
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1999-09

Implementing a low-complexity, adaptive, layered

video coder for video teleconferencing

Skretkowicz, Steven J.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/8511

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

IMPLEMENTING A LOW-COMPLEXITY, ADAPTIVE,
LAYERED VIDEO CODER FOR VD3EO

TELECONFERENCING

by
Steven J. Skretkowicz

September 1999

Thesis Advisor:
Second Reader:

Murali Tummala
Robert E. Parker, Jr.

Approved for public release; distribution is unlimited.

19991207 035

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
IMPLEMENTING A LOW-COMPLEXITY, ADAPTIVE, LAYERED VIDEO CODER
FOR VIDEO TELECONFERENCING

5. FUNDING NUMBERS

6. AUTHOR(S)
Skretkowicz, Steven J.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION j
REPORT NUMBER j

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense

or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Real-time interactive video applications, such as video teleconferencing, present difficult challenges to network designers due to strict

quality of service constraints and the limitations of traditional video compression schemes. These limitations reveal themselves notably
in two areas: poor error robustness and a lack of flexibility when dealing with multicast scenarios over heterogeneous networks.

A more promising approach that improves error robustness while also offering a solution to the network heterogeneity problem is to
employ a layered video codec. This thesis presents the implementation of a new layered video codec scheme. Block updating coupled
with an aging algorithm is used in this scheme to select macroblocks for transmission. Block updating selects macroblocks that have
changed due to scene motion, and the aging algorithm ensures that an entire frame is transmitted within a set time interval. Layering is
accomplished through application of the fast Haar transform and/or the discrete cosine transform. Layer assignments are made by
grouping bands of coefficients with similar variances. Quantization and encoding for motion video employs both an industry standard
and uniform quantization with a custom variable length coding table. For static slides, uniform quantization and a second custom
variable length coding table are employed. Rate control is accomplished via the reduction of a four-dimensional operational distortion
surface to a one-dimensional optimal curve implemented as a simple table lookup of quantizers.

14. SUBJECT TERMS
Video Teleconference, Layered Video Coder

15. NUMBER OF PAGES

125
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF REPORT

J Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

IMPLEMENTING A LOW-COMPLEXITY, ADAPTIVE, LAYERED VIDEO
CODER FOR VIDEO TELECONFERENCING

Steven J. Skretkowicz
Lieutenant, United States Navy

B.S., Memphis State University, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCffiNCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Approved by:

Murali Tummala, Thesis Advisor

Robert E. Parker Jr., Second Reader

Jeffrey B. Knorr, Chairman
Department of Electrical and Computer Engineering

in

IV

ABSTRACT

Real-time interactive video applications, such as video teleconferencing, present

difficult challenges to network designers due to strict quality of service constraints and

the limitations of traditional video compression schemes. These limitations reveal

themselves notably in two areas: poor error robustness and a lack of flexibility when

dealing with multicast scenarios over heterogeneous networks.

A more promising approach that improves error robustness while also offering a

solution to the network heterogeneity problem is to employ a layered video codec. This

thesis presents the implementation of a new layered video codec scheme. Block updating

coupled with an aging algorithm is used in this scheme to select macroblocks for

transmission. Block updating selects macroblocks that have changed due to scene

motion, and the aging algorithm ensures that an entire frame is transmitted within a set

time interval. Layering is accomplished through application of the fast Haar transform

and/or the discrete cosine transform. Layer assignments are made by grouping bands of

coefficients with similar variances. Quantization and encoding for motion video employs

both an industry standard and uniform quantization with a custom variable length coding

table. For static slides, uniform quantization and a second custom variable length coding

table are employed. Rate control is accomplished via the reduction of a four-dimensional

operational distortion surface to a one-dimensional optimal curve implemented as a

simple table lookup of quantizers.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

1. Multimedia Communication and Tactical Video Teleconference (VTC)... 1
2. Video Compression and Robustness 2
3. Traditional Video Codecs 4
4. Receiver-Based Layered Multicast (RLM) 5

B. THESIS OBJECTIVE 6

C. THESIS ORGANIZATION 7

H. LAYERED VIDEO CODER DESIGN CONSIDERATIONS 9

A. VIDEO STREAM STRUCTURAL HIERARCHY 9

B. TRANSFORM CODING 10

1. Discrete Cosine Transform (DCT) 11
2. Discrete Wavelet Transform (DWT) 13
3. Comparison of Transforms 15

C. QUANTIZATION TECHNIQUES 16

1. Human Visual System (HVS) Weighting 17
2. Bit Allocation 17

D. ENTROPY ENCODING 18

E. FRAME CODING 19

F. MEASURING QUALITY 20

DX LAYERED VIDEO CODECS 23

A. LAYERED CODING SCHEMES 23

B. A LOW-COMPLEXITY, ADAPTIVE CODER FOR TACTICAL VTC 25

1. Temporal Compression via Block Updating 26
2. Aging Algorithm 29
3. Layering Strategy 32
4. Quantization and Entropy Encoding 41

Vll

5. Generating Customized VLC Tables 44
6. Rate-Distortion Relationship 45
7. Bit Rate Control 49
8. Scene Change Detection and Scene Type Determination. 51

IV. RESULTS 53

V. CONCLUDING REMARKS 61

A. CONCLUSIONS 61

B. FUTURE WORK 62

APPENDIX A. MOTION VIDEO VARIABLE LENGTH CODING

TABLE (VLC) 63

APPENDIX B. STATIC SLIDE VARIABLE LENGTH CODING

TABLE (VLC) 69

APPENDIX C. MATLAB CODE LIBRARY 73

LIST OF REFERENCES 103

INITIAL DISTRIBUTION LIST 107

VUl

LIST OF FIGURES

Figure 1-1: Simple VTC Multicast with Two Active and Two Passive Nodes 2

Figure 1-2: Overview of Layered Coder/Decoder 5

Figure 1-3: Adapting to Network Heterogeneity Using RLM 6

Figure II-1: Basic Components of a Video Coder 9

Figure II-2: Organizational Hierarchy for Compressed Video 10

Figure II-3: Frequency Interpretation of DCT Coefficients 13

Figure II-4: Structural Decomposition of Image Elements [4] 13

Figure II-5: Octave-Based Wavelet Decomposition 15

Figure II-6: HVS-Based Luminance Quantization Matrix [4] 17

Figure m-1: Sample 'Talking Head" Video Frame 24

Figure IH-2: Basic Layered Video Coder Using the DWT. 24

Figure m-3: Functional Block Diagram of Proposed Layer Coder 26

Figure ffl-4 Block Search Order; a.) Clockwise and b.) X-pattern 28

Figure ffl-5: Second Order FHT Decomposition of a Macroblock 34

Figure III-6: Subband Variances after a First Order Analysis (Motion Video) 35

Figure TJI-7: Subband Variances after a Second Order Analysis (Motion Video) 36

Figure Dl-8: Partitions Resulting from Merge Algorithm (Motion Video) 37

Figure m-9 Final Layering Scheme for Motion Video Sequences.. 38

Figure m-10: Subband Variances after a First Order Analysis (Static Slides) 39

Figure m-11: Subband Variances after a Second Order Analysis (Static Slides) 39

Figure m-12: Partitions Resulting from Merge Algorithm (Static Slides) 40

Figure IQ-13: Final Layering Scheme for Static Slide Sequences 40

Figure ffi-14: Partitions after Merging Similar Non-Contiguous Partitions 41

Figure IH-15: Partitions for Quantizing Purposes (Static Slides) 41

Figure IH-16: Quantization and Coding for Motion Video Macroblocks 42

Figure m-17: Quantization and Coding for Static Macroblocks 44

Figure IH-18: Rate Distortion Curve with Possible Optimal Solution 46

Figure IH-19: Operational Rate Distortion Curve (Motion Video) 47

IX

Figure IQ-20: Reduced Operational Rate-Distortion Curve (Motion Video)48

Figure EI-21: Quantizer Table Triplet Values (Motion Video) 48

Figure m-22: Operational Rate-Distortion Curve (Static Slides) 49

Figure ÜI-23: Operational Rate Control Curve (Motion Video) 50

Figure IV-1: Original and Reconstructed Frames from a Motion Video Sequence 53

Figure IV-2: Original and reconstructed Frames from a Static Video Sequence 54

Figure IV-3: Bit Rates for (a) Fixed Quantization and (b) Bit Rate Control 55

Figure IV-4: pSNR for (a) Fixed Quantization and (b) Bit Rate Control. 57

Figure IV-5: Comparison of Error Resilience 58

LIST OF TABLES

Table 1-1: Tactical VTC Multimedia Requirements 7

Table IH-1: Significance and Determination of DWT Subbands 33

Table ni-2: Scan Order for Run-Length Encoding Quantized Coefficients 43

Table IV-1: Rate Controlled and Uncontrolled Motion Video Sequence Statistics 57

XI

Xll

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ai

2?

B

ß
dt
D

ABintCT

AÖ,

ACT
2

f m
Ffu.vlFuv

fquv
HH
HHHH

HHHL

HHLH

HHLL

HL
HLHH

HLHL

HLLH

HLLL

K
k
L
LH
LHHH

LHHL

first order FHT average analysis vector

bit allocation per frame

average bit allocation per frame
bit rate control parameter
first order FHT detail analysis vector

distortion
bit allocation error (or deviation)

change in quantizer table entry

variance comparison metric
frame rate
pixel block
coefficient block
quantized coefficient block
subband via first order FHT analysis; retains diagonal detail of image
subband via second order FHT analysis; retains diagonal detail of HH
subband
subband via second order FHT analysis; retains vertical edge detail of HH
subband
subband via second order FHT analysis; retains horizontal edge detail of
HH subband
subband via second order FHT analysis; retains lowpass content of HH
subband
subband via first order FHT analysis; retains vertical edge detail of image
subband via second order FHT analysis; retains diagonal detail of HL
subband
subband via second order FHT analysis; retains vertical edge detail of HL
subband
subband via second order FHT analysis; retains horizontal edge detail of
HL subband
subband via second order FHT analysis; retains lowpass content of HL
subband
maximum peak-to-peak pixel value
subband i
layer
detail matrix via first order FHT analysis; retains horizontal edge detail
subband via second order FHT analysis; retains diagonal detail of LH
subband
subband via second order FHT analysis; retains vertical edge detail of LH
subband

Xlll

LHLH subband via second order FHT analysis; retains horizontal edge detail of
LH subband

LHLL subband via second order FHT analysis; retains lowpass content of LL
subband

LL average matrix via first order FHT analysis; retains lowpass content
LLHH subband via second order FHT analysis; retains diagonal detail of LH

subband
LLHL subband via second order FHT analysis; retains vertical edge detail of LH

subband
LLLH subband via second order FHT analysis; retains horizontal edge detail of

LH subband
LLLL subband via second order FHT analysis; retains lowpass content of LL

subband
M total number of macroblocks in a frame
M average number of macroblocks chosen per frame in test video sequences
Mage average number of macroblocks chosen per frame by the aging algorithm
Nb Total number of subbands created by recursive application of FHT
P Partition
qi first quantizing parameter
q2 second quantizing parameter
q3 third quantizing parameter
Quv quantizer step size at position (w,v)
R bit rate
Rc bit rate constraint
R0 arbitrary bit rate
Rtarget target bit rate
a2 variance
c^max maximum variance of all subbands
c^min minimum variance of all subbands
x original image
x reconstructed image
xQ original data vector with regard to FHT analysis
xmm pixel value in current block
**„,„, pixel value in reference block

1-D One Dimensional
2-D Two Dimensional
3-D Three Dimensional
4-D Four Dimensional
ASD Absolute Sum of Differences

XIV

ATM Asynchronous Transfer Mode
bpf bits per frame
bpp bits per pixel
CELP Code Excited Linear Prediction
DCT Discrete Cosine Transform
DPCM Differential Pulse Code Modulation
DWT Discrete Wavelet Transform
EOB End-Of-Block
FHT Fast Haar Transform
fps frames per second
GOB Group of Macroblocks
HVS Human Visual System
IP Internet Protocol
IT-21 Information Technology for the 21st Century
ITU International Telecommunications Union
ITU-T ITU Telecommunications Standardization Sector
JPEG Joint Photographic Experts Group
kbps kilobits per second
KLT Karhunen-Loeve Transform
LAN Local Area Network
M-JPEG Motion-JPEG
MPEG Moving Pictures Experts Group
MSE Mean Squared Error
pSNR peak Signal-to-Noise Ratio
QCJJF Quarter Common Intermediate Format
QoS Quality of Service
RLE Run-Length Encoding
RLM Receiver-Based Layered Multicast
rt-VBR real-time Variable Bit Rate
SAD Sum of Absolute Differences
SNR Signal-to-Noise Ratio
UD Uniquely Decipherable
VLC Variable-Length Code or Variable Length Coding
VOD Video On Demand
VTC Video Teleconferencing

XV

XVI

ACKNOWLEDGEMENT

The work presented in this thesis is the culmination of support from many people.

I am especially fortunate to have had the opportunity to work with a most dedicated

advisor, Murali Tummala. He was instrumental in the completion of this work, and I am

grateful for his guidance and insight. I have also had the honor and pleasure to work with

another outstanding individual, Robert (Bob) E. Parker, Jr. Throughout the entire process

of this work from concept to completion, Bob was forever unselfish with his valuable

time. Finally, I acknowledge the support of my wife, Karen, and children, Elizabeth and

Christopher. Words cannot express the gratitude I have for their patience and love.

XVll

I. INTRODUCTION

A. BACKGROUND

Video teleconferencing (VTC) is expected to contribute significantly to the US

Navy's Information Technology for the 21st Century (IT-21) initiative. IT-21 seeks to

change the paradigm to warfighting from a platform-centric approach to a network-

centric approach, where information superiority is leveraged with smart weapons in order

to achieve the desired result more effectively. The goal of IT-21 is to link all US Forces

together in a network that enables transmission of voice, video, and data from individual

workstations seamlessly to both local and remote users [1][2]. Employing VTC over a

tactical network at the battle group level caters to several useful applications, such as

collaborative planning, distance learning, remote maintenance and telemedicine.

1. Multimedia Communication and Tactical Video Teleconference

(VTC)

In general, multimedia communications are either unicast or multicast. Unicast

represents peer-to-peer communications while multicast represents m to n

communications where m ranges from 1 to n. Unicast includes any client-server

applications, such as video on demand (VOD) or IP telephony. Multicast examples

include distance learning and remote conferencing. The tactical VTC scenario

considered here is inherently a multicast application running over a heterogeneous,

wireless network. Here, "heterogeneous" implies that a connection traverses a series of

links (each imposing potentially different bandwidths), and the recipient workstations

differ in capability and capacity; "wireless" implies an internetwork of wireline local area

networks (LANs) connected by at least one wireless channel. As such, each transmitter

transmits to multiple receivers in the multicast group. The multicast group consists of

some combination of active participants that are allowed to transmit and passive

participants that only receive. For example, the problem of transmitting multicast,

multimedia traffic over ATM networks was examined in [3]. This situation is illustrated

in Figure 1-1.

□
Video

Workstation

Eöi—II—I
Video

Workstation Workstation

Figure 1-1: Simple VTC Multicast with Two Active and Two Passive Nodes.

While the network described here affords large bandwidth within each shipboard

LAN, VTC realizes its true value only if implemented within the entire battlegroup. It is

because the wireless channel constrains both the bit rate and the bit error rate (each of

which, in turn, impacts the robustness of the VTC application) that the tactical VTC

network presents challenges not encountered with wireline networks and provides a

hostile environment for traditional video codecs.

2. Video Compression and Robustness

Since video and audio, to a lessor degree, are bandwidth intensive, the signals

must undergo video coding prior to transmission, trading a reduction in bandwidth for a

reduction in quality. Because the human visual system (HVS) places greater relative

importance on lower frequencies than higher frequencies, typical motion video is

perceived as primarily lowpass [4]. Therefore, lossless two-dimensional (2-D) transform

methods are used to create a frequency domain representation of an image. The HVS

perceptive properties can then be exploited by quantizing the resulting coefficients to

varying degrees of precision with higher precision allotted to the lower frequency

coefficients. Quantization reduces the dynamic range of the coefficients and loses

information, but it enables fewer bits to represent the coefficients. Usually, many of the

higher frequency coefficients are zeroed out via this quantizing process; runs of zeroes

are created. Because zeros need not be explicitly represented, run-length encoding (RLE)

is utilized to generate a more compact representation of the quantized coefficients, which

is subsequently replaced by a more efficient lossless variable length code (VLC). These

techniques are collectively called spatial compression. Spatial compression is the basis •

of image compression standards like that of the Joint Photographic Experts Group

(JPEG).

A video codec may simply treat each frame of a video as a separate still image

and subject it to spatial compression independently from the other frames. This approach

is known as intraframe coding. An example is Motion-JPEG (M-JPEG). Jutraframe

coding has the advantage of superior error resilience since decode errors are confined

strictly to the current frame. Its disadvantage is that compression gain with acceptable

image quality is limited to approximately 0.5 bits per pixel (bpp) [4].

For a given quality, higher compression gains are realized if the video codec

exploits the high degree of correlation that video frames tend to exhibit on a frame-to-

frame basis. This is called interframe coding, and it eliminates redundancy by coding

only the differences in successive frames. The compression gains achieved by interframe

coding vary in relation to the degree and type of motion that occurred between successive

frames. Nearly static-content frames exhibit high correlation and result in high

compression gain while highly dynamic-content frames have little correlation and result

in less compression gain. If two successive frames have no correlation, perhaps due to a

scene change, interframe coding performs no better than intraframe coding and typically

performs worse due to the overhead required to track motion. The disadvantage to

interframe coding results from the dependency between frames at the decoder. Jf errors

occur in the current frame, the errors tend to propagate among frames as well as spatially

within frames [5] [6]. Consequently, video codecs like that of the Moving Pictures

Experts Group (MPEG) incorporate both types of compression techniques in an attempt

to increase compression gain and bound error propagation.

3. Traditional Video Codecs

Low bit rate video coding standards such as H.261 and H.263 perform best in

homogeneous, unicast environments. The video server negotiates a desired Quality of

Service (QoS) consistent with the desired video quality and available bandwidth prior to

delivery. Since network conditions are rarely static, the received video quality typically

changes due to dropped or incomplete frames caused by losses within the network. With

the implementation of a closed loop control scheme via feedback reports from the

recipient, the server can react to the changing network conditions and adjust the

quantization, frame size, or frame rate in order to vary the bit rate.

However, when traditional video codecs are applied in a wireless, multicast,

heterogeneous environment, shortcomings are revealed. First, the traditional scheme

relies on guaranteed bandwidth for delivery, trading bandwidth for quality. Selecting an

appropriate quality (and therefore required bandwidth) poses a dilemma in a

heterogeneous network. Since each user is reached by a different path on the network,

each experiences different levels of congestion. Even with feedback, the controllable

application is faced with a quandary in determining how to make adjustments. Sending

high quality, high bandwidth video supports some users but leaves low bandwidth

recipients with degraded video due to high packet loss. If the lowest common

denominator is supported instead, all recipients are forced to view lower quality video,

and the high bandwidth links are underutilized. Clearly, meeting the varied expectations

with a single video stream is impractical and transmitting multiple video streams with

gradations in quality demands a much greater bandwidth expense.

Second, the poor error robustness demonstrated by traditional low bit rate video

coders is especially troublesome since retransmission is not practical in a real-time

application. Finally, feedback itself is undesirable in a low bit rate network. Feedback

employed with the goal of mitigating congestion actually consumes available bandwidth,

causes an additional load on constrained nodes, and increases congestion further.

4. Receiver-Based Layered Multicast (RLM)

A promising approach that offers a solution to the network heterogeneity problem

while offering some improvement in error robustness is the receiver-based layered

multicast (RLM) scheme proposed by McCanne et al. [7]. RLM employs a layered video

codec that transmits video in scalable layers that progressively refine quality. An

independently decodable base layer is generated that guarantees a minimum acceptable

quality. Separate enhancement layers increase quality in a hierarchical manner. With

RLM, each recipient can decode just the base layer for low, but acceptable, quality or add

one or more enhancement layers to improve quality as bandwidth and hardware permit.

This idea is illustrated in Figure 1-2.

Layered Decoder

Base Layer
w

Base
Layer

Layered
Encoder

Lowest
*" Quality

M* s+ Enhancement
Layer(s)

Video

£ Layer(s)
Higher

^ Quality

\J i)
Video

Figure 1-2: Overview of Layered Coder/Decoder.

RLM represents a starting point for designing an integrated approach to

improving robustness. The layered structure slightly reduces the effects of congestion

because a particular node only needs to carry subscribed layers. Unsubcribed layers can

be dropped. Figure 1-3 illustrates this concept. Furthermore, earlier work by Rhee and

Gibson indicates that layered video exhibits improved resilience to bit errors introduced

during transmission because spreading bit errors across multiple layers has less negative

impact on the reconstructed video [8].

Sender

□
Router

{I
ili

.It

1
Router

»■a

Figure 1-3: Adapting to Network Heterogeneity Using RLM.

B. THESIS OBJECTIVE

The main objective of this thesis is to implement in Matlab1 the new layered video

coding scheme for a tactical VTC proposed by Parker [9] [10] for use in multicast,

hetergeneous, wireless, asynchronous transfer mode (ATM) networks. The tactical VTC

session is assumed to consist of low-motion video, such as a "talking head" in the style of

a typical newscast and static displays in the style of an overhead presentation. No

assumption is made about the relative proportions of the two types of content; the session

could be all low-motion video, a sequence of static displays, or any combination of the

two types in any order.

The complete specifications of the coder are detailed in Table 1-1 [9]. For the

implementation in this thesis, a color depth of 8-bit grayscale is evaluated, but the

technique can be expanded to include 4:2:0 sub-sampled 24-bit color. Audio

compression to 8 kbps or less may be accomplished via code excited linear prediction

(CELP) speech coding, but it is not addressed further in this work. Error robustness is

provided via a block updating scheme that limits the impact of decoder errors. Layering

is accomplished by judiciously grouping the frequency domain content obtained from the

fast Haar transform (FHT) and/or the discrete cosine transform (DCT); the exact method

of frequency decomposition depends on the video content. Handling both motion video

Matlab is a registered trademark of The Math Works, Inc.

and static slides with a single coder requires significant flexibility and compromise since

the frequency characteristics of each are different. Therefore, the coder is optimized to

handle each type of content separately - separate layering and separate, custom VLC

tables. Finally, the bit rate control issue is examined, and an approach that reduces an n-

dimensional rate control problem to a simple table lookup is implemented.

VTC Stream Parameter Value
Video Bandwidth 64-96 kbps

Resolution 176x144 (QCIF)
Frame Rate lOfps
Color Depth 8-bit gray/4:2:0 24-bit color

Audio Bandwidth < 8 kbps

Table 1-1: Tactical VTC Multimedia Requirements.

C. THESIS ORGANIZATION

Chapter II considers techniques for coding video. A general discussion of video

stream structural hierarchy, transform coding methods, quantization techniques, entropy

encoding, frame coding, and quality measurement is presented. Chapter HI presents the

specific techniques utilized in coding both motion video and static slides. Chapter IV

presents results. Conclusions and recommendations for future study are given in Chapter

V. Appendix A and Appendix B provide the custom VLC tables used with motion video

and static slides, respectively. Appendix C is a Matlab code library of the layered video

coder implementation.

II. LAYERED VIDEO CODER DESIGN CONSIDERATIONS

The basic components of a video coder are shown in Figure II-1. This chapter

begins with an explanation of video stream hierarchy and then discusses each of the

component parts displayed in Figure II-1. Motion compensation is present only if the

coder attempts to exploit frame-to-frame correlation. Otherwise each frame is processed

independently. The chapter concludes by addressing a method for quantifying the

amount of distortion introduced by the processing.

Input Video
Transform Quantize

Entropy
Encode | Y '

\ Motion
Compensation

Compressed
Video
Stream

Figure II-l: Basic Components of a Video Coder.

A. VD3EO STREAM STRUCTURAL HIERARCHY

A video stream is organized into a hierarchy of logical components. Although the

specific organizational scheme varies with the particular coder under consideration, some

of the most common components are the following.

A frame or picture is the basic display unit. It is a sampled version of the original

scene taken at ä particular instant in time. Each frame is composed of a rectangular array

of pixels or points within the frame. Each pixel contains a data structure indicating its

luminosity or color. The dimensions of the array define the picture resolution, given as

columns x rows, such as the ITU-T defined QCIF resolution of 176x144. Pixels within a

frame are organized, in order of increasing size, into blocks, macroblocks, and groups of

macroblocks (GOBs). A block is an 8x8 array of pixels; a macroblock is a 16x16 array

of pixels or, equivalently, four blocks. A frame may be considered as rows of

macroblocks. One or more contiguous rows of macroblocks are termed a GOB. This

hierarchy is illustrated in Figure II-2.

Group of Pictures

Picture 1 Picture m

1
GOBI • • • GOBn

1 • • •

MB1 MBp

1 i . 1 1
Block Block

• • •

Block Block

Block Block Block Block

Figure II-2: Organizational Hierarchy for Compressed Video.

B. TRANSFORM CODING

Although compression through direct scalar quantization of pixel values is

possible, it is inefficient. An alternative approach is to use transform coding. Because

contiguous pixels within a frame tend to be highly correlated, the application of a suitable

linear transform2 to decorrelate the pixels yields two primary advantages. The first is a

property termed "energy packing" efficiency. The second is that the resulting

coefficients are more conducive to perceptual-based quantization schemes.

2 The transform should be lossless and invertable. Lossless means that no information is lost through
application of the transform. Invertable means that the original information is recoverable.

10

A signal is decorrelated if the application of a transform causes the signal's

autocorrelation matrix to become diagonal; that is, it uncorrelates the resulting

coefficients. The optimal transform tightly packs all the energy (information) into the

minimum number of coefficients possible, resulting in the highest energy packing

efficiency. Arranging these N coefficients in decreasing order of magnitude and retaining

only the first k coefficients gives the least distortion as measured by mean squared error

(MSE) compared to any other set of k coefficients. Similarly, a given level of

quantization of the decorrelated coefficients results in the least distortion of the original

data [11]. Because certain transform coefficients may hold greater perceptual relevance

by the HVS, this dependency can be exploited by utilizing a frequency-based transform

and then quantizing- a lossy process - with a step size proportional to the perceptual

importance of each coefficient.

1. Discrete Cosine Transform (DCT)

Theoretically, the discrete-time Karhunen-Loeve transform (KLT) provides the

greatest energy packing efficiency [11]. However, two liabilities preclude the use of the

KLT in video compression. First, the KLT is extremely computationally intensive -

requiring order N2 operations. Second, the KLT is signal dependent - requiring a

separate eigenvector calculation for each transformed data block. Instead, transforms that

approach the energy packing efficiency of the KLT and possess more efficient algorithms

are utilized in video coders.

A widely used transform for image processing is the two-dimensional (2-D)

discrete cosine transform (DCT). The 2-D DCT provides energy packing performance

very close to that of the KLT and can be implemented with fast algorithms that reduce the

computational effort to the order of Nlog2N [4]. A frame is transformed by partitioning

the frame into NxN regions of pixels and applying the 2-D DCT to each individual

region. N can be any integer provided that integer multiples of N equals the overall

dimensions of the frame. Because the correlation among contiguous pixels tends to

decrease with increasing size of the NxN region which, in turn, decreases the resulting

compression gain, the typical NxN size used with the 2-D DCT is 8x8 (a block).

11

Denoting the original block asf(i,j) and the coefficient block by F(u,v), the 2-D DCT is

given by [4]

^,v)Ua«)C(v)i;2;/ft^cosrfii±fc)ccsf£^l, m) N hZj^Q V 2N J \ 2N)

where

C(x) = « V2
1, otherwise.

The inverse DCT is given by
JV-1 AT-l

/(U) = |:2;2;C(M)C(v)cos
u=0 v=0

(2i + l)mi\ ({2i+\)m\r/ 1 — cos — \F(u,v
2N) [2N }K

(H-2)

). cn-3)

The result is a block of 64 coefficients having a spatial frequency interpretation as

shown in Figure 11-3. The F(0,0) coefficient represents the DC contribution and the

remaining 63 coefficients represent the AC contribution. The different elements of an

image map into the frequency domain as shown in Figure II-4 [4]. The application of the

2-D DCT to an 8x8 block, where there is typically little variation from pixel to pixel,

leads to a predominance of lowpass content in the frequency domain. Given this

condition, the magnitudes of the AC coefficients are largest in the region around the DC

coefficient and diminish with increasing spatial frequency.

12

Increasing horizontal frequency

o s

§•

5
60

_C
'en
es
a u e

DC

AC
Coefficients

Figure II-3: Frequency Interpretation of DCT Coefficients.

Increasing horizontal frequency w

DC Vertical
Edges

Diagonal /
Edges /

Horizontal
Edges

\ / High
\ / Frequencies

Figure II-4: Structural Decomposition of Image Elements [4].

2. Discrete Wavelet Transform (DWT)

Wavelet coding is another technique for compressing still images and has been

shown to offer slightly better image quality than DCT-based schemes for similar levels of

compression at the cost of greater computational complexity [12]. Applying a wavelet

transform to an image transforms that image into a "multifrequency component

representation," where each component has its own frequency characteristics and spatial

features.3 A discrete wavelet transform (DWT) filters and decimates an image into

3 The wavelet transform, like the 2-D DCT, is lossless and invertable.

13

separate subbands of coefficients containing a mixture of the high frequency and low

frequency details. Image decomposition is accomplished via two analysis filters. The

first extracts the low frequency content, the signal average; the second extracts the high

frequency content, the signal details.

The simplest example of a DWT is the fast Haar transform (FHT) [13]. It is

described by its signal average equation,

fl1(n)=|(x0(2n) + x0(2n + l)) (H-4)

and its signal detail equation,

dx(n) =-(*0(2n)-jc0(2» + l)), (H-5)

where XQ is the original data vector, and vectors a\ and d\ are the first order analysis

(decomposition) vectors. If xo contains 2L elements, applying Equations H-4 and II.5

generates analysis vectors of length 2L"i.

Referring to Figure II-5, the LL subband is calculated by applying the average

equation to the columns and rows of the image. The LL subband retains the lowpass

information from the original image and presents a coarse representation of the original

image. Because typical images have lowpass characteristics, most of the energy from the

image is represented in this subband. The HL subband is calculated by applying the

average equation to the columns of the image and the detail equation to the rows. The

HL subband retains the vertical edge details from the original image. Typically, less

energy from the original image is represented in the HL subband compared to that of the

LL subband. The LH and HH subbands are found analogously with LH retaining

horizontal edge details and HH retaining the diagonal edge details. The HH subband

typically has the lowest energy content. In fact, in some applications the HH subband is

discarded in its entirety [14].

14

Original
Image

LL LH
—> DWT

HL HH

LL

LLLL LLLH
w DWT w w

LLHL LLHH

Figure II-5: Octave-Based Wavelet Decomposition.

In order to differentiate the frequency content of an image further, a second DWT

can be applied. Still referring to Figure II-5, the effect of a second order octave-based

decomposition obtained by applying the same analysis filters to the LL subband is

illustrated. This increase in the number of subbands allows tailoring additional stages in

the coder to emphasize the perceptually important details over less perceptual

background noise as will be discussed in greater detail later.

3. Comparison of Transforms

Since the 2-D DCT is applied to pixel blocks within a frame that are subsequently

quantized, it has a tendency to create "blocking" artifacts that disturb the continuity of the

reconstructed frame. The same effect also leads to the presence of "ringing" artifacts

around sharp edges. In contrast, the wavelet transforms typically are applied to the entire

image and separate the entire image into regions of high and low frequency content.

These regions may be quantized and coded independently and result in more efficient bit

allocation. This produces a more visually pleasing, smoother reconstructed image

compared to that obtained via a 2-D DCT at a comparable peak signal-to-noise ratio

(pSNR). In general, at comparable pSNRs, wavelet transform coders offer compression

gains superior to that of DCT-based coders [12].

However, several drawbacks have limited the utility of wavelet-based video

compression. Wavelets achieve quality superior to DCT-methods by processing the

15

entire image or frame, but traditional video coders exploit temporal correlation at a

subframe (usually macroblock) level. Although the error block could be transformed via

a DWT, no significant advantage has been determined over the DCT, and the

computational effort is greater [12]. However, the frequency decomposition offered by

DWTs provides a powerful basis for layered video coding.

C. QUANTIZATION TECHNIQUES

After the transform, the coefficients are quantized. Quantization is a lossy

process used to reduce precision and zero out some coefficient values. The benefit is that

each coefficient can then be represented with fewer bits. However, the information loss

is not recoverable, and the loss is manifested as distortion within the reconstructed image.

This distortion is termed quantization noise.

The typical quantization scheme, uniform quantization, involves dividing each

coefficient Fuv by the quantizer step size Quv and rounding the result to the nearest integer

to produce a quantized coefficient Fquv as follows [15]:

F = nearest integer (n-6)

The values used in image reconstruction are then Fquv multiplied by the step size.

However, as Equation II-6 implies, the step value may be adjusted for each particular

coefficient with Qm now representing elements of a quantizer matrix. Choosing the

appropriate step size involves a trade-off between acceptable error and desired

compression. Employing a small step size yields low quantization noise but little

compression. The opposite is the case for a large step size. Although uniform

quantization is often used, the choice is suboptimal since the individual coefficients are

not distributed uniformly [16]. However, two broad approaches are employed to refine

the selection of step size: HVS weighting and bit allocation strategies. HVS weighting

heuristically refines the step size based on perceptual relevance while bit allocation

strategies attempt to spread errors optimally across all coefficients.

16

1. Human Visual System (HVS) Weighting

Because the HVS places greater relative importance on lower frequencies than

higher frequencies, step sizes based on HVS modeling are selected such that lower

frequencies coefficients are quantized more finely while higher frequency coefficients are

quantized more coarsely [4]. The HVS is also more acute to luminous intensity than

chromatic intensity. Therefore, different quantizer matrices are developed for each. An

example of a luminance quantization matrix widely used in JPEG compression is given in

Figure II-6 [4]. The dimensions match the 8x8 block size used with the 2-D DCT. In

application of a quantizer matrix, the entire matrix can be scaled by a multiplicative

constant in order to scale quantization noise and compression while maintaining the

relative importance among the coefficients.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99_

Figure n-6: HVS-Based Luminance Quantization Matrix [4].

2. Bit Allocation

Using a bit allocation approach, the value of the step size is chosen to minimize

distortion within a bit budget. It is a classical resource allocation problem, where the

fundamental trade-off in quantization is between rate (number of bits) and distortion

(approximation error) formalized as rate-distortion theory. Several sophisticated

algorithms utilize Lagrange methods applied to arbitrary rate-distortion curves. Of these,

a popular approach is varying the step size in proportion to the variance of the coefficient

17

[17]. However, bit allocation schemes, regardless of the methodology, do not account for

the sensitivity to different spatial frequency characteristics of human visual perception.

D. ENTROPY ENCODING

Further compression can be realized through a lossless process called entropy

encoding that removes redundant information. The simplest style of entropy encoding is

run-length encoding (RLE). With RLE, a data set is parsed to locate sequences of

repeated values. Any such sequence is replaced by a codeword consisting of a delimiter,

the value, and the number of times the value is repeated. The longer the sequence of the

repeated value, the greater the available compression. Following quantization, many

elements of a coefficient block typically have a value of zero. Often many high

frequency rows and columns are completely composed of zeros. Accordingly, it is

advantageous to scan the coefficient block in a manner as to produce the longest runs of

zeros, hi JPEG compression, scanning the quantized coefficient block as a vector in

zigzag fashion starting with the DC coefficient down to the F8,8 coefficient has been

shown to increase the run-length of zeros [4]. Since the repeated value here is known (0),

an adaptation of the basic codeword scheme cited above consists of the run-length of

zeros followed by the magnitude of the next non-zero value. If there is no remaining

non-zero value in the block, a special end-of-block (EOB) codeword is used instead.

After RLE, the quantized coefficient block is represented by a set of codewords,

where each codeword represents a symbol drawn from a larger source alphabet. Variable-

length coding (VLC) minimizes the average codeword length by assigning shorter

codewords to the most probable symbols and longer codewords to the least likely

occurring symbols while maintaining each uniquely decipherable (UD). Huffman coding

is the most widely used entropy-encoding algorithm and is guaranteed to produce a

minimum average length, UD code [15]. The Huffman algorithm uses each symbol's

probability of occurrence and builds a prefix code using an optimum binary-branching

tree. Since both the coder and decoder need to use the same coder and generating a

Huffman table is computationally expensive, standard tables are normally pre-defined

18

using data drawn from test images. Optimal compression is no longer guaranteed, but

encoding and decoding are faster, and the need to transmit the VLC table is avoided.

E. FRAME CODING

As discussed previously, intraframe coding compresses each frame of a video as a

separate, still image. Its advantage is superior error resilience; its disadvantage is limited

compression gain. Interframe coding exploits frame-to-frame correlation by coding only

the difference in successive frames, thereby allowing the potential for higher compression

gain than that achieved by intraframe coding alone. The disadvantage to interframe

coding is in robustness since decode errors can propagate between frames and spatially

within a frame depending on the algorithm.

Because of the compression required for the target VTC scenario, strict intraframe

coding is not an option. Therefore, a robust algorithm for interframe coding is needed.

Several source-coding techniques used to exploit temporal redundancy, such as motion

compensation, differential pulse code modulation (DPCM) and block updating, are

discussed in [4]. For a robust application in a real-time, heterogeneous, multicast

environment, block updating was judged the most promising and is discussed further.

Interframe coding via block4 updating is a variation on intraframe coding. With

block updating, each block in the current frame is compared to the corresponding block

in the previous frame, and a distance metric is calculated. If the metric is above a

threshold value, that block is intracoded and transmitted. Otherwise, no further

consideration is given to that block; it is skipped. Thus, block updating conserves

bandwidth by coding and transmitting only those blocks that have changed perceptually

since the previous frame [18]. In low-motion video, such as the "talking head" scenario,

motion is confined to a relatively small region within a frame and the background

remains static. A significant bandwidth savings is possible.

4 In this context, "block" implies an NxN pixel region, not necessarily 8x8.

19

In order for block updating to be effective, a suitable distance metric must be

defined. Common distance metrics employed are MSE, sum of absolute differences

(SAD), and absolute sum of differences (ASD) [4] [14].

Utilizing block updating alone for a tactical VTC, where end-users may join a

session that is already in progress, has a liability. End-users joining late will never

receive a block that does not exceed the selection threshold, thus leaving them with a

partially reconstructed video. In order to mitigate this affect, block updating can be

combined with an aging algorithm that periodically forces block updates. Such an

algorithm guarantees a full scene reception within some set interval [14].

F. MEASURING QUALITY

Given that video coders trade compression gain for image quality, quantifying the

level of distortion introduced is useful in evaluating different coding schemes. A useful

measure of image distortion D is the MSE between the original (x) and reconstructed

(Jc) images [4]:

1 N M

Using distortion D, the signal-to-noise ratio (SNR) is determined as

SM? = 101og10—, (E-8)

where a2 is the variance of the original image. The most widely published measure of

image quality is the peak signal-to-noise ratio given by

pSNR = lO\og10?~, (H-9)

where K is the maximum peak-to-peak value in the image, 255 for the typical 8-bit

image. For example, a typical peak SNR for a typical JPEG encoded grayscale image is

28 dB at 0.5 bpp.

Using MSE as a measure of image quality does have drawbacks. MSE does not

directly define perceptual quality since all errors are given equal weight. Two

20

compression techniques yielding the same MSE for an image may deliver slight

differences in perceptual quality.

21

22

m. LAYERED VIDEO CODECS

A. LAYERED CODING SCHEMES

Parker [9] discusses several previous approaches to layered video coding. They

can be classified into three fundamental categories: component-based layering, spatial-

based layering, and frequency-based layering.

Component-based layered coders transmit a base layer and usually a single

enhancement layer. A traditional DCT-based coder (yielding some set quality) supplies

the base layer. The enhancement layer improves this quality by either providing

augmenting information to the base layer or correcting distortion present within the base

layer. Two such schemes are proposed by Rhee and Gibson [8] [20]. Implicit in the

component-based approach is that the enhancement layer may duplicate information

already present in the base layer.

Spatial-based layered coders partition a frame into hierarchical areas of interest

and encode each area separately. For example, the "talking head" frame shown in Figure

ni-1 may be partitioned into two areas of interest with the speaker being of primary

interest and the remainder of the frame being of secondary interest. With spatial-based

layering, relatively more bandwidth would be allocated to the region encompassing the

speaker with the balance of available bandwidth being apportioned to the rest of the

frame. Bahl and Hsu [21] have proposed a coder that incorporates content-sensitive

spatial decomposition and multiresolution coding. The difficulty with implementing a

spatial-based coder is creating the hierarchical areas of interest dynamically while

minimizing the overhead required to identify their shifts relative to the layer assignments.

23

Figure III-l: Sample "Talking Head" Video Frame.

Frequency-based layered coders decompose a frame into subbands and then

arrange the subbands into individual layers. The frequency decomposition may be

applied to the entire frame or individual macroblocks within the frame. Each layer may

contain one or more subbands. The base layer contains at least the low frequency

subband but may also contain higher frequency subbands in order to improve base layer

quality. Figure DI-2 illustrates this concept using the DWT to decompose a frame, where

the LL subband alone constitutes the base layer, the LH and HL subbands are combined

into a first enhancement layer, and the HH subband constitutes the second enhancement

layer.

Frame
DWT

LL

HL

LH

HH

LL h

Q
ua

nt
iz

e
an

d
E

nc
od

e

w ► Base Layer

HL LH

h

Layer

HH
Layer

Figure III-2: Basic Layered Video Coder Using the DWT.

The principle advantages to frequency-based layering are its extendibility and

flexibility. Further decomposing the frame through application of the DWT to each

subband depicted in Figure III-2 creates a total of 16 subbands. Repeated application of

the DWT to these subbands creates even more subbands. With a larger number of

subbands, there is increased flexibility in the manner in which they can be assigned to

24

layers. This, in turn, facilitates exploiting each subband's perceptual importance.

Additionally, a greater number of subbands permits a greater possible number of layers.

Three coders that utilize the frequency-based approach are discussed in [14], [22], and

[23].

B. A LOW-COMPLEXITY, ADAPTIVE CODER FOR TACTICAL VTC

As cited above, several diverse approaches to designing layered coders have been

proposed; each emphasizes different network architectures or applications to varying

degrees. However, there is neither a consensus in identifying a preferred, structured

approach nor a consensus in quantifying those parameters that make a layered coder

effective. This section presents the development and implementation of a new layered

coder that is specifically tailored for the tactical VTC scenario where limited transmission

bandwidth is available, and the robustness of transmission is at a premium.

Both the characteristics of the tactical VTC application and the desire to quantify

effectiveness guide the strategy for developing and implementing the new layered coder.

Specifically, the application yields five requirements. The coder must 1) provide a video

stream characterized by the bandwidth, resolution, frame rate, and color depth detailed in

Table 1-1,2) optimize compression adaptively for both low motion video and static

slides, 3) provide a low complexity architecture to minimize coding delays and power

requirements, 4) provide error resilient decoding at high packet loss rates, and 5)

constrain bit rate to a predetermined average.

The guiding factors stemming from the desire to quantify effectiveness are

twofold. First, the coder must provide a base layer with acceptable quality and two (or

more) enhancement layers that progressively improve perceptual quality. Second, the

coder must minimize the bitstream overhead required to accommodate the layering

structure. A functional diagram of the implemented coder is shown in Figure DI-3. Each

component is addressed in follow on sections.

25

Block
History

Current
Frame

I
Control

Unit

Block
Selection

1 Frame
Delay

I
FHT/
DCT

Subbands
Quantize

Encode

Subbands

Layer
Allocation

Base Layer h.

Network
Buffer

► w
Enhancement 1 w

Enhancement 2 w w W

Reference
Frame

Figure III-3: Functional Block Diagram of Proposed Layer Coder.

1. Temporal Compression via Block Updating

Temporal compression is accomplished via block updating applied at the

macroblock level. Only those macroblocks exhibiting sufficient change on a frame-to-

frame basis are encoded. Although block updating has been shown to yield inferior

compression performance relative to motion prediction algorithms, block updating was

chosen because the performance differential is small when low activity video is

considered [24], and greater robustness is realized because temporal error propagation is

greatly limited and spatial error propagation is eliminated. Block updating also negates

the need for the locally decoded reference frame that is common to motion prediction

schemes. This greatly simplifies the coder by eliminating the overhead required by the

performance of an inverse quantization/transform at the coder. Block selection, as

considered here, is solely with regard to motion video sequences. Since static slide

sequences exhibit little or no motion, block selection via motion detection is of limited

utility there. Indeed, transmissions during static sequences result from considerations

presented in the next section, where macroblock aging is discussed.

Sufficient change between corresponding, frame-successive macroblocks is

determined by calculating a distance metric between them and comparing the result to a

threshold. The distance metric utilized is the non-normalized ASD given by:

26

ASD =
M N . M N

IS
m=l n=l

where JC„ „represents the pixel value within the current block while x* „ represents the

pixel value in the reference block. The primary reasons for choosing ASD over other

metrics are twofold. First, the ASD is computationally efficient compared to MSE and

SAD. The ASD employs only additions and subtractions and a single absolute value

operation. MSE requires expensive multiplication operations - making it ill suited to

real-time applications. SAD requires the same number of additions and subtractions as

ASD, but it requires MxN- 1 more absolute value operations. Second, since the ASD

takes a single absolute value of a sum, it acts as an accumulator and provides a lowpass

filtering effect that removes noise in pixel intensities introduced through video capture.

This smoothing prevents the threshold from being exceeded spuriously in otherwise static

regions of the frame sequence whereas the nonlinear operations performed on a per-pixel

basis in MSE and SAD tend to accumulate this noise energy and yield spurious block

selections. Thus, the ASD metric allows bandwidth to be more effectively devoted to

regions of interest [14].

Two independent elements affect video quality and, therefore, the required bit

rate: adequate motion detection (to prevent "jerky" reconstructed video) and control of

distortion introduced through quantization. The goal in motion detection is to select the

maximum block selection threshold that adequately captures motion. In the video

sequences examined, a threshold of 160 (for ASD) proved adequate for detecting

perceptual motion and resulted in an average of 24.8 macroblocks selected per frame.

Further considering the issue of computational expense, the ASD metric is applied

to individual 8x8 blocks within the macroblock; the first block to exceed the threshold

triggers macroblock selection and ends the search. This avoids the expense of examining

the remaining blocks of the macroblock. Additionally, since the HVS acuity is more

sensitive to changes in luminous than chromatic intensity [4], distance calculations are

confined to the luminous component of each pixel even if chromatic information were

available.

27

Since motion in VTC scenes tends to be confined to discrete objects within the

scene (as opposed to scene motion caused by a camera pan), search efficiency is slightly

affected by the order in which the individual blocks are examined. The approach that

proved more efficient in the test video sequences considered here is to maximize the

distance between the first two blocks examined. As shown in Figure 1H-4, two search

patterns were compared: a clockwise search starting from the upper left block and an X-

pattern search that examines the upper left block followed by the lower right. Given that

a macroblock was selected for transmission, the X-pattern resulted in a 2.5% decrease in

the average number of blocks examined per frame.

1 - >2
l

4< "3

1

*f
a.

Figure III-4 Block Search Order; a.) Clockwise and b.) X-pattern.

Still greater search efficiency is realized by using the X-pattern search and

varying the starting block of each macroblock to match the anticipated motion at that

point in the frame. Because motion in VTC sequences is fairly confined, macroblocks

tend to be selected in the same manner frame-to-frame. For example, a speaker shifts left

or right and/or slightly up or down. Therefore, search speed is increased by having the

search algorithm remember the identity of the specific block, termed the "anchor", which

caused a particular macroblock to be selected in the previous frame. For the subsequent

distance metric calculations, search begins at the anchor. If the anchor again causes

selection or if the macroblock is not selected, the anchor identity is unchanged. If

another block causes selection, the anchor identity is updated. Using this search scheme

produced an additional 20% reduction in the number of blocks examined for selected

macroblocks. A more complex approach not examined here is to remember the two

blocks that most frequently cause selection and tailor the search accordingly.

28

2. Aging Algorithm

Utilizing this block updating scheme alone for macroblock refreshment exposes

some undesirable performance characteristics. One such consequence is termed

hysteresis. Consider an arbitrary macroblock whose content is changing temporally due

to the movement of an item within its spatial bounds. The item travels from its initial

position along some trajectory to its final position. At some point in the trajectory, let the

change in the macroblock's content be sufficient to exceed the motion-detection

threshold, so the macroblock is selected for update. If the final position of the item has

not yet been reached at the time of macroblock selection, the item continues movement to

its destiny. Once the final position is reached, hysteresis occurs if the distance between

this final position and the item's position at the last macroblock update is insufficient to *

force another macroblock selection; that is, the distance is less than the threshold. In this

case, the displayed macroblock at the receiver is left with a persistent error. As another

illustration of hysteresis, consider a frame sequence depicting only slight motion

contained within an arbitrary macroblock's spatial position. If the change between

successive macroblocks as calculated by the distance metric is below the threshold value,

the macroblock is not selected for encoding. If several frames in the video sequence

continue to depict similar slight motion below the threshold, the displayed macroblock at

the receiver eventually shows a persistent error.

Another problem is in the duration the error artifacts (introduced by the channel

through dropped or corrupted packets) are maintained in a receiver's reconstructed video.

Error artifacts in the dynamic portion of a scene tend to last only a single frame because

block updates occur frequently. However, any such error in a relatively static region

tends to persist longer due to the much lower frequency of block updating there.

A final problem occurs when new participants are allowed to join a VTC already

in progress (dynamic multicast). Since only those macroblocks depicting motion above

the perceptual threshold are transmitted, new participants receive only a portion of the

current scene. Although the portion received is the most dynamic region of frame (e.g.

29

the speaker), a speaker completely disassociated from the background yields an awkward

reconstruction.

Complementing the block updating scheme with an aging algorithm that

intermittently forces macroblock updates alleviates these problems. The general

principle is that the coder monitors the number of frames since each macroblock was last

encoded - its "age." If a macroblock's age exceeds a predetermined interval, that

macroblock is flagged for encoding and transmission. Thus, the aging algorithm

guarantees a maximum period between macroblock updates and bounds both the duration

of hysteresis errors and the persistence of visual artifacts caused by the channel. Such

bounding also ensures that new participants to a dynamic multicast session can construct

an entire frame in a timely fashion.

Obviously, forcing selection of macroblocks for transmission that would not have

been selected otherwise increases the bandwidth requirement, but this impact can be

mitigated by the manner in which the aging algorithm is implemented. Important

considerations are the following. Simply increasing the interval for macroblock selection

by aging decreases the required bandwidth but increases the persistence of decode errors

at receivers and prolongs the time required for new participants to receive a full frame.

Merely forcing a macroblock update after n frames have passed without selection leads to

an undesirable correlation in updates following scene changes. Although motion within a

scene tends to disperse updates to some extent, a sufficiently static background region

would still lead to correlation of a significant fraction of the block updates. The worst

case is realized by a scene change where the new scene is entirely static, such as an

overhead slide. In this case, the bit rate would spike every n frames. In order to avoid

undesirable spikes in bit rate, it is advantageous to spread the number of macroblocks

selected by aging evenly over time. This, in turn, requires a scheme that ages each block

independently.

The aging algorithm developed for the coder implemented here tracks the age of

each macroblock indirectly. Instead of counting the frames since a given macroblock

was last updated, the coder maintains an update vector identifying the number of frames

30

remaining until each macroblock must be updated. Each value, m, in the update vector is

chosen from a discrete uniform distribution in the range [l,n] and is interpreted as an

update scheduled m frames in the future. Using a uniform distribution to schedule

updates smoothes macroblock selection over n frames and decorrelates the selections due

to aging. Choosing the aging intervals randomly also prevents events, such as scene

changes, from correlating updates and causing periodic spikes in bit rate. The specific

value chosen for n controls the tradeoff between the additional bandwidth required and

coder responsiveness. For a given value of n, the average number of macroblocks

selected through aging per frame, M„*, is

(n + 1)

where M is the total number of macroblocks in a frame.

The final block selection algorithm is performed by the function, m_blk_id_xr.m.

m_blk_id_xr.m is provided in Appendix C, and it incorporates motion detection and aging

as follows. As each frame is captured, the update vector entry corresponding to each

macroblock is decremented by one. As each macroblock is processed for selection in a

given frame, the coder examines the macroblock's entry in the update vector. If its

corresponding entry has reached zero, the macroblock is selected for transmission.

Otherwise, the distance metric is applied to determine if the macroblock should be

selected due to motion. If either criterion is met, a new random entry is generated for that

update vector position. The order of these two events is important. Since the distance

metric need not be calculated if the macroblock is selected by aging, there is net decrease

in the number of calculations required to select a macroblock for transmission.

For the assumed VTC video format of 176x144 QCIF, M is 99. At the assumed

frame rate of 10 fps, setting n to 20 guarantees all macroblocks are encoded within two

seconds and yields 9.43 as the average number of macroblocks selected through aging per

frame. However, the true bandwidth impact is less than this value since some of the

macroblocks selected via aging would have been selected by motion. For the test motion

video sequences considered here, the average number of macroblocks selected per frame

31

increased to 31.4 (from 24.8 without aging). The payoff for this modest increase in

bandwidth is that all the problems encountered by using the distance metric alone for

macroblock selection are bounded to this duration. The duration of two seconds

represents a compromise judged acceptable between the additional bandwidth required

and the desired coder responsiveness.

3. Layering Strategy

Macroblocks selected for transmission are decomposed in frequency using a

DWT. Performing the selection process prior to the transform reduces computational

cost because the transform is only applied to those macroblocks requiring transmission.

The DWT was chosen since frequency decomposition, as discussed earlier, offers the

most flexibility in the subsequent populating of layers. However, the task of determining

a consistent, extendable scheme for determining an appropriate number of layers and the

manner in which the frequency content within each macroblock was to be apportioned

across those layers remains.

Parker [9] proposes a set of heuristic guidelines to determine the appropriate layer

assignments and bit allocation. First, as layers are to be hierarchical in importance, layer

assignments should map frequency content to that hierarchy in a manner consistent with

perceptual importance. Second, the base layer must provide acceptable quality, and the

addition of each enhancement layer must provide a perceptual improvement in quality.

Since the broad goal in image or video coding is to remove information that is not

perceptually relevant, transmitting a layer that provides no perceptual improvement in

quality wastes bandwidth and is, therefore, undesirable. Third, the number of bits

assigned to each layer should be substantive so that dropping a layer potentially decreases

congestion in the network. Finally, the bandwidth consumed by the image data should

also be sufficient to avoid an excessive relative consumption by network control symbols

and overhead. This is especially critical for low bit rate video.

The DWT chosen was the fast Haar transform (FHT). The FHT has several

desirable properties with regard to minimizing coder complexity. First, the FHT, as a

real transform, avoids the necessity for complex arithmetic and simplifies storage.

32

Second, the FHT is not computationally demanding, requiring only addition, substraction,

and left- and right-shifts [13]. Finally, unlike more sophisticated wavelet transforms, the

FHT does not require extending or padding the data set. However, the simplicity of the

FHT may lead to blocking artifacts at high compression levels since the average and

detail calculations are confined only to contiguous pixels.

Since the defining equations of the FHT and their manner of application to affect

a first order frequency decomposition were discussed previously in Section II.B.2, only a

summary of the first order FHT decomposition is detailed in Table HI-1. The operation

is accomplished via the function fht.m as provided in Appendix C. Again, higher order

frequency decompositions may be accomplished by recursively applying the FHT to each

of the subbands created by the next lower order decomposition.

Array Detail Horizontal
Operation

Vertical
Operation

LL Lowpass Average Average
LH Horizontal Average Detail
HL Vertical Detail Average
HH Diagonal Detail Detail

Table ni-1: Significance and Determination of DWT Subbands.

Although a greater number of layers would offer more flexibility in managing

quality and congestion, the coder restricts the number of layers to three. The decision to

limit the number of layers to three was driven primarily by the constraint of a target bit

rate in range of 64-96 kbps. At these bit rates and with each layer consuming an equal

amount of bandwidth overhead, three layers appeared to be the limit in terms of

producing enhancement layers that provided a perceptual improvement in quality while

maintaining a base layer that rendered an acceptable quality.

Establishing a suitable layered structure for motion video sequences can be posed

as the following conditional, two-part problem. Given that n layers are desired,

determine the degree to which a selected macroblock is decomposed in frequency and the

manner in which the resulting subbands are assigned into layers. Parker [9] proposes

using a variant of a split-and-merge algorithm, which was originally proposed by Diab, et

33

al. [25] to identify regions of equivalent activity in the spatial domain, and applying it at

the macroblock level in the frequency domain to identify region of similar energy and

perceptual content. The particulars of the implementation follow, but the essence of the

approach is that a selected macroblock is uniformly decomposed in frequency via the

FHT, subbands of approximately equal variance are merged, and the resulting regions are

apportioned into individual layers. These steps were performed on representative video

sequences, and the ensuing layering structure is implemented within the coder.

Utilizing representative video sequences, each selected macroblock is uniformly

decomposed in frequency by recursively applying the FHT until the desired number of

subbands is obtained. The first order analysis creates four 8x8 subbands; the second

order analysis produces sixteen 4x4 subbands. The third order analysis results in sixty-

four 2x2 subbands. Extending the recursion to its limit yields 128 subbands consisting of

a single point. In practical terms, a second order analysis as shown in Figure m-5 proved

sufficient for three layers.

16x16
Macroblock

FHT

8x8
Subband

FHT

4x4

Figure ni-5: Second Order FHT Decomposition of a Macroblock.

Next, the variance of the coefficient set composing each subband was determined

across all frames of video. These variances were then used as a subband merging metric.

Two benefits are afforded by employing subband variance as the merging metric. First,

with motion video, the variance of coefficient sets appear to possess an inverse

relationship to spatial frequency and, by extension, to perceptual importance. That is, the

more perceptually relevant subbands at lower frequencies exhibit higher variances.

Consequently, differences in variance provide a convenient mechanism for assigning

34

subbands to a layered hierarchy. Second, grouping subbands with similar variances

simplifies coder architecture since each group can employ a common quantizer. Several

quantization algorithms use variance as an indication of the dynamic range exhibited by

coefficients and allocate bits by varying quantizer step size in inverse proportion to

variance. The particulars of the quantization scheme employed are discussed in more

detail later.

The subband variances calculated from a first order analysis of the test video

sequences are shown in Figure m-6. Those from a second order analysis are shown in

Figure III-7. Äs Figure m-6 illustrates, subband variance provides a good indication of

the energy concentration within each subband. For instance, since motion video is

characteristically lowpass, the variance is largest in the LL subband and smallest in the

HH subband. By extension, subband variance therefore serves as a relative indicator of

the perceptual importance among subbands - an observation that suggests subband

variance should dictate layer assignments. As Figure III-7 illustrates, a second order

analysis further separates the frequency content of the subband to which it is applied.

The LL subband decomposes into the LLLL, LLLH, LLHL, and LLHH subbands

containing the lowpass, horizontal, vertical, and diagonal edge details, respectively,

which were previously lumped into the LL subband alone. Performing the second order

analysis of the LH (horizontal detail) subband apportions energy in a manner symmetrical

to the original first order analysis; that is, as the LH subband is found in the northeast

quadrant of Figure m-6, the energy distribution attained by the second order analysis is

concentrated in the northeast and northwest sub-quadrants with a slightly greater energy

in the northeast sub-quadrant as shown in Figure m-7. Similar observations can be made

for the HL and HH subbands. These characteristics further leverage the argument for

using subband variances to make layer assignments in a hierarchical manner.

(T2U.
_2
<y IM

_2
O HL

_2
CT HH

2891 52.0
73.3 12.4

Figure III-6: Subband Variances after a First Order Analysis (Motion Video).

35

o2
LLLL

2
CT LLLH

2
CT LHLL

2
CT LHLH

2
CT LLHL

2
CT LLHH

2
CT LHHL

2
(J LHHH

2
CT HLLL

2
CT HLLH

2
CT HHLL

2
CT HHLH

2
CT HLHL

2
CT HLHH

2
CT HHHL

2
CT HHHH

2702.0 57.7
117.4 12.5

19.2 21.6
4.5 6.8

27.7 6.0
31.5 8.0

2.2 2.8
3.2 4.2

Figure III-7: Subband Variances after a Second Order Analysis (Motion Video).

After variance data had been gathered for each subband at the desired order of

analysis, the next step was to merge adjacent subbands exhibiting similar variances into

an entity termed a "partition." The criterion outlined by [9] is to merge adjacent

subbands k\ and ki when

(~*\
log

where

\°hj

1

<Acr2, (III-3)

ACT =—log
(2 >*

max
_2

V ^min J

(III-4)

where Nb is the total number of subbands created by successive application of the FHT,

and a min and a max are the minimum and maximum variances, respectively, found among

all the subbands. Applying the merge algorithm to the subbands listed in Figure III-7

results in the partitions shown in Figure III-8. Assuming that subbands are statistically

independent, the variance of each partition P* is now simply the sum of the variances for

the subbands £,• comprising that partition:

k,ePt

(III-5)

36

LLLL LLLH LHLL LHLH

LLHL LLHH LHHL LHHH

HLLL HLLH HHLL HHLH

HLHL HLHH HHHL HHHH

Pi P2 Ps

P3 P4 P6

P7 P8 P9

Figure ni-8: Partitions Resulting from Merge Algorithm (Motion Video).

Next, these partitions are assigned to layers Lj until the requisite number of layers

were created using the set of heuristic rules proposed in [9].

Rule 1: No layer may have a greater variance than a lower layer. That is, given N

layers,

(m-6)
< ><>••■><

Rule 2: Layers must be populated in order of increasing frequency. A layer may

not contain a partition of lower frequency content than any layer below it.

Rule 3: Partitions that meet the criterion given by Equation UI-3 are assigned to

the same layer even if the partitions are non-contiguous.

Rule 4: Partitions are applied to layers in a symmetric fashion.

Rule 5: If more than two subbands comprising a coarser subband remain as

partitions after merging and applying the above rules, all of the partitions

comprising the coarser subband are merged together into one partition.

37

Rule 6: If one or more partitions is moved between layers, as required to achieve

a more balanced distribution of bit rates or quality, move the partition(s) with the

lowest variance if promoting to a higher layer and the partition(s) with highest

variance if demoting to a lower layer.

Application of these rules to the partitions shown in Figure ni-8 culminated in the

final layering scheme for motion video sequences shown in Figure III-9. The base layer

is essentially a lowpass-filtered version of the original macroblock, and the two

enhancement layers progressively added higher frequency details. Additionally, since the

LL subband retains many of the perceptual properties of the original macroblock, it was

further transformed using the 2-D DCT via the function, dct_ofJht.m. This additional

transform allowed the LL subband to be processed using JPEG-based quantization and

encoding techniques to maximize retention of the most perceptually relevant information.

Summarizing the process as implemented in the coder, each macroblock selected

for transmission is decomposed in frequency using the FHT. The LL subband is further

transformed via the 2-D DCT as previously discussed and assigned to layer I. The HH

subband is assigned to layer m in its entirety. The HL and LH subbands are decomposed

with a second application of the FHT. The resulting subbands are then partitioned and

assigned to layers II and HI as appropriate.

LL

HLLL

HLHL

HLLH

HLHH

LHLL

LHHL

LHLH

LHHH

HH

Layer I
Layer II

(DCT)

II Layer HI

Figure m-9 Final Layering Scheme for Motion Video Sequences.

The situation with static slide sequences consisting of text and line drawings is

much different. Sequences such as these demonstrate a greater dependency on their

38

higher frequency components for perceptual recognition. A hierarchical layering scheme

based on the lowpass characteristics of motion video yields blurred, indistinct

reconstructions until the higher frequency components are included as well. Such a

structure, of course, is contrary to the principle of layered video transmission. Therefore,

a separate layering scheme is needed if the video stream is to include both types of

sequences.

The foregoing remarks not withstanding, pursuing the split-and-merge algorithm

still provides valuable insight. The variances of the subbands produced by a first order

FHT analysis of the text and line drawing static sequences are shown in Figure HI-10;

those of a second order FHT analysis are shown in Figure El-11. Compared to Figure

IQ-6 and Figure IH-7 - the analogous results for motion video sequences - it is clear that

energy is much more evenly distributed among subbands of static slides. In practical

terms, this implies a much more complex relationship between variance and perceptual

importance.

2
G LL

2
G w — ie\2> 1216

2
G HL

2
G m 1209 610

Figure HI-10: Subband Variances after a First Order Analysis (Static Slides).

2
G UJJL

2
G UML

2
«J UIM

2
C mm

2
G LHLL

2
CJ LHHL

2
G LHUi

2
G LHHH

2
G HLLL

2
G HIHL

2
G HUH
_2
G HIHH

2
G HULL

2
G HHHL

2
G HHLH

2
(J HHHH

1392 600.5
456.7 159.2
536.2 128.3
423.3 121.1

404.4 441.3
184.3 185.7
162.2 148.1
141.7 157.8

Figure IH-11: Subband Variances after a Second Order Analysis (Static Slides).

Applying the split-and-merge as before results in the partitions identified in

Figure HI-12. Using the rules of layer assignment as before, a reasonable layering

scheme might assign partitions Pi, P2, and P4 to layer I. However, this implementation

led to a poor reconstruction. Even adding P3, P5, and P6 so that the vast majority of the

energy was included in the reconstructed image failed to provide acceptable quality.

39

Clearly contrary to the motion video case, variance alone is a poor guide to determining

perceptual relevance.

LLLL LLLH LHLL LHLH

LLHL LLHH LHHL LHHH

HLLL HLLH HHLL HHLH

HLHL HLHH HHHL HHHH

Pi P2 P3

P4

P7 P5

P6

Figure 111-12: Partitions Resulting from Merge Algorithm (Static Slides).

Producing an "effective" base layer required allocating a portion of the frequency

content from each of the 8x8 subbands to it. Therefore, while maintaining symmetry in

assignment, those 4x4 subbands that exhibited comparatively larger variances among the

four subbands derived from the same parent subband were allocated to layer I. The

remaining subbands were divided between the remaining layers in order of increasing

frequency. The final layering scheme for static slide sequences is shown in Figure IH-13.

LLLL LLLH LHLL LHLH

-

Layer I

LLHL 11681 ISIfci f!|iHH| fiLäyetiH?

HLLL All! HHLL HHLH Layer I Layer
m

HLHL Ililil HHHL HHHH Layer
m Layer I

Figure IH-13: Final Layering Scheme for Static Slide Sequences.

Although the final layering scheme does not stem directly from the partitions in

Figure III-12, continued analysis on them is insightful nonetheless. Merging partitions

with similar variance reduces the partitions to those shown in Figure El-14. The

difference in variances of partitions Pi and P2 is only slightly too large to permit their

40

merging by the criterion of Equation 1H-3. The difference is small enough, however, to

justify quantizing both bands with the same step size. The simplicity gained in

quantizing both bands together balances any potentially suboptimal bit allocation.

Therefore, the final partitions for quantization purposes are as given in Figure lH-15.

LLLL LLLH LHLL LHLH

LLHL LLHH LHHL LHHH

HULL HLLH HHLL HHLH

HLHL HLHH HHHL HHHH

Pi P2 P3

P3

P4 P2

Ps

Figure ni-14: Partitions after Merging Similar Non-Contiguous Partitions.

LLLL LLLH LHLL LHLH

LLHL LLHH LHHL LHHH

HLLL HLLH HHLL HHLH

HLHL HLHH HHHL HHHH

Pi P2

P2 P3

Figure 111-15: Partitions for Quantizing Purposes (Static Slides).

4. Quantization and Entropy Encoding

After the transform stage, the coefficients are quantized and subjected to entropy

encoding. For motion video sequences, the process is depicted in Figure 111-16. The base

layer (LL subband) is quantized using the luminance matrix (Figure E-6) via the function,

quantizer Jim, run-length encoded using a zigzag scan via the function zzjo.m, and

converted to a VLC using the luminance VLC table suggested in [4]. The conversion to a

41

VLC is accomplished stepwise via three functions: make_it_compact.m, parseJHuff.m,

and get_bits_Huff.m. This approach leverages the LL subband's retention of the lowpass

characteristics of the original macroblock. The implementation is as discussed previously

in Sections HC and Ü.D with the scaling factor of the quantization matrix designated as

qi5. The remaining subbands are each quantized uniformly using a common step size for

all its coefficients. Using variance as an indication of the dynamic range of the

coefficients within a given subband and comparing to Figure ni-9, it is reasonable to

quantize all the subbands composing each enhancement layer with the same step size.

Therefore, the quantizer step size for layer II is set to q2; that of layer HI is set to q3.

LL

HULL, HLHL,
LHLL, LHLH

HLLH, HLHH,
LHHL, LHHH, HH

fc q2
RLE ^ k- w w

RLE ^

Motion
VLC

w

h qs *~ w w w

Layer I

Layer II

Layer HE

Figure 111-16: Quantization and Coding for Motion Video Macroblocks.

Unlike the JPEG based coding of the LL subband, zigzag scanning of the

quantized FHT coefficients provided no apparent coding gain. Instead, trials indicated a

simpler horizontal raster scan was adequate for all subbands except HL. The HL showed

a slight preference for a vertical raster scan. This seems rational given the frequency

detail represented in this band. The scan orders are summarized in Table m-2 where the

scan order applies to the indicated subband as well as its child subbands. (The LL entry

pertains only to the coding of the static content macroblocks as discussed later, but it is

included here for completeness.) Horizontal raster scans are performed by the function,

As executed in the code, the scaling factor qi is a parameter in quantizerJLm. A value of 16 for q! means
no scaling of the values in Figure II-6. A value smaller than 16 results in finer quantization and less
quantization noise, qi must be positive.

42

raster.m; vertical raster scans are performed by the function, verticalm. Upon

completion of the run-length encoding accomplished by the functions

make_it_compact.m and parse_3D.m, each coefficient is represented by a set of

codewords. Each codeword is then mapped to an entry in a custom VLC table via the

function get_bits2.m. The VLC table is provided in Appendix A. Its structure mirrors

the three-dimensional (3-D) event structure employed by the H.263 coding standard [26],

and the methodology of its creation is presented in the next section.

Parent Subband Raster Scan
Order

LL Horizontal

LH Horizontal

HL Vertical

HH Horizontal

Table ni-2: Scan Order for Run-Length Encoding Quantized Coefficients.

The quantization and encoding process for selected macroblocks from static

sequences is shown in Figure HI-17. This process differs from the motion video process

in three ways. JPEG-based quantization is not used; all sixteen subbands are supplied to

one of three independent uniform quantizers with fixed step sizes of qi, qi, and q3.

Contrary to the motion macroblock scheme, the step sizes are not associated with layers,

but with the partitions depicted in Figure IE-15. Finally, the VLC table that is provided

in Appendix B and customized for static slides is used. The same three functions cited

above accomplish these steps with the appropriate VLC table being employed via the

argument kind in the function get_bits2.m signaling the type of frame under

consideration - motion video or static slide.

43

LLLL

LLLH, LHLL, LHLH,
LLHL, HLLL, HLHL

LLHH, HLLH, HLHH,
LHHL, LHHH, HHLL,
HHLH, HHHL, HHHH

q2

RLE

RLE

RLE

Static

VLC

ik A * Layer I
HHLL
HHHH

"^ Layer II

HHLH
HHHL

-► Layer HI

Figure III-17: Quantization and Coding for Static Macroblocks.

Neither Figure DDL-16 nor Figure III-17 indicates the presence of the control signal

from the Control Unit shown in Figure III-3. The control signal allows manipulation of

ql, q2, and q3 as required by a bit rate control scheme. Rate control is covered later.

5. Generating Customized VLC Tables

The VLC coding scheme mirrors the 3-D event structure employed by the H.263

standard. Each non-zero coefficient is replaced by an equivalent event described by three

RLE parameters [26]:{LAST, RUN, LEVEL}, where LAST indicates whether there are

any more non-zero coefficients in the current subband, RUN indicates the number of

successive zeros that precede the non-zero coefficient, and LEVEL represents the non-

zero magnitude of the quantized coefficient. Each event maps to a VLC codeword to

which a sign bit is appended to represent the sign of the coefficient.

Using various combinations of qi, qz, and q3, a series of representative motion

video test sequences was processed. The processing followed the implementation as

discussed thus far (except for the last step of mapping each codeword obtained form RLE

to a VLC table.) The relative frequency of occurrence of each RLE codeword was then

used to create a Huffman VLC utilizing an optimal binary-branching tree. Since every

possible {LAST, RUN, LEVEL} event is not guaranteed to be formed by the set of test

video sequences, the custom VLC table further mirrors the H.263 standard in that a

default codeword length of 22 bits is used for any event not contained elsewhere in the

table.

44

A Huffman code offers the following advantages. The average codeword length

is minimized because the more frequently occurring events are assigned shorter

codewords (fewer bits) while the less frequently occurring codewords are assigned longer

codewords (more bits). Additionally, each codeword is uniquely decipherable ensuring

that no codeword can be a prefix to a longer codeword.

This same procedure is used here for both motion video sequences and static slide

sequences. Again, using different VLC tables for the two basic types of video content is

advantageous because of the inherent difference between their frequency content and,

consequently, the different makeup of the RLE codeword population.

6. Rate-Distortion Relationship

Compressed video is inherently variable bit rate since compression gain varies

with scene activity and complexity. However, transmission channels inevitably require a

constraint on bit rate due to finite channel capacity or QoS guarantees. Most commonly,

bit rate is constrained to maintain a constant rate or to maintain a constant local-average

bit rate over time. Many factors affect bit rate, but the most important is the tradeoff

made between quantizer step size and image fidelity. A larger step size results in a lower

bit rate and a larger amount of distortion. Reducing the step size increases the bit rate but

reduces the amount of distortion. Rate control therefore requires evaluation of the rate-

distortion relationship created by a particular coder design.

The rate control problem may be posed as a resource allocation problem in terms

of the rate-distortion relationship, where the goal is to minimize distortion D for a bit rate

R subject to a bit rate constraint Rc [24], i.e., min{Z)}, subject to R < Rc. The

corresponding optimization problem is solved using Lagrangian methods and yields the

optimal solution for a particular rate constraint as a point along the rate-distortion curve.

Figure III-18 shows a typical rate-distortion curve and an optimal solution for a bit rate of

R0. While the true rate-distortion curve is guaranteed to be convex [17], the operational

curve is influenced by the coder design including the motion-detection scheme, the

quantizer design, and lossless coding gains. Therefore, rate control schemes tend to only

45

approximate the true rate-distortion relationship when determining a method for varying

quantizer step size to achieve the desired bit rate.

D a

Do

R0 R

Figure 111-18: Rate Distortion Curve with Possible Optimal Solution.

Additionally, for a layered coder where multiple quantizer parameters are

employed, the corresponding multi-dimensional aspect of the rate-distortion curve

complicates the rate-control problem. Assuming distortion for each layer i is additive,

the rate control problem becomes minimizing
N-l

;=o

subject to
AT-l

2*,**e.

(ffl-7)

(ffl-8)
i=0

where N is the total number of layers. The assumption of additive distortion implies that

a decrease in rate requires a suitable decrease in all quantizer parameters to yield an

optimal solution. However, since the rate-distortion curves in the operational coder are

not necessarily convex, the approach above does not necessarily give-optimal results. An

alternate, albeit heuristic, approach proposed by Parker [9] is to simplify the control

problem by creating a simplified, operational rate-distortion curve.

Considering the test motion video sequences, an operational distortion curve is

created by first plotting total bit rate and distortion (measured by pSNR) separately

through a three-dimensional space spanned by the set of candidate quantizers. This

process captures the operational effect of the coder design, such as the values of the

46

quantizer parameters {qi,q2,q3} and the VLC coding gain as well as any interdependence

between layers, on the rate-distortion relationship. The result is best described as a four-

dimensional (4-D) surface wherein both rate and distortion are functions of a triplet of

quantizer parameters {qi,q2,q3}. Recall that the first parameter represents the JPEG

scaling factor while the remaining parameters represent the actual quantizer step sizes.

Next, the points representing the pSNR surface are sorted in a descending order

and associated with their corresponding average bit rates and quantizer triplets. Any

triplet set yielding a higher average bit rate for the same or lower pSNR is discarded. The

result is an implicit vector quantization of the operational 3-D rate-distortion space. The

dimensionality of the operational rate-distortion curve is therefore reduced to 1-D as

shown in Figure IJJ-19. Each point on the curve represents results from a single optimal

triplet. Considering only those quantizer triplets associated with average bit rates about

the target bit rates of 64-96 kbps and considering a 5% change in the average bit rate of

the coarsest quantizer triplet as a reasonable control step, the operational rate-distortion

curve of Figure IJJ-19 reduces to that shown in Figure III-20. The corresponding

quantizer triplets are plotted in Figure JU-21. These results indicate that an optimal rate

control scheme does not necessarily increase/decrease each quantizer parameter in

lockstep as would be expected if distortion in each layer were independent.

100

0.6 0.8 1.2 1.4 1.6 1.8
average bpf x10

Figure HI-19: Operational Rate Distortion Curve (Motion Video).

47

6000 7000 8000 9000 10000 11000 12000
average bpf

Figure HI-20: Reduced Operational Rate-Distortion Curve (Motion Video).

30

25

§20-

a>
E
cd
«15
Q.

§ 10
o

M K * W-

6 8 10 12 14 16
Quantizer Table Entry

18

Figure ffl-21: Quantizer Table Triplet Values (Motion Video).

The same approach was followed for static slide sequences. However, a slightly

different behavior was observed. Instead of the expected continued decrease in MSE as

bit rate increased with finer quantization, the behavior was as depicted in Figure DI-22.

Past a limiting value of MSE, finer quantization and the related increase in bit rate

yielded no increase in image fidelity. After reconstructing the custom VLC table with the

48

quantizer triplet at that limiting point ({qi:q2:q3} equal to {4:16:16}) the average bit rate

became approximately 44 kbps as shown. Since this bit rate is below 64 kbps, no

additional bit rate control scheme was deemed necessary; all static slide sequences are

quantized with the same triplet.

8Ü
•
i

i 1 i —i i

60 -

LU
co 40
5 i

-

20 >

\
U'

4 5 6 7 8 9 1
average bpf x104

Figure 111-22: Operational Rate-Distortion Curve (Static Slides).

7. Bit Rate Control

This approach to the rate-distortion problem provides a potential method for a

simplified layered rate control scheme since the set of possible quantizer parameters is

reduced to a far smaller set of parameters. Considering each triplet as an optimal

quantizer state, any control scheme would manipulate the quantizers for each layer of a

motion video sequence by selecting only entries from this set via a simple table lookup.

Parker [9] proposes two such schemes. One functions at the frame level; the other

operates at the macroblock level. The former was examined and implemented for this

thesis in the coder.

Using the operational rate-distortion curve, a linear control curve relating bits per

frame B to quantizer setting Q is created as shown in Figure 111-23. The slope AB/Aß

represents the average increment or decrement in bits per frame with a step change in the

quantizer table. Dividing this quantity by the average number of macroblocks selected

per frame in the test sequences, M , yields the desired control parameter ß:

49

/»-Mi.
AQM

(III-9)

The calculated value of ß resulting from the test motion video sequences was -11.346.

This control parameter was then used to adjust the coder quantizer setting in accordance

with the following scheme.

12000

11000 -

-e- Control Curve
 Linearized Control

Figure 111-23: Operational Rate Control Curve (Motion Video).

At call setup, the average bit allocation per frame B is set to

_ Rt. B = target
(111-10)

where i?^,., is the channel bit rate, and /is the frame rate. For each new frame i, the

actual bit allocation from the last frame (z-1) is used to estimate the bit allocation error or

deviation expected to result from the current frame i if the quantizer setting used in the

previous frame is not changed. Accounting for the change in the number of macroblocks

selected between the last and current frames, the deviation expected is:

50

ABint„ =B
(M ^

BH,. (m-ii)

where Af, is the number of macroblocks selected for transmission in the current frame,

Mi-i is the number of macroblocks selected for transmission in the previous frame, and

i?r._j is the number of bits used in the transmission of the previous frame. The required

change in the quantizer setting is calculated using the deviation Aß inter, the number of

macroblocks selected for transmission in the current frame M„ and the control parameter

ß:

Aß,=
Aßinter (m-12)

L M,ß J
Here, [J is the fixed integer operator that discards the decimal portion of the result. The

result indicates the quantizer setting from the last frame should be incremented or

decremented by Aß, • If the quantizer has reached the upper or lower limit of the table,

the value is not changed. This quantizer triplet selection scheme is accomplished via the

function, get_qd_entryf.m.

This control scheme is only applicable for motion video; a single quantizer

parameter triplet is used for static slides. The only exception is due to a scene change.

When a scene change is detected by the coder (as defined in the next section), so much of

the frame is selected for transmission that a spike in bit rate would occur if quantized

with any of the triplets available in the control table. To avoid this undesirable spike, the

first frame of a new scene is heavily compressed. Following this initial frame, the

appropriate quantization technique ensues.

8. Scene Change Detection and Scene Type Determination

Since the bit rate must be suppressed during a scene change and the coder must

determine which of two possible layering schemes to employ following a scene change,

these criteria must be defined. The coder concludes that a scene change has occurred if

the number of macroblocks selected exceeds a threshold. This threshold was determined

from the block selection statistics of the test video sequence containing the most highly

51

active content (though still considered low-motion video) of all the test video sequences

examined. For this sequence, the average number of macroblocks selected per frame was

34.61 and their standard deviation was 10.19. The threshold was set at three standard

deviations above the mean (65). The comparison operation is performed in the main

code block, thesis, m. A frame sequence is determined to be static when macroblocks

chosen for transmission result solely from aging. In this case, the fixed quantizer triplet

and the static VLC table from Appendix B are used. Otherwise, the sequence is deemed

motion video, and the bit rate control scheme discussed above is employed with its

associated custom VLC table from Appendix B. This determination is performed within

the function, m_blk_id_xr.m.-

This chapter began with a presentation of the three basic techniques available for

layered video coding. The approach implemented here, as proposed by Parker [9], is

frequency-based and utilizes the FHT and the 2-D DCT for motion video sequences and

the FHT alone for static slide sequences. Different frequency transforms are used due to

the inherent differences in the perceptual frequency content within the two types of

sequences. The method of implementing frame refreshment was detailed as a block

selection scheme applied at the macroblock level that captures perceptual changes due to

motion within a scene and limits the duration of decoder errors at receivers by forcing

macroblock updates via an aging algorithm. Quantization and encoding techniques were

presented with the implementation including the use of the JPEG standard and uniform

quantization coupled with one of two custom VLC tables. The issue of rate control was

addressed, and the implementation of a scheme that reduces a 4-D rate control surface to

a simple quantizer table lookup to control bit rate at the frame level was discussed.

Finally, the manner by which the coder detects a scene change and determines the type of

sequence under consideration was delineated.

52

IV. RESULTS

This chapter presents some results from a short video segment consisting of 100

frames of a single speaker followed by 50 frames of a presentation slide filled with line

diagrams and text. The Matlab code is contained in Appendix C. A sample frame from

each sequence is shown in Figure IV-1 and Figure IV-2. Each shows the original frame

and the reconstructed frame with only the base layer received, with the base layer and the

first enhancement layer received, and with all layers received.

Original Frame Layers 1, 2, and 3

Figure IV-1: Original and Reconstructed Frames from a Motion Video Sequence.

53

Box
1

Original Frame

— B°x —cS)~i
I,,——. _. __
L block ._ block —n \ 1 J I 2 ~

Box
1

Layers 1

Rnx
2

2, and 3

 (fovaTV-

- block block —r>
1 1 J I 2 J

Layers 1 and 2

Box
1

Box
2 —^oysO—

blofck
. 1

block
2 U

Layer 1 Only

i
ism

2: —^^J-

? um 1—o
2- J T

Mjiik heßtsrigle

Figure IV-2: Original and reconstructed Frames from a Static Video Sequence.

Figure IV-3 shows the bit rate traces for the 150-frame layered video segment.

Part (a) displays the traces resulting from the constant motion video quantizer triplet

({6,12,20}) expected to yield 80 kbps based on the average bit rate resulting form all test

motion video sequences and the fixed static sequence quantizer triplet. Part (b) displays

the traces resulting from the bit rate control scheme for the motion video frames with the

coder attempting to achieve an average 80 kbps and the fixed static sequence quantizer

triplet. Bit rate spike suppression is employed for the initial frame of each scene as

discussed previously. The distribution of bit rate offered by a layered video coder is

evident with the bit rate ratio among layers being approximately 5:3:2 for both sequences.

As congestion occurs in the network, the higher layers can be dropped to combat the

congestion while maintaining much of the quality as illustrated in Figure IV-1 and Figure

IV-2. Neglecting the initial frame, the average bits per frame for the motion video

54

sequence without the control scheme is 7454 bpf with a standard deviation of 1362 bpf.

With the control scheme, the average and standard deviation are 7988 bpf and 942 bpf,

respectively. As expected, the bit rate from the static sequence is much lower since the

bit rate results solely form macroblock aging. This illustrates that rate control is not of

significant benefit for static sequences.

12000

20 40 80
Frame Number

(a)

100 120 140

12000

2000

20 60 80
Frame Number

(b)

100 120

Figure IV-3: Bit Rates for (a) Fixed Quantization and (b) Bit Rate Control.

Figure IV-4 quantifies the progressive improvement in quality of the

reconstructed video based on pSNR for the same 150-frame layered video segment

illustrated in Figure IV-1 and Figure IV-2. At the beginning of each sequence, quality

ramps up over the aging interval following a scene change. After this period, quality is

observed to remain relatively flat for each sequence regardless of the number of layers.

For the motion video sequence, the base layer provides a smoothed but acceptable

display. Text is not readable but the speaker's movements are easy to follow. Adding

the first enhancement layer improves sharpness and adds a 4 dB improvement in pSNR

55

although small text is still difficult to discern. The second enhancement layer only adds

1-2 dB improvement, but small text is clearly readable and other features with fine edges

are sharper. With static video, the role of the enhancement layers is even more dramatic.

Even though most of the macroblock's energy is included in the base layer and

contributions from each frequency band are included, the base layer still shows much

softness although the shapes are readily identifiable. The first enhancement layer adds a

7 dB improvement and dramatically improves sharpness. The final layer, even though

the bit rate contribution is the smallest of the three layers, almost doubles the pSNR, and

the reconstructed frame is virtually identical to the original frame. Neglecting the initial

frame, the average pSNR utilizing all layers for the motion video sequence without the

control scheme is 29.5 dB with a standard deviation of 1.7 dB. With the control scheme,

the average and standard deviation are 29.8 dB and 1.9 dB, respectively. Note that these

values include the ramp up in quality following the initial scene change. These average

pSNR values are not directly comparable, however, because of the difference in average

bit rates; the higher quality, rate control approach uses approximately 500 more bits per

frame. But since this quality is achieved within the desired bit budget of 80 kbps, the rate

controller allows more effective utilization of the available bandwidth to better image

fidelity. The statistics obtained from the motion video sequence traces in Figure IV-3

and Figure IV-4 are summarized in Table IV-1.

56

20 40 60 80
Frame Number

(b)

100 120 140

Figure IV-4: pSNR for (a) Fixed Quantization and (b) Bit Rate Control.

Parameter WithlRatelCMrbl Without Rate Control
Mean Bit Rate (bpf)
Bit Rate STD(bpf)
Mean pSNR (dB)
pSNR STD (dB)

7998
942

29.83
1.92

7454
1362
29.51
1.74

Table IV-1: Rate Controlled and Uncontrolled Motion Video Sequence Statistics.

Additionally, the issue of the layered video codec's resilience to bit errors

introduced during transmission was examined using the same motion video sequence as

above. Using loss rates of 10%, 25%, and 50%, four different case were tested. Case one

distributed the bit errors across the layers in proportion to their contribution to the total

bit rate and utilized zero-order error concealment; the reconstructed frame retained the

content of the previous frame for that portion lost during transmission. If the loss

57

occurred in the base layer, the enhancement layers were neglected. If the loss occurred in

an enhancement layer, the reconstruction was performed utilizing the base layer and the

other enhancement layer. Case two treated all layers as a single video stream and utilized

zero-order error concealment; that is, a transmission loss was a loss for all layers. Cases

three and four are identical to cases one and two, respectively, except that no error

concealment was used. Instead an information loss caused the decoder to assign the

value of zero to all coefficients in the affected layers. As Figure IV-5 illustrates,

spreading bit errors across multiple layers has less negative impact on the reconstructed

image at high loss rates.

30

25

20

m
c15
CO
Q.

10

layered with zero order concealment
single stream with zero order concealment
layered with no concealment

G- single stream with no concealment

10' 10
Lossrate

Figure IV-5: Comparison of Error Resilience.

Considering static slide sequences, the relationship is more complicated. In

general, since the frame content is entirely static, the best reconstruction in an error prone

environment is to forgo a macroblock update if the update would be made with fewer

58

layers than the present reconstruction of that macroblock. Further study into the

implementation of such a scheme is warranted.

This chapter presented representative frames from a video segment consisting of

motion video and static slides. For each type of content, the original frame and the

reconstructions with one, two, and three layers were given. Also presented were plots of

the bits per frame and pSNR as a function of the frame sequence for both fixed

quantization and variable quantization using the bit rate control scheme. These plots

served to quantify the quality depicted in the reconstructions and to illustrate the bit

allocation among the layers. Finally, the effect of spreading bit errors across layers

compared to confining them to a single video stream was presented.

59

60

V. CONCLUDING REMARKS

A. CONCLUSIONS

This thesis has presented the development and implementation of a new layered

video codec proposed by Parker [9] that emphasizes robust transmission of a video

teleconference (VTC) at low bit rates. The dual nature of the targeted scene content -

low-motion video and static slide sequences consisting of text and line drawings - and

the assumed application in a multicast, heterogeneous, wireless network environment

required significant flexibility in the implementation. The essential features of the coder

are summarized as follows.

Frame refreshment is accomplished via block updating and an aging algorithm,

both applied at the macroblock level. This approach promotes greater robustness because

spatial error propagation is eliminated and temporal error propagation is greatly limited.

The combined technique captures perceptual changes due to motion within the scene,

limits the duration of error artifacts in the reconstruction at receivers, and ensures that

new participants in a VTC session that is already in progress receive a complete frame in

a timely manner.

The macroblocks selected for transmission are decomposed in frequency using the

fast Haar transform (FHT). For motion video sequences, the lowpass subband is further

processed with the two-dimensional discreet cosine tranform. The horizontal and vertical

edge detail subbands are further decomposed with a repeated application of the FHT.

Static slide sequences are decomposed solely by a second order FHT analysis.

The lowpass subband of motion video is quantized and encoded using the JPEG

standard in order to exploit the human visual system perceptive characteristics. The

remaining subbands of motion video sequences are subjected to uniform quantization and

encoding with a custom variable length coding (VLC) table. All subbands of static slides

are subjected to uniform quantization and encoding with a separate custom VLC table.

All quantization is performed using a triplet of quantizers, and each subband is quantized

with one of the triplet parameters based on the variance of subband coefficients.

61

Subbands are assigned to layers by grouping bands of coefficients with similar

variances into a common layer. Three layers are used in the coder. The base layer is

independently decodable and yields an acceptable, minimum-quality reconstruction; each

enhancement layer progressively improves the quality of the reconstruction.

Bit rate is controlled at the frame level by selecting the quantizer triplet to be used

in the current frame based on the number of bits used in the previous frame, the desired

average bit rate, and the number of macroblocks selected for transmission. The

implementation involves a simple table lookup, which resulted from the optimal one-

dimensional reduction of a four-dimensional control surface.

B. FUTURE WORK

The implementation and the results presented here suggest that the layered video

codec has potential practical utility to video teleconferencing in multicast, heterogeneous,

wireless networks. Now, several aspects of the coder can be pursued further. For

example, although three layers were used in the present implementation, the techniques

employed can be used to scale the coder to include an arbitrary number of layers. Work

on techniques to dynamically change the layering scheme within a sequence is desirable.

The ability to handle color and audio needs to be incorporated into the code. Further

refinement of the block search pattern utilized for macroblock selection and the

possibility of rate control at the macroblock level can be evaluated. Also, with regard to

static slide sequences, investigation of the ability to detect and reconstruct slight

movement within such a frame, such as the movement of a cursor, is warranted. Finally,

implementation in a high level language or hardware is another potential future task.

62

APPENDIX A. MOTION VIDEO VARIABLE LENGTH CODING TABLE (VLC)

The following is the custom VLC table used with motion video sequences. The

last character in the codeword s indicates the appended sign bit.

INDEX LAST RUN LEVEL BITS CODEWORD
1 0 0 1 3 1 1 s
2 0 0 2 5 0101s
3 0 0 3 6 10010s
4 0 0 4 9 10100011s
5 0 0 5 12 10111001101s
6 0 0 6 14 1011111001110s
7 0 1 5 01 00s
8 0 2 7 100111s
9 0 3 10 001000101s
10 0 4 12 10111110000s
11 0 5 17 1011010010000111s
12 0 6 14 1011010010100s
13 0 2 1 5 0000s
14 0 2 2 8 1011001 s
15 0 2 3 12 01110001010s
16 0 2 4 13 001000110110s
17 0 3 1 6 01111s
18 0 3 2 9 01100100s
19 0 3 3 11 1011100101s
20 0 3 4 13 101101011001s
21 0 4 1 6 00011s
22 0 4 2 9 01110010S
23 0 4 3 10 10110101Os
24 0 4 4 15 00101101001 111s
25 0 5 1 6 10010s
26 0 5 2 10 000101101S
27 0 5 3 12 10111110001s
28 0 5 4 16 10110100100011 1s
29 0 6 1 7 011101s
30 0 6 2 10 000101110s
31 0 6 3 14 0111000100000s
32 0 6 4 16 10110100100011Os
33 0 7 1 7 011011s
34 0 7 2 10 001000100s
35 0 7 3 14 1011111001111s
36 0 7 4 16 101101001000001s
37 0 8 1 7 011000s
38 0 8 2 9 00100100s
39 0 8 3 10 001011011s
40 0 8 4 13 011100010001s
41 0 9 1 8 0010111s
42 0 9 2 11 001001101Os
43 0 9 3 14 1001101011000s
44 0 10 1 8 1011011s
45 0 10 2 11 1001101001 s
46 0 10 3 14 001001101101Os
47 0 10 5 16 101101001000000s

63

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

11
11
11
12
12
12
12
13
13
13
14
14
14
15
15
16
16
17
17
18
19
20
20
21
22
22
23
23
24
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
32
32
33
33
34
34
35
35
36
36
37

1
2
3
1
2
3
4
1
2
3
1
2
3
1
2
1
2
1
2
1
1
1
2
1
1
2
1
2
1
2
3
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1

9
12
14
8
10
13
15
9
12
15
9
13
17
10
14
10
15
11
17
11
11
11
17
12
12
16
12
15
11
16
17
12
16
12
17
12
17
12
17
12
17
12
15.
12
17
12
14
13
17
13
17
13
17
12
17
13

001
001
101
001
01 1
101
000
101
1 01
001
001
001
101
01 1
101
1 01
1 00
000
01 1
101
101
101
01 1
01 1
01 1
1 01
000
001
001
1 01
101
001
1 01
1 01
1 01
000
1 01
001
101
1 01
101
1 01
101
1 00
1 01
1 00
1 01
1 01
1 01
001
1 01
1 01
1 01
1 00
1 01
000

01 10
0001
1010
0000
1000
1111
1 01 1
1 100
1111
01 1 0
001 0
0001
101 0
0010
1010
0001
1101
101 1
0010
0001
0001
1 01 0
001 0
001 0
1 000
1 010
1 01 1
01 10
0001
1010
1010
001 1
1 010
1111
1010
101 1
1010
0001
1 010
1111
1 010
1 01 0
1 01 0
1 1 01
1 01 0
1 1 01
1 01 0
1111
1010
0001
1 01 0
1111
1010
1 1 01
1010
1 01 1

0s
1 10
010
s
1 1s
001
001
Os
111
1 00
1s
101
010
10s
001
00s
111
1 10
1 10
01 1
01 0
01 1
1 10
1 1 0
101
01 0
111
1 00
1 00
01 0
010
001
01 0
100
000
000
000
111
000
100
010
111
000
1 10
01 0
01 0
001
111
010
111
010
101
010
01 0
010
111

Os
101s

00s
1101s

1s
1 100s

11s
011010s

01 1s

0010s
s
011111s
s
s
s
011110s
1 s
1s
11101s
1 s
1101s
s
11100s
000100s
1s
11111s
1 s
101000s
Os
101011s
Os
10101Os
Os
010101s
OS
1000s
Os
010100s
1 s
01 Os
00s
010001s
1 Os
010000s
00s
010011s
Os
01001Os
00s

64

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

38
39
40
40
41
41
42
43
43
44
45
46
46
47
48
48
49
50
51
52
53
53
54
54
55
56
56
57
57
58
59
60
61
62
0
0
0
0
0

2
2
2
2
3
3
3
3
4
4
4
4

2
3
4
5
1
2
3
4
5
1
2
3
4
1
2
3
4
1
2
3
4

12
12
13
16
13
17
14
13
17
13
12
14
16
13
12
15
13
13
14
14
14
16
14
16
14
13
15
14
16
15
16
16
17
15
5
7
8

11
15
6
10
13
15
17
7
11
13
16
6
10
13
16
7
12
16
16

1 01
1 01
101
001
101
101
01 1
01 1
101
101
101
01 1
1 01
1 00
1 00
000
01 1
101
101
01 1
1 00
101
101
001
000
101
000
000
001
100
01 1
000
000
001
001
01 1
1 01
001
001
1 00
1 01
1 01
1 01
1 01
001
001
1 00
101
101
1 00
001
001
1 01
001
1 01
101

1 10
1 01
111
01 1
1 10
101
100
001
101
1 10

01
00
01
1 0
10
01

001
101
1 10
100
1 1 0
101
111
01 1
1 01
111
1 01
101
01 1
1 1 0
001
101
1 01
01 1
1s
01 0
100
001
01 1
01 s
111
111
101
101
01 0
01 1
1 1 0
101
01s
1 1 0
001
01 1
001
001
1 01
101

01 1
000
111
010
01 1
001
010
01 1
001
01 0
01 1
010
001
111
1 00
100
01 1
000
01 1
010
101
001
1 00
010
100
111
1 00
100
010
111
01 1
100
1 00
01 0

1 0s
1 1 s
001s
0101
1 10s
001 1
01 00
000s
001 1
001s
01s
01 1 1
01 1 1
01 1s
00s
1 000
111s
01 1s
0010
01 10
1 100
01 10
1 100
0101
1101
000s
1 001
1 1 00
01 00
1 001
001 1
1110
1110
0000

00s

101s
s

1 00s

s
10s

Os

s
s
s
01s
s
1 1s
s

1s
s
01 S
1s
10s
00s
010s
Os

s
Os
1 000s
01001001s

101s
110101s
00001011s
001000011Os
s
0101s
111101s
001000101s

1 10s
100100s
010010000s
s
10111s
001011000s
001000100s

65

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

5
5
5
6
6
7
7
7
8
8
8
9
9
9
10
10
11
11
11
12
12
12
13
13
14
14
14
15
15
15
15
16
16
17
18
19
20
20
21
22
23
23
24
24
25
26
27
28
29
30
31
31
32
32
33
34

1
2
3
1
2
1
2
3
1
2
3
1
2
3
1
2
1
2
3
1
2
3
1
2
1
2
3
1
2
3
4
1
2
1
1
1
1
2
1
1
1
2
1
2
1
1
1
1
1
1
1
2
1
2
1
1

8
15
15
8
13
8
12
14
8
13
16
9
15
17
8

15
8
14
17
8
13
16
9

14
9

18
17
8
13
14
15
12
16
13
14
13
13
18
14
13
12
15
14
17
13
14
14
14
13
13
13
17
14
17
15
14

1 01
000
000
000
100
01 1
1 00
1 00
000
101
101
01 1
001
101
1 00
001
101
100
101
101
001
1 01
001
01 1
01 1
000
1 01
000
01 1
000
001
1 01
001
01 1
000
001
001
000
1 01
001
000
1 01
01 1
1 01
1 01
01 1
1 01
1 01
1 01
1 00
1 01
1 01
101
1 01
01 1
01 1

111
101
101
100
1 10
001
1 1 0
1 1 0
101
1 1 0
1 01
100
01 1
101
1 10
01 1
000
1 10
101
1 1 0
01 1
1 01
001
1 00
1 00
1 01
1 01
1 00
001
101
01 1
101
01.1
001
101
000
001
101
111
000
101
1 01
001
1 01
1 01
001
1 1 0
1 01
101
110
1 1 0
1 01
111
1 01
001
001

0s
100
1 00
1 s
1 01
1s
111
1 01
OS
01 0
001
1 1 s
01 0
001
Os
010
OS
101
001
1s
010
001
1 1s
01 0
00s
1 00
001
Os
01 1
111
010
01 1
01 0
01 1
111
1 10
1 01
1 00
111
111
1 00
000
01 1
000
01 1
01 1
01 1
000
000
1 00
01 1
001
111
001
01 1
01 1

10001s
10010s

101s

1 1 s
1001s

01 Os
011011s

00011s
0011000s

00010s

1110s
0011011s

001s
011010s

0001s

1 1 100111s
0000101s

1 1 0
101
01 1
1 1s
01 0
100
101
101
100
111
101
111
01 S
01 0
001
01 0
000
1 01
001
001
000
01 1
000
001
101
001
001
101

s
1s
1 Os

101s
s
Os
s
s
00110s
1s
s

01 s
Os
1001s
s
s
s
s

1
1
1
s
s
s
01 1
Os
01 1
1 Os
Os

1s

Os

66

216 I 35 14 0111000100101s
217 I 36 14 0010001110101s
218 I 37 14 0010011011011s
219 I 38 13 1011 1001 1111s
220 I 39 13 001001100101s
221 I 40 14 0010001110100s
222 I 41 13 100110100010s
223 I 42 14 1001101111000s
224 I 43 14 0010001110111s
225 I 44 15 00010110010101s
226 I 45 14 101101000001Os
227 I 46 13 101110010000s
228 I 47 13 101111100101s
229 I . 48 13 001000110100s
230 I 48 2 17 1011010010011111s
231 I 49 14 1001101011101s
232 I 50 15 00101101000001s
233 I 51 14 1011111001101s
234 I 52 15 00010110010100s
235 I 53 13 100110111010s
236 I 54 14 1011010001001 s
237 I 54 2 17 1011010010011110s
238 I 55 12 10111111011s
239 I 55 2 17 1011010010011001 s
240 I 56 12 10111111101s
241 t 56 2 16 001011010010110s
242 I 57 13 101110010011s
243 I 58 14 0001011001111s
244 1 59 15 000 101100101 1 1 s
245 1 60 15 0001011001011Os
246 1 61 14 1011010001000s
247 t 62 14 1001101011111s
248 1 63 14 0010001110110s

67

68

APPENDIX B. STATIC SLIDE VARIABLE LENGTH CODING TABLE (VLC)

The following is the custom VLC table used with static slide sequences. The last

character in the codeword s indicates the appended sign bit.

INDEX LAST RUN LEVEL BITS CODEWORD
1 0 0 1 4 1 01 s

2 0 0 2 4 1 10s

3 0 0 3 5 1 000s

4 0 0 4 7 1 1 1100s

5 0 0 5 7 00111Os

6 0 0 6 6 0011Os

7 0 0 7 13 01101101001 1 s

8 0 0 8 10 01110101 1s

9 0 0 10 11 1111101011s

10 0 0 11 11 1001000100s

11 0 0 13 11 1001101000s
12 0 0 20 15 00111101111100s

13 0 0 24 12 00111101100s
14 0 0 28 11 0110110101s
15 0 0 32 9 00001100s
16 0 0 36 9 01111100s
17 0 0 40 8 0000100s
18 0 0 44 8 1001100s
19 0 0 48 6 0001 1 S
20 0 0 52 8 011001 1 s
21 0 0 56 8 0010101s
22 0 0 60 9 0010001Os
23 0 0 64 4 01 OS
24 0 1 6 11100s
25 0 2 6 0001Os
26 0 3 8 0111011s
27 0 4 10 111111111s
28 0 5 10 001111110s
29 0 6 9 00100001S
30 0 7 16 001111011110010s
31 0 8 12 10010010111s
32 0 10 14 0111101001000s
33 0 13 15 11111110000101s
34 0 2 1 7 011100s
35 0 2 2 7 011010s
36 0 2 3 8 001001 1 s
37 0 2 4 11 0111101100s
38 0 2 5 9 1001001 1 s
39 0 2 6 9 10011110s
40 0 2 7 17 0011110111111110
41 0 2 8 12 0010100111 OS
42 0 2 10 14 1111111000001s
43 0 2 11 15 11111110011000s
44 0 2 13 14 1111111000011s
45 0 3 1 8 0111100 S
46 0 3 2 8 0110000s
47 0 3 3 9 00001101s

69

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
5
5
5
5
5
5
5
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
9
10
10
10
10
10

4
5
6
7
8
10
11
13
1
2
3
4
5
6
8
1
2
3
4
5
6
8
1
2
3
4
5
6
10
1
2
3
4
5
6
7
10

1
2
3
4
5
6
8
10
1
2
3
4
5
6
1
2
3
4
5

11
10
10
17
13
15
15
16
8
8
9
10
11
9

15
10
9
10
12
12
11
15
9
9
10
13
11
12
15
10
10
11
15
16
13
16
15
9
9
10
11
12
10
15
15
9
9

11
15
11
13
12
11
13
15
13

00001
001 00
00111
001 1 1
1 0010
11111
11111
01 1 01
01 1 00
01111
001 00
1 001 1
00001
00100
11111
01111
01 1 01
01111
1 001 1
001 1 1
11111
11111
11111
00001
1 001 1
11111
1 001 0
01111
11111
11110
001 00
1001 1
01101
001 00
01110
001 1 1
11111
001 01
001 01
1 001 1
001 00
1 001 1
01111
11111
11111
11110
10010
001 01
001 1 1
11110
11111
001 1 1
001 00
001 00
001 1 1
001 1 1

11000s
1010s
1101s
101111
0 01011
11001 1
110011
101001
01 s
11s
100s
01 01s
11001s
01 1s
1 10010
1010s
100s
0101 s
1 1 1001
100010
01000s
11001 0
01 1s
01 0s
0111s
110111
01000s
011011
110011
1000 s
0000s
01001s
101001
101100
101000
101111
110011
000s
111s
01 10s
10111s
1 1 1000
0111s
110010
110011
101s
000s
00110s
101110
1001Os
110111
101101
00011s
000101
101110
101001

11001s
1s
100s
01 1 S
0111s

000s

s
s

01 1s

1s

s
111s

01 Os
001 1s
OS
1101s
1 1 Os

01 Os
001s

001 s

Os
s

1 s
01 1s
1s

70

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Ö
0
0
0

10
10
11
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
14
14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
2
2
2
2
2
2
2

6
8
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
3
5
1
2
3
4
5
6
7
8
10
11
13
32
36
40
44
48
52
56
60
64
1
2
3
4
5
6
7
1
2
3
4
5
6
8
13

13
15
14
11
12
15
15
15
12
12
14
13
16
13
13
12
13
15
16
15
14
6
6
7
9
9
8
14
12
12
13
14
13
13
12
14
10
12
12
13
8
8
8
10
14
13
13
17
9
9
11
15
13
14
14
15

1 1 1
1 1 1
1 00
01 1
1 1 1
1 1 1
001
1 1 1
001
01 1
001
1 00
001
01 1
1 00
001
001
001
001
1 1 1
01 1
1 1 1
000
1 00
000
000
01 1
100
001
111
111
111
001
001
1 00
001
001
001
01 1
111
01 1
111
111
000
001
001
001
001
01 1
1 00
001
01 1
01 1
01 1
001
111

1 1 0
111
111
01 1
101
111
111
111
111
1 10
111
100
111
101
111
01 0
000
111
111
111
101
01 S
00s
101
010
01 1
01 1
1 00
000
1 10
1 1 0
111
111
111
1 00
111
111
001
1 1 0
1 1 0
001
1 10
111
01 1
111
111
001
111
1 01
111
111
1 1 0
101
101
001
111

101
1 00
111
01 1
001
100
01 1
100
000
1 00
010
01
01
01
11
01 1
001
01 1
01 1
100
01 0

s
1 1s
1 1s
1s
010
001
1 00
101
1 00
010
01 1
101
01 1
1 00
01 1
1 00
101
0s
OS
OS
101
010
01 0
01 1
01 1
00s
01s
001
1 10
01 0
01 0
01 1
100

001S
11101s
1111s
1s
1 1 s
10110s
11101s
10001s
1 1s
00 s
001 1s
101s
110001
010s
1 10s
1 1s
010s
1001 OS
11001 1
10100s
0011s

1 100s
00s
10s
01 1s
0000s
010s
101s
10s
1101s
s
01 s
1 1 s
01 Os

s
0010s
000s
001s
1111111s

Os
1001Os
01 1s
001 OS
0001s
00100s

71

160 1 3 1 8 0010110s
161 1 3 2 8 1111011s
162 1 3 3 9 10011100s
163 1 3 4 12 01111101100s
164 1 3 5 11 1001111101s
165 1 3 6 11 0011111110s
166 1 3 7 17 0011110111111000s
167 1 3 11 15 11111110011010s
168 1 4 1 11 0011110000s
169 1 4 2 10 00101001Os
170 1 4 3 13 011110110101s
171 1 4 4 14 1001000101101s
172 1 4 5 17 0011110111111101s
173 1 4 6 14 0111101001001s
174 1 5 1 10 001011100s
175 1 5 2 10 1 1 1 1 1 1 1 1 OS
176 1 5 3 14 1001111111110s
177 1 6 1 11 1 001001010s
178 1 6 2 12 11111110110s
179 t 6 3 15 01111011010011s
180 1 6 5 14 1111111000111s
181 1 7 1 10 001011101s
182 1 7 2 10 1 00100011s
183 1 7 3 14 0111101101000s
184 1 8 1 11 1001111110s
185 t 8 2 12 01110101010s
186 1 8 4 16 011011010010110s
187 1 8 6 14 111111 1000110s
188 1 9 1 11 0111110111s
189 1 9 2 12 01111010001S
190 1 9 3 14 0110110100100s
191 1 9 4 15 00111101110000s
192 1 9 5 16 00100101100001Os
193 1 10 1 11 00111 1001 1 s
194 I 10 2 15 00100101100000s
195 I 11 1 11 1111111010s
196 I 11 2 11 0011110101s
197 I 11 3 12 10011111110s
198 I 11 4 14 1111111000100s
199 I 11 5 17 0011110111111100s
200 11 6 13 111110101000s
201 1 12 1 11 001 1111111s
202 1 12 2 11 011011011Os
203 1 12 3 12 11110100110s
204 1 12 4 13 1 00100010100s
205 1 12 5 16 001111011110000s
206 1 12 6 13 011110100101s
207 1 13 1 12 01101101000s
208 1 13 2 12 11111010011s
209 1 13 3 15 11111110010101s
210 1 14 1 12 01110101011s
211 1 14 2 11 1001001001s
212 1 14 3 • 15 11111110010111s
213 1 15 2 12 01111101101s
214 1 15 3 14 1111111000101 s

72

APPENDIX C. MATLAB CODE LIBRARY

This appendix contains the Matlab code used in the layered video codec. The

main code block, thesis.m, is provided first, and the supporting functions follow in

alphabetical order. As provided, thesis.m processes four video sequences: two motion

video sequences of 100 frames each, followed by two, static slide sequences of 50 frames

each.

% thesis

format compact
clear all
close all

global QDJTABLE VLC_DYN VLC_STA RV HUFFJTABLE LAST

load(' g:\QD_TABLE')
load('g:\VlC_dyn')
load('g:\VLC_sta1)

VLC_DYN = VLC_dyn; clear VLC_dyn
VLC_STA = VLC_sta; clear VLC_sta
slides

rand('state',0)
RV = floor(21*rand(99,U);
HUFFJTABLE = make_HAC_table;
LAST = ones(99,1);
threshold = 160;
count = -1;
mse = 1;
display =1;
write = 1;
last = 299;
tOff = 0;
frame_type = 0;
m_mat_ndx = [];
selected)
f_vec = zeros(1584,16);

f_far_ll = double(zeros(792,8))
f_far_lh = double(zeros(792,8))
f_far_hl = double(zeros(792,8))
f far hh = double(zeros(792,8))

f_far_ll_pl = double(zeros(792, 8))
f_far_lh_pl = double(zeros(792,8))
f_far_hl_pl = double(zeros(792,8))
f_far_hh_pl = double(zeros(792,8))

f_far_ll_p2 = double(zeros(792,8))
f_far_lh_p2 = double(zeros(792,8))
f_far_hl_p2 = double(zeros(792,8))
f far_hh_p2 = double(zeros(792, 8))

f_l = double(zeros(1584,16))
f_2 = double(zeros(1584,16))
f 3 = double(zeros(1584,16))

% gets custom VLC table for motion video
% gets custom VLC table for static

% seed for reproductivity
% for aging algorithm
% gets JPEG standard table
% sets block selection to 1 initially
% for use with asd
% where is it in the loop?
% calculate MSE?
% show the images?
% write to file for evaluation?
% last frame # to consider
% intialize (used with scene change)
% initialize (zero means dynamic scene)
% initialize (track macroblocks

% initialize (reshaped frame)

% initialize for decoder
% initialize for decoder
% initialize for decoder
% initialize for decoder

% initialize for decoder
% initialize for decoder
% initialize for decoder
% initialize for decoder

% initialize for decoder
% initialize for decoder
% initialize for decoder
% initialize for decoder

% initialize for decoder
% initialize for decoder
% initialize for decoder

73

beta = -11.346; % slope of rate control curve

br = input('Enter the target bitrate (Kbps) \n » ')
B_bar = br * 1024/10;
qd_entry = min (find (B_bar > QD_TABLE (:, 4))),- % intial triplet based on test averages

for i = 0:last

count = count+1

if (i<=99)
i_present = get_next_image(i),-

elseif ((i>=100) & (i<=199))
i_present = get_next_image_2(i-100);

elseif (i==200)
i_present = get_next_image(101);

elseif (i==250)
i_present = get_next_image(102);

else
i_present;

end

if display
figure;
subplot(2,2,l)
image(i_present)
colormap(gray(256))
titled'Original'])
axis off

end

% loop through frames

% read head#.bmp

% read ncaat.bmp

% read busy text slide

% read line drawing slide

% diplays original if desired

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Coder %%
%%

%%%%%%%%%% Change dimensions of image and identify macroblocks by threshold %%%%%%%%

f_last = f_vec; % buffers previous frame
f_vec = shape(i_present); % shapes current frame
[m_vecjidx,frame_type] = m_blk_id_xr(f_last,f_vec,threshold); % compare current to

last
m_mat_ndx = [m_mat_ndx,m_vec_ndx];

if (sum(m_vec_ndx) >= 65)
tOff = 1;

end

if (tOff)
tOff = 0;
flag = 1;
ql = 64;
q2 = 1000;
q3 = 1000;

elseif frame_type
ql = 4;
q2 = 16;
q3 = 16;

else

% matrix of MB's selected

% triggers a scene change
% "trigger" flag set "on"

% scene change just occured
% resets "trigger" flag
% "flag" for 1st frame after scene change
% heavily compressed scene change

% triplet for static sequence

% a dynamic frame sequence
delta_Binter = BJbar - (sum(m_vec_ndx)/sum(m_mat_ndx(:,i))) * total(i);
qd_entry = get_qd_entryf(flag,B_bar,qd_entry,delta_Binter,sum(m_vec_ndx),beta);
flag =0; % resets flag
ql = QD_TABLE(qd_entry,l)
q2 = QD_TABLE(qd_entry,2)
q3 = QD_TABLE(qd_entry,3)

end

Q = get_Ql_matrix(ql);

if -frame_type

% rate control triplets fetched

% quantizer matrix (via JPEG standard)

% if dynamic frame sequence

74

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Transforms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[f_fht_ll ,f_fht_lh,f_fht_hl, f_ Eht_hh] = f ht (f _vec, m. _vec_ndx,16); % FHT Of frame

f_fht_ll = f fht_ll - 128; % level shift of LL

f_fht_ll = dct_of_fht(f_fht_ll m_vec_ .ndx) ; % 2_D DCT of LL

[f_fht_lh _11, f_fht_lh_lh, f_fht. _lh_hl f_fht_ .lh_hh] = ..

fht(f_ fht_lh,m_vec_ndx,8); % subband LH FHT

[f_fht_hl _11, f_fht_hl_lh, f_fht. _hl_hl f_fht_ .hl_hh] = ..

fht(f_ fht_hl,m_vec_ndx,8) ; % subband HL FHT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Quantizing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f_fht_ll_q = quantizer_ll(f_fht_ll,Q,m_vec_ndx); % quantize LL

f_fht_hh_q = round(f_fht_hh/q3); % quantize HH

f_fht_lh_ll_q = round (f_fht_lh_.il/q2)
f_fht_lh_lh_q = round(f_fht_lh_lh/q2)
f_fht_lh_hl_q = round(f_fht_lh_hl/q3)
f_fht_lh_hh_q = round (f_fht_lh_hh/q3)

f_fht_hl_ll_q = round(f_fht_hl_ll/q2)
f_fht_hl_lh_q = round(f_fht_hl_lh/q3)
f_fht_hl_hl_q = round(f_fht_hl_hl/q2)
f_fht_hl_hh_q = round(f_fht_hl_hh/q3)

% quantize of LH subbands

% quantize of HL subbands

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on LL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

% zig-zag scans each LL 8x8 (Results are one 6336x1 vector [ll_zz] and the index
% of the last non-zero entity [last_ll_zz]. Get "inf" if a group of
% 64 is all zeros.)
[last_ll_zz,ll_zz] = zzb(f_fht_ll_q,8);

% gets rid of trailing zeros (one big vector of varying size.)
a_ll_zz = make_it_compact(ll_zz,last_ll_zz,8);

% parsing LL with Huffman routine
parsed_ll_zz = parse_Huff(a_ll_zz,last_ll_zz);

% gets bits per frame due to LL
bits_ll_zz(i+l) = get_bits_Huff(parsed_ll_zz);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HH 8x8 (Results are one 6336x1 vector [hh_r] and the index of the last
% non-zero entity [last_hh_r], where r indicates horizontal raster
% the scan method. Get "inf" if a group of 64 is all zeros.)
[last_hh_r,hh_r] = raster(f_fht_hh_q,8);

% gets rid of trailing zeros (one big vector of varying size)
a_hh_r = make_it_compact(hh_r,last_hh_r,8);

% parsing HH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hh_r_3D = parse_3D(a_hh_r,last_hh_r);
l_p_hh_r_3D(i+1) = length(parsed_hh_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hh_r_3D(i+D, hh_r_22(i+1)3 = get_bits2(parsed_hh_r_3D,frame_type);

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on LH subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_LL 4x4 (Results are one 1584x1 vector [lh_ll_r] and the index of
% the last non-zero entity [last_lh_ll_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_ll_r,lh_ll_r] = raster(f_fht_lh_ll_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_lh_ll_r = make_it_compact(lh_ll_r>last_lh_ll_r,4) ;

% parsing LH_LL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_ll_r_3D = parse_3D(a_lh_ll_r,last_lh_ll_r);
l_p_lh_ll_r_3D(i+1) = length(parsed_lh_ll_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_ll_r_3D(i+l), lh_ll_r_22(i+1)] = get_bits2(parsed_lh_ll_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_LH 4x4 (Results are one 1584x1 vector [lh_lh_r] and the index of
% the last non-zero entity [last_lh_lh_rj, where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_lh_r,lh_lh_r] = raster(f_fht_lh_lh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_lh_lh_r = make_it_compact(lh_lh_r,last_lh_lh_r,4) ;

% parsing LH_LH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_lh_r_3D = parse_3D(a_lh_lh_r/last_lh_lh_r);
l_p_lh_lh_r_3D(i+l) = length(parsed_lh_lh_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_lh_r_3D(i+1), lh_lh_r_22(i+1)] = get_bits2(parsed_lh_lh_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_HL 4x4 (Results are 1584x1 vector [lh_hl_r] and the index of
% the last non-zero entity [last_lh_hl_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_hl_r,lh_hl_r] = raster(f_fht_lh_hl_q/4);

% gets rid of trailing zeros (one big vector of varying size)
a_lh_hl_r = make_it_compact(lh_hl_r,last_lh_hl_r,4);

% parsing LH_HL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_hl_r_3D = parse_3D(a_lh_hl_r,last_lh_hl_r) ;
l_p_lh_hl_r_3D(i+l) = length(parsed_lh_hl_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_hl_r_3D(i+l), lh_hl_r_22(i+1)] = get_bits2(parsed_lh_hl_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_HH 4x4 (Results are 1584x1 vector [lh_hh_r] and the index of
% the last non-zero entity [last_lh_hh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_hh_r,lh_hh_r] = raster(f_fht_lh_hh_q,4);

% gets rid of trailing zeros (one big vector of varying size)

76

a_lh_hh_r = make_it_compact(lh_hh_r,last_lh_hh_r,4);

% parsing LH_HH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_hh_r_3D = parse_3D(a_lh_hh_r,last_lh_hh_r);
l_p_lh_hh_r_3D(i+l) = length(parsed_lh_hh_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_hh_r_3D(i+D, lh_hh_r_22(i+1)] = get_bits2(parsed_lh_hh_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HL subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_LL 4x4 (Results are a 1584x1 vector [hl_ll_v] and the index of
% the last non-zero entity [last_hl_ll_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_ll_v,hl_ll_v] = vertical(f_fht_hl_ll_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_Jil_ll_v = make_it_compact(hl_ll_v,last_hl_ll_v,4);

% parsing HL_LL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_ll_v_3D = parse_3D(a_hl_ll_v,last_hl_ll_v);
l_p_hl_ll_v_3D(i+l) = length(parsed_hl_ll_v_3D(:,l));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hl_ll_v_3D(i+D, hl_ll_v_22 (i+1)] = get_bits2 (parsed_hl_ll_v_3D, frame_type) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_LH 4x4 (Results are a 1584x1 vector [hl_lh_v] and the index of
% the last non-zero entity [last_hl_lh_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_lh_v,hl_lh_v] = vertical (f_fht_hl_lh_q, 4) ,-

% gets rid of trailing zeros (one big vector of varying size)
a_hl_lh_v = make_it_compact(hl_lh_v,last_hl_lh_v,4);

% parsing HL_LH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_lh_v_3D = parse_3D(a_hl_lh_v, last_hl_lh_v) ,-
l_p_hl_lh_v_3D(i+1) = length(parsed_hl_lh_v_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hl_lh_v_3D(i+D, hl_lh_v_22(i+1)] = get_bits2(parsed_hl_lh_v_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hl_v] and the index of
% the last non-zero entity [last_hl_hl_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_hl_v/hl_hl_v] = vertical(f_fht_hl_hl_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hl_hl_v = make_it_compact(hl_hl_v,last_hl_hl_v,4);

% parsing HL_HL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_hl_v_3D = parse_3D(a_hl_hl_v,last_hl_hl_v);
l_p_hl_hl_v_3D(i+l) = length(parsed_hl_hl_v_3D(:,l)) ,-

77

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bitsJil_hl_v_3D(i+U, hl_hl_v_22(i+1)] = get_bits2(parsed_hl_hl_v_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hh_v] and the index of
% the last non-zero entity [last_hl_hh_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_hh_v,hl_hh_v] = vertical(f_fht_hl_hh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hl_hh_v = make_it_compact(hl_hh_v,last_hl_hh_v,4) ,-

% parsing HL_HH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_hh_v_3D = parse_3D(a_hl_hh_v,last_hl_hh_v);
l_p_hl_hh_v_3D(i+1) = length(parsed_hl_hh_v_3 D(:,1)) ;

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
tbits_hl_hh_v_3D(i+l), hl_hh_v_22(i+1)] = get_bits2(parsed_hlJrii_v_3D,frame_type);

% getting bits per frame per layer
layerl(i+1) = bits_ll_zz(i+1);
layer2(i+l) = bits_lh_ll_r_3D(i+l) + bits_lh_lh_r_3D(i+l) + ...

bits_hl_ll_v_3D(i+l) + bits_hl_hl_v_3D(i+l) ,-
layer3(i+l) = bits_hh_r_3D(i+l) + bits_lh_hl_r_3D(i+l) + bits_lh_hh_r_3D(i+l) + ...

bits_hl_lh_v_3D(i+l) + l_p_hl_hh_v_3D(i+l) ;
total(i+1) = layerl(i+1) + layer2(i+l) + layer3(i+1);

%%%
% %
% Channel %

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Unquantize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f_fht_ll_uq = unquantize_ll(f_fht_ll_q,Q,m_vec_ndx); % unquantize LL

f_fht_hh_uq = f_fht_hh_q * q3;

f_fht_lh_ll_uq
f_fht_lh_lh_uq
f_fht_lh_hl_uq
f_fht_lh_hh_uq

f_fht_lh_ll_q * q2
f_fht_lh_lh_q * q2
f_fht_lh_hl_q * q3
f_fht_lh_hh_q * q3

% unquantize HH

% unquantize of LH subbands

% unquantize of HL subbands f_fht_hl_ll_uq = f_fht_hl_ll_q * q2
f_fht_hl_lh_uq = f_fht_hl_lh_q * q3
f_fht_hl_hl_uq = f_fht_hl_hl_q * q2
f_fht_hl_hh_uq = f_fht_hl_hh_q * q3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inverse Transform %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f_far_ll fc invdct_of_fht(f_fht_ll_uq,m_vec_ndx); % inv 2-D dct of LL
f_far_ll = f_far_ll + 128; % level shift
f_far_lh = remake_3(f_far_lh,f_fht_lh_ll_uq, f_fht_lh_lh_uq, f_fht_lh_hl_uq, ...

f_fht_lh_hh_uq,m_vec_ndx,8); % LH subband inv FHT
f_far_hl = remake_3 (f_far_hl, f_fht_hl_ll_uq, f_fht_hl_lh_uq, f_fht_hl_hl_uq, ...

f_fht_hl_hh_uq,m_vec_ndx,8); % HL subband inv FHT
f_far_hh = f_fht_hh_uq;

f_far_ll_p2 = f_far_ll; % LL p2 assignment
f_far_lh_p2 = remake_3(f_far_lh_p2,f_fht_lh_ll_uq,f_fht_lh_lh_uq,...

0,0,m_vec_ndx,8),- % LH p2 subband inv FHT
f_far_hl_p2 = remake_3(f_far_hl_p2,f_fht_hl_ll_uq,0,...

f_fht_hl_hl_uq, 0,m_vec_ndx,8); % HL p2 subband inv FHT

78

f_far_hh_p2 =0; % HH p2 assignment

f_far_ll_pl = f_far_ll; % LL pi assignment
f_far_lh_pl =0; % HH pi assignment
f_far_Jil_pl = 0; % HH pi assignment
f_far_hh_pl =0; % HH pi assignment

f_3 = remake_3(f_3,f_far_ll,f_far_lh,f_far_hl,...
f_far_hh,m_vec_ndx,16); % frame inv FHT with 3 layers

f_2 = remake_3(f_2,f_far_ll_p2,f_far_lh_p2,f_far_hl_p2,...
f_far_hh_p2,m_vec_ndx,16); % frame inv FHT with 2 layers

f_1 = remake_3{f_1,f_far_ll_pl,f_far_lh_pl,f_far_hl_pl,- - -
f_far_hh_pl,m_vec_ndx,16); % frame inv FHT with 1 layer

else % a staic frame sequence

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Transforms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[f_fht_ll,f_fht_lh,f_fht_hl,f_fht_hh] = fht(f_vec,m_vec_ndx,16); % FHT of frame

[f_fht_ll_ll,f_f ht_ll_lh,f_fht_ll_hl,f_fht_ll_hh] = ...
fht(f_fht_ll,m_vec_ndx,8); % subband LL FHT

[f_fht_lh_ll,f_fht_lh_lh,f_fht_lh_hl,f_fht_lh_hh] = ...
fht(f_fht_lh,m_vec_ndx,8); % subband LH FHT

[f_fht_hl_ll,f_fht_hl_lh,f_fht_hl_hl,f_fht_hl_hh] = ...
fht(f_fhtjil,ni_vec_näx,8); % subband HL FHT

[f_fht_hh_ll,f_fht_hh_lh,f_fht_hh_hl,f_fht_hh_hh] = ...
fht(f_fht_hh,m_vec_ndx,8); % subband HH FHT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Quantizing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% quantize of LL subbands

% quantize of LH subbands

% quantize of HL subbands

% quantize of HL subbands

f_fht_ll_ll_q = round(f_fht_ll_ll/ql)
f_fht_ll_lh_q = round(f_fht_ll_lh/q2)
f_fht_ll_hl_q = round(f_fht_ll_hl/q2)
f_fht_ll_hh_q = round(f_fht_ll_hh/q3)

f_fht_lh_ll_q = round(f_fht_lh_ll/q2)
f_fht_lh_lh_q = round(f_fht_lh_lh/q2)
f_fht_lh_hl_q = round(f_fht_lh_hl/q3)
f_fht_lh_hh_q = round(f_fht_lh_hh/q3)

f_fht_hl_ll_q = round(f_fht_hl_ll/q2)
f_fht_hl_lh_q = round(f_fht_hl_lh/q3)
f_fht_hl_hl_q = round(f_fht_hl_hl/q2)
f_fht_hl_hh_q = round(f_fht_hl^hh/q3)

f_fht_hh_ll_q = round(f_fht_hh_ll/q3)
f_fht_hh_lh_q = round(f_fht_hh_lh/q3)
f_fht_hh_hl_q = round(f_fht_hh_hl/q3)
f_fht_hh_hh_q = round(f_fht_hh_hh/q3)

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% working on LL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LL_LL 4x4 (Results are one 1584x1 vector [ll_ll_r] and the index of
% the last non-zero entity [last_ll_ll_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_ll_U_r,ll_ll_r] = raster(f_fht_ll_ll_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_ll_ll_r = make_it_compact(ll_ll_r,last_ll_ll_r,4) ;

79

% parsing LL_LL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_ll_ll_r_3D = parse_3D(a_ll_ll_r,last_ll_ll_r);
l_p_ll_ll_r_3D (i+1) = length (par sed_ll_ll_r_3D (:, 1)),-

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_ll_ll_r_3D(i+l), ll_ll_r_22(i+1)] = get_bits2(parsed_ll_ll_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LL_LH 4x4 (Results are one 1584x1 vector [ll_lh_r] and the index of
% the last non-zero entity [last_ll_lh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_ll_lh_r/ll_lh_r] = raster (f_fht_ll_lh_q, 4) ,-

% gets rid of trailing zeros (one big vector of varying size)
a_ll_lh_r = make_it_compact(ll_lh_r,last_ll_lh_r,4);

% parsing LL_LH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_ll_lh_r_3D = parse_3D(a_ll_lh_r,last_ll_lh_r);
l_p_ll_lh_r_3D(i+l) = length(parsed_ll_lh_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_ll_lh_r_3D(i+U, ll_lh_r_22(i+1)] = get_bits2(parsed_ll_lh_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LL_HL 4x4 (Results are 1584x1 vector [ll_hl_r] and the index of
% the last non-zero entity [last_ll_hl_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_ll_hl_r,ll_hl_r] = raster(f_fht_ll_hl_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_ll_hl_r = make_it_compact(ll_hl_r,last_ll_hl_r,4);

% parsing LL_HL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_ll_hl_r_3D = parse_3D(a_ll_hl_r,last_ll_hl_r);
l_p_ll_hl_r_3D(i+1) = length(parsed_ll_hl_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_ll_hl_r_3D(i+U , ll_hl_r_22(i+1)] = get_bits2(parsed_ll_hl_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LL_HH 4x4 (Results are 1584x1 vector [ll_hh_r] and the index of
% the last non-zero entity [last_ll_hh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)

[last_ll_hh_r,ll_hh_r] = raster(f_fht_ll_hh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_ll_hh_r = make_it_compact(ll_hh_r,last_ll_hh_r,4);

% parsing LL_HH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_ll_hh_r_3D = parse_3D(a_ll_hh_r, last_ll_hh_r) ,-
l_p_ll_hh_r_3D(i+l) = length(parsed_ll_hh_r_3D(:, 1)) ,-

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)

[bits_ll_hh_r_3D(i+D, ll_hh_r_22 (i+1) 3 = get_bits2 (parsed_ll_hh_r_3D, frame_type) ;

80

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on LH subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_LL 4x4 (Results are one 1584x1 vector [lh_ll_r] and the index of
% the last non-zero entity [last_lh_ll_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_U_r,lh_ll_r] = raster(f_fht_lh_ll_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_lh_ll_r = make_it_compact(lh_ll_r,last_lh_ll_r,4);

% parsing LH_LL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.

parsed_lh_ll_r_3D = parse_3D(a_lh_ll_r,last_lh_ll_r);
l_p_lh_ll_r_3D(i+l) = length(parsed_lh_ll_r_3D(:,l));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_ll_r_3D(i+D, lh_ll_r_22(i+1)] = get_bits2(parsed_lh_ll_r_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_LH 4x4 (Results are one 1584x1 vector [lh_lh_r] and the index of
% the last non-zero entity [last_lh_lh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_lh_r,lh_lh_r] = raster (f_fht_lh_lh_q,4) ,-

% gets rid of trailing zeros (one big vector of varying size)
a_lh_lh_r = make_it_compact(lh_lh_r,last_lh_lh_r, 4) ;

% parsing LH_LH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_lh_r_3D = parse_3D(a_lh_lh_r,last_lh_lh_r);
l_p_lh_lh_r_3D (i+1) = length (parsed_lh_lh_r_3D (:, 1)) ,-

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_lh_r_3D(i+U, lh_lh_r_22 (i+1)] = get_bits2 (parsed_lh_lh_r_3D, frame_type) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_HL 4x4 (Results are 1584x1 vector [lh_hl_r] and the index of
% the last non-zero entity [last_lh_hl_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_lh_hl_r,lh_hl_r] = raster(f_fht_lh_hl_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_lh_hl_r = make_it_compact (lh_hl_r, last_lh_hl_r, 4) ;

% parsing LH_HL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_hl_r_3D = parse_3D(a_lh_hl_r,last_lh_hl_r);

l_p_lh_hl_r_3D(i+l) = length(parsed_lh_hl_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_hl_r_3D(i+U, lh_hl_r_22(i+1)] = get_bits2(parsed_lh_hl_r_3D,frame_type) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each LH_HH 4x4 (Results are 1584x1 vector [lh_hh_r] and the index of
% the last non-zero entity [last_lh_hh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all

81

% zeros.)
[last_lh_hh_r,lh_hh_r] = raster(f_fht_lh_hh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_lh_hh_r = make_it_compact(lh_hh_r/last_lh_hh_r,4);

% parsing LH_HH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_lh_hh_r_3D = parse_3D(a_lh_hh_r,last_lh_hh_r);
l_p_lh_hh_r_3D(i+1) = length(parsed_lh_hh_r_3D(:, 1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_lh_hh_r_3D(i+l), lh_hh_r_22(i+1)] = get_bits2(parsed_lh_hh_r_3D,frame_type);

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HL subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_LL 4x4 (Results are a 1584x1 vector [hl_ll_v] and the index of
% the last non-zero entity [last_hl_ll_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_ll_v,hl_ll_v] = vertical(f_fht_hl_ll_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hl_ll_v = make_it_compact (hl_ll_v,last_hl_ll_v, 4),-

% parsing HL_LL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_ll_v_3D = parse_3D(a_hl_ll_v,last_hl_ll_v);
l_p_hl_ll_v_3D(i+l) = length(parsed_hl_ll_v_3D(: ,1)) ,-

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hl_ll_v_3D(i+l), hl_ll_v_22(i+1)] = get_bits2(parsed_hl_ll_v_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_LH 4x4 (Results are a 1584x1 vector [hl_lh_v] and the index of
% the last non-zero entity [last_hl_lh_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_lh_v,hl_lh_v] = vertical(f_fht_hl_lh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hl_lh_v = make_it_compact(hl_lh_v,last_hl_lh_v,4);

% parsing HL_LH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_lh_v_3D = parse_3D(a_hl_lh_v,last_hl_lh_v);
l_P_hl_lh_v_3D(i+l) = length(parsed_hl_lh_v_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hl_lh_v_3D(i+l), hl_lh_v_22(i+1)] = get_bits2(parsed_hl_lh_v_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hl_y] and the index of
% the last non-zero entity [last_hl_hl_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hl_hl_v,hl_hl_v] = vertical(f_fht_hl_hl_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hl_hl_v = make_it_compact(hl_hl_v,last_hl_hl_v,4);

82

% parsing HL_HL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_hl_v_3D = parse_3D(a_hl_hl_v,last_hl_hl_v);
l_p_hl_hl_v_3D(i+l) = length (parsed_hl_hl_v_3D (:,U) ;

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hl_hl_v_3D(i+l)/ hl_hl_v_22(i+1)] = get_bits2(parsed_hl_hl_v_3D,frame_type);

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hh_v] and the index of
% the last non-zero entity [last_hl_hh_v], where the v indicates
% vertical raster scan method. Get "inf" if a group of 16 is all
% zeros.}
[last_hl_hh_v,hl_hh_v] = vertical(f_fht_hl_hh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hl_hh_v = make_it_compact(hl_hh_v,last_hl_hh_v,4);

. % parsing HL_HH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hl_hh_v_3D = parse_3D(a_hl_hh_v/last_hl_hh_v);
l_p_hl_hh_v_3D(i+l) = length(parsed_hl_hh_v_3D(:,l));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hl_hh_v_3D(i+l), hl_hh_v_22(i+1)] = get_bits2(parsed_hl_hh_v_3D,frame_type);

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HH subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HH_LL 4x4 (Results are one 1584x1 vector [hh_ll_r] and the index of
% the last non-zero entity [last_hh_ll_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hh_ll_r,hh_ll_r] = raster(f_fht_hh_ll_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hh_ll_r = make_it_compact(hh_ll_r,last_hh_ll_r,4);

% parsing HH_LL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hh_ll_r_3D = parse_3D(a_hh_ll_r,last_hh_ll_r);
l_p_hh_ll_r_3D(i+l) = length(parsed_hh_ll_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hh_ll_r_3D(i+D, hh_ll_r_22 (i+1)] = get_bits2 (parsed_hh_ll_r_3D, frame_type) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HH_LH 4x4 (Results are one 1584x1 vector [hh_lh_r] and the index of
% the last non-zero entity [last_hh_lh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hh_lh_r,hh_lh_r] = raster(f_fht_hh_lh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hh_lh_r = make_it_compact (hh_.lh._r, last_hh_lh_r,4) ;

% parsing HH_LH and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hh_lh_r_3D = parse_3D(a_hh_lh_r,last_hh_lh_r);
l_P_hh_lh_r_3D(i+l) = length(parsed_hh_lh_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)

83

[bits_hh_lh_r_3D(i+U , hh_lh_r_22 (i+1)] = get_bits2 (parsed_hh_lh_r_3D, frame_type) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HH_HL 4x4 (Results are 1584x1 vector [hh_hl_r] and the index of
% the last non-zero entity [last_hh_hl_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hh_hl_r,hh_hl_r] = raster(f_fht_hh_hl_q,4),-

% gets rid of trailing zeros (one big vector of varying size)
a_hh_hl_r = make_it_compact(hh_hl_r,last_hh_hl_r,4) ;

% parsing HH_HL and getting the number of parsings for later used in eval_thesis to
% get the percent of time that the default bit number is used.
parsed_hh_hl_r_3D =. parse_3D(a_hh_hl_r,last_hh_hl_r) ;
l_P_hh_hl_r_3D(i+l) = length(parsed_hh_hl_r_3D(:,1));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hh_hl_r_3D(i+D, hh_hl_r_22 (i+1)] = get_bits2 (parsed_hh_hl_r_3D, frame_type) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scans each HH_HH 4x4 (Results are 1584x1 vector [hh_hh_r] and the index of
% the last non-zero entity [last_hh_hh_r], where the r indicates
% horizontal raster scan method. Get "inf" if a group of 16 is all
% zeros.)
[last_hh_hh_r,hh_hh_r] = raster(f_fht_hh_hh_q,4);

% gets rid of trailing zeros (one big vector of varying size)
a_hh_hh_r = make_it_compact (hh_hh_r/last_hh_hh_r,4) ,-

% parsing HH_HH and getting the number of parsings for later used in eval_thesis to ■
% get the percent of time that the default bit number is used.

parsed_hh_hh_r_3D = parse_3D(a_hh_hh_r,last_hh_hh_r);
l_P_hh_hh_r_3D(i+1) = length(parsed_hh_hh_r_3D(:,!));

% gets bits per frame and number of times the default is chosen
% (includes 99 COD bits)
[bits_hh_hh_r_3D(i+D, hh_hh_r_22(i+1)] = get_bits2(parsed_hh_hh_r_3D,frame_type);

% getting bits per frame per layer and total
layerl(i+l) = bits_ll_ll_r_3D(i+l) + bits_ll_lh_r_3D(i+l) + ...

bits_lh_ll_r_3D(i+l)+ bits_lh_lh_r_3D(i+l) + ...
bits_ll_hl_r_3D(i+l)+ bits_hl_ll_v_3D(i+l) + ...
bits_hh_ll_r_3D(i+l)+ bits_hl_hl_v_3D(i+l) + ...
bits_hh_hh_r_3D(i+l);

layer2(i+l) = bits_ll_hh_r_3D(i+l) + bits_lh_hl_r_3D(i+l) + ...
bits_lh_hh_r_3D(i+l) + bits_hl_lh_v_3D(i+l) + ...
bits_hl_hh_v_3D(i+l);

layer3(i+l) = bits_hh_lh_r_3D(i+l) + bits_hh_hl_r_3D(i+l);
total(i+l) = layerl(i+l) + layer2(i+l) + layer3(i+1);

Channel

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Unquantize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f_fht_ll_ll_uq = f_fht_ll_ll_q * ql
f_fht_ll_lh_uq = f_fht_ll_lh_q * q2
f_fht_ll_hl_uq = f_fht_ll_hl_q * q2
f_fht_ll_hh_uq = f_fht_ll_hh_q * q3

f_fht_lh_ll_uq = f_fht_lh_ll_q * q2
f_fht_lh_lh_uq = f_fht_lh_lh_q * q2
f_fht_lh_hl_uq = f_fht_lh_hl_q * q3

% unquantize of LH subbands

% unquantize of LH subbands

84

f_fht_lh_hh_uq = f_fht_lh_hh_q * q3;

f_fht_hl_ll_uq = f_fht_hl_H_q * q2
f_fht_hl_lh_uq = f_fht_hl_lh_q * q3
f_fht_hl_hl_uq = f_fht_hl_hl_q * q2
f_fht_hl_hh_uq = f_fht_hl_hh_q * q3

f_fht_hh_ll_uq = f_fht_hh_U_q * q3
f_fht_hh_lh_uq = f_fht_hh_lh_q * q3
f_fht_hh_hl_uq = f_fht_hh_hl_q * q3
f_fht_hh_hh_uq = f_fht_hh_hh_q * q3

% unquantize of HL subbands

% unquantize of HH subbands

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inverse Transform %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f_far_ll = remake_3(f_far_ll,f_fht_ll_
f_fht_ll_hh_uq/m_vec_ndx,8);

f_far_lh = remake_3(f_far_lh,f_fht_lh_
f_fht_lh_hh_uq,m_vec_ndx, 8);

f_far_hl = remake_3(f_far_hl,f_fht_hl_
f_fht_hl_hh_uq/m_vec_ndx,8);

f_far_hh = remake_3(f_far_hh,f_fht_hh_
f_fht_hh_hh_uq,ni_vec_ndx,8) ;

.ll_uq, f_fht_ll_lh_uq, f_fht_ll_hl_uq,
% LL subband inv FHT

.ll_uq, f_.fht_lh_lh_uq, f_fht_lh_hl_uq,
% LH subband inv FHT

.ll_uq, f_fht_hl_lh_uq, f_fht_hl_hl_uq,
% HL subband inv FHT

,ll_uq, f_fht_hh_lh_uq, f_fht_hh_hl_uq,
% HH subband inv FHT

f_far_ll_p2 = remake_3(f_far_ll_p2,f_fht_ll_ll_uq,f.
f_fht_ll_hl_uq,f_fht_ll_hh_uq,m_vec_ndx,8);

f_far_lh_p2 = remake_3(f_far_lh_p2,f_fht_lh_ll_uq,f.
f_fht_lh_hl_uq,f_fht_lh_hh_uq,m_vec_ndx,8);

f_far_hl_p2 = remake_3(f_far_hl_p2,f_fht_hl_ll_uq,f.
f_fht_hl_hl_uq,f_fht_hl_hh_uq,m_vec_ndx,8);

f_far_hh_p2 = remake_3(f_far_hh_p2,f_fht_hh_ll_uq,0,
f_fht_hh_hh_uq,m_vec_ndx,8);

.fht_ll_lh_uq, ...
% LL p2 subband inv FHT
.fht_lh_lh_uq, ...
% LH p2 subband inv FHT
.fht_hl_lh_uq, ...
% HL p2 subband inv FHT
0,...
% HH p2 subband inv FHT

f_far_ll_pl = remake_3(f_far_ll_pl,f_fht_ll_ll_uq,f_fht_ll_lh_uq,...
f_fht_ll_hl_uq,0,m_vec_ndx,8); % LL pi subband inv FHT

f_far_lh_pl = remake_3(f_far_lh_pl,f_fht_lh_ll_uq,f_fht_lh_lh_uq,...
0,0,m_vec_ndx,8); % LH pi subband inv FHT

f_far_hl_pl = remake_3(f_far_hl_pl,f_fht_hl_ll_uq,0,...
f_fht_hl_hl_uq,0,m_vec_ndx,8); % HL pi subband inv FHT

f_far_hh_pl = remake_3(f_far_hh_pl,f_fht_hh_ll_uq,0,...
0,f_fht_hh_hh_uq,m_vec_ndx,8); % HH pi subband inv FHT

f_3 = remake_3(f_3,f_far_ll,f_far_lh,f_far_hl,...
f_far_hh,m_vec_ndx,16); % frame inv FHT with 3 layers

f_2 = remake_3(f_2,f_far_ll_p2,f_far_lh_p2,f_far_hl_p2,...
f_far_hh_p2,m_vec_ndx,16); % frame inv FHT with 2 layers

f_l = remake_3(f_l,f_far_ll_pl,f_far_lh_pl,f_far_hl_pl
f_far_hh_pl,m_vec_ndx,16); % frame inv FHT with 1 layer

end % ends frame_type descrimination

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Make Display Size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fig_3 = shape_back(f_3);
fig_2 = shape_back(f_2);
fig_l = shape_back(f_1);

L3 = round(fig_3);
L2 = round (fig_2) ;
LI = round(fig_l);

% make display dimensions
% make display dimensions
% make display dimensions

% for viewing
% for viewing
% for viewing

%%%%%%%%%%%%%%%%%%%%%%% Calculates the mean-square-error per frame %%%%%%%%%%%%%%%%%
if mse

MSE_3L(i+l,l)
MSE_2L(i+l,l)
MSE_lL(i+l,l)

end % end if mse

(sum(sum((i_present - fig_3)."2)))/176/144
(sum(sum((i_present - fig_2).*2)))/176/144
(sum(sum((i_present - fig_l).A2)))/176/144

85

if display

% The following lines show the figure with 3 layers
subplot(2,2,2)
image(L3)
axis off
title('Layers 1, 2, and 3')

% The following lines show the figure with 2 layers
subplot(2,2,3)
image(L2)
title('Layers 1 and 2')
axis off

% The following lines show the figure with 1
subplot(2,2,4)
image(LI)
title('Layer 1 Only')
axis off
drawnow

layer

end % ends if display

% closing reconstruction occasionally to conserve memory
if ((i==20)|(i==40)|(i==60)|(i==80)|(i==100)|(i==120)|(i==140)|(i==160)|(i==180)

(i==200)j(i==220)|(i==240)|(i==260)|(i==280))
close all

end
end % ends looping through frames

% The following lines simply rename variables to be consistent with an off-line
% evaluation program used in the development.

% LL dynamic
BITS_LL_HUFF = bitS_ll_ZZ';

% LL static
BITS_LL_LL_3D = bits_ll_ll_r_3D'
SCAN_LL_LL_22 = ll_ll_r_22';
SCAN_LL_LL_LEN = l_p_ll_ll_r_3D'

BITS_LL_LH_3D = bits_ll_lh_r_3D'
SCÄN_LL_LH_22 = ll_lh_r_22';
SCAN_LL_LH_LEN = l_P_ll_lh_r_3D'

BITS_LL_HL_3D = bitS_ll_hl_r_3D'
SCAN_LL_HL_22 = ll_hl_r_22';
SCAN_LL_HL_LEN = l_P_ll_hl_r_3D'

BITS_LL_HH_3D = bits_ll_hh_r_3D'
SCAN_LL_HH_22 = ll_hh_r_22';
SCAN_LL_HH_LEN = l_p_ll_hh_r_3D'

% LH both types of slide
BITS_LH_LL_3D = bits_lh_ll_r_3D'
SCAN_LH_LL_22 = lh_ll_r_22' ;
SCAN_LH_LL_LEN = l_P_lh_ll_r_3D'

BITS_LH_LH_3D = bits_lh_lh_r_3D'
SCAN_LH_LH_22 = lh_lh_r_22';
SCAN_LH_LH_LEN = l_p_lh_lh_r_3D'

BITS_LH_HL_3D = bits_lh_hl_r_3D'
SCAN_LH_HL_22 = lh_hl_r_22';
SCAN_LH_HL_LEN = l_P_lh_hl_r_3D'

BITS_LH_HH_3D = bits_lh_hh_r_3D'
SCAN_LH_HH_22 = lh_hh_r_22';
SCAN_LH_HH_LEN = l_p_lh_hh_r_3D'

% HL both types of slides

86

BITS_HL_LL_3D = bits_hl_H_v_3D'
SCAN_HL_LL_22 = hl_ll_v_22' ,-
SCAN_HL_LL_LEN = l_p_hl_ll_v_3D'

BITS_HL_LH_3D = bits_hl_lh_v_3D'
SCÄN_HL_LH_22 = hl_lh_v_22',-
SCAN_HL_LH_LEN = l_p_hl_lh_V_3D'

BITS_HL_HL_3D = bits_hl_hl_v_3D'
SCAN_HL_HL_22 = hl_hl_v_22';
SCAN_HL_HL_LEN = l_p_hl_hl_v_3D'

BITS_HL_HH_3D = bits_hl_hh_v_3D'
SCAN_HL_HH_22 = hl_hh_v_22';
SCAN_HL_HH_LEN = l_p_hl_hh_v_3D'

% HH from dynamic
BITS_HH_3D = bits_hh_r_3D';
SCÄN_HH_22 = hh_r_22';
SCAN_HH_LEN = l_p_Jih_r_3D';

% HH from static
BITS_HH_LL_3D = bits_hh_ll_r_3D'
SCAN_HH_LL_22 = hh_ll_r_22' ,-
SCAN_HH_LL_LEN = l_p_hh_ll_r_3D'

BITS_HH_LH_3D = bits_hh_lh_r_3D'
SCAN_HH_LH_22 = hh_lh_r_22';
SCAN_HH_LH_LEN = l_p_nh_lh_r_3D'

BITS_HH_HL_3D = bits_hh_hl_r_3D'
SCAN_HH_HL_22 = hh_hl_r_22';
SCAN_HH_HL_LEN = l_p_hh_hl_r_3D'

BITS_HH_HH_3D = bits_hh_hh_r_3D'
SCAN_HH_HH_22 = hh_hh_r_22';
SCAN_HH_HH_LEN = l_p_hh_hh_r_3D'

% saves parameters for evaluation later
if write

s = char('g:\thesis\BR') ;
s = strcat(s,num2str(br));
save(s, 'm_mat_ndx','BITS_*','MSE_*','SCAN_*'

end % if write

,'layer*')

function [output] = dct_of_fht(input,m_vec_ndx)

% performs the 2D DCT of input. m_vec_ndx identifies where this operation needs
% to be performed.

output = zeros(792,8);
offset = -8;

for ndx =1:99
offset = offset + 8;

if m_vec_ndx(ndx)

end
output(offset+l:offset+8,:) = dct2{input(offset+l:offset+8, :));

end

87

function [f_fht_ll,f_fht_lh,f_fht_hl,r_fht_hh] = fht (f_vec,m_vec_ndx,in)

% Performs the FHT of the appropriate IN x IN macroblocks of F_VEC as
% specified by M_VEC_NDX. Returns four sets of 99 IN/2 x IN/2 matrices,
% each stacked into one big 99*IN/2 x IN/2 matrix. The places
% where the fht was not performed are filled with zeroes as place-holders.

half = in/2;
f_fht_ll = zeros(99*half,half)
f_fht_lh = zeros(99*half,half)
f_fht_hl = zeros(99*half,half)
f_fht_hh = zeros(9 9 *half,half)
mask_lh = [1 1;-1 -1]
maskJil = [1 -1;1 -1]
mask_hh = [1 -1;-1 1]

offset = -in;

for ndx =1:99
offset= offset+in;
oso2 = offset/2;

if m_vec_ndx(ndx)

for rndx = l:half

for cndx = l:half
f_fht_ll(rndx+oso2,cndx) = ...

sum(sum(f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4;
f_fht_lh(rndx+oso2,cndx) = sum(sum(mask_lh .* ...

f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4;
f_fht_hl(rndx+oso2,cndx). = sum(sum(mask_hl .* ...

f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4;
f_fht_hh(rndx+oso2,cndx) = sum(sum(mask_hh .* ...

f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4;

end

end

end

end

function [bits] = get_bits_Huff(parsed)

% Uses Huffman table to get bits for JPEG-based compression of PARSED.

global HUFF_TABLE

bits = 0;
[r,c] = size(parsed);

for ndx = l:r

while(parsed(ndx,1) >= 15)
bits = bits + 11;
parsed(ndx,l) = parsed(ndx,1) - 15;

end

table_row = find((HÜFF_TABLE(:,2) == parsed(ndx,1)) & ...
(HUFF_TABLE(:,3) == parsed(ndx,2)));

bits = bits + HUFF_TABLE(table_row,4) + parsed(ndx,2);
end

88

bits = bits + 99*4;

function [bits,count] = get_bits2(parsed,kind)

% Uses PARSED to fetch bits from custom VLC tables
% KIND will be 1 for static scenes
% KIND will be 0 for dynamic scenec

global VLC_DYN VLC_STA

bits = 0;
count = 0;
parsed = abs(parsed) ;
[r,c] = size(parsed);

if kind
for ndx = l:r

poss_rows = find(VLC_STA(:,2) == parsed(ndx,l));
start = poss_rows(l);
poss_rows = find(VLC_STA((poss_rows(1):poss_rows(length(poss_rows))),3) ==.

parsed(ndx,2));

if -(isempty(poss_rows))
poss_rows = poss_rows + start - 1;
start = poss_rows(1);

end

if -(isempty(poss_rows))
poss_rows = find(VLC_STA((poss_rows(1):poss_rows(length(poss_rows))),4)

parsed(ndx,3));
poss_rows = poss_rows + start - 1;

end

if -(isempty(poss_rows))
bits = bits + VLC_STA (poss_rows, 5) ,-

else
bits = bits + 22;
count = count + 1;

end

end

else

for ndx = l:r
poss_rows = find(VLC_DYN(:,2) == parsed(ndx,1));
start = poss_rows(l);
poss_rows = find(VLC_DYN((poss_rows(l):poss_rows(length(poss_rows))),3) ==.
parsed(ndx,2));

if -(isempty(poss_rows))
poss_rows = poss_rows + start - 1;
start = poss_rows(1);

end

if -(isempty(poss_rows))
poss_rows = find(VLCJDYN ((poss_rows{1):poss_rows(length(poss_rows))),4)
parsed(ndx,3));
poss_rows = poss_rows + start - 1;

end

if -(isempty(poss_rows))
bits = bits + VLC_DYN(poss_rows,5);

else
bits = bits +22;
count = count + 1;

89

end

end

end
bits = bits + 99;

function [f] = get_next_image(num)

% Gets next frame as a .bmp file converts to form needed in MATLÄB

s = char('g:\pictures\Head');
fn = strcat(s,num2str(num));
f = imread(fn,'bmp');
f = double(f(:,:,!));

function [f] = get_next_image_2(num)

% Gets next frame as a .bmp file converts to form needed in MATLAB

s = char('g:\pictures\ncaa');
fn = strcat(s,num2str(num));
f = imread(fn,'bmp');
f = double(f(:,:,!));;

function [Q] = get_Ql_matrix(ql)

% makes the JPEG standard quantization matrix and multiplies it by ql.
% ql = 16 will result in no scaling of the matrix when coupled with the rest
% of the code, ql < 16 is finer quantization, i.e. less quantization noise results.

Q = [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99] .* ql;

function [out] = get_qd_entryf(flag,default,entry,delta_Binter,MBnum,beta)

% selects the appropriate quantizer triplet based on the input parameters
% FLAG implies the first frame following a scene change frame. DEFAULT is the
% choice of triplet based on test sequences and serves as a starting point for a
% new sequence. ENTRY hold the table entry from the previous frame. The remaining
% parameters ara as defined in the thesis.

global QD_TABLE

if (flag)

90

out = min(find(default > QD_TABLE(:,4))),-
else

deltaQ = fix(delta_Binter/MBnum/beta);
out = entry + deltaQ;
if (out > 17)

out = 17;
end
if (out < 1)

out = 1;
end

end

function [run] = get_run(seq_to_code,len)

% Called by the parsing functions PARSE_3D and PARSE_HUFF, this function obtains
% the RON field for RLE.

run = zeros(len,1);

count =0;
place = 1;
mdx =1;

while (mdx <= length(seg_to_code))
if seq_to_code(mdx)

place = place + 1;
mdx = mdx + 1;

else
while (seg__to_code(mdx) == 0)

mdx = mdx + 1;
count = count + 1;

end
run(place) = count;
count = 0;
place = place + 1;
mdx = mdx + 1;
end

end

function [output] = invdct_of_fht(input,m_vec_ndx)

% Performs the inverse 2D DCT. M_VEC_NDX identifies where this operation needs to be
% performed.

output = zeros(792,8),-
offset = -8;

for ndx =1:99
offset = offset + 8;

if m_vec_ndx(ndx)
output(offset+l:offset+8,:) = idct2(input(offset+l:offset+8, :)); ,

end

end

91

function [m_vec_ndx,byAge,b_count,mb_count] = m_blk_id_xr(fl,f2,T)

% Figures out which 16x16 macroblocks of the 144x176 image need to be further
% processed via an absolute sum of differences between the last frame fl and
% the current frame f2. m_vec_ndx is 99x1 vector of 0 or 1 raster scanned.
% T is the threshold utilized. byAge is 1 if macroblocks are selected only due
% to aging. byAge is 0 otherwise. b_count and mb_count were used in refining the
% search sequence. b_count is "block count." mb_count is "macroblock count." As
% are artifacts now, they are commented-out.

global LAST RV

%b_count = 0;
%mb_count = 0;
r_count = 0;
m_vec_ndx = zeros(99,1);

for ndx =1:99
if (RV(ndx) == 0)

m_vec_ndx(ndx) = 1;
RV(ndx) = floor(21*rand);

else
RV(ndx) = RV(ndx) - 1;

end
end

byAge1 = sum(m_vec_ndx);

for rndx = 1:16:1584
r_count = r_count +1;

if (-m_vec_ndx(r_count))
go = 1;
if ((LAST(r_count) == 1) & (go))

for cndx = 1
fl_8x8 = f1(rndx:rndx+7,cndx:cndx+7);
f2_8x8 = f2(rndx:rndx+7,cndx:cndx+7);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 1;
LAST(r_count) = 1;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15) ;
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15) ;
asd = abs(sum(sum(fl_8x8-f2_8x8))); •

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 2;
LAST(r_count) = 3;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15) ;
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15);
asd = abs(sum(sum(fl_8x8-f2_8x8))) ,-

if (asd > T)
m_vec_ndx(r_count) = 1; % ID's position
%mb_count = mb_count + 1;
%b_count = b_count + 3;
I»AST(r_count) = 2;

92

go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7);
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = ntb_count + 1;
%b_count = b_count + 4;
LAST(r_count) = 4;
go = 0;

end

end %for cndx
end % if LAST

if ((LAST(r_count) == 2) & (go))
for cndx = 1

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15);
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 1;
LAST(r_count) = 2;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7) ,-
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 2;
LAST(r_count) = 4;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15);
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15) ;
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count +3;
LAST(r_count) = 3;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx:rndx+7,cndx:cndx+7);
f2_8x8 = f2(rndx:rndx+7,cndx:cndx+7) ;
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 4;
LAST(r_count) = 1;
go = 0;

end

93

end %for cndx
end % if LAST

if ((LAST(r_count) == 3) & (go))
for cndx = 1

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15);
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_courit + 1;
LAST(r_count) = 3;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx:rndx+7,cndx:cndx+7);
.f 2_8x8 = f 2 (rndx: rndx+7, cndx: cndx+7) ;
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 2;
LAST(r_count) = 1;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7);
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count +1;
%b_count = b_count + 3;
LAST(r_count) = 4;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15);
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15) ;
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
ni_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 4;
LAST(r_count) = 2;
go = 0;

end

end %for cndx
end % if LAST

if <(LAST(r_count) == 4) & (go))
for cndx = 1

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7);
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID's position
%mb_count = mb_count + 1;
%b_count = b_count + 1;
LAST(r_count) = 4;

94

go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15);
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 2;
LAST(r_count) = 2;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx:rndx+7,cndx:cndx+7);
f2_8x8 = f2(rndx:rndx+7,chdx:cndx+7);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = rob_count + 1;
%b_count = b_count + 3;
LAST(r_count) = 1;
go = 0;
break; % gets out of the inner loop if justified now

end

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15);
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15);
asd = abs(sum(sum(fl_8x8-f2_8x8)));

if (asd > T)
m_vec_ndx(r_count) = 1; % ID'S position
%mb_count = mb_count + 1;
%b_count = b_count + 4;
LAST(r_count) = 3;
go = 0;

end

end %for cndx
end % if LAST

end %if ~m_vec_ndx

end % for rndx

byAge2 = sum(m_vec_ndx);
byAge = (byAgel == byAge2);

function [table] = make_HAC_table() ;

% Generates the Huffman VLC table

vecl = ones(10,1);
vec2 = (1:10)';

index = (1:162)';
runn = [0;vecl*0;vecl;vecl*2;vecl*3;vecl*4;vecl*5;vecl*6;

vecl*7;vecl*8;vecl*9;vecl*10;vecl*ll;vecl*12;vecl*13;
vecl*14;vecl*15;153;

siz = [0;vec2;vec2;vec2;vec2;vec2;vec2;vec2;vec2;vec2;
vec2; vec2; vec2; vec2;vec2; vec2; 0;vec2] ;

cw_len = [0;2;2;3;4;5;7;8;10;16;16;4;5;7;9;11;16;16;16;16;

95

16;5;8;10;12;ones(6,l)*16,-6;9;12;ones(7,l)*16;6;10;
ones(8,l)*16;8;ll;ones(8,l)*16;7;12;ones(8,l)*16;8;
12;ones(8,l)*16;9;ones(9,l)*16;9;ones(9,l)*16;9;
ones(9,l)*16;10;ones(9,l)*16;10;ones(9,l)*16;ll;
ones(19,1)*16;ll;ones(10,1)*16];

table = [index, runn, siz, cw_len];

function [a] = make_it_compact(big,index,size)

% gets rid of trailing zeros in the vector BIG that resulted from scanning 99 matrices
% of dimensions SIZExSIZE. INDEX holds the position of the last non-zero entry in each of
% the 99 matrices.

entry = sizeA2;
offset = -entry;
a = [];
for ndx =1:99

offset = entry + offset;
if isinf(index(ndx))

a = [a ; inf];
else

a = [a ; [big(offset+l:offset+index(ndx))]];
end

end

function [parsed] = parse_3D(vector,index)

% RLE's VECTOR into the {last,run,level} format. INDEX is the position of the last non
% zero entity in each of the 99 matrices.

last = [];
level = []•;
run = [];

for ndx =1:99
if isinf(index(ndx))

index(ndx) =1;
end
point = sum(index(l:ndx));
seq_to_code = vector(point-index(ndx)+l:point);
len = length(seq_to_code) ;
if (den == 1) & isinf (seq_to_code))

last = [last,-0];
level = [level;0];
run = [run; 6];

else
dummy = seq_to_code(find(seq_to_code));
level = [level;dummy];
last = [last;zeros(length(dummy)-1,1) ,-l];
this_run = get_run(seq_to_code,length(dummy));
run = [run;this_run];

end
end

parsed = [last, run,level];

96

function [parsed] = parse_Huff(vector,index)

% Parses VECTOR into the JPEG format. INDEX holds the position of the last non-zero
% value of each of the 99 matrices.

last = [];
level = [];
run = [] ,-

for ndx =1:99
if isinf(index(ndx))

index(ndx) = 1;
end
point = sum(index(1:ndx));
seq_to_code = vector(point-index(ndx)+l:point);
len = length(seq_to_code);
if (den == 1) & isinf(seq_to_code))

level = [level;0];
run = [run;0];

else
dummy = seq_to_code(find(seq_to_code));
level = [level;dummy];
this_run = get_run(seq_to_code,length(dummy));
run = [run;this_run];

end
end

level = abs(level),-
S = zeros(length(level),1) ;

for mdx = 1:length(level)
if level(mdx)

S(mdx) = length(dec2bin(level(mdx)));
else

S(mdx) = 0;
end

end

parsed = [run,S],-

function [ll_q] = quantizer_ll(ll,Q,m_vec_ndx)

% Quantizes matrix 11 with quantization matrix Q. M_VEC_NDX identifies
% where this quantization need be performed.
%
% see UNQUANTTZE_LL

ll_q = zeros(792,8),•
offset = -8;
11 = 11* 16;

for ndx =1:99
offset = offset + 8;

if m_vec_ndx(ndx)
ll_q(offset+l:offset+8,:) = round(ll(offset+l:offset+8, :) ./Q);

end

end

97

function [out,rast] = raster(mat,in)

% Horizontal raster scans the input matris MAT of dimensions INxIN.

entry = in~2;
offset = -entry;
mat = mat.';
rast = reshape(mat,entry*99,l);

for ndx =1:99
offset = offset+entry;
dummy = max(find(rast(offset+1:offset+entry))) ;

if isempty(dummy)
out(ndx) = inf;

else
out(ndx) = dummy;

end

end

out = out.';

function [out] = remake_3(f_3,f_fht_ll,f_fht_lh,f_fht_hl,f_fht_hh,m_vec_ndx,in)

% Performs the inverse FHT. F_3 is the present content of the reconstructed image.
% The next for parameters are the subbands that update this content as dictated
% by the content of M_VEC_NDX. INxIN is the matrix dimensions.

half = in/2;

if (f_fht_ll == 0)
f_fht_ll = zeros (99*half,half),-

end

if (f_fht_lh == 0)
f_fht_lh = zeros(99*half,half);

end

if (f_fht_hl ==0)
f_fht_hl = zeros(99*half,half);

end

if (f_fht_hh == 0)
f_fht_hh = zeros(99*half,half);

end

B = [111 1,-1 1 -1 -1;1 -1 1 -1;1 -1 -1 1];
x = zeros(4,1);
a = zeros(4,1);
offset = -half;
out = zeros(99*in,in);
f_3 = f_3 /4;

for ndx =1:99
offset = offset + half;
ost2 = offset*2;

if m_vec_ndx(ndx)

for rndx = l:half

for cndx = l:half
x = [f_fht_ll(rndx+offset,cndx);

98

f_fht_lh(rndx+offset,cndx);
f_fht_hl(rndx+offset,cndx);
f_fht_hh(rndx+offset,cndx)];

a = B \ x;
f_3(rndx*2-l+ost2:rndx*2+ost2,cndx*2-l:cndx*2)

[a(D a(2); a(3) a(4)];

end

end

end

end

out = f_3*4;

function [f_out] = shape(f_in)

% Shapes the 144x176 f_in into a 1584x16 matrix taken 16 rows at a time
% left to right, top to bottom, (raster scans the macroblocks.)

f_out = [],-

for rndx = [1 17 33 49 65 81 97 113 129]
for cndx = [1 17 33 49 65 81 97 113 129 145 161]

f_out = [f_out;[f_in(rndx:rndx+15,cndx:cndx+15)]];
end

end

function [f_out] = shape_back(f_in)

% Shapes the 1584x16 matrix back into a 144x176 image.

f_out = [];
f_row = [];
offset = -176;

for i = 1:9
offset = offset + 176;
for rndx = (tl 17 33 49 65 81 97 113 129 145 161] + offset)

f_row = [f_row,[f_in(rndx:rndx+15, :)]] ;
end
f_out = [f_out;f_row];
f_row = [];

end

function [11] = unquantize_ll(ll_q,Q,m_vec_ndx)

% Unquantizes ll_q with quantization matrix Q. M_VEC_NDX idenntifies where this
% unquantization need be performed.
%
% see QUANTIZE_LL

11 = zeros(792,8);
offset = -8;

99

for ndx =1:99
offset = offset + 8;

if m_vec_ndx(ndx)
ll(offset+l:offset+8,:) = ll_q(offset+1:offset+8,:) .*Q;

end

end

11 = 11 / 16;

function [out,vert] = vertical(mat,in)

% raster scans vertically top to bottom 99 matrices of size INxIN contained in MAT.

offset = -in;
offset2 = -inA2;
vert = zeros(offset2*99,1);

if (in == 8)
for ndx =1:99

offset = offset + 8;
offset2 = offset2 + 64;
vert(offset2+l:offset2+64,1)=[mat(offset+1:offset+8,l),-mat(offset+1:offset+8,2);

mat(offset+l:offset+8,3);mat(offset+l:offset+8,4);mat(offset+l:offset+8,5);
mat (of f set+1: of fset+8, 6) ,-mat (of f set+1: of fset+8, 7) ,-mat (of f set+1: of fset+8,8)] ;

dummy = max(find(vert(offset2+i:offset2+64)));

if isempty(dummy)
out(ndx) = inf;

else
out(ndx) = dummy;

end

end

else

for ndx =1:99
offset = offset + 4;
offset2 = offset2 + 16;
vert (of f set2+l:of f set2+16,1) = [mat (of f set+1: of f set+4,1) ,-mat (of f set+1: of f set+4,2) ;

mat(offset+l:offset+4,3);mat(offset+l:offset+4,4)];
dummy = max(find(vert(offset2+l:offset2+16)));

if isempty(dummy)
out(ndx) = inf;

else
out(ndx) = dummy;

end

end

end

out = out.';

function [place,out] = zzb(bigmat,M)

% zigzag scans the 99 matrices of size MxM contained in BIGMAT.

100

vec = zeros(M*M,1);
loop = 0;
out = [];

for ndx = 1:M:M*99
loop = loop + 1;
mat = bigmat(ndx:ndx+M-l,:);
vec(l) = mat(1,1);

% start scan at
x = 2;
y = 1;
index = 2;

% initial scan direction
xstep = -1;
ystep =1;

% process each interior diagonal
for i=2:(2*M-2)

% determine diagonal length
if (i > M)

len = 2*M - i;
else

len = i;
end

% run the diagonal
for j = l:len

vec(index) = mat(y,x);

% move to next point
x = x + xstep;
y = y + ystep;
index = index + 1;

end

% set up next pass
xstep = -xstep;
ystep = -ystep;

if (x == 0)

if (y <= M)
x = 1;

else
x = x + 2;
y = M;

end

elseif (x > M)
x = M;
y = y + 2;

end

if (y == 0)

if (x <= M)
y = 1;

else
x = M;
y = y + 2;

end

elseif (y > M)
y = M;
x = x + 2;

end

101

end

vec(M*M) =mat(M,M);
duirany = max (find (vec)) ;

if isempty(dummy)
place(loop) = inf;

else
place(loop) = dummy;

end

out = [out;vec];
end

place = place';

102

LIST OF REFERENCES

[I] ADM A. Clemins, "IT-21: Information Technology for the 21sl Century,"
presented at AFCEA West '98, San Diego, CA, Jan. 14-16, 1998.

[2] Chief of Naval Operations, N60 - Fleet and Allied C4 Requirements Division
IT-21 Homepage, http://copernicus.hq.navy.mil/divisions/n6/n60/it21/.

[3] R. Weekly, "Guaranteeing Fair Access for Multimedia Traffic Using the
SMART Algorithm for Multicast ATM Connections," Master's Thesis, Naval
Postgraduate School, September 1999.

[4] K. Rao and J. Hwang, Techniques & Standards for Image, Video & Audio
Coding, Upper Saddle River, NJ: Prentice-Hall, 1996.

[5] M. Riley and I. Richardson, Digital Video Communications, Norword, MA:
Artech House, Inc., 1997.

[6] M. H. Willebeek-LeMair, Z. Shae, and Y. Chang, "Robust H.263 Video Coding
for Transmission Over the Internet," IBM Res. Rep. RC20532, Aug. 1996.

[7] S. McCanne, M. Vetterli, and V. Jacobson, "Receiver-driven layered multicast,"
Proc. SIGCOMM '96, ACM, Stanford, CA, Aug. 1996.

[8] V. Rhee and J. D. Gibson, "Rate-Constrained Twö-Layer Coding of H.261
Video," 28thAsilomar Conference on Signals, Systems, & Computers, Pacific
Grove, CA, 31 Oct - 2 Nov, 1994.

[9] R. Parker, "Robust Transmission of Layered Video for Low Bit Rate Tactical
Video Conferencing Applications," Ph.D. Dissertation, Naval Postgraduate
School, September 1999.

[10] R. Parker, S. Skretkowicz, and M. Tummala, "Low-Complexity, Adaptive
Layered Video Coder for Video Teleconferencing," To be presented at 33rd
Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, CA,
24-27 Oct, 1999.

[II] C. W. Therrien, Discrete Random Signals and Statistical Signal Processing,
Upper Saddle River, NJ: Prentice-Hall, 1992.

[12] Z. Xiong, K. Ramchandran, M. T. Orchard, and Y. Zhang, "A comparative
study of DCT and wavelet based coding," Proc. of the IEEE International
Symposium on Circuits and Systems, Monterey, CA, June 1-3,1998.

103

[13] G. Kaiser, "The Fast Haar Transform," IEEE Potentials, vol. 17, no. 2, pp.34-
36,1998.

[14] S. McCanne, M. Vetterli, and V. Jacobson, "Low-Complexity Video Coding for
Receiver-Driven Layered Multicast," IEEE J. of Select. Areas in Comm., vol.
15, no. 6, pp. 983-1001,1997.

[15] J. Gibson, T. Berger, T. Lookabaugh, D. Lindbergh, and R. Baker, Digital
Compression for Multimedia: Principles and Standards, San Francisco, CA:
Morgan Kaufmann Publishers, Inc., 1998.

[16] T. Eude, et al., "On the Distribution of DCT Coefficients," ICASSP '94, vol. 5,
pp. 365-368, Adelaide, Australia, Apr. 1994.

[17] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Upper Saddle
River, NJ: Prentice-Hall, 1995.

[18] R. Frederick, "Experiences with real-time software video compression," Proc.
6th Int. Workshop Packet Video, Portland, OR, Sept. 1994.

[19] Telenor Research, Video Codec Test Model, Tmn5, Jan. 1995.

[20] V. Rhee and J. D. Gibson, "Block-Level Refinement of Motion Description in
Layered H.261 Video," 29th Annual Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, 29 Oct - 1 Nov 1995.

[21] P. Bahl and W. Hsu, "Adaptive Region-Based Multi-Scaled Motion-
Compensated Video Coding for Error Prone, Bandwidth-Limited
Communication Channels," Proc. Conf. Broadband Networking Technologies,
SPIE's Int'l Symp. Voice, Video and Data Communications, Dallas, TX, Nov.
1997.

[22] Brown, T. B., Cantrell, P. E., and Gibson, J. D., "Multicast Layered Video
Teleconferencing: Overcoming Bandwidth Heterogeneity," 1996 Int. Conf. on
Image Processing, Lausanne, Switzerland.

[23] H. Gharavi and M. H. Partovi, "Video coding and distribution over ATM for
multipoint teleconferencing," Proc. GLOBECOM '93, Houston, TX, Dec. 1993.

[24] G. J. Sullivan and T. Wiegand, "Rate-Distortion Optimization for Video
Compression," IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74-90,
Nov. 1998.

[25] C. Diab, R. Prost, and R. Goutte, "Block-Adaptive Subband Coding of Images,"
ICASSP, 1990, pp. 2093-2096.

104

[26] ITU-T Recommendation H.263, Video Coding for Low Bitrate Communication,
1996.

105

106

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code EC \
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Prof. Murali Turnmala, Code EC/Tu 4
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. LCDR Robert E. Parker, U.S. Navy 1
2452 Ponte Vedra Way
Chula Vista, CA 91915

6. Dr. DonGingras j
SPAWAR Systems Center San Diego, Code D8805
Communication and Information Systems Department
San Diego, CA 92152-5001

7. LT Steven J. Skretkowicz, U.S. Navy 3
519 West "L" Street
North Little Rock, AR 72116

107

