigid body 56

Figure 5.1 Pseudocode for wave motion effect algorithm 60

Figure 5.2 Pseudocode for flow field algorithm 61

Figure 5.3 geometry of calculating AUV an sections X position relative to the center

oftheAUV 62.

Figure 5.4 Platform-independent architecture for Phoenix AUV virtual environment 65

Figure 6.1. Tritech DS30 precision doppler sonar specification from (MECCO, 1997) 68

Figure 6.2 Picture of Tritech DS30 mounted on Phoenix 69

Figure 6.3 SonTek Acoustic doppler velocimeter specification from (Sontek, 1997) 70

Figure 6.4 Picture of SonTek Acoustic Doppler Velocimeter 71

Figure 6.5 New thruster control law for the AUV stern lateral thruster 74

-Xll-

LIST OF TABLES

Table 2.1 Design goals of the Java programming language, contrasted with thesis goals 19

Table 4. 1

.

Overview of assumptions made to implement wave motion and flow models 28

Table 4.2 Characteristics of a fully risen sea. Excerpts taken from (Bearteaux, 1976) 38

Table 7.

1

Variation of conditions for experimental cross-body flow (CBF) missions 78

Table 7.2 Experimental results for AUV stability in various sea states 79

Table 7.3. Cross-body flow (CBF) experimental results of AUV collision with submarine hull. .80

Table 7.4 AUV distance from track under various cross-body flow experiment conditions 81

-Xlll-

-XIV-

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ADV Acoustic Doppler Velocimeter

API Application Programming Interface

AUV Autonomous Underwater Vehicle

CBF Cross-body Flow

CFD Computational Fluid Dynamics

DIS Distributed Interactive Simulation

EOM Equations of Motion

ESPDU Entity State Protocol Data Unit

GPS Global Positioning System

NPS Naval Postgraduate School

OOD Officer Of the Deck

PC Personal Computer

PDU Protocol Data Unit

PLD Programmable Logic Device

P-M Pierson-Moskowitz [wave spectrum]

RBM Rational Behavior Model

SBD Simulation-Based Design

VRML Virtual Reality Modeling Language

kt Knot(s)

yd Yard(s)

A Amplitude

S(co) Spectral Density Function

g Acceleration of Gravity

Hs Significant Wave Height

lbs Pounds

KHz Kilohertz

MHz Megahertz

-xv-

/ Time

go Frequency

-xvi-

ACKNOWLEDGMENTS

First of all, I would like to acknowledge the unfailing love, devotion, and unconditional

support which I have received throughout this experience from my wife, Jennifer. She has given up so

much and expected little in return.

Secondly, I wish to extend my deepest gratitude to Dr. Don Brutzman whose support,

guidance, knowledge, and enthusiasm have been a constant inspiration to me. His patience and

positive attitude were invaluable to this research. I would also like to thank my second reader, Dr.

Robert B. McGhee, for his support and careful review of this work. Thirdly, I am very grateful for the

support I received from the AUV Research Group throughout the past year. Dr. Anthony Healy, Dr.

Dave Marco, LCDR Jeff Reidel and CDR Mike Holden all provided advice and guidance during this

entire project.

Finally, I would like to thank Caroline DelTheil and Didier Leandri for bringing this project to

light.

-xvii-

I. INTRODUCTION

A. BACKGROUND

The end of the cold war has shifted the international balance of military strength. Today's

United States Navy is undergoing a major reorganization. Our naval mission has moved from an

open-water strategy to littoral warfare. A paradigm shift of such proportions brings with it the need

for new strategies, technologies, and insights. Meanwhile public pressure demands reduced military

funding and resources. These factors are creating challenging situations as a smaller military attempts

to meet broader range of missions with fewer resources. Highly capable, low-cost underwater robots

provide promising new capabilities which might be used to enhance military readiness while relieving

the stress associated with broader mission goals.

While robots are not a valid solution for every problem domain, mine warfare is a mission

area that is extremely pertinent. Mine warfare is a naval tactic that can be easily used by any potential

enemy. It is a low-cost, low-risk measure which is very effective and hard to oppose.

The Naval Postgraduate School (NPS) Autonomous Underwater Vehicle (AUV) Research

Group is actively working to provide a solution to this defense problem. The Phoenix AUV is a low-

cost robot designed for mine detection. One of the research group's goal is to demonstrate that

autonomous underwater robots are a solution which can provide underway units the ability to search

areas for mines and obstacles from a safe distance. Figure 1.1 shows the Phoenix AUV deployed

during in-water testing.

In addition to in-water robot testing, the NPS has a fully operational virtual environment

which is used for simulation-based design (SBD). This provides a low-cost development environment

for many possible robot technologies, reducing both project cost and time to deliver operational

devices. The virtual environment gives researchers the ability to thoroughly test future devices in

diverse operating conditions.

-1-

Figure 1.1. The Phoenix AUV deployed for in

water testing (Brutzman, 1998).

B. MOTIVATION

Virtual environments provide a realistic arena for the testing and development of future

vehicle technologies. It is necessary to ensure that simulations are physically based and accurate in

order to support proper testing and development. This type of simulation-based design (SBD) can be

used to develop the tools that the military will need to transition to the next century. This thesis

presents solutions to previously unsolved underwater robot challenges, new capabilities in mine

warfare and advancements in SBD techniques.

1. Mine Warfare

The NPS AUV research group has been striving with great success to provide a low-cost robot

solution to mine detection and classification since 1986. The next logical step is to provide a sound

method for the forward deployment and retrieval of AUV technology. Demonstrating that an AUV

can be released and recovered underway "closes the loop" for AUVs by providing fully deployable

technological solutions.

-2-

Submerged vehicle launch has a relatively easy solution. Submarines have been launching

various objects through torpedo tubes since World War I. While some modifications to existing tube

hardware may be required, a clear path to the launching solution exists. The most difficult problem

for submarine deployment is recovery. Recovery is essential for mission data analysis and AUV re-

use. This work provides an important missing link: autonomous vehicle control through turbulent

water flow while docking. This new capability provides submarines the potential to effectively engage

in counter mine warfare through deployment of recoverable AUVs.

2. Platform Independence

A second motivation for this research is commonly referred to (in the computer science

domain) as platform independence. In the context of the problem at hand it is taken to mean providing

the ability to simulate complex virtual environments on whatever computer resources are available,

regardless of make, architecture, or operating system. As computational power has increased in the

recent past, complex simulations are no longer limited to users with high-end graphics workstations.

Personal computers have the capacity to manage applications that were previously unavailable.

The vision this work has pursued is one in which anyone anywhere with network connectivity

can view and actively participate in complex simulation exercises. We are attempting to build a closer

link between those involved in design and testing and the end user of technology. While the platform-

independence issue is not directly related to solving torpedo tube docking of an AUV, its importance

cannot be underestimated. It drives home the point that simulation for spatial awareness can be used

anywhere.

C. OBJECTIVES

The objective of this research is to design a method of simulating AUV control in a true ocean

environment in order to accurately test and develop algorithms for moving torpedo tube recovery. To

achieve this goal there are several sub-problems to address:

Wave motion must be accurately simulated for numerous sea states. This is significant

due to the unpredictability of the ocean environment. For a prototype AUV to be fully

tested, all possible sea conditions must be available.

Foreign-body-induced flow forces must be depicted as realistically as currently

-3-

possible. These types of forces pose the most difficult problems to the development of

control algorithms for several reasons. First, they are extremely dynamic. The state of

flow forces are continuously changing and influenced by many independent factors,

many of which are not yet completely understood. Second, they occur in the regions

where robot control is most crucial, i.e. the areas where a control failure could cause

devastating damage to both the robot and recovery vehicle.

Extensibility needs to be considered when modeling flow fields. While a significant

amount is known about the nature and behavior of complex fluid flow, there is still

much to be discovered. By creating a methodology which allows for the upgrade of

simulation flow field data as the science of fluid dynamics advances, the accuracy and

lifetime of the virtual world is enhanced.

Refinement of the equations of motion is also necessary. The ability to model a

vehicles behavior based on its size and shape as forces act upon it becomes another

concern when trying to ensure the behavioral accuracy of such an environment. In

previous versions of the Phoenix AUV's Virtual World the equations of motion were

based solely on a cylindrical body shape.

The source code for the Phoenix AUV Virtual World is distributed openly.

Unfortunately, due to the computational complexity of such a model its use has

previously been feasible for only those users with high-end Silicon Graphics

workstations. With the capabilities of personal computers rapidly increasing and the

introduction of platform-independent languages (such as Virtual Reality Modeling

Language (VRML) and Java) it has become possible to move this simulation into the

platform-independent domain. To this end a platform-independent implementation is

also provided.

D. THESIS OUTLINE

This chapter describes the background, motivation, and objectives of creating a virtual world

which accurately models the ocean environment. Chapter U discusses the background of the

Autonomous Underwater Vehicle (AUV) at the Naval Postgraduate School (NPS) including its

purpose, history and related research projects. Chapter HJ evaluates the goals of this work providing a

clear and concise problem statement. Chapter IV provides in-depth discussion of design

considerations and hydrodynamics modeling related to the simulation. Chapter V addresses changes

required to the AUV execution level, both hardware and software, needed to equip the vehicle so it

can successfully operate in such an environment. Chapter VI and Chapter VII describe the simulation

-4-

results found in this research, including run-time performance, simulation limitations and robot

control/sensor upgrades. Chapter VEQ presents conclusions, research contributions and

recommendations for future work.

-5-

-6-

II. RELATED WORK

A. INTRODUCTION

The technology involved in virtual environment development and robot simulation

encompasses many disciplines. While these two tasks seem to be well suited for one another, the

fields of study that produce the theories employed by each are vastly different. This chapter looks at

the important areas evaluated for use in this research. The topics range from cutting-edge computer

graphics to mechanical engineering practices that have been around for many decades. Nevertheless,

all of these techniques are needed to create the solution to this difficult problem.

Specific related-work topics examined in this chapter include Phoenix AUV hardware and

software, underwater virtual world modeling, distributed control, the Virtual Reality Modeling

Language (VRML), the Java programming language, the Distributed Interactive Simulation (DIS)

protocol, the DIS-Java-VRML project, and Computational Fluid Dynamics (CFD).

B. PHOENIX AUV

An Autonomous Underwater Vehicle (AUV) is a self-contained underwater robot typically

combining a multitude of sensors and controllers. The Phoenix AUV is an incarnation of this type of

robot developed to demonstrate the abilities of a low-cost autonomous platform. The Phoenix

architecture can be broken down into two major categories: hardware and software.

1. Hardware Architecture

The Naval Postgraduate School's (NPS) Phoenix AUV is a complex robot, comprised of a

single water-tight compartment which contains various motors, controllers, servo-amplifiers, and

computers. The internal component layout is shown in Figure 2.1 . Figure 2.2 shows the an external

view of the hardware layout.

The main processing power inside the Phoenix comes from two computers. A Gespac M68030

is used to run the execution level software while a Sun Voyager Sparc 5 Workstation runs the tactical

and strategic level software (Brutzman, 1998). The specifics of each software level will be discussed

in the following section. The Gespac computer runs the OS-9 operating system allowing for use of

real-time multitasking functions when controlling the vehicle devices (Byrnes, 1993). The Sun

Voyager 5 runs SunOS 5.4. These computers are networked together via an Ethernet inside the

vehicle. This allows for the machines to easily communicate. It also has advantages in terms of

remote monitoring. The Ethernet optionally provides Internet connectivity to the boat through a

tether. The tether can be used to monitor each process, collect data, or to intervene when an

operational fault occurs.

ST72S SONAR

DEPTH CELL
TRANSDUCER

BOW LEAK
DETECTOR-

BOW LATERAL
THRUSTER-

VERTICAL
GYRO

BOW VERTICAL
THRUSTER

COMPUTER POWER
SUPPLY (2)

MOTOR SERVO
CONTROLLERi

SUN VOYAGER
COMPUTER

STERN VERTICAL
THRUSTER-

FREE GYRO
POWER SUPPL

STERN LATERAL
THRL'STE

PSASQO
UNIT

CONTROL FINS (8)

O C3-*~

ST10OO SONAR

PSA 900 SONAR
TRANSDUCER

TURBO PROBE

FIN SERVO (8)

3 AXIS RATE GYRO

12 VOLT BATTERY {2)

FOR COMPUTER

GESPAC CARD CAGE

DIVE TRACKER

12 VOLT BATTERY C)

FOR GYROS/MOTORS

FREE GYRO

GPS UNIT

REAR LEAK DETECTOR

REARSCREW MOTOR (2)

REAR SCREW (2)

Figure 2. 1 . Internal view of the Phoenix AUVs component layout

(Marco, 1996). -8-

Other interesting pieces of gear include two high-resolution sonar units, a Global Positioning

System, and an inertial navigation package. The sonar units provide excellent detect and classification

abilities. They have 1 cm resolution out to a maximum range of 30 meters. Additionally, the ST725

(725 KHz) has a 1
° wide by 24° vertical beam, and the ST 1000 (1 MHz) a conical beam of 1

°

(Brutzman et al, 1998). All of these devices are used to provide a fully autonomous robot with

significant operational and navigational capabilities.

POWER PLUG

DRAIN
PLUG

GPS ANTENNA

ST72S SONAR

SIDE VIEW

ST1000 SON AE

TURBO PROBE

differential
gfs a mens a

REAR SCREWS * THRUSTER »— ACCESS HATCH

TOP VIEW

THIN WIRE
ETHERNET PORT

Figure 2.2. External view of the Phoenix AUVs component layout (Marco, 1996).

-9-

2. Software Architecture

The software architecture of the Phoenix AUV is a tri-level design called the Rational

Behavior Model (RBM). The RBM architecture consists of three separate software layers, each layer

having its own functional requirements, implementation restrictions, and component interfaces

(Byrnes, 1993)(Byrnes, 1996)(Marco, Healey, McGhee, 1996). RBM divides robot control into

functional blocks which mimic those of a submarine operational structure. Thus the use ofRBM in

the NPS vehicle is well suited to the thinking patterns of students involved in the project.

The RBM divides responsibilities into areas of open-ended strategic planning, soft real-time

tactical concern, and hard real-time execution level tasks. Figure 2.3 shows the relationship between

strategic, tactical and execution levels in the RBM.

Level

Emphasis Manned
Submarine

Strategic

Tactical

Execution

Masion

Logic

Vehicle

Behaviors

Hardware

Control

Commanding

Officer

Officer of the

Deck/Watch

Officers

Watchstanders

Figure 2.3. The Rational Behavior Model Architecture Pyramid (Holden, 1995)

The execution level provides the interface between software and hardware. It is designed to

meet all of the systems hard real-time requirements. The execution level is responsible for the

10-

underlying stability of the vehicle, the control of individual devices, and providing data to the tactical

level (Byrnes, 1993)(Byrnes, 1996). In terms of an underway watch team organization, the execution

level performs the tasks normally assigned to individual watchstanders.

The level of command above the watchstanders in the underway watch team is the Officer Of

the Deck (OOD). The OOD's responsibilities are concerned with the tactical picture: what individual

tasks need to be completed to reach a goal. In the RBM this functionality is contained in the tactical

level. The tactical level does not operate on hard real-time deadlines, rather it operates in terms of

discrete events (Byrnes, 1993)(Byrnes, 1996). It provides a software level that interfaces with both the

execution and the strategic levels, thus giving strategic level indication of vehicle state and completed

tasks, and execution level commands.

The highest level of the RBM is the strategic level. This portion corresponds to the role of a

commanding officer. It is not concerned with the specifics of task completion. Instead the issues that

the strategic level monitors are the completion of mission goals. Inside the strategic level resides the

mission specification. Through symbolic computing it uses a set of rules coupled with an inference

engine to direct (and respond to) the tactical level (Byrnes, 1993)((Bymes, 1996).

The RBM is a complex architecture, but it greatly simplifies AUV design and operation

through appropriate levels of abstraction. By setting clear boundaries between areas of responsibility,

RBM enables robot control to be defined by separate applications with predefined interfaces. RBM

also allows naval students, who are intimately familiar with an at-sea watch structure, to apply real-

world experience to complicated control problems. Using an architecture designed for both robot and

human requirements has been a crucial advantage.

C. PHOENIX AUV VIRTUAL ENVIRONMENT

Development of an AUV poses a number of unique problems. Chief among those problems is

the fact that during the actual in-water testing of robot hardware and software, it is often impossible to

observe or communicate with the vehicle. Analysis is typically limited to post-exercise data review

alone. This situation confronts designers with a difficult development process. Physical remoteness

and inability to observe effectively takes away one of the human mind's greatest strengths: the ability

to visualize. To overcome this problem, a virtual world was developed which models salient

-11-

characteristics of the ocean environment from the robot's perspective (Brutzman, 1994). This

effectively puts humans back into middle of the testing and development loop, and allows developers

to visualize robot behavior under diverse conditions.

The virtual environment provides an area of underwater terrain in which testing and

development can be observed. Figure 2.4 is a recent view of the underwater world showing all of the

major objects that are contained, including Phoenix at the surface just right of center. The

implementation of the Phoenix AUVs virtual world is broken into three major sections. One portion

represents the physical side of the operating environment, a second is robot software (and optionally

hardware), and a third provides an interactive3D graphics window into the virtual environment.

Figure 2.4 - The Phoenix AUV Virtual World.

•12-

The most complex of the modules which comprise the virtual environment is the one which

models the vehicle hydrodynamics. Inside this program all aspects of vehicle motion are considered.

Using a Newton-Euler approach to the derivation of the six degree-of-freedom equations of motion

(Brutzman, 1994)(Healey, 1992), the program provides a very accurate rendition of the environment.

The dynamics program takes input from the vehicle, describing the state of all of its devices, and

calculates in complete detail the responses the vehicle is expected to receive from the environment.

Other physical models includereal-time sonar detection, Global Positioning System (GPS), and

acoustic navigation.

Another component of the virtual environment is the AUV software. This code performs the

task of controlling all of the devices associated with the AUV, including propellers, thrusters, sonars,

inertial navigation systems and any other hardware installed on Phoenix. This execution level control

is coupled with the more sophisticated robot intelligence provided by the strategic and tactical levels.

Communication is conducted through all levels of the RBM architecture to determine how to deploy

each one of these devices. After determining the state of each sensor and effector, the execution level

sends out the commands placing them in the appropriate state. Since in the virtual simulation the

devices are typically not physically present, they are positioned via telemetry vector message

interchange with the dynamics program. The effects of all the devices are determined by the dynamics

program models, and then proper responses are sent back to the execution level software. This query-

response interchange is incorporated into the sense and act phases of the execution level's sense-

decide-act cycle. This design architecture enables the robot to run and respond to various stimuli in

the same manner in the virtual world as in the real world, since the robot software in each case is

identical (Burns, 1996).

The final portion of the virtual environment gives the user an interactive 3D graphics window

into the environment. Referred to as the viewer, this program allows observation of all aspects of the

simulation. Virtual representations are provided to indicate the robots employment of each sensor and

effector. This visualization has repeatedly been shown to be essential to the development process.

Figure 2.5 shows the animations associated with the robots use of thrusters and propellers.

-13-

Figure 2.5. Phoenix AUV in the virtual environment

demonstrating use of thrusters and main motors.

This type of visual representation also gives some intuition into how the AUV employs its

sonar assets. Sonar visualization was used to implement and refine a control algorithm which enables

the Phoenix AUV to detect and classify objects in the water (Davis, 1996). In the case of a detected

tube like object the algorithm was further enhanced to allow the vehicle to safely begin entering the

tube. Figure 2.6 is a screen capture of this type of mission being executed in the virtual environment.

All of these components are networked together to provide an integrated development

environment. Multiple simultaneous viewers are enabled via use of the Distributed Interactive

Simulation (DIS) protocol (IEEE, 1993)(IEEE, 1994a)(IEEE, 1994b). The position, orientation and

state of the vehicle are multicast across the network via Entity State Protocol Data Units (ESPDU).

The viewer application listens to the network for these packets, extracts the information from them,

and incorporates it into the scene rendered in the virtual world. Decoupling graphics viewers from

robot software and virtual world models provides a scalable approach that permits multiple

researchers to evaluate robot mission progress.

The versatility of the virtual world was further demonstrated by its use for prototype modeling

of an optical sensor, used for AUV guidance and control without sonar, while docking with a

stationary torpedo tube (DelTheil, 1997).

•14-

Figure 2.6. Phoenix AUV Using Sonar to detect and Classify a Torpedo

Tube (Davis, 1996).

A virtual environment provides an outstanding arena for robot testing and

development. It affords system engineers the opportunity to observe equipment operation in a safe

controlled environment. This type of technological advance is a large step forward for the underwater

robot community.

D. DISTRIBUTED ANALOG/DIGITAL CONTROL DEVELOPMENT

Computing power has been increasing at an amazing rate. The average lifetime for new

technology in the computer industry is only nine months, with processing power increasing by an

order of magnitude every two years. One area in which similar advances are being made is

networking. These advances have come in transfer rate increases and reliability improvements. This

allows system designers to leverage the network (and all the resources attached to it) as additional

assets.

The network provides an unlimited number of additional resources to any computing system.

Similar advances are also being made in control technology for data acquisition systems. Smart

controllers present the opportunity to create autonomous device controls which can monitor device

-15-

operation, output necessary data readings, and react properly when provided operational commands

from remote stations. One company leading the way in this field is Echelon. They have developed a

series of programmable devices which all communicate over a network using a proprietary network

protocol called LonTalk (Young, 1998).

Use of small specialized processors can give any system significant performance

improvements. By offloading portions of specialized control code a central monitor application

becomes more concise, allowing it to execute more quickly and efficiently. It also adds to system

robustness. No longer will a single fault halt operation. Other devices not affected by a single control

board failure will continue to operate normally, leaving the monitoring application to adjust for a

single device failure.

Distributed control is the direction in which many data acquisition systems are moving.

Systems as diverse as elevator control systems and high-voltage air conditioning systems all gain

from distributed control. This technology can also give the Phoenix AUV execution level a welcome

upgrade (Young, 1998).

E. VIRTUAL REALITY MODELING LANGUAGE (VRML)

As the Internet continues to expand and gain in popularity, many new technologies are being

developed to utilize this medium. In the past, browsing web pages has been restricted to two

dimensions. The Virtual Reality Modeling Language (VRML) brings three-space to the Web.

VRML is an interpreted language that allows developers to create content-rich three-

dimensional (3D) worlds which can be viewed across the Internet inside a web browser. At its core

VRML is a specification for describing 3D worlds through a text-based file format (Ames,

1997)(VRML, 1997).

16-

#VRML V2 . utf8

Group {

Children
Viewpoint {

description Initial view
position 6-10
orientation 1 1.57

}

Shape {

geometry Sphere { radius 1 }

appearance Appearance {

texture ImageTexture {

url earth- topo .png
} } >

Transform {

translation -2 1.25
rotation 10 1.57
Children [

Shape {

geometry Text {

}

string [" Hello" "world!"]

appearance Appearance {

material Material {

diffuseColor 0.1 0.5 1

}

]

}

}}}
]

Figure 2.7. VRML source code hello_world.wri taken from (Brutzman,

1998a).

While VRML is a powerful object description language, it is also a simple language to learn.

The novice can quickly learn enough to develop his first program. Figure 2.7 is a programming listing

for the basic "Hello World" program found in so many programming texts (Brutzman, 1998a). The

results of this small scene description are displayed in Figure 2.8. This demonstrates just how simple

VRML makes 3D authoring.

17-

££r Netscape

Fie jEd)f\ew Qp J^nrninicatof Help

TM3

Figure 2.8. Output of Hello_world.wri.

The power ofVRML is its ability to create dynamic environments. It fully supports animation,

user interaction, and advanced object behaviors through scripts (Hartman, 1997). After describing

objects inside a world a developer has many options regarding how to use those objects. Animation

can be performed through predetermined routes, execution of scripts, or dynamically using outside

-18-

applications to manipulate objects inside the world. The overall affect is the creation of portable

virtual environments which are visually pleasing and truly interesting. The greatest promise of VRML

with respect to this project is the possibility of 3D visualization of AUV missions using any web

browser.

F. JAVA

Java is a fully functional programming language which was first released in 1995 by Sun

Microsystems. It is a solidly engineered language that was created with many ideal design goals in

mind. Table 2.1 gives the key features as described by the authors of Java (Cornell, 1997). The key

features of interest related to the work described in this thesis are that it is architecture neutral, object

oriented, and portable (Cornell, 1997).

Java is an architecture-neutral language. What this means is that when a Java program is

compiled the compiler creates a neutral file format that contains byte codes of the compiled program.

These byte codes can then be executed on many different processors with the Java run-time

environment present. The run-time system interprets the byte codes and translates the information into

native machine code for execution.

Java Design Goals Functionality of Concern for this Thesis

Simple Yes

Object-Oriented Yes

Distributed No

Robust No

Secure No

Architecture Neutral Yes

Portable Yes

Interpreted No

High Performance Yes

Multithreaded No

19-

Dynamic No

Table 2.1. Design goals of the Java programming language, contrasted with thesis goals.

The object-oriented programming paradigm provides numerous useful characteristics. Java

fully supports data hiding, encapsulation, inheritance and code reuse through this object-oriented

approach. This type paradigm focuses on the data being manipulated by an application instead of how

each step of the manipulation takes place. It gives the developer the ability to write code once and use

it many times in many different applications.

Portability brings Java to the Web. There are no implementation-dependent aspects of the Java

specification (Cornell, 1997). This means that the binary data is stored in a fixed format which

eliminates the problems of running code on various platforms. Through this type of implementation

and the use of standard libraries which define portable interfaces, Java byte codes can be retrieved

across the Internet and run on local platforms, independent of the machine architecture.

As the world wide web continues to increase in popularity, Java is positioned to be the

language of choice. Its well-designed class library provides all the functionality required to develop

professional applications. These applications can be easily distributed via the Internet and run on any

platform which has the Java run-time environment present.

G. DISTRIBUTED INTERACTIVE SIMULATION (DIS) PROTOCOL

The Distributed Interactive Simulation (DIS) protocol describes a standard of communications

between entities in distributed simulations (IEEE 93, 94a, 94b). It is well suited for general usage in

networked virtual environments due to the standardization of object interactions. This allows many

users in remote locations to view or participate in a simulation as long as the standard object interface

is followed.

Information is passed between entities through the use of protocol data units (PDUs). Figure

2.9 demonstrates the architecture of a distributed simulation using DIS. There are 27 different types of

PDUs defined for use. Each one addresses a different possible interaction between entities. Types of

PDUs range from the most common Entity State PDU, to the more rarely used Electromagnetic

Emission PDU. The Entity State PDU is the primary PDU used, containing information about an

-20-

entity's position, posture, linear and angular velocities and accelerations. It is sent across the network

by an object whenever one of the its entity state parameters changes by a threshold amount or a

designated time period has expired. All other entities that are concerned with the position information

of the sending entity will listen for the PDU and upon receipt will integrate that information into the

rendered scene.

Networking provides a significant advantage when working in virtual environments. It allows

objects which are being operated on remote workstations to be viewed locally. In a complex world

objects can be offloaded to idle processors while they are rendered by the local machine. This type of

network interaction is possible through the standards defined by the DIS protocol.

Simulation 1 Simulation 2 Simulation 3

Network

Figure 2.9. Network Connectivity of a DIS simulation.

H. DIS-JAVA-VRML

In an effort to bring large-scale distributed simulations to the personal computer domain a

working group has been formed to integrate DIS with Java and VRML. A VRML Consortium

(www.vrml.org") working group is a technical committee which tries to solve specific technical

problems. The DIS-Java-VRML working group was chartered with numerous goals aimed at making

these technologies work together.

-21-

Some specific objectives of the DIS-Java-VRML working group include completing a freely

available Java implementation of the DIS protocol, producing a set of references and recommended

practices for mapping between DIS and VRML worlds, create various DIS utilities in Java, and to

also create some standard physics and math libraries to be used in these simulations. More

information for regarding the working group can be found at fhttp://www. stl.nps.navy.mil/dis-java-

vrml 1.

Browser

DIS Java VRML
Plug-inApplication Bridge ^ ^

\ f

j

\

Network

Figure 2.10. DIS-Java-VRML interaction layout.

The overall layout of a simulation using the DIS-Java-VRML library is quite unique. The

library handles the interactions between the network, browser, and VRML plugin. Figure 2.10

outlines the interactions handled by the library.

Combining the capabilities of DIS, Java and VRML can quickly allow developers to create

content-rich networked simulations that are available to anyone with access to the Internet. The

-22-

possibilities of simulation content and complexity are endless. With access via the Web simulations

can be run anywhere in the world regardless of the locality of participants and simulation monitors.

This integration truly adds new dimensions to virtual environment use. It continues to move the Web

into three-space.

I. COMPUTATIONAL FLUID DYNAMICS (CFD)

Computational Fluid Dynamics (CFD) is a field of study concerned with the prediction of

fluid motion about bodies of arbitrary shape. Supercomputers are typically used to solve numeric

approximations that describe the fluid flow.

Looking more closely at the term CFD, this branch of science is considered computational

because of the use of high-speed computing resources. The fluid flows are typically modeled and

analyzed using large sets of Navier-Stokes partial differential equations. Solving these equations for

specific fluid-flow cases is computationally intense because no closed-form solutions exist, except in

trivially special cases (Scientific Computing Group at Indiana University, 1998). Thus any given

problem may take days of computational cycles to solve. Solution of CFD problems are generally

considered to be among the grand challenges of supercomputing.

CFD also refers to the analysis of fluids. Fluid refers to anything that isn't a solid, thus both

air and water are considered. A more technical definition classifies fluids "as any substance which

cannot remain at rest under a sliding, or shearing, stress (Scientific Computing Group at Indiana

University, 1998)."

Finally, CFD dynamics refers to the study of objects in motion. In dynamics one is concerned

with an objects motion and the forces associated with that motion. This is very different from

kinematics, which is concerned with the relationships of motion quantities regardless of the forces

induced by that motion (Healey, 1998). Kinematics models are typically less realistic than dynamics

models. In general the resolution of kinematics models are demonstrably inadequate for AUV motion

prediction.

Overall, CFD is a numerically intensive science. Solutions to CFD problems are extremely

complex and often require the most advanced computer systems to solve. Thus research in this field is

extremely important, providing the basis for understanding complex flow interactions. From there

-23-

simpler representations of flow interactions can be created which provide a general model for testing.

The approach taken by this thesis completely avoids the field of supercomputing CFD, and instead

seeks PC-based or workstation-based solutions which produce imperfect but adequate results in

realtime for human operator and robot use.

J. SUMMARY
Many disciplines are needed to complete any complex project. The basis for the solution to the

problem of torpedo tube docking of the Phoenix AUV epitomizes that notion. Simulation-based

research and design draws from the newest available technologies. While the environmental forces

which must be modeled in this type of simulation have been around since the beginning of time, only

recently has technology been created to help man solve problems in many disciplines. A broad level

of knowledge must be used to arrive at a correct solution when considering large and complex

problems.

This chapter presented an overview of many topics related to the solutions presented in this

thesis. The Phoenix AUV hardware, software and underwater virtual world modeling were discussed

because they provide the basis for the testing presented. Other areas such as distributed control, the

Virtual Reality Modeling Language (VRML), the Java programming language, the Distributed

Interactive Simulation (DIS) protocol, the DIS-Java-VRML project and Computational Fluid

Dynamics (CFD) also play a role important roles in solving the problem of torpedo tube recovery.

While no one topic provides all answers, a combination provides a well-rounded solution.

-24-

III. PROBLEM STATEMENT

As the mission of the United States Navy continues to focus on littoral warfare, the

importance of mine warfare becomes more apparent. Mine warfare has historically been one of the

most difficult tasks performed by naval units. The majority of the tactical burden has often fallen on

submarines since their operational areas often coincide with the areas of most value to enemy forces.

One outstanding tool for mine detection is an Autonomous Underwater Vehicle (AUV). This type of

robot can be used to scour forward areas using high-frequency sonars and global positioning systems

(GPS) to detect and neutralize mines, easing the burden of mine detection on all forward-deployed

units.

The majority of technical issues preventing this type of AUV deployment have been solved.

The only problem remaining before this type of vehicle deployment can be executed is the vehicle

recovery system. Vehicle recovery poses many difficult problems. The evolution itself is very

dangerous for both the recovering submarine and the AUV. Even the smallest mistake can place the

submarine at great risk. If the recovery does not run smoothly, damage can range from complete loss

of the AUV to a breach of the water-tight integrity of the recovering submarine, thus threatening the

safety of her crew. There is an intolerably small margin of error.

In an effort to conquer the unresolved issues associated with mine warfare, the Phoenix AUV

has been created as a research and development platform. It is used to test the newest equipment on

the market and to develop control algorithms which employs this equipment most effectively. Even in

stand-alone development the risk of vehicle loss is very high. While robot code is written with safety

of the vehicle in mind, robot testing is inherently dangerous. For that reason a virtual environment

was created that is used to test software and hardware prior to in-water testing (Brutzman, 1994).

A virtual world provides an exceptional resource for the testing and development of AUV

technology. The difficulties associated with the underwater environment are numerous and complex.

In order to properly validate the results from such a world, one must accurately model the physics

associated with the vehicle, its submerged hydrodynamics characteristics, and the environment.

Environmental effects such wave motion, currents, and flow forces created by bodies moving

through the water can cause significant variance in the testing environment. The current version of

-25-

the Phoenix AUV Virtual World includes steady-state ocean currents, but does not take into account

the localized environmental effects of waves and body-induced flow forces.

In an effort to provide this type of realistic simulation environment, the effects of

environmental factors have been completely integrated into the hydrodynamic simulation. This work

provides a sound real-time simulation of these complex factors using physically based models. The

problem is broken down into wave motion effects, body-induced flow fields, and AUV motion

control. Each one is thoroughly analyzed and realistically simulated in real-time through the

algorithms developed.

The result of this research is a Virtual World which accurately depicts the ocean environment.

It can be used to test and develop the control algorithms required to operate an Autonomous

Underwater Vehicle in any situation without risk. This environment thus provides a safe and

physically accurate arena in which the problem of torpedo tube recovery can be carefully examined.

Another issue evaluated in this work is platform independence. As research and development

money becomes scarce, the availability of high-end graphics workstations is also becoming rare. With

the advent of platform independent languages such as Virtual Reality Modeling Language (VRML)

and Java, the ability to run complex three-dimensional (3D) simulations on personal computers has

arrived. In addition to providing a realistic virtual environment for development of new technology

this work strives to make that simulation available for anyone to use. By using web-based

technologies anyone can view and interact with the simulation and development process, further

advancing the marriage between developer and end user.

The principal problem addressed by this thesis is that of torpedo tube recovery of the Phoenix

AUV. It employs a physically based virtual environment to simulate the forces encountered during

such an evolution. The goal is to provide an overall solution to the problems associated with torpedo

tube recovery through simulation-based design (SBD).

-26-

IV. HYDRODYNAMICS MODELING

A. INTRODUCTION

This chapter presents the theory behind the implementation of cross-body flow in the Phoenix

virtual environment. The problem of modeling cross-body flow is broken down into several

components, each of which is analyzed in depth. An overview first outlines the components of the

equations of motion algorithms with some detail on the individual parts. The high-resolution

buoyancy model is described as the basis for modeling flow forces on the AUV. Wave-motion

simulation is examined in detail, followed by body-induced flow simulation and square hull versus

round hull adjustments to the equations of motion.

B. OVERVIEW

Virtual environments are a very useful tool in the research and development process. Their use

can provide sound simulation-based designs. The ability to test and redesign during development

allows for relatively easy correction of design flaws and can save valuable time and money in the

process. Nevertheless any simulation is only as good as the physical model it is based on. A virtual

ocean environment which fails to address the physical forces that are present in the real ocean

provides little insight during development, perhaps guaranteeing the failure of the project.

The elements of nature must be completely integrated into any simulation environment if it is

to be used as a true test platform. Additionally, the ocean environment has unique characteristics

which make its simulation more complex. Factors such as buoyancy, wave motion, and body-induced

flow forces are among the most computationally complex to model. They are all significant and

cannot be overlooked when developing a true simulation environment. Figure 4. 1 shows the overall

flow of information within the hydrodynamics model. The separate sections indicate areas of code

that handle specific calculations which are calculated during each time step. The overall

hydrodynamics model is described in (Brutzman 94a, 94b, 98). The simple buoyancy model is

described in (Bacon, 96). This thesis implements the shaded blocks in Figure 4.1. Throughout the

following discussion of theoretical basis, simplifications were made to ensure true real-time

performance of the simulation. Assumptions are made when the effect of their simplification do not

-27-

effect the accuracy of the model, while providing performance improvement. Table 4. 1 provides a

summary of assumptions which will be presented and justified later in the chapter. This chapter

provides the theoretical basis for a high-resolution buoyancy model, physically based wave motion

simulation, external submarine body-induced flow field simulation, more precise modeling of square

hulls versus round hulls, and refinements to the equations of motion (EOM).

Topic Assumptions

Wave motion simulation 1

.

Wave motion effects vehicle position and orientation are due to

the movement of water across the vehicle body as waves move past.

2. The length of the Phoenix AUV is small enough that measuring

wave height above the vehicle at Vz foot increments gives a realistic

representation of the wave forces felt by the vehicle.

Environmental Factors 1. The effects of ocean current are felt by both the AUV and the

submarine, thus the relative motion caused by steady-state current

can be ignored locally.

2. The time variation of environmental factors such as change in sea

state is slow and can be ignored for the duration of a docking

evolution.

AUV docking approach 1

.

The AUV will always approach the submarines torpedo tube from

aft in order to maintain stability and minimize risk of collision.

2. The AUV approach course will be such that it never passes

through the turbulence caused by the submarines propeller(s).

Flat-plate fluid flow theory 1

.

The submarine is large enough (when viewed from the AUV) that

the hull appears as a flat plate.

2. The majority of drag across the submarine as it moves through the

water is pressure drag vice skin friction drag.

Table 4.1. Overview of assumptions made to implement wave motion and flow models.

-28-

Begin Integration of Equations of Motion {

If{

Low resolution buoyancy model

}

Else{

High resolution buoyancy model

Wave force calculation model

Body-induced flow field model

Cross-body drag integration for square/round hull vehicle

}

Final calculation ofEOM for current time-step

} Enc1 Integration of Equations of Motion.

Figure 4. 1 . Flow of information within hydrodynamic model of the Phoenix AUV
virtual environment.

C. BUOYANCY MODEL
Simulation of ocean-going vehicles poses many unique problems. They differ from land-

based vehicles by exhibiting six degrees of freedom (DOF) in their movement. They primarily differ

from air vehicles (which do move in six degrees) with respect to buoyancy forces. Buoyancy forces

differ significantly from the lift experienced in air vehicles. One major difference between these types

of forces in the modeling and simulation context is fairly straight forward: for an air vehicle, once the

dimensions are known, the lift force exerted on the plane is proportional to air speed. From these

forces one can easily calculate position and orientation. In the sea-going vehicle domain, however the

dynamics model isn't as simple. Vehicle buoyancy is a major contributor to determining vehicle

-29-

position and orientation, and this quantity is truly dynamic when at the surface. Buoyancy varies

based on the amount of water displaced at that particular time step, which is an instantly changing

irregular 3D volumetric integral. Therefore, in order to maintain real-time response, the calculation

must be optimized and flexible. This is especially important in the underwater domain since buoyancy

determines whether the vehicle can maintain depth or sink.

The original virtual world hydrodynamics model only handled neutrally buoyant vehicles

(Brutzman, 1994). A later refinement estimated buoyancy using box approximations for volume and

center of buoyancy (Bacon, 1995). This approach provided reasonably accurate simulation when fully

or partially submerged, but may be insufficient when the submersible is continuously operating on the

surface or at shallow depths in a surf zone. In this thesis, a high-resolution model is presented that

precisely approximates volume and center of buoyancy by evaluating the submersible over 1

5

separate slices. Each slice has its own buoyancy (and center of buoyancy) that are approximated and

calculated every time step. Figure 4.2 shows this type of partitioning applied to the Phoenix AUV.

Figure 4.2. AUV broken into buoyancy model slices.

This buoyancy model works well and accurately models vehicle response in a variety of

surfaced and broached conditions. When submerged, each piece of the AUV retains its full buoyant

force giving the AUV neutral buoyancy. On the surface, the portions of the boat which are out of the

-30-

water are subtracted from the net buoyancy giving an approximately correct value for that condition.

Additional impacts of buoyancy on a shifted center of buoyancy are calculated piecewise and then

summed, using the same computational model provided in (Bacon, 1996). Figure 4.3 graphically

represents the buoyancy model from (Bacon, 1996).

Righting Moment

Original CB

Figure 4.3. Effect of submerged body exiting water on center of buoyancy (Bacon,

1996)

The only condition not considered previously was the effect of ocean waves on vehicle

buoyancy. Since the model worked so well for the boundary conditions it seemed appropriate to

extend it by adding the needed functionality to accurately model sea state effects on vehicle motion.

In order to do so there are several factors to consider and assumptions to make. Issues to address

range from what forces are that wave motion produces, how these can be estimated, and finally how

are they applied to the vehicle to produce an accurate simulation.

The first assumption to be evaluated applies to the effect wave motion has on the vehicle

itself. In other words, how do the forces created by passing waves cause the position and orientation

of the AUV to change? When discussing underwater hydrodynamics one often arrives at the effects

on a submerged body by multiplying the flow which is present across the body via cross-body drag

-31-

calculations. This is the proper method to use when the body is moving through a flow. Wave motion

causes the water surrounding the vehicle to move as a whole. As the wave moves down the length of

the vehicle the water column surrounding the vehicle is elevated until the crest passes and then it is

lowered through the trough. The movement of the water column has an effect on the position and

orientation the vehicle. The cross-body drag present is large enough not to be ignored. With that in

mind it becomes evident that the most accurate way to simulate wave effects is by evaluating the

movement of the water column surrounding the vehicle at every time step, and treating that

movement as piecewise forces, derived from vertical and horizontal velocities.

Having decided on the proper interaction between wave and vehicle, one must now evaluate

the interval at which to measure the water column. The length of the Phoenix AUV is relatively small,

7.3 ft, when compared to the average wavelength of a low sea state. In a sea state of 1 the average

wavelength is 20 ft. From the buoyancy model already in place calculations are performed for 15

segments along the body. Continuing this convention for the surrounding water column provides a

measurement every 6 inches. This accuracy is more than sufficient given the relative size of the

Phoenix AUV as compared to the wave. This methodology allows the hydrodynamics model to

calculate a force vector representing the water column surrounding the vehicle at the center of each of

the 15 body segments.

The final issue to address when discussing the extension of the buoyancy model to include

wave effects is how to apply these new force vectors to the vehicle. Superposition of forces is

performed in a way which is physically accurate and provides a realistic animation in the virtual

environment.

As a wave moves along the length of the Phoenix AUV's body force vectors are created

representing the direction and magnitude with which the water column is moving at that time step.

Using these vectors it is now possible to adjust the buoyancy of each vehicle segment to include wave

motion. For each individual segment the buoyancy and wave force vectors are calculated. Then the

overall effect on vehicle position and orientation is arrived at by adjusting vehicle buoyancy and the

center of buoyancy. Vehicle buoyancy and vehicle center of buoyance are determined using the

(Bacon, 1996) methods. The calculations are based on the equation:

Buoyancy = pgj I I dV

-32-

where p is the density of water,

g is gravity, and

J
d V is the volumetric displacement of a submerged (or partially submerged) body section

at any given time.

This provides an estimated value for buoyancy which is based on the body segments which are

actually displacing water. If it is the case that a portion of the vehicle is exposed due to a passing

wave, that section does not contribute to the vehicle overall buoyancy and the center of buoyancy is

adjusted.

The forces created by the flow of the water particles moved by the wave are applied to the

vehicle via cross-body drag calculations. The wave forces are originally determined in world

reference frame as velocities. Thus these values must be translated into the local frame and applied

along the length of the vehicle. The translation is done using the following equation:

u X -dot

V = Y -dot R

w Z-dot

where u, v, and w are body reference frame velocities, X-dot, Y-dot, and Z-dot represent wave

velocity in the global reference frame, and [R] is the rotation matrix (Healey, 1998).

This provides a approximation which is both visually accurate and physically correct. The

development of an accurate buoyancy model has led to significant advances in the simulation of

underwater vehicle characteristics. It is now possible to simulate proper vehicle behavior when

submerged, surfaced, or operating in the surf zone. Taking into account simplifying assumptions

(such as how wave motion affects vehicle position and orientation) it allows for real-time modeling

while maintaining a physically correct basis. Through extending this model to include the effects of

wave motion on vehicle dynamics, another step has been made towards accurately simulating all

aspects of the ocean environment. One crucial final step remains which is deferred as future work: in-

water validation of predicted model results. Nevertheless, current behavior is visually and

algorithmically correct enough to justify development of more robust vehicle control laws.

-33-

D. WAVE MOTION SIMULATION

Underwater vehicle design and construction is almost completely preoccupied with

environmental considerations. The ocean completely surrounds the vehicle, affects the

slightest nuance of vehicle motion and poses a constant hazard to vehicle survivability. Many
of the effects of the surrounding environment on a robot vehicle are unique to the underwater

domain. Vehicles move through the ocean by attempting to control complex forces and

reactions in a predictable and reliable manner. Thus understanding these forces is a key

requirement in the development and control of both simple and sophisticated vehicle

behaviors (Brutzman, 1994).

With this insight one realizes that in order to provide an arena for the proper development of

such a complex robot, the art and science of modeling underwater environmental disturbances must

be mastered. These effects must be coupled and studied with underwater vehicle underwater control

and dynamic behavior in order to accurately model reality.

Environmental disturbances play a significant role in marine control applications. Their effects

dictate how vehicles are designed, constructed and eventually driven. For these reasons the physics of

the sea have been studied for many years. The major areas of interest can be broken down into three

broad categories: wind, ocean currents, and wind-generated waves.

Each one of these forces is important, having a significant effect on both the novice and

expert ocean traveler. The wind plays a major role in the design of ocean-going vehicles, but in the

underwater domain its direct affects are minimal. For this reason the introduction of wind to the

underwater virtual environment dynamics model is not required. It will be left to those interested in

surface modeling and simulation to implement wind in their appropriate environments.

Ocean currents are another environmental disturbance which needs to be evaluated. Any ocean

navigator recognizes the effects of set and drift. Ignoring their influence can be a fatal mistake. These

currents are also applicable when discussing submerged vehicles. They exist throughout the world

and have a large effect in terms of vehicle control. In fact the majority of areas where a robot of this

type would be employed have significant currents (i.e. harbors or river outlets) and so ocean current

must be dealt with.

This work uses two complementary approaches to the simulation of ocean currents. The first

addresses the local frame of reference and the second the global frame of reference. Locally, the AUV

is influenced by a set and drift which are present in the area of operation. The direction and force

-34-

associated with the current is calculated and factored into the position calculation at every time step.

This provides a very simple and accurate modeling of local currents and their affects on the AUV.

The driving force behind much of this simulation is to provide an ability to accurately simulate

the forces an AUV will likely encounter while trying to rendezvous with a submarine in the open

ocean. For this type of maneuver both vehicles remain in a relatively small area. For example, if the

entire evolution was to take 1 hour with a submarine at a maximum speed of 3 kt then the total area

traversed is only 6000 yds. This is a small area when contrasted with the vast expanse of the ocean.

Thus, while in the global frame of reference there may be many different currents to evaluate and

apply to vehicles in the vicinity, for our purposes it can be assumed that both the AUV and

submarine are subject to the same set and drift. This assumption provides a useful advantage. Since

both vehicles are influenced by an equivalent set and drift the relative motion between the two

vehicles induced by these currents are insignificant. This result provides additional computational

simplification: relative motion between the AUV and submarine due to steady-state ocean current (set

and drift) no longer needs to be calculated.

Ocean currents are a major factor in both ocean navigation and ocean simulation. For that

reason the virtual environment developed for the Phoenix AUV fully accounts for the effects of these

environmental forces.

Wind-generated waves affect both surface vessels and submersibles which operate at shallow

depths. The process of wave generation due to wind begins with small wavelets appearing on the

water surface. This increases the drag force which in turn allows short waves to grow. These short

waves continue to grow until they finally break and their energy is dissipated. It is observed that a

developing sea or storm starts with high frequencies creating a spectrum with peak at a relative high

frequency. A storm which has been blowing for a long time (and has reached quasi-equilibrium) is

said to create a fully developed sea. After the wind has stopped blowing, low frequency decaying sea

or swell is formed. These long waves form a spectrum with a low peak frequency. Wind-generated

waves are usually represented as a sum of a large number of wave components (Fossen, 1990).

As early as 1952 researchers were developing mathematical representations of wind-

generated wave phenomena (Fossen, 1990). Their efforts laid the groundwork for the definition of a

wave-field spectral-density function. In addition, a large amount of data has been collected via

-35-

observations. By comparing observed data with the mathematical formulations it has been concluded

that the spectral density of the energy spectrum as a function of wave frequency is sufficient to

describe a wave environment of fully developed long-crested seas (Reidel, Healey, 1997). This

frequency spectrum can be represented as

S(co) =
ag

CO
P

§
14

VCD
(4.1)

where a and P are empirical constants defining the spectrum, g is the acceleration of gravity, w is the

frequency, and Vis the wind velocity. Equation (4.1) describes a general frequency spectrum which

can be used to fit many observations. To make this formulation more specific there are several

alternative values for a and p. One can use the Neumann formula, Pierson-Moskowitz (P-M) formula,

the Bretschneider formula, or the International Ship Structure Formula to name a few (Fossen, 1990).

The most common of these is the P-M spectrum. In the P-M spectrum typical values are a = 0.008

1

and p = 0.74.

Inserting values for a, P, and g along with some simplification based on the relationship

between significant wave height (Hs) and wind velocity (V), a simplified version of the P-M spectrum

can be arrived at (Reidel, Healey, 1997). Formula (4.2) is the simplified P-M spectrum.

, , 8.384
S{0)) = - —— exp

(0

-33.52 A

H>*
4

(4.2)

Using the P-M spectrum provides the spectral density. This information is used to find the

wave amplitude, which is needed in order to apply the movement of the water column to the AUV as

described in section B above. The wave amplitude can easily be represented in terms of spectral

density as follows:

A
2

=2S(0))AC0 (4.3)

Here A is the amplitude and Aa) is the difference in successive wave frequencies (Fossen, 1990).

From this equation the amplitude of a wave of interest to the position and orientation calculations of

-36-

the AUV can be arrived at. From here it is necessary to compute the value of wave amplitude at the

prescribed intervals along the vehicle body. Calculating and combining these many values quickly

becomes computationally expensive. The final formulation for this approach to wave simulation is

,8.384
f
-33.52

WaveHeight = 2 — exp _, „ \Aco
0)

TT 2 4
H;cq

sm((t* freq)+{h*dx))*

cosyWaveheading - AUVheading)

(4.4)

where t is time in seconds, freq is wave frequency in radians per second, X is wavelength in ft, and dx

is the distance along the vehicle body.

As indicated by the above derivation, wave spectra are complicated and computationally

expensive. It is difficult to perform this type of analysis as part of a real-time simulation. Luckily the

diligence and hard work of researchers over the past 45 years alleviates the computational burden

through published data tables for various wave spectra. These tables are the result of countless hours

of hard work and provide a solid basis for wave simulation. Table 4.2 is an excerpt from a table found

in (Bertaux 1976). It gives all the pertinent data required to approximate the P-M spectrum in any sea

state ranging from 0-9. The fields of interest are significant wave height, frequency, and wavelength.

With this information the state of a wave at any given time step along the body of the AUV can be

calculated.

-37-

Sea State Average

Significant Wave
Height (ft)

Average Period

(seconds)

Average Wave
Length (ft)

Minimum
Duration (hours)

0.05 0.5 1.0 18 min.

1 0.18 1.4 6.7 39 min.

2 0.6 2.4 20.0 1.7

3 2.9 4.6 71.0 6.6

4 4.3 5.4 99.0 9.2

5 6.4 6.3 134.0 12.0

6 11.0 7.9 212.0 20.0

7 21.0 10.3 363.0 34.0

8 36.0 12.5 534.0 52.0

9 64.0 16.3 910.0 88.0

Table 4.2. Characteristics of a fully arisen sea. Excerpts taken from (Bertaux, 1976).

Having this data in the form of a lookup table at program run time gives the ability to

dynamically apply the affects of a fully developed sea state to the vehicle. The computational

advantage gained is tremendous. Equation 4. 1 shows how a single wave can be applied to one section

of the vehicle using the lookup values.

(.

WaveHeight = H
s

*
sin((r* freq)+(X*dx))*

cos\Waveheading - AUVheading)
(4.5)

where, Hs is the significant wave height, t is time, A is wave length, and dx is the distance along the

AUV body. This allows the instantaneous height of a wave to be calculated for each segment of the

AUV body. This height is then transformed into a buoyancy force as previously described in section B

above.

-38-

Lookup tables also present the possibility of changing sea state during simulation. Although

this functionality is currently implemented it is important to point out that sea state cannot change in

nature instantaneously. Nevertheless, looking ahead to long-term scenarios simulating multiple days

at sea, it is a worthy feature and was included in the implementation.

Wind-generated waves have an important role when attempting to simulate the physical nature

of the ocean environment. They are the most complex of the environmental disturbances adding

significant computational complexity to ocean simulation. Despite this complexity their workings are

well known. Over 40 years of study have lead to the ability to accurately simulate this phenomenon in

a real-time virtual environment.

Environmental disturbances are major factors to consider when simulating the ocean

environment. They are an ever-present force which all sea going vessels must deal with, whether

surfaced or submerged. Wind, ocean currents and wind-generated waves are significant factors which

must be accurately simulated to guarantee the success of any vehicle developed for operation at sea.

E. COMPLEX FLOW-FIELD SIMULATION

Another field which must be addressed in terms of creating a physically based underwater

simulation environment is fluid mechanics. Fluid mechanics is an area of study concerned with

observing fluid behaviors in order to utilize and control the effects of fluid movement for the benefit

of society (James, Haberman, 1988). There are many laws describing the behavior of fluids in motion

and various methods of applying them. These laws provide the insight needed to successfully model

important aspects of the ocean environment.

The forces generated by fluid movement are of particular concern for the problem at hand:

torpedo tube docking of an AUV. When a body moves through a liquid it displaces an amount equal

to its volume. This displaced volume of fluid generates forces as it moves and in turn can apply

substantial force to other bodies in the area. These forces become significant when considering

torpedo tube docking for several reasons.

Torpedo tube docking is a high-risk evolution. There are many things which must be evaluated

before this type of exercise can be conducted. A primary area of concern is of safety, for personnel

and for both vehicles. A mistake or accident can place the submarine and her crew in great danger.

39-

Depending on the nature of the accident, damage can range from compromising the submarines

water-tight integrity, to creating a noise hazard making the submarine easily detectable by adversaries,

to crippling the submarine by damaging the propeller or towed sonar array.

In order to avoid the above-mentioned problems, it is of paramount importance that the

development of AUV technology be thoroughly tested. To that end it is necessary to ensure that this

type of flow simulation can be done in real time. Real-time feedback provides useful insight into

vehicle behavior in such a complex environment. It gives both designers and users a chance to view

vehicle behavior and actively discuss improvements. The simulation-based design (SBD)

methodology is a major factor in assuring that finished products meet user requirements. For that

reason, it is essential for robot development.

Another aspect to the importance of body-induced flow has to do with the relative size of the

AUV versus that of a submarine. Figure 4.4 shows the difference in size between the two vehicles.

The overall submerged displacement of a 688-class submarine is 6900 tons, with a length of 360 ft

and a 30 ft beam. When this is compared to the AUV, which in the case of Phoenix is 435 lbs

displacement, 7 ft length and 1.5 ft beam, it becomes obvious that the force of the water displaced as a

submarine moves in the area of the AUV must be evaluated and accounted for.

Flow instabilities are also present along the hull of the submarine. These instabilities, although

small when compared to the amount of flow generated by the moving submarine, can be enough to

cause major AUV control problems. Large variations in the force and magnitude of movement

surrounding the vehicle must be planned for during AUV testing and development. By accurately

simulating these variations control algorithms can be tested to ensure vehicle stability in even the

worst-case flow situation.

The reasons why this type of physically based simulation is needed are plentiful. The

questions to address now include the methodology used in creating such a simulation and any

assumptions made to ensure real-time performance.

Intuition tells that since these local forces exist, they must be applied to every vehicle they

affect. In other words, the submarine creates a significant field which must be felt by the AUV and

any other vehicles around, while the AUV simultaneously generates its own field which affects the

submarine. Herein lies the first simplification. Looking again at the size difference between the

-40-

submarine and AUV in Figure 4.4 makes it obvious that the displacement force created by the AUV is

not significant from the submarines perspective. In fact, it can be ignored completely. Since water

displacement is entirely dependent on the size and shape of the vehicle doing the displacement, it is

necessary to determine the induced flow on a vehicle-by-vehicle basis, taking into account all the

details of the hull in question. This quickly becomes too computationally expensive for a real-time

simulation system. Nevertheless, limiting the calculations to one side of the interaction reduces the

problem by one half, a significant improvement.

Figure 4.4. Phoenix AUV size (center of image) versus 688 class submarine.

Inside the virtual environment an area of influence which surrounds the submarine was created

to represent the flow field. This volume encapsulates all the possible positions that the AUV can be in

-41-

which are affected by the presence of the submarine. Figures 4.5 and 4.6 give a visual representation

of this field, with Figure 4.5 showing the side view. It demonstrates that the field exists from bow to

stern of the submarine. This size field allows modeling the approach of the AUV from any position

along the hull of the submarine.

Figure 4.5. Side view of 688 class submarine surrounded by its field of influence.

While forces do exist forward and aft of the submarine, they are not of concern when

considering a torpedo tube docking solution, since it is assumed that for the docking evolution the

AUV will always approach from aft of the torpedo tube door, and it will not take a path which is

crosses any of the turbulent flow created behind the submarines propeller. These are reasonably valid

assumptions. An approach from aft of the torpedo tube door is a necessary fact. This is because the

submarine must always maintain forward headway to ensure adequate depth and heading control. If

the AUV were to make an attempt at docking from forward of the submarine, the relative speed

would be too large to ensure safety and proper control for the evolution. Therefore, the orientation of

the torpedo tube door must allow rear entry. Figure 4.7 shows a proposed outer door configuration for

AUV recovery. This provides a unique advantage when conducting the recovery evolution. Adjusting

the door to move outward has an advantage of being a relatively simple modification to the current

outer torpedo-tube door configuration, and also provides a sheltered lee for the AUV to move into.

This lee creates a volume of water for the AUV to perform difficult portions of the docking maneuver

while sheltered from most open-water flow.

-42-

Figure 4.6. Front view of 688 class submarine surrounded by its field of influence.

An approach from the area directly astern of the submarine is not a feasible alternative. The

reason behind this is inherent in the AUV mission. One of the primary missions for an AUV is mine

detection and avoidance. The circumstances under which this type of mission is conducted are

normally those associated with a higher degree of military readiness due to the presence of a possible

threat. Standard operating procedure for a submarine in that type of environment requires deployment

of a towed array for enhanced enemy detection and acoustical monitoring. With such a tactically

valuable (and expensive) piece of equipment trailing from the stern of the submarine, this path

becomes unavailable for AUV recovery. Thus the AUV is expected to choose an approach from

behind that is along one side of the submarine, vice fully astern.

With that in mind, Figure 4.6 gives a better view of the relative area enclosed inside this flow

field. The cylindrical area extends a distance of 30 ft from the side of the hull giving the area a total

diameter of 90 ft. Outside this arbitrary volume submarine-induced flow forces are assumed to be

negligible.

-43-

Figure 4.7. AUV docking with outward opening torpedo tube door.

Having examined the size and orientation of the computational model for the flow field, it is

now necessary to examine what makes up this virtual flow field. The field is comprised of vectors at

Vz ft intervals. Each one is contains a flow component in the X, Y, and Z direction. The vector

represents the total amount of flow force (in knots) felt by the vehicle hull at that location relative to

the submarine. Graphically, one planar slice of the flow-field velocity looks like Figure 4.8.

This type of grid extends to cover the entire volume within the cylindrical area of influence

surrounding the submarine. The orientation is such that the innermost row of flow vectors is flush

with the hull and the outermost follows a line 30 ft out from the hull. An exact flow vector within the

grid is easily found through position comparison between the AUV and submarine.

-44-

Figure 4.8. Grid Level inside submarine flow field.

The construction of the flow field provides some distinct advantages in terms of

hydrodynamic modeling. In section B of this chapter the high-resolution buoyancy model was

presented dividing the AUV body into 15 slices. With an AUV length of 7.8 ft this breakdown

corresponds rather nicely to Vi ft per slice. Thus there is a direct correspondence between the size of

the grid and the distance between the center of each section along the AUV body. This allows for

rapid flow vector cross-referencing and application during the cross-body drag calculations. There is

no need to interpolate between grid positions when retrieving flow vectors for each subsection of the

vehicle. In fact, the vehicle can move through the flow field at any random orientation and an exact

position is rapidly determined for the flow force component seen by each section.

The flow field design eases computational complexity in another area as well. After the

vehicle position is determined and the flow force vector retrieved it must be applied to the vehicle

through the equations of motion (EOM). However, by tying the flow field vectors to the submarine

(global) coordinate system these forces are not in the AUV (local) coordinate system. In order to use

them in the EOM we must translate them into the local system. Looking at the flow field from the

AUV point of view, with the submarine on a course of North, it can be said that no matter where the

vehicle moves in the world coordinate system these velocities will be present. Flow field

contributions are essentially analogous to the world velocities X-dot, Y-dot, Z-dot, where X-dot

represents the linear velocity along the North-South axis, Y-dot is the linear velocity along the East-

West axis, and Z-dot is the linear velocity along the depth axis. This gives a direct relationship

-45-

between the flow vector velocities and those which can be used in the vehicle's hydrodynamic

modeling. The velocities can be rotated from the world coordinate system to the local frame of

reference as follows:

u X -dot'

V = Y-dot R

w Z-dot

(4.6)

where u is surge, v is sway, -w is heave, and R is the (already calculated) rotation matrix. At this

point we finally have quantities that can be factored into the calculation of the vehicle's cross-body

drag and incorporated into the EOM.

Up to this point, a distinct methodology has been presented for deriving flow forces and

applying them to the vehicle being affected. The next step is to elaborate on the actual data that is

used to model these complex flow interactions. While looking at this problem several objectives

come to mind. Typical computational fluid dynamics (CFD) techniques are far too computationally

complex for a real-time system, so flow data must be precalculated whenever possible to support the

simulation.

Extensibility is at the core of this approach to flow modeling. By importing flow data at run-

time, the virtual environment can be used as a test bed for numerous flow regimes and control

environments. The simulation is no longer bound to the specific case for which it was developed (i.e.

tube entry). The data used can represent any type of flow desired. Additionally as advances in the field

are made, data files can be upgraded to provide a more accurate representation of the fluid's physical

behavior. The only requirement is that the data files maintain a readable format, and that requirement

too can easily be manipulated.

To create the data needed, a generation program was developed based on Fortran source code

from (Schetz, 1965). The original program generated a flow profile at a single point along a flat plate

using a two-dimensional (2D) approach to boundary layer incompressible turbulent flow. In order to

meet the needs of this simulation the code was converted to C++ and modified to include the flow

models required. The program also generates output data files which are imported into the virtual

-46-

environment when a docking simulation is initiated. The code for this program is included in

Appendix D.

There are two models which are used to create the flow profile down the length of the

submarine: one for areas of low turbulence, and one for areas of high turbulence. The majority of the

submarine hull is included in the areas of low turbulence; for these sections a flat plate fluid flow

model is used. The turbulent portions use a tube-level flow model.

1. Flat-Plate Fluid-Flow Theory

The total drag on a body is due to the sum of two types of drag: pressure drag and skin friction

drag. In many cases one of the two types of drag is dominant (John, Haberman, 1988). In the case of a

submarine moving through the water, pressure drag dominates.

One flow model which has many similarities to the application in which this data is going to

be used is the flat-plate fluid-flow model. It is used to model uniform flow over a flat plate aligned

with the direction of the flow. Since the flow in question is created by the submarine moving in a

specific direction through the water, it will always be the case that flow is aligned with the flat plate

(i.e. submarine hull).

Additionally flat plate theory assumes that over 90% of the drag caused by flow is pressure

drag, with only a small fraction due to skin friction. Again this is exactly the case for a submarine

moving through the water. The shape and special hull treatment of a submarine are designed

specifically to reduce skin friction and reduce undesirable side effects: increased noise levels,

reduced propulsion plant efficiency, etc. It can intuitively be asserted that the majority of drag felt by

a submarine is pressure drag due to the amount of water it must displace to move through the water.

One remaining question regarding model suitability is whether or not the submarine appears to

be a flat plate from the perspective of the AUV. Figure 4.9 shows a picture of the AUV next to the

upper 1/3 of a 688 class submarine. What it demonstrates is the fact that the side of the submarine

extends 10 ft above the AUV and 20 ft below, looking very much like the AUV against a wall or flat

plate. For another perspective, one can look at Figure 4.4 to get a wide angle view.

-47-

Figure 4.9. Phoenix AUV seen adjacent and parallel to the upper hull of a 688 class

submarine.

After viewing the comparison it becomes readily obvious that using flat plate fluid flow

model to simulate the flow field in the areas of low turbulence along the submarine hull is a good

approximation.

The use of this type of model provides excellent simplification of the run-time flow

calculations. It creates simple flow vectors. In fact, they only have one component vice three. Due to

the assumption which said that over 90% of the drag which is present is due to pressure drag, not

friction drag, two of the three components drop out. The flow force is only present along the axis of

the plate. This means that of the three flow vector components, X-dot, Y-dot, and Z-dot, only Y-dot is

a nonzero number. The overall profile extending out from the hull is shown in Figure 4.10.

What Figure 4.10 shows is how flow changes as one moves out from the hull of the submarine.

-48-

Initially flow is at 0% of the open water velocity and it rapidly increases to 100% as the distance from

the hull decreases. This demonstrates that the effects of the submarine's presence are larger as the

AUV approaches to the hull. The distance at which flow returns to the open water value is

approximately 25-28 ft. For that reason the flow field extends 30 ft from the hull, which gives a small

buffer for insertion of more severe flow profiles. It is also interesting to note that as the distance of the

vehicle moves from the bow to the stern the percentage of open water flow seen by the vehicle moves

toward 100% more rapidly. This is an expected phenomenon when using a flat-plate approximation.

Submarine Profile Slices

0.6

0.5 I-

0.4

0.3

0.2

0.1

10 50 6020 30 40
Y -> (Distance from hull)

Fri Jan 16 14:43:40 1998

Figure 4.10. Flat-plate flow profile (generated by flow generation code) versus distance

from the hull of a 688 submarine, shown at 5 locations along the hull.

The flat-plate fluid flow model provides an excellent match for areas within the submarines

field of influence where low turbulence is expected. The assumptions inherent in the theory

correspond almost directly with the characteristics of the problem being addressed. This approach

-49-

also provides a nice computational advantage since this profile can be used for the majority of the

submarine.

2. Tube-Level Fluid Flow

Some areas along the submarines hull cannot be approximated by the flat plate model, since

they are subject to much more complex flow interactions. For the submarine docking problem at

hand, the area of concern surrounds the open torpedo tube door, beginning slightly ahead of the door

and continuing back along the hull until flow is no longer disturbed by the instabilities caused by the

open door.

This type of flow profile is similar to those experienced when viewing flow over a cavity. In

this case the torpedo tube outer door acts as a shield and the tube area is the cavity. The behavior of

flow in this type of situation is very complex and poorly defined. There is a great deal of active

research being done on flow fields since many aspects of flow behavior are poorly understood. What

is known gives enough of a picture of the flow interaction to make this simulation as accurate as

possible.

To accurately model this type of flow there are three portions to take into account: the flow

approaching the tube, the flow inside the cavity (and directly aft of the tube) and the rest of the flow

path from aft of the tube to the stern.

The flow area forward of the tube is easily modeled. As flow moves along the hull the

protruding torpedo tube door forces an outward movement of the flow. In this area each flow vector

now has a magnitude in the x direction, out from the hull, and the y direction, along the hull. Figure

4.11 portrays the overall flow picture in this area.

-50-

Bow Stern

Submarine Hull

^
-X

Overall Vector

Figure 4.1 1. Flow interaction as it approaches an open torpedo tube door.

Figure 4. 1 1 depicts how the flow moving along the hull is forced outwards creating a flow

force vector which moves away from the hull and aft. After the end of the door is reached the flow

interaction becomes very complex. In this area a dead zone is created inside the cavity. In the cavity

area there are no significant flow forces at all. As displaced water moves back into the area behind the

torpedo tube, a time-varying flow-profile is created. Vortices are created at varying frequencies along

the path that follows the door. Figure 4. 12 gives a top-down view of what the flow profile resembles

at a given moment. The dead zone represented by the shaded area moves along with the submarine as

the vortices are created directly aft of the area. Some small flow aft may exist in this dead zone if

water is permitted to pass through openings where the door meets the hull. Such small flow may also

help stabilize turbulence.

-51-

Bow
Stern

Submarine Hull

\
S

ipD v/ a.; u
II nil r

- """
iFlow Direction M—*

Figure 4.12. Flow movement aft of the torpedo tube door.

The final area to examine is aft of the tube disturbances. In this area flow has stabilized. All

the complex interactions caused previously have subsided. Here it is again possible to model the flow

field as a flat plate. The only additional disturbances present in this area are those created by pump

suctions and discharges.

The flow interactions present on the tube level of the submarine are quite complex. This

influence is time varying and not yet fully understood. The majority of the interactions take place on a

small scale (less than inches) that a scale of Vi foot intervals between flow measurements can only

approximate. In this simulation the variance of flow in this situation has been captured at a low level

of detail. As advances are made in the understanding of fluid flow over cavities it will be possible to

upgrade the resolution of flow vector data used. For the time being this model provides a plausibly

-52-

accurate testing environment for AUV interaction within complex flow situations. By examining

approximate but worst-case conditions, an estimate of the magnitude of flow effects can be simulated.

F. EQUATIONS OF MOTION (EOM)

The Phoenix AUV virtual environment uses a Newton-Euler approach to the six degree of

freedom (DOF) EOM. This accurately models the kinematics and dynamics of a rigid body vehicle

moving without constraint (Brutzman, 1994)(Healey, 1998). These equations have been partially

verified through extensive testing in the virtual environment coupled with in-water mission analysis.

In all cases the results experienced in the virtual environment demonstrated proper behavior, as

evidenced by similar results during in-water runs of identical missions. Additional testing is needed to

quantify the effects of recent hardware improvements (such as larger shrouded propellers).

In order to properly integrate the flow forces previously discussed into the virtual

environment, we examine the EOM looking for the proper terms to modify. Equation 4.7 is the sway

equation of motion from (Brutzman, 1994) which is implemented in the Phoenix AUV virtual

environment.

Sway Equation of Motion (4.7)

-^VY)p+\mx G -^L'YL \

2 ;
G

2 P V I
c

2

= m[-ur + wp - x G pq + y G (p
2
+ r

2

)- z G qr]

£-LfM pq+ Y
qr
qr]+

+ fL
i
[Y

up
up + Y

ur
ur + Y

vq
v q +Ywp wp + YwrW r]

^L2

2
Yuv + Y.,.vw + u

[

Y
u\u\&b°rb

+Y
u \u\&s°rsj

-YJ
X

x

^[c
dMx)(v + xr)

2 +C
dz
b(x)(w-xq)

2

(W-fl)cos(0)sin(0)

(v + xr)

M*)
dx

+

+
2 lb

24
2

volts
V \v l+V b
bow-lateral\ bow-lateral' stern-lateral \ stern-lateral

\

-53-

The variables and coefficients in the sway equation of motion are defined in (Brutzman, 1994).

The terms of the EOM define all the major force contributors to vehicle motion. Similar

equations exist which define surge, heave, roll, pitch, and yaw. These can be found in (Brutzman,

1994). For this discussion, the sway equation of motion is used as an example.

For the problem at hand it is necessary to integrate the additional flow force contributions into

the EOM. Since the body-induced flow forces are primarily due to the cross-body drag of the water as

it passes over the vehicle, the logical place to insert these factors is the term dealing with cross-body

drag. To do so we must first examine precisely how these velocities induce drag.

1. Round Hull Derivation

Cross-body drag is calculated to incorporate the force generated by the motion of water over a

rigid body. When determining the magnitude and direction of this force one must know the shape and

size of the body being effected. In past versions of the EOM it has been assumed that the shape of the

body was always cylindrical. This provides a solution to the six degree of freedom model that is

general enough to accurately depict the cross-body drag for the majority of submerged vehicles.

Incident Force

Resultant Force

Resultant Force = Incident Force

Figure 4.13. Flow force incident upon a round body.

For a round body the force applied by the water is always in the same direction as the original

-54-

force. When calculating the cross-body drag the v and w components can be found by the breaking the

force up into the respective components, Fy and Fw, then normalizing. Figure 4. 13 gives a visual

representation of these forces and their components.

The terms can be defined mathematically as follows (Healey, 1998):

F
y
= ^C D pv

2

dx Fw =
X

-C Dpw
2

dx (4.8) and (4.9)

Going one step further it can be said that

v = v + xr (4 - 10>

and

w = w + xq (4.11)

Taking these facts and adding a term for normalization gives the final version of the cross-body drag

formulation.

1 . x2 (v + xr)
F

y
= TC D p(v + xr) — dx (4.12)

^ U
cf

Fw =W CdP\w + x <1) —Tr

*<
dX (4.13)

P rx nosef
2

, \2](V + Xr)

jliaii [
C ^Mx)(v + xr) +C

dl
b(x){w-xq)

\
- ^ dx

These forces are incorporated into the EOM as one of the multiple terms present. Translating

the forces into the rigid body's reference frame and integrating their effect along the horizontal axis of

-55-

the body results in the fifth term on the right hand side in the sway equation of motion.

This term represents the effects of flow forces across the spherical rigid body. As is evidenced

by the derivation of the forces, shape of the rigid body does make a difference. In the case of the

Phoenix AUV, which has a rectangular shape, this generic model is inaccurate.

2. Square Hull Derivation

When a flow force is incident upon a rigid body that does not have a spherical shape the

direction of the resultant force is not necessarily the same direction the force came from. Figure 4.14

demonstrates this fact. Given a force incident upon a rigid body with a shape that is rectangular, the

resultant force is not equal in magnitude or direction to the resultant force.

The initial formulation from the round hull derivation of cross-body drag is similar, but the

terms cannot be normalized using Ucf- The reason for this is that Ucfis radialized and it is no longer

the case that the forces are radially symmetric. This causes some differences to exist between the

cross-body drag term in the EOM for a spherically shaped body versus the same term in the EOM for

a non spherical body. The formulation for Fy and Fw in this case are given in (4.14) and (4.15)

(Healey, 1998).

Incident Force /
/ w

Ml. yr

£S*KSS V

5s>§JsSS

*\
Resultant Force

Resultant Force * Incident Force

Figure 4.14. Flow force incident upon a non-spherical

rigid body.

-56-

1
, , 2F

y
=-C D p(v + xr) dx

(4.14)

(4.15)

Taking these revised force formulations and incorporating them into the EOM to make a more

specific set of equations yields the sway equation of motion given in (4.16). This equation provides an

accurate evaluation of cross-body drag and is computationally less complex than the spherical hull

case. Thus it provides two advantages. Similar specializations are performed for the equations of

motion for heave, pitch, and yaw.

Square Hull Sway Equation of Motion (4.16)

m-^Y
2

v+ mi, L*Y \p+\mx G
-~L*Y

2 p) V 2

= m[-ur + wp-x
G pq + y G (p

2 +r 2

)-z G
qr]

+ ^L i

[Y
up
up + Y

ur
ur + Y

vq
vq + YwpWp + YwrW r}

\ u\u\Srb°rb
+
%|„|S-AJ

+
P-V Y....UV + Y...yw + u

-^\
Xn ° S

,

e

\c
dy
h(x)(v + xr)

2 +C
dz
b(x){w-xq)

2

]dx
2 " x tail L .

+(W -B)cos(e)sm((t))

U> \ I
, i i

1

V \v \+v \v
.,n]t c j

bow-Iateral\ bow-lateral' stern-lateral] stern—lateral]

(2 lb

-57-

In order to improve the accuracy of the Phoenix AUV virtual environment without limiting its

extensibility, both models are incorporated in the implementation. The user can select the shape of the

hull being tested in the virtual environment, and based on that selection the appropriate version of the

EOM will be used.

G. SUMMARY
The environment plays a major role in all aspects of AUV research and design. If a virtual

environment is to act as a true test bed for newly engineered, devices it must take into account the

forces of nature. The virtual environment used for testing and development of the Phoenix AUV

incorporates many environmental factors into its simulation. The virtual environment is truly

physically based. The enhancements added throughout this work incorporate a highly detailed

buoyancy model, wave motion simulation based on the Pierson-Moskowitz wave spectrum, a detailed

methodology for simulating body induced flow forces, and a specialization of the equations of motion

to offer a higher resolution method for modeling cross-body drag on non spherical rigid bodies.

All of these factors serve to enhance the realistic behaviors which are present inside the

Phoenix AUV's virtual environment. Improvements of this type can only better performance leading

to improved design, testing, and final product.

-58-

V. IMPLEMENTATION

A. INTRODUCTION

As with any technically based research, there needs to be some proof of correctness for the

various theories presented. This chapter examines two separate implementations of the Phoenix

AUVs virtual environment. The initial implementation was done using C++ and Silicon Graphics

Openlnventor Application Programmers Interface (API). This version runs solely on Silicon Graphics

workstations. A second platform-independent, implementation was created to run on any machine

upon which the Java runtime environment is present. Each version uses the DIS protocol for

networking enabling the user to run a mix of viewer and dynamics versions if desired.

B. C++ AND OPENINVENTOR

The virtual environment is primarily comprised of three components. In their original

implementation the dynamics program was written in C++, robot execution level in C, and the viewer

in C++ using the Openlnventor API (Brutzman, 1993). Each component was thoroughly tested and

the performance was validated by real-world experiments. With this history in mind, the logical

choice is to first implement the flow and buoyancy models in C++ before the transition to Java.

The wave model and the submarine-induced flow forces both relate to the environments

effect on the AUV, thus both are implemented in the dynamics code. The code itself is located in a

function called calculate_equations_of_motion() which is included in Appendix A.

The algorithm for the wave model uses the P-M spectrum as discussed in Chapter IV. For each

time step, the height of the wave is calculated for the fifteen sections down the AUV body length. At

each block, a force vector proportional to the wave height is assigned. After stepping down the length

of the body the vectors are added and averaged to get an overall force that acts upon the entire AUV.

This superposition vector is used to adjust the center of buoyancy of the vehicle prior to completing

the integration of the equations of motion. The overall effect is a pitching moment that is proportional

to the wave position over the body of the vehicle. Figure 5. 1 presents the pseudocode for the wave

algorithm.

-59-

for (1 to number of sections) {

Calculate wave motion buoyancy for this block

if (depth > 20 ft) {

Reduce wave buoyancy effect due to depth

}

Determine overall direction of wave motion

} //end of for loop

for (1 to number of sections) {

Adjust vehicle buoyancy based on wave motion

Adjust center of buoyancy based on direction of wave motion and pitch angle

}

high-resolution buoyancy force calculation complete

Figure 5.1. Pseudocode for wave motion effect algorithm.

The next algorithm incorporated into the equations of motion provides the forces created by

the submarine's flow field. As described in Chapter IV the flow field exists in the area of water

surrounding the submarine. The implementation of this algorithm is more complex than that of the

wave model. It requires several calculations for each section of the AUV body. Each one providing

information for the next iteration down the body. Figure 5.2 contains pseudocode of the general

algorithm.

The first step is to determine whether or not the AUV is inside the influence field of the

submarine. This is done by comparing the position of the AUV to the position of center of the

submarine. Having knowledge of the volume of water which falls into the flow field allows for quick

determination of whether or not submarine flow interactions must be calculated.

-60-

Compare the position of the AUV to that of the submarine

if (inside flowfield)
{

Set flowfield flag to TRUE;

}

for (1 to number of sections) {

Calculate the x-position of the current section

Calculate the y-position of the current section

Calculate the z-position of the current section

Determine the position of the AUV relative to the submarine center

Index into flow field matrix and retrieve the flow force at that point, without interpolation

Calculate a rotation matrix to translate x,y,z force components into body coordinates

for (1 to number of sections) {

Translate current section forces into body coordinates

//Cross Body Drag Contribution

Calculate flow_field_sway_integral

Calculate flow_field_surge_integral

Calculate flow_field_heave_integral

Calculate flow_field_roll_integral

Calculate flow_field_pitch_integral

Calculate flow_field_yaw_integral

}

Add flow field integrals to cross-body drag integrals

Figure 5.2. Pseudocode for flow field algorithm.

-61-

Once it is determined that the AUV is inside the flow field, more detailed calculations are

performed. These include finding the position of each section's center and the position of that section

inside the flow field. Figure 5.3 demonstrates the geometry of calculating the x position of a section.

Knowing the heading of the AUV and the orientation of the world axis, each coordinate position can

be determined using simple geometry. A similar method is used for determining the y and z values

for a section of the hull.

AUV Heading

Distance

from AUV
Center

Heading
Difference

AUV_x
Position

Section X X-Axis

X = AUV_x + sin (90-Heading Difference)

* distance from AUV Center

Figure 5.3. Geometry of calculating an AUV sections X position

relative to the center of the AUV.

Once the x, y, and z coordinates of a body section have been determined, they are used to

calculate the position inside the flow field. This process takes two steps. First, the relative position of

the AUV to the submarine is determined, then the relative coordinates are converted into flow-field

indices.

The X component represents the AUV position along the hull of the submarine with a value of

zero ft meaning at the bow and 360 ft at the stern. The X value corresponds to the distance from the

bow of the submarine in feet. This is determined by simply taking the difference between the X

-62-

position of the submarine and the X position of the AUV.

The next relative position component is the radial distance of the AUV from the centerline of

the submarine. It combines both the y and z positional components into a single number (Equation

5.1). This is used because the construction of the flow field is such that the grid is anchored at the

center of the submarine. To get at any particular position out from the hull the overall radial distance

is needed as an index.

RadialDist = J\Y difference) + (Zdifference) (5.1)

The conversion step takes the X-position with the radial distance and then converts the pair to

flow field indices. The numbers cannot be taken directly because the grid has a resolution of Yi ft

increments. This causes the grid positions to range from zero to 720 along the hull and zero to sixty

out from the hull. The conversion simply takes the calculated coordinate and makes it into an integer

position which can be used in the flow field system.

Having the proper indices available it is now possible to retrieve the values of flow forces seen

by the section of the AUV being considered. The flow induced forces are stored velocities in the

world coordinate system. To apply them to the equations of motion in the local coordinate frame they

are translated into body coordinates using equation (4.6). No interpolation is performed due to already

high resolution, reducing computational complexity. The forces are then applied to the EOM by

adding their effects into the calculation of cross-body drag.

The algorithms for wave motion and body-induced flow forces are tightly interlaced in the

dynamics code. Many of the calculations required for the wave model are also needed for the flow

field and vice versa. By conducting the computations in tandem the added execution time is kept to a

minimum. It enables an already computationally complex virtual environment the ability to become

more accurate, yet still run in real-time.

Other changes to the virtual environment involved additions to the viewer program. The

viewer provides a window into the virtual environment. For the experiments conducted in this thesis

it is necessary to visualize the AUVs approach and rendezvous with a submarine. In its initial

incarnation the virtual environment did not contain a submarine. It was primarily used to develop

-63-

robot control algorithms for open water situations. It also provided a replica of the NPS test tank for

small-area testing which might later be conducted in the actual tank. As the focus was moved away

from small-area operations to open-water docking, a 688 class submarine model was added to the

environment. The addition turned out to be an invaluable visualization tool and presented an added

feeling of AUV scale in the open ocean.

Implementing the wave buoyancy model and the body-induced flow algorithm in C++

provided an excellent stepping stone in the development process. Knowing the original version of the

virtual environment was validated and sound allowed for quick isolation of possible modeling errors.

Any instabilities encountered were localized to either of the new algorithms. It also provided the

groundwork for the later implementation of dynamics in Java. In summary: development and

implementation of the high-resolution models was successful.

C. JAVA AND VIRTUAL REALITY MODELING LANGUAGE (VRML)

After proving the validity of the models proposed by this thesis, the next step was to provide a

platform-independent version of the code. This was not possible using C++ and the Openlnventor

API. C++ is plagued by compiler differences from one platform to another, and the Openlnventor API

is primarily for Silicon Graphics workstations, although a port of the library to Windows95 has

recently been completed. In any case the only way to provide true platform independence was to use

languages which were not platform specific. For that reason Java in combination with VRML are the

language of choice.

The first portion of the virtual environment converted was the dynamics program and

associated functions. This was a relatively straightforward port of C++ to Java. While some problems

were encountered due to differences in language functionality (i.e. object handling, operator

overloading, pointers, etc.) it was more time consuming than complex. Appendix B contains a list

description of the code for the virtual environment dynamics in Java. The functionality and object

hierarchy of the dynamics program is the same in the Java and C++ version, as is most program

syntax. Flow field matrices proved too large for current PC Java implementation, so this section of

code is commented out.

The second step in the move towards platform independence was to re-implement a viewer

-64-

program in a platform-neutral way. VRML was used to describe the virtual environment scene graph

with Java as the language to animate the objects in the environment. This gives anyone with an

Internet browser (and appropriate VRML plug-in) the ability to view the virtual environment.

The difficulties in porting the viewer to a platform independent scheme were primarily due to

problems with Internet browsers and VRML plugins. Due to the early development stage of both of

these technologies, many inconsistencies were encountered. These implementation problems were

handled by the DIS-Java-VRML working group. Numerous work-arounds and problem solutions

were developed in the working group forum. They provided the Java implementation of the DIS

protocol and the bridge from multicast broadcast to unicast so the VRML scene can be animated via

the script node. Figure 5.4 shows the underlying architecture of the Java-VRML version of the

Phoenix AUV virtual environment. The source code for the VRML scene is available via references

in Appendix B. The source for the DIS-Java-VRML library is available at

[http:www. stl. nps.navy, mil/dis-java-vrml]

.

Execution Dynamics Bridge <^> Browser

DIS

Network

Figure 5.4. Platform-independent architecture for Phoenix AUV virtual environment.

The transition from a platform specific virtual environment to a platform-independent one is a

large step forward in simulation technology. As personal computers become better and platform-

independent languages more robust, this transition can only get easier.

-65-

D. SUMMARY
This chapter describes two separate implementations of the Phoenix AUV virtual

environment. The C++/OpenInventor version is an extension of the original virtual environment,

providing the speed and additional functionality needed to perform the SBD of torpedo tube recovery,

while still using a validated base environment for quick isolation of problems. The DIS-Java-VRML

implementation gives the virtual environment portability. It is now possible to view simulations from

any machine having Internet connectivity.

-66-

VI. EXECUTION LEVEL AND VIRTUAL DOPPLER SONAR

A. INTRODUCTION

The Phoenix AUV execution level software controls all the hardware onboard the vehicle,

ensuring all hard real-time deadlines are met. It uses a sense-decide-act loop to iterate through the

process of polling sensor and effector state, deciding what actions are required and then commanding

devices to the proper state. The devices that are controlled range from motors and servos to gyros and

sonars. This chapter discusses a new sensor, a doppler sonar unit, which is simulated in the virtual

environment and used for advanced control law testing.

B. TRITECH DS30 PRECISION DOPPLER SONAR

Doppler sonar works on the basic theory of measuring the frequency shift in a transmitted

signal. The TRITECH DS30 precision doppler sonar is a highly accurate, reliable, compact unit

designed for underwater vehicle use. It provides measurements of vehicle speed by analyzing the

frequency shift in the back-scattered signal (MECCO, 1997). The DS30 is comprised of three major

components: a digital micro controller, an analog control circuit, and a transducer.

The digital micro controller controls the transmitter, the receiver, a Programmable Logic

Device (PLD), and manages data communications to an external control device. Data output provides

a bottom speed vector, water mass speed vector, and the current depth. Both vectors can be presented

in either polar or rectangular format. The speed vectors are given in meters per second, with an

accuracy of one centimeter per second and depth indication is accurate to one centimeter.

Communication with the sonar is conducted through a 9600 baud serial line. This line handles both

data output and command input. Figure 6. 1 gives the specification data for the DS30.

-67-

Power 24VDC

Power consumption 200 mA average, 1 A peak

Operating frequency 1 MHz

Operating range for seabed tracking 2-30 meters

Tracking modes Velocity relative to seabed & velocity relative to seawater

Data rate Up to 5 updates per second

Communication RS232 as standard, RS485 as option

Operating velocity 0-3.75 meters/second

Velocity accuracy 2.5 centimeters/second

Velocity resolution 0.5 centimeters/second

Transducer 4 beam Janus array

Configuration Convex, beams @ 45° to vertical

Source level 217 dB re. 1 uPa @ 1 meter

Depth rating 1000 meters

Length 360 millimeters including connector

Body tube diameter 120 millimeters

Maximum diameter 130 millimeters

Weight in air 5.5 kilograms

Weight in water 2 kilograms

Figure 6.1. Tritech DS30 precision doppler sonar specification from (MECCO, 1997).

The DS30 analog control circuit is comprised of one receiving channel and one transmitting

channel. It achieves a four-channel system by multiplexing the receiver/transmitter circuits to each

transducer element. The transducer is constructed with four elements, each at 45 ° offset from the

normal axis (MECCO, 1997). Figure 6.2 is a picture of the DS30 mounted on the front of the Phoenix

AUV.

-68-

Figure 6.2. Tritech DS30 precision doppler sonar mounted on the

nose of the Phoenix AUV.

The Tritech DS30 precision doppler sonar is a unit which is well suited to the Phoenix AUVs

needs. It is an accurate sensor which can be easily integrated into the vehicle due to its low cost, low

power requirements, and standard communication setup. The DS30 provides all the needed

components to accurately measure cross-body flow and use that information for enhanced modes of

AUV control.

69-

C. SONTEK ACOUSTIC DOPPLER VELOCIMETER (ADV)

The Sontek acoustic doppler velocimeter (ADV) is another device which can be used to

determine cross-body flow for the Phoenix AUV. It is an acoustic doppler current profiler and has the

ability to determine water velocity in three component axis. The Sontek ADV works by measuring the

velocity of a volume of fluid that is directly above its probe and has an accuracy of 0.

1

millimeters/second. This type of technology is designed to accurately measure ocean current, and it is

well suited to be used as a cross-body flow sensor on the Phoenix AUV. The specifications for this

device are given in Figure 6.3. Eventually in-water testing will also examine whether the velocity

update rate is sufficient fast for real-time maneuvering control.

Power 24 VDC

Power consumption 3 Watts average

Operating frequency 10 MHz

Data rate 0.1 to 25 Hz

Communication RS232

Operating velocity 2.5 meters/second

Velocity resolution 0.1 millimeters/second

Depth rating 30 meters

Length , 407.9 millimeters including connector

Body tube diameter 76.2 millimeters

Maximum diameter 133.4 millimeters

Figure 6.3. SonTek acoustic doppler velocimeter (ADV) specification from (SonTek, 1997).

The Sontek ADV is a new device which is specifically designed for shallow water operations.

Figure 6.4 is a picture of the SonTek ADV. This unit is currently being evaluated for use in the next

incarnation of the Phoenix AUV.

-70-

Figure 6.4. Sontek acoustic doppler velocimeter (ADV;

-71-

D. VIRTUAL SIMULATION OF DOPPLER SONAR

Before a new sensor is integrated into the Phoenix AUV and deployed for in-water testing,

SBD practices suggest that its use be simulated and evaluated first. To this end a virtual sensor was

implemented to represent the Tritech DS30 precision doppler sonar. It was created to provide the

same functionality in the virtual world as is expected from its performance in the open ocean

environment. The simulation was developed in several steps to ensure accuracy of each portion of the

model.

First, the doppler sonar was integrated into the execution level code in function

closed_loop_control_module(). In the sense phase of the execution level's sense-decide-act loop,

variables were added to read the sensor input. Since the true hardware is not present in the simulation

this was accomplished by adding the needed parameters to the state vector. The state vector represents

the value (or state) of every sensor and effector in the vehicle. This is the information that is sent to

the dynamics model to provoke the appropriate forces, or measure the needed quantities, in the

surrounding virtual environment.

The next step included the addition of a sensor model to the hydrodynamics code. This was

necessary so the dynamics model might return proper values to the execution level, when the

execution level indicated use of the doppler sonar via the state vector. For this thesis a simple zero-

order model was constructed. The value returned by dynamics is the true error-free value of the

quantity being measured. In other words, there is no error due to random noise or uncertainty inserted

in the response. The assumption for beginning testing and evaluation is that the sensor will work

exactly as described by the technical documentation on the sensor. Granted this is not always a valid

assumption, nonetheless it is sufficient for initial testing. Random noise and errors can easily be

incorporated at a later time, since it is more appropriate to examine performance failure modes after

the sensor had been proven useful in the optimal case.

The final step for sensor integration is to provide a facility to exercise all the control and data

modes of the DS30. To accomplish this step, commands must be added to the execution level

command language. The device itself has a series of roughly ten commands, ranging from reset to

designating sampling frequency. During initial device testing it is only necessary to accurately parse

the output data. The data provided by the unit in its normal mode contains both the unit's speed over

-72-

ground and the speed of the water column. These values are all that is needed for the cross-body flow

calculation input to the vehicle control laws. Thus, implementation of a full command language for

the unit was deferred as future work.

The simulation of the Tritech DS30 precision sonar is a useful tool for testing and

development of robot control modes. By separating the process into well defined components

researchers are able to keep robot-specific code in one module and hydrodynamic code in another.

The processes communicate via a state vector which is read by the robot execution level as if it were

getting the data directly from the actual sensor. This makes the transition from the simulation

environment to the real world transparent from the robot's point of view.

E. ENHANCED CONTROL LAWS

The addition of any useful sensor is an iterative process. In order to improve vehicle control

the sensor must be evaluated, prototyped, and integrated into the existing system. The Phoenix AUV

control laws are no exception. These laws are finely tuned to provide a properly damped control

system. The addition of a doppler sonar which can provide cross-body flow information requires the

adjustment of these laws to incorporate (and take advantage of) the new information available.

In order to use the information available from the doppler sonar unit, it is necessary to

evaluate which positioning mechanism can best use this information. The question is primarily

whether to adjust the control of the rudders, the fore and aft thrusters or both sets of effectors. In the

case of the rudders, which are primarily used during forward transit, cross-body flow information is

not significant. Since the employment of this sensor is envisioned to be a mechanism which allows

the AUV to predict turbulent flow areas before the entire body is pushed unstable by them, rudders

are not the most effective control devices. Instead the virtual cross-body flow sensor is used for

adjusting thruster control laws.

Thrusters can be used to orient the vehicle horizontally and counteract cross-body flow quite

effectively. As the AUV moves into a turbulent area the sensed cross-body flow can be used to

activate a thruster force counteracting the instability caused by the turbulence. Thus the thruster

control laws are adjusted to include a term for cross-body flow data. Figure 6.5 gives the new thruster

control law.

-73-

AUV_stern_lateral = (- k_thruster_psi * normalize2(psi-psi_command)

- k_thruster_r * r)

+ k_thruster_hover * cross_track_distance

- k_thruster_current * AUV_oceancurrent_x

* sin_psi

+ k_thruster_current * AUV_oceancurrent_y

* cos_psi

+ k_sway_hover * y

+ k_thruster_current * cross_body_flow_u[12];

Figure 6.5. New thruster control law for the AUV stern lateral thruster.

This new control law can be written in two ways: as a straight sensor input or as a smart

sensor. The straight sensor input takes the value sensed by the doppler sonar and uses it in the forward

lateral thruster control law since that is the relative location of the physical sensor. A smart sensor is

one which "dead reckons" the sensed cross-body flow using the vehicles recent movement history and

can predict the flow at both forward and aft lateral thrusters. In this case both thrusters can be

effectively employed to counteract the turbulent flow encountered. Both of these control law options

were implemented and tested. The results are presented in Chapter VII.

The integration of a new sensor into AUV control is a significant task. Simulation testing

shows that the doppler sonar sensor provides useful information which needs to be integrated into

vehicle control. This section presented an alteration to the vehicle control laws for cross-body

thrusters in addition to two methodologies for sensor employment. These are the first attempts at

harnessing the wealth of information available from such a useful piece of equipment.

F. SUMMARY
The abilities of the Phoenix AUV to see the environment in which it operates are limited by its

sensor suite. Improving the way the AUV observes the environment and increasing sensory input

-74-

provides additional information for vehicle control law action. In order to thoroughly test the use of

these sensors, they must be integrated into the execution level code and tested in the target

environment. One such device which appears to greatly improve vehicle control is a precision doppler

sonar. This chapter demonstrated the simulation of a precision doppler sonar and the integration of its

output information into enhanced vehicle control laws. The results acquired from simulating such a

sensor demonstrate how useful the information is to AUV control and the significance of sensor

simulation in the vehicle design process.

-75-

-76-

VII. SIMULATION RESULTS

A. INTRODUCTION

This chapter outlines and presents experiments conducted to validate the simulations

implemented in this thesis. The experimental design is addressed along with the measures used to

qualify and quantify results. Then the final results are presented in concise tables which are supported

by plots provided in Appendix C.

B. DESIGN OF EXPERIMENTS

When developing tests to validate the implemented cross-body flow and associated AUV

control algorithms, it is necessary to examine two areas: the high-resolution buoyancy model with

wave action effects, and the flow field interaction algorithm. In order to properly test each area

separate experiments were designed. Each experiment focuses on the concerns associated with the

particular application being tested.

For the testing of the high-resolution buoyancy model, a series of simple missions were

conducted under various sea-state conditions. During these experiments the Phoenix AUV was placed

on a base course heading into the sea at a speed which was high enough to allow the vehicle to

maintain heading, while low enough to prevent vehicle control from masking the effects of the sea.

The mission script used (mission. script.SeaStateTest) is included in Appendix C.

During these tests it was also necessary to determine specific factors which might be used to

quantify and qualify the results that were found. In terms of vehicle stability while heading into a sea

the primary factors of concern are maximum pitch angle and pitch rate. These parameters are

appropriate because they directly indicate the vehicle's stability and ability to maintain control as it

moves through the seas.

The termination consideration for these tests is determination of what sea state to end the

analysis. While the hydrodynamics model may be able to produce a sea state ranging from one to

nine, at some point the vehicle becomes so unstable that its presence is not worthwhile. Thus the

analysis range from minimal sea states (1) to a sea state in which the vehicles stability was in

questionable for greater than 50% of the run.

-77-

In the first group of experiments, the high-resolution buoyancy model is tested in sea states

ranging from one to a sea in which the vehicle does not maintain stability. During each exercise the

AUV proceeded on a course directly into the sea at a speed high enough to maintain steerage. These

runs fully exercised the high resolution buoyancy model and the wave motion simulation. The

experiments are designated SS.l through SS.5 corresponding to sea states one through five.

The second set of experiments are aimed at testing the flow-field simulation and vehicle

control using cross-body flow sensor input. The goal is to bracket the torpedo tube docking problem

by running experiments in flow conditions which ranged from lower than expected turbulence levels

to well above expected turbulence levels. Additionally, the results with the cross-body sensor

available are compared to runs with the sensor absent. Table 7.1 shows the naming convention for all

of the experiment variations.

No Flow Field Normal Flow Field Extreme Flow Field

No Flow Sensor Experiment CBF. 1 Experiment CBF.2 Experiment CBF.3

Flow Sensor Experiment CBF.4 Experiment CBF.5 Experiment CBF.6

Smart Control Sensor Experiment CBF.7 Experiment CBF.

8

Experiment CBF.9

Table 7.1. Variation of conditions for experimental cross-body flow (CBF) missions.

While running the CBF missions, three criteria were chosen to quantify observed results:

vehicle distance from track, time to regain track in turbulence and whether or not the vehicle collided

with the submarine hull during the docking mission. These parameters are appropriate because they

directly address AUV survivability during torpedo tube recovery. If flow perturbations cause

significant variance from the preplanned track, then AUV endurance and control become a concern. If

collision occurs, then safety of the AUV and the submarine become significant. Thus these metrics

provide a useful measure of AUV performance in the presence of turbulent flow. In each run the

commanded path was identical, as specified by the mission script mission.script.FlowFieldTestLoop

included in Appendix C.

The combined results of these experiments provide a sound measure of the algorithms

developed in this thesis. They address the performance of the high-resolution buoyancy model, the

-78-

wave motion simulation, the turbulent flow field simulation, and the cross-body flow sensor control

algorithm. These simulation experiments also serve to illustrate the accuracy of the physically based

models they are derived from. Any errors in a cross-coupled model as complex as vehicle dynamics

will almost certainly cause vehicle instability in the virtual environment.

C. RESULTS

The experiments described in the previous section were conducted ising the Phoenix AUV

execution level and the C++ implementation of the virtual environment. The results were measured in

terms of the metrics discussed, collected in the form of parameter graphs included in Appendix C and

summary tables presented in this chapter.

The experiment which exercised the high-resolution buoyancy model and the wave motion

simulation provided interesting results. The vehicle was able to maintain stability in sea states ranging

from zero to five. In sea state five the vehicle was unstable for roughly 60% of the 5 minutes that the

run lasted. Nevertheless, the control algorithms were able to maintain a relatively stable attitude while

the vehicle was moved by large wave swells. Vehicle pitch rate and maximum pitch angle varied

greatly between sea states as expected. Table 7.2 contains the data addressing these metrics. Worth

noting is the dramatic increase in pitch rate and pitch angle when the sea state progressed from four to

five. It is likely that shorter sampling rates, modified control coefficients and the predictive control

algorithm specified in (Riedell, Healey, 1998) can improve performance even further. Surprisingly the

vehicle was able to maintain control in sea states well above what was expected. Further in-water

testing is definitely needed to validate these results.

Experiment SS.l SS.2 SS.3 SS.4 SS.5

Pitch rate

(deg/sec)

0.2 1.0 1.5 4.5 11.0

Maximum
pitch angle

(deg)

0.35

(0.15 avg)

1.0

(1.0 avg.)

3.0

(1.5 avg.)

7.0

(4.5 avg)

40.0

(11.0 avg.)

-79-

Approximate 0% 0% 1 % 15% 60%
amount of

time vehicle

was unstable

Table 7.2. Experimental results of AUV stability in various sea states.

The results from the experiment which tested vehicle control in the flow field are also

significant. For the most part the results are as expected. The first metric used, collision with the hull,

gives a boolean result for each run. Table 4.3 contains the data collected for runs under all of the

various conditions. In the no flow and normal flow conditions, vehicle control was stable enough to

prevent the AUV from colliding with the submarine hull. In the extreme flow case the AUV collided

with the hull in every case, regardless of sensor control. The point at which collision occurred was at

the pump suction inlet along the hull. In the extreme case the suction flow simulates a flow of 1.3

knots vice 1.0 knot in the normal flow case. This slight increase in flow force creates a significant

problem for AUV control. Despite flow turbulence near the torpedo tube door, no collisions occured

in the door area.

Flow Regime No Sensor Simple Control Sensor Smart Control Sensor

No Flow CBF.l: No Collision CBF.2: No Collision CBF.3: No Collision

Normal Flow Profile CBF.4: No Collision CBF.5: No Collision CBF.6: No Collision

Extreme Flow Profile CBF.7: Collision at

pump suction only

CBF.8: Collision at

pump suction only

CBF.9: Collision at

pump suction only

Table 7.3. Cross-body flow (CBF) experimental results of AUV collision with submarine hull.

The other measures evaluated are the overall distance the vehicle departed from its pre-

planned track due to turbulent flow and how long it took to return to track after departure. Departure

from track was measured in the most turbulent areas within the flow field: the pump suction, pump

discharge, and torpedo tube door docking. Table 7.4 presents the results of these measures at the three

points for each experiment. These results are as expected when moving from one flow condition to

another. Yet the results within each condition show that the cross-body flow sensor input to thruster

-80-

control has no significant effect on distance from track, but does aid in the time needed to get back on

base course. The lower return times are most likely due to the fact that the thrusters are helping to

stabilize the vehicle when the cross-body flow sensor is used. More accurate testing of the adjusted

control laws is needed. Nevertheless, the control results are promising. The additional sensor does in

fact provide some additional thruster control ability. It is left to future researchers to implement a

more effective control law.

Flow Condition Position No Sensor Simple Control

Sensor

Smart Control

Sensor

No Flow Distance from track at

pump discharge (feet)

No Flow Time to regain track

(seconds)

No Flow Distance from track at

pump suction (feet)

No Flow Time to regain track

(seconds)

No Flow Distance from track at

torpedo tube entry

(inches)

No Flow Time to regain track

(seconds)

.

Normal Flow

Profile

Distance from track at

pump discharge (feet)

13 13 13

Normal Flow

Profile

Time to regain track

(seconds)

55 52 45

Normal Flow

Profile

Distance from track at

pump suction (feet)

5 5 5

Normal Flow

Profile

Time to regain track

(seconds)

44 43 40

Normal Flow

Profile

Distance from track at

torpedo tube entry

(inches)

8.7 6.5 6.0

-81-

Normal Flow

Profile

Time to regain track

(seconds)

N/A N/A N/A

Extreme Flow

Profile

Distance from track at

pump discharge (feet)

18 18 18

Extreme Flow

Profile

Time to regain track

(seconds)

60 57 56

Extreme Flow

Profile

Distance from track at

pump suction (feet)

10 10 10

Extreme Flow

Profile

Time to regain track

(seconds)

47 44 42

Extreme Flow

Profile

Distance from track at

torpedo tube entry

(inches)

10.3 9.6 8.7

Extreme Flow

Profile

Time to regain track

(seconds)

N/A N/A N/A

Table 7.4. AUV distance from track under various cross-body flow (CBF) experiment conditions.

The results arrived at in these experiments provide useful insight into the algorithms

implemented in this thesis. The high-resolution buoyancy model, the wave motion simulation and the

turbulent flow field simulation appear to be accurate and give consistent results which are in line with

expectations. On the other hand, the experiments also demonstrate that the control algorithms which

use doppler sonar input for cross-body flow measurement need to be tuned. The virtual environment

thus provides a useful tool for control law testing, which can be further improved by incorporation of

results from in-water validation tests.

D. SUMMARY
Experiments are a useful tool in any researcher's repertoire. They serve to verify the theories

upon which technological innovations are based. This chapter presents the design of experiments that

are performed in simulation and used to test the models developed in this thesis. The experiments

address testing of the high-resolution buoyancy model, the wave motion simulation, turbulent flow-

field simulation, and enhanced vehicle control using a doppler sonar employed as a cross-body flow

-82-

sensor. Additionally, design of experiments and the metrics used to measure results are discussed to

provide the reader with a good understanding of what success is based on. These experiments are a

useful means to rigorously test the Phoenix AUV dynamics model. The simulation results give hard

data demonstrating the stability and accuracy of the hydrodynamics model and associated cross-body

flow control laws.

-83-

-84-

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONTEXT

This thesis has taken an in-depth look at methods of modeling environmental effects in a

virtual environment. The net result is a virtual environment for the NPS Phoenix AUV which is more

robust and better simulates the environment for which the AUV is being designed. These

improvements are aimed at enhancing the SBD process, allowing engineers to rigorously test the

performance of AUV systems prior to deployment in the vehicle.

B. RESEARCH CONTRIBUTIONS AND CONCLUSIONS

Throughout this thesis the intention has been to provide solutions to real-world problems.

With that in mind, even simulation results provide useful contributions to the modeling community

along with interesting experimental results for those concerned with autonomous robot simulation.

The simulation enhancements include a high-resolution buoyancy model for wave simulation, an

extensible body-induced flow methodology, and an approach to platform-independent distributed

simulation environments.

The high-resolution buoyancy model divides the modeled vehicle into fifteen separate

sections. Each one is then evaluated for its contribution to the overall vehicle buoyancy. This

approximation gives an accurate representation of vehicle posture at shallow depths in various sea

states. It proved to be quite useful when evaluating vehicle operation in various broach postures. Once

fully submerged, at a depth where no portion of the vehicle is consistently exposed, its more accurate

modeling characteristics were less apparent, again as expected. The high-resolution buoyancy model

is a needed improvement with no noticeable consequence in terms of real-time performance.

The ability to test AUV control in various sea states also turned out to be a significant

improvement in vehicle modeling. The effects of wave motion come into play in shallow-water

operations as well as during submarine docking evolutions. At shallow the forces of wave motion

cause changes in vehicle velocities, accelerations and buoyancy. These factors need to be considered

when fine-tuning control algorithms. They bring to light possibilities of over-sensitve control laws

which can cause vehicle hunting and instability. During docking evolutions at submarine periscope

depth, wave movement is also a factor. Although increasing depth for this type of operation reduces

-85-

wave-induced forces, they are still present and need to be dealt with.

Another improvement in functionality of the virtual environment is the ability to simulate

body-induced flow forces. The methodology used for this simulation is completely extensible. As

researchers desire to change flow conditions, a simple data file replacement can import the new flow

field into the virtual environment. By bracketing the submarine docking problem with worst-case and

best-case flow instability, simulation results indicate that a feasible solution exists. A slight

modification to current torpedo tube door mechanisms might thus provide an avenue to AUV

recovery by naval submarines.

The use of a doppler sonar to determine cross-body flow is also evaluated. This type of sensor,

having the ability to provide speed over ground or speed through the water, enabled enhanced AUV

control in complex flow fields. Its employment allows the robot to predict and compensate for

movement instability using real-time flow condition feedback. Initial evaluation of doppler sonar

demonstrates that the sensor, when properly used, provides irreplaceably valuable inputs for vehicle

control.

Finally, this thesis shows that platform-independent 3D real-time simulations are possible.

The use of platform-neutral programming languages coupled with the rapidly increasing performance

of personal computers has brought the ability to run complex distributed simulations anytime,

anywhere. As network bandwidth continues to improve and PC performance is enhanced, platform-

independent simulations will continue to get better and become more popular.

C. RECOMMENDATIONS FOR FUTURE WORK
On the technological frontier there are always things to do. Breakthroughs in technology

happen at an amazing rate, with each new discovery bringing a new piece of gear or programming

paradigm to light. As these developments occur it will continue to be necessary to thoroughly test and

evaluate new technologies. The virtual environment is the ideal place for testing potential AUV

hardware and software.

This thesis falls short in the test and evaluation of the modeling technology proposed due to

the lack of in-water tests. To remedy this situation, a series of tests need to be conducted to validate

both the wave model and the complex body-induced flow interaction algorithm. These additions to

-86-

the virtual environment provide exceptional insight into vehicle behavior, but these results need not

be broadly accepted until all doubt is laid to rest through validating in-water tests.

Another area for future consideration involves both the execution level code and the dynamics

code. The current versions of these programs use standard British units. Yet the DIS protocol requires

metric units in its broadcast standard. This difference caused some inaccurate results during the

prototyping stages. In some cases formulations appeared to be correct but unit differences caused

erroneous results. After extensive troubleshooting all units were corrected and the results verified. For

future development a single set of units (metric since DIS requires it) needs to be implemented in

both the execution level code and the dynamics code.

This thesis also proposes that a doppler sonar be used as a cross-body flow indicator onboard

the Phoenix AUV. The simulation model for the doppler sensor used in this thesis was a simple one,

lacking any noise distribution. Nonetheless, simulation of such a sensor demonstrates it can provide

significant control enhancements. Further work is needed in simulation enhancement. Comparisons

need be made between perfect data and expected (noisy) real-world data. As the NPS AUV research

group moves towards the third incarnation of the Phoenix AUV it will be interesting install and test

the DS30 doppler sonar. An instrument of this nature will likely enable very precise control of the

robot in dangerous operating environments.

Another useful extension for robot development will be the integration of a depth-sensing

model coupled with real-world terrain topology (Leaver, 1998). It is also useful to move the virtual

world into the domain of testing sensor and effector performance in various acoustic environments.

This is a significant step forward from the generic environment testing currently performed, enabling

researchers to test equipment in a virtual Monterey Bay, then test in the real bay. It will likely

eliminate errors normally attributed to environmental considerations.

Other sensors to be enhanced in virtual simulation are the ST725 and ST 1000 sonars. These

sonars were modeled using several scan modes, employed in numerous different execution level

tactics by (Davis, 1996). While the modes are accessible to all for low-level control, a simplification

is required allowing for easier scan mode selection. Addition of manual steering along a true bearing

during the final stages of thesis testing added a new sensor value: lateral range (and range rate) to the

submarine maintaining steady course and speed. An enumeration of all sonar modes and their addition

to the execution command language will be useful in future tactic development.

-87-

Animation is a vital part of any virtual environment simulation. Helping humans visualize the

interactions taking place in the environment. It is one of the key reasons virtual simulations are even

created. The Phoenix AUVs virtual environment is an irreplaceable resource. Continued use of virtual

environment visualization and experimental validation will continue to provide invaluable insight.

-88-

APPENDIX A. VIRTUAL ENVIRONMENT C++ CODE

1. UUVBody.C Excerpt

1 1

1

/*

Program: UUVBody.C

Description: Six degree-of -freedom underwater vehicle hydrodynamics
based on Healey model

Revised:

System:

Compiler:

Compilation:

Author

:

EOM Revisions:

Dissertation:

Advisors

:

References

:

24 February 98

Irix 5.3

ANSI C++

irix> make UUVBody.o
irix> CC UUVBody.C -lm -c -g +w

-c == Produce binaries only, suppressing the link phase,
+w == Warn about all questionable constructs.

Don Brutzman
Code UW/Br
Naval Postgraduate School
Monterey CA 93943-5000

brutzman@nps .navy.mil

408.656.2149 work
408.656.3679 fax

Jeff Riedel, FEB 97: removed extra cross-body flow terms
Kevin Byrne, FEB 98: high-resolution buoyancy, cross-body flow

Brutzman, Donald P., A Virtual World for an Autonomous
Underwater Vehicle, Ph.D. Dissertation, Naval Postgraduate
School, Monterey California, December 1994. Available at
http: //www. stl .nps .navy.mil/~brutzman/dissertation/

Brutzman, Donald P., Software Reference: A Virtual World
for an Autonomous Underwater Vehicle, technical report
NPS-CS-010-94, Naval Postgraduate School, Monterey
California, December 1994. The accompanying public
electronic distribution of this reference includes source
code and executable programs. World-Wide Web (WWW)
Uniform Resource Locator (URL) is
http: //www. stl .nps .navy.mil/~auv

Dr. Mike Zyda, Dr. Bob McGhee and Dr. Tony Healey

Healey, A.J. and Lienard, D. , "Multivariable Sliding Mode
Control for Autonomous Diving and Steering of Unmanned
Underwater Vehicles," IEEE Journal of Oceanic Engineering,
vol. 18 no. 3, July 1993, pp. 327-339.

Yuh, J., "Modeling and Control of Underwater Robotic
Vehicle," IEEE Transactions on Systems, Man and Cybernetics,
vol. 20 no. 6, November /December 1990, pp. 1475-1483.

Press, William H. , Teukolsky, Saul A., Vetterling,
William T. and Flannery, Brian P., "Numerical Recipes in C,

"

second edition, Cambridge University Press, Cambridge
England, 1992.

Marco, David, "Autonomous Control of Underwater Vehicles
and Local Area Maneuvering," Ph.D. dissertation, Naval

-89-

Postgraduate School, Monterey California, September 1996.

Status

:

Fossen, Thor I., _Guidance and Control of Ocean Vehicles_,
John Wiley and Sons, Chichester England, 1994.

Bacon, Daniel Keith, Jr. "Integration of a Submarine into
NPSNET, " Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1995. Available via
http: //www.npsnet .nps .navy.mil/npsnet/publications .html

Equations of motion tested satisfactorily,
verification against in-water tests remains.

Added buoyancy and center-of-buoyancy changes at surface
based on Dan Bacon's thesis work.

Housekeeping: move utilities to math_utilities .c

Future work: Comments and suggestions are welcome!

*/

1 1

1

//******* Excerpt Follows ********//

//- II

void UUVBody: : integrate_equations_of_motion ()

{

int MAX_ACCELERATIONS_EXCEEDED = FALSE;

current_uuv_time = AUV_time;

double dt = current_uuv_time - time_of_posture_value (.) ;

// mission clock was reset, rezero the dynamics modelif (dt < 0.0)
{

current_uuv_time = AUV_time;
set_time_of_posture (AUV_time)

;

set_velocities (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
set_accelerations (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
dt = 0.0;
u = 0.0
V = 0.0
w = 0.0
p = 0.0
Q = 0.0
R = 0.0

}

double rho2 = rho / 2.0;
double L2 = L * L;
double L3 = L * L * L;
double L4 = L * L * L * L;
double L5 = L * L * L * L

// note that sign is not preserved in the following squared variables
// in order to present consistent naming with Healey reference paper.
// To preserve sign, use (U * fabs (U)) etc.
double P2 = P * P;
double Q2
double R2

// double U2
double V2
double W2

= Q * Q
= R * R
= U * U
= V * V
= W * W

-90-

// calculate world coordinate posture rates, use holding variables for speed

double PHI
double THETA
double PSI

= phi_value (

)

= theta_value ()

= psi_value ()

double sinPHI = sin PHI)

double cosPHI = cos PHI)

double sinTHETA = sin THETA)

double COSTHETA = cos THETA)

double sinPSI = sin PSI)

double cosPSI = cos PSI)

// clamp inputs to max values allowed in hydrodynamics coefficients file
if (MAX_RPM > 0.0)

//

clamp (& AUV_port_rpm, -MAX_RPM,
clamp (& AUV_stbd_rpm, -MAX_RPM,

}

if (MAX_PLANE > 0.0)
{

MAX_RPM,
MAX_RPM,

"AUV_port_rpm")

;

"AUV_stbd_rpm")

;

clamp (& AUV_delta_planes, -radians (MAX_PLANE) , radians (MAX_PLANE)

,

"AUV_delta_planes ")

;

}

i f (MAX_RUDDER > 0.0)
{

clamp (& AUV_delta_rudder, -radians (MAX_RUDDER) , radians (MAX_RUDDER)

,

"AUV_delta_rudder")

;

}

if (MAX_THRUSTER > 0.0)
{

clamp(& AUV_bow_lateral , -MAX_THRUSTER,MAX_THRUSTER, "AUV_bow_lateral")

;

clamp(& AUV_stern_lateral, -MAX_THRUSTER,MAX_THRUSTER, " AUV_stern_lateral ")

;

clamp (& AUV_bow_vertical, -MAX_THRUSTER,MAX_THRUSTER, " AUV_bow_vertical ")

;

clamp (& AUV_stern_vertical, -MAX_THRUSTER,MAX_THRUSTER, "AUV_stern_vertical")

;

}

// finish initializations
double delta_planes_stern
double delta_planes_bow
double delta_rudder_stern
double delta rudder bow

//
AUV_delta_planes

;

- AUV_delta_planes;
AUV_delta_rudder

;

- AUV delta rudder;

// Zero ordered thruster values if no thrusters present
AUV_bow_lateral *= THRUSTERS;
AUV_stern_lateral *= THRUSTERS;
AUV_bow_vertical *= THRUSTERS;
AUV_stern_vertical*= THRUSTERS;

// double EPSILON = epsilon (); // no longer used in revised model

//**************************pl ag for wave Model
//Moved Variable definition for visibility throughout both models
double sway_integral = 0.0;
double heave_integral = 0.0
double pitch_integral = 0.0
double yaw_integral = 0.0
double roll_integral = 0.0
double surge_integral = 0.0
double U_cf_x;

i f (WAVE_BOUYANCY_MODEL 0) {

-91-

// //

// calculate neutral buoyancy using center of buoyancy near surface ---II

if (AUV_z <= H / 2.0) /* transition, calculate broach extent */

{

if (AUV_z >= - (H / 2.0)) /* broach region, reduce buoyancy */

revisedBuoyancy = Buoyancy * (AUV_z + H/2.0)/ H;

else revisedBuoyancy =0.0; /* completely out of the water */

}

else revisedBuoyancy = Buoyancy; /* > H/2, no broach, normal submerged */

This picture shows the condition (AUV_z == H / 2.0) which is the
transition point above which revisedBuoyancy begins to drop off.

revisedBuoyancy will = when (AUV_z <= - H / 2.0)

Severe buoyancy changes result when AUV position magically begins
at depths so shallow that the AUV is initially above the surface,

-z

- H

- H/2

surface
I (I. \

+ + H/2 (
|

AUV_z = + H/2
|

\

I
(/

+ +H (| \l

I

+ z

depth down (positive increasing z)

// if boat is broaching and pitch THETA is positive, perform an approximate
// calculation of how center of buoyancy CB moves back towards stern

// nose_length is defined in UUVmodel.H and stays fixed

if ((THETA ==0.0) || (AUV_z >= H / 2.0))
{

revised_x_B = x_B; // prevent divide-by-zero case and too-deep case
)

else if (THETA > 0.0)
{

surface_length = AUV_z / sinTHETA;
}

else if (THETA < 0.0)
{

surface_length = AUV_z / (- sinTHETA) ,- // roughly symmetric fore+aft
}

else
{

cout << "Unexpected case in revised CB calculation!" << endl;
revised_x_B = x_B; // prevent divide by zero case

)

-92-

if ((THETA !- 0.0) && (surface_length < nose_length) && (AUV_z <= H / 2.0))
// move x_CB aft (fwd) but only if nose (stern) broaches the surface
{

revised_x_B = x_B - (nose_length - surface_length) * sinTHETA / 2.0;
}

if (TRACE || TRACE_EOM
|

(revisedBuoyancy != Buoyancy))
{

cout << "revisedBuoyancy = " << revisedBuoyancy << ", "

;

cout << "Weight = " << Weight << " , "

;

cout << endl;
cout << " surface_length = " << surface_length << " , "

;

cout << "nose_length = " << nose_length << " , "

;

cout << "revised_x_B = " << revised_x_B << endl

;

}

1 1

1

II integrate drag forces over the vehicle ---------------- -//
// corresponding to cross-body flow. Use cross-sectional slices. - - - - -//

double dx;

// traverse longitudinal centerline: index through x coordinate arrays
for (int x_index = 0; x_index < cross_sections-l; x_index ++)

{

dx = fabs (xx [x_index] - xx [x_index + 1])

;

U_cf_x = sqrt (square (V + xx [x_index] * R)

+ square (W - xx [x_index] * Q)) ;

if (U_cf_x > 1.0E-6) // arbitrary small non-0 minimum
{

sway_integral += rho2 *
(C_dy * hh [x_index]

* square ((V + xx [x_index] * R)))

// removed from model + C_dz * bb [x_index]
// * square ((W - xx [x_index] * Q))

)

* (V + xx[x_index] * R) * dx / U_cf_x;

heave_integral += rho2 *
(

// removed from model C_dy * hh [x_index]
// * square ((V + xx [x_index] * R)

)

+ C_dz * bb [x_index]
* square ((W - xx [x_index] * Q))

)

* (W - xx [x_index] * Q) * dx / U_cf_x;

pitch_integral += rho2 *
(

// removed from model C_dy * hh [x_index]
// * square ((V + xx [x_index] * R)))

+ C_dz * bb [x_index]

* square ((W - xx [x_index] * Q))

)

* (W - xx [x_index] * Q)

-93-

// * note sign correction

* xx [x_index] * dx / U_cf_x;

yaw_integral +=

// removed from model
//

}

}

if (TRACE
|

| TRACE_EOM)
{

rho2 *
(C_dy * hh [x_index]

* square ((V + xx [x_index] * R)))

+ C_dz * bb [x_index]
* square ((W - xx [x_index] * Q))

)

* (V + xx [x_index] * R)

* xx [x_index] * dx / U_cf_x;

cout <<
<<

cout <<
<<

cout <<
<<

cout <<
<<

dx = " << dx << "
, U_cf_x = " << U_cf_x

, sway_integral = " << sway_integral << endl;

dx = " << dx << "
, U_cf_x = " << U_cf_x

, heave_integral = " << heave_integral << endl;

dx = " << dx << "
, U_cf_x = " << U_cf_x

, pitch_integral = " << pitch_integral << endl;

dx = " << dx << " , U_cf_x = " << U_cf_x
, yaw_integral = " << yaw_integral << endl;

} // end old bouyancy model
else if (WAVE_BOUYANCY_MODEL == TRUE) {

int in_sub_f low_f ield = 0;

int pw_flowf ield_x [cross_sections]

;

int pw_flowf ield_r [cross_sections]

;

//required variables for piecewise calculations of wave motion effects
double pw_AUV_x[cross_sections]

;

double pw AUV y[cross sections]

;

double pw_AUV_z [cross_sections]

;

double pw_nose_length[cross_sections]

;

double pw_surface_length[cross_sections]

;

double pw_dx[cross_sections]

;

double pw_revised_x_B [cross_sections]

;

double pushup [cross_sections]

;

double pw_revisedBouyancy [cross_sections]

;

double x_dif ference;
double y_dif ference;
double z_dif ference;
double AUV_TTube_z_dif ference;
double AUV_SUB_Course_dif ference = 0.0;
double grid_x_dif ference - 0.0;
double grid_r_difference = 0.0;
double flow_force_direction[cross_sections]

;

double K_waves = 0.4; //This is a factor used to reduce wave effects. Otherwise
vehicle goes unstable.

double temp_doppler_stw_u = 0.0;
double temp_doppler_stw_v = 0.0;

Vector3D U_waves [cross_sections] ;

Vector3D pw_UVW;
reference

//Holds piecewise flow velocities in AUV frmae of

-94-

Vector3D f low_force_magnitude [cross_sections] ; //This holds x-dot, y-dot, z-dot in
sub ref frame

Hmatrix f low_rotation_matrix; //This is used to move flow vector from
the sub's (ft/sec)

//Additions to the equations of motion
double f low_f ield_sway_integral = 0.0
double f low_f ield_surge_integral = 0.0
double f low_f ield_heave_integral = 0.0
double f low_field_roll_integral = 0.0
double flow_f ield_pitch_integral = 0.0
double f low_f ield_yaw_integral = 0.0

if (SUBMARINE_DOCKING == TRUE) {

//Check to se if AUV is in the influence field of the submarine
//This conversion uses 0.3048 meters per foot or 3.281 ft per meter
x_difference = (AUV_x - submarine_x)
y_difference = (AUV y - submarine_y)
z_difference = (AUV_z - submarine_z)

//The order of AUV and TT is reversed to get sign correct since +z is down
AUV_TTube_z_dif ference = torpedotube_z - AUV_z;

//All box calculations are in feet, here we convert to meters and
//then compare
//The 15in y calc accounts for sub diameter of 30 ft, radius = 15 ft
if ((fabs(x_di f ference)) <= (f lowf ieldbox_length * FLOWFIELDLENGTH) &&

(fabs(y_dif ference)) <= (f lowf ieldbox_width * FLOWFIELDWIDTH + 15.0) &&
(fabs (z_dif ference)) <= (f lowf ieldbox_height * 40.0)) {

//set flag to perform piecewise calculations
in_sub_f low_f ield = 1

;

//calculate difference in AUV and sub course + speed
AUV_SUB_Course_dif ference = submarine_course - AUV_heading;

} //end of if in flow field
} //end if SUBMARINE_DOCKING

//Loop through body to Initialize all Arrays, perform piecewise calculations
for (int x_index = 0; x_index <= cross_sections - 1; x_index++)
{

pw_dx[x_index] = fabs (xx [x_index] - xx[x_index + 1]) ;

if (x_index ==0) {

pw_nose_length [x_index] = pw_dx [x_index] /2 . ;

}

else {

pw_nose_length[x_index] = pw_dx[x_index] /2 . + pw_nose_length[x_index - 1] +

pw_dx [x_index - 1] / 2 . ;

}

//Calculate pushup - the amount this sections pw_AUV_z dif feres from the overall
AUV_Z

pushup [x_index] = (xx[x_index] + pw_dx [x_index] /2 . 0) * sinTHETA;

//Calculate pw_AUV_z
pw_AUV_z [x_index] = AUV_z - pushup [x_index]

;

//Here we perform all calulations for piecewise flow field forces
//if AUV is in sub torpedotube area

-95-

sub

if (in_sub_flow_field == TRUE) {

//Calculate an exact x & y for each section
pw_AUV_x[x_index] = AUV_x + (sin(90 - AUV_SUB_Course_dif ference) *

(xx[x_index] + pw_dx[x_index] /2 .))

;

pw_AUV_y[x_index] = AUV_y + (sin (AUV_SUB_Course_dif ference) *

(xx[x_index] + pw_dx [x_index] /2 . 0))

;

//Translate the x and y into grid coordinates based on position relative to sub
//this takes position in feet and gives diff in ft
grid_x_dif ference =

((double) submarine_x - pw_AUV_x[x_index])

;

grid_r_dif ference = sqrt ((pow((double) submarine_y - pw_AUV_y[x_index] , 2)) +

(pow((double) submarine_z - pw_AUV_z [x_index] , 2)));

//Assuming each integer differnce equals one foot, this translates the difference
//between sub and auv (x,y) into a coordinate in the grids reference. The
//grid starts with (0,0) at the bow and (720, 0) at the stern. The center ofthe

// is actually at grid position (360, 0) .

if (grid_x_dif ference >= 0) {

pw_f lowf ield_x[x_index] = 360 + (int)(2 * grid_x_dif ference)

;

)

else {

pw_flowf ield_x[x_index] = 360 + (int)(2 * grid_x_dif ference)

;

}

//Here 15 is subtracted to account for submarine radius (15 ft = 3 .5 ft
segments)

pw_f lowf ield_r [x_index] = (int) ((grid_r_dif ference - 15.0) * 2.0);

//Check to make sure pw_flowfield x and y are valid
if ((pw_flowfield_x[x_index] >= FLOWFIELDLENGTH - 1) ||

(pw_f lowf ield_x[x_index] < 0)) {

if (TRACE) {

//print error message
qq^^ << " **•*•******•*****************•*•******•*******" << endl

<< "pw_flowf ield_x[x_index] for AUV section " << x_index
<< " was calculated as " << pw_f lowf ield_x [x_index] << endl;

cout << "Submarine X = " << submarine_x << " ft Submarine_y = "

<< submarine_y << " ft" «endl
<< "pw_AUV_x = " << pw_AUV_x[x_index] << " ft pw_AUV_y = "

<< pw_AUV_y [x_index] << " ft"
<< endl;

cout << "Value reset to 360" << endl;
}

//Reset the values to middle of grid
pw_flowfield_x [x_index] = 360;

}

if (pw_flowfield_r[x_index] >= FLOWFIELDWIDTH - 1) {

if (TRACE) {

//print error message
cout << "***•****» << endl

<< "pw_flowf ield_r [x_index] for AUV section " << x_index
<< " was calculated as " << pw_flowfield_r [x_index] << endl;

cout << "Submarine X = " << submarine_x « " ft Submarine_y = "

<< submarine y << " ft" <<endl

-96-

3))

offset

* knots

*/

<< "pw_AUV_x = " << pw_AUV_x[x_index] << " ft pw_AUV_y =

<< pw_AUV_y [x_index] << " ft"
<< endl

;

cout << "Value reset to 1 ft from hull" << endl;
}

//This case is reached most when AUV hits hull Therefore to keep flow
//force consistent I reset the flow field index to 1 , or 6" from hull
//Reset the value to next to hull
pw_f lowf ield_r [x_index] = 60;

}

else if (pw_f lowf ield_r [x_index] < 0) {

i f (TRACE

)

{

//print error message
cout << "**" << endl

<< "pw_f lowf ield_r [x_index] for AUV section " << x_index
<< " was calculated as " << pw_f lowf ield_r [x_index] << endl ,-

cout << "Submarine X = " << submarine_x << " ft Submarine y = "

« submarine_y << " ft" <<endl
<< "pw_AUV_x = " << pw_AUV_x[x_index] << " ft pw_AUV_y =

<< pw_AUV_y [x_index] << " ft"
<< endl

;

cout << "Value reset to 1 ft from hull" << endl;
}

//This case is reached when AUV hits hull Therefore to keep flow
//force consistent I reset the flow field index to 1, or 6" from hull
//Reset the value to next to hull
pw_f lowf ield_r [x_index] - 1;

}

//Determine which flow grid to use based on pw_AUV_z and selected model
if (((fabs (AUV_TTube_z_difference) <= torpedotube_height) && (FLOW_FIELD_MODE ==

|| (FLOW_FIELD_MODE ==2)) {

//the direction should always be submarine_course + flow field direction

//The flow magnitude here is converted to ft/sec by multiplying by
/*

ft/sec = knots * 2000 yds/hr* 3 ft/yd * hr/60 min * min/60 sec = 1.667

//Now decide which level of the tube flow fields to use
if (AUV_TTube_z_dif ference > 3.0) {

//The AUV is in the above tube zone

//Next select the appropriate speed matrix
switch ((int) submarine_speed) {

case 1

:

flow_force_direction[x_index] = submarine_course +

abovetubelevellktgrid[pw_f lowf ield_x[x_index]

]

[pw_flowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(abovetubelevellktgrid[pw_f lowf ield_x[x_index]

]

-97-

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

abovetubelevellktgrid[pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

abovetubelevellktgrid[pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

case 2

:

flow_force_direction[x_index] = submarine_course +

abovetubelevel2ktgrid[pw_f lowfield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(abovetubelevel 2ktgrid [pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

abovetubelevel2ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

abovetubelevel2ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

case 3

:

flow_force_direction[x_index] = submarine_course +

abovetubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
flow_force_magnitude [x_index] . setValue

(abovetubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_flowf ield_r [x_index]] .x_magnitude * 1.667,

abovetubelevel3ktgrid[pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

abovetubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

default:
cerr << "The submarine is moving to fast for the AUV to dock with.

<< endl

;

break

;

}

}

-98-

else if (AUV_TTube_z_dif ference > 1.0) {

//THe AUV is at the upper tube edge zone

//Next select the appropriate speed matrix
switch ((int) submarine_speed) {

case 1

:

f low_force_direction [x_index] = submarine_course +

uppertubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(uppertubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

uppertubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

uppertubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break

;

case 2

:

flow_force_direction [x_index] = submarine_course +

uppertubelevel2ktgrid[pw_flowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(uppertubelevel2ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

uppertubelevel2ktgrid [pw_flowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

uppertubelevel2ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break

;

case 3 :

f low_force_direction [x_index] = submarine_course +

uppertubelevel3ktgrid [pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
flow_force_magnitude [x_index] . setValue

(uppertubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

uppertubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

-99-

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

uppertubelevel3ktgrid[pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

« endl

;

default:
cerr << "The submarine is moving to fast for the AUV to dock with.

break;

else if (AUV_TTube_z_dif ference > -1.0) {

//The AUV is in the center of the tube zone

//Next select the appropriate speed matrix
switch ((int) submarine_speed) {

case 1

:

flow_force_direction[x_index] = submarine_course +

centertubelevellktgrid [pw_flowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(centertubelevellktgrid [pw_flowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

centertubelevellktgrid [pw_flowf ield_x[x_index]

]

[pw_f lowfield_r [x_index]] .y_magnitude * 1.667,

centertubelevellktgrid [pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

case 2

:

flow_force_direction[x_index] = submarine_course +

centertubelevel2ktgrid [pw_f lowfield_x [x_index]

]

[pw_flowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(centertubelevel2ktgrid[pw_flowf ield_x[x_index]

]

tpw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

centertubelevel2ktgrid[pw_f lowfield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

centertubelevel2ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

-100-

break;

case 3

:

f low_force_direction[x_index] = submarine_course +

centertubelevel3ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(centertubelevel3ktgrid [pw_f lowfield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . x_magnitude * 1.667,

centertubelevel3ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

centertubelevel3ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

<< endl

;

default

:

cerr << "The submarine is moving to fast for the AUV to dock with.

break;

else if (AUV_TTube_z_dif ference > -3.0) {

//The AUV is in the lower tube edge zone

//Next select the appropriate speed matrix
switch ((int) submarine_speed) {

case 1

:

f low_force_direction[x_index] = submarine_course +

lowertubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(lowertubelevellktgrid [pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

lowertubelevellktgrid [pw_f lowf ield_x[x_index]

]

[pw_flowf ield_r [x_index]] .y_magnitude * 1.667,

lowertubelevellktgrid [pw_flowf ield_x[x_index]

]

[pw_flowf ield_r [x_index]] . z_magnitude * 1.667) ;

break

;

case 2

:

flow_force_direction[x_index] = submarine_course +

-101-

lowertubelevel2ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(lowertubelevel2ktgrid [pw_f lowfield_x [x_index]

]

[pw_flowf ield_r [x_index]] .x_magnitude * 1.667,

lowertubelevel2ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

lowertubelevel2ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

case 3

:

flow_force_direction[x_index] = submarine_course +

lowertubelevel3ktgrid[pw_f lowf ield_x [x_index]

]

[pw_flowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(lowertubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

lowertubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

lowertubelevel3ktgrid [pw_f lowf ield_x [x_index]

]

[pw_flowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

« endl

;

default:
cerr << "The submarine is moving to fast for the AUV to dock with.

break;

else {

//The AUV is in the below tube zone

//Next select the appropriate speed matrix
switch ((int) submarine_speed) {

case 1

:

flow_force_direction[x_index] = submarine_course +

belowtubelevellktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowfield_r [x_index]] .direction;
flow_force_magnitude [x_index] . setValue

102-

(belowtubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

belowtubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

belowtubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

case 2

:

flow_force_direction[x_index] = submarine_course +

belowtubelevel2ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(belowtubelevel2ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

belowtubelevel2ktgrid [pw_f lowfield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

belowtubelevel2ktgrid[pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break

;

case 3

:

f low_force_direction [x_index] = submarine_course +

belowtubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_flowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] . setValue

(belowtubelevel3ktgrid[pw_flowfield_x[x_index]

]

[pw_flowfield_r [x_index]] .x_magnitude * 1.667,

belowtubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

belowtubelevel3ktgrid[pw_f lowf ield_x[x_index]

]

[pw_flowf ield_r [x_index]] . z_magnitude * 1.667) ;

break

;

default:
cerr << "The submarine is moving to fast for the AUV to dock with.

<< endl

;

break;

-103-

}

} //End of If that decides tube level

} //End of if which decides flat/tube profile

//This is the case of being in a flat plate field region
else {

//Next select the appropriate speed matrix
switch ((int) submarine_speed) {

case 1

:

flow_force_direction[x_index] = submarine_course +

nontubelevellktgrid [pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
f low_force_magnitude [x_index] .setValue

(nontubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

nontubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

nontubelevellktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

case 2

:

flow_force_direction[x_index] = submarine_course +

nontubelevel2ktgrid[pw_f lowf ield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .direction;
flow_force_magnitude [x_index] . setValue

(nontubelevel2ktgrid[pw_flowfield_x[x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

nontubelevel2ktgrid [pw_flowf ield_x [x_index]

]

[pw_f lowfield_r [x_index]] .y_magnitude * 1.667,

nontubelevel2ktgrid[pw_f lowfield_x[x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break

;

case 3

:

flow_force_direction [x_index] = submarine_course +

nontubelevel3ktgrid [pw_flowfield_x [x_index]

]

[pw_f lowfield_r [x_index]] .direction;

•104-

f low_force_magnitude [x_index] . setValue

(nontubelevel3ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .x_magnitude * 1.667,

nontubelevel3ktgrid [pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] .y_magnitude * 1.667,

nontubelevel3ktgrid[pw_f lowf ield_x [x_index]

]

[pw_f lowf ield_r [x_index]] . z_magnitude * 1.667) ;

break;

default

:

cerr << "The submarine is moving to fast for the AUV to dock with."
<< endl

;

break;
}

} //end of else for flat plate region

} //end of in flow field calculations

//Check Bouyancy adjustment
if (pw_AUV_z [x_index] <= H / 2.0) // transition, calculate broach

extent
{

if (pw_AUV_z [x_index] >= -(H / 2.0)) // broach region, reduce buoyancy
{

pw_revisedBouyancy [x_index] = (Buoyancy/cross_sections) * (pw_AUV_z [x_index]
+ H/2.0) /H;

}

else
{

pw_revisedBouyancy [x_index] =0.0; // completely out of the water
}

}

else
{

pw_revisedBouyancy [x_index] = (Buoyancy/cross_sections) ; // > H/2, no broach,
normal submerged

}

//Global wave force effects in ft per second
U_waves [x_index] .setValue (K_waves *

(SeaState[SEASTATE] . H_s * SeaState [SEASTATE] . freql*
(cos (SeaState [SEASTATE] . freql*AUV_time +

SeaState [SEASTATE] .wavelength*pw_nose_length[x_index]))) // +

//SeaState [SEASTATE] .H_s * SeaState [SEASTATE] . freq2*
// (cos (SeaState [SEASTATE] . freq2*AUV_time +

//
SeaState [SEASTATE] .wavelength*pw_nose_length[x_index])) +

// SeaState [SEASTATE] .H_s * SeaState [SEASTATE] . freq3*
// (cos (SeaState [SEASTATE] . freq3*AUV_time +

//
SeaState [SEASTATE] . wavelength*pw_nose_length[x_index]))

)

*(cos (heading_wave_l - AUV_psi))

-105-

0.0,

K_waves *

(SeaState[SEASTATE] .H_s * SeaState [SEASTATE] . freql*
(cos (SeaState [SEASTATE] .freql*AUV_time + 90.0 +

SeaState [SEASTATE] . wavelength*pw_nose_length [x_index]))) // +

//SeaState [SEASTATE] .H_s * SeaState [SEASTATE] . freq2*
// (cos (SeaState [SEASTATE] . freq2*AUV_time + 90.0 +

//
SeaState [SEASTATE] .wavelength*pw_nose_length[x_index])) +

/ /SeaState [SEASTATE] .H_s * SeaState [SEASTATE] . freq3*
// (cos (SeaState [SEASTATE] . freq3*AUV_time + 90.0 +

//

SeaState [SEASTATE] .wavelength*pw_nose_length[x_index]))

)

* (cos (heading_wave_l - AUV_psi))

);

//At depth > 20 we reduce the wave motion effect linearly, deeper than 100' wave
effect is negligible

if (AUV_z > 20.0)
{

U_waves[x_index] .setValue (U_waves [x_index] [1] *
((100 . 0-AUV_z) /100 . 0)

,

0.0,
U_waves[x_index] [3] *

((100 . 0-AUV_z) /100 . 0)) ;

} else if (AUV_z > 100) {

U_waves [x_index] .setValue (0.0, 0.0, 0.0);

}

//Check for revised_x_B adjustment
if ((THETA ==0.0) || (pw_AUV_z[x_index] >= H / 2.0))
{

pw_revised_x_B[x_index] = xx[x_index] + (pw_dx [x_index] /2 . 0) ; // prevent
divide-by-zero case and too-deep case

}

else if (THETA > 0.0)
{

pw_surface_length[x_index] = pw_AUV_z [x_index] / sinTHETA;

}

else if (THETA < 0.0)
{

pw_surface_length[x_index] = pw_AUV_z [x_index] / (- sinTHETA);

}

else
{

cout << "Unexpected case in revised CB calculation!" << endl;
pw_revised_x_B[x_index] = xx[x_index] +

(pw_dx [x_index] / 2 .) ; // prevent divide
by zero case

)

if ((THETA != 0.0) && (pw_surface_length [x_index] < pw_nose_length[x_index]) &&
(pw_AUV_z[x_index] <= H / 2.0))

// move x_CB aft (fwd) but only if nose (stern) broaches the surface
{

pw_revised_x_B[x_index] = (xx[x_index] + (pw_dx [x_index] /2 . 0))
-

(pw_nose_length[x_index] - pw_surface_length[x_index]) * sinTHETA / 2.0;
//cout << "pw_revised_x_B in case one (nose out) = " << pw_revised_x_B[x_index] <<

endl

;

-106-

}

else {

pw_revised_x_B [x_index] = (xx [x_index] + (pw_dx[x_index] /2 . 0)) ;

//cout << "pw_revised_x_B in case 2= " << pw_revised_x_B[x_index] << endl,
}

if (TRACE
|

| TRACE_EOM)
{

cout << "AUV_Z = " << AUV_z << endl;

cout << x_index << " pw_dx = " << pw_dx [x_index] << endl;

cout << "xx = " << xx[x_index] << endl;

cout << "sinTHETA = " << sinTHETA << endl;

cout << "pushup = " << pushup [x_index] << endl;

cout << "pw_AUV_z = " << pw_AUV_z [x_index] << endl;

cout << "pw_nose_length = " << pw_nose_length[x_index] << endl;

cout << "pw_surface_length = " << pw_surface_length[x_index] << endl;

cout << "pw_revisedBouyancy = " << pw_revisedBouyancy[x_index] << endl;

cout << "pw_revised_x_B = " << pw_revised_x_B[x_index] << endl;
}

} //end for loop

//Loop to sum up piecewise bouyancy and x_b effects
revisedBuoyancy = 0.0;
revised_x_B = 0.0;

for (int xl_index = 0; xl_index <= cross_sections - 1; xl_index++) {

revisedBuoyancy = revisedBuoyancy + pw_revisedBouyancy [xl_index]

;

revised_x_B = revised_x_B + ((xx[xl_index] + pw_dx[xl_index] /2 . 0) -

(pw_revised_x_B[xl_index]))

;

} //end for loop

revised_x_B = x_B - revised_x_B;

if (TRACE
|

| TRACE_EOM)
{

cout << "revisedBuoyancy = " << revisedBuoyancy << ", ";

cout << "Weight = " << Weight << " , "

;

cout << endl;
cout << " surface_length = " << surface_length << " ,

"

cout << "nose_length = " << nose_length << " ,
"

cout << "revised_x_B = " << revised_x_B << endl
}

1 1

1

II integrate drag forces over the vehicle -----------------//
// corresponding to cross-body flow. Use cross-sectional slices. - - - - -//

//This section of code creates the rotation matrix which will be used later to
//transform flow filed components from the sub's reference frame to the AUV's
flow_rotation_matrix. set_identity ()

;

flow_rotation_matrix. rotate (submarine_roll - AUV_phi

,

-107-

submarine_pitch - AUV_theta,
submarine_course - AUV_psi)

;

//This starts the summation of cross body drag forces. The following if statement
//allows for 2 different modes of cross body calculations, one for a circular hull
//and one for a square hull. The type of Hull is required to be defined in UUVmodel.H

if (SQUARE_HULL == TRUE) {

// traverse longitudinal centerline: index through x coordinate arrays
for (int x2_index = 0; x2_index <= cross_sections - 1; x2_index++) {

//Calculate the effects of sub flow field
if (in_sub_f low_f ield ==1) {

//here flow forces are due to flow field + wave motion
flow_force_magnitude [x2_index] = flow_force_magnitude [x2_index] +

U_waves [x2_index]

;

}

else {

//here flow forces are due to wave motion only
flow_force_magnitude [x2_index] = U_waves [x2_index]

;

//This gets U, V, W from (x-dot, y-dot, z-dot) *rotation matrix transpose
pw_UVW. setValue (f low_rotation_matrix * f low_force_magnitude [x2_index])

;

if (x2_index ==1) {

temp_doppler_stw_u = pw_UVW[l];
temp_doppler_stw_v = pw_UVW[2];

}

//

// these integrals are for wave and flowinduced drag forces

f low_f ield_sway_integral += rho2 *
(C_dy * hh [x2_index]

* pw_UVW[2] * fabs(pw_UVW[2])

)

* pw_dx[x2_index]

;

flow_f ield_surge_integral = 0.0;

flow_f ield_heave_integral += rho2 *
(C_dz * bb [x2_index]

* pw_UVW[3] * fabs(pw_UVW[3])

)

* pw_dx[x2_index]

;

flow_field_roll_integral = 0.0;

f low_field_pitch_integral += rho2 *
(C_dz * bb [x2_index]

* pw_UVW[3] * fabs(pw_UVW[3])

)

-108-

* xx [x2_index] * pw_dx [x2_index;

f low_f ield_yaw_integral += rho2 *
(C_dy * hh [x2_index]

* pw_UVW[2] * fabs(pw_UVW[2]
)

)

* xx [x2_index] * pw_dx[x2_index]

//

// these integrals are for rigidbody velocity drag forces

sway_integral += rho2 *
(C_dy * hh [x2_index]

* square ((V + xx [x2_index] * R)))

* pw_dx [x2_index]

;

heave_integral += rho2 *
(C_dz * bb [x2_index]

* square ((W - xx [x2_index] * Q))

)

* pw_dx [x2_index]

;

pitch_integral += rho2 *
(C_dz * bb [x2_index]

* square ((W - xx [x2_index] * Q))

)

* xx [x2_index] * pw_dx [x2_index]

;

yaw_integral += rho2 *
(C_dy * hh [x2_index]

* square ((V + xx [x2_index] * R)))

* xx [x2_index] * pw_dx[x2_index]

;

roll_integral += 0.0;

if (TRACE
|

| TRACE_EOM)
{

cout << "dx = " << pw_dx [x2_index] << ", U_cf_x = " << U_cf_x
<< ", sway_integral = " << sway_integral << endl;

cout << "dx = " << pw_dx[x2_index] << ", U_cf_x = " << U_cf_x
<< ", heave_integral = " << heave_integral << endl;

cout << "dx = " << pw_dx[x2_index] << ", U_cf_x = " << U_cf_x
<< ", pitch_integral = " << pitch_integral << endl;

}

cout << "dx = " << pw_dx [x2_index] << ", U_cf_x =

<< ", yaw_integral = " << yaw_integral << endl;
<< U cf x

} //end for loop

} //End of the square hull case

//This starts the round hull case of cross body drag

-109-

else {

// traverse longitudinal centerline: index through x coordinate arrays
for (int x2_index = 0; x2_index <= cross_sections - 1; x2_index++) {

U_cf_x = sqrt (square (V + xx [x2_index] * R)

+ square (W - xx [x2_index] * Q))

;

if (U_cf_x > 1.0E-6) // arbitrary small non-0 minimum
{

//Calculate the effects of sub flow field
if (in_sub_flow_f ield ==1) {

//here flow forces are due to flow field + wave motion
f low_force_magnitude [x2_index] = f low_force_magnitude[x2_index] +

U_waves [x2_index]

;

}

else {

//here flow forces are due to wave motion only
f low_force_magnitude [x2_index] = U_waves [x2_index]

;

//This gets U, V, W from (x-dot, y-dot, z-dot) *rotation matrix transpose
pw_UVW. setValue (f low_rotation_matrix * f low_force_magnitude [x2_index])

;

if (x2_index ==1) {

temp_doppler_stw_u = pw_UVW[l]

;

temp_doppler_stw_v = pw_UVW[2];
}

//
// these integrals are for wave and flowinduced drag forces

f low_f ield_sway_integral += rho2 *
(C_dy * hh [x2_index]

* pw_UVW[2] * fabs(pw_UVW[2])

)

* pw_dx[x2_index]

;

f low_f ield_surge_integral = 0.0;

f low_field_heave_integral += rho2 *
(C_dz * bb [x2_index]

* pw_UVW[3] * fabs(pw_UVW[3])

)

* pw_dx[x2_index]

;

flow_field_roll_integral = 0.0;

f low_field_pitch_integral += rho2 *
(C_dz * bb [x2_index]

-110-

* pw_UVW[3] * fabs(pw_UVW[3])

)

* xx [x2_index] * pw_dx[x2_index]

f low_f ield_yaw_integral

U_c f_x

;

rho2 *
(C_dy * hh [x2_index]

* pw_UVW[2] * fabs(pw_UVW[2])

)

* xx [x2_index] * pw_dx[x2_index]

U_cf_x;

//

// these integrals are for rigidbody velocity drag forces

sway_integral + = rho2 *
(C_dy * hh [x2_index]

* square ((V + xx [x2_index] * R)))

* (V + xx [x2_index] * R) * pw_dx [x2_index] /

heave_integral += rho2 *
(C_dz * bb [x2_index]

* square ((W - xx [x2_index] * Q))

)

* (W - xx [x2_index] * Q) * pw_dx[x2_index] /

pitch_integral +=

yaw_integral

rho2 *
(C_dz * bb [x2_index]

* square ((W - xx [x2_index] * Q))

)

* (W - xx [x2_index] * Q)

* xx [x2_index] * pw_dx [x2_index] / U_cf_x;

rho2 *
(C_dy * hh [x2_index]

* square ((V + xx [x2_index] * R)))

* (V + xx [x2_index] * R)

* xx [x2_index] * pw_dx [x2_index] / U_cf_x;

//end of if (U_cf_x > 1.0E-6)

i f (TRACE
{

TRACE_EOM)

cout << "dx = " << pw_dx[x2_index] << ", U_cf_x = " << U_cf_x
<< ", sway_integral = " << sway_integral << endl;

cout << "dx = " << pw_dx [x2_index] << ", U_cf_x = " << U_cf_x
<< ", heave_integral = " << heave_integral << endl;

cout << "dx = " << pw_dx[x2_index] << ", U_cf_x = " << U_cf_x
<< ", pitch_integral = " << pitch_integral << endl;

cout << "dx = " << pw_dx[x2_index] << ", U_cf_x =

<< ", yaw_integral = " << yaw_integral << endl;
<< U cf x

-111-

} //end for loop

} //End of the round hull case of cross body drag

//Add effects of flow field integral's to eom integrals
sway_integral +- f low_f ield_sway_integral;
heave_integral += flow_f ield_heave_integral;
pitch_integral += flow_f ield_pitch_integral ;

yaw_integral += f low_f ield_yaw_integral;
roll_integral += f low_f ield_roll_integral;
surge_integral += f low_f ield_surge_integral; // unused

//set doppler velocities for speed through water in ft/sec
doppler_stw_u = temp_doppler_stw_u;
doppler_stw_v - temp_doppler_stw_v;

} //end new bouyancy model

1 1 1 1 1 1 1 II 1 II 1 1 1 1 II 1 1HI III 1

1

II debug section. selectively set sway/heave/pitch/yaw integrals to zero to
// isolate problems. also see zeroing of rhs values.

// sway_integral = 0.0;
// heave_integral = 0.0;
// pitch_integral = 0.0;
// yaw_integral = 0.0;

1 1

1

II reduce efficiency if propellers operating astern ----------- -//
double port_propeller_ef f iciency, stbd_propeller_eff iciency;

if (AUV_port_rpm >= 0.0) port_propeller_efficiency = 1.0;
else port_propeller_efficiency = X_astern_eff iciency;

if (AUV_stbd_rpm >= 0.0) stbd_propeller_eff iciency = 1.0;
else stbd_propeller_efficiency = X_astern_eff iciency;

/ 1

1

II calculate Equations of Motion right-hand sides //

1 1

1

rhs [SURGE] = // Surge Motion Equation right hand side //

m *
((V * R) - (W * Q) + x_G * (Q2 + R2) - y_G * P*Q - z_G * P*R)

+ rho2 * L4 *
(X_pp * P2 + X_qq * Q2
+ X_rr * R2 + X_pr * P*R)

+ rho2 * L3 *
(X_wq * W*Q + X_vp * V*P + X_vr * V*R

+ U*Q *
(X_uq_delta_bow * delta_planes_bow
+ X_uq_delta_stern * delta_planes_stern)

+ U*R *
(X_ur_delta_rudder * delta_rudder_bow
+ X_ur_delta_rudder * delta_rudder_stern)

)

+ rho2 * L2 *
(X_w * V2 + X_ww * W2

+ U*V *
(X_uv_delta_rudder * delta_rudder_stern)

+ U*W * (X_uw_delta_bow * delta_planes_bow

-112-

+ X_uw_delta_stern * delta_planes_stern)

+ U * fabs (U) * (X_uu_delta_b_delta_b
* delta_planes_bow
* delta_planes_bow

+ X_uu_delta_s_delta_s
* delta_planes_stern
* delta_planes_stern

+ X_uu_delta_r_delta_r
* delta_rudder_bow
* de 1 1a_rudder_bow

+ X_uu_delta_r_delta_r
* delta_rudder_stern
* delta_rudder_stern)

)

- (Weight - revisedBuoyancy) * sinTHETA

// EPSILON terms have been removed due to revised equations of motion

// + rho2 * L3 * X_qdsn * U*Q * del ta_planes_s tern * EPSILON
// + rho2 * L2 * EPSILON *

(X_wdsn * U*W * delta_planes_stern
//

// + X_dsdsn * U2 * delta_planes_stern
// * delta_planes_stern)

// X_propulsion surge force (derived using expressions in Healey paper)
// note that SPEED_PER_RPM is associated with work of two propellors

+ rho2 * L2 * C_dO * square (SPEED_PER_RPM)

* 0.5 *
(AUV_port_rpm * fabs (AUV_port_rpm)

* port_propeller_ef f iciency

+ AUV_stbd_rpm * fabs (AUV_stbd_rpm)
* stbd_propeller_eff iciency)

// X_resistance surge drag (derived using expressions in Healey paper)

- rho2 * L2 * C_d0 * U * fabs (U)

;

1 1

1

if (TRACE || TRACE_EOM || (rhs [SURGE] >= MAX_SURGE)) // Surge TRACE
{

cout << "* surge terml=" << m *
((V * R) - (W * Q)

+ x_G * (Q2 + R2) - y_G * P*Q - z_G * P*R)« endl;

cout « "term2=" << + rho2 * L4 *
(X_pp * P2 + X_qq * Q2

+ X_rr * R2 + X_pr * P*R)
<< endl;

cout << "term3=" << + rho2 * L3 *
(X_wq * W*Q + X_vp * V*P + X_vr * V*R

+ U*Q *
(X_uq_delta_bow * delta_planes_bow
+ X_uq_delta_stern * delta_planes_stern)

+ U*R *
(X_ur_delta_rudder * delta_rudder_stern
+ X_ur_delta_rudder * delta_rudder_bow)

)

<< endl

;

-113-

cout « "term4=" « + rho2 * L2 *
(X_w * V2 + X_ww * W2

+ U*V *
(X_uv_delta_rudder * del ta_rudder_s tern)

+ U*W *
(X_uw_delta_bow * delta_planes_bow
+ X_uw_delta_stern * delta_planes_stern)

+ U * fabs (U) *
(X_uu_delta_b_delta_b

* delta_planes_bow
* delta_planes_bow

+ X_uu_delta_s_delta_s
* delta_planes_stern
* delta_planes_stern

+ X_uu_delta_r_delta_r
* delta_rudder_bow
* delta_rudder_bow

+ X_uu_delta_r_delta_r
* delta_rudder_stern
* delta_rudder_stern)

)

<< endl

;

cout << "term5=" << - (Weight - revisedBuoyancy) * sinTHETA
<< endl

;

cout << " term6, term7=" << "EPSILON terms, no longer used"
<< endl

;

// cout « "term6=" << rho2 * L3 * X_qdsn * U*Q * delta_planes_stern
// * EPSILON << endl;
//
// cout « "term7=" << rho2 * L2 * EPSILON *

(X_wdsn * U*W
// * delta_planes_stern
// + X_dsdsn * U2 * delta_planes_stern
// * delta_planes_stern)
/ / << endl

;

cout « "term8=" << + rho2 * L2 * C_dO * square (SPEED_PER_RPM)

*
. 5 *

(AUV_port_rpm * fabs (AUV_port_rpm)
* port_propeller_ef f iciency

+ AUV_stbd_rpm * fabs (AUV_stbd_rpm)
* stbd_propeller_eff iciency)

<< endl

;

cout << "term9=" << - rho2 * L2 * C_dO * U * fabs (U)

<< endl

;

}

1 1

1

rhs [SWAY] = // Sway Motion Equation right hand side //

m * (- (U * R) + (W * P) - x_G * (P * Q)

+ y_G * (P2 + R2)

- z_G * (Q * R))

+ rho2 * L4 *
(Y_pq * P*Q + Y_qr * Q*R)

•114-

+ rho2 * L3 *
(Y_up * U*P + Y_ur * U*R

+ Y_vq * V*Q + Y_wp * W*P + Y_wr * W*R)

+ rho2 * L2 *
(Y_uv * U*V + Y_vw * V*W

+ U*fabs(U) * Y_uu_delta_rb * delta_rudder_bow

+ U*fabs(U) * Y_uu_delta_rs * delta_rudder_stern)

- sway_integral

+ (Weight - revisedBuoyancy) * cosTHETA * sinPHI

(2 .0 / (24. * 24.0)) // each thruster 2 . lb per 24V signal squared

*
(AUV_bow_lateral * fabs (AUV_bow_lateral)
+ AUV_stern_lateral * fabs (AUV_stern_lateral))

;

1 / 1

1

if (TRACE || TRACE_EOM || (rhs [SWAY] >= MAX_SWAY)) // Sway TRACE
{

cout << "* sway terml=" << m * (- (U * R) + (W * P)

- x_G * (P * Q)

+ y_G * (P2 + R2)

- z_G * (Q * R))

<< endl;

cout « "term2=" <<
<< endl;

cout << "term3=" <<

<< endl

;

cout << "term4=" <<

<< endl

;

cout << "term5=" <<
<< endl

;

cout << "term6=" <<
<< endl

;

cout << "term7=" <<

+ rho2 * L4 *
(Y_pq P*Q + Y_qr * Q*R)

}

<< endl

;

+ rho2 * L3 *
(Y_up * U*P + Y_ur * U*R

+ Y_vq * V*Q + Y_wp * W*P + Y_wr * W*R)

+ rho2 * L2 *
(Y_uv * U*V + Y_vw * V*W

+ U*fabs(U) * Y_uu_delta_rb * delta_rudder_bow

+ U*fabs(U) * Y_uu_delta_rs * delta_rudder_stern)

- sway_integral << " sway_integral"

+ (Weight - revisedBuoyancy) * cosTHETA * sinPHI

- (2.0 / (24.0 * 24.0)

)

// each thruster 2.0 lb per 24V signal squared

AUV_bow_lateral * fabs (AUV_bow_lateral)
+ AUV_stern_lateral * fabs (AUV_stern_lateral)

)

1 1

1

rhs [HEAVE] = // Heave Motion Equation right hand side //

115-

m *
((U * Q) - (V * P) - x_G * (P * R) - y_G * (Q * R)

+ z_G * (P2 + Q2)

)

+ rho2 * L4 *
(Z_pp * P2 + Z_pr * P*R + Z_rr * R2

)

+ rho2 * L3 *
(Z_uq * U*Q + Z_vp * V*P + Z_vr * V*R)

+ rho2 * L2 *
(Z_uw * U*W + Z_w * V2

+ (U*fabs(U) * Z_uu_delta_b * delta_planes_bow)

+ (U*fabs(U) * Z_uu_delta_s * delta_planes_stern)

)

- heave_integral

+ (Weight - revisedBuoyancy) * cosTHETA * cosPHI

// EPSILON terms have been removed due to revised equations of motion

// + rho2 * L3 * Z_qn * U*Q * EPSILON
// + rho2 * L2 *

(Z_wn * U*W
// + Z_dsn * U*fabs(U) * delta_planes_stern) * EPSILON

+ (2.0 / (24.0 * 24.0)) // each thruster 2.0 lb per 24V signal squared

*
(AUV_bow_vertical * fabs (AUV_bow_vertical) +

AUV_stern_vertical * fabs (AUV_stern_vertical))

;

1 1

1

if (TRACE || TRACE_EOM || (rhs [HEAVE] >= MAX_HEAVE)) // Heave TRACE
{

cout « "* heave terml=" « m *
((U * Q) - (V * P) - x_G * (P * R)

- y_G * (Q * R)

+ z_G * (P2 + Q2))« endl

;

cout « "term2=" << + rho2 * L4 *
(Z_pp * P2 + Z_pr * P*R

+ Z_rr * R2) « endl;

cout « "term3=" « + rho2 * L3 *
(Z_uq * U*Q + Z_vp * V*P

+ Z_vr * V*R) « endl;

cout « "term4=" « + rho2 * L2 *
(Z_uw * U*W + Z_w * V2

+ (U*fabs(U) * Z_uu_delta_b * delta_planes_bow)

+ (U*fabs(U) * Z_uu_delta_s * delta_planes_stern)

)

<< endl

;

cout << "term5=" << - heave_integral << " heave_integral"
<< endl

;

cout << "term6=" << + (Weight - revisedBuoyancy) * cosTHETA * cosPHI
<< endl;

cout << "term7, term8=" << "no longer used"
<< endl

;

cout << "term9=" << + (2.0 / (24.0 * 24.0))
// each thruster 2.0 lb per 24V signal squared

*
(AUV_bow_vertical * fabs (AUV_bow_vertical) +

-116-

AUV_stern_vertical * fabs (AUV_stern_vertical))

<< endl;
}

1 1

1

rhs [ROLL] = // Roll Motion Equation right hand side //

- (I_z - I_y) * Q*R - I_xy * P*R + I_yz * (Q2 - R2) + I_xz * P*Q

- m *
(y_G *

(-U*Q + V*P) - z_G * (U*R - W*P)

)

+ rho2 * L5 * (K_pq * P*Q + K_qr * Q*R

+ K_pp * P * fabs(P)
+ K_p * P) 1 1 hovering roll drag

+ rho2 * L4 * (K_up * fabs(U)*P + K_ur * U*R + K_vq * V*Q

+ K_wp * W*P + K_wr * W*R)

+ rho2 * L3 * (K_uv * U*V + K_vw * V*W

- U*fabs(U) * 0.5 *
(K_uu_planes * delta_planes_bow
+ K_uu_planes * delta_planes_stern)

- U*fabs(U) * 0.5 *
(K_uu_rudder * delta_rudder_bow
+ K_uu_rudder * del ta_rudder_s tern)

)

//Added roll integral for square hull model
+ roll_integral

// expected: opposed plane directions A cause negation & cancellation

+ (y_G * Weight - y_B * revisedBuoyancy) * cosTHETA * cosPHI

- (z_G * Weight - z_B * revisedBuoyancy) * cosTHETA * sinPHI;

// EPSILON terms have been removed due to revised equations of motion
// + rho2 * L4 * K_pn * U*P * EPSILON

// + rho2 * L3 * U*fabs(U) * K_prop; // oversimplified, in error

1 1

1

if (TRACE || TRACE_EOM || (rhs [ROLL] >= MAX_ROLL)) // Roll TRACE
{

cout << "
* roll terml=" << - (I_z - I_y) * Q*R - I_xy * P*R + I_yz * (Q2 - R2)

+ I_xz * P*Q
<< endl

;

cout « "term2=" « - m *
(y_G *

(-U*Q + V*P) - z_G * (U*R - W*P)

)

<< endl

;

cout << "term3=" << + rho2 * L5 * (K_pq * P*Q + K_qr * Q*R

+ K_pp * p * fabs(P)
+ K_p * P) // hovering roll drag

<< endl;

cout << "term4=" « + rho2 * L4 * (K_up * fabs(U)*P + K_ur * U*R

+ K_vq * V*Q + K_wp * W*P + K_wr * W*R)
<< endl;

117-

cout << "term5=" « + rho2 * L3 * (K_uv * U*V + K_vw * V*W

- U*fabs(U) * 0.5 *
(K_uu_planes * delta_planes_bow
+ K_uu_planes * delta_planes_stern)

- U*fabs(U) * 0.5 *
(K_uu_rudder * delta_rudder_bow
+ K_uu_rudder * del ta_rudder_s tern)

)

// expected: opposed plane directions A cause negation & cancellation
<< endl;

cout << "term6=" << + (y_G * Weight - y_B * revisedBuoyancy) * cosTHETA * cosPHI
<< endl

;

cout << "term7=" << - (z_G * Weight - z_B * revisedBuoyancy) * cosTHETA * sinPHI
<< endl;

cout << " term8, term9=" << "EPSILON terms, no longer used"
<< endl;

// cout << "term8=" << + rho2 * L4 * K_pn * U*P * EPSILON
// << endl;

// cout << "term9=" << + rho2 * L3 * U*fabs(U) * K_prop
// << endl;
}

1 1

1

rhs [PITCH] = // Pitch Motion Equation right hand side //

- (I_x - I_z) * P*R + I_xy * Q*R - I_yz * P*Q - I_xz * (P2 - R2)

+ m *
(x_G *

(-U*Q + V*P) - z_G * (
- V*R + W*Q)

)

+ rho2 * L5 * (M_pp * P2 + M_pr * P*R + M_rr * R*fabs (R)

+ M_q * Q
+ M_qq * Q * fabs (Q)) // hovering pitch drag

+ rho2 * L4 * (M_uq * U*Q + M_vp * V*P + M_vr * V*R)

+ rho2 * L3 * (M_uw * U*W + M_w * V2

+ U*fabs(U) *
(M_uu_delta_bow * delta_planes_bow
+ M_uu_delta_stern * delta_planes_stern)

)

+ pitch_integral // note sign corrections to Healey pitch_integral

- (x_G * Weight - revised_x_B * revisedBuoyancy) * cosTHETA * cosPHI

- (z_G * Weight - z_B * revisedBuoyancy) * sinTHETA

+ (2.0/ (24.0* 24.0)) // each thruster 2 . lb per 24V signal squared
// multiplied by respective moment arms
// x_bow_vertical (+) , x_stern_vert (-)

*
((AUV_bow_vertical * fabs (AUV_bow_vertical) * x_bow_vertical)
+ (AUV_stern_vertical * fabs (AUV_stern_vertical) * x_stern_vertical)) ,

// EPSILON terms have been removed due to revised equations of motion
// + rho2 * L4 * M_qn * U*Q * EPSILON
// + rho2 * L3 * (M_wn * U*W + M_dsn * U*fabs(U) * del ta_planes_s tern)
// * EPSILON;

1 1

1

-118-

if (TRACE || TRACE_EOM || (rhs [PITCH] >= MAX_PITCH)) // Pitch TRACE
{

cout << "* pitch terml=" << - (I_x - I_z) * P*R + I_xy * Q*R - I_yz * P*Q
- I_xz * (P2 - R2) « endl;

cout << "term2=" « + m *
(x_G *

(-U*Q + V*P) - z_G * (
- V*R + W*Q)

)

<< endl;

cout << "term3=" << + rho2 * L5 * (M_pp * P2 + M_pr * P*R + M_rr
* R*fabs (R)

+ M_q * Q
+ M_qq * Q * fabs (Q)) // hovering pitch drag

<< endl

;

cout << "term4=" << + rho2 * L4 *
(M_uq * U*Q + M_vp * V*P + M_vr * V*R)

<< endl;

cout « " term5=" << + rho2 * L3 * (M_uw * U*W + M_w * V2

+ U*fabs(U) *
(M_uu_delta_bow * delta_planes_bow
+ M_uu_delta_stern * delta_planes_stern)

)

<< endl

;

cout << "term6=" << + pitch_integral << " pitch_integral"
<< endl;

cout << "term7=" << - (x_G * Weight - revised_x_B * revisedBuoyancy)
* cosTHETA * cosPHI

<< endl;

cout << "term8=" << - (z_G * Weight - z_B * revisedBuoyancy) * sinTHETA
<< endl;

cout « "term9=" << + (2.0 / (24.0 * 24.0))
// each thruster 2.0 lb per 24V signal squared
// multiplied by respective moment arms
// x_bow_vertical (+) , x_stern_vert (-)

*
((AUV_bow_vertical * fabs (AUV_bow_vertical) * x_bow_vertical)
+ (AUV_stern_vertical * fabs (AUV_stern_vertical) * x_stern_vertical)

)

<< endl;

cout << " termlO, termll=" << "EPSILON terms, no longer used"
<< endl;

// cout << "terml0=" << + rho2 * L4 * M_qn * U*Q * EPSILON
// << endl;

// cout << "termll=" << + rho2 * L3 * (M_wn * U*W + M_dsn * U*fabs(U)
// * delta_planes_stern)
// * EPSILON
// << endl;
}

1 II 1

1

rhs [YAW] = // Yaw Motion Equation right hand side //

- (I_y - I_x) * P*Q + I_xy * (P2 - Q2) + I_yz * P*R - I_xz * Q*R

- m *
(x_G *

(U*R - W*P) - y_G * (
- V*R + W*Q)

)

+ rho2 * L5 * (N_pq * P*Q + N_qr * Q*R

+ N_r * R

-119-

+ N_rr * R * fabs (R)) // hovering yaw drag

+ rho2 * L4 * (N_up * U*P + N_ur * U*R + N_vq * V*Q

+ N_wp * W*P + N_wr * W*R)

+ rho2 * L3 * (N_uv * U*V + N_vw * V*W

+ U*fabs(U) * N_uu_delta_rb * delta_rudder_bow
- U*fabs(U) * N_uu_delta_rs * delta_rudder_stern)

- yaw_integral

+ (x_G * Weight - revised_x_B * revisedBuoyancy) * cosTHETA * sinPHI

+ (y_G * Weight - y_B * revisedBuoyancy) * sinTHETA

(2.0 / (24.0 * 24.0)) // each thruster 2 . lb per 24V signal squared
// multiplied by respective moment arms

*
((AUV_bow_lat;eral * fabs (AUV_bow_lateral) * x_bow_lateral)

+ (AUV_stern_lateral * fabs (AUV_stern_lateral) * x_stern_lateral))

- rho2 * L2 * C_d0

*
(square (SPEED_PER_RPM) * 0.5 // propeller yaw

*
(AUV_port_rpm * fabs (AUV_port_rpm) * y_port_propeller

* port_propeller_ef f iciency

+ AUV_stbd_rpm * fabs (AUV_stbd_rpm) * y_stbd_propeller
* stbd_propeller_eff iciency)

// *** revision: removed (
- U * fabs(U)) term from dissertation, incorrect

// - U * fabs(U))

;

) ;

1 1

1

if (TRACE || TRACE_EOM || (rhs [YAW] >= MAX_YAW)) // Yaw TRACE
{

cout « "* yaw terml=" « - (I_y - I_x) * P*Q + I_xy * (P2 - Q2)
+ I_yz * P*R - I_xz * Q*R

<< endl;

cout « "term2=" « - m *
(x_G *

(U*R - W*P) - y_G * (- V*R + W*Q)

)

<< endl

;

cout << " term3=" << + rho2 * L5 *
(N_pq * P*Q + N_qr * Q*R

+ N_r * R
+ N_rr * R * fabs (R)) // hovering yaw drag

<< endl

;

cout << "term4=" << + rho2 * L4 *
(N_up * U*P + N_ur * U*R + N_vq * V*Q

+ N_wp * W*P + N_wr * W*R)
<< endl;

cout << "term5=" << + rho2 * L3 *
(N_uv * U*V + N_vw * V*W

+ U*fabs(U) * N_uu_delta_rb * delta_rudder_bow
- U*fabs(U) * N_uu_delta_rs * delta_rudder_stern)

<< endl

;

cout << "term6=" << - yaw_integral << " yaw_integral

"

-120-

<< endl;

cout << "term7=" << + (x_G * Weight - revised_x_B * revisedBuoyancy)
* COSTHETA * sinPHI

<< endl;

cout << "term8=" << + (y_G * Weight
<< endl;

y_B * revisedBuoyancy) * sinTHETA

cout << "term9=" << (2.0 / (24.0 * 24.0)

)

// each thruster 2.0 lb per 24V signal squared
// multiplied by respective moment arms

*
((AUV_bow_lateral * fabs (AUV_bow_lateral) * x_bow_lateral)

+ (AUV_stern_lateral * fabs (AUV_stern_lateral) * x_stern_lateral))

<< endl

;

cout << "terml0=" << - rho2 * L2 * C_d0

*
(square (SPEED_PER_RPM) * 0.5 // propeller yaw

*
(AUV_port_rpm * fabs (AUV_port_rpm) * y_port_propeller

* port_propeller_ef f iciency

+ AUV_stbd_rpm * fabs (AUV_stbd_rpm) * y_stbd_propeller
* stbd_propeller_eff iciency)

removed (- U * fabs (U)) term from dissertation, incorrect
• - U * fabs(U))

;

// *** revision:
//

<< endl;

1 1

1

II debug section. selectively set rhs values to zero to isolate problems.
// also see zeroing of sway/heave/pitch/yaw integrals.

// rhs [SURGE] =0.0
/

/

rhs [SWAY] =0.0
// rhs [HEAVE] =0.0
// rhs [ROLL]

= 0.0
// rhs [PITCH] =0.0
// rhs [YAW] = 0.0

MAX_ACCELERATIONS_EXCEEDED =

((rhs [SURGE] >= MAX_SURGE) (rhs [SWAY] >= MAX_SWAY)

(rhs [HEAVE] >= MAX_HEAVE) (rhs [ROLL] >= MAX_ROLL)

(rhs [PITCH] >= MAX_PITCH) (rhs [YAW] >= MAX_YAW))

;

if (TRACE)
{

cout <<
cout <<
cout <<
cout <<
cout <<
cout <<

}

if (TRACE
|

| TRACE_EOM)
{

SURGE = 1 <<
SWAY = ' <<
HEAVE = ' <<
ROLL = 1 <<
PITCH = ' <<
YAW = 1 <<

SURGE << endl
SWAY << endl
HEAVE << endl
ROLL << endl
PITCH « endl
YAW << endl

cout << " SURGE = " << SURGE << endl
cout << " SWAY = " << SWAY << endl
cout << " HEAVE = " << HEAVE << endl
cout << " ROLL = " << ROLL << endl

121-

cout << " PITCH = " << PITCH << endl;
cout << " YAW = " << YAW << endl;

cout << "rhs [SURGE] = " << rhs [SURGE

]

<< endl,
cout << "rhs [SWAY]

= " << rhs [SWAY] << endl

,

cout << "rhs [HEAVE

]

= " << rhs [HEAVE] << endl,
cout << "rhs [ROLL]

= " << rhs [ROLL]
<< endl,

cout << "rhs [PITCH] = " << rhs [PITCH] << endl

,

cout << "rhs [YAW]
= " << rhs [YAW] << endl

,

// cout << "mass_inverse:
}

if (TRACE
|

| TRACE_EOM
|

|

{

cout << "velocities:

cout << "RHS:
}

"
; print_matrix6x6 (mass_inverse)

;

MAX_ACCELERATIONS_EXCEEDED

)

<" << U << "
,

" << V << " ,
" << W << " ,

"

<< P << ", " << Q << ", " << R << ">" << endl;
"

; print_matrix6 (rhs);

1 II 1

1

II calculate new accelerations matrix using mass_inverse & rhs, print //

multiply6x6_6 (mass_inverse, rhs, new_acceleration)

;

if (TRACE
|

| TRACE_EOM)
{

cout << "Accelerations:
}

// limit accelerations

print_matrix6 (new_acceleration)

;

if (CLAMP) // values are for NPS AUV
{

clamp (& new_acceleration
"new_acceleration

clamp (& new_acceleration
"new_acceleration

clamp (& new_acceleration
"new_acceleration

clamp (& new_acceleration
"new_acceleration

clamp (& new_acceleration
"new_acceleration

clamp (& new_acceleration
"new acceleration

SURGE

]

SURGE]
SWAY]

SWAY]

HEAVE]
HEAVE]

ROLL]

ROLL]

PITCH]
PITCH]
YAW]

YAW]

consider parameterizing

-MAX_SURGE

-MAX_SWAY

-MAX_HEAVE

-MAX_ROLL

-MAX_PITCH

-MAX YAW

MAX_SURGE

,

MAX_SWAY ,

MAX_HEAVE

,

MAX_ROLL ,

MAX_PITCH,

MAX YAW ,

•//

// find velocities by integrating averaged accelerations
// (Heun integration)

(u_dot + new_acceleration [SURGE]

)

* dt + U
(v_dot + new_acceleration [SWAY]

)

* dt + V
(w_dot + new_acceleration [HEAVE]

)

* dt + W
(p_dot + new_acceleration [ROLL]

)

* dt + P

(q_dot + new_acceleration [PITCH]) * dt + Q
(r_dot + new_acceleration [YAW]

)

* dt + R

// find velocities by integrating instantaneous accelerations
// (Euler integration)
// (this method is less accurate and is not used, although at small
// timesteps the difference is negligible)

//

new_velocity [SURGE] = 5

new_velocity [SWAY]
= 5

new_velocity [HEAVE] = 5

new_velocity [ROLL]
= 5

new_velocity [PITCH] = 5

new_velocity [YAW] = 5

122-

// new_velocity [SURGE] = (new_acceleration [SURGE]
// new_velocity [SWAY]

= (new_acceleration [SWAY]

// new_velocity [HEAVE] = (new_acceleration [HEAVE]
// new_velocity [ROLL]

= (new_acceleration [ROLL]

// new_velocity [PITCH] = (new_acceleration [PITCH]
// new_velocity [YAW]

= (new_acceleration [YAW]

dt + U
dt + V
dt + W
dt + P
dt + Q
dt + R

// Note that surge velocity may be negative under model constraints
// but reverse stability is a problem. Originally clamped non-negative.

if (CLAMP)
{

clamp (& new_velocity [SURGE], -MAX_SURGE, MAX_SURGE,
"new_velocity [SURGE] velocity");

}

// update UUVBody state accelerations to newly-calculated values //

u_dot = new_acceleration [SURGE]
v_dot = new_acceleration [SWAY]

w_dot = new_acceleration [HEAVE]
p_dot = new_acceleration [ROLL]

q_dot = new_acceleration [PITCH]
r_dot = new_acceleration [YAW]

// calculate world coordinate system linear & angular velocities //

// see Cooke Figure 10 for corrections to Healey equations for x/y/z_dot:
// also Healey course notes eqn (26) and Frank-McGhee corrected paper (A. 8)

x_dot = AUV_oceancurrent_x

+ U * cos (PSI) * cos (THETA)

+ V * (cos (PSI) * sin (THETA) * sin (PHI) - sin (PSI) * cos (PHI))

+ W * (cos (PSI) * sin (THETA) * cos (PHI) + sin (PSI) * sin(PHI));

y_dot = AUV_oceancurrent_y

+ U * sin (PSI) * cos (THETA)

+ V * (sin (PSI) * sin (THETA) * sin (PHI) + cos (PSI) * cos (PHI))

+ W * (sin (PSI) * sin (THETA) * cos (PHI) - cos (PSI) * sin(PHI));

z_dot = AUV_oceancurrent_z

- U * sin (THETA)

+ V * cos (THETA) * sin (PHI)

+ W * COS (THETA) * COS (PHI);

phi_dot = P + Q * sin (PHI) * tan (THETA)

+ R * cos (PHI) * tan (THETA);

theta_dot = Q * cos (PHI)

- R * sin (PHI)

;

-123-

if (cos (THETA) == 0.0)
{

cout << "UUVBody : : integrate_equations_of_motion (): " << endl;
cout << " cos (THETA) == 0.0 so psi_dot set equal to zero." << endl;
psi_dot = 0.0;

}

else psi_dot = (Q * sin (PHI) + R * cos (PHI)) / cos (THETA);

Vector3D linear_rates = Vector3D (x_dot, y_dot, z_dot)

;

if (TRACE
|

| TRACE_EOM)
{

cout << endl

;

cout << "<x_dot, y_dot, z_dot> = " << linear_rates << endl;
cout << " magnitude = " << linear_rates .magnitude ()

<< endl;
}

Vector3D euler_rates = Vector3D (phi_dot, theta_dot, psi_dot)

;

if (TRACE
|

| TRACE_EOM)
{

cout << "<phi_dot, theta_dot, psi_dot> = " << euler_rates << endl;
cout << " magnitude = " << euler_rates .magnitude ()

<< endl

;

}

// calculate world coordinate system homogenous transform matrix //

Hmatrix Hincremental = Hmatrix (); // default initialization
Hincremental . set_orientation (P * dt, Q * dt, R * dt);

Hincremental. rotate (PHI, THETA, PSI);

double omega_x = Hincremental .phi_value ()

double omega_y = Hincremental . theta_value (

)

double omega_z = Hincremental .psi_value ()

Vector3D world_rates = Vector3D (omega_x, omega_y, omega_z)

;

if (TRACE
|

|

TRACE_EOM)
{

cout << "<omega_x, omega_y, omega_z> = " << world_rates << endl;
cout << " magnitude = " << world_rates .magnitude ()

<< endl

;

}

Hmatrix Hrevisedl = Hmatrix (); // default initialization
Hrevisedl . incremental_rotation (phi_dot, theta_dot, psi_dot, dt);

Hrevisedl . incremental_translation (U, V, W, dt);

Hmatrix Hproductl = Hprevious * Hrevisedl;
Hproductl . incremental_translation (AUV_oceancurrent_x,

AUV_oceancurrent_y

,

AUV_oceancurrent_z , dt) ;

Hprevious = Hproductl;

// translate and rotate and update time in RigidBody state //
// note world coordinate system is used by RigidBody:

set_angular_velocities (phi_dot, theta_dot, psi_dot)

;

set_linear_velocities (x_dot, y_dot, z_dot) ;

set_time_of_posture (current_uuv_time)

;

update_Hmatrix (dt)

;

-124-

if (TRACE)

{

cout << " incremental hmatrix
Hincremental

.
pr int_hmatrix (

)

cout << "revisedl hmatrix = "

Hrevisedl .print_hmatrix ()

;

cout << "productl hmatrix = "

Hproductl .print_hmatrix () ;

cout << "original hmatrix = "

hmatrix. print_hmatrix ();

if (TRACE) cout << "substituting productl hmatrix" << endl

,

hmatrix = Hproductl

;

//

// Save body-coordinate-system velocities for the next loop:

U = new_velocity [SURGE]
V = new_velocity [SWAY]

W = new_velocity [HEAVE]
P = new_velocity [ROLL]

Q = new_velocity [PITCH]
R = new_velocity [YAW]

// cout << "world U
// cout << "world V ='

// cout << "world W ='

// cout << "world P ='

// cout << "world Q
// cout << "world R ='

" << u << "
, x_dot = << x dot << endl

" << V << "
/ y_dot = << y_dot << endl

" << w << "
, z_dot = << z dot << endl

" << P << "
, phi_dot = << phi_dot << endl

" << Q << "
, theta_dot = << theta dot << endl

" << R << "
, psi_dot = << psi_dot << endl

//

// update all hydrodynamics-model-provided state variables in AUV_globals .h

// prior to retransmittal to AUV via AUVsocket

AUV time current_uuv_time; // mission time

AUV_x
AUV_y
AUV_z
AUV_phi
AUV_theta
AUV_psi

= x_value (

)

//
= y_value (

)

//
= z_value (

)

//
= phi_value (

)

//
= theta_value (

)

//
= psi_value () //

x position in world coordinates
y position in world coordinates
z position in world coordinates
roll posture in world coordinates
pitch posture in world coordinates
yaw posture in world coordinates

AUV_speed=new_velocity [SURGE]; // paddlewheel speed = u = surge

AUV_u
AUV_v
AUV_w
AUV_p
AUV_q
AUV_r

new_velocity
new_velocity
new_velocity
new_velocity
new_velocity
new_velocity

[SURGE]
[SWAY]

[HEAVE]
[ROLL]

[PITCH]
[YAW]

// surge linear velocity along x-axis
// sway linear velocity along y-axis
// heave linear velocity along x-axis
// roll angular velocity about x-axis
// pitch angular velocity about y-axis
// yaw angular velocity about z-axis

AUV_u_dot
AUV_v_dot
AUV_w_dot
AUV_p_dot
AUV_q_dot
AUV_r_dot

= u_dot
= v_dot
= w_dot
= p_dot
= q_dot
= r dot

// linear acceleration along x-axis
// linear acceleration along y-axis
// linear acceleration along x-axis
// angular acceleration about x-axis
// angular acceleration about y-axis
// angular acceleration about z-axis

AUV x dot x_dot; // Euler velocity along North-axis

125-

AUV_y_dot = y_dot; //
AUV_z_dot = z_dot; //
AUV_phi_dot = phi_dot; //
AUV_theta_dot = theta_dot; //
AUV_psi_dot = psi_dot; //

Euler velocity along East-axis
Euler velocity along Depth-axis

Euler rotation rate about North-axis
Euler rotation rate about East-axis
Euler rotation rate about Depth-axis

divetracker_rangel = sqrt (sgr (AUV_x - DiveTrackerl_x) +

sqr (AUV_y - DiveTrackerl_y) +

sgr (AUV_z - DiveTrackerl_z))

;

divetracker_range2 sgrt (sgr (AUV_x - DiveTracker2_x) +

sgr (AUV_y - DiveTracker2_y) +

sgr (AUV_z - DiveTracker2_z)) ;

//
//set value of doppler sonar outputs
//
//doppler speed over ground in meters /sec
doppler_sog_u = U * 0.3048;
doppler_sog_v = V * 0.3048;

//doppler speed through water in meters /sec
doppler_stw_u = doppler_stw_u * 0.3048;
doppler_stw_v = doppler_stw_v * 0.3048;

//doppler altitude returns height of AUV above bottom in meters, I assume total depth of
100 meters
doppler_altitude = 100.0 - AUV_z;

if (FALSE && TRACE_EOM && MAX_ACCELERATIONS_EXCEEDED)
{

char user_pause;
cout << "==== Hit enter to continue... ==-=";
cin >> user_pause;
cout << endl

;

}

return; // integrate_eguations_of_motion () complete

126-

APPENDIX B. VIRTUAL ENVIRONMENT JAVA/VRML CODE

1. Java Source Code

This appendix includes the files needed for the Phoenix AUV dynamics to run in Java with the

virtual environment done in VRML. Since the functionality of the C++ and Java version are the same

the actual source code is not included. The source code is freely distributed at

http://www.stl.nps.navy.mil/~auv. Please feel free to download a complete version of the code if it is

required. The complete list of Java files needed to run the virtual environment follows:

dynamics.Java

AUVglobals.java

SonarModel.java

AUVmodel.java

RigidBody.java

Hmatrix.java

MathU.java

UUVBody.java

UUVmodel.java

AUVsocket.java

FlowFileReader.java

DISNetworkedRigidBody.java

Vector3D.java

ConsoleJava

Additionally, the DIS-Java-VRML library is required to compile the program. This can be

obtained free of charge at http://www.stl.nps.navy.mil/dis-java-vrml.

-127-

2. AUVvirtual.wri

#VRML V2.0 utf8

#This file creates a Virtual world for the Phoenix AUV
#Author: Kevin Byrne
#Date : 28 January 1998

##
#This is the externproto to link in DIS pdu '

s

EXTERNPROTO EspduReadTransformTrace [

field SFString marking # 0..11 character label for
entity
field SFTime readlnterval # seconds between DIS updates
field SFString address # multicast address or
"unicast"
field SFInt32 port # port number

exposedField MFNode children
field SFVec3f translation
field SFRotation rotation
exposedField SFVec3f scale
exposedField SFRotation scaleOrientation
field SFVec3f bboxCenter
field SFVec3f bboxSize
exposedField SFVec3f center
event In MFNode addChildren
event In MFNode removeChildren

] ["EspduReadTransform.wri"
"

. . /JavaViaScriptNode/EspduReadTransf orm. wrl" # local or remote URLs for the
EXTERNPROTO

"http: //www. stl .nps .navy.mil/dis-java-vrml/mil/navy/nps/JavaViaScriptNode/EspduReadTransfo
rm.wrl"

]

EspduReadTransformTrace {

marking "Phoenix AUV"

readlnterval 2 # seconds between DIS reads

do not modify address /port while using unicast-only browser, run bridge instead
address "224.2.244.141" # NPS AUV exercise default,
multicast
port 3111 # NPS AUV exercise default

children Inline {

url ["phoenix_auv.wri"
" http : / /web . nps . navy . mi 1 / -kmbyrne /AUVvw/phoenix_auv . wr 1

"

]

}

translation 2-2 # offset for initial location/orientation,

}

#End of Proto
##

-128-

Group {

children [

#This Section states Navigation info
Navigationlnfo {

type "EXAMINE" #In the end should be FLY
speed 10.0
avatarSize [0.26, 1.6, 0.75]

},

#This section adds a background to the scene
Background {

skyColor [

0.0 0.2 0.7,
0.0 0.5 1.0,
0.4 0.8 1.0]

skyAngle [1.309, 1.571]
},

#This Section creates the Ocean Floor
Transform {

translation -75.0 -30.0 -75.0
children Shape {

appearance Appearance {

material Material {

ambientlntensity
diffuseColor 0.3
specularColor 0.75
shininess 0.10

}

}

geometry ElevationGrid {

xDimension 15
zDimension 15
xSpacing 10
zSpacing 10
solid FALSE

creaseAngle 0.785

50
11 0.00
0.33 0.00

.0 0,.0 0,.0 0..0 0.,0 0..0 0..0 0..0 0,.0 0,.0 0,.0 0..0 0..0 0..0 0..0

0,.0 0..0 0..0 0..0 0..0 0..0 0.,0 0,.0 0,.0 0.,0 .0 0,.0 0,.0 0,.0 0,.0

0,.0 0,.0 0..0 0,.0 0..0 0..0 0,,0 0,.0 0,.0 0..0 .0 0,.0 0..0 0..0 0..0

.0 0,.0 0..0 0,.0 0,.0 0,.0 0..0 .0 0..0 0..0 .0 0,.0 0..0 0,.0 0..0

0..0 0..0 0,.0 0,.0 0,.0 0..0 0..0 .0 0,.0 0..0 .0 0,.0 0,.0 0,.0 0..0

.0 0,,0 0,.0 0,.0 0,.0 0..0 0,.0 .0 0..0 0..0 .0 0,.0 .0 0..0 0..0

.0 0,.0 0,.0 .0 0,.0 0,,0 0,.0 0,.0 0,.0 0..0 .0 0,.0 0,.0 0..0 0.,0

0..0 0,.0 0,.0 .0 0,.0 0,.0 0,.0 .0 0..0 0,.0 .0 0,.0 0,,0 0,.0 0,.0

.0 0,.0 0,.0 0..0 0,.0 0,.0 0,.0 .0 0,.0 0..0 .0 0,.0 0,.0 0,.0 0,.0

.0 0,.0 0..0 0,.0 0,.0 0,.0 0,.0 0,.0 0,.0 0..0 .0 .0 0,.0 0,.0 0,.0

.0 0,.0 0..0 0,.0 0,.0 .0 0,.0 .0 0..0 0..0 .0 0,.0 0,.0 0,.0 0,.0

.0 0,.0 0..0 .0 0,.0 0,.0 0,.0 .0 0,.0 0..0 .0 0,.0 0,.0 0,.0 0,.0

.0 0..0 0,.0 .0 .0 0,.0 0,.0 .0 .0 .0 .0 .0 0..0 0,.0 .0

.0 .0 0,.0 .0 .0 .0 .0 .0 .0 .0 .0 0,.0 .0 .0 .0

.0 .0 .0 .0 .0 .0 0..0 .0 .0 .0 .0 .0 0,.0 0,.0 0,.0

},

#This section adds the sea surface
#It uses an indexed face set
Shape {

appearance Appearance {

material Material {

ambientlntensity 0.70
diffuseColor 0.0 0.0 1.0
specularColor 0.0 0.0 1.00

129-

shininess 0.10
transparency .

3

}

}

geometry IndexedFaceSet {

coord Coordinate {

point [-75 75,
-75 -75,
75 -75,
75 75,]

}

coordlndex [0, 1, 2, 3,]

solid FALSE

},

#This section adds the Sun
DirectionalLight {

direction 0.0 -1.0 0.0
},

#This Section places a 688 Class Submarine in the scene
Transform {

translation 0.0 -5.0 40.0
rotation 0.0 1.0 0.0 3.142

#This sub must be scaled down from 600 M to -100 M
scale 0.1666 0.1666 0.1666
children [

Inline {

bboxSize 500.0 300.0 300.0
url "688.wri"

}

]

},

#This transform places the oil rig in the scene
Transform {

translation -45.0 7.0 -10.0
children [

Inline {

bboxSize 200.0 200.0 200.0
url "oil_rig.wri"

}

]

},

#This places a tube on the sea floor
Transform {

translation 0.0 -30.0 0.0
rotation 1.0 0.0 0.0 1.571
children [

Shape {

appearance Appearance {

material Material {

diffuseColor 0.8 1.0 0.0
}

}

geometry Cylinder {

height 6.0
top FALSE
bottom FALSE

}

130-

]

},

]

}

#end of file AUVvirtual.wri

131-

3. Oil_rig.wri

#VRML V2 .0 utf8

#This file creates an oil rig for the Phoenix AUV VW
#Author: Kevin Byrne
#Date : 28 January 1998

Navigationlnfo {

type ["EXAMINE" "ALL"]

}

Viewpoint {

position 17 35
orientation 10
description "On Oil Rig"

}

Group {

children [

#This creates the left forward leg
Transform {

translation 0.0 -10.0 0.0
children [

Shape {

appearance Appearance {

material DEF blueMetal Material {

diffuseColor 0.4 0.4 1.0
}

}

geometry DEF Leg Cylinder {

radius 3 .

height 55.0
}

},

#Back Left Leg
Transform {

translation 0.0 -10.0 -35.0
children [

Shape {

appearance Appearance {

material USE blueMetal
}

geometry USE Leg
}

]

},

#Back Right Leg
Transform {

translation 35.0 -10.0 -35.0
children [

Shape {

appearance Appearance {

material USE blueMetal
}

132-

geometry USE Leg
}

},

#Front Right Leg
Transform {

translation 35.0 -10.0 0.0
children [

Shape {

appearance Appearance {

material USE blueMetal
}

geometry USE Leg

>,

#This creates the left forward crossbeam
Transform {

translation 17.5 10.0 0.0
rotation 0.0 0.0 1.0 1.2
children [

Shape {

appearance Appearance {

material DEF white Material {

diffuseColor 1.0 1.0 1.0
}

}

geometry DEF CrossLeg Cylinder {

radius .

8

height 3 8.0
}

}

#Left forward cross beam 2

Transform {

translation 17.5 10.0 0.0
rotation 0.0 0.0 1.0 -1.2

children [

Shape {

appearance Appearance {

material USE white
}

geometry USE CrossLeg

},

#Left forward cross beam 3

Transform {

translation 0.0 10.0 -17.5
rotation 1.0 0.0 0.0 1.2

children [

Shape {

appearance Appearance {

material USE white
}

-133-

geometry USE CrossLeg
}

>,

#Left forward cross beam 4

Transform {

translation 0.0 10.0 -17.5
rotation 1.0 0.0 0.0 -1.2

children [

Shape {

appearance Appearance {

material USE white
}

geometry USE CrossLeg
}

#Left forward cross beam 5

Transform {

translation 35.0 10.0 -17.5
rotation 1.0 0.0 0.0 1.2

children [

Shape {

appearance Appearance {

material USE white
}

geometry USE CrossLeg
}

},

#Left forward cross beam 6

Transform {

translation 35.0 10.0 -17.5
rotation 1.0 0.0 0.0 -1.2

children [

Shape {

appearance Appearance {

material USE white
}

geometry USE CrossLeg

#Left forward cross beam 7

Transform {

translation 17.5 10.0 -35.0
rotation 0.0 0.0 1.0 1.2

children [

Shape {

appearance Appearance {

material USE white
}

geometry USE CrossLeg

•134-

}

]

},

#Left forward cross beam 8

Transform {

translation 17.5 10.0 -35.0
rotation 0.0 0.0 1.0 -1.2

children [

Shape {

appearance Appearance {

material USE white
)

geometry USE CrossLeg

},

#This creates the bottom platform
Transform {

translation 17.5 17.5 -17.5
children [

Shape {

appearance Appearance {

material Material {

diffuseColor 1.0 0.2 0.2
}

}

geometry Box {

size 50.0 2.0 50.

}

}

]

>,

#This places a simple box-like building on the oil rig
Transform {

translation 27.5 22.5 -17.5
children [

Shape {

appearance Appearance {

material Material {

diffuseColor 1.0 1.0 0.0
}

}

geometry Box {

size 15.0 8.0 10.0
}

}

#This places a second simple box-like building on the oil rig
Transform {

translation 5.0 21.5 -17.5
children [

Shape {

appearance Appearance {

material Material {

diffuseColor 0.4 1.0 0.4
}

}

•135-

geometry Box {

size 10.0 6.0 10.0
}

}

}

] # end of oilRig group children

} # end of oilRig group

#end of file oil_rig.wri

-136-

4. 688.wri

#VRML V2.0 utf8
#This file creates a submarine
#Author: Kevin Byrne
#Date : 2 Dec 1997

#This Section builds a 688 Class Submarine
Transform {

children [

#The Submarine Hull
Group {

children [

Navigationlnfo {

avatarSize
},

Viewpoint {

position
orientation
f ieldOfView
description

},

Viewpoint {

position
orientation
f ieldOfView
description

},

Viewpoint {

position
orientation
f ieldOfView
description

},

Viewpoint {

position
orientation
f ieldOfView
description

},

[0.3, 1.6, 0.75]

-600
1.0 -1.571

0.8
"Upper Foward End of 688, looking Aft'

-40 20 -110
1.0 3.14

0.95993
"Upper STBD Side of 688, looking to Port'

350 50 10
1.0 1.571

0.8
"Upper Aft End of 688, looking Fwd'

-40 20 120

0.95993
"Upper Port Side of 688, looking to STBD'

Viewpoint {

position
orientation
f ieldOfView
description

},

Viewpoint {

position
orientation
fieldOfView
description

},

-350 -60 10

1.0 -1.571
0.8
"Lower Foward End of 688, looking Aft'

-80 -20 -110
1.0 3.14

0.95993
"Lower STBD Side of 688, looking to Port 1

Viewpoint {

position 350 -50 10
orientation 1.0 1.571
f ieldOfView 0.8
description

},

Viewpoint {

"Lower Aft En

position -80 -20 120
orientation
f ieldOfView 0.95993

-137-

description "Lower Port Side of 688, looking to STBD"
},

Transform {

rotation 0.577417 -0.577317 -0.577317 4.18889
center 2.5 10
children

Shape {

appearance Appearance {

material DEF _688_Hull Material {

ambientlntensity 0.1
diffuseColor 0.1 0.1 0.1
specularColor 0.1 0.1 0.1

}

}

teometry IndexedFaceSet {

coord Coordinate {

point [1.73 -160 5 .33,
-162.5 4.92, -160 5.6,

0.25 -165 4.23, 0.25 -167.5 3.55,
0.46 -175 1.43, -172.5 2.18,

-175 1.5, 5.6 -160 0,

4.95 -162.5 0, 5.33 -160 1.73,
4.23 -165 0.25, 3.55 -167.5 0.25,
1.43 -175 0.46, 2.18 -172.5 0,

1.5 -175 0, 18 -172.5 10,
17.8 -170 10, 18.2 -170 10,
18.2 -167.5 10, 17.8 -167.5 10,

18 -166 10, -172.5 15,
-166 15, 0.2 -170 15,

17.8 -170 0.2, 17.8 -167.5 0.2,
18 -166 0, 18.2 -170 0,

18 -172.5 0, 0.2 -167.5 15,
4.53 -160 3.29, 0.88 -175 1.21,
3.29 -160 4.53, -3.29 -160 4.53,
-0.46 -175 1.43, -0.88 -175 1.21,
-4.53 -160 3.29, -1.21 -175 0.88,
-5.33 -160 1.73, -1.43 -175 0.46,
-0.25 -165 4.23, -0.2 -167.5 15,
-0.25 -167.5 3.55, -0.2 -170 15,
-4.23 -165 0.25, -17.8 -167.5 0.2,
-4.95 -162.5 0, -3.55 -167.5 0.25,
-2.18 -172.5 0, -18 -172.5 0,

-18.2 -170 10, -18.2 -170 0,

-18.2 -167.5 10, -18.2 -167.5 0,

-18 -166 10, -18 -166 0,

-17.8 -167.5 10, -17.8 -170 10,
-17.8 -170 0.2, -18 -172.5 10,
-1.5 -175 0, -5.6 -160 0,

-1.73 -160 5.33, -1.73 -160 -5.33,
-162.5 -4.92, -160 -5.6,

-0.25 -165 -4.23, -0.25 -167.5 -3.55
-0.46 -175 -1.43, -172.5 -2.18,

-175 -1.5, -5.33 -160 -1.73,
-4.23 -165 -0.25, -3.55 -167.5 -0.25
-1.43 -175 -0.46, -18 -172.5 -10,
-17.8 -170 -10, -18.2 -170 -10,
-18.2 -167.5 -10, -17.8 -167.5 -10,
-18 -166 -10, -172.5 -15,

-166 -15, -0.2 -170 -15,
-17.8 -170 -0.2, -17.8 -167.5 -0.2,
-0.2 -167.5 -15, -4.53 -160 -3.29,
-0.88 -175 -1.21, -3.29 -160 -4.53,

138-

3.29 -160 -4.53, 0.46 -175 -1.43,
0.88 -175 -1.21, 4.53 -160 -3.29,
1.21 -175 -0.88, 5.33 -160 -1.73,
1.43 -175 -0.46, 0.25 -165 -4.23,
0.2 -167.5 -15, 0.25 -167.5 -3.55
0.2 -170 -15, 4. 23 -165 -0.25,
17.8 -167.5 -0.2, 3.55 -167.5 -0.25
18.2 -170 -10, 18.2 -167.5 -10,
18.2 -167.5 0, 18 -166 -10,
17.8 -167.5 -10, 17.8 -170 -10,
17.8 -170 -0.2, 18 -172.5 -10,
1.73 -160 -5.33, 180 0,

1.6 179.6 0, 1. 52 179.6 0.5,
1.29 179.6 0.94, 0.94 179.6 1.29,
0.5 179.6 1.52, 179.6 1.6,
3.42 178 1.1, 2. 91 178 2.11,
2.11 178 2.91, 1.1 178 3.42,
3.6 178 0, 5.6 176 0,

5.33 176 1.73, 3.29 176 4.53,
1.73 176 5.33, 176 5.6,

178 3.6, 8.3 172 0,

6.71 172 4.88, 4.53 176 3.29,
4.88 172 6.71, 172 8.3,
11.2 164 0, 7. 9 172 2.56,
9.06 164 6.58, 6.58 164 9.06,
2.56 172 7.9, 164 11.2,
14 152 0, 10.65 164 3.46,
13.31 152 4.33, 8.23 152 11.33,
4.33 152 13.31, 3.46 164 10.65,

152 14, 14.27 140 4.64,
12.14 140 8.82, 11.33 152 8.23,
8.82 140 12.14, 4.64 140 14.27,
15 140 0, 14.93 128 4.85,
12.7 128 9.23, 9.23 128 12.7,
4.85 128 14.93, 140 15,
15.7 128 0, 15.07 116 4.89,
12.82 116 9.32, 9.32 116 12.82,
4.89 116 15.07, 128 15.7,
15.85 116 0, 16 100 0,

12.94 100 9.4, 9.4 100 12.94,
100 16, 116 15.85,

15.22 90 4.94, 15.22 100 4.94,
12.94 90 9.4, 9. 4 90 12.94,
4.94 90 15.22, 4.94 100 15.22,

90 16, 16 60 0,

15.22 30 4.94, 15.22 60 4.94,
12.94 30 9.4, 12.94 60 9.4,
9.4 30 12.94, 9. 4 60 12.94,
4.94 30 15.22, 4.94 60 15.22,

30 16, 60 16,
16 30 0, 15.22 4.94,
12.94 9.4, 9.4 12.94,
4.94 15.22, 16,
16 0, 15.22 -30 4.94,
12.94 -30 9.4, 9.4 -30 12.94,
4.94 -30 15.22, -30 16,
16 -30 0, 15.22 -60 4.94,
12.94 -60 9.4, 9.4 -60 12.94,
4.94 -60 15.22, -60 16,
16 -60 0, 15.22 -80 4.94,
12.94 -80 9.4, 9.4 -80 12.94,
4.94 -80 15.22, -80 16,
16 -80 0, 15.7 -90 0,

14.93 -90 4.85, 9.23 -90 12.7,
4.85 -90 14.93, -90 15.7,

139-

15 -110 0,

12 .7 -90 9 .23,

4. 64 -110 14 .27,

14 -120 0,

12 .14 -110 8 .82,

4. 33 -120 13 .31,

10 .65 -139 3 .46,

11 .33 -120 8 .23,

3. 46 -139 10 .65,
7. 9 - 150 2 .56,

2. 56 -150 7 .!3,

8. 3 -:150 ,

-150 8.3 ,

-150 -8. 3,

6. 71 -150 -4 .88,

3. 46 -139 -10.65
6. 58 -139 -9 .06,
10 .65 -139 -:3.46

-120 -14
,

11 .33 -120 -i3.23
4. 64 -110 -14.27
12 .14 -110 -13.82
4 . 85 -90 - 14 .93,
9. 23 -90 - 12 • 7,

14 .93 -90 -4 .85,
-90 -15. 7,

12 .94 -80 -9 .4,

4. 94 -60 - 15 .22,

9. 4 - 60 -12.!34,
15 .22 -60 -4 .94,

-60 -16,
12 .94 -30 -9 .4,

4. 94 -15 .22,
9. 4 -12. 94
15 .22 -4 .94,

- 16,
12 .94 30 - 9..1,

4. 94 60 -15.!22,
9. 4 60 -12 .94,
15 .22 60 - 4.!94,

90 -16,
9. 4 100 -12.!94,
12 .94 100 -9 .4,

15 .22 100 -4 .94,
16 90 0,

100 -16,
12 .82 116 -9 .32,
4. 85 128 - 14 • 93,
9. 23 128 - 12 • 7,

14 .93 128 -4 .85,

140 -15,
12 .14 140 -8 .82,
4. 33 152 - 13 .31,
8. 23 152 - 11 • 33,
13 .31 152 -4 .33,

6. 58 164 - 9. 06,

1Ci.65 164 -3 .46,

164 -11. 2,

6. 71 172 - 4. B8,

1. 73 176 -5. 33,

3. 29 176 - 4. 53,

5. 33 176 - 1.'73,

176 -5.6
2. 91 178 - 2. 11,

0. 5 179.6 -1 .52,

14.27 -110 4.64,
8.82 -110 12.14,

-110 15,
13.31 -120 4.33,
8.23 -120 11.33,

-120 14,
9.06 -139 6.58,
6.58 -139 9.06,
11.2 -139 0,

4.88 -150 6.71,
-139 11.2,

6.71 --150 4.88,
2.56 -150 -7.9,
4.88 -150 -6.71,
7.9 -150 -2.56,

-139 -11.2,
9.06 -139 -6.58,
4.33 -120 -13.31

8.23 -120 -11.33,
13.31 -120 -4.33
8.82 -110 -12.14
14.27 -110 -4.64

-110 -15,
12.7 -90 -9.23,
4.94 -80 -15.22,
9.4 -80 -12.94,
15.22 -80 -4.94,

-80 -16,
12.94 -60 -9.4,
4.94 -30 -15.22,
9.4 -30 -12.94,
15.22 -30 -4.94,

-30 -16,
12.94 -9.4,

4.94 30 -15.22,
9.4 30 -12.94,
15.22 30 -4.94,

30 -16,
12.94 60 -9.4,
4.94 100 -15.22,
4.94 90 -15.22,
9.4 90 -12.94,
12.94 90 -9.4,
15.22 90 -4.94,
4.89 116 -15.07,
9.32 116 -12.82,
15.07 116 -4.89,

128 -15.7,
12.7 128 -9.23,
4.64 140 -14.27,
8.82 140 -12.14,
14.27 140 -4.64,

152 -14,
11.33 152 -8.23,
3.46 164 -10.65,
9.06 164 -6.58,
2.56 172 -7.9,
4.88 172 -6.71,
7.9 172 -2.56,

172 -8.3,
4.53 176 -3.29,
1.1 178 -3.42,
2.11 178 -2.91,
3.42 178 -1.1,

179.6 -1.6,

-140-

94 179
52 179
90 21,

83 21,

0.94 179.6
1.52 179.6

3

3 71 21,
60 21,

90 25,

82 24,
71 25,
89 29,
83 29,
77 26,
60 29,
90 34,
71 34,

86 36,
71 25,
79 26,
80 24.3,

15 71 25,
15 77 26,
15 78 24.6,
-4.94 60 15
-3 83 16,
-1 89 16,
-9.4 60 12.
-12.94 60 9

-15.22 60 4

-16 60 0,

-15.22 60 -

-12.94 60 -

-9.4 60 -12
-4.94 60 -1

-15 77 26,
-15 79 25,
-15 75 26,
-9 71 25,

-1.29,
-0.5,

22,

94,
.4,

.94,

4.94,
9.4,
.94,

5.22,

80 24.3,
79 26,

-3 71 25,
-3 82 24,
-3 81 26,
-3 71 34,
-1 89 34,
-3 83 29,
-1 89 25,
-3 83 21,
-1.6 179.6
-1.29 179.6

5 179.6
91 178 -

1 178 -3

6 176 0,

,29 176 -

178 -3.6,

-0,

-2,

-1,

-5
-3

-6.71 172 -

-4.88 172 -

-7.9 172 -2

-6.58 164 -

-14 152 0,

-13.31 152
-4.33 152 -

-14.27 140
-11.33 152
-4.64 140 -

0,

-0.94,
-1.52,
2.11,
• 42,

4.53,

3.88,
6.71,
.56,

9.06,

-4.33,
13.31,
-4.64,
-8.23,
14.27,

-3 77 24,

29 179.6
89 21,
89 16,
83 16,
71 16,
89 25,
83 25,
77 24,

1.

1

1

3

3

1

3

3

60 25,
90 29,

3 81 26,
3 71 29,
1 89 34,
3 83 34,

60 34,
81 36,

9 75 26,
9 81 25,
9 75 24.3,
15 75 26,
15 79 25,
15 75 24.6,
-3 71 16,
-4.94 90 15
-9.4 90 12.
-12.94 90 9

-15.22 90 4

-16 90 0,

-15.22
-12.94
-9.4 90 -12
-4.94 90 -1

60 -16,
-15 78 24.6
-15 75 24.6
-15 71 25,
-9 75 24.3,

81 25,

-0.94

90
90

.22,

94,

.4,

• 94,

4.94,
9.4,
• 94,

5.22,

75 26,

83 25,
77 26,
83 34,
71 29,
89 29,

-3 71 21,
-1 89 21,

-1.52 179.6 -0.5,
-0.94 179.6 -1.29,

-3. 42 178 -1. 1,

-2. 11 178 -2. 91,
-3.6 178

-5. 33 176 -1. 73,
-1. 73 176 -5. 33,
-8. 3 172 ,

-4. 53 176 -3. 29,
-1]..2 164 0,

-9. 06 164 -6. 58,
-2. 56 172 -7 . 9,

-10.65 164 -3 .46,
-8. 23 152 -11 .33,
-3. 46 164 -1C .65,
-i:!.14 140 -£:.82,
-8. 82 140 -12 .14,
-15 140 0,

141-

14.93 128 -4.85, -12.7 128 -9.23,
9.23 128 -12.7, -4.85 128 -14 .93

15.7 128 0, -15.07 116 -4 .89

12.82 116 -9.32, -9.32 116 -12 .82

4.89 116 -15.07, -15.85 116 0,

16 100 0, -12.94 100 -9 .4,

9.4 100 -12.94, 116 -15.85,
15.22 100 -4.94, -4.94 100 -15 .22

15.22 30 -4.94, -12.94 30 -9.-1,
9.4 30 -12.94, -4.94 30 -15.:22,
16 30 0, -15.22 -4.94,
12.94 -9.4, -9.4 -12.94
4.94 -15.22, -16 0,

15.22 -30 -4.94, -12.94 -30 -9 • 4,

9.4 -30 -12.94, -4.94 -30 -15 .22
16 -30 0, -15.22 -60 -4 .94
12.94 -60 -9.4, -9.4 -60 -12.!34,
4.94 -60 -15.22, -16 -60 0,

15.22 -80 -4.94, -12.94 -80 -9 • 4,

9.4 -80 -12.94, -4.94 -80 -15 .22
16 -80 0, -15.7 -90 0,

14.93 -90 -4.85, -9.23 -90 -12 • 7,

4.85 -90 -14.93, -15 -110 0,

14.27 -110 -4.64, -12.7 -90 -9. 23,

8.82 -110 -12.14, -4.64 -110 -14.27,
14 -120 0, -13.31 -120 -4.33,
12.14 -110 -8.82, -8.23 -120 -11.33,
4.33 -120 -13.31, -10.65 -139 -3.46,
9.06 -139 -6.58, -11.33 -120 -8.23,
6.58 -139 -9.06, -3.46 -139 -10.65,
11.2 -139 0, -7.9 -150 -2.56,
4.88 -150 -6.71, -2.56 -150 -7.9,
8.3 -150 0, -6.71 -150 -4.88,
2.56 -150 7.9, -4.88 -150 6.71,
6.71 -150 4.88, -7.9 -150 2.56,
3.46 -139 10.65, -6.58 -139 9.06,
9.06 -139 6.58, -10.65 -139 3.46,
4.33 -120 13.31, -8.23 -120 11.33,
11.33 -120 8.23, -13.31 -120 4.33,
4.64 -110 14.27, -8.82 -110 12.14,
12.14 -110 8.82, -14.27 -110 4.64,
4.85 -90 14.93, -9.23 -90 12.7,
12.7 -90 9.23, -14.93 -90 4.85,
4.94 -80 15.22, -9.4 -80 12.94,
12.94 -80 9.4, -15.22 -80 4.94,
4.94 -60 15.22, -9.4 -60 12.94,
12.94 -60 9.4, -15.22 -60 4.94,
4.94 -30 15.22, -9.4 -30 12.94,
12.94 -30 9.4, -15.22 -30 4.94,
4.94 15.22, -9.4 12.94,
12.94 9.4, -15.22 4.94,
4.94 30 15.22, -9.4 30 12.94,
12.94 30 9.4, -15.22 30 4.94,
•4.94 100 15.22, -9.4 100 12.94,
•12.94 100 9.4, -15.22 100 4.94,
•4.89 116 15.07, -9.32 116 12.82,
•12.82 116 9.32, -15.07 116 4.89,
•4.85 128 14.93, -9.23 128 12.7,
12.7 128 9.23, -14.93 128 4.85,
4.64 140 14.27, -8.82 140 12.14,
12.14 140 8.82, -14.27 140 4.64,
4.33 152 13.31, -8.23 152 11.33,
11.33 152 8.23, -13.31 152 4.33,
3.46 164 10.65, -6.58 164 9.06,
9.06 164 6.58, -10.65 164 3.46,

142-

-2.56 172 7.9,
-6.71 172 4.88,
-1.73 176 5.33,
-4.53 176 3.29,
-1.1 178 3 .42,
-2.91 178 2.11,
-0.5 179.6 1.52,
-1.29 179.6 0.94,
1.21 -175 0.88,

-4 88 172 6.71,
-7 9 172 2.56,
-3 29 176 4.53,
-5 33 176 1.73,
-2 11 178 2.91,
-3 42 178 1.1,
-0 94 179.6 1.29
-1 52 179.6 0.5,
-1.21 -175 -0.88]

creaseAngle 1.5708
solid FALSE
coordlndex [0, 1, 2 , -1, o, 3, 1, -1,

o, 4, : , -1, o, 5, 4, -1,

5, 6, 41, -1, 5, 7, 6, -1,

8, 9, 10, -1, 9, 11, 10, -1,

11, 12, 10, -1, 10, 12, 13, -1,

12, 14, 13, -1, 14, 15, 13, -1,

16, 17, 18, -1, 19, 20, 21, -1,

18, 20, 19, -1, 22, 23, 24, -1,

16, 25, 17, -1, 17, 26, 20, -1,

20, 26, 21, -1, 21, 27, 19, -1,

19, 28, 18, -1, 18, 29, 16, -1,

14, 12, 29, -1, 12 26, 25, -1,

11, 9, 26, -1, 6, 22, 4, -1,

4, 30, 3, -1, 3, 23, 1, -1,

10 13, 31, -1, 31 32, 33, -1,

33 5, 0, -1, 34, 35, 36, -1,

37 36 38, -1 39 37, 40, -1,

41 23 42, -1 43 42, 44, -1,

6, 43, 22, -1, 45, 46, 47, -1,

48 46 45, -1 49 50, 48, -1,

51 50 52, -1 53 52, 54, -1,

55 53 56, -1 57 55, 46, -1,

58 46 59, -1 60 59, 50, -1,

22 44 23, -1 51 57, 58, -1,

53 55 57, -1 60 51, 58, -1,

49 40 61, -1 48 40, 49, -1,

39 40 48, -1 45 39, 48, -1,

47 39 45, -1 62 39, 47, -1,

35 6, 7, -1, :55, '13, 6, -1,

63 43 35, -1 63 41, 43, -1,

63 l" 41, -1, 63, 2, 1, -1,

64 65 66, -1 64 67, 65, -1,

64 68 67, -1 64 69, 68, -1,

69 70 68, -1 69 71, 70, -1,

62 47 72, -1 47 73, 72, -1,

73 74 72, -1 72 74, 75, -1,

74 49 75, -1 49 61, 75, -1,

76 77 78, -1 79 80, 81, -1,

78 80 79, -1 82 83, 84, -1,

76 85 77, -1 77 86, 80, -1,

80 86 81, -1 81 56, 79, -1,

79 52 78, -1 78 50, 76, -1,

49 74 50, -1 74 86, 85, -1,

73 47 86, -1 70 82, 68, -1,

68 , 87 67, -1 67 83, 65, -1,

72 , 75 88, -1 88 89, 90, -1,

90 , 69 64, -1 91 92, 93, -1,

94 , 93 95, -1 96 94, 97, -1,

98 , 83 99, -1 10 3, 99, 101, -1,

70 , 10 3, 82, - L, 1 32, 103, 9, -1,

104, 1 33, 102, -1, 14, 29, 104, -1 .

105, 2 3, 28, - L, 1 36, 28, 107, -1,

10 3, 1 36, 27, -1, 109 , 108, 103, - 1

-143-

110 103 111, -1, 112, 111, 29, -1,

82, 101, 83, --1, 105, 109, 110, 1,
106 108 109 -1, 112, 105, 110, -1,

14, 97, 15, -1, 104, 9'', 14, -1,

96, 97, 104, --1, 102, 96, 104, -1,

9, 96, 102, -1, 8, 96, 9, -1,

92, 70, 71, -1, 92, 100, 70, -1,

113 100 92, -1, 113, 98, 100, --1,

113 65, 98, --1, 113, 66, 65, -1

114 115 116 -1 114, 116, 117 -1,

114 117 118 -1 114 118 119 -1,

114 119 120 -1 115 121 116 -1,

116 122 117 -1 117 123, 118 -1,

118 123 119 -1 119 124 120 -1,

125 126 121 -1 121 127 122 -1,

122 128 123 -1 123 129 124 -1,

124 130 131 -1 126 132 127 -1,
127 133 134 -1 134 135 128 -1,

128 135 129 -1 129 136 130 -1,

132 137 138 -1 138 139 133 -1,

133 140 135 -1 135 140 141 -1,

141 142 136 -1 137 143 144 -1,

144 145 139 -1 139 146 140 -1,

140 147 148 -1 148 149 142 -1,

143 150 145 -1 145 151 152 -1,

152 153 146 -1 146 153 147 -1,

147 154 149 -1 155 156 150 -1,

150 157 151 -1 151 158 153 -1,

153 158 154 -1 154 159 160 -1,

161 162 156 -1 156 163 157 -1,

157 164 158 -1 158 164 159 -1,

159 165 166 -1 167 168 162 -1,

162 169 163 -1 163 170 164 -1,

164 170 165 -1 165 171 172 -1,

168 173 174 -1 174 175 169 -1,

169 176 170 -1 170 177 178 -1,

178 179 171 -1 180 181 182 -1,

182 183 184 -1 184 185 186 -1,

186 187 188 -1 188 189 190 -1,

191 192 181 -1 181 193 183 -1,

183 194 185 -1 185 195 187 -1,

187 196 189 -1 197 198 192 -1,

192 199 193 -1 193 200 194 -1,

194 201 195 -1 195 202 , 196 -1,

203 204 198 -1 198 205 199 -1,

199 206 200 -1 200 207 , 201 -1,

201 208 , 202 -1 209 210 204
,

-1,

204 211 , 205 -1 205 212 , 206
,

-1,

206 213 207 -1 207 214 208 ,
-1,

215 216 , 210 -1
, 210 217 211

,
-1,

211 218 , 212 -1 212 219 , 213 ,
-1,

213 220 , 214 ,
-1 216 221 , 217 ,

-1,

217 222 , 223 ,
-1 223 224 218

,
-1,

218 , 225 , 219 -1 219 226 , 220 ,
-1,

221 227 , 222 ,
-1

, 222 228 , 229
,

-1,

229 230 , 224 ,
-1 224 231 , 225

,
-1,

225 232 , 226 -1 227 233 , 228 ,
-1,

228 234 , 235 -1 235 , 236 , 230
,

-1,

230 236 , 231 ,
-1 231 237 , 232 ,

-1,

238 239 , 233 ,
-1 233 239 , 234

,
-1,

234 , 240 , 236 -1 236 241 , 237
,

-1,

237 , 241 , 242 -1 243 10, 239, -1,

239 10, 244, -1, 244, 33, :240, -1,

240 0, .241, -l, :241, (D, 24 5, -1

246 , 247 , 113 -l 248 113 , 91, -1,

144-

249 91, 94, --1, 250, 249, 96, -]

243 96, 8, -1, 251, 252, 246,
253 246 248 -1 254, 248, 249, -1,

255 254, 250 -1 238, 250, 243, -1,

256 257 251 -1 258, 256, 253, -1,

259 253 254 -1 260 254, 255, -1,

227 255, 238 -1 261 257, 256 -1,

262 256, 258 -1 263 258, 259 -1,

264 263, 260 -1 221 264 227 -1,

265 266 261 -1 267 261 262 -1,

268 262 263 -1 269 268 264 -1,

216 269 221 -1 270 271 265 -1,

272 265 267 -1 273 267 268 -1,

274 273 269 -1 215 274 216 -1,

275 276 270 -1 277 270 272 -1,

278 272 273 -1 279 273 274 -1,

209 274 215 -1 280 281 275 -1,

282 275 277 -1 283 277 278 -1,

284 278 279 -1 203 279 209 -1,

285 286 280 -1 287 280 282 -1,

288 282 283 -1 289 283 284 -1,

197 284 203 -1 290 291 285 -1,

292 285 287 -1 293 287 288 -1,

294 288 289 -1 191 289 197 -1,

295 296 290 -1 297 290 292 -1,

298 292 293 -1 299 293 294 -1,

180 294 191 -1 300 301 302 -1,

303 302 304 -1 305 304 306 -1,

307 306 308 -1 168 308 309 -1,

310 311 300 -1 312 310 303 -1,

313 303 305 -1 314 305 307 -1,

167 314 168 -1 315 316 310 -1,

317 315 312 -1 318 312 313 -1,

319 313 314 -1 161 314 167 -1,

320 321 315 -1 322 320 317 -1,

323 317 318 -1 324 318 319 -1,

155 319 161 -1 325 326 320 -1,

327 325 322 -1 328 322 323 -1,

329 323 324 -1 143 324 155 -1,

330 326 325 -1 331 325 327 -1,

332 327 328 -1 333 332 329 -1,

137 333 143 -1 334 335 330 -1,

336 334 331 -1 337 331 332 -1,

338 332 333 -1 132 338 137 -1,

339 340 334 -1 341 339 336 -1,

342 336 337 -1 343 337 338 -1,

126 343 132 -1
, 344 345 339 -1,

346 339 341 -1
, 347 341 342 -1,

348 347 343 -1
, 125 348 126 -1,

349 350 344 -1 351 349 346 -1,

352 , 346 347 -1 353 347 348 -1,

115 , 348 125 -1 114 350 349 -1,

114 , 349 351 -1 114 351 352 -1,

114 352 353 -1 114 353 115 -1,

179 354 355 -1
, 356 357 354

,
-1,

358 359 357 -1
, 360 361 359 -1,

355 362 363 -1
, 354 364 362 -1,

357 , 365 364 ,
-1

, 357 366 365
,

-1,

357 , 359 , 366 ,
-1

, 359 367 , 366 ,
-1,

359 , 368 367 ,
-1

, 363 369 370
,

-1,

362 , 371 369 ,
-1

, 364 372 371
,

-1,

372 , 373 , 371 ,
-1

, 373 374 371
,

-1,

373 , 367 , 374 ,
-1

, 367 375 374
,

-1,

370 , 376 , 377 ,
-1

, 369 , 378 , 376
,

-1,
371 , 379 , 378 ,

-1
, 374 , 380 379

,
-1,

-145-

381 377 376, -1 381 376 378, -1,

381 378 382, -1 382 378 379 -1,

382 379 380 -1 383 367 384, -1,

384 373 385, -1 385 372 386 -1,

386 365 387 -1 387 366 388 -1,

388 367 383 -1 389 384 390 -1,

390 384 391 -1 391 385 392 -1,

392 387 393 -1 393 388 394 -1,

394 383 389 -1 390 394 389 -1,

391 394 390 -1 391 392 393 -1,

301 295 302 -1 302 297 304 -1,

304 298 306 -1 306 299 308 -1,

308 180 309 -1 309 182 173 -1,

173 184 175 -1 175 186 176 -1,

176 188 177 -1 177 356 179 -1,

177 358 356 -1 177 188 358 -1,

188 360 358 -1 188 190 360 -1,

395 396 190 -1 395 397 396 -1,

398 397 395 -1 398 399 397 -1,

398 179 399 -1 400 395 401 -1,

402 401 403 -1 404 403 405 -1,

406 405 407 -1 408 407 409 -1,

410 409 411 -1 412 411 413 -1,

414 413 415 -1 301 415 416 -1,

417 418 419 -1 417 420 418 -1,

421 422 420 -1 420 423 424 -1,

418 424 425 -1 419 425 426 -1,

417 419 427 -1 421 417 428 -1,

422 428 423 -1 424 429 430 -1,

425 430 431 -1 426 431 432 -1,

427 426 433 -1 428 427 , 434 -1,

423 428 429 -1 382 380 435 -1,

382 435 436 -1 381 382 436 -1,

381 436 437 -1 381 437 377 -1,

438 380 375 -1 439 435 438 -1,

440 436 439 -1 370 437 , 440 -1,

429 375 368 -1 434 438 429 -1,

434 439 438 -1 433 439 434 -1,

432 439 433 -1 441 439 432 -1,

363 440 441 -1 442 368 361 -1,

442 430 429 -1 443 430 , 442 -1,

443 431 430 -1 443 432 431 -1,

444 432 443 -1 355 441 , 444 -1,

396 361 190 -1 397 442 , 396 -1,

399 443 397 -1 179 444 , 399 -1,

114 445 446 -1 114 446 , 447 -1,

114 447 448 -1 114 448 , 449 -1,

114 449 350 -1 445 450 , 446 -1,

446 451 447 -1 447 , 452 , 448 -1,

448 452 449 -1
, 449 453 , 350 ,

-1,

454 455 450 -1
, 450 , 456 , 451 -1,

451 457 452 -1 452 , 458 , 453 -1,

453 345 459 -1
, 455 , 460 , 456 -1,

456 461 462 -1
, 462 463 , 457 -1,

457 463 458 -1
, 458 340 , 345 ,

-1,

460 464 465 -1
, 465 , 466 , 461 ,

-1,

461 467 463 -1
, 463 467 , 468

,
-1,

468 335 340 -1
, 464 469 , 470

,
-1,

470 471 466 -1
, 466 472 , 467 -1,

467 473 474 -1 474 326 , 335 -1,

469 475 471 -1 471 476 , 477 -1,

477 478 472 -1 472 478 , 473 -1,

473 479 326 -1 480 481 , 475 -1,

475 482 476 -1 476 , 483 478 -1,

478 483 479 -1 479 484 , 321 -1,

146-

485, 486 481, -1 481 487 482, -1

482, 488 483, -1 483 488 484, -1

484, 489 316, -1 490 491 486, -1

486 492 487, -1 487 493 488, -1

488 493 489, -1 489 311 494, -1

491, 408 495, -1 495 410 492, -1

492, 412 493, -1 493 414 496, -1

496 301 311, -1 407 497 409, -1

409 498 411, -1 411 499 413, -1

413, 500 415, -1 415 296 416, -1

501 502 497, -1 497 503 498, -1

498 504 499, -1 499 505 500, -1

500 291 296, -1 506 507 502, -1

502 508 503, -1 503 509 504, -1

504 510 505, -1 505 286 291, -1

511 512 507, -1 507 513 508, -1

508 514 509, -1 509 515 510, -1

510 281 286, -1 516 517 512, -1

512 518 513, -1 513 519 514, -1

514 520 515, -1 515 276 281, -1

521 522 517, -1 517 523 518, -1

518 524 519, -1 519 525 520, -1

520 271 276, -1 522 526 523, -1

523 527 528, -1 528 529 524, -1

524 530 525, -1 525 , 266 271, -1

526 531 527, -1 527 532 533, -1

533 534 529, -1 529 535 , 530, -1

530 257 266, -1 531 536 , 532, -1

532 537 538, -1 538 , 539 , 534, -1

534 539 535, -1 535 , 540 , 257, -1

541 542 536, -1 536 , 542 , 537, -1

537 543 539, -1 539 , 544 , 540, -1

540 544 252, -1 545 , 72, 542, -1,

542 72, 546, -1, 546, 90, 543, - 1,

543 64, 544, -1, 544, 64, 247, - 1,

547 245 63, -1, 548, 63, 34, -1
,

549 34, 37, - 1, 550, 549, 39, -1
,

545 39, 62, - 1, 551, 242, 547, - 1,

552 547 548, -1
, 553 , 548 , 549, -1

554 553 550, -1
, 541 , 550 , 545, -1

555 232 551, -1
, 556 , 555 , 552, -1

557 552 553, -1
, 558 , 553 , 554, -1

531 554 541, -1
, 559 , 232 , 555, -1

560 555 556, -1
, 561 , 556 , 557, -1

562 561 558, -1
, 526 , 562 , 531, -1

563 , 226 , 559, -1
, 564 , 559 , 560, -1

565 560 , 561, -1
, 566 , 565 , 562, -1

522 566 526, -1
, 567 , 220 , 563, -1

568 563 564, -1
, 569 , 564 , 565, -1

570 569 , 566, -1
, 521 , 570 , 522, -1

571 214 , 567, -1
, 572 , 567 , 568, -1

573 568 , 569, -1
, 574 , 569 , 570, -1

516 570 , 521, -1
, 575 , 208 , 571, -1

576 571 , 572, -1
, 577 , 572 , 573, -1

578 , 573 , 574, -1
, 511 , 574 , 516, -1

579 , 202 , 575, -1
, 580 , 575 , 576, -1

581 , 576 , 577, -1
, 582 , 577 , 578, -1

506 , 578 , 511, -1
, 583 , 196 , 579, -1

584 , 579 , 580, -1
, 585 , 580 , 581, -1

586 , 581 , 582, -1
, 501 , 582 , 506, -1

395 , 189 , 583, -1
, 401 , 583 , 584, -1

403 , 584 , 585, -1
, 405 , 585 , 586, -1

407 , 586 , 501, -1
, 587 , 179 , 398, -1

588 , 398 , 400, -1
, 589 , 400 , 402, -1

590 , 402 , 404, -1
, 491 , 404 , 406, -1

147-

591, 171 587, -1 592 591 588, -1

591), 588 589, -1 594 589 590, -1

490, 594 491, -1 595 166 591, -1

596, 595 592, -1 597 592 593, -1

598, 593 594, -1 485 594 490, -1

599, 160 595, -1 600 599 596, -1

601, 596 597, -1 602 597 598, -1

480, 598 485, -1 603 149 599, -1

604, 603 600, -1 605 600 601, -1

606, 601 602, -1 469 602 480, -1

607, 149 603, -1 608 603 604, -1

609, 604 605, -1 610 609 606, -1

464, 610 469, -1 611 142 607, -1

612, 611 608, -1 613 608 609, -1

614, 609 610, -1 460 614 464, -1

615, 136 611, -1 616 615 612, -1

617, 612 613, -1 618 613 614, -1

455, 618 460, -1 619 130 615, -1

620, 615 616, -1 621 616 617, -1

622, 621 618, -1 454 622 455, -1

623, 120 619, -1 624 623 620, -1

625, 620 621, -1 626 621 622, -1

445, 622 454, -1 114 120 623, -1

114, 623 624, -1 114 624 625, -1

114, 625 626, -1 114 626 445, -1

20 18, 17, -1, 24, 23 30, -1,

25 16, 29, -1, 26, 17 25, -1,

21 26, 27, -1, 19, 27 28, -1,

28 19, 107, -]., 29, 18, 28 ,
-1,

29 12, 25, -1, 26, 12 11, -1,

26 9, 27, -1, 4, 22, :24, - L,

30 4, 24, -1, 23, 3, .30, - L,

31 13, 627, -]., 32, 31, 627, -1,

5, 33, 32, -1, 35, 34, 63, -1,

36 37, 34, -1, 40, 37 38, -1,

23 41, 1, -1, 42, 43, 41, -1,

22 43, 44, -1, 47, 46 56, -1,

46 48, 59, -1, 48, 50 59, -1,

50 51, 60, -1, 52, 53 51, -1,

56 53, 52, -1, 46, 55 56, -1,

46 58, 57, -1, 59, 60 58, -1,

23 44, 42, -1, 57, 51 , 53, -1,

80 78, 77, -1, 84, 83 87, -1,

85 76, 50, -1, 86, 77 85, -1,

81 86, 56, -1, 79, 56 , 52, -1,

52 79, 54, -1, 50, 78 52, -1,

50 74, 85, -1, 86, 74 , 73, -1,

86 47, 56, -1, 68, 82 , 84, -1,

87 68, 84, -1, 83, 67 , 87, -1,

88 75, 628, -1, 89, 8 3, 628, -1,

69 90, 89, -1, 92, 91 , 113 ,
-1,

93 94, 91, -1, 97, 94 , 95, -1,

83 98, 65, -1, 99, 100, 98 ,
-1,

82 100, 101, --1, 9, 103, 27, -1,

io:3, 104, 111, -1, 104 , 29, 111, -1,

29 105, 112, --1, 28, L06, 105, - 1,

27 106, 28, -1, 103, L08, 27, -1

io:3, 110, 109, -1, 111 , 112 , no, -1

83 101, 99, -1, 109, L05, 106, - 1,

12:L, 115, 125, -1, 122 , 116 , 121, -1

12:3, 117, 122, -1, 119 , 123 , 124, -1

121), 124, 131, -1, 121 , 126 , 127, -1

12:I, 127, 134, -1, 128 , 122 , 134, -1
12"3, 123, 128, -1, 130 , 124 , 129, -1
12'7, 132 , 138, -1

, 133 , 127 , 138, -1

-148-

135 134 133, -1 129, 135, 141, -1

136 129, 141, -1 138, 137, 144, -1

139 138 144, -1 140 133, 139, -1

141 140 148, -1 142 141, 148, -1

144 143 145, -1 139 145, 152, -1

146 139 152, -1 147 140, 146, -1

149 148 147, -1 150 143 155, -1

151 145 150, -1 153 152 151, -1

147 153 154, -1 149 154 160, -1

156 155 161, -1 157 150 156, -1

158 151 157, -1 154 158 159, -1

160 159 166, -1 162 161 167, -1

163 156 162, -1 164 157 163, -1

159 164 165, -1 166 165 172, -1

162 168 174, -1 169 162 174, -1

170 163 169, -1 165 170 178, -1

171 165 178, -1 173 168 309, -1

175 174 173, -1 176 169 175, -1

177 170 176, -1 179 178 177, -1

181 180 191, -1 183 182 181, -1

185 184 183, -1 187 186 185, -1

189 188 187, -1 192 191 197, -1

193 181 192, -1 194 183 193, -1

195 185 194, -1 196 187 195, -1

198 197 203, -1 199 192 198, -1

200 193 199, -1 201 194 200, -1

202 195 201, -1 204 203 209, -1

205 198 204, -1 206 199 205, -1

207 200 206, -1 208 201 207, -1

210 209 215, -1 211 204 210, -1

212 205 211, -1 213 206 212, -1

214 207 213, -1 210 216 217, -1

211 217 223, -1 218 211 223, -1

219 212 218, -1 220 213 219, -1

217 221 222, -1 223 222 229, -1

224 223 229, -1 225 218 , 224, -1

226 219 225, -1
, 222 , 227 228, -1

229 228 235, -1 230 , 229 , 235, -1

231 224 230, -1
, 232 , 225 , 231, -1

233 227 238, -1
, 234 , 228 , 233, -1

236 , 235 234, -1
, 231 , 236 , 237, -1

232 , 237 242, -1
, 239 , 238 , 243, -1

234 239 244, -1
, 240 , 234 , 244, -1

241 , 236 , 240, -1
, 242 , 241 , 245, -1

10, 243, 8, -1
, 2 14, 1 D, 31 ,

-1,

33, 244, 31, - 1, 3, 24 3, 33 ,
-1,

245 , 0, I, -1, 11 B, 24'7, 66 ,
-1,

113 , 248 , 246, -1
, 91, 249, 248, -1,

96, 249, 94, - 1, 36, 2 13, 2 30, -1

246 , 252 , 247, -1
, 246 , 253 , 251, -1

248 , 254 , 253, -1
, 250 , 254 , 249, -1

250 , 238 , 255, -1
, 251 , 257 , 252, -1

253 , 256 , 251, -1
, 253 , 259 , 258, -1

254 , 260 , 259, -1
, 255 , 227 , 260, -1

257 , 261 , 266, -1
, 256 , 262 , 261, -1

258 , 263 , 262, -1
, 260 , 263 , 259, -1

227 , 264 , 260, -1
, 266 , 265 , 271, -1

261 , 267 , 265, -1
, 262 , 268 , 267, -1

264 , 268 , 263, -1
, 221 , 269 , 264, -1

271 , 270 , 276, -1
, 265 , 272 , 270, -1

267 , 273 , 272, -1
, 269 , 273 , 268, -1

216 , 274 , 269, -1
, 276 , 275 , 281, -1

270 , 277 , 275, -1
, 272 , 278 , 277, -1

273 , 279 , 278, -1
, 274 , 209 , 279, -1

281 , 280 , 286, -1
, 275 , 282 , 280, -1

-149-

277, 283,
279, 203,
280, 287,
283, 289,
291, 290,
287, 293,
289, 191,
290, 297,
293, 299,
301, 300,
304, 305,
308, 168,
303, 310,
305, 314,
310, 316,
312, 318,
314, 161,
317, 320,
318, 324,
320, 326,
322 328,
324 143,
325 331,
329 332,
335 334,
331 337,
137 338,
336 339,
337 343,
345 344,
341 347,
126 348,
346 349,
347 353,
354 179,
359 358,
362 355,
368 359,
371 362,
376 370,
379 371,
384 , 367,
386 , 372,
366 , 387,
384 , 389,
392 , 385,
388 , 393,
394 , 391,
297 , 302,
299 , 306,
182 , 309,
186 , 175,
395 , 400,
403 , 404,
407 , 408,
411 , 412,
415 , 301,
423 , 420,
425 , 419,
428 , 417,
429 , 424,
431 , 426,
434 , 427,
380 , 438,
436 , 440,

282,
284,
285,
288,
296,
292,
294,
295,
298,
311,
303,
307,
300,
313,
494,
317,
319,
315,
323,
321,
327,
329,
330,
328,
340,
336,
333,
334,
342,
459,
346,
343,
344,
352,
356,
360,
354,
361,
364,
369,
374,
373,
364,
365,
383,
386,
387,
393,
295,
298,
180,
184,
398,
402,
406,
410,
414,
422,
418,
427,
423,
425,
433,
435,
437,

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1
-1
-1
-1
-1
-1
-1
-1
-1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

, 278, 284,
, 286, 285,
, 282, 288,
, 284, 197,
, 285, 292,
, 288, 294,
, 296, 295,
, 292, 298,
, 294, 180,
, 302, 303,
, 306, 307,
, 311, 310,
, 303, 313,
, 168, 314,
, 312, 315,
, 313, 319,
, 315, 321,
, 317, 323,
, 319, 155,
, 322 325,
, 323 329,
, 326 330,
, 327 332,
, 143 333,
, 331 334,
, 332 338,
, 340 339,
, 336 342,
, 132 343,
, 339 346,
, 343 347,
, 344 350,
, 346 352,
, 348 115,

, 357 , 356,
, 361 , 360,
, 364 , 354,
, 369 , 363,
, 375 , 367,
, 378 , 369,
, 380 , 374,
, 385 , 373,
, 365 , 386,
, 367 , 388,
, 391 , 384,
, 387 , 392,
, 383 , 394,
, 295 , 301,
, 298 , 304,
, 180 , 308,
, 184 , 173,
, 188 , 176,
, 401 , 402,
, 405 , 406,
, 409 , 410,
, 413 , 414,
, 420 , 417,
, 424 , 418,
, 427 , 419,
, 428 , 422,
, 430 , 425,
, 433 , 426,
, 429 , 428,
, 435 , 439,
, 437 , 370,

283, -1,

291, -1,

287, -1,

289, -1,

290, -1,

293, -1,

416, -1,

297, -1,

299, -1,

300, -1,

305, -1,

494, -1,

312, -1,

307, -1,

310, -1,

318, -1,

316, -1,

322, -1,

324, -1,

320, -1,

328, -1,

335, -1,

331, -1,

329, -1,

330, -1,

337, -1,

345, -1,

341, -1,

338, -1,

344, -1,

342, -1,

459, -1,

351, -1,

353, -1,

358, -1,

190, -1,

357, -1,

362, -1,

368, -1,

371, -1,

375, -1,

372, -1,

364, -1,

366, -1,

385, -1,

386, -1,

388, -1,

416, -1,

297, -1,

299, -1,

182, -1,

186, -1,

400, -1,

404, -1,

408, -1,

412, -1,

421, -1,

420, -1,

426, -1,

421, -1,

424, -1,

432, -1,

434, -1,

436, -1,

377, -1,

150-

375, 429 438 -1 439, 441, 440, -1,

440 363, 370 -1 368, 442, 429, -1,

432, 444, 441 -1 441, 355 363, -1,

361, 396 442 -1 442, 397, 443, -1,

443, 399 444 -1 444, 179 355, -1,

450, 445 454 -1 451, 446 450, -1,

452, 447, 451 -1 449, 452 453 -1,

350, 453 459 -1 450, 455 456 -1,

451 456 462 -1 457 451 462 -1,

458 452 457 -1 345 453 458 -1,

456 460 465 -1 461 456 465 -1,

463 462 461 -1 458 463 468 -1,

340 458 468 -1 465 464 470 -1,

466 465 470 -1 467 461 466 -1,

468 467 474 -1 335 468 474 -1,

470 469 471 -1 466 471 477 -1,

472 466 477 -1 473 467 472 -1,

326 474 473 -1 475 469 480 -1,

476 471 475 -1 478 477 476 -1,

473 478 479 -1 326 479 321 -1,

481 480 485 -1 482 475 481 -1,

483 476 482 -1 479 483 484 -1,

321 484 316 -1 486 485 490 -1,

487 481 486 -1 488 482 487 -1,

484 488 489 -1 316 489 494 -1,

486 491 495 -1 492 486 495 -1,

493 487 492 -1 489 493 496 -1,

311 489 496 -1 408 491 406 -1,

410 495 408 -1 412 492 410 -1,

414 493 412 -1 301 496 414 -1,

497 407 501 -1 498 409 497 -1,

499 411 498 -1 500 413 499 -1,

296 415 500 -1 502 501 506 -1,

503 497 502 -1 504 498 503 -1,

505 499 504 -1 291 500 , 505 -1,

507 506 511 -1 508 502 507 -1,

509 503 508 -1 510 504 , 509 -1,

286 505 510 -1 512 511 , 516 -1,

513 507 512 -1 514 508 , 513 ,
-1,

515 509 514 ,
-1

, 281 510 , 515
,

-1,

517 516 521 ,
-1

, 518 512 , 517
,

-1,

519 513 , 518 ,
-1

, 520 514 , 519 ,
-1,

276 515 520 ,
-1 517 522 , 523 ,

-1,

518 523 , 528 ,
-1

, 524 518 , 528 ,
-1,

525 519 , 524 ,
-1

, 271 520 , 525 ,
-1,

523 526 , 527 ,
-1

, 528 527 , 533 ,
-1,

529 528 533 ,
-1

, 530 , 524 , 529 ,
-1,

266 , 525 , 530 ,
-1

, 527 531 , 532
,

-1,

533 532 , 538 ,
-1

, 534 , 533 , 538 ,
-1,

535 , 529 , 534 ,
-1

, 257 530 , 535 ,
-1,

536 , 531 , 541 ,
-1

, 537 , 532 , 536 ,
-1,

539 , 538 537 ,
-1

, 535 , 539 , 540 ,
-1,

257 , 540 , 252 ,
-1

, 542 , 541 , 545 ,
-1,

537 542 , 546 ,
-1

, 543 , 537 , 546
,

-1,

544 539 , 543 ,
-1

, 252 , 544 , 247 ,
-1,

72, 545, 62, -1, 546,
'

72, 8 3, -1

90, 546, 88, -1, 54, 5-13, 9 3, -1

247 64, 66, -1, 53, 2-15, 2 , -1,

63, 548, 547, -1, 34, 549, 548, -1,

39, 549, 37, -1, 39, 5^15, 5 50, - L,

547 , 242 , 245 ,
-1

, 547 , 552 , 551 ,
-1,

548 , 553 , 552 ,
-1

, 550 , 553 , 549 ,
-1,

550 , 541 , 554 ,
-1

, 551 , 232 , 242 ,
-1,

552 , 555 , 551 ,
-1

, 552 , 557 , 556 ,
-1,

553 , 558 , 557 ,
-1

, 554 , 531 , 558 ,
-1,

151-

232 559 226
556 561 560
531 562 558
559 564 563
562 565 561
220 567 214
564 569 568
522 570 566
567 572 571
569 574 573
208 575 202
572 577 576
574 511 578
575 580 579
577 582 581
196 583 189
580 585 584
582 501 586
583 401 395
585 405 403
179 587 171
400 589 588
404 491 590
588 591 587
589 594 593
591 166 172
592 597 596
594 485 598
596 599 595
597 602 601
599 149 160
600 605 604
602 469 606
603 , 608 , 607
606 , 609 , 605
142 611 , 136
608 613 , 612
464 614 , 610
612 , 615 , 611
613 , 618 , 617
130 , 619 , 131
616 , 621 , 620
455 , 622 , 618
620 , 623 , 619
621 , 626 , 625

colorlndex -1

normal Index -1

, 555, 560,
, 558, 561,
, 226 563,
, 560 565,
, 526 566,
, 563 568,
, 566 569,
, 214 571,
, 568 573,
, 570 516,
, 571 576,
, 573 578,
, 202 579,
, 576 581,
, 578 506,
, 579 584,
, 581 586,
, 189 395,
, 584 403,
, 586 407,
, 398 588,
, 402 590,
, 171 591,
, 588 593,
, 491 594,
, 592 595,
, 593 598,
, 595 , 160,
, 596 , 601,
, 598 , 480,
, 600 , 603,
, 601 , 606,
, 149 , 607,
, 604 , 609,
, 469 , 610,
, 608 , 611,
, 609 , 614,
, 136 , 615,
, 612 , 617,
, 460 , 618,
, 615 , 620,
, 618 , 621,
, 619 , 120,
, 620 , 625,
, 622 , 445,

559, -1

557, -1

220, -1

564, -1

562, -1

567, -1

565, -1

208, -1

572, -1

574, -1

575, -1

577, -1

196, -1

580, -1

582, -1

583, -1

585, -1

190, -1

401, -1

405, -1

587, -1

589, -1

172, -1

592, -1

590, -1

591, -1

597, -1

166, -1

600, -1

602, -1

599, -1

605, -1

142, -1

608, -1

606, -1

607, -1

613, -1

130, -1

616, -1

614, -1

619, -1

617, -1

131, -1

624, -1

626, -1

},

#The Propeller
Transform {

translation 178.5 -7.5 9.5
rotation 0.0 0.0 1.0 1.571

scale 2.5 2.5 2.5
children [

DEF propel ler_movement Transform {

rotation 1.0 0.0 0.0 0.0
children

-152-

hub

Group {

children [

#The center hub of the propeller
Shape {

appearance DEF Bronze Appearance {

material Material {

diffuseColor 1.0 1.0 0.0
} #end material

} #end appearence
geometry Cylinder {

radius .

7

height 0.5
} # end geometry

} , #end shape

#Blade 1, oriented to stick out of the right side of the

DEF Blade Transform {

rotation 1.0 0.0 0.0 1.048
translation 2.0 0.0 0.0
scale 2.0 0.1 0.5
children Shape {

appearance USE Bronze
geometry Sphere {

}

} #end shape

} , tend transform
#Blade 2

Transform {

rotation 0.0 1.0 0.0 1.26
children USE Blade
},

#Blade 3

Transform {

rotation 0.0 1.0 0.0 2.52
children USE Blade

#Blade 4

Transform {

rotation 0.0 1.0 0.0 3.78
children USE Blade
},

#Blade 5

Transform {

rotation 0.0 1.0 0.0 5.04
children USE Blade
}

] # end of children in group
} # end of Propeller Group
} , #end of propeller_position Transform

DEF Blade_Clock TimeSensor {

cyclelnterval 3.0
startTime 1.0

loop TRUE
},

DEF Blade_Path Orientationlnterpolator {

key [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
keyValue [0.0 1.0 0.0 0.0,

0.0 1.0 0.0 0.628,
0.0 1.0 0.0 1.256,
0.0 1.0 0.0 1.884,
0.0 1.0 0.0 2.512,

153-

0.0 1.0 0.0 3.14,
0.0 1.0 0.0 3.768,
0.0 1.0 0.0 4.396,
0.0 1.0 0.0 5.024,
0.0 1.0 0.0 5.652]

#The Vortex Dissipater
Transform {

translation 182.5 -7.5 9.5
rotation 0.0 0.0 1.0 -1.571
children Shape {

appearance Appearance {

material USE 688 Hull
}

geometry Cone {

height 6.0
bottomRadius 1.7

}

#This section creates the periscope
Transform {

translation -76.0 32.0 10.0
children [

Shape {

appearance Appearance {

material DEF Scope_color Material {

diffuseColor 0.75 0.75 0.75

}

}

geometry Cylinder {

radius .

2

height 9.0
}

},

Transform {

translation -0.2 4.3 0.0
scale 1.2 1.0 0.80
children Shape {

appearance Appearance {

material USE Scope_color
}

geometry Cylinder {

radius .

3

height 0.4
}

}

}

ROUTE Blade_Clock.fraction_changed TO Blade_Path. set_fraction
ROUTE Blade_Path. value_changed TO propel ler_movement . set_rotation

-154-

5. Phoenix_auv.wri

#VRML V2 .0 utf8

#Model of the Naval Postgraduate School Center for Autonomous
Underwater Vehicle (AUV) Research's "Phoenix" AUV.
Authors: Martin Whitfield, Don Brutzman, Kevin Byrne

Viewpoint {

position 2

orientation 10
description "Stbd Beam"

}

Viewpoint {

position 2 2

orientation 10 .707
description "Stbd Bow"

}

Viewpoint {

position 2

orientation 1 1.4
description "Bow"

}

Viewpoint {

position 2 0-2
orientation 10 2.3562
description "Port Bow"

}

Viewpoint {

position 0-2
orientation 10 3.14159267
description "Port Beam"

}

Viewpoint {

position -2 -2

orientation 10 3.9270
description "Astern Port"

}

Viewpoint {

position -2

orientation 1 -1.4
description "Astern"

}

Viewpoint {

position -2 2

orientation 10 -.707
description "Astern Stbd"

}

Viewpoint {

position 2

orientation 10
description "Stbd Beam"

}

Viewpoint {

position 1.5 1.5
orientation 10 -.707

-155-

}

description "Above Stbd Beam"

Viewpoint {

position 2 2 2

orientation -.6786 .6786 -.2811 1.0961
description "Above Stbd Bow"

}

Viewpoint {

position 2 2

orientation -.3574 .8629 .3574 1.7178
description "Above Bow"

}

Viewpoint {

position 2 2-2
orientation -.3780 .9125 .1566 2.4189
description "Above Port Bow"

}

Viewpoint {

position 2-2
orientation 10 3.9270
description "Above Port Beam"

}

Viewpoint {

position -2 2 -2

orientation -.1566 .9125 .3780 3.8643
description "Above Astern Port"

}

Viewpoint {

position -2 2

orientation .3574 .8629 .3574 4.5654
description "Above Stern"

}

Viewpoint {

position -1.5
orientation 1 -1.4
description "Close Astern"

}

Viewpoint {

position -2 1

orientation 10 -.707
description "Close Astern Stbd"

}

Viewpoint {

position -1.11 .5

orientation 10
description "Close Stbd Stern'

}

Viewpoint {

position -1.11 2

orientation 10
description "Stbd Stern"

}

Viewpoint {

-156-

}

position -1.5 1.5
orientation 10 .707
description "Below Stbd Beam"

Navigationlnfo {

type ["EXAMINE 1

}

" ALL "]

Group {

children
DEF AUV

Fwd Top Plane
Transf orm{

translation .6223 .13335
children!

#A Plane Shape
DEF A_Plane Shape

{

appearance Appearance

{

material Material {dif fuseColor
} tend Appearance
geometry IndexedFaceSet {

coord Coordinate

{

2 0}

point[.0635, 0, -.0127, #0
.0381, .1778, -.0127, #1

-.0381, .1778, -.0127, #2
-.0889, 0, -.0127, #3

.0635, 0, .0127, #4

.0381, .1778, .0127, #5
-.0381, .1778, .0127, #6
-.0889, 0, .0127 #7

] #end Points
} #end Coordinates

coordlndexf 0, 3, 2, 1, -1,

4, 5, 6, 7, -1,

0, 1, 5, 4, -1,

1, 2, 6, 5, -1,

2, 3, 7, 6, -1,

0, 3, 7, 4, -1

] #end coordlndex
creaseAngle 3.14159

} #end IndexedFaceSet
} #end Shape

] #end Transform children
} #end Transform

Aft Top Plane
Transform{

translation -.7747 .13335
children

[

USE A_Plane
]# end Transform children

}#end Transform

#Fwd Bottom Plane
Trans form

{

rotation 10 3.14159267
translation .6223 -.13335
children

[

USE A_Plane
] #end Transform children

}#end Transform

157-

#Aft Bottom Plane
Transform!

rotation 10 3.14159267
translation -.7747 -.13335
children[
USE A_Plane

] #end Transform children
}#end Transform

#Stbd Fwd Plane
Trans form{

rotation 10 1.5708
translation .6223 .20955
children

[

USE A_Plane
] #end Transform children

}#end Transform

#Stbd Aft Plane
Transform{

rotation 10 1.5708
translation -.7747 .20955
children

[

USE A_Plane
] #end Transform children

}#end Transform

#Port Fwd Plane
Transform!

rotation 10 -1.5708
translation .6223 -.20955
children

[

USE A_Plane
] #end Transform children

}#end Transform

#Port Aft Plane
Transform!

rotation 10 -1.5708
translation -.7747 -.20955
children

[

USE A_Plane
] tend Transform children

}#end Transform

#Fwd Vert Thruster
Transform!

translation .3302
children!

Shape!
appearance Appearance!
material Material !dif fuseColor .2 .2 .2}

}

geometry Cylinder !height .29 radius .0635} # !height .2737 radius .0635}
} #end Shape

] #end Children
}#end Transform

#Aft Vert Thruster
Transform!

translation -.4953
children!

Shape!
appearance Appearance!
material Material !dif fuseColor .2 .2 .2}

-158-

}

geometry Cylinder {height .29 radius .0635} # {height .2737 radius .0635}
}#end Shape

] #end Children
}#end Transform

#Fwd Horiz Thruster
Transformf

rotation 10 1.5708
translation .4699
children

[

Shape

{

appearance Appearance

{

material Material {dif fuseColor .2 .2 .2}

}

geometry Cylinder {height .44 radius .0635} # {height .4231 radius .0635}
} #end Shape

] #end Children
}#end Transform

#Aft Horiz Thruster
Trans form

{

rotation 10 1.5708
translation -.6223
children

[

Shape

{

appearance Appearance

{

material Material {dif fuseColor .2 .2 .2}

}

geometry Cylinder {height .44 radius .0635} # {height .4231 radius .0635}
} #end Shape

] #end Children
} #end Transform

#Hull
Group

{

children

[

#Bow Cowling
Shape

{

appearance Appearance

{

material Material {dif fuseColor .8}

} #end Appearance

geometry IndexedFaceSet {

coord Coordinate

{

point[.6985, .13335, -.20955, #0 Start of Bow Cowling
.6985, .13335, .20955, #1
.6985, -.13335, .20955, #2
.6985, -.13335, -.20955, #3

1.05, .085, 0, #4
1.05, 0, .1143, #5
1.05, -.085, 0, #6
1.05, 0, -.1143, #7

1.05, .04572, -.098985, #8
1.05, .079188, -.05715, #9
1.05, .079188, .05715, #10
1.05, .04572, .098985, #11

1.05, -.04572, .098985, #12
1.05, -.079188, .05715, #13
1.05, -.079188, -.05715, #14

-159-

1.05, -.04572, .098985, #15

1 1, .04064, .02032, #16
1 1, .02032, .06096, #17
1 1, -.02032, .06096, #18
1 1, -.04064, .02032, #19
1 1, -.04064, -.02032, #20
1 1, -.02032, -.06096, #21
1 1, .02032, -.06096, #22
1 1, .04064, -.02032, #23

1.11, 0, 0, #24

.6985, .13335, .20955, #25 Start of Stern Cowling

.6985, .13335, -.20955, #26

.6985, -.13335, -.20955, #27

.6985, -.13335, .20955, #28
1.1303, 0, .20955, #29
1.1303, 0, -.20955, #30

6985, .13335, .0635, #31 Start of Rudder Post
8509, .13335, .0635, #32
8509, .13335, -.0635, #33
6985, .13335, -.0635, #34
6985, -.13335, .0635, #35
8509, -.13335, .0635, #36
8509, -.13335, -.0635, #37
6985, -.13335, -.0635, #38

] #end Points
} #end Coordinates

coordIndex[
1

2

9

9

4

4

10
10
11
11

5

5

12

12
13

26, 34, 33, 32, 31, 25, 1, -1, #Hull
25, 29, 28, 2, -1,

28, 35, 36, 37, 38, 27, 3, -1,

3, 27, 30, 26, -1,

4,

1,

5,

2,

6,

3,

7,

0, 7,

0,

9,

0,

4,

1,

10,

1,

11,

1,

5,

2,

12,

2,

13,

2,

-1,

-1,

-1,

-1,

-1,
-1,
-1,

-1,

-1,
-1,
-1,

-1,

-1,

-1,

10,

1,

11,

1,

5,

1,

12,

2,

13,

2,

6,

#Bow Cowling

-1,

1,
1,
1,
1,
1,

-1,

-1,

•1,

•1,

-1,

160-

13, 2, 1,

6, 3, 14, -1,

6, 14, 3, -1,

14, 3, 15, -1,

14, 15, 3, -1,

15, 3, 7, -1

15, 7, 3, -1,

4, 10, 16, -1,

10, 11, 16, -1,

11, 5, 17, -1,

5, 12, 18, -1,

12, 13, 19, -1,

13, 6, 19, -1,

6, 14, 20, -1,

14, 15, 20, -1,

15, 7, 21, -1,

7, 8, 22, 1,

8, 9, 23, - 1,

9, 4, 23, - 1,

4, 16, 23, -1,

11, 17, 16, -1,

5, 18, 17, -1,

12, 19, 18, -1,

6, 20, 19, -1,

20, 15, , 21, -1,

21, 7, 22, -1,

22, 8, 23, -1,

23, 16 , 24, -1,

16, 17
, 24, -1,

17, 18 , 24, -1,

18, 19 , 24, -1,

19, 20 , 24, -1,

20, 21 , 24, -1,

21, , 22 , 24, -1,

22, , 23 , 24, -1,

26, ,
27 , 30, -1,

25, , 26 , 30, 29, -1,

25, , 29 , 28, -1,

27 , 28 , 29, 30, -1,

31 , 32 , 36, 35, -1,

32 , 33 , 37, - 36, -1,

34 , 38 , 37, , 33, -1,

#Start of Stern Cowling

] tend coordlndex
creaseAngle 3.14159

} tend IndexedFaceSet
} tend Shape

] tend Hull Group Children
} tend Hull Group

tThe Stbd screw
Transform!

translation -1.1557 .09525
children[
Group

{

t DEF Stbd_Screw
children

[

-161-

DEF Stbd_Blade Group

{

children!
Trans form{

rotation 1 -.39
children

[

Shape

{

appearance Appearance

{

material Material {dif fuseColor .226 .197 0}

} tend Appearance

geometry IndexedFaceSet {

iord Coordinate {

point[0, 0, -.00508, #0
0, .02540, -.02032, #1

0, .04572, -.01524, #2

0, .05080, -.00508, #3

0, .05080, .00508, #4

0, .04572, .01524, #5
0, .02540, .02032, #6

0, 0, .00508 #7

] #end Points
} tend Coordinates

coordlndexf 0, 1, 2, 3, 4, 5, 6, 7, -1,

0, 7, 6, 5, 4, 3, 2, 1, -1

] #end coordlndex
} #end IndexedFaceSet

} #end A_Blade Shape
] #end transform children

} #end transform
] #end group children

} #end A_Blade Group

Trans form

{

rotation 10 1.5708
children! USE Stbd_Blade]

} tend Transform

Transform!
rotation 10 3.14159267
children! USE Stbd_Blade]

} #end Transform

Transform!
rotation 10 -1.5708
children! USE Stbd_Blade]

} #end Transform

#The shaft
Transform!

rotation 1 1.5708
translation .0281
children

[

Shape {

appearance Appearance

{

material Material {dif fuseColor .226 .197 0}

} #end Appearance
geometry Cylinder {radius .008 height .0762}

} #end Shape
] #end children

} #end Transform

#The shaft end cap
Trans form

{

rotation 1 1.5708

-162-

translation -.015
children

[

Shape {

appearance Appearance

{

material Material {dif fuseColor .226 .197 0}

} #end Appearance
geometry Cone {bottomRadius .008 height .01)

} tend Shape
] tend children

} tend Transform
] tend Screw Group Children

} tend Screw Group
] tend Transform Children

} tend Transform

tThe Port screw
Trans form

{

translation -1.1557 -.09525
children

[

Group

{

t DEF Port_Screw
children

[

DEF Port_Blade Group

{

children

[

Transform!
rotation 10 .39
children

[

Shape

{

appearance Appearance

{

material Material {dif fuseColor .226 .197 0}

} tend Appearance

geometry IndexedFaceSet {

coord Coordinate!
point [0, 0, -.00508, to

0, .02540, -.02032, tl
0, .04572, -.01524, #2
0, .05080, -.00508, #3
0, .05080, .00508, #4
0, .04572, .01524, #5
0, .02540, .02032, #6
0, 0, .00508 t7

] tend Points
tend Coordinates

iord!ndex[0, 1, 2, 3, 4, 5, 6, 7, -1

0, 7, 6, 5, 4, 3, 2, 1, -1

] tend coordlndex
} tend IndexedFaceSet

} tend A_Blade Shape
] tend transform children

} tend transform
] tend group children

} tend A_Blade Group

Transform!
rotation 10 1.5708
children! USE Port_Blade]

} tend Transform

Transform!
rotation 10 3.14159267
children! USE Port_Blade]

} tend Transform

163-

Transform{
rotation 10 -1.5708
children! USE Port_Blade]

} #end Transform

#The shaft
Transform!

rotation 1 1.5708
translation .0281
children!

Shape {

appearance Appearance!
material Material {dif fuseColor .226 .197 0}

} #end Appearance
geometry Cylinder !radius .008 height .0762}

} tend Shape
] #end children

} #end Transform

#The shaft end cap
Transform!

rotation 1 1.5708
translation -.015
children!

Shape !

appearance Appearance!
material Material {dif fuseColor .226 .197 0}

} #end Appearance
geometry Cone {bottomRadius .008 height .01}

} #end Shape
] #end children

} #end Transform
] #end Screw Group Children

} #end Screw Group
] #end Transform Children

} #end Transform

] #end AUV Group children

} #end AUV Group

#end auv.wrl

-164-

APPENDIX C. EXPERIMENTAL SCRIPTS AND RESULT DATA

1. Mission.script.SeaStateTest

your mission is
Sea State Test

mission. script . SeaStateTest

ff i i i i

initial position
position -180 50 2

drive straight into seas
course 000
depth 2

rpm 3 50

#run test for 5 minutes
wait 300

#done, stop
rpm
wait 60

test complete

165-

2. Mission.scriptFlowFieldTestLoop

your mission is
flow field test loop

mission . script . FlowFieldTestLoop

" i i i i

shift DS3 Precision Doppler Sonar mode
to track speed through water, not speed over ground

" i i i i

hull is at y distance of 83 feet

TT i i i i

initial position inside hull
position 117 88 43
orientation 335

standoff -distance 2.0

launch from lower port torpedo tube
hover 122 85.5 43 335
wait 10

drive out of tube
rpm 700
wait 20

go to surface and turn south
depth 2

course 180
wait 90

operate at surface first, then go deep
rpm
wait 60

thrusters-on
rpm 7 00
depth 7

wait 60

drive to aft end of submarine
standoff -distance 4.0
hover -130 75 33 000

-166-

steer collision avoidance sonar
to track the submarine hull
SONAR_725 090 30 1

wider scan for tracking sonar
SCAN-WIDTH 45

wait 10
hover-off

take position just aft of the pump discharge
rpm 40
course 000
depth 33
wait 60

stabilize after pump discharge
waypoint -25 76 33

drive through pump suction
course 000
rpm 400
depth 3 3

wait 5

stabilize after pump suction
waypoint 90 80 33

dock with torpedo upper port tube,
then hover with nose in tube

standoff-distance 0.5

course 025

hover 108.5 84 33

move in

hover 117 88 33

stabilize for next iteration
wait 10
hover-off

docking complete

-167-

3. SEA STATE 1 SIMULATION DATA

Wed Feb 25 09:53:52 1998

0.3

NPS AUV telemetry 17

r

0.2 -,

0.11

•0.1

•0.2

0.3
50 100 150 200

time t (seconds)

250 300 350

168-

Wed Feb 25 09:53:34 1998
0,

0.3 -

NPS AUV telemetry 8

0.2 -;

0.1 -]

-0.1

•0.2

-0.3

-0.4

-0.5

150 200
time t (seconds)

350

-169-

4. SEA STATE 2 SIMULATION DATA

Wed Feb 25 10:14:57 1998
1.5

NPS AUV telemetry 17

0.5

-0.5

-1.5

100 150 200
time t (seconds)

350

-170-

Wed Feb 25 10:14:41 1998
1.5

0.5

T
NPS AUV telemetry
T 1

t vs
t vs

theta (elevation angle] [deg
theta_dot (elevation rate) [deg/sec] -

fflSHM 1 1
i * 1

1

1 1 1 1 1 1 1
S

i i I 1 1 »
I

s i
1 i 1

1
i 8 i i 1 1 I I I I

I
1 1 1 1

1

1 I 5 1 1 1 1 1 1

1

1 1 1
1

i !»
'

I V. / .1 " I ' '. >. 'i ', It ll Jl ll 11 ll ll IL II IL II li.IL !l 11 11 II 11 LI ll.Li II II il I. 11 U U U U Li Li Li LI II J. LI 11 Li 11 ti, 11 11 U. LI LI ti I

-0.5

1.5
50 100 150 200

time t (seconds]
250 300 350

171

5. SEA STATE 3 SIMULATION DATA

Wed Feb 25 10:10:25 199 NPS AUV telemetry 17

150 200
time t (seconds)

350

-172-

Wed Feb 25 10:10:10 1998
2.5

NPS AUV telemetry 8

1 1 1 1

t vs jtheta (elevation angle) Idegi]

t vs theta_dot (elevation rate) [degVsec]

350

173-

6. SEA STATE 4 SIMULATION DATA

Wed Feb 25 10:05:17 199 NPS AUV telemetry 17

350

174-

Wed Feb 25 10:05:00 1998 NPS AUV telemetry 8

10 T
jtheta (elevation angle) [degi-

theta_dot (elevation rate) [degVsec]

150 200
time t (seconds)

350

-175-

7. SEA STATE 5 SIMULATION DATA

Wed Feb 25 09:59:02 199 NPS AUV telemetry 17

150 200
time t (seconds)

350

176-

8. X VERSUS Y FOR NO-FLOW SIMULATION

Wed Mar 4 09:55:53 199!
•100

A
i

w
Q)

80 -

60 -

-40

9 - 20 •

r-i

U
o
3. .

20

40

60

80

100
150 -100

NPS AUV telemetry—i

1 1 r

y ys x {geographic position plot;*
"ssn. outline'!

-50 50
North A (x_world) [ft]

100 150

177-

9. X VERSUS Y FOR NORMAL FLOW SIMULATION

Wed Mar 4 09:51:36 1998
-100

TS
r-\

U
O

A
I

W

80

60 -

— -40 -

-20 -

-

20 -

40 -

60 -

80 -

100
-150 -100

NPS AUV telemetry
1

1 1

w
1 1

1

rs x (gsogiraphic position plot); -*

—

"ssn. outline" -+--

c>»_
H 1-

*-"

,—i h --..- -r

i i 1

-50 50
North A (x_world) [ft]

100 150

-178-

10. X VERSUS Y FOR EXTREME FLOW RUN

Wed Mar 4 09:42 : 18 199?
-100

NPS AUV telemetry

-80

-60

-40

^ "20
.-H

O
3. n

A
I

J-)

CO

CD

3

20 -

40 -

60 -

80 -

100

n 1

V"
'

1 1
'--

1

/s x (geographic position plot) o
"ssn. outline'! -+--

c '
H

—

\ K _H h—IK- 1J!^""""""*!
1?

i i

-150 -100 -50 50
North A (x_world) [ft]

100 150

179-

-180-

APPENDIX D. FLOW GENERATION CODE

1 1n 1

1

i*
Program: FlowFieldGenerator .C

Description: This program creates the data required for a complex flow field
associated with a submarine driving through the water. It uses
Flat Plate Fluid Flow theory to create a series of files which
contain the data used by the Phoenix AUVs Virtual environment

.

This program is based upon a program which was written in fortran
called ITBL (Incompressible Turbulent Boundary Layer) from a
mechanical Engineering text. The book was called Boundary Layer

Analysis, by Joseph A. Schetz

.

Revised:

System:

Compiler

:

Compilation:

26 January 98

Irix 5.3

ANSI C++

irix> make FlowFieldGenerator .o

irix> CC FlowFieldGenerator .C -lm -c -g +w

-c == Produce binaries only, suppressing the link phase.
+w == Warn about all questionable constructs.

Author:

Thesis

:

Advisors

:

References

Notes

:

Kevin Byrne

Byrne, Kevin M. , Real-Time Modeling of Cross -Body
Flow for Torpedo Tube Recovery of the Phoenix Autonomous
Underwater Vehicle, Masters Thesis, Naval Postgraduate
School, Monterey California, March 1998.

Dr. Don Brutzman, Dr. Bob McGhee

Schetz, Joseph A., _Boundary Layer Analysis_,
Prentice Hall, Englewood Cliffs, NJ, 1992.

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//
//

2-d Boundary Layer Computation, Incompressible,
Turbulent, 1st Order, Implicit

Mixing-length or Eddy-viscosity Model or Tke Model.

Equations Are Dimensionless Using Freestream Velocity,
Uinf, Viscosity, Muinf, and Density, Rhoinf, and a
Reference Length, L; X/l, Y/l, U/uinf, Also
Re = Rhoinf *uinf*l/muinf
Pick L = 1.0.

Other Variables

:

Rkap, Kappa in the Mean Flow Turbulence Models
Ypa, Y Sub A+
Del, Starting Boundary Layer Thickness
Duedx, Derivative of Edge Velocity in the X Direction
Red, Reynolds Number Based on Delta
Usue, Ustar/uedge
A,b,c, Splitting up the Boundary Layer Equations

-181-

Sample Problem of a Flat Plate with Uinf = 10.0
X = 5.0. Goto X = 6.0. Take Nu (=muinf /rhoinf) =

Start at
1.0e-5. Rex=5.0e6

//
//

//
// Use Simple Integral Solution to Get Initial Values.
// Delta = 0.0856. Cf = 0.002665. Other Flows Can Be Set by User.
1 1

1

include <iostream.h>
include <iomanip.h>
include <fstream.h>
include <math.h>

define TRUE 1

define FALSE

struct FlowGridElements
double direction;
double x_magnitude;
double y_magnitude;
double z_magnitude;

};

//direction relative to sub heading
//The magnitudes are dimensionless
//forces in the submarine reference frame

const int FLOWFIELDLENGTH = 721;
const int FLOWFIELDWIDTH = 61;

1 12

//4
lenght of sub om .5 ft inc
the number of cross sections on AUV

//These grids are used to pass the initial flow profile from the flat
//Plate model to the tube level model. The tube level model refines
//these arraysin the areas of interest.
FlowGridElements global lktgrid [FLOWFIELDLENGTH] [FLOWFIELDWIDTH] = {0}
FlowGridElements global2ktgrid [FLOWFIELDLENGTH] [FLOWFIELDWIDTH] = {0}
FlowGridElements global3ktgrid [FLOWFIELDLENGTH] [FLOWFIELDWIDTH] = {0}

//Local Constants
const double RKAP = 0.41;
const double YPA = 9.7;

//
void eddy(int NNX, int MMAX, int MEST, const double RE, double DY,

double U0 [] , double UE [] , double T [] , double CF []

)

double RMUT = 0.0
double Y =0.0
double YP =0.0
double DELST =0.0

for (int ie = 2; ie <= MEST; ie++) {

DELST = DELST + DY* (1 . 0-0 . 5* (U0 [ie-1] +U0 [ie]) /UE [NNX]

)

}

// CLAUSER EDDY VISCOSITY MODEL
RMUT = 0.018*RE*UE[NNX] *DELST;

for (int ig = 1; ig <= MMAX; ig++) {

Y = (ig-1) * DY;
YP = Y*UE[NNX] *RE*sqrt(0.5*CF[NNX-l])

;

//REICHART MODEL FOR COMPLETE INNER REGION
T[ig] = RKAP* (YP-YPA*tanh(YP/YPA))

;

•182-

if (T[ig] > RMUT) {

T[ig] = RMUT;
}

}

return;

} //end of function eddy

//
void TRID (int MM, double A[], double B[], double C[], double R[], double S[]) {

double GAM [550]

;

double RP[550]

;

double DENO;

// THOMAS ALGORITHM
GAM [1] = C [1] / B [1] ;

RP [1] = R [1] / B [1] ;

for (int ih = 2; ih <= MM; ih++) {

DENO = B[ih] - A[ih] * GAM[ih-l];
GAM[ih] = C[ih] / DENO;
RP[ih] = (R[ih] -A[ih] *RP[ih-l]) / DENO;

}

S[MM] = RP[MM]

;

for (int ii = 1; ii <= MM-1; ii++) {

S[MM-ii] = RP[MM-ii]-GAM[MM-ii] *S[MM-ii+l]

;

}

return;

} //end of function TRID

//
void flatPlateFlowFieldGenerator (void) {

// YOU MUST GIVE INITIAL X (XI), FINAL X (XF) , (CNU) , (UNINF)

,

// (NMAX) , (MMAX) AND (DY)

// PICK MMAX BASED ON INITIAL BOUNDARY LAYER THICKNESS AND
// NUMBER OF POINTS ACROSS THE LAYER. USE AT LEAST 400 ACROSS
// DELTA. ADD AT LEAST 100 POINTS ABOVE DELTA.
//

// PICK NMAX BASED ON LENGTH OF REGION AND DX DESIRED. DX
// CAN BE OF THE ORDER OF INITIAL DELTA/FIVE. TAKE L = 1.0.

//Constant Variables
const int ARRAY_SIZE = 550;
const double XI = 0.0; //Initial X position where flow hits plate
const double CNU = 0.000001;

//
//Variables I needed to add for iteration down sub Hull

int current_distance = ;

int index_dif ference = 0;

-183-

//Length in meters = 360 ft, truly 109.7mdouble submarine_length_meters = 111;
//double submarine_speed = 1.0;

struct flowRecord {

double x_magnitude;
double y_magnitude;
double z_magnitude;
double direction;

};

flowRecord nontubelevelgrid[FLOWFIELDLENGTH] [FLOWFIELDWIDTH]

;

//Array declararations
double U[ARRAY_SIZE]

;

double U0[ARRAY_SIZE]

;

double V[ARRAY_SIZE]

;

double V0[ARRAY_SIZE]

;

double CF[150]

;

double A[ARRAY_SIZE]
double B[ARRAY_SIZE]
double C[ARRAY_SIZE]
double R[ARRAY_SIZE]
double TKEO[ARRAY_SIZE]

;

double TMU[ARRAY_SIZE]

;

double UE[150]

;

double DUEDX[150];
double Y[ARRAY_SIZE]

;

//Varibles Required For Fluid Caluations

//distance from hull feet

int
int
int
int
int
int
int

double
double

value. 035)
double
double
double
double
double

discharge
double
double
double

double
(ft)

double
(ft)

MMAX = 60;
NMAX = 15;
MEST = 401;
FM1 = MEST-1;
NMAXP = NMAX;
MMAXP = MEST+100;
NNX;

//MMAX originally was 525, NMAX originally was 101

//This is the M index for the initial Delta

XF
DY

0.0;
0. 02 /MMAX;

DX;
DENO ;

DEL = 0.00015;
Y0D;
pump_out let_jet_factor

;

//The position at which the profile is generated
// step distance away from hull per calcualtion(last

// distance from the start of plate

//Holds value for pump force reduction sw

pump_inlet_j et_factor ; //Holds value for pump force reductionsw suction
pump_outlet_jet_speed = 2.5; //Holds value for pump force (knots)
pump_inlet_jet_speed = 1.0; //Holds value for pump force (knots)

pumpSuctionPosition_f t = 180.5; //The position along hte hull of suction

pumpDischargePosition_f t = 245.5; //The position along hte hull of discharge

double suctionBegin_m
suction forces (m)

double suctionEnd_m
forces (m)

double dischargeBegin_m
discharge forces (m)

double dischargeEnd_m
discharge forces (m)

= (pumpSuctionPosition_f t - 6.5) * 0.3048; //Begin of

- (pumpSuctionPosition_f t +6.5) * 0.3048; //End of suction

= (pumpDischargePosition_ft - 6.5) * 0.3048; //Begin of

= (pumpDischargePosition_f t +6.5) * 0.3048; //End of

-184-

//

//Output streams to hold the generated flow fields for later usage
f latplatef lowf ieldlkt .data - Holds the entire flatplate model flow field

for a submarine speed of 1 kt

.

f latplatef lowf ield2kt. data - Holds the entire flatplate model flow field
for a submarine speed of 2 kt

.

f latplatef lowf ield3kt .data - Holds the entire flatplate model flow field
for a submarine speed of 3 kt

.

//

//

//

//

//

//

//

//

//

//

//

//

//

//

These others are just for data verification.
f latprof i^

f latslicef
f latslice]
flatslice]
f latslice^
flatslice250 .data - Holds flat plate data for slice at 250 ft

.le.data - Holds flat plate data for sub profile
?50.data - Holds flat plate data for slice at 50 ft

:100.data - Holds flat plate data for slice at 100 ft

:150.data - Holds flat plate data for slice at 150 ft

:200.data - Holds flat plate data for slice at 200 ft

ofstream platelktOutput (" f latplatef lowf ieldlkt .data" , ios::out);
ofstream plate2ktOutput (" f latplatef lowf ield2kt .data" , ios::out);
ofstream plate3ktOutput (" f latplatef lowf ield3kt .data" , ios::out);
ofstream plateProf ileOutput (" flatprof ile.data" , ios::out);
ofstream plateSlice50Output (" f latslice50 .data" , ios::out);
ofstream plateSlicelOOOutput (

" f latslicelOO .data" , ios::out);
ofstream plateSlicel50Output (

" f latslicel50 .data" , ios::out);
ofstream plateSlice200Output (

" flatslice200 .data" , ios::out);
ofstream plateSlice250Output (

" flatslice250 .data" , ios::out);

for (int submarine_speed = 1; submarine_speed < 4; submarine_speed++) {

int las t_distance_fi lied = 0;

double UINF = (double) submarine_speed; //This is the flow strength in open water
//This declared here due to dependence on other variables
double RE = UINF * submarine_length_meters / CNU;

//
//Initialize flow field to zero prior to each speed iteration
for (int row = 0; row < FLOWFIELDLENGTH; row++) {

for (int col = 1; col < FLOWFIELDWIDTH; col++) {

nontubelevelgrid[row] [col] .x_magnitude = 0.0
nontubelevelgrid[row] [col] .y_magnitude = 0.0
nontubelevelgrid[row] [col] . z_magnitude = 0.0
nontubelevelgrid[row] [col] .direction = 180.0

//-

//This is the main loop. It generates the Flow field from bow to stern
//in 1 meter increments. Each profile starts from the hull and
//goes outward until flow force = Uinf (-30 ft)
for (int generationloop = 1; generationloop < submarine_length_meters ;

generationloop++) {

//Flag for file output
// firstEntry = 1;

//This increments XF by 1 m each time. The loop will run from bow to stern
XF = (double) generationloop

;

DX = (XF-XI) / (NMAX-1);

//initialize UE and DUEDX arrays they are only 150 elements large
for (int iw = 0; iw <= NMAX; iw++) {

-185-

UE[iw] =1.0;
DUEDX[iw] = 0.0;

}

//additional variable which depend on nitialized arrays
CF[1] = 0.001;
double USUE = sqrt (CF [1] /2 . 0)

;

double RED = RE * DEL * USUE * UE [1]

;

//initialize other arrays, these are 550 elements large
for (int ix = 1; ix <= MMAX; ix++) {

U[ix] = UE[1]

;

U0[ix] = UE[1]

;

V[ix] = 0.0
V0[ix] =0.0
TKEO[ix] =0.0
TMU[ix] =0.0

// NO SLIP CONDITION
U[l] = 0.0;
U0[1] = 0.0;

//
//The initial profiles of U and V can be changed by the user.
//MEST is the M index for the initial Delta.
//Assume a Coles Wake Law Initial Velocity Profile
//
for (int iy = 2; iy <= MEST; iy++) {

Y0D = (double) (iy-1) / (double) FM1;
U0[iy] = USUE*UE[1]

*

(1.0/RKAP*log(Y0D*RED) + 4.90 + 0.51/RKAP
* 2.0 * pow((sin(Y0D*1.5708)) ,2));

V0[iy] = 0.0;
}

//By this point all initialization is done, U0 and V0 are initial U+V profiles
int done_200 = FALSE;
int iz = 2;

while ((iz <= NMAX) && (done_200 == FALSE)) {

NNX = iz;
U0[MMAX] = UE[iz]

;

V0[MMAX] = 0.0;

eddy(NNX, MMAX, MEST, RE, DY, U0 , UE , TMU, CF) ;

B[l] = 1.0;
C[l] = 0.0,
R[l] = 0.0;
A[MMAX] = 0.0;
B[MMAX] = 1.0;
C[MMAX] = 0.0;
R[MMAX] = UE[iz]

;

DENO = RE*DY*DY;

for (int ia = 2; ia <= MMAX-1; ia++) {

A[ia] = -0.5*V0 [ia] /DY- (1 . 0+TMU [ia-1]) /DENO;
B[ia] = U0[ia] /DX+ (2. 0+TMU [ia-1] +TMU[ia]) /DENO;

-186-

C[ia] = 0.5*V0[ia] /DY-(1.0+TMU[ia]) /DENO;
R[ia] = UE[iz] *DUEDX [iz] +U0 [ia] *U0[ia] /DX;

}

TRID(MMAX, A, B, C, R, U);

for (int ib = 2; ib <= MMAX - 1; ib++) {

V[ib] = V[ib-1] -(0.5*DY/DX) * (U [ib] -U0 [ib] +U[ib-1] -U0 [ib-1])

;

}

int done = FALSE;
int ic = MEST - 10;

while ((ic <= MMAX) && (done -= FALSE)) {

if (U[ic] > 0.99*UE[iz]) {

MEST = ic;
MMAXP = MEST+100;
done = TRUE;

}

ic + +;

}

//This steps in the X-direction from front of plate to current position
for (int id = 2; id <= MMAX; id++) {

U0[id] = U[id]

;

V0[id] = V[id]

;

}

CF[iz] = (4.0*U0[2]-U0[3]) / (pow(UE[iz] ,2) *DY*RE)

;

//Check if near Seperation, if so this profile is done
if (CF[iz] < 0.0001) {

NMAXP = iz;
done_200 = TRUE;

}

iz ++;

} //end of for 200 loop

if (MMAXP > MMAX) {

MMAXP = MMAX;
}

//
//This section puts data in seperate files for later use.
//The data is formatted in the following order:
// X-dir flow component Y-dir Z-dir vector direction
//All values are unitless. This allows scaling during usage.
//

//Calculate the number of feet down the hull we are
current_distance = (int) (generationloop/ . 3048) * 2;

//Check to ensure we have a good ft increment on hull
if (current_distance > 720) {

cout << " Distance along hull exceeded 360 ft, reset to 360 ft (720)" << endl

;

current_distance = 720;
}

if (current_distance <) {

cout << " Distance along hull below ft, reset to 1" << endl;

-187-

current_di stance = 0;

}

//Calculate the number of rows to be filled. This is needed because the
//dynamics model needs a flow field with 0.5 ft increments, and this
//generates a field of 1 meter increments. We interpolate to fill
//in the missing data
index_dif ference = current_distance - last_distance_f illed;

//Output routine to put Values in proper arrays and files
//A loop is used to access each U value for this position on
//Hull. The generationloop index represents the distance along
// the hull in meters
for (int ij = 0; ij < MMAXP; ij++) {

//Distance from the hull in feet
Y[ij] =(ij-l)*DY* submarine_length_meters / 0.3048 ;

//
//This section does array output
//output of flow field into flowfield arrays
//We must fill all .5 ft incremented array rows between
//current_distance and last_distance_f illed

int pass = 1;

for (int arrayindex = last_distance_f illed + 1; arrayindex < current_distance;
arrayindex++) {

//
// The output data is given in knots based on submarine speed. Dynamics

converts it to ft/sec
// To convert knots to ft/sec kts*2000*3/60/60= 1.6667
//In order to get this force into true x, y, z components it is necessary to

multiply the components
//by a factor which relates them to the sub's refernce frame. Since for the

flat plate model
//I assume x and z components are zero, only Y is adjusted . For the tube

level profile when
//fully integrated each component will need to be adjusted.

//reset pump jet force to one
pump_outlet_jet_factor = 1.0;
pump_inlet_jet_factor = -1.0;

for (int column = 0; column < FLOWFIELDWIDTH; column++) {

nontubelevelgrid [arrayindex] [column] .x_magnitude = 0.0;
nontubelevelgrid [arrayindex] [column] .y_magnitude = - U[column] *

submarine_speed;
nontubelevelgrid [arrayindex] [column] . z_magnitude = 0.0;
nontubelevelgrid [arrayindex] [column] .direction = 180.0;

//This section adds a pump inlet 180 ft back on the hull. It starts out at
full

//force and diminishes to at 20 ft out from the hull. It assumes water is
sucked in at 2.5 kts

if ((generationloop > suctionBegin_m) && (generationloop < suctionEnd_m)) {

nontubelevelgrid [arrayindex] [column] .x_magnitude = pump_inlet_jet_factor
* pump_inlet_jet_speed;

if (pump_inlet_jet_factor < -0.2) {

pump_inlet_jet_factor = pump_inlet_jet_factor + 0.025;

188-

}

else {

pump_inlet_jet_factor = 0.0;

}

//This section adds a pump discharge jet 246 ft back on the hull. It starts
out at full

//force and diminishes to at 20 ft out from the hull. It assumes water is
discharged in at 2.5 kts

else if ((generationloop > dischargeBegin_m) && (generationloop <

dischargeEnd_m)) {

nontubelevelgrid[arrayindex] [column] .x_magnitude = pump_outlet_jet_factor
* pump_outlet_jet_speed;

if (pump_outlet_jet_factor > 0.2) {

pump_outlet_jet_factor = pump_outlet_jet_factor - 0.025;
}

else {

pump_outlet_jet_factor = 0.0;

}

//Now write these values to the proper file
switch ((int) submarine_speed) {

case 1:

platelktOutput << arrayindex << " " << column << " "

<< nontubelevelgrid [arrayindex] [column] .x_magnitude <<

<< nontubelevelgrid [arrayindex] [column] .y_magnitude <<

<< nontubelevelgrid [arrayindex] [column] . z_magnitude <<

<< nontubelevelgrid [arrayindex] [column] .direction
<< endl;

//Update the global array
globallktgrid [arrayindex] [column] .x_magnitude =

nontubelevelgrid [arrayindex] [column] .x_magnitude;
globallktgrid[arrayindex] [column] .y_magnitude =

nontubelevelgrid [arrayindex] [column] .y_magnitude;
globallktgrid [arrayindex] [column] .z_magnitude =

nontubelevelgrid [arrayindex] [column] . z_magnitude;
globallktgrid [arrayindex] [column] .direction =

nontubelevelgrid [arrayindex] [column] .direction;
break;

case 2

:

plate2ktOutput << arrayindex << " " << column << " "

<< nontubelevelgrid [arrayindex] [column] .x_magnitude <<

<< nontubelevelgrid [arrayindex] [column] .y_magnitude <<

<< nontubelevelgrid [arrayindex] [column] . z_magnitude <<

<< nontubelevelgrid [arrayindex] [column] .direction
<< endl

;

//Update the global array
global2ktgrid [arrayindex] [column] .x_magnitude =

-189-

nontubelevelgrid [arrayindex] [column] .x_magnitude;
global2ktgrid[arrayindex] [column] .y_magnitude =

nontubelevelgrid[arrayindex] [column] .y_magnitude;
global2ktgrid [arrayindex] [column] . z_magnitude =

nontubelevelgrid[arrayindex] [column] . z_magnitude;
global2ktgrid[arrayindex] [column] .direction =

nontubelevelgrid[arrayindex] [column] .direction;

break;
case 3

:

plate3ktOutput << arrayindex << " " << column << " "

<< nontubelevelgrid [arrayindex] [column] .x_magnitude <<

<< nontubelevelgrid [arrayindex] [column] .y_magnitude <<

<< nontubelevelgrid [arrayindex] [column] . z_magnitude <<

<< nontubelevelgrid [arrayindex] [column] .direction
<< endl

;

//Update the global array
global3ktgrid[arrayindex] [column] .x_magnitude =

nontubelevelgrid [arrayindex] [column] .x_magnitude;
global3ktgrid [arrayindex] [column] .y_magnitude =

nontubelevelgrid [arrayindex] [column] .y_magnitude;
global3ktgrid [arrayindex] [column] . z_magnitude =

nontubelevelgrid [arrayindex] [column] . z_magnitude;
global3ktgrid [arrayindex] [column] .direction =

nontubelevelgrid [arrayindex] [column] .direction-

break;
default:

cerr << "Invalid Submarine Speed" << endl;
break;

} // end switch
} //end of column loop
pass += 1;

}

//Fill current distance array, and write values to file
nontubelevelgrid[current_distance] [i j] .x_magnitude = 0.0;
nontubelevelgrid[current_distance] [ij] .y_magnitude = - U[ij] * submarine_speed;
nontubelevelgrid [current_distance] [i j] . z_magnitude = 0.0;
nontubelevelgrid[current_distance] [ij] .direction = 180.0;

//This section adds a pump inlet 180 ft back on the hull. It starts out at
full

//force and diminishes to at 20 ft out from the hull. It assumes water is
sucked in at 2.5 kts

if ((generationloop > suctionBegin_m) && (generationloop < suctionEnd_m)) {

nontubelevelgrid [current_distance] [ij] .x_magnitude =

pump_inlet_jet_factor
* pump_inlet_jet_speed;

if (pump_inlet_jet_factor < -0.2) {

pump_inlet_jet_factor = pump_inlet_jet_factor + 0.02 5;

}

else {

pump_inlet_jet_factor = 0.0;
}

-190-

//This section adds a pump discharge jet 246 ft back on the hull. It starts
out at full

//force and diminishes to at 20 ft out from the hull. It assumes water is

discharged in at 2.5 kts
else if ((generationloop > dischargeBegin_m) && (generationloop <

dischargeEnd_m)) {

nontubelevelgrid[current_distance] [ij] .x_magnitude =

pump_outlet_jet_factor
* pump_outlet_jet_speed;

if (pump_outlet_jet_factor > 0.2) {

pump_outlet_jet_factor = pump_outlet_jet_factor - 0.025;

}

else {

pump_outlet_jet_factor = 0.0;

}

//Now write these values to the proper file
switch ((int) submarine_speed) {

case 1

:

platelktOutput << current_distance << " " << ij << " "

<< nontubelevelgrid[current_distance] [i j] .x_magnitude <<
<< nontubelevelgrid[current_distance] [i j] .y_magnitude <<
<< nontubelevelgrid[current_distance] [i j] . z_magnitude <<
<< nontubelevelgrid[current_distance] [ij] .direction
<< endl

;

//Update the global array
globallktgrid[current_distance] [ij] .x_magnitude =

nontubelevelgrid[current_distance] [ij] . x_magnitude;
globallktgrid[current_distance] [ij] .y_magnitude =

nontubelevelgrid[current_distance] [ij] .y_magnitude;
globallktgrid[current_distance] [ij] . z_magnitude =

nontubelevelgrid[current_distance] [ij] . z_magnitude;
globallktgrid[current_distance] [ij] .direction =

nontubelevelgrid[current_distance] [ij] .direction;

break

;

case 2

:

plate2ktOutput << current_distance << " " << ij << " "

<< nontubelevelgrid[current_distance] [ij] .x_magnitude <<
<< nontubelevelgrid[current_distance] [i j] .y_magnitude <<
<< nontubelevelgrid[current_distance] [ij] . z_magnitude <<
<< nontubelevelgrid[current_distance] [ij] .direction
<< endl

;

//Update the global array
global2ktgrid[current_distance] [ij] .x_magnitude =

nontubelevelgrid[current_distance] [ij] .x_magnitude;
global2ktgrid[current_distance] [ij] .y_magnitude =

nontubelevelgrid[current_distance] [ij] .y_magnitude;
global2ktgrid[current_distance] [ij] .z_magnitude =

nontubelevelgrid[current_distance] [ij] . z_magnitude;
global2ktgrid[current_distance] [ij] .direction =

nontubelevelgrid[current_distance] [ij] .direction;

break

;

case 3

:

plate3ktOutput << current_distance << " " << ij << " "

<< nontubelevelgrid[current_distance] [i j] .x_magnitude <<
<< nontubelevelgrid[current_distance] [i j] .y_magnitude <<
<< nontubelevelgrid[current_distance] [ij] . z_magnitude <<

191-

<< nontubelevelgrid[current_distance] [ij] .direction
<< endl;

//Update the global array
global3ktgrid[current_distance] [ij] .x_magnitude =

nontubelevelgrid[current_distance] [ij] .x_magnitude;
global3ktgrid[current_distance] [ij] .y_magnitude =

nontubelevelgrid[current_distance] [ij] .y_magnitude;
global3ktgrid[current_distance] [ij] .z_magnitude =

nontubelevelgrid[current_distance] [ij] . z_magnitude;
global3ktgrid[current_distance] [ij] .direction =

nontubelevelgrid[current_distance] [ij] .direction;

break;
default

:

cerr << "Invalid Submarine Speed" << endl;
break

;

} // end switch

pass = 1;

last_distance_f illed = current_distance;

//
//This section does file output for files that are used to visualize
//field output over the whole sub length. They are generally used for
//viewing only. This data is not in a UVW usable form
if (U[ij] >= 0.99) {

plateProf ileOutput << XF << "
"

« Y[ij]
<< endl

;

//firstEntry = 0;

}

//Put output to file for flat plate slice at 50 ft
if ((generationloop == 15) && (submarine_speed ==1)) {

plateSlice50Output << Y[ij] << " " << U[ij] << endl;
}

//Put output to file for flat plate slice at 100 ft
if ((generationloop == 30) && (submarine_speed ==1)) {

plateSlicelOOOutput << Y[ij] « " " « U[ij] « endl;
}

//Put output to file for flat plate slice at 150 ft
if ((generationloop == 45) && (submarine_speed ==1)) {

plateSlicel50Output << Y[ij] << " « U[ij] << endl;
}

//Put output to file for flat plate slice at200 ft
if ((generationloop == 60) && (submarine_speed == 1)) {

plateSlice200Output « Y[ij] « " " « U[ij] << endl;
}

//Put output to file for flat plate slice at 250 ft
if ((generationloop == 75) && (submarine_speed ==1)) {

plateSlice250Output « Y[ij] << " " « U[ij] « endl;
}

}

} //end of generationloop
} //end of submarine_speed loop

//Close all output files
platelktOutput . close ()

;

-192-

plate2ktOutput . close ()

;

plate3kt0utput . close ()

;

plateProf ileOutput .close ()

;

plateSlice50Output . close ()

;

plateSlicelOOOutput . close (

)

plateSlicel50Output . close (

)

plateS lice2 00Output . close (

)

plateSlice250Output . close (

)

return;

} //end of flatPlate function

void tubeLevelFlowFieldGenerator (void) {

//
//Arrays to hold all values as they are modified

FlowGridElements
FlowGridElements
FlowGridElements
FlowGridElements
FlowGridElements

FlowGridElements
FlowGridElements
FlowGridElements
FlowGridElements
FlowGridElements

FlowGridElements
FlowGridElements
FlowGridElements
FlowGridElements
FlowGridElements

abovelkt
upperlkt
centerlkt
lowerlkt
belowlkt

above2kt
upper2kt
center2kt
lower2kt
below2kt

above3kt
upper 3 kt
center3kt
lower3kt
below3kt

FLOWF IELDLENGTH

]

FLOWFIELDLENGTH]
FLOWF IELDLENGTH

]

FLOWF IELDLENGTH

]

FLOWF IELDLENGTH

]

FLOWF IELDLENGTH

]

FLOWF IELDLENGTH

]

FLOWFIELDLENGTH]
FLOWFIELDLENGTH]
FLOWFIELDLENGTH]

FLOWFIELDLENGTH]
FLOWFIELDLENGTH]
FLOWFIELDLENGTH]
FLOWFIELDLENGTH

]

FLOWF IELDLENGTH]

[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]

[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]

[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]
[FLOWFIELDWIDTH]

1 kt.

//
//Output streams to hold the generated flow fields for later usage.
//Five files are created for each sub speed to cover all major variations
// in flow profile.
//

//
//

//

//

//

//

// the lower edge of the tube for a submarine speed of 1 kt

.

//

//

//

// Files for other speeds are named using the same conventions.

abovetubelevellkt .data - Holds the tube model flow field at
1 ft above the tube using a submarine speed of 1 kt.

uppertubelevellkt .data - Holds the tube model flow field
at the upper edge of the tube for a submarine speed of

centertubelevellkt .data - Holds the tube model flow field at
the center of the tube for a submarine speed of 3 kt

.

lowertubelevel Ik t .data - Holds the tube model flow field at
the lower edge of the tube for a submarine speed of 1

belowtubelevellkt .data - Holds the tube model flow field at
1 ft below the tube using a submarine speed of 1 kt

.

ofstream abovetubeLevellktOutput
ofstream upperLevellktOutput
ofstream centerLevellktOutput
ofstream lowertubeLevellktOutput
ofstream belowLevellktOutput

(" abovetubelevel lkt . data "

,

("uppertubelevellkt .data"

,

("centertubelevellkt .data'
("lowertubelevellkt .data"

,

("belowtubelevellkt .data"

,

lOS : out) ;

ios

:

out) ;

lOS :out)
ios

:

out) ;

ios

:

out) ;

•193-

ofstream abovetubeLevel2ktOutput
ofstream upperLevel2kt0utput
ofstream centerLevel2kt0utput
ofstream lowertubeLevel2kt0utput
ofstream belowLevel2ktOutput

ofstream abovetubeLevel3kt0utput
ofstream upperLevel3kt0utput
ofstream centerLevel3kt0utput
ofstream lowertubeLevel3kt0utput
ofstream belowLevel3kt0utput

r abovetubelevel2kt .data" , ios : :out);
'uppertubelevel2kt .data" , ios: :out);
'centertubelevel 2 kt .data" , ios : : out)
' lowertubelevel2kt .data" , ios : :out)

;

'belowtubelevel2kt .data" , ios : :out)

;

' abovetubelevel3kt .data" , ios: :out);
'uppertubelevel3kt .data" , ios : : out)

;

'centertubelevel3kt .data" , ios : :out)
' lowertubelevel3kt .data" , ios : :out)

;

'belowtubelevel3kt . data" , ios : : out)

;

//
//Initialize the tube level flow fields to those of the flat
//Plate fields
for (int row = 0; row < FLOWFIELDLENGTH; row++) {

for (int col = 0; col < FLOWFIELDWIDTH; col++) {

abovelkt [row]
abovelkt [row]
abovelkt [row]
abovelkt [row]

upperlkt [row]
upperlkt [row]
upperlkt [row]
upperlkt [row]

centerlkt [row
centerlkt [row
centerlkt [row
centerlkt [row

lowerlkt row]
lowerlkt row]
lowerlkt row]
lowerlkt row]

belowlkt row]
belowlkt row]
belowlkt row]
belowlkt row]

above2kt row]
above2kt row]
above2kt row]
above2kt row]

upper2 kt [row]
upper2 kt [row]

upper2kt [row]
upper2kt [row]

center2kt [row
center2kt [row
center2kt [row
center2kt [row

lower2 kt [row]
lower2kt [row]
lower2kt [row]
lower2kt [row]

col] .x_magnitude -

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

[col] .x_magnitude
[col] .y_magnitude
[col] .z_magnitude
[col] .direction

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction -

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

[col] .x_magnitude
[col] .y_magnitude
[col] .z_magnitude
[col] .direction

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

globallktgrid [row]
global lktgrid[row]
globallktgrid [row]
globallktgrid [row]

globallktgrid [row]
globallktgrid [row]
globallktgrid [row]
globallktgrid [row]

globallktgrid [row
globallktgrid [row
globallktgrid [row
globallktgrid [row

globallktgrid [row]
globallktgrid [row]
globallktgrid [row]
globallktgrid [row]

globallktgrid [row]
globallktgrid [row]
globallktgrid [row]
globallktgrid [row]

global 2ktgr id [row]
global2ktgrid [row]
global2ktgrid [row]
global2ktgrid[row]

global 2 ktgr id [row]
global2ktgrid[row]
global2ktgrid[row]
global2ktgrid[row]

global2ktgrid[row
global2ktgrid[row
global 2ktgrid [row
global2ktgrid[row

global2ktgrid [row]
global2ktgrid [row]
global2ktgrid[row]
global2ktgrid[row]

col] .x_magnitude
col] .y_magnitude
col] .z_magnitude
col] .direction ;

col] .x_magnitude
col] .y_magnitude
col] . z_magnitude
col] .direction ;

[col] .x_magnitude
[col] .y_magnitude
[col] .z_magnitude
[col] . direction ;

col] .x_magnitude
col] .y_magnitude
col] . z_magnitude
col] .direction ;

col] .x_magnitude
col] .y_magnitude
col] . z_magnitude
col] .direction ;

col] . x_magni tude
col] .y_magnitude
col] . z_magnitude
col] .direction ;

col] .x_magnitude
col] • y_magnitude
col] . z_magnitude
col] .direction ;

[col] .x_magnitude
[col] .y_magnitude
[col] .z_magnitude
[col] .direction ;

col] .x_magnitude ;

col] .y_magnitude ;

col] . z_magnitude ;

col] .direction ;

-194-

below2kt [row]
below2kt [row]
below2kt [row]
below2kt [row]

above3kt [row]
above3kt [row]
above3kt [row]
above3kt [row]

upper3kt [row]
upper3kt [row]
upper3kt [row]
upper3kt [row]

center3kt [row
center3kt [row
center3kt [row
center3kt [row

lower3kt [row]
lower3kt [row]
lower3kt [row]
lower3kt [row]

below3kt [row]
below3kt [row]
below3kt [row]
below3kt [row]

col] .x_magnitude
col]

.
y_magnitude

col] . z_magnitude
col] .direction

col] . x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

[col] .x_magnitude =

[col] .y_magnitude =

[col] . z_magnitude =

[col] .direction =

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

col] .x_magnitude =

col] .y_magnitude =

col] . z_magnitude =

col] .direction =

global2ktgrid[row]
global 2 ktgr id [row]
global 2 ktgrid [row]
global2ktgrid [row]

global3ktgrid[row]
global 3 ktgrid [row]
global3ktgrid[row]
global3ktgrid [row]

global3ktgrid[row]
global3ktgrid[row]
global 3 ktgrid [row]
global3ktgrid[row]

global3ktgrid [row
global3ktgrid [row
global3ktgrid [row
global 3 ktgrid [row

global3ktgrid [row]
global3ktgrid [row]
global3ktgrid [row]
global 3 ktgrid [row]

global3ktgrid [row]
global3ktgrid [row]
global3ktgrid [row]
global3ktgrid [row]

col] .x_magnitude
col] .y_magnitude
col] .z_magnitude
col] .direction ;

col] .x_magnitude
col] .y_magnitude
col] .z_magnitude
col] .direction

;

col] .x_magnitude
col] .y_magnitude
col] . z_magnitude
col] .direction ;

[col] .x_magnitude
[col] .y_magnitude
[col] .z_magnitude
[col] .direction ;

col]
col]
col]
col]

col]
col]
col]
col]

x_magnitude
y_magnitude
z_magnitude
direction ;

x_magnitude
y_magnitude
z_magnitude
direction ;

} //End of col loop
} //End of Row loop

//
//Update the tube level flow fields to show the tube flow
/ /disturbances
double before_tube_force = 1.0;
double af ter_tube_force = -1.0;

for (int along_hull - 30; along_hull <= 60; along_hull++) {

before_tube_force = 1.0;
for (int out_from_hull = 0; out_from_hull <= 30 ; out_from_hull++)

abovelkt
upperlkt
centerlkt
lowerlkt
belowlkt
above2kt
upper2kt
center2kt
lower2kt
below2kt
above3kt
upper 3 kt
center3kt
lower3kt
below3kt

[along,
[along_
[along,
[along,
[along,
[along,
[along,
[along,
[along,
[along,
[along,
[along,
[along,
[along,
[along.

hull
hull
hull
hull
hull
hull
hull
hull
hull
hull
hull
hull
hull
hull
hull

out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out._from_hull]
out..from_hull]
out._from_hull]
out._from_hull]
out._from_hull]

.x_magnitude

.x_magnitude

. x_magni tude

.x_magnitude

.x_magnitude

.x_magnitude

.x_magnitude

.x_magnitude

. x_magni tude

.x_magnitude

. x_magni tude

.x_magnitude

.x_magnitude

.x_magnitude

. x_magni tude

before,
before,
before,
before,
before,
before,
before,
before,
before,
before,
before,
before,
before,
before,
before

tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube,
tube

{

.force

.force

.force

.force

.force

.force

.force

.force

.force

.force

.force

.force

.force

.force
force

before_tube_force = before tube force 0.032;

195-

for (along_hull = 61; along_hull <= 80; along_hull++) {

af ter_tube_force = -1.0;
for (int out_from_hull = 0; out_from_hull <= 30 ; out_from_hull++)

abovelkt along..hull] [out._from_hull . x_magnitude = after..tube..force * 1

upperlkt along_.hull] [out..from_hull . x_magnitude = after..tube..force * 1

centerlkt along..hull] [out._from_hull .x_magnitude = after..tube..force * 1

lowerlkt along..hull] [out._from_hull .x_magnitude = after..tube..force * 1

belowlkt along..hull] [out._from_hull .x_magnitude = after..tube..force * 1

above2kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 2

upper2kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 2

center2kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 2

lower2kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 2

below2kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 2

above3kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 3

upper3 kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 3

center3kt along. hull] [out._from_hull .x_magnitude = after..tube..force * 3

lower3kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 3

below3kt along..hull] [out._from_hull .x_magnitude = after..tube..force * 3

after_tube_force = af ter_tube_force + 0.032;

//
//Output the flow field arrays to the proper files
for (int rowl = 0; rowl < FLOWFIELDLENGTH; rowl++) {

for (int coll = 0; coll < FLOWFIELDWIDTH; coll++) {

abovetubeLevellktOutput << rowl << " " << coll << " "

<< abovelkt [rowl] [coll] .x_magnitude
<< abovelkt [rowl] [coll] .y_magnitude
<< abovelkt [rowl] [coll] . z_magnitude
<< abovelkt [rowl] [coll] .direction

upperLeve 1 1 ktOutput

centerLevellktOutput

<< rowl << " " << coll << " "

« upperlkt [rowl] [coll] .x_magnitude
<< upperlkt [rowl] [coll] .y_magnitude
« upperlkt [rowl] [coll] . z_magnitude
<< upperlkt [rowl] [coll] .direction

<< II II

<< II I.

<< „ I.

<< endl

<< ,. „

<< "

<< „ i,

<< endl

i

<< rowl << " " << coll << " "

<< centerlkt [rowl] [coll] .x_magnitude << " "

<< centerlkt [rowl] [coll] .y_magnitude << " "

<< centerlkt [rowl] [coll] . z_magnitude << " "

<< centerlkt [rowl] [coll] .direction << endl;

lowertubeLevellktOutput « rowl << " " << coll << " "

<< lowerlkt [rowl] [coll] .x_magnitude << " "

<< lowerlkt [rowl] [coll] .y_magnitude << " "

<< lowerlkt [rowl] [coll] . z_magnitude << " "

<< lowerlkt [rowl] [coll] .direction << endl;

belowLevellktOutput « rowl << << coll <<
<< belowlkt [rowl] [coll] .x_magnitude << " "

<< belowlkt [rowl] [coll] .y_magnitude << " "

<< belowlkt [rowl] [coll] . z_magnitude << " "

<< belowlkt [rowl] [coll] .direction << endl,

abovetubeLevel2ktOutput << rowl << " " << coll << " "

<< above2kt [rowl] [coll] .x_magnitude << " "

196-

<< above2kt [rowl] [coll] .y_magnitude << " "

<< above2kt [rowl] [coll] . z_magnitude << " "

<< above2kt [rowl] [coll] .direction << endl

;

upperLeve 1 2 ktOutput

centerLevel2kt0utput

<< rowl << " " << coll << " "

<< upper2kt [rowl] [coll] .x_magnitude << " "

<< upper2kt [rowl] [coll] .y_magnitude << " "

<< upper2kt [rowl] [coll] . z_magnitude << " "

<< upper2kt [rowl] [coll] .direction << endl;

<< rowl << " " << coll << " "

<< center2kt [rowl] [coll] .x_magnitude << " "

<< center2kt [rowl] [coll] .y_magnitude << " "

<< center2kt [rowl] [coll] . z_magnitude << " "

<< center2kt [rowl] [coll] .direction << endl,

lowertubeLevel2kt0utput << rowl << " " << coll << " "

<< lower2kt [rowl] [coll] .x_magnitude << " "

<< lower2kt [rowl] [coll] .y_magnitude << " "

<< lower2kt [rowl] [coll] . z_magnitude << " "

<< lower2kt [rowl] [coll] .direction << endl,

belowLevel2ktOutput << rowl << " " << coll << " "

<< below2kt [rowl] [coll] .x_magnitude << " "

<< below2kt [rowl] [coll] .y_magnitude << " "

<< below2kt [rowl] [coll] . z_magnitude << " "

<< below2kt [rowl] [coll] .direction << endl;

upperLevel3kt0utput

centerLevel3kt0utput

<< endl ;

<< ,, „

<< „ >

<< „ ,,

<< endl

;

abovetubeLevel3kt0utput << rowl << " " << coll << " "

<< above3kt [rowl] [coll] .x_magnitude <<
<< above3kt [rowl] [coll] .y_magnitude <<
<< above3kt [rowl] [coll] . z_magnitude <<
<< above3kt [rowl] [coll] .direction

<< rowl << " " << coll << " "

<< upper3kt [rowl] [coll] .x_magnitude
<< upper3kt [rowl] [coll] .y_magnitude
<< upper3kt [rowl] [coll] .z_magnitude
<< upper3kt [rowl] [coll] .direction

<< rowl << " " << coll << " "

<< center3kt [rowl] [coll] .x_magnitude << " "

<< center3kt [rowl] [coll] .y_magnitude << " "

<< center3kt [rowl] [coll] . z_magnitude << " "

<< center3kt [rowl] [coll] .direction << endl;

lowertubeLevel3ktOutput << rowl << " " << coll << " "

<< lower3kt [rowl] [coll] .x_magnitude << " "

<< lower3kt [rowl] [coll] .y_magnitude << " "

<< lower3kt [rowl] [coll] . z_magnitude << " "

<< lower3kt [rowl] [coll] .direction << endl;

belowLevel3kt0utput << rowl << " " << coll << "
"

<< below3kt [rowl] [coll] .x_magnitude << " "

<< below3kt [rowl] [coll] .y_magnitude << " "

<< below3kt [rowl] [coll] . z_magnitude << " "

<< below3kt [rowl] [coll] .direction << endl,

} //End of coll loop
} //End of Rowl loop

//

-197-

//Close all Files for later use by dynamics /gnuplot
abovetubeLevellktOutput . close ()

;

upperLevellktOutput . close ()

;

centerLevellktOutput .close ()

;

lowertubeLevellktOutput . close () ;

belowLevellktOutput . close ()

;

abovetubeLevel2ktOutput . close () ;

upperLevel2ktOutput . close ()

;

centerLevel2ktOutput . close ()

;

lowertubeLevel2ktOutput .close ()

;

belowLevel2ktOutput .close ()

;

abovetubeLevel3kt0utput . close ()

;

upperLevel3ktOutput . close ()

;

centerLevel3ktOutput .close ()

;

lowertubeLevel3ktOutput .close ()

;

belowLevel3kt0utput .close ()

;

return;

//
//This is the driver to run the flateplate flow generation and
//tube level flow generation functions
main () {

cout << "Starting the Flow Field Generation program." << endl;

cout << "Generating the Flow Profiles for the Flat Plate Model Area." << endl;
flatPlateFlowFieldGenerator ()

;

endl ;

cout << endl << endl;
cout << "The following File(s) were created for use by the Phoenix AUV UVW:

cout <<
cout <<
cout <<

cout <<
cout <<
cout <<
cout <<
cout <<
cout <<
cout << endl << endl,

flatplateflowfieldlkt.data" « endl
f latplatef lowf ield2kt .data" << endl
f latplatef lowf ield3kt .data" << endl

f latprof ile.data" << endl;
flatslice50 .data" << endl;
flatslicelOO .data" << endl
f latslicel50 .data" << endl
flatslice200.data" « endl
flatslice250.data" « endl

endl ;

cout << "Creating the Flow Profiles for the Tube Level Flow Areas." << endl;
tubeLevelFlowFieldGenerator ()

;

cout << "The following File(s) were created for use by the Phoenix AUV UVW:

cout << "

cout << "

cout << "

cout << "

cout << "

cout << endl

;

cout << "

cout << "

cout << "

abovetubelevellkt .data" << endl;
uppertubelevellkt .data" << endl;
centertubelevellkt .data" << endl;
lowertubelevellkt .data" << endl;
belowtubelevellkt .data" << endl;

abovetubelevel2kt .data" << endl;
uppertubelevel2kt .data" << endl;
centertubelevel2kt .data" << endl,

198-

cout << "

cout <<
cout << endl;
cout << "

cout << "

cout << "

cout << "

cout << "

cout << endl << endl

;

lowertubelevel2kt .data" << endl;
belowtubelevel2kt .data" << endl;

abovetubelevel3kt .data" << endl;
uppertubelevel3kt .data" << endl;
centertubelevel3kt . data" << endl;
lowertubelevel3kt . data" << endl;
belowtubelevel3kt .data" << endl;

cout << "Exiting the Flow Field Generation Program." << endl;

return ;

} // end main

-199-

-200-

APPENDIX E. SIMULATION VIDEO

1. INTRODUCTION

The attached video appendix gives an overall view of the Phoenix AUV virtual environment.

All major objects are described and viewed.

2. SURFACE BUOYANCY AND WAVE MOTION
In this segment the AUV is run on a course into the seas in various sea states. The test runs

demonstrate a sea state of 1, 3, and 5 respectively.

3. PUMP OUTLETS/INLETS

This part of the demonstration shows the AUV driving past a pump discharge outlet followed

by a pump suction inlet. It demonstrates how the effects of turbulent flow are felt by the AUV, and

how the AUV maintains stability and continues on the preplanned course.

4. COMPLETE MISSION

This is the final portion of the simulation tape. It shows a complete torpedo tube launch and

recovery mission. The AUV is launched from a lower port torpedo tube, proceeds into the open water,

takes position at the submarines stern and then conducts a docking evolution with the upper port

torpedo tube. Both inward and outward outer door openings are assumed, ans simply represented

using cylinders.

5. INVOCATION INSTRUCTIONS

To reproduce this mission the following steps should be taken.

A. Start the viewer application as follows.

SGI> viewer

2. Start the dynamics portion of the program as follows

SGI> dynamics

-201-

OR

SGI> dynamics_nosonar

*****Insert dynamics Menu Capture****** ***

C. After dynamics is running select the option to conduct a torpedo tube docking

evolution (it is letter "z").

D. Once all flow field arrays are initialized, select "1" to loop the dynamics with the

execution level.

E. Finally, launch the execution application as follows:

SGI> execution mission mission. script . FlowFieldGenerator

remote <dynamics host name>

F. You should now observe a torpedo tube launch and recovery mission in the viewer.

-202-

LIST OF REFERENCES

Ames, Andrea L., Nadeau, David R., Moreland, John L., VRML 2.0 Sourcebook, Second edition, John

Wiley & Sons, New York, New York, 1997.

Bacon, Daniel K. Jr., Integration ofa Submarine into NPSNET, Master's Thesis, Naval Postgraduate

School, Monterey, California September 1995.

Berteaux, H.O., Buoy Engineering, John Wiley & Sons, New York, New York, 1976.

Brutzman, Donald P., A Virtual Worldfor an Autonomous Underwater Vehicle, Dissertation, Naval

Postgraduate School, Monterey, California March 1994. Available at

http://www. stl. nps.navy.mil/~brutzman/dissertation.

Brutzman, Don, The "Virtual Reality Modeling Language and Java," Communication of the ACM,
Special issue on the Java programming language, to appear 1998. Available at

http://www. stl. nps.navy.mil/~brutzman/vrml/vrmljava.ps

Brutzman, Don, Healey, Tony, Marco, Dave, and McGhee, Bob, "The Phoenix Autonomous

Underwater Vehicle," AI-Based Mobile Robots, editors David Kortenkamp, Pete Bonasso and Robin

Murphy, MIT/AAAI Press, Cambridge Massachusetts, to appear 1998. Available at

http://www. stl. nps.navy.mil/~auv/aimr.ps

Burns, Mike, Merging Virtual and Real Execution Level Software for the Phoenix Autonomus

Underwater Vehicle, Master's Thesis, Naval Postgraduate School, Monterey, California, September,

1996. Available at http://www.cs.nps.navy.mil/research/auv/thesispages/burns/cover.html

Byrnes, Ronald B., The Rational Behavior Model: A Multi-Paradigm, Tri-Level Software

Architecture for the Control ofAutonomous Vehicles, Dissertation, Naval Postgraduate School,

Monterey, California, March 1993.

Byrnes, Ronald B., Healey, Anthony J., McGhee, Robert B., Nelson, Michael L., Kwak, Se-Hung,

Brutzman, Donald P., The Rational Behavior Software Architecture for Intelligent Ships, Naval

Engineers Journal, March, 1996, pp. 43-54.

Cornell, G., and Hortsman, C, Core JAVA, SunSoft Press, Mountain View, California, 1997.

Davis, Duane, Precision Maneuvering and Control of the Phoenix Autonomous Underwater Vehicle

for Entering a Recovery Tube, Master's Thesis, Naval Postgraduate School, Monterey, California,

September, 1996. Available at http://www.cs.nps.navy.mil/research/auv/thesispages/davis/cover.html

DelTheil, Caroline, Didier Leandri, Eric Hospital, Donald P. Brutzman, An Optical Guidance System

for the Recovery ofan Unmanned Underwater Vehicle, in proceedings from the Tenth International

-203-

Symposium on Unmanned Untethered Submersible Technology (UUST), Lee, NH, September 7-10,

1997, pp. 140-148.

IEEE Standardfor Information Technology - Protocolsfor Distributed Interactive Simulation (DIS)

Applications, version 2.0, Institute for Simulation and Training report IST-CR-93-15, University of

Central Florida, Orlando Florida, May 28 1993.

IEEE Standardfor Distributed Interactive Simulation -- Applications Protocols, Standards Proposal

P1278.1 ballot draft, IEEE Standards Department, Piscataway New Jersey, November 1994.

IEEE Standardfor Distributed Interactive Simulation — Communication Architecture Requirements,

Standards Proposal PI 278.2 ballot draft, IEEE Standards Department, Piscataway New Jersey,

November 1994.

Fossen, Thor, Guidance and Control of Ocean Vehicles, John Wiley & Sons, New York, New York,

1990.

Hartman, J., and Wernecke, J., The VRML 2.0 Handbook, Addison-Wesley Publishing Company,

New York, New York, 1997.

Healey, A.J. and Lienard, D., "Multivariable Sliding Mode Control for Autonomous Diving and

Steering of Unmanned Underwater Vehicles," IEEE Journal of Oceanic Engineering, vol. 18, no. 3,

July 1993, pp. 327-339.

Healey, Anthony J., "Dynamics of Marine Vehicles," Course Notes, Naval Postgraduate School,

Monterey California, Winter 1998.

Holden, Mike, Ada Implementation of Concurrent Execution ofMultiple Tasks in the Strategic and

Tactical Levels in the Rational Behavior Modelfor the NPS Phoenix Autonomous Underwater

Vehicle (AUV), Masters Thesis, Naval Postgraduate School, Monterey, California, September 1995.

John, James E.A. and Haberman, William L., Introduction to Fluid Mechanics, Prentice Hall,

Englewood Cliffs, New Jersey, 1988.

Lea, R., Matsuda, K., and Miyashita, K., JAVA for 3D and VML Worlds, New Riders Publishing,

Indianapolis, Indiana, 1997.

Leaver, Greg, Monterey Bay Natural Marine Sanctuary Terrain Model, Masters Thesis, Naval

Postgraduate School, Monterey, California, June 1998.

Marco, D.B., Autonomous Control of Underwater Vehicles and Local Area Maneuvering,

Dissertation, Naval Postgraduate School, Monterey, California, September 1996. Available at

http://www.cs.nps.navy.mil/research/auv

-204-

Marco, D.B., Healey, A.J., McGhee, R.B., Autonomous Underwater Vehicles: Hybrid Control of

Mission and Motion, Autonomous Robots 3, 1996, pp. 169-186.

Mecco, Tritech DS30 Precision Doppler Sonar Operators Manual, Duval, Washington, December.

1997.

Naughton, P., The JAVA Handbook, Osborne McGraw-Hill, Berkeley, California, 1997.

Riedel, J.S., Healey, A.J., A Discrete Filterfor the Forward Prediction ofSea Wave Effects on AUV
Motions, Naval Postgraduate School, Monterey, California September 1997.

Schetz, Joseph A., Boundary Layer Analysis, Prentice Hall, Englewood Cliffs, New Jersey, October

1992.

Scientific Computing Group at Indiana University, Web Pages at

http://www.cs.indiana.edu/scicomp/home.html, Bloomington, Indiana, 1998.

SonTek, SonTek Acoustic Doppler Velocimeter Introductory Documentation, San Diego, California,

June, 1997.

Young, Forest, Phoenix Autonomous Underwater Vehicle (AUV): Networked Control ofMultiple

Analog and Digital Devices using Lontalk, Master's Thesis, Naval Postgraduate School, Monterey,

California, December, 1997.

-205-

-206-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library

Naval Postgraduate School

411 DyerRd.

Monterey, California 93943-5101

Dr. Dan Boger, Chair, Code CS.

Computer Science Department

Naval Postgraduate School

Monterey, California 93943

Dr. Robert B. McGhee, Code CS/MZ.

Computer Science Department

Naval Postgraduate School

Monterey, California 93943

5. Dr. Donald P. Brutzman, Code UW/BR.
Undersea Warfare Academic Group

Naval Postgraduate School

Monterey, California 93943

6. Kevin M. Byrne

49 Forest Ave.

Oakdale, New York 1 1769

Dr. Mike Zyda, Code CS/MZ
Computer Science Department

Naval Postgraduate School

Monterey, California 93943

CDR Mike Holden,USN, Code UW/HO.
Undersea Warfare Academic Group

Naval Postgraduate School

Monterey, California 93943

-207-

9. Dr. Anthony Healey, Code ME/HY 1

Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943

10. Dr. Dave Marco, Code ME/MA 1

Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943

11. Dr. Jim Eagle, Code UW
Undersea Warfare Academic Group

Naval Postgraduate School

Monterey, California 93943

12. Commander Naval Undersea Warfare Center Division

1176 Howell Street

Attn: Erik Chaum, Code 2251, Building 1171-3

Combat Systems Engineering and Analysis Laboratory (CSEAL)

Newport, Rhode Island 02841-1708

13. Dr. James Bellingham

Underwater Vehicles Laboratory, MIT Sea Grant College Program

Northeastern University

East Point, Nahant, Massachusetts 01908

14. D. Richard Blidberg, Director

Marine Systems Engineering Laboratory, Marine Science Center

Northeastern University

East Point, Nahant, Massachusetts 01908

15. Caroline DelTheil

DGA-DCN, Center Technique des Systemes Navals

Dissuasion Lutte Sous Marine

DCN Toulon, BP 28, 83800 Toulon-Naval

France

16. Dr. John Leonard

Underwater Vehicles Laboratory, MIT Sea Grant College Program

292 Main Street

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

-208-

17. Pr. Didier Leandri

Laboratoire LCPSI

Ecole Nationale d'Ingenieurs de Tarbes

47 av d'Azereix

65000 Tarbes

France

18. LTJG Barney Kossman, USN
Science Officer

Commander Submarine Development Squadron

137 Sylvester Road

San Diego, CA 92106

19. Dr. Naomi Leonard

Underwater Vehicles Laboratory, MIT Sea Grant College Program

292 Main Street

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

20. LCDR Jeff Reidel, USN, Code ME/RE
Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943

21. CAPT Victor Fiebig, USN
PEO (UW) PMS 403

Crystal Park 1, Suite 817

Arlington, VA 22202

22. CAPT Jay Kistler, USN
N6M
2000 Navy Pentagon

Room 4C445

Washington, D.C. 20350-2000

23. George Phillips

CNO, N6M1
2000 Navy Pentagon

Room 4C445

Washington, D.C. 20350-2000

-209-

