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In many applications, ranging from character recognition to signal de-

tection to automatic target identification, the problem of signal classification is

of interest. Often, for example, a signal is known to belong to one of a family of

sets C\ , . .
.

, Cn and the goal is to classify the signal according to the set to which

it belongs. The main purpose of this thesis is to show that under certain condi-

tions placed on the sets, the theory of uniform approximation can be applied to

solve this problem. Specifically, if we assume that sets Cj are compact subsets of

a normed linear space, several approaches using the Stone-Weierstrass theorem

give us a specific structure for classification. This structure is a single hidden

layer feedforward neural network. We then discuss the functions which comprise

the elements of this neural network and give an example of an application.
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1. Signal Classification

Signal classification is, quite simply, the process of examining a signal

and determining a class, or group, from which it came. Humans perform many

instances of signal classification each day, often without even knowing it. For

example, one might read a signature (the signal) carefully to determine the

author (the class). This might be a process that would be extremely hard for a

computer to perform.

There are numerous applications in military, civilian, and academic prob-

lems that require the use of the field of signal classification. It would be fruitless

to attempt to compile an exhaustive list of applications, so we will state and

develop a few problems here in which the theory of signal classification plays

an important role in the solution.

Automatic Target Recognition

The field of automatic target recognition is extremely important, primar-

ily in the area of the military. The main purpose of automatic target recognition

is the use of computer processing to detect and recognize signatures in sensor

data [1]. These targets are most often in a cluttered environment and frequently

in hostile territory. They may include such things as aircraft, missiles, tanks,

or warships. The clutter in their background may come from temperature or

pressure disturbances, atmospheric variations, topographical objects, or even

other targets.

There are typically two steps to an automatic target recognition problem:





detection and identification. Usually some relatively fast and coarse method is

used to detect an object from background noise, and a slower more precise

method is used to identify it. Typical features that are required to be extracted

from the target when it is detected often include its position, its size and shape,

and its speed.

In order to measure these quantities, an automatic target recognition

system will possess sensors such as high resolution cameras and complex radar

arrays. These sensors will obtain data and send it to the processing portion of

the system. The system will then determine first whether a target even exists

and then attempt to identify the target.

It is immediately very clear that the second portion of the problem (the

identification) is basically a pure classification problem. Once it is determined

that a tank is found, for example, it is important to be able to quickly determine

whether the tank is friendly or hostile. An automatic recognition system thus

frequently consists of several modules, one of which is the classifier.

Usually the classifier is designed with the assumption that each input,

once found, belongs to only one of the classes. This assumption will become

important later because it will allow us to make use of some well-known math-

ematical theorems in order to determine when classification may be possible.

Pattern Recognition

A second application of the theory of signal classification is in the field of

pattern recognition. This is an extremely broad field, concerning a wide range





of problems of practical interest, including character recognition and speech

identification.

One classical application is the reading of characters written either by

hand or by machine. This application has a wide range of uses in government

and commercial industry. For example, computers used by the post office are

able to indentify machine-written letters on envelopes in order to sort them.

Another important area deals with financial institutions. In these cases, the

problem typically deals with classifying an input character into one of the thirty-

six classes formed by the characters in the alphabet and the ten numerals. The

area of printing is usually prescribed, so it is easy to locate and segment the

characters. Some form of sampling is usually done, and then an algorithm

determines the character.

There are also several problems in the field of speech recognition that rely

heavily on classification theory. These problems include the following: speaker

identification, speaker verification, and isolated word recognition [16]. In a

speaker verification system, the number of classes relates to the number of

different individuals that one wishes to recognize. In isolated word recognition,

the number of classes will depend on the "vocabulary" of the system and may

be as large as 10,000.

Many problems dealing with pattern recognition are found in the area

of medicine as well. There are many applications that result in continuous

functions, two-dimensional gray scale images, and time-varying images. These

include results from electocardiograms, electroencephalograms, and X-ray im-





ages, to name a few. Cell analyzers classify blood cells in a population and

determine cell type. Signal classification routines are of enormous importance

in gathering fast information from these and other biological data.

These are just some of the many real-world applications in which signal

classification plays a very important role. This makes it necessary to develop

routines which are capable of performing well in signal processing problems. It

is in this light that we consider the problem of determining a structure suitable

for classification.





2. Neural Networks

It has long been recognized that the human brain functions in a com-

pletely different way from the modern digital computer. There has been a great

interest in studying how the human brain works and in determining whether it

is feasible to design a model capable of solving problems in a similar manner.

Ramon and Cajal in 1911 introduced the concept of neurons as the basic ele-

ments of the brain [11]. It has been determined that neurons process information

one hundred thousand to one million times slower than a basic silicon gate chip.

The brain compensates for this slower speed by possessing in the neighborhood

of 10 billion neurons and 60 billion synapses, or interconnections between the

neurons [21]. As a result the brain is capable of performing many tasks at rates

much greater than even the fastest computer. It is in an attempt to emulate

this capability of the brain that the field of neural networks, or artificial neural

networks, was born.

The history of neural networks dates back to the 1940's, when McCulloch

and Pitts in 1943 proposed a computational model of an element resembling a

neuron [3]. After some initial research, the idea faded until interest began to

return in the 1980's. Since then, the field of neural networks has grown rapidly,

with interest from researchers in a number of fields ranging from engineering to

physics to psychology.

A neural network, essentially, is a structure that attempts to model the

way the brain performs some task and then to perform that task in a similar

manner. The structure may be electronically built or simulated in software, for





example. A neural network will contain a large number of individual cells, which

model the neurons, and a number of interconnections between them, which

model the synapses. Often the information passed through the interconnections

will be multiplied by constants in order to achieve a certain task. This is known

as weighting. Haykin gives a definition as adapted from Aleksander and Morton

in 1990:

A neural network is a massively parallel distributed processor that

has a natural propensity for storing experimental knowledge and

making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning pro-

cess.

2. Interneuron connection strengths known as synaptic weights

are used to store the knowledge.

The learning process mentioned here is often an attempt to modify the

interconnection weights in order to accomplish the designated task. This at-

tempt compares with the well-known field of adaptive filter theory, where filter

weights are adapted over time until they approach a steady-state value.

There are many benefits that arise from neural networks' inherent struc-

ture. The following are some of them (see [11]).

1. Nonlinearity. The functions performed by the neurons are nonlinear;

therefore the entire network, which is a weighted connection of these neu-





rons, will also be nonlinear. This helps in modeling typical applications,

which are often nonlinear.

2. Input-output Mapping. One way in which the values for the weights used

in the interconnections of the neural network are obtained is by a process

called training. An example input is given, and weights are chosen so

that the error between the actual output and some known desired output

is minimized. This training procedure is repeated until the values of the

weights reach a steady state (if possible). Thus the neural network learns

by creating an input-output mapping.

3. Adaptivity. A neural network has the property of adapting its synaptic

weights in order to match a change in the surrounding environment. When

it is operating in one environment, it may be retrained to operate in

another environment which has only minimal changes. Further, a neural

network operating in a nonstationary environment is able to adapt its

weights in real time.

4. Evidential Response. A neural network, when faced with a choice, is often

able not only to select the right choice, but to give a confidence about the

choice it made. For example, a neural network used for classification and

given an input signal may output the class for that signal as well as how

sure it is that that is actually the correct class.

5. Fault Tolerance. Since each of the many neurons in a neural network

stores an important bit of information, the network's power is distributed





over each of these neurons. This allows the network in theory to continue

operating even when one of the neurons fails, though with some degrada-

tion in performance. Neural networks are thus often marked by a gradual

decay in performance instead of a single catastrophic failure.

6. Uniformality of Analysis and Design. Because all neural networks are sim-

ilar in a structural sense and the same notation is used in the applications

of neural networks to different problems, they are in a sense universal.

This is seen in the following properties:

• Neurons are common to all neural networks.

• This commonality allows for the sharing of information between neu-

ral networks in different applications.

• It is possible to build modular networks easily simply by integrating

the different modules. In other words, parts of different networks

(or even entire networks) may be used easily in conjunction with one

another to create a new network.

As neurons are the building blocks of a neural network, their modeling is

most important. The basic design for a neuron is fairly simple. A set of synapses

are input to the neuron. These interconnections are weighted by real numbers,

the synaptic weights. These weighted values are then summed. Finally, this sum

is passed through a (typically) nonlinear activation function. This function

usually serves to limit the output of the neuron to some desired range, for

example [0,1] or [—1,1]. An example of this model of a neuron is shown in
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Synaptic
Weights

Figure 1: Nonlinear model of a neuron

Figure 1.

While the neurons themselves are modeled more or less the same regard-

less of the application, there are different architectures for the actual network.

We will be concerned with just one particular type, called a feed-forward net-

work with one hidden layer. This network architecture consists of a large number

of neurons arranged schematically in three layers. This may be seen in Figure

2.

In theory, each unit of the input layer may be connected to each unit of

the hidden layer. This connection has a weight, which as mentioned above is a

real number, associated with it. The weights are denoted by Wij. So each unit

on the hidden layer receives a weighted sum of elements from the input layer

and then processes this sum with an activation function. Finally, the result of

this activation is transmitted to the output layer with another set of weights

and then summed. The result for the network structure shown in Figure 2 is:





Figure 2: A feed-forward neural network

Finally, it is important to note that it is not necessarily possible to

solve any problem simply by constructing a neural network at random and then

attempting to train the weights. It is important to determine when a solution

will be possible and what structure of network to try. Later it will be shown that

a certain type of neural network is capable of solving an important classification

problem.
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3. Background

Metric Spaces

A type of space that will play a particularly important role in the study

of approximation is a metric space. They are described in detail in many books,

for example [9], [13], and [18].

Definition : A metric space is a pair (X, p) where X is a set of elements and

p is a metric, or distance function, that is nonnegative and real-valued with the

following properties:

1. p(x, y) = if and only if x = y;

2. p{x,y) = p(y,x);

3. p{x,y) + p{y,z) < p(x,z).

Some examples of metric spaces are:

Example 1: The set of real numbers with metric p(x, y) = \x — y\, referred to

as Mot M 1
.

Example 2: The set of all ordered n-tuples x — (xi,X2, -xn ), with metric

p(x, y) = i / £ (xk — yk)
2

- This space is generally referred to as Mn
.

Example 3: The set of continuous functions denned on a closed interval [a, b]

with metric p(f,g) = max \f(t) — g(t)\.
a<t<b

11





Example 4: This same set of continuous functions along with the metric

p(f,g) = (f
b

[f(t)-g(t)rdt)V*
Ja

form a different yet equally valid metric space (known as L2(Mn
). Thus, the

metric as well as the set of points must be known in order for the space to be

completely determined.

Let X be a metric space with xq € X and let r > 0. We define an open

ball with radius r centered about Xq (written b(xo,r)) to be the set of points

x € X such that p(x, Xq) < r. Let A C X. We define a point x 6 A to be an

interior point of the set A if b(x, r) C A for some r > 0. That is, we can find

an open ball surrounding the point x such that every point in the ball belongs

to the set A. It is in this way that we go about defining open sets in a metric

space. In fact, a set A C X is called an open set if all of its points are interior

points.

Example 1: Consider the set (0,1) in JR. Given any point in the set, it is

possible to choose an open ball of some radius such that the ball is contained

in (0, 1). Therefore, (0, 1) is open in M.

Example 2: On the other hand, consider the set [0, 1) in IR and look at any

open ball about the point with radius r. Whatever the choice of r, there will

be points contained in the ball that are not in [0, 1) (for example, the point

—r/2); therefore the point is not an interior point of the set [0, 1), Therefore

the set is not open.

Let X be a metric space and x € X. We define a neighborhood of x as a

12





set containing an open set containing x. This open set will necessarily contain

an open ball b(x , e) for some e > 0. Therefore, every neighborhood of a point

will contain an open ball of that point. Again let X be a metric space and let

A C X. A point ieXis called a contact point of A if every neighborhood of

x contains at least one point in A. Obviously all x 6 A are contact points of

A. If every neighborhood of x contains infinitely many points in A, then x is

called a limit point of A. Note that a limit point is necessarily a contact point

by definition. The closure of a set A, written as A, is simply the set of all the

contact points of A. A set which is equivalent to its closure, (A = A) is known

as a closed set.

Example 1: Consider again the set [0,1) in M. It is not possible to find an

open ball about the point 1 that does not contain any points in [0, 1). Therefore

every neighborhood of 1 contains at least one point (in fact, every neighborhood

contains infinitely many points) in the set [0, 1). This implies that 1 is a contact

point (and a limit point) of the set [0,1). Since 1 ^ [0,1), the set does not

coincide with its closure (in fact, as expected, [0, 1) = [0, 1]) and is therefore

not a closed set.

Example 2: On the other hand, the set [0, 1] can be shown to be closed as its

closure is the very same set [0, 1].

One of the most important concepts concerning metric spaces is that of

continuity. Let (X, px ) and (Y, py ) be metric spaces and let / be a function such

that / : X —> Y . Then / is continuous at the point p €E X if for every e >

13





there exists a S > such that py(f(x), f{p)) < e whenever px (x,p) < S.

A sequence {xn } in a metric space X is said to converge if there is a point

p € X with the following property: For every e > there is an integer N such

that n > N implies that p(xn ,p) < e. We write this as xn —> p or lim xn = p.

We define {xn } to be a Cauchy sequence in a metric space X if for every e > 0,

there exists a positive integer N such that \xn — xm \
< e for n, m > N. We can

easily show that a sequence converges if and only if it is a Cauchy sequence.

A metric space is said to be complete if every Cauchy sequence converges to a

point in the space. The completeness of certain metric spaces is very important

to proving results in those spaces.

In a similar manner, we say that a sequence of functions {fn } from X to

]R converges uniformly on X to a function / if for every e > there exists an

integer N such that n> N implies |/„(x) — f(x)\ < e for all x. We often write

this as /„ —> f uniformly. For a discussion in greater depth of convergence, see

[19].

Topological Spaces

Although metric spaces are usually the most general space needed, there

may be times when a result may be proved for a more general space. It is for

this purpose that we now introduce the topological space.

Definition : A topological space is the pair (X, r) consisting of a set of points

X and a topology r, where r is a family of subsets G C X, called open sets,

with the following properties:

14





1. The set X itself and the empty set belong to r.

2. Arbitrary unions \JGa and finite intersections f\ Gk of open sets belong
a k=\

to r.

The definitions of open and closed sets in a topological space X is quite

simple. A set A C X is an open set if A belongs to r. A set B in a topological

space X is a closed set if its complement X — B is open.

We can also extend the concepts of a neighborhood, contact point, limit

point, and closure of a set in a topological space. By a neighborhood of x, we

mean any open set G containing x. A point x € X is a contact point of T C X

if every neighborhood of x contains at least one point in T. A point x E X is a

limit point ofTCX if every neighborhood of x contains infinitely many points

in T. Finally, the closure of a subset T of a topological space X is the set of all

the contact points of T.

Two important types of topological spaces are Hausdorff spaces and nor-

mal spaces. A topological space X is called a Hausdorff space if:

1. Sets consisting of single points are closed.

2. For every pair of distinct points x and y in X, there are disjoint neigh-

borhoods of x and y.

A topological space is called a normal space if:

1. Sets consisting of single points are closed.

15





2. For every pair of disjoint closed sets A and B, there are disjoint neighbor-

hoods of A and B.

Obviously, every normal set is Hausdorrf, though a Hausdorff set need

not be normal. It can be verified that all metric spaces are topological spaces

simply by taking r to be the family of open sets that are open in the metric

space in the usual sense. This is very important as it allows any result relating

to topological spaces to be applied to metric spaces as well. In fact, we get an

even better result: all metric spaces are normal (and therefore Hausdorff). The

contrasts, however, to both of these statements are not true.

Example : The topological space consisting of only two points {0, 1} where r

consists only of the sets {0, 1} (the entire space) and is not a metric space.

Continuity in a topological space is a somewhat different concept than

continuity in a metric space as well. Let (A
r

, tx ) and (Y, ry ) be two topological

spaces and let / : X —
> Y. Then / is continuous if f~

l {A) £ rx for every A in

Ty . In other words, continuity implies that the inverse image of an open set is

open.

A family M. of subsets Ma of a topological space X is called a cover of

X if X C \JMa . If the sets Ma consist entirely of open sets, then we call the
Q

family an open cover. A topological space is compact if every open cover has a

finite subcover.

Although metric spaces possess many of the nice properties that we

would like to have for topological spaces, it is not true that all metric spaces

16





are compact. There are some theorems (see for example [14]), however, that

allow us to determine whether a given metric space is compact without having

to view it as a topological space.

Let A and B be subsets of the metric space X. Then the set A is called

an e-net for the set B if there exists a point xa 6 A such that for e > any

x E B
:
p(x,xa ) < e.

Theorem 1 (Hausdorff). For compactness of a set M of a metric space X it

is necessary that there should exist a finite e-net of the set M for every e > 0.

If the space X is complete, then the condition is also sufficient.

Roughly speaking, a set is compact if we can find a finite number of

points and take open balls centered at those points such that the union of all

the open balls contains the set. There are some improvements to this if we

consider certain specific spaces.

Example 1: (Heine-Borel). A subset of IR is compact if and only if it is closed

and bounded.

Example 2: (Arzela). The functions of a set A are said to be uniformly

bounded if there exists a constant K such that \x{t)\ < K for all x{t) E A.

The same functions are equicontinuous if given e > 0, there exists a 6 > such

that \x(ti) — x(t2)\ < e whenever \t\ — t2\ < 6. A set A C C[0, 1], the space

of real-valued continuous functions on the closed interval [0,1], is compact if

and only if A is closed and the functions x E A are uniformly bounded and

17





equicontinuous.

Linear Spaces

We now introduce the concept of a linear space.

Definition : A nonempty set L is called a linear space if it satisfies the following

axioms:

1. Any two elements x G L, y G L uniquely determine a third element

x + y G L called the sum of a: and y that satisfies the following properties:

(a) x + y = y + x (commutativity);

(b) (x + y) + z = x + (y + z) (associativity);

(c) L contains an element 0, called the zero element such that for all

x € L, x + = x;

(d) For each x G L, there exists an element —x G L such that x + (—x) =

0, where is the zero element;

2. There exists a product operation such that any element x G L and any

number a determine a unique element ax G L such that:

(a) a{(5x) = (a/3)x

(b) Ix G L\

3. The operations of addition and multiplication obey the following distribu-

tive axioms:

18





(a) (a + (3)x = ax + fix;

(b) a(x + y) = ax + en/.

The elements x, y, ... of a linear space are often called vectors, and the

entire space is often called a vector space. The numbers a, /3, . . . are referred

to as scalars and the entire set of allowable scalars is referred to as the field.

Typically, the field is the set of real numbers, in which case the space is referred

to as a real linear space. A subset L of a linear space L is referred to as a linear

subspace of L if L itself is a linear space over the same field as L.

It is possible that a linear space possess no topology whatsoever as long

as it satisfies the three properties above. However, in many applications the

concepts of a linear space and topological space are combined. A space that

is both a linear space and a topological space is referred to either as a linear

topological space or a topological vector space. We require additionally only

that the vector operations of addition and multiplication (which are not always

the usual addition and multiplication) be continuous in the topology r. It is

possible too to apply the concept of a metric to a linear space, but what is more

useful is to define an operation a bit more specific than a metric, called a norm,

and apply it to a linear space.

Normed Linear Spaces

Definition : A linear space L equipped with an operation called a norm (||
•

||)

is called a normed linear space if
||

•
||

satisfies the following three properties:

19





1. \\x\\ > for all x where ||x|| = if and only if x = 0;

2. ||o;x|| = \a\ \\x\\ for all x G L and all a;

3- \\x + y\\ < \\x\\ + \\y\\ for all x and y in L.

Just as every metric space is also a topological space, every normed linear

space may also be considered a metric space (and therefore a topological space

as well) by taking the metric to be:

p{x,y) = \\x-y\\.

Again, the converse is not true.

Example : The metric space consisting of the closed interval [0, 1] with the

"discrete metric" p(x, y) — 1 if x ^ y and p(x, x) = cannot be made into a

normed linear space.

A normed linear space that is complete (in the same sense that a metric

space is complete) is known as a Banach space.

One special Banach space is called a Hilbert space.

Definition : A Hilbert space is a Banach space with the norm ||j;|| =< x, x > 1//2

where < •, • > is an inner product with the following properties (assuming the

space is real):

1. <x,y> = < y,x >

2. < oiiX\ + 0:2X2, y > = oti < xi,y > +a2 < x2 , y >

20





3. < x, x > > for all x ^ 0.

The most common example of a Hilbert space is the n-dimensional space

Mn
, with the Euclidean norm \\x\\ = y^Li xl where x = (xi, x2: ,

xn ).

The Hahn-Banach Theorem and Separation in Linear Spaces

One of the most important and fundamental results in all real analysis

is the Hahn-Banach theorem. There are many different forms of the theorem

and in most cases any version of the theorem can be used to directly prove

any other version. It is first necessary to introduce the idea of convex sets and

convex functional.

Definition : A set M C L is called a convex set if for each pair of points x,

y e M, all points on the line segment joining x and y (that is, all points of the

form kx + (1 4- k)y, < k < 1) are also elements of M.

Definition : A functional p defined on a real linear space L is said to be convex

if it has the following properties:

1. p(ax) = ap(x) for all x € L and all o; > 0;

2. p(x + y) > p(x) +p{y) for all x, y e L.

We now turn to the idea of extending a linear functional. Suppose we

have a linear functional defined on a certain subspace. We want to know whether

there exists a linear functional on the entire space that is equal to our first
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functional on the subspace. The Hahn-Banach theorem tells us when this is

possible.

Theorem 2 (Hahn-Banach) Let p be a finite convex functional defined on a

real linear space L and let Lq be any subspace of L. Let /o be any linear

functional on L satisfying the condition

f (x) < p{x)

on L . Then there exists a linear functional / on L, called the extension of /

such that / = /o at every point of L and f(x) < p(x) on L.

Proof: We can assume that L ^ L. Let z be any element of L — L , and let

L be the subspace generated by L and the element z, this being the set of all

linear combinations of the form x + tz (x G L , t € IR). For / to be an extension

of /o onto L, we need

f(x + tz) = f(x) + f{tz) = fQ (x) + tf(z)

Now, let c = f(z) and note that if / is an extension onto L then fo(x) +tc<

p(x + tz). This condition can easily translate to the two conditions:

c < p(x/t + z) - f {x/t) if t > and c > -p(-x/t - z) - fQ (x/t) if t <

So what remains is to show that there is always a c satisfying these conditions.

In this light, let y\ and ?/2 be elements of L . Then

/o(2/2 - 2/i) = /oM - k{y\) < p{V2 - Vi)

= p{{y-2 + z)- (yi + z)) < p{y2 + z)+ p(-yi - z).
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So we get

-foM+pfa + z) > -fo(yi)-p(-yi -z).

Now let d = sup[-/ (j/i) - p(-yi - z)] and c2 = inf y2[-/ofe) + pfe + z)]-

Then c2 > C] and it simply remains to choose c2 > c > C\ and note that c

satisfies the necessary conditions. So the functional ft
defined on L t

satisfies

the condition f(x) < p(x) for x € L. An induction argument not given here

proves the case when L is the entire space L.

By applying the Hahn-Banach theorem, we may show a somewhat more

useful result, given in [2].

Theorem 3 Let / be a bounded linear functional defined on the subspace L of

the real normed linear space X. Then, there exists a bounded linear functional

F defined on the entire space X so that F(x) = f(x) for x 6 L and ||F|| =

Proof: Since / is a bounded linear functional, then for x G L, \f(x)\ < ||/||||aj||-

For x £ X define p(x) = ||/||||a;||. It is then easy to show that p is convex and

that f(x) < p{x). By the Hahn-Banach Theorem, extend / to a new functional

F defined on all of X such that F{x) < p(x) = \\f\\\\x\\ and F(x) = f(x) for

x £ L. Clearly, F is bounded and ||F|| < ||/||. Similarly, if x € L, then \f(x)\ =

1-^(^)1 ^ ll^llll^ll) implying ||/|| < \\F\\. Combining the two inequalities, we see

that ||F|| = ll/H and the proof is complete.

lrrhe norm operator
||

•
||, when applied to a bounded linear functional on a normed linear

space X (as is the case here) is defined as ||/|| = sup |/(x)|. Further, ||/|| can easily be

shown to have the following properties: ||/|| = sup KfcrH- , and |/(x)| < ||/||||x|| for all x € X.
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We now turn to perhaps the most useful corollary of the Hahn-Banach

theorem. It is very desirable in many situations to know that there are a suf-

ficient number of bounded linear functionals defined on a space to strictly sep-

arate the elements of that space. By strictly separate, we mean that for any

two elements X\ and x2 of a linear space X, there exists an / G X*, the set of

bounded linear functionals on X, such that f(xi) - f{x2 ) ^ 0. We prove this

in the context of the following theorem.

Theorem 4 Let X be a normed linear space and x 6 X, x ^ 0. Then there

exists an F € X* such that ||F|| = 1 and F(x ) = \\x \\.

Proof: Let L be the linear subspace of X generated by taking the linear span

of x . All elements in L will thus have a representation axo, a 6 JR. Define

the function / on L by f(ax ) = a\\x \\. It is seen at once that f(x ) = \\x
\\

simply by taking a = 1. We can then extend / to a bounded linear functional

F defined on the whole space X as noted in the previous theorem. Since F=f

on L, F(x ) = f{xo) = ||:co||. It thus remains only to show that ||F|| = 1. For

any x G L, we see that

l/MI = \f(axo)\ = MM = ||qhbo|| = \\x\l

implying that ||/||
= 1 and therefore j|F|| = 1 by the previous theorem.

To prove our assertion about the strict separation of elements in a linear

space by the functionals defined on that space, let X be a normed linear space

and Xi and x2 be distinct elements in X. Further, let / 6 X*. Now define
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Xo = x\ — X2 and see that xq ^ since X\ and £2 are distinct. We may now

apply the previous theorem to get

/(*1 - X2 ) = /(Zo) = INI 7^ 0.
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4. The Stone-Weierstrass Theorem and Uniform Approximation

In many applications, it is desirable to know whether a certain class of

iR-valued functions may be useful in uniformly approximating a larger group of

iR-valued functions. Weierstrass proved that it is possible to uniformly approx-

imate any continuous functional on a compact subset of lR
n by a polynomial in

n variables. Since that time, there have been several different proofs of Weier-

starass' theorem. One of the most useful is the one given by M. H. Stone in

[23]. His primary result, which will be shown, generalizes Weierstrass' result in

that it allows the domain to be any compact set (instead of just any compact

subset of Mn
) and the set of approximating functions to be a set other than

polynomials (which may not have meaning on a general compact set).

In order to generalize the theorem, we can view the polynomials as a

subset of the set from which we obtain the approximating functional. We seek to

know what functions may be derived from a certain set of prescribed functions by

the specified algebraic operations of addition, multiplication, multiplication by

real numbers and uniform passage to the limit. The set of prescribed functions

for the polynomials, for example, consists of just two functions: f\ (x) = 1

and ftix) = x defined on a bounded closed interval X of JR. From these two

functions and the algebraic operations alone, the set of all polynomials may

be formed. Weierstrass' theorem then tells us that the uniform passage to the

limit of this set (the polynomials) is the set of all continuous functionals on X.

Equivalently, the set of continuous functionals is the uniform closure of the set of
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polynomials, or the continuous functions on X may be uniformly approximated

by the set of polynomials.

In order to begin proving this generalized theorem, it is instructive to

consider the case of a general topological space X where the specified algebraic

operations are the lattice operations V and A defined to be:

/ V g = max(/, g) and / A g = min(/, g)

These form the functions h and k defined as:

h(x) = max(f(x),g(x)) and k(x) = mm(f(x),g(x))

for any x 6 X. Let C be the set of all continuous real functions on X and

Co be a prescribed subfamily of C. We want to obtain the family U(Cq) of all

functions which can be formed from the functions in Co by the application of

the specified algebraic operations and uniform passage to the limit. In the case

of the lattice operations, it is easily observed that U(C ) is a part of C closed

under uniform passage to the limit, that is

C/(C ) C C, U(U(C )) = t/(Co).

The first property may be shown by observing that the mappings

x —> max.(f(x),g(x)) and x —> min(f(x),g(x))

are continuous. This follows from the continuity of / and g (necessarily true

since Co is a subfamily of C) and the continuity of the max and min mappings.

Now since the uniform limit of continuous functions is also a continuous function,
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clearly U{C ) C C. To show that U{U{C )) = U{C ), we can form U(C ) in

two steps. First, let U\(Cq) be the set containing all the functions obtained by

applying the lattice operations alone to the functions in C . Then let U2 {Co)

be the set consisting of the functions obtained from those in Ui(C ) by uniform

passage to the limit. Clearly,

Co C 0i(Co ) c U2(C ) C U(C ).

It remains to show that U^Cq) is closed under the allowable operations, and

therefore ^(Co) = U(Cq). Let / be a function which is a uniform limit of

functions fn in ^(Co). Then / must also be in ^(Co) since given e > 0,

there exists a function gn in Ui(C ) such that \fn — gn \
< e/2 since t/2 (C ) is,

by definition, the functions obtained by passing those in Ui(C ) to a uniform

limit. Also, \f — fn \
< e/2 since our definition of / was a uniform limit of fn .

Therefore, \f — gn \

< e and / is a uniform limit of functions gn in U\{Cq) and

therefore a member of ^(Co) We must now show that whenever / and g are in

U2 {C ), then so are / V g and / A g. This can be done by observing that if /

and g are uniform limits of functions fn and gn in Ui(C ), then / V g and / A g

are uniform limits of fn V gn and fn A gn , respectively.

Theorem 5 Let X be a compact space, C the family of all continuous real

functions on X, Cq an arbitrary subfamily of C, and U{Cq) the family of all

functions (necessarily continuous) generated from Cq by the lattice operations

and uniform passage to the limit. Then a necessary and sufficient condition for

a function / in C to be in U(C ) is that, whatever the points x, y 6 X and

28





whatever the positive number e, there exists a function fxy obtained by applying

the lattice operations alone to C and such that

\f(x) - fxy {x)\ < e and \f{y) - fxy (y)\ < e.

Proof: The necessity is obvious. A proof of the sufficiency, which is not com-

plicated, is given in [23]. There, Stone also notes the following corollary to the

theorem.

Corollary 1: If C has the property that, whatever the points x, y 6 X, x ^ y

and whatever the real numbers a and /?, there exists a function / in C for

which /o(x) = a and fo{y) = (3, then U(C ) = C.

This tells us that the way in which a function / acts on pairs of points in

X determines whether it can be approximated U(C )- This observation leads

to the following theorem.

Theorem 6 Let X be a compact space, C the family of all continuous (neces-

sarily bounded) real functions on X, C an arbitrary subfamily of C and U(C
)

the family of all functions (necessarily continuous) generated from Co by the

linear lattice operations and uniform passage to the limit. Then a necessary

and sufficient condition for a function / in C to be in U(C ) is that / satisfy

every linear relation of the form ag(x) = (3g{y) , a(3 > 0, which is satisfied by

all functions in Cq. The linear relations associated with an arbitrary pair of

points x, y in X must be equivalent to one of the following distinct types:

1. g(x) = and g(y) = 0;
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2. g(x) = and g{y) unrestricted, or vice versa;

3. g(x) = g(y) without restriction on the common value;

4. g{x) = Xg{y) or g(y) = \g(x) for a unique value A, < A < 1.

Corollary 1: In order that U{Cq) contain a nonvanishing constant function, it

is necessary and sufficient that the only linear relations of the form ag{x) —

Pg(y), a/3 > 0, satisfied by every function on C be those reducible to the form

9(x) = g(y).

Proof: It is obvious that when U(C ) contains a nonvanishing constant func-

tion then conditions (1), (2), and (4) can never be satisfied, so only (3) must be

considered.

Corollary 2: In order that U(C ) = C, it is sufficient that the functions in X

satisfy no linear relation of the form (l)-(4) of Theorem 1.

This is an important corollary because in practice it is easy to consider

a set of functions with the property that all functions do not satisfy all of the

relations (l)-(4).

Definition : A family of arbitrary functions on a domain X is said to be a

separating family (for that domain) if, whenever X and y are distinct points

of X, there is some function / in the family with distinct values f(x), f(y) at

these points.

Corollary 3: IfX is compact and ifC is a separating family for X and contains
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a nonvanishing constant function, then U(Cq) = C.

Proof: Since C contains a nonvanishing constant function, it may satisfy only

condition (3) of Theorem 2. However, since C is a separating family, there is

a function / 6 C such that f(x) ^ f{y) for x, y in X. So condition (3) is not

satisfied by all functions in Co. Therefore none of the conditions are satisfied

by C and therefore U(Cq) = C.

We now consider the case where U(C ) is built from the functions in

C C C using the operations of addition, multiplication, multiplication by real

numbers (the linear ring operations), and uniform passage to the limit. If/ and

g are uniform limits of the sequences fn and gn respectively, the product fg is

not in general the uniform limit of the sequence fngn . We therefore require that

the set C consist of the bounded continuous functions on A". Of course, this is

satisfied automatically when X is compact. This leads to the general theorem.

Theorem 7 Let X be a compact space, C the family of all continuous (nec-

essarily bounded) functions on X, C an arbitrary subfamily of C and U(C
)

the family of all functions generated from Co by the linear ring operations and

uniform passage to the limit. Then a necessary and sufficient condition for a

function / in C to be in U(C ) is that / satisfy every linear operation of the

form g(x) =0 or g(x) = g(y) which is satisfied by all functions in X .

Proof: As a lemma, one can show (see [23]) that if / is in U(C ) then so is

|/|. This means that / is the uniform limit of functions in C subject to the
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linear ring operations. Using a well known representation of the min and max

functions:

max(a, b) = -(a + b + \a — b\)

rain(a, b) = -(a + b — \a — b\)

we can now see that whenever / and g are in U(C ) then / V g and / A g

are in U(Co) as well. So U(Cq) is closed under the linear lattice operations as

well as the linear ring operations and uniform passage to the limit. Therefore

the results in Theorem 2 are applicable here. It remains to show that every

function in U(X ) cannot satisfy linear relations of the form given in condition

(4) of Theorem 2. Assume g(x) = Xg{y) for every function g in U{Cq) and every

x, y in X, for < A < 1. Then for every / in £/(C ), f
2

is also in U(Cq) and the

relations f
2
(x) = Xf2

(y) and Xf2
(y) = X2

f
2
{y) would hold, implying that either

f(y) = for every / in U(C ) or A = 0, 1, the second being a contradiction to

the assumption. So we conclude that / is in U(C ) if and only if it satisfies all

relations of the form g(x) = or g(x) = g(y) satisfied by those functions in Co.

We give a definition in order to restate the general theorem.

Definition : A family A of real functions defined on a set X is said to be an

algebra if (i) / + g € A, (ii) fg G A, and (iii) cf E A for all / G A, g £ A and

for all real constants c, that is, if ^4. is closed under addition, multiplication, and

multiplication by real numbers.

An equivalent form of the general theorem that is often used in practice
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is stated in [19] as follows:

Theorem 8 Let A be an algebra of real continuous functions on a compact set

K. If A separates points of K and if ^4 does not vanish at any point in K, then

any real continuous function on K may be approximated by an element of A.

An argument in [4] extends the theorem to certain normed linear spaces that

are not necessarily compact.

Theorem 9 Let X be a normed linear space (or, indeed, any Hausdorff topo-

logical space). If A is a subalgebra of C(X), the continuous functions on X,

that contains constants and separates the points of X, then A is dense in C(X).

Proof: Let / be any element of C{X). We must prove that each neighborhood

of / contains an element of A. Let A'bea compact set in X and e a positive

number. By restricting / and all members of A to the compact set K
:
we

can apply the classical version of the Stone-Weierstrass Theorem in C(K). Its

conclusion is that the set

{g\K :geA}

is dense in C(K). Hence there is an element g in A such that |j/ — g\\x < e.

Now we give some examples from Stone's original article.

Theorem 10 Let X be an arbitrary bounded closed subset of n-dimensional

Cartesian space, the coordinates of a general point being Xi,. . . ,xn . Any con-

tinuous real function / defined on X can be uniformly approximated by polyno-

mials in the variables x 1; . . . ,xn . In case the origin x = (0, . .
.

, 0), the function
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/ can be uniformly approximated by polynomials vanishing at the origin if and

only if / itself vanishes at the origin. Otherwise / can be uniformly approxi-

mated by such polynomials without qualification.

This is the classical approximation theorem proved by Weierstrass.

Theorem 11 Let / be an arbitrary continuous real function of the real variable

0, < 9 < 27r, subject to the periodicity condition /(0) = /(27r). Then /

can be uniformly approximated on its domain of definition by trigonometric

polynomials of the form

a
N

p(9) = — + ^2 (
an cos n® + bn sin n9) ,

2 n=l

Theorem 12 Any continuous real function /, which is defined on the interval

< x < oo and vanishes at infinity in the sense that lim f(x) = 0, can be

approximated by functions of the form e~axp(x) where p(x) is a polynomial.

Theorem 13 Any continuous real function / which is defined on the interval

—oo < x < +oo and which vanishes at infinity in the sense that

lim fix) = lim fix) =

can be uniformly approximated by functions of the form e~a x p(x) where p(x)

is a polynomial.

Several of these examples will prove useful shortly.
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5. Neural Network Approximation of Continuous Maps

We now will examine a structure that has been proven in useful for ap-

proximation. The structure will be based almost entirely on a proof in [20]. We

assume that we have a normed linear space X and a subset C that is nonempty

and compact. We let X* represent the set of bounded linear functionals on X

and Y represent a set of continuous maps which are dense in X* on C in the

usual sense. That is, for each <j> e X* and for some e > 0, there exists a y € Y

such that \(f){x) — y{x)\ < e for x € C. Further, for k = 1, 2, 3, ... we let Dk be

any family of continuous maps h : Mk h* 1R such that given a compact E C Mk

and any continuous g : E i-> JR as well as a > there exists an h G Dk such that

\g(x) — h(x)\ < a for x £ E. Let U be any set of continuous maps U : M\-> M

such that given a > and any bounded interval (fa, fa) C IR there exists a

finite number of elements U\,

.

. . ,Ui of U for which
|
exp(fi) — £ • Uj(fa)\ < o for

€ (fa, fa)-

Theorem 14 (Sandberg) Let / : C *-t M. Then the following conditions are

equivalent.

(i) f is continuous.

(ii) Given e > there are a positive integer k, real numbers ci, . . . ,ck , elements

u\, . .
.

, Uk of U, and elements y\,

.

.
. , yk of Y such that

\f(x)-J2 c
J
uAyj(x )}\ < €

3

for x eC.
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(ro) Given e > there are a positive integer k, elements y\, .

.

. , yk of Y, and

an h € Dk such that

\f{x) -h[yi(x),...,yk (x)]\ < e

for x e C.

Proof: First, assume condition (i) holds. Let V be the set of all functions

v : C h-> ]R such that

v(x) = ^exp(^(x)),

in which the sum is finite and a, 6 M and (j)j 6 Ar
*. To see that V constitutes

an algebra as defined above, observe that

exp(^(x)) exp(i/>(x)) = exp(</>(:c) + ift{x)) = exp(0 + il))(x).

Taking = we can see that V contains constants. Finally, we have demon-

strated previously that the Hahn-Banach theorem guarantees that we can choose

an x and y in C such that 4>{x — y) ^ 0. Therefore, exp(0(x)) ^ exp((f>(y)) , so

V separates the points of C. We may now apply the Stone-Weierstrass theorem

guaranteeing uniform approximation on compacta. In other words, for e > 0,

there are a positive integer n, real numbers d\, . .

.

,
dn , and elements Zi,...,zn

of X* such that

n

\f(x) - Y, di exp(^(x))| < e/3

3=1

for x e C.

Assume that £.,• \dj\ ^ 0. Choose 7 > such that 7£j \dj\ < e/3. Let

[a ,6] be an interval in M that contains all of the sets Zj(C), and let a € M
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and b E M such that a < a and b > b' . That is, the interval [a, 6] contains the

interval [a, b']. Now, choose v > such that |exp(/?i) — exp(/32 )| < 7 for /?i,

/?2 € [a, 6] with |/?i
—

fel < ^. Clearly this is possible because of the continuity

of the exponential function. Set /9 = min(^, a —a,b — b) and choose yj £ Y such

that \zj(x)—yj(x)\ < p, x G C for all j. This gives
|
exp(zj(:r)) — exp(zj(x))| < 7,

a; € C for each j. Now using a version of the triangle inequality, this gives:

\f(x)-J2exp(yj
(x))\ < |/(x)-X;«p(^W)l

3 j

+
I

Hexp(zj(x)) ~ J2 exP(Vj(x))\

3 j

< e/ 3 +E l

dill exP(^(x )) - exp(3/j(z))l

< 2e/3,

for a: € C.

Now we choose u\, . . . ,itj G C/ so that

|eip(fl-5>G8)|< 71,0 6 m]
i

where 7x^ |dj| < e/3. Then,

l/W-EE^teWll < \f(x)-Y, d
J
exPlyj(x)}\ + \Jl d

J
eMyj(x )}

3 « i j

"EEWwWll ^ (2e)/3 + EKexp[^(x)] -djE^fcWll
3 i j i

< (2c)/3 +E |di|| exp[yi (x)] - E^feWl! < (2e)/3 + 7i E K'l < *

Now, since EjEidjWife/jM] is equivalent to T,j CjUj[yj(x)]
:
with the c

7 ,

Uj, and yj in iR, 17, and Y, respectively, we have shown that (i) -> (u).
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to f(x)

Figure 3: A general structure for approximation

To show that (it) —
> (in), let e > and suppose that there exist k,

Ci, . . . j Cfc, and i*i, . .
.

, w* such that

1/0*0 " E^ifeiWH < e/2 ' * 6 C -

Let /i6Dt satisfy \h{\) - Ej CjUj(A)| < e/2 for A 6 [a,6]
fc

. Then

l/W-M[yiW.---.J/*W]l < |/W-Z) ciwifei(:c)]l+
3

I 51 W^a:)] - h(yi(x), ..., yk (x)]\ < e/2 + e/2 = e

j

for Z G C.

Finally, (Hi) —> (i) as / is a uniform limit of continuous functions and

therefore continuous itself.

This proof has demonstrated a general structure that may be used for

approximation. This structure is shown below in Figure 3.

Part (Hi) of the theorem shows that the yj 's are simply functions which

are capable of approximating linear functionals defined on the space X (these
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may actually be linear functional themselves) while the structure for h is simply

a continuous memoryless nonlinear system capable of approximating uniformly

on compacta in lR
k

. In other words, the problem of approximating a function

whose domain may be any compact subset of any normed linear space has been

reduced to the problem of approximating a function on lR
k

, a subject about

which a great deal is known, and has been shown to some extent in dealing

with the Stone-Weierstrass theorem. Stiles, Sandberg, and Ghosh have shown

in [22] that structures of a similar form have use in the approximation of certain

nonlinear discrete time mappings as well.

Part (ii) of the theorem gives a specific example of the structure of

the network. Again it takes the y/s to be uniform approximations of linear

functionals on X. Here one possible structure for h is shown as below in Figure

4. The Wj's, as mentioned before, are drawn from a set capable of uniform

approximation of the exponential function on a bounded set in JR. In the

simplest case, from the perspective of the theorem, each Uj may be taken to be

the function exp(-).

In a moment we will determine possible choices for the elements Uj in

the approximation network. Now we will look at a similar method of dealing

with this problem given in [4], [7], and [24]. We start be defining a certain class

of functions, called ridge functions and then immediately give the theorem.

Definition : A function / : X •-> M is called a ridge function if it may be

represented in the form / = g o 0, where g : M^ IR and
(f> G X*, where X* is

the space of continuous linear functionals on X . An alternative equivalent form
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Figure 4: A structure for h

of this composite function is fix) = g{4>{x)) for x € X.

It can easily be shown, for example, that all ridge functons on lR
n can

be written in the form

f(x) = g(aiCi + a2 C,2 + (- anCn )

where x = (Ci, C2, ,Cn) 6 JR
n

Theorem 15 (Cheney) Let G be a fundamental set in C(M) 2 and let X be a

normed linear space. Let $ be a subset of X* such that the set

0/M|:0€$,<^O

is dense in the unit sphere of X* . Then the set of ridge functions {g °
(f>

' g £

G,
(f)
e <£*} is fundamental in C(X).3

2A subset Y of X is said to be fundamental in X if its linear span is dense in X. Thus,
n

there are elements t/i, . . . ,yn € Y such that for any x E X and e > 0, |x — Yl cjVj\ < € where
j=i

cj e .R
3C(X) is, of course, the set of continuous, real-valued functions on the normed linear space

X.
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Proof: Let / be a member of C(X), C a compact set in X, and e > 0. We

have shown above that there exist Uj G C(M) and yj G X* such that

\\f(x)-J2uj
oy

j
\\<e/3

3-i

for x G C. By adjusting the functions Uj as necessary, we can assume that

\\yj\\
= 1 for 1 < j < 77i. Let M = sup^c \\x\\. Choose 6 > so that when

|*| < M, \t\ < M, and \s - t\ < 6 we get \uj(s) - Uj(t)\ < e/3P for 1 < j < P.

This is, of course, possible because the Uj are continuous. Now select
(f>j G <I> so

that ||0i/||#i||— !fr||
< S/M for 1 < j < P. Let Xj = l/\\<f>j\\ and \i = max.,

\\(f>j\\.

Select djk 6 M and gjk G G so that for \T\ < \iM we have

AT

MV) - E %*#*WI < e/3P (i < j < p).

Now let xeC. Then ||x|| < M,
\ yj (x)\ < M, \Xj(f>j(x)\ < M, and

\ yj (x) - X^{x)\ < Iklltellfc - A^-ll < M(*/JK) = &

Prom the definition of 5 (i.e., let s = yj{x) and t = \j(j)j(x)) we get

l£^(ViW) - EM^iW)l < Z>/3P = e/3.

j=i i=i i=i

Now, because |0j(a;)| < ||0j||||z|| < //M, the definition of aik and gjk gives

p p at p

| £ h^XjMx)) - EE <W;*(*;W)| < E c/3P = eA
.7=1 J=lfc=l j=l

Now, by a simple application of the triangle inequality, we get

l/W-EE»(^))| < \f(x)-J2hj (yj (x))\

j=lfc=l j=l
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+
1 E hfahix)) -£ h

j
(X

j
(x))\ +

I £ hjiX&ix))-EE aiJ#i*(fcto)l < e -

j=i j=i j=i j=ifc=i

P AT 5
Since £ Y, ajkgjk{<frj{x)) may be written as X) cj9j{<t>j(x ))i we Set tne desired

j=ifc=i j=i

result:

l/W - 5Z ci^(^iW)l < e for a; € C.

i=i

We note many similarities between this proof and part of Sandberg's.

The set of functions G in Cheney's theorem is similar to the set of functions U

in Sandberg's, but the requirement in Sandberg's theorem on U is less stringent.

The set U is required only to approximate one specific function in C(M), namely

the exponential function, exp(/?), on a certain bounded set. Cheney's theorem,

on the other hand, requires that the set G be fundamental in C(IR). This means

that any continuous function defined on a compact set in M is capable of being

approximated by the set G.
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6. Approximation and Classification

As previously mentioned, the problem of classifying signals plays an im-

portant role in a variety of problems. We attempt to provide the framework

for a solution to some of these problems by restating the problem in a more

mathematical sense.

We assume first that all of the signals to be classified are drawn from

a normed linear space. For simplicity, we will further assume that each signal

may belong only to one of the classes. For example, assume that there are n

different classes C\, . .
.

, Cn that are all subsets of a normed linear space X, and

that each signal received must necessarily belong to exactly one of the classes.

We now have the framework whereby we can view the classifier as a

mathematical function / that takes the signal to be classified as input and

produces the desired class as output. For example, if x €E Cj, then f(x) = a,j,

where ai,...,an are all distinct integers, would model a classification system

whereby each element of class Cj be mapped to the integer a,j. A graph of this

simple function is shown in Figure 5. Our assumption that each signal may

belong to only one class means that the sets Cj are pairwise disjoint.

In order to apply the theorems that we have developed, it is helpful to

assume that the sets Cj are compact. This assumption will, of course, exclude

certain classification problems from the scope of these theorems. We now can

n
let C = |J Cj . The set C will now also be compact as it is the union of a finite

number of compact disjoint sets. Finally, since the function / is constant on

each set Cj and the distance between any pair of sets is positive, the function
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Figure 5: Representation of a classifying function

/ is continuous. With these assumptions, we get the following:

1. There are real numbers c 1? ...,Cfc, elements yi,...,Vk £ Y, a positive

integer n, elements U\ , . .
.

, un of U and e > such that

a,j-e<Yl CjUj[yj{x)] <aj + e

for x € Co and j = 1, . . . ,m.

2. There are a positive integer k, elements 3/1,. .. ,3/* of Y and an h € Dk

such that

dj-e< %i (x), . .
. , yfc

(a;)] < % + e

for a: G Cj and j = 1, . . . ,m.

These follow directly from Sandberg's theorem.
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Figure 6: A classifying network

This now allows us to use the above approximation network for the pur-

pose of classification. We require one additional element and that is a quantizer

Q. This quantizer is simply a real functional Q : iR i—» M such that Q maps num-

bers in the interval (clj — e, flj+e) to a,j. As long as we choose e < 0.5 min |oj — dj\,

then this quantizer, when following a network of the structure defined above,

will allow the correct class to be output. This gives an entire structure for a

classification network. It is shown in Figure 6. The structure for h as defined

in part (ii) of Sandberg's theorem is used in the figure.

We now turn to demonstrating some acceptable choices for the hidden

elements in our classification network. In all cases, the complete structure of

the network is as in Figure 6. No assumption is made about the number n (how

many elements are necessary) or the determination of the constants Cj. We are

concerned entirely with determining suitable choices for the Uj and give several

examples as well as a justification for each here. In each case, the yj will be

assumed to be either bounded linear functionals on X or elements capable of

45





uniformly approximating them.

Polynomial Networks

A polynomial network is simply one in which each Uj is a polynomial.

In the ridge function form, a polynomial network will be of the form

5>* ° <t>i = Y,H ciAMx)Y-
i i j

The original Weierstrass Approximation theorem showed that polynomi-

als were capable of approximating on JR. Now, either Theorem 14 or Theorem

15 tells us that polynomials, when placed in the network, are capable of solving

the classification problem.

Exponential Networks

An exponential network in which each of the elements Uj is of the form

exp(-) is the most basic to justify as the proof of Sandberg's theorem is based

on showing first how the exponential functional is capable of being used as

the nonlinear element and then showing how a function capable of uniformly

approximating it on a bounded interval is also acceptable.

Continuous Sigmoidal Networks

A more complicated but extremely important type of network that is

useful for classification is a continuous sigmoidal network. It is first necessary

to define a sigmoidal function.

Definition : A functional a : M i-> M is called a sigmoidal function or sigmoid
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if

lim a(t) = and lim alt) = 1.

t->-oc t->oo

In 1989, Cybenko (see [8]) proved that for any compact set C C Mn
,
any

/ e C(C), and for any e > there exists a function g of the form

m
g(x) = J2 aM< lji x > +eo) (

x
> Tj ^ mn

, 9j e M)

where a is a continuous sigmoidal function such that

\g(x)- f(x)\ < efor all x G C.

In other words, this sum of translations and dilations of a sigmoidal func-

tion is capable of uniformly approximating any bounded continuous functional

on a compact subset of Mn
. Sandberg mentions in [20] that given that the

statement is true for n = 1, the (i) —> (ii) section of his proof quickly extends

the result for n > 1. Indeed, if we let X be simply JR
n

, the elements yj be linear

functionals defined on ]R
n

, and Uj(x) = Cjo{a.jX+ (3j) where Cj, a
J5 fy E IR. This

gives us a sum of the type desired for n > 1.

In [5], Cheney demonstrates as a result of the general theory of ridge

functions that the result is applicable when the elements of the vectors jj and

the numbers 6j are integers. In fact, the theorem is given as follows.

Theorem 16 Let g be a continuous function on IR such that the limits of g(i)

as t —> oo and t —> -co exist and are different. Put gy = g(jt + i). Then

{dij ' hj € ^} is fundamental in C(1R).

47





The proof of this theorem relies on measure theory, making use of the

Riesz Representation Theorem and the Dominated Convergence Theorem. It is

beyond the scope of this thesis but can be found in [4].

It is seen that this theorem allows g to be a continuous sigmoid, but does

not require it. The only importance when using the translations and dilations is

that the limits at oo and at — oo are not the same. It was mentioned earlier that

often times it is desired that the output of the activation function in a neural

network be in a certain range such as [0,1]. Sigmoidal functions fit nicely into

this framework.

Finally, we can show at once that these shifted and scaled sigmoidal func-

tions are capable of approximating on any normed linear space by using either

of the two main theorems after noting that they are capable of approximating

on M.

Squashing Function Networks

The previous section has dealt with the use of translations and dilations

of continuous sigmoidal functions. In this section, we will deal with certain type

of sigmoid that is not necessarily continuous, a squashing function, and attempt

to obtain a similar result. A squashing function is defined in [12] as follows:

Definition : A function \P : M i-> [0, 1] is a squashing function if it is nonde-

creasing, lim \I>(A) = 1, and lim \I>(A) = 0.
A—>oo A—— oo

It is seen at once that this definition simply requires that ^ be a nonde-

creasing sigmoidal function (not necessarily continuous). Some useful squashing
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functions include the threshold function, #(A) = 1{a>o} where 1
{ .} is the indi-

cator function; the ramp function, *(A) = A1 {0<a<i} + 1{a>i>; and the cosine

squasher (see [10]), tf(A) = (1 + cos[A + 37r/2])(l/2)l
{
_pi/2<A<7r/2} + 1{a>tt/2}-

Hornik et al. first define what they call a sigma-pi network and prove

certain results pertaining to it. Following this, they extend the results to a

network resembling those that have been mentioned above. We proceed as did

he, considering only the JR
1

case.

Definition : For any measurable function G mapping JR to JR, let X) ^{G) be

the class of functions

q lt

{f-.JR^JR: f{x) = Eft II G{Ajk (x)), x, (3j eM,Ajk eA,q = l,2,...}.

j=\ k=\

where lj € JN and A is the set of all affine functions from IR to M, that is, the

set of all functions of the form A(x) = wx + b where w, b G JR. Networks of

this form are referred to as sigma-pi networks.

Definition: For any measurable function G mapping Ft to JR, let £X
(C?) be

the class of functions

{f-.JR^JR: f{x) = J2PjG{Aj(x)) : x,fy e JR,Aj 6 A,q = 1,2,. . .}.

This form of this second network clearly resembles the continuous sig-

moidal network that was shown above if G is taken to be a continuous sigmoidal

function. The shifting and scaling that was present above is simply performed
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by the affine functional here; only the notation is different. For now, we will

continue to let G be any function.

We now give the main result that applies here.

Theorem 17 For every squashing function ^, Y^W is uniformly dense on

compacta in C(M).

Proof: We proceed by first proving several lemmas that will aid in the proof.

Lemma 1: Let G : M i-» 1R be continuous and nonconstant. Then J2Y\
l

(G) is

uniformly dense on compacta in C{M).

Proof: We can apply the Stone-Weierstrass Theorem here. Let C C M be

any compact set. For any G, ^2Y\
l
(G) is obviously an algebra on C. If x,

y 6 C, x ^ y, then we can find an A x E A such that G(Ai(x)) ^ G(A\(y)).

To show this, pick a, b G M, a ^ b such that G(a) / G(b). Then choose ^4i(-)

to satisfy Ai(x) = a and A x (y) = b. Then G{A
x {x)) ^ G{A x {y)). This ensures

that Y,Y[{G) is separating. Now we must show that Y1X[
1
{G) vanishes on no

point of C. Pick b € M such that G(b) ^ and A2 {x) = • x + b. For all

x G C, G(^2(a:)) = G(6) ^ 0, so this is a nonvanishing constant function. The

Stone-Weierstrass theorem now guarantees that £ f]
1
(G) is capable of uniformly

approximating any continuous functional on C.

This lemma shows that the sigma-pi networks are capable of uniform

approximation of any continuous function on a compact set regardless of the G
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with the only requirements that G be continuous and nonconstant. We have

not yet required that G be a squashing function.

Lemma 2: Let F be a continuous squashing function and ^ be an arbitrary

squashing function. For every e > there is an element He of Z)
1 ^) such that

sup|F(A)-tf
€ (A)|<6.

Proof: Choose e > and assume without loss of generality that e < 1. We

must now find constants ft and affine functions Aj, j
; € {1, 2, . .

. , Q — 1} such

that

sup|F(A)-£fttf(^(A))|<e.
AeZR

J= 1

Choose Q such that \/Q < e/2. For j e {1, 2, . .
. , Q - 1}, set ft = 1/Q. Pick

M > such that *(-M) < e/2Q and tf(M) > 1 - e/2Q. Such an M can

be found because ^ is a squashing function. For j € {1,2,...,Q — 1}, set

Tj = sup{A : F(X) = j/Q}. Set rQ = sup{A : F(X) = 1 - 1/2Q}. Because F is a

continuous squashing function, such r/s exist. Now, for any r < s, let ATjS 6 ^4

be the unique affine function satisfying Ar ,s (r) = M and ATiS (s) = —M. The
Q-l

desired approximation is then He = J2 ft^CA- ,r +i(^))- We can easily check

that on the intervals (-c», rj, (n,r2],. .., (rQ-i,rQ], (rQ ,
oo), |F(A) -ff€ (A)| <

e.

Lemma 3: For every squashing function ^, every e > 0, and every M > there

is a function cosM
,e £ X)

1 ^) such that

sup
|

cosm,€ (A) — cos(A)| < e.

\e[-M,M]
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Proof: Let F be the cosine squasher previously defined. By adding, subtract-

ing, and scaling a finite number of affinely shifted versions of F, we can get the

cosine function on any interval [—M, M). Since F is continuous, we may apply

Lemma 2 and the triangle inequality to easily obtain the result. Indeed, let G

be an element of X 1

^). We then have on the interval [—M, M],

\G{\) - cos(X)\ < \G(X) - F(X)\ + \F(X) - cos(X)\

= |G(A)-F(A)| +

< e

where the last line followed from Lemma 2.

Q
Lemma 4: Let g(-) = £ /3j cos(A

j

(•)), Aj 6 A. For arbitrary squashing func-

tion \I>, arbitrary compact C C 1R, and for arbitrary e > 0, there is an / e X 1

(^)

such that supieC \g{x) — /(x)| < e.

Proof: Pick M > such that for j e {1,2,..., Q}, A/(C) C [-M,M]. Be-

cause Q is finite, C is compact and the A(-) are continuous, such an M can

Q
be found. Let Q\ = Q •

J2 |/%|. From Lemma 3, for all x € C we have

Q
| £ /?, cosM,e (^(x)) — <7(x)| < e. Because cosm, £/q £ X)

1

^)) we see that

/(•) = £?=iC0SM,e/Q(A,(-)) € EiW-

Now we turn to proving the theorem. By Lemma 1, the trigonometric

Q h
polynomials { £ Pj fl cos(^4jfc (-)) : Q,lj G W,/?j € JR,Ajk € ^4} are uniformly
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dense on compact sets in C(M). By repeated application of the trigonometric

identity cos(a) cos(6) = cos(a+ 6) -cos(a-6), we may write every trigonometric

T
polynomial in the form J2 at cos(A t (-)) where at e 1R and At 6 A. The desired

t=i

result now follows from Lemma 4.

This now gives us another class of acceptable functions for the Uj in

Figure 6, and choosing a squashing function will ensure that the output of each

Uj is always between and 1.

Radial Basis Function Networks

An important type of function that may be used in some classifying

networks is the radial basis function, and more specifically, the Gaussian basis

function. While we cannot generalize that in all cases a basis function network

may be used for uniform approximation, there are some examples that are

useful. Information about the universal approximation capability of radial basis

function networks may be found in [17]. We define a radial basis function as a

function which depends only on the norm of the argument. In other words, if /

is a radial basis function and ||x|| = \\y\\, then f(x) = f(y).

We now give an example of a case when uniform approximation is pos-

sible using a radial basis function network. In this particular instance the basis

functions are Gaussian, functions that have other useful properties for approx-

imation networks. Let H be a Hilbert space with inner product < •, • > and

norm
||

•

||
defined in the usual way. We are interested mainly in H = lR

n

with ||x|| = 52jXj. Let C C H be compact and let V C H be nonempty, con-
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vex, and satisfy the condition that for x\, Xi E C with x\ ^ x2 there exists

u E V such that \\x\ - u\\ ^ \\x2 - u\\. We can, for example, take V to be C

as long as C is convex, or we can take V to be any nonempty convex subset

of H containing an interior point. Let P be a nonempty subset of (0, oo) or

(—oo,0) that is closed under addition. Finally, let L = {g : C i-> 1R : g(x) =

£ aj-exp(— aj\\x — Vj\\
2),m < oo, a, E M,aj € P,Vj G V. It is immediately

seen that the structure of L is of the form needed for the elements Uj in Figure

6. With these assumptions we get the following theorem.

Theorem 18 Let / : C i-» JR be continuous and let e > 0. Then there exists a

g E L such that

\f{a)-g{a)\ <e,aeC.

Proof: Using the property above and the convexity of V, we see that given a\,

a2 E JR, qji, oli € P, and v i: v2 E V

a
x
exp(-a 1 ||a:- Vi\\

2
)a2 exp(-a2 \\x - v2 \\

2
)
= 6exp(-(o; 1 +a2 )||a; - ^||

2
)

for some b E JR and w E V. Also we can see that a\ + a2 E P. So L is an

algebra. Choose Xi and x2 in C and assume that Xi ^ x2 . Then \\xi — v\\ ^

\\x2 — v\\ for some v E V by our first assumption.. Therefore exp(— a\\xi — v\\) /

exp(— a||x2 — v ||) so L separates the points of C. Therefore, by the Stone-

Weierstrass theorem, the proof is complete.

Thus, in this somewhat less general compact space, the Gaussian basis

functions are capable of uniformly approximating any continuous function in
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M. They therefore may be used as the elements Uj in our original network.
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7. Applications

Classifier Example

At this point we are ready to give an example of an actual classification

network using the framework that we have provided. This example will also

show how the mathematical formulations that we have been making relate to

the problems related to signal classification that were initially discussed.

Let X be the space of continuous real-valued functions defined on [0, l]
n

with
||

•
||
the usual sup norm. Let k and r be positive constants and let Lip(/c)

denote the subset of X consisting of the elements of X that satisfy a Lipschitz

condition: \x(a) — x(b)\ < k\a — b\ for all a and b. This is a typical way to deal

with a good class of nonlinear functions. Let XX2, , xm be distinct elements

of Lip(fc) and let Cj = {x E Lip(/c): \\x — Xj\\ < r} for each j = 1, 2, . .
.

, m.

Now assume that r < (1/2) min^
||j
— Xj\\. It is clear that the Cj are

pairwise disjoint if this condition is satisfied. Since each Cj is a closed bounded

subset of X that is equicontinuous on [0, 1]", we get a result thanks to the

Arzela-Ascoli theorem (see [15]) showing that the Cj are compact. As we have

shown earlier, since the Cj are compact and pairwise disjoint, the union Uj Cj

is also compact.

We now introduce a theorem in [20] without the proof given there.

Theorem 19 Let X denote the normed linear space of iR-valued continuous

functions on X := [0, l]
n

, with the usual max norm. Let g E X* , and let e > 0.

Then there are points a l5 . .
.

, ap 6 X, points c1? . .
.

, Cp € M, and a, q € X such
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that

p

sup|#(:r) -J2 c
J
x

(
ai)\ < e

xec
j= i

and

sup \g(x) — / q(a)x(a)da\ < e.

xec Ji

This theorem shows that a classifier can be found in this case using a

simple sampling and summing operation or an integration. It applies directly

to our example at hand since we are working on [0, l]
n

. We now know that it

is possible to classify the signals in our example using the structure in Figure

6 where the functional yj performs the sampling and summing or integration

operation

This problem is very applicable to the examples discussed earlier. If n =

1, 2, or 3, we are classifying continuous signals in one, two, or three variables.

This is the kind of sensor input that we might have in the automatic target

identification and pattern recognition examples that were mentioned earlier.

Conclusions

We have described a specific neural network structure that is capable of

solving certain classification problems. This structure has the form of a single

hidden layer feedforward neural network and therefore possesses the advantages

of neural networks that were mentioned above. It has a simple framework that

is easily built in hardware or simulated in software.

It is important to note that there are limitations to the methods pre-

sented here. All of the proofs are existence proofs. They guarantee that a
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solution is possible and in some cases give a general idea on how it might be ac-

complished. For example, we have seen how certain classes of functions such as

sigmoids and polynomials are capable of being used as the activation functions

(the Uj) in a classifying neural network. What has not been determined is the

number of nodes needed. We can only say that classification is possible with a

finite number of nodes. Further, we have not given a certain method of finding

the weights Cj in Figure 6. This is typically what we referred to as training the

neural network.

In spite of these shortcomings, we have succeeded in providing a general

framework capable of studying the important problem of signal classification.

We have accomplished this by using well-known theorems dealing with approx-

imation. This area of research is fairly new and has proven extremely useful so

far, and interest in it will continue to grow in the future.
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