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ABSTRACT 

Real-time interactive video applications, such as video teleconferencing, present 

difficult challenges to network designers due to strict quality of service constraints and 

the limitations of traditional video compression schemes. These limitations reveal 

themselves notably in two areas: poor error robustness and a lack of flexibility when 

dealing with multicast scenarios over heterogeneous networks. 

A more promising approach that improves error robustness while also offering a 

solution to the network heterogeneity problem is to employ a layered video codec. This 

thesis presents the implementation of a new layered video codec scheme. Block updating 

coupled with an aging algorithm is used in this scheme to select macroblocks for 

transmission. Block updating selects macroblocks that have changed due to scene 

motion, and the aging algorithm ensures that an entire frame is transmitted within a set 

time interval. Layering is accomplished through application of the fast Haar transform 

and/or the discrete cosine transform. Layer assignments are made by grouping bands of 

coefficients with similar variances. Quantization and encoding for motion video employs 

both an industry standard and uniform quantization with a custom variable length coding 

table. For static slides, uniform quantization and a second custom variable length coding 

table are employed. Rate control is accomplished via the reduction of a four-dimensional 

operational distortion surface to a one-dimensional optimal curve implemented as a 

simple table lookup of quantizers. 
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I.        INTRODUCTION 

A. BACKGROUND 

Video teleconferencing (VTC) is expected to contribute significantly to the US 

Navy's Information Technology for the 21st Century (IT-21) initiative. IT-21 seeks to 

change the paradigm to warfighting from a platform-centric approach to a network- 

centric approach, where information superiority is leveraged with smart weapons in order 

to achieve the desired result more effectively. The goal of IT-21 is to link all US Forces 

together in a network that enables transmission of voice, video, and data from individual 

workstations seamlessly to both local and remote users [1][2]. Employing VTC over a 

tactical network at the battle group level caters to several useful applications, such as 

collaborative planning, distance learning, remote maintenance and telemedicine. 

1.        Multimedia Communication and Tactical Video Teleconference 

(VTC) 

In general, multimedia communications are either unicast or multicast. Unicast 

represents peer-to-peer communications while multicast represents m to n 

communications where m ranges from 1 to n. Unicast includes any client-server 

applications, such as video on demand (VOD) or IP telephony. Multicast examples 

include distance learning and remote conferencing. The tactical VTC scenario 

considered here is inherently a multicast application running over a heterogeneous, 

wireless network. Here, "heterogeneous" implies that a connection traverses a series of 

links (each imposing potentially different bandwidths), and the recipient workstations 

differ in capability and capacity; "wireless" implies an internetwork of wireline local area 

networks (LANs) connected by at least one wireless channel. As such, each transmitter 

transmits to multiple receivers in the multicast group. The multicast group consists of 

some combination of active participants that are allowed to transmit and passive 

participants that only receive. For example, the problem of transmitting multicast, 



multimedia traffic over ATM networks was examined in [3]. This situation is illustrated 

in Figure 1-1. 

□ 
Video 

Workstation 

Eöi—II—I 
Video 

Workstation Workstation 

Figure 1-1: Simple VTC Multicast with Two Active and Two Passive Nodes. 

While the network described here affords large bandwidth within each shipboard 

LAN, VTC realizes its true value only if implemented within the entire battlegroup. It is 

because the wireless channel constrains both the bit rate and the bit error rate (each of 

which, in turn, impacts the robustness of the VTC application) that the tactical VTC 

network presents challenges not encountered with wireline networks and provides a 

hostile environment for traditional video codecs. 

2.        Video Compression and Robustness 

Since video and audio, to a lessor degree, are bandwidth intensive, the signals 

must undergo video coding prior to transmission, trading a reduction in bandwidth for a 

reduction in quality. Because the human visual system (HVS) places greater relative 

importance on lower frequencies than higher frequencies, typical motion video is 

perceived as primarily lowpass [4]. Therefore, lossless two-dimensional (2-D) transform 

methods are used to create a frequency domain representation of an image. The HVS 

perceptive properties can then be exploited by quantizing the resulting coefficients to 

varying degrees of precision with higher precision allotted to the lower frequency 



coefficients. Quantization reduces the dynamic range of the coefficients and loses 

information, but it enables fewer bits to represent the coefficients. Usually, many of the 

higher frequency coefficients are zeroed out via this quantizing process; runs of zeroes 

are created. Because zeros need not be explicitly represented, run-length encoding (RLE) 

is utilized to generate a more compact representation of the quantized coefficients, which 

is subsequently replaced by a more efficient lossless variable length code (VLC). These 

techniques are collectively called spatial compression. Spatial compression is the basis • 

of image compression standards like that of the Joint Photographic Experts Group 

(JPEG). 

A video codec may simply treat each frame of a video as a separate still image 

and subject it to spatial compression independently from the other frames. This approach 

is known as intraframe coding. An example is Motion-JPEG (M-JPEG). Jutraframe 

coding has the advantage of superior error resilience since decode errors are confined 

strictly to the current frame. Its disadvantage is that compression gain with acceptable 

image quality is limited to approximately 0.5 bits per pixel (bpp) [4]. 

For a given quality, higher compression gains are realized if the video codec 

exploits the high degree of correlation that video frames tend to exhibit on a frame-to- 

frame basis. This is called interframe coding, and it eliminates redundancy by coding 

only the differences in successive frames. The compression gains achieved by interframe 

coding vary in relation to the degree and type of motion that occurred between successive 

frames. Nearly static-content frames exhibit high correlation and result in high 

compression gain while highly dynamic-content frames have little correlation and result 

in less compression gain. If two successive frames have no correlation, perhaps due to a 

scene change, interframe coding performs no better than intraframe coding and typically 

performs worse due to the overhead required to track motion. The disadvantage to 

interframe coding results from the dependency between frames at the decoder. Jf errors 

occur in the current frame, the errors tend to propagate among frames as well as spatially 

within frames [5] [6]. Consequently, video codecs like that of the Moving Pictures 



Experts Group (MPEG) incorporate both types of compression techniques in an attempt 

to increase compression gain and bound error propagation. 

3.        Traditional Video Codecs 

Low bit rate video coding standards such as H.261 and H.263 perform best in 

homogeneous, unicast environments. The video server negotiates a desired Quality of 

Service (QoS) consistent with the desired video quality and available bandwidth prior to 

delivery. Since network conditions are rarely static, the received video quality typically 

changes due to dropped or incomplete frames caused by losses within the network. With 

the implementation of a closed loop control scheme via feedback reports from the 

recipient, the server can react to the changing network conditions and adjust the 

quantization, frame size, or frame rate in order to vary the bit rate. 

However, when traditional video codecs are applied in a wireless, multicast, 

heterogeneous environment, shortcomings are revealed. First, the traditional scheme 

relies on guaranteed bandwidth for delivery, trading bandwidth for quality. Selecting an 

appropriate quality (and therefore required bandwidth) poses a dilemma in a 

heterogeneous network. Since each user is reached by a different path on the network, 

each experiences different levels of congestion. Even with feedback, the controllable 

application is faced with a quandary in determining how to make adjustments. Sending 

high quality, high bandwidth video supports some users but leaves low bandwidth 

recipients with degraded video due to high packet loss. If the lowest common 

denominator is supported instead, all recipients are forced to view lower quality video, 

and the high bandwidth links are underutilized. Clearly, meeting the varied expectations 

with a single video stream is impractical and transmitting multiple video streams with 

gradations in quality demands a much greater bandwidth expense. 

Second, the poor error robustness demonstrated by traditional low bit rate video 

coders is especially troublesome since retransmission is not practical in a real-time 

application. Finally, feedback itself is undesirable in a low bit rate network. Feedback 

employed with the goal of mitigating congestion actually consumes available bandwidth, 

causes an additional load on constrained nodes, and increases congestion further. 



4.        Receiver-Based Layered Multicast (RLM) 

A promising approach that offers a solution to the network heterogeneity problem 

while offering some improvement in error robustness is the receiver-based layered 

multicast (RLM) scheme proposed by McCanne et al. [7]. RLM employs a layered video 

codec that transmits video in scalable layers that progressively refine quality. An 

independently decodable base layer is generated that guarantees a minimum acceptable 

quality. Separate enhancement layers increase quality in a hierarchical manner. With 

RLM, each recipient can decode just the base layer for low, but acceptable, quality or add 

one or more enhancement layers to improve quality as bandwidth and hardware permit. 

This idea is illustrated in Figure 1-2. 

Layered Decoder 

Base Layer 
w 

Base 
Layer 

Layered 
Encoder 

Lowest 
*" Quality 

M* s+ Enhancement 
Layer(s) 

Video 

£ Layer(s) 
Higher 

^ Quality 

\J i) 
Video 

Figure 1-2: Overview of Layered Coder/Decoder. 

RLM represents a starting point for designing an integrated approach to 

improving robustness. The layered structure slightly reduces the effects of congestion 

because a particular node only needs to carry subscribed layers. Unsubcribed layers can 

be dropped. Figure 1-3 illustrates this concept. Furthermore, earlier work by Rhee and 

Gibson indicates that layered video exhibits improved resilience to bit errors introduced 

during transmission because spreading bit errors across multiple layers has less negative 

impact on the reconstructed video [8]. 
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Figure 1-3: Adapting to Network Heterogeneity Using RLM. 

B. THESIS OBJECTIVE 

The main objective of this thesis is to implement in Matlab1 the new layered video 

coding scheme for a tactical VTC proposed by Parker [9] [10] for use in multicast, 

hetergeneous, wireless, asynchronous transfer mode (ATM) networks. The tactical VTC 

session is assumed to consist of low-motion video, such as a "talking head" in the style of 

a typical newscast and static displays in the style of an overhead presentation. No 

assumption is made about the relative proportions of the two types of content; the session 

could be all low-motion video, a sequence of static displays, or any combination of the 

two types in any order. 

The complete specifications of the coder are detailed in Table 1-1 [9]. For the 

implementation in this thesis, a color depth of 8-bit grayscale is evaluated, but the 

technique can be expanded to include 4:2:0 sub-sampled 24-bit color. Audio 

compression to 8 kbps or less may be accomplished via code excited linear prediction 

(CELP) speech coding, but it is not addressed further in this work. Error robustness is 

provided via a block updating scheme that limits the impact of decoder errors. Layering 

is accomplished by judiciously grouping the frequency domain content obtained from the 

fast Haar transform (FHT) and/or the discrete cosine transform (DCT); the exact method 

of frequency decomposition depends on the video content. Handling both motion video 

Matlab is a registered trademark of The Math Works, Inc. 



and static slides with a single coder requires significant flexibility and compromise since 

the frequency characteristics of each are different. Therefore, the coder is optimized to 

handle each type of content separately - separate layering and separate, custom VLC 

tables. Finally, the bit rate control issue is examined, and an approach that reduces an n- 

dimensional rate control problem to a simple table lookup is implemented. 

VTC Stream Parameter Value 
Video Bandwidth 64-96 kbps 

Resolution 176x144 (QCIF) 
Frame Rate lOfps 
Color Depth 8-bit gray/4:2:0 24-bit color 

Audio    Bandwidth  < 8 kbps        

Table 1-1: Tactical VTC Multimedia Requirements. 

C. THESIS ORGANIZATION 

Chapter II considers techniques for coding video. A general discussion of video 

stream structural hierarchy, transform coding methods, quantization techniques, entropy 

encoding, frame coding, and quality measurement is presented. Chapter HI presents the 

specific techniques utilized in coding both motion video and static slides. Chapter IV 

presents results. Conclusions and recommendations for future study are given in Chapter 

V. Appendix A and Appendix B provide the custom VLC tables used with motion video 

and static slides, respectively. Appendix C is a Matlab code library of the layered video 

coder implementation. 





II.       LAYERED VIDEO CODER DESIGN CONSIDERATIONS 

The basic components of a video coder are shown in Figure II-1. This chapter 

begins with an explanation of video stream hierarchy and then discusses each of the 

component parts displayed in Figure II-1. Motion compensation is present only if the 

coder attempts to exploit frame-to-frame correlation. Otherwise each frame is processed 

independently. The chapter concludes by addressing a method for quantifying the 

amount of distortion introduced by the processing. 

Input Video 
Transform Quantize 

Entropy 
Encode |                    Y         ' 

\ Motion 
Compensation 

Compressed 
Video 
Stream 

Figure II-l: Basic Components of a Video Coder. 

A. VD3EO STREAM STRUCTURAL HIERARCHY 

A video stream is organized into a hierarchy of logical components. Although the 

specific organizational scheme varies with the particular coder under consideration, some 

of the most common components are the following. 

A frame or picture is the basic display unit. It is a sampled version of the original 

scene taken at ä particular instant in time. Each frame is composed of a rectangular array 

of pixels or points within the frame. Each pixel contains a data structure indicating its 

luminosity or color. The dimensions of the array define the picture resolution, given as 

columns x rows, such as the ITU-T defined QCIF resolution of 176x144. Pixels within a 

frame are organized, in order of increasing size, into blocks, macroblocks, and groups of 

macroblocks (GOBs). A block is an 8x8 array of pixels; a macroblock is a 16x16 array 

of pixels or, equivalently, four blocks. A frame may be considered as rows of 



macroblocks. One or more contiguous rows of macroblocks are termed a GOB. This 

hierarchy is illustrated in Figure II-2. 

Group of Pictures 

Picture 1 Picture m 

1 
GOBI • • • GOBn 

1 • • • 

MB1 MBp 

1   i .   1   1 
Block Block 

• • • 

Block Block 

Block Block Block Block 

Figure II-2: Organizational Hierarchy for Compressed Video. 

B. TRANSFORM CODING 

Although compression through direct scalar quantization of pixel values is 

possible, it is inefficient. An alternative approach is to use transform coding. Because 

contiguous pixels within a frame tend to be highly correlated, the application of a suitable 

linear transform2 to decorrelate the pixels yields two primary advantages. The first is a 

property termed "energy packing" efficiency. The second is that the resulting 

coefficients are more conducive to perceptual-based quantization schemes. 

2 The transform should be lossless and invertable.   Lossless means that no information is lost through 
application of the transform. Invertable means that the original information is recoverable. 

10 



A signal is decorrelated if the application of a transform causes the signal's 

autocorrelation matrix to become diagonal; that is, it uncorrelates the resulting 

coefficients. The optimal transform tightly packs all the energy (information) into the 

minimum number of coefficients possible, resulting in the highest energy packing 

efficiency. Arranging these N coefficients in decreasing order of magnitude and retaining 

only the first k coefficients gives the least distortion as measured by mean squared error 

(MSE) compared to any other set of k coefficients. Similarly, a given level of 

quantization of the decorrelated coefficients results in the least distortion of the original 

data [11]. Because certain transform coefficients may hold greater perceptual relevance 

by the HVS, this dependency can be exploited by utilizing a frequency-based transform 

and then quantizing- a lossy process - with a step size proportional to the perceptual 

importance of each coefficient. 

1.        Discrete Cosine Transform (DCT) 

Theoretically, the discrete-time Karhunen-Loeve transform (KLT) provides the 

greatest energy packing efficiency [11]. However, two liabilities preclude the use of the 

KLT in video compression. First, the KLT is extremely computationally intensive - 

requiring order N2 operations. Second, the KLT is signal dependent - requiring a 

separate eigenvector calculation for each transformed data block. Instead, transforms that 

approach the energy packing efficiency of the KLT and possess more efficient algorithms 

are utilized in video coders. 

A widely used transform for image processing is the two-dimensional (2-D) 

discrete cosine transform (DCT). The 2-D DCT provides energy packing performance 

very close to that of the KLT and can be implemented with fast algorithms that reduce the 

computational effort to the order of Nlog2N [4]. A frame is transformed by partitioning 

the frame into NxN regions of pixels and applying the 2-D DCT to each individual 

region. N can be any integer provided that integer multiples of N equals the overall 

dimensions of the frame. Because the correlation among contiguous pixels tends to 

decrease with increasing size of the NxN region which, in turn, decreases the resulting 

compression gain, the typical NxN size used with the 2-D DCT is 8x8 (a block). 
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Denoting the original block asf(i,j) and the coefficient block by F(u,v), the 2-D DCT is 

given by [4] 

^,v)Ua«)C(v)i;2;/ft^cosrfii±fc)ccsf£^l,    m) N hZj^Q V    2N     J     \     2N     ) 

where 

C(x)   =   « V2 
1,     otherwise. 

The inverse DCT is given by 
JV-1 AT-l 

/(U) = |:2;2;C(M)C(v)cos 
u=0 v=0 

(2i + l)mi\    ({2i+\)m\r/ 1 — cos — \F(u,v 
2N     )    [    2N     }K 

(H-2) 

).     cn-3) 

The result is a block of 64 coefficients having a spatial frequency interpretation as 

shown in Figure 11-3. The F(0,0) coefficient represents the DC contribution and the 

remaining 63 coefficients represent the AC contribution. The different elements of an 

image map into the frequency domain as shown in Figure II-4 [4]. The application of the 

2-D DCT to an 8x8 block, where there is typically little variation from pixel to pixel, 

leads to a predominance of lowpass content in the frequency domain. Given this 

condition, the magnitudes of the AC coefficients are largest in the region around the DC 

coefficient and diminish with increasing spatial frequency. 
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Figure II-3: Frequency Interpretation of DCT Coefficients. 
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Figure II-4: Structural Decomposition of Image Elements [4]. 

2.        Discrete Wavelet Transform (DWT) 

Wavelet coding is another technique for compressing still images and has been 

shown to offer slightly better image quality than DCT-based schemes for similar levels of 

compression at the cost of greater computational complexity [12]. Applying a wavelet 

transform to an image transforms that image into a "multifrequency component 

representation," where each component has its own frequency characteristics and spatial 

features.3 A discrete wavelet transform (DWT) filters and decimates an image into 

3 The wavelet transform, like the 2-D DCT, is lossless and invertable. 
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separate subbands of coefficients containing a mixture of the high frequency and low 

frequency details. Image decomposition is accomplished via two analysis filters. The 

first extracts the low frequency content, the signal average; the second extracts the high 

frequency content, the signal details. 

The simplest example of a DWT is the fast Haar transform (FHT) [13]. It is 

described by its signal average equation, 

fl1(n)=|(x0(2n) + x0(2n + l)) (H-4) 

and its signal detail equation, 

dx(n) =-(*0(2n)-jc0(2» + l)), (H-5) 

where XQ is the original data vector, and vectors a\ and d\ are the first order analysis 

(decomposition) vectors. If xo contains 2L elements, applying Equations H-4 and II.5 

generates analysis vectors of length 2L"i. 

Referring to Figure II-5, the LL subband is calculated by applying the average 

equation to the columns and rows of the image. The LL subband retains the lowpass 

information from the original image and presents a coarse representation of the original 

image. Because typical images have lowpass characteristics, most of the energy from the 

image is represented in this subband. The HL subband is calculated by applying the 

average equation to the columns of the image and the detail equation to the rows. The 

HL subband retains the vertical edge details from the original image. Typically, less 

energy from the original image is represented in the HL subband compared to that of the 

LL subband. The LH and HH subbands are found analogously with LH retaining 

horizontal edge details and HH retaining the diagonal edge details. The HH subband 

typically has the lowest energy content. In fact, in some applications the HH subband is 

discarded in its entirety [14]. 
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Figure II-5: Octave-Based Wavelet Decomposition. 

In order to differentiate the frequency content of an image further, a second DWT 

can be applied. Still referring to Figure II-5, the effect of a second order octave-based 

decomposition obtained by applying the same analysis filters to the LL subband is 

illustrated. This increase in the number of subbands allows tailoring additional stages in 

the coder to emphasize the perceptually important details over less perceptual 

background noise as will be discussed in greater detail later. 

3.        Comparison of Transforms 

Since the 2-D DCT is applied to pixel blocks within a frame that are subsequently 

quantized, it has a tendency to create "blocking" artifacts that disturb the continuity of the 

reconstructed frame. The same effect also leads to the presence of "ringing" artifacts 

around sharp edges. In contrast, the wavelet transforms typically are applied to the entire 

image and separate the entire image into regions of high and low frequency content. 

These regions may be quantized and coded independently and result in more efficient bit 

allocation. This produces a more visually pleasing, smoother reconstructed image 

compared to that obtained via a 2-D DCT at a comparable peak signal-to-noise ratio 

(pSNR). In general, at comparable pSNRs, wavelet transform coders offer compression 

gains superior to that of DCT-based coders [12]. 

However, several drawbacks have limited the utility of wavelet-based video 

compression. Wavelets achieve quality superior to DCT-methods by processing the 
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entire image or frame, but traditional video coders exploit temporal correlation at a 

subframe (usually macroblock) level. Although the error block could be transformed via 

a DWT, no significant advantage has been determined over the DCT, and the 

computational effort is greater [12]. However, the frequency decomposition offered by 

DWTs provides a powerful basis for layered video coding. 

C. QUANTIZATION TECHNIQUES 

After the transform, the coefficients are quantized. Quantization is a lossy 

process used to reduce precision and zero out some coefficient values. The benefit is that 

each coefficient can then be represented with fewer bits. However, the information loss 

is not recoverable, and the loss is manifested as distortion within the reconstructed image. 

This distortion is termed quantization noise. 

The typical quantization scheme, uniform quantization, involves dividing each 

coefficient Fuv by the quantizer step size Quv and rounding the result to the nearest integer 

to produce a quantized coefficient Fquv as follows [15]: 

F    = nearest integer (n-6) 

The values used in image reconstruction are then Fquv multiplied by the step size. 

However, as Equation II-6 implies, the step value may be adjusted for each particular 

coefficient with Qm now representing elements of a quantizer matrix. Choosing the 

appropriate step size involves a trade-off between acceptable error and desired 

compression. Employing a small step size yields low quantization noise but little 

compression. The opposite is the case for a large step size. Although uniform 

quantization is often used, the choice is suboptimal since the individual coefficients are 

not distributed uniformly [16]. However, two broad approaches are employed to refine 

the selection of step size: HVS weighting and bit allocation strategies. HVS weighting 

heuristically refines the step size based on perceptual relevance while bit allocation 

strategies attempt to spread errors optimally across all coefficients. 
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1.        Human Visual System (HVS) Weighting 

Because the HVS places greater relative importance on lower frequencies than 

higher frequencies, step sizes based on HVS modeling are selected such that lower 

frequencies coefficients are quantized more finely while higher frequency coefficients are 

quantized more coarsely [4]. The HVS is also more acute to luminous intensity than 

chromatic intensity. Therefore, different quantizer matrices are developed for each. An 

example of a luminance quantization matrix widely used in JPEG compression is given in 

Figure II-6 [4]. The dimensions match the 8x8 block size used with the 2-D DCT. In 

application of a quantizer matrix, the entire matrix can be scaled by a multiplicative 

constant in order to scale quantization noise and compression while maintaining the 

relative importance among the coefficients. 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 
72    92     95     98   112   100   103     99_ 

Figure n-6: HVS-Based Luminance Quantization Matrix [4]. 

2. Bit Allocation 

Using a bit allocation approach, the value of the step size is chosen to minimize 

distortion within a bit budget. It is a classical resource allocation problem, where the 

fundamental trade-off in quantization is between rate (number of bits) and distortion 

(approximation error) formalized as rate-distortion theory. Several sophisticated 

algorithms utilize Lagrange methods applied to arbitrary rate-distortion curves. Of these, 

a popular approach is varying the step size in proportion to the variance of the coefficient 
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[17]. However, bit allocation schemes, regardless of the methodology, do not account for 

the sensitivity to different spatial frequency characteristics of human visual perception. 

D. ENTROPY ENCODING 

Further compression can be realized through a lossless process called entropy 

encoding that removes redundant information. The simplest style of entropy encoding is 

run-length encoding (RLE). With RLE, a data set is parsed to locate sequences of 

repeated values. Any such sequence is replaced by a codeword consisting of a delimiter, 

the value, and the number of times the value is repeated. The longer the sequence of the 

repeated value, the greater the available compression. Following quantization, many 

elements of a coefficient block typically have a value of zero. Often many high 

frequency rows and columns are completely composed of zeros. Accordingly, it is 

advantageous to scan the coefficient block in a manner as to produce the longest runs of 

zeros, hi JPEG compression, scanning the quantized coefficient block as a vector in 

zigzag fashion starting with the DC coefficient down to the F8,8 coefficient has been 

shown to increase the run-length of zeros [4]. Since the repeated value here is known (0), 

an adaptation of the basic codeword scheme cited above consists of the run-length of 

zeros followed by the magnitude of the next non-zero value. If there is no remaining 

non-zero value in the block, a special end-of-block (EOB) codeword is used instead. 

After RLE, the quantized coefficient block is represented by a set of codewords, 

where each codeword represents a symbol drawn from a larger source alphabet. Variable- 

length coding (VLC) minimizes the average codeword length by assigning shorter 

codewords to the most probable symbols and longer codewords to the least likely 

occurring symbols while maintaining each uniquely decipherable (UD). Huffman coding 

is the most widely used entropy-encoding algorithm and is guaranteed to produce a 

minimum average length, UD code [15]. The Huffman algorithm uses each symbol's 

probability of occurrence and builds a prefix code using an optimum binary-branching 

tree. Since both the coder and decoder need to use the same coder and generating a 

Huffman table is computationally expensive, standard tables are normally pre-defined 
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using data drawn from test images. Optimal compression is no longer guaranteed, but 

encoding and decoding are faster, and the need to transmit the VLC table is avoided. 

E. FRAME CODING 

As discussed previously, intraframe coding compresses each frame of a video as a 

separate, still image. Its advantage is superior error resilience; its disadvantage is limited 

compression gain. Interframe coding exploits frame-to-frame correlation by coding only 

the difference in successive frames, thereby allowing the potential for higher compression 

gain than that achieved by intraframe coding alone. The disadvantage to interframe 

coding is in robustness since decode errors can propagate between frames and spatially 

within a frame depending on the algorithm. 

Because of the compression required for the target VTC scenario, strict intraframe 

coding is not an option. Therefore, a robust algorithm for interframe coding is needed. 

Several source-coding techniques used to exploit temporal redundancy, such as motion 

compensation, differential pulse code modulation (DPCM) and block updating, are 

discussed in [4]. For a robust application in a real-time, heterogeneous, multicast 

environment, block updating was judged the most promising and is discussed further. 

Interframe coding via block4 updating is a variation on intraframe coding. With 

block updating, each block in the current frame is compared to the corresponding block 

in the previous frame, and a distance metric is calculated. If the metric is above a 

threshold value, that block is intracoded and transmitted. Otherwise, no further 

consideration is given to that block; it is skipped. Thus, block updating conserves 

bandwidth by coding and transmitting only those blocks that have changed perceptually 

since the previous frame [18].   In low-motion video, such as the "talking head" scenario, 

motion is confined to a relatively small region within a frame and the background 

remains static. A significant bandwidth savings is possible. 

4 In this context, "block" implies an NxN pixel region, not necessarily 8x8. 
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In order for block updating to be effective, a suitable distance metric must be 

defined. Common distance metrics employed are MSE, sum of absolute differences 

(SAD), and absolute sum of differences (ASD) [4] [14]. 

Utilizing block updating alone for a tactical VTC, where end-users may join a 

session that is already in progress, has a liability. End-users joining late will never 

receive a block that does not exceed the selection threshold, thus leaving them with a 

partially reconstructed video. In order to mitigate this affect, block updating can be 

combined with an aging algorithm that periodically forces block updates. Such an 

algorithm guarantees a full scene reception within some set interval [14]. 

F. MEASURING QUALITY 

Given that video coders trade compression gain for image quality, quantifying the 

level of distortion introduced is useful in evaluating different coding schemes. A useful 

measure of image distortion D is the MSE between the original (x) and reconstructed 

(Jc) images [4]: 

1    N M 

Using distortion D, the signal-to-noise ratio (SNR) is determined as 

SM? = 101og10—, (E-8) 

where a2 is the variance of the original image. The most widely published measure of 

image quality is the peak signal-to-noise ratio given by 

pSNR = lO\og10?~, (H-9) 

where K is the maximum peak-to-peak value in the image, 255 for the typical 8-bit 

image. For example, a typical peak SNR for a typical JPEG encoded grayscale image is 

28 dB at 0.5 bpp. 

Using MSE as a measure of image quality does have drawbacks. MSE does not 

directly define perceptual quality since all errors are given equal weight. Two 
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compression techniques yielding the same MSE for an image may deliver slight 

differences in perceptual quality. 
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m.  LAYERED VIDEO CODECS 

A. LAYERED CODING SCHEMES 

Parker [9] discusses several previous approaches to layered video coding. They 

can be classified into three fundamental categories: component-based layering, spatial- 

based layering, and frequency-based layering. 

Component-based layered coders transmit a base layer and usually a single 

enhancement layer. A traditional DCT-based coder (yielding some set quality) supplies 

the base layer. The enhancement layer improves this quality by either providing 

augmenting information to the base layer or correcting distortion present within the base 

layer. Two such schemes are proposed by Rhee and Gibson [8] [20]. Implicit in the 

component-based approach is that the enhancement layer may duplicate information 

already present in the base layer. 

Spatial-based layered coders partition a frame into hierarchical areas of interest 

and encode each area separately. For example, the "talking head" frame shown in Figure 

ni-1 may be partitioned into two areas of interest with the speaker being of primary 

interest and the remainder of the frame being of secondary interest. With spatial-based 

layering, relatively more bandwidth would be allocated to the region encompassing the 

speaker with the balance of available bandwidth being apportioned to the rest of the 

frame. Bahl and Hsu [21] have proposed a coder that incorporates content-sensitive 

spatial decomposition and multiresolution coding. The difficulty with implementing a 

spatial-based coder is creating the hierarchical areas of interest dynamically while 

minimizing the overhead required to identify their shifts relative to the layer assignments. 
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Figure III-l: Sample "Talking Head" Video Frame. 

Frequency-based layered coders decompose a frame into subbands and then 

arrange the subbands into individual layers. The frequency decomposition may be 

applied to the entire frame or individual macroblocks within the frame. Each layer may 

contain one or more subbands. The base layer contains at least the low frequency 

subband but may also contain higher frequency subbands in order to improve base layer 

quality. Figure DI-2 illustrates this concept using the DWT to decompose a frame, where 

the LL subband alone constitutes the base layer, the LH and HL subbands are combined 

into a first enhancement layer, and the HH subband constitutes the second enhancement 

layer. 
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Figure III-2: Basic Layered Video Coder Using the DWT. 

The principle advantages to frequency-based layering are its extendibility and 

flexibility. Further decomposing the frame through application of the DWT to each 

subband depicted in Figure III-2 creates a total of 16 subbands. Repeated application of 

the DWT to these subbands creates even more subbands. With a larger number of 

subbands, there is increased flexibility in the manner in which they can be assigned to 
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layers. This, in turn, facilitates exploiting each subband's perceptual importance. 

Additionally, a greater number of subbands permits a greater possible number of layers. 

Three coders that utilize the frequency-based approach are discussed in [14], [22], and 

[23]. 

B. A LOW-COMPLEXITY, ADAPTIVE CODER FOR TACTICAL VTC 

As cited above, several diverse approaches to designing layered coders have been 

proposed; each emphasizes different network architectures or applications to varying 

degrees. However, there is neither a consensus in identifying a preferred, structured 

approach nor a consensus in quantifying those parameters that make a layered coder 

effective. This section presents the development and implementation of a new layered 

coder that is specifically tailored for the tactical VTC scenario where limited transmission 

bandwidth is available, and the robustness of transmission is at a premium. 

Both the characteristics of the tactical VTC application and the desire to quantify 

effectiveness guide the strategy for developing and implementing the new layered coder. 

Specifically, the application yields five requirements. The coder must 1) provide a video 

stream characterized by the bandwidth, resolution, frame rate, and color depth detailed in 

Table 1-1,2) optimize compression adaptively for both low motion video and static 

slides, 3) provide a low complexity architecture to minimize coding delays and power 

requirements, 4) provide error resilient decoding at high packet loss rates, and 5) 

constrain bit rate to a predetermined average. 

The guiding factors stemming from the desire to quantify effectiveness are 

twofold. First, the coder must provide a base layer with acceptable quality and two (or 

more) enhancement layers that progressively improve perceptual quality. Second, the 

coder must minimize the bitstream overhead required to accommodate the layering 

structure. A functional diagram of the implemented coder is shown in Figure DI-3. Each 

component is addressed in follow on sections. 
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Figure III-3: Functional Block Diagram of Proposed Layer Coder. 

1.        Temporal Compression via Block Updating 

Temporal compression is accomplished via block updating applied at the 

macroblock level. Only those macroblocks exhibiting sufficient change on a frame-to- 

frame basis are encoded. Although block updating has been shown to yield inferior 

compression performance relative to motion prediction algorithms, block updating was 

chosen because the performance differential is small when low activity video is 

considered [24], and greater robustness is realized because temporal error propagation is 

greatly limited and spatial error propagation is eliminated. Block updating also negates 

the need for the locally decoded reference frame that is common to motion prediction 

schemes. This greatly simplifies the coder by eliminating the overhead required by the 

performance of an inverse quantization/transform at the coder. Block selection, as 

considered here, is solely with regard to motion video sequences. Since static slide 

sequences exhibit little or no motion, block selection via motion detection is of limited 

utility there. Indeed, transmissions during static sequences result from considerations 

presented in the next section, where macroblock aging is discussed. 

Sufficient change between corresponding, frame-successive macroblocks is 

determined by calculating a distance metric between them and comparing the result to a 

threshold. The distance metric utilized is the non-normalized ASD given by: 
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ASD = 
M    N . M    N 

IS 
m=l n=l 

where JC„ „represents the pixel value within the current block while x* „ represents the 

pixel value in the reference block. The primary reasons for choosing ASD over other 

metrics are twofold. First, the ASD is computationally efficient compared to MSE and 

SAD. The ASD employs only additions and subtractions and a single absolute value 

operation. MSE requires expensive multiplication operations - making it ill suited to 

real-time applications. SAD requires the same number of additions and subtractions as 

ASD, but it requires MxN- 1 more absolute value operations. Second, since the ASD 

takes a single absolute value of a sum, it acts as an accumulator and provides a lowpass 

filtering effect that removes noise in pixel intensities introduced through video capture. 

This smoothing prevents the threshold from being exceeded spuriously in otherwise static 

regions of the frame sequence whereas the nonlinear operations performed on a per-pixel 

basis in MSE and SAD tend to accumulate this noise energy and yield spurious block 

selections. Thus, the ASD metric allows bandwidth to be more effectively devoted to 

regions of interest [ 14]. 

Two independent elements affect video quality and, therefore, the required bit 

rate: adequate motion detection (to prevent "jerky" reconstructed video) and control of 

distortion introduced through quantization. The goal in motion detection is to select the 

maximum block selection threshold that adequately captures motion. In the video 

sequences examined, a threshold of 160 (for ASD) proved adequate for detecting 

perceptual motion and resulted in an average of 24.8 macroblocks selected per frame. 

Further considering the issue of computational expense, the ASD metric is applied 

to individual 8x8 blocks within the macroblock; the first block to exceed the threshold 

triggers macroblock selection and ends the search. This avoids the expense of examining 

the remaining blocks of the macroblock. Additionally, since the HVS acuity is more 

sensitive to changes in luminous than chromatic intensity [4], distance calculations are 

confined to the luminous component of each pixel even if chromatic information were 

available. 
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Since motion in VTC scenes tends to be confined to discrete objects within the 

scene (as opposed to scene motion caused by a camera pan), search efficiency is slightly 

affected by the order in which the individual blocks are examined. The approach that 

proved more efficient in the test video sequences considered here is to maximize the 

distance between the first two blocks examined. As shown in Figure 1H-4, two search 

patterns were compared: a clockwise search starting from the upper left block and an X- 

pattern search that examines the upper left block followed by the lower right. Given that 

a macroblock was selected for transmission, the X-pattern resulted in a 2.5% decrease in 

the average number of blocks examined per frame. 
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Figure III-4 Block Search Order; a.) Clockwise and b.) X-pattern. 

Still greater search efficiency is realized by using the X-pattern search and 

varying the starting block of each macroblock to match the anticipated motion at that 

point in the frame. Because motion in VTC sequences is fairly confined, macroblocks 

tend to be selected in the same manner frame-to-frame. For example, a speaker shifts left 

or right and/or slightly up or down. Therefore, search speed is increased by having the 

search algorithm remember the identity of the specific block, termed the "anchor", which 

caused a particular macroblock to be selected in the previous frame. For the subsequent 

distance metric calculations, search begins at the anchor. If the anchor again causes 

selection or if the macroblock is not selected, the anchor identity is unchanged. If 

another block causes selection, the anchor identity is updated. Using this search scheme 

produced an additional 20% reduction in the number of blocks examined for selected 

macroblocks. A more complex approach not examined here is to remember the two 

blocks that most frequently cause selection and tailor the search accordingly. 
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2.        Aging Algorithm 

Utilizing this block updating scheme alone for macroblock refreshment exposes 

some undesirable performance characteristics. One such consequence is termed 

hysteresis. Consider an arbitrary macroblock whose content is changing temporally due 

to the movement of an item within its spatial bounds. The item travels from its initial 

position along some trajectory to its final position. At some point in the trajectory, let the 

change in the macroblock's content be sufficient to exceed the motion-detection 

threshold, so the macroblock is selected for update. If the final position of the item has 

not yet been reached at the time of macroblock selection, the item continues movement to 

its destiny. Once the final position is reached, hysteresis occurs if the distance between 

this final position and the item's position at the last macroblock update is insufficient to * 

force another macroblock selection; that is, the distance is less than the threshold. In this 

case, the displayed macroblock at the receiver is left with a persistent error. As another 

illustration of hysteresis, consider a frame sequence depicting only slight motion 

contained within an arbitrary macroblock's spatial position. If the change between 

successive macroblocks as calculated by the distance metric is below the threshold value, 

the macroblock is not selected for encoding. If several frames in the video sequence 

continue to depict similar slight motion below the threshold, the displayed macroblock at 

the receiver eventually shows a persistent error. 

Another problem is in the duration the error artifacts (introduced by the channel 

through dropped or corrupted packets) are maintained in a receiver's reconstructed video. 

Error artifacts in the dynamic portion of a scene tend to last only a single frame because 

block updates occur frequently. However, any such error in a relatively static region 

tends to persist longer due to the much lower frequency of block updating there. 

A final problem occurs when new participants are allowed to join a VTC already 

in progress (dynamic multicast). Since only those macroblocks depicting motion above 

the perceptual threshold are transmitted, new participants receive only a portion of the 

current scene. Although the portion received is the most dynamic region of frame (e.g. 
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the speaker), a speaker completely disassociated from the background yields an awkward 

reconstruction. 

Complementing the block updating scheme with an aging algorithm that 

intermittently forces macroblock updates alleviates these problems. The general 

principle is that the coder monitors the number of frames since each macroblock was last 

encoded - its "age." If a macroblock's age exceeds a predetermined interval, that 

macroblock is flagged for encoding and transmission. Thus, the aging algorithm 

guarantees a maximum period between macroblock updates and bounds both the duration 

of hysteresis errors and the persistence of visual artifacts caused by the channel. Such 

bounding also ensures that new participants to a dynamic multicast session can construct 

an entire frame in a timely fashion. 

Obviously, forcing selection of macroblocks for transmission that would not have 

been selected otherwise increases the bandwidth requirement, but this impact can be 

mitigated by the manner in which the aging algorithm is implemented. Important 

considerations are the following. Simply increasing the interval for macroblock selection 

by aging decreases the required bandwidth but increases the persistence of decode errors 

at receivers and prolongs the time required for new participants to receive a full frame. 

Merely forcing a macroblock update after n frames have passed without selection leads to 

an undesirable correlation in updates following scene changes. Although motion within a 

scene tends to disperse updates to some extent, a sufficiently static background region 

would still lead to correlation of a significant fraction of the block updates. The worst 

case is realized by a scene change where the new scene is entirely static, such as an 

overhead slide. In this case, the bit rate would spike every n frames. In order to avoid 

undesirable spikes in bit rate, it is advantageous to spread the number of macroblocks 

selected by aging evenly over time. This, in turn, requires a scheme that ages each block 

independently. 

The aging algorithm developed for the coder implemented here tracks the age of 

each macroblock indirectly. Instead of counting the frames since a given macroblock 

was last updated, the coder maintains an update vector identifying the number of frames 
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remaining until each macroblock must be updated. Each value, m, in the update vector is 

chosen from a discrete uniform distribution in the range [l,n] and is interpreted as an 

update scheduled m frames in the future. Using a uniform distribution to schedule 

updates smoothes macroblock selection over n frames and decorrelates the selections due 

to aging. Choosing the aging intervals randomly also prevents events, such as scene 

changes, from correlating updates and causing periodic spikes in bit rate. The specific 

value chosen for n controls the tradeoff between the additional bandwidth required and 

coder responsiveness. For a given value of n, the average number of macroblocks 

selected through aging per frame, M„*, is 

(n + 1) 

where M is the total number of macroblocks in a frame. 

The final block selection algorithm is performed by the function, m_blk_id_xr.m. 

m_blk_id_xr.m is provided in Appendix C, and it incorporates motion detection and aging 

as follows. As each frame is captured, the update vector entry corresponding to each 

macroblock is decremented by one. As each macroblock is processed for selection in a 

given frame, the coder examines the macroblock's entry in the update vector. If its 

corresponding entry has reached zero, the macroblock is selected for transmission. 

Otherwise, the distance metric is applied to determine if the macroblock should be 

selected due to motion. If either criterion is met, a new random entry is generated for that 

update vector position. The order of these two events is important. Since the distance 

metric need not be calculated if the macroblock is selected by aging, there is net decrease 

in the number of calculations required to select a macroblock for transmission. 

For the assumed VTC video format of 176x144 QCIF, M is 99. At the assumed 

frame rate of 10 fps, setting n to 20 guarantees all macroblocks are encoded within two 

seconds and yields 9.43 as the average number of macroblocks selected through aging per 

frame. However, the true bandwidth impact is less than this value since some of the 

macroblocks selected via aging would have been selected by motion. For the test motion 

video sequences considered here, the average number of macroblocks selected per frame 
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increased to 31.4 (from 24.8 without aging). The payoff for this modest increase in 

bandwidth is that all the problems encountered by using the distance metric alone for 

macroblock selection are bounded to this duration. The duration of two seconds 

represents a compromise judged acceptable between the additional bandwidth required 

and the desired coder responsiveness. 

3.        Layering Strategy 

Macroblocks selected for transmission are decomposed in frequency using a 

DWT. Performing the selection process prior to the transform reduces computational 

cost because the transform is only applied to those macroblocks requiring transmission. 

The DWT was chosen since frequency decomposition, as discussed earlier, offers the 

most flexibility in the subsequent populating of layers. However, the task of determining 

a consistent, extendable scheme for determining an appropriate number of layers and the 

manner in which the frequency content within each macroblock was to be apportioned 

across those layers remains. 

Parker [9] proposes a set of heuristic guidelines to determine the appropriate layer 

assignments and bit allocation. First, as layers are to be hierarchical in importance, layer 

assignments should map frequency content to that hierarchy in a manner consistent with 

perceptual importance. Second, the base layer must provide acceptable quality, and the 

addition of each enhancement layer must provide a perceptual improvement in quality. 

Since the broad goal in image or video coding is to remove information that is not 

perceptually relevant, transmitting a layer that provides no perceptual improvement in 

quality wastes bandwidth and is, therefore, undesirable. Third, the number of bits 

assigned to each layer should be substantive so that dropping a layer potentially decreases 

congestion in the network. Finally, the bandwidth consumed by the image data should 

also be sufficient to avoid an excessive relative consumption by network control symbols 

and overhead. This is especially critical for low bit rate video. 

The DWT chosen was the fast Haar transform (FHT). The FHT has several 

desirable properties with regard to minimizing coder complexity. First, the FHT, as a 

real transform, avoids the necessity for complex arithmetic and simplifies storage. 
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Second, the FHT is not computationally demanding, requiring only addition, substraction, 

and left- and right-shifts [13]. Finally, unlike more sophisticated wavelet transforms, the 

FHT does not require extending or padding the data set. However, the simplicity of the 

FHT may lead to blocking artifacts at high compression levels since the average and 

detail calculations are confined only to contiguous pixels. 

Since the defining equations of the FHT and their manner of application to affect 

a first order frequency decomposition were discussed previously in Section II.B.2, only a 

summary of the first order FHT decomposition is detailed in Table HI-1. The operation 

is accomplished via the function fht.m as provided in Appendix C. Again, higher order 

frequency decompositions may be accomplished by recursively applying the FHT to each 

of the subbands created by the next lower order decomposition. 

Array Detail Horizontal 
Operation 

Vertical 
Operation 

LL Lowpass Average Average 
LH Horizontal Average Detail 
HL Vertical Detail Average 
HH Diagonal Detail Detail 

Table ni-1: Significance and Determination of DWT Subbands. 

Although a greater number of layers would offer more flexibility in managing 

quality and congestion, the coder restricts the number of layers to three. The decision to 

limit the number of layers to three was driven primarily by the constraint of a target bit 

rate in range of 64-96 kbps. At these bit rates and with each layer consuming an equal 

amount of bandwidth overhead, three layers appeared to be the limit in terms of 

producing enhancement layers that provided a perceptual improvement in quality while 

maintaining a base layer that rendered an acceptable quality. 

Establishing a suitable layered structure for motion video sequences can be posed 

as the following conditional, two-part problem. Given that n layers are desired, 

determine the degree to which a selected macroblock is decomposed in frequency and the 

manner in which the resulting subbands are assigned into layers. Parker [9] proposes 

using a variant of a split-and-merge algorithm, which was originally proposed by Diab, et 
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al. [25] to identify regions of equivalent activity in the spatial domain, and applying it at 

the macroblock level in the frequency domain to identify region of similar energy and 

perceptual content. The particulars of the implementation follow, but the essence of the 

approach is that a selected macroblock is uniformly decomposed in frequency via the 

FHT, subbands of approximately equal variance are merged, and the resulting regions are 

apportioned into individual layers. These steps were performed on representative video 

sequences, and the ensuing layering structure is implemented within the coder. 

Utilizing representative video sequences, each selected macroblock is uniformly 

decomposed in frequency by recursively applying the FHT until the desired number of 

subbands is obtained. The first order analysis creates four 8x8 subbands; the second 

order analysis produces sixteen 4x4 subbands. The third order analysis results in sixty- 

four 2x2 subbands. Extending the recursion to its limit yields 128 subbands consisting of 

a single point. In practical terms, a second order analysis as shown in Figure m-5 proved 

sufficient for three layers. 

16x16 
Macroblock 

FHT 

8x8 
Subband 

FHT 

4x4 

Figure ni-5: Second Order FHT Decomposition of a Macroblock. 

Next, the variance of the coefficient set composing each subband was determined 

across all frames of video. These variances were then used as a subband merging metric. 

Two benefits are afforded by employing subband variance as the merging metric. First, 

with motion video, the variance of coefficient sets appear to possess an inverse 

relationship to spatial frequency and, by extension, to perceptual importance. That is, the 

more perceptually relevant subbands at lower frequencies exhibit higher variances. 

Consequently, differences in variance provide a convenient mechanism for assigning 
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subbands to a layered hierarchy. Second, grouping subbands with similar variances 

simplifies coder architecture since each group can employ a common quantizer. Several 

quantization algorithms use variance as an indication of the dynamic range exhibited by 

coefficients and allocate bits by varying quantizer step size in inverse proportion to 

variance. The particulars of the quantization scheme employed are discussed in more 

detail later. 

The subband variances calculated from a first order analysis of the test video 

sequences are shown in Figure m-6. Those from a second order analysis are shown in 

Figure III-7. Äs Figure m-6 illustrates, subband variance provides a good indication of 

the energy concentration within each subband. For instance, since motion video is 

characteristically lowpass, the variance is largest in the LL subband and smallest in the 

HH subband. By extension, subband variance therefore serves as a relative indicator of 

the perceptual importance among subbands - an observation that suggests subband 

variance should dictate layer assignments. As Figure III-7 illustrates, a second order 

analysis further separates the frequency content of the subband to which it is applied. 

The LL subband decomposes into the LLLL, LLLH, LLHL, and LLHH subbands 

containing the lowpass, horizontal, vertical, and diagonal edge details, respectively, 

which were previously lumped into the LL subband alone. Performing the second order 

analysis of the LH (horizontal detail) subband apportions energy in a manner symmetrical 

to the original first order analysis; that is, as the LH subband is found in the northeast 

quadrant of Figure m-6, the energy distribution attained by the second order analysis is 

concentrated in the northeast and northwest sub-quadrants with a slightly greater energy 

in the northeast sub-quadrant as shown in Figure m-7. Similar observations can be made 

for the HL and HH subbands. These characteristics further leverage the argument for 

using subband variances to make layer assignments in a hierarchical manner. 

(T2U. 
_2 
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_2 
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_2 
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Figure III-6: Subband Variances after a First Order Analysis (Motion Video). 
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Figure III-7: Subband Variances after a Second Order Analysis (Motion Video). 

After variance data had been gathered for each subband at the desired order of 

analysis, the next step was to merge adjacent subbands exhibiting similar variances into 

an entity termed a "partition." The criterion outlined by [9] is to merge adjacent 

subbands k\ and ki when 

( ~*\ 
log 

where 

\°hj 

1 

<Acr2, (III-3) 

ACT   =—log 
(     2     >* 

max 
_2 

V ^min J 

(III-4) 

where Nb is the total number of subbands created by successive application of the FHT, 

and a min and a max are the minimum and maximum variances, respectively, found among 

all the subbands. Applying the merge algorithm to the subbands listed in Figure III-7 

results in the partitions shown in Figure III-8. Assuming that subbands are statistically 

independent, the variance of each partition P* is now simply the sum of the variances for 

the subbands £,• comprising that partition: 

k,ePt 

(III-5) 
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LLLL LLLH LHLL LHLH 

LLHL LLHH LHHL LHHH 

HLLL HLLH HHLL HHLH 

HLHL HLHH HHHL HHHH 

Pi P2 Ps 

P3 P4 P6 

P7 P8 P9 

Figure ni-8: Partitions Resulting from Merge Algorithm (Motion Video). 

Next, these partitions are assigned to layers Lj until the requisite number of layers 

were created using the set of heuristic rules proposed in [9]. 

Rule 1: No layer may have a greater variance than a lower layer. That is, given N 

layers, 

(m-6) 
< ><>••■>< 

Rule 2: Layers must be populated in order of increasing frequency. A layer may 

not contain a partition of lower frequency content than any layer below it. 

Rule 3: Partitions that meet the criterion given by Equation UI-3 are assigned to 

the same layer even if the partitions are non-contiguous. 

Rule 4: Partitions are applied to layers in a symmetric fashion. 

Rule 5: If more than two subbands comprising a coarser subband remain as 

partitions after merging and applying the above rules, all of the partitions 

comprising the coarser subband are merged together into one partition. 
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Rule 6: If one or more partitions is moved between layers, as required to achieve 

a more balanced distribution of bit rates or quality, move the partition(s) with the 

lowest variance if promoting to a higher layer and the partition(s) with highest 

variance if demoting to a lower layer. 

Application of these rules to the partitions shown in Figure ni-8 culminated in the 

final layering scheme for motion video sequences shown in Figure III-9. The base layer 

is essentially a lowpass-filtered version of the original macroblock, and the two 

enhancement layers progressively added higher frequency details. Additionally, since the 

LL subband retains many of the perceptual properties of the original macroblock, it was 

further transformed using the 2-D DCT via the function, dct_ofJht.m. This additional 

transform allowed the LL subband to be processed using JPEG-based quantization and 

encoding techniques to maximize retention of the most perceptually relevant information. 

Summarizing the process as implemented in the coder, each macroblock selected 

for transmission is decomposed in frequency using the FHT. The LL subband is further 

transformed via the 2-D DCT as previously discussed and assigned to layer I. The HH 

subband is assigned to layer m in its entirety. The HL and LH subbands are decomposed 

with a second application of the FHT. The resulting subbands are then partitioned and 

assigned to layers II and HI as appropriate. 

LL 

HLLL 

HLHL 

HLLH 

HLHH 

LHLL 

LHHL 

LHLH 

LHHH 

HH 

Layer I 
Layer II 

(DCT) 

II Layer HI 

Figure m-9 Final Layering Scheme for Motion Video Sequences. 

The situation with static slide sequences consisting of text and line drawings is 

much different. Sequences such as these demonstrate a greater dependency on their 
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higher frequency components for perceptual recognition. A hierarchical layering scheme 

based on the lowpass characteristics of motion video yields blurred, indistinct 

reconstructions until the higher frequency components are included as well. Such a 

structure, of course, is contrary to the principle of layered video transmission. Therefore, 

a separate layering scheme is needed if the video stream is to include both types of 

sequences. 

The foregoing remarks not withstanding, pursuing the split-and-merge algorithm 

still provides valuable insight. The variances of the subbands produced by a first order 

FHT analysis of the text and line drawing static sequences are shown in Figure HI-10; 

those of a second order FHT analysis are shown in Figure El-11. Compared to Figure 

IQ-6 and Figure IH-7 - the analogous results for motion video sequences - it is clear that 

energy is much more evenly distributed among subbands of static slides. In practical 

terms, this implies a much more complex relationship between variance and perceptual 

importance. 
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Figure HI-10: Subband Variances after a First Order Analysis (Static Slides). 
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Figure IH-11: Subband Variances after a Second Order Analysis (Static Slides). 

Applying the split-and-merge as before results in the partitions identified in 

Figure HI-12. Using the rules of layer assignment as before, a reasonable layering 

scheme might assign partitions Pi, P2, and P4 to layer I. However, this implementation 

led to a poor reconstruction. Even adding P3, P5, and P6 so that the vast majority of the 

energy was included in the reconstructed image failed to provide acceptable quality. 
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Clearly contrary to the motion video case, variance alone is a poor guide to determining 

perceptual relevance. 

LLLL LLLH LHLL LHLH 

LLHL LLHH LHHL LHHH 

HLLL HLLH HHLL HHLH 

HLHL HLHH HHHL HHHH 

Pi P2 P3 

P4 

P7 P5 

P6 

Figure 111-12: Partitions Resulting from Merge Algorithm (Static Slides). 

Producing an "effective" base layer required allocating a portion of the frequency 

content from each of the 8x8 subbands to it. Therefore, while maintaining symmetry in 

assignment, those 4x4 subbands that exhibited comparatively larger variances among the 

four subbands derived from the same parent subband were allocated to layer I. The 

remaining subbands were divided between the remaining layers in order of increasing 

frequency. The final layering scheme for static slide sequences is shown in Figure IH-13. 

LLLL LLLH LHLL LHLH 

- 

Layer I 

LLHL 11681 ISIfci f!|iHH| fiLäyetiH? 

HLLL All! HHLL HHLH Layer I Layer 
m 

HLHL Ililil HHHL HHHH Layer 
m Layer I 

Figure IH-13: Final Layering Scheme for Static Slide Sequences. 

Although the final layering scheme does not stem directly from the partitions in 

Figure III-12, continued analysis on them is insightful nonetheless. Merging partitions 

with similar variance reduces the partitions to those shown in Figure El-14. The 

difference in variances of partitions Pi and P2 is only slightly too large to permit their 
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merging by the criterion of Equation 1H-3. The difference is small enough, however, to 

justify quantizing both bands with the same step size. The simplicity gained in 

quantizing both bands together balances any potentially suboptimal bit allocation. 

Therefore, the final partitions for quantization purposes are as given in Figure lH-15. 

LLLL LLLH LHLL LHLH 

LLHL LLHH LHHL LHHH 

HULL HLLH HHLL HHLH 

HLHL HLHH HHHL HHHH 

Pi P2 P3 

P3 

P4 P2 

Ps 

Figure ni-14: Partitions after Merging Similar Non-Contiguous Partitions. 

LLLL LLLH LHLL LHLH 

LLHL LLHH LHHL LHHH 

HLLL HLLH HHLL HHLH 

HLHL HLHH HHHL HHHH 

Pi P2 

P2 P3 

Figure 111-15: Partitions for Quantizing Purposes (Static Slides). 

4.        Quantization and Entropy Encoding 

After the transform stage, the coefficients are quantized and subjected to entropy 

encoding. For motion video sequences, the process is depicted in Figure 111-16. The base 

layer (LL subband) is quantized using the luminance matrix (Figure E-6) via the function, 

quantizer Jim, run-length encoded using a zigzag scan via the function zzjo.m, and 

converted to a VLC using the luminance VLC table suggested in [4]. The conversion to a 
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VLC is accomplished stepwise via three functions: make_it_compact.m, parseJHuff.m, 

and get_bits_Huff.m. This approach leverages the LL subband's retention of the lowpass 

characteristics of the original macroblock. The implementation is as discussed previously 

in Sections HC and Ü.D with the scaling factor of the quantization matrix designated as 

qi5. The remaining subbands are each quantized uniformly using a common step size for 

all its coefficients. Using variance as an indication of the dynamic range of the 

coefficients within a given subband and comparing to Figure ni-9, it is reasonable to 

quantize all the subbands composing each enhancement layer with the same step size. 

Therefore, the quantizer step size for layer II is set to q2; that of layer HI is set to q3. 

LL 

HULL, HLHL, 
LHLL, LHLH 

HLLH, HLHH, 
LHHL, LHHH, HH 

fc q2 
RLE   ^ k- w w 

RLE   ^ 

Motion 
VLC 

w 

h qs *~ w w w 

Layer I 

Layer II 

Layer HE 

Figure 111-16: Quantization and Coding for Motion Video Macroblocks. 

Unlike the JPEG based coding of the LL subband, zigzag scanning of the 

quantized FHT coefficients provided no apparent coding gain. Instead, trials indicated a 

simpler horizontal raster scan was adequate for all subbands except HL. The HL showed 

a slight preference for a vertical raster scan. This seems rational given the frequency 

detail represented in this band. The scan orders are summarized in Table m-2 where the 

scan order applies to the indicated subband as well as its child subbands. (The LL entry 

pertains only to the coding of the static content macroblocks as discussed later, but it is 

included here for completeness.) Horizontal raster scans are performed by the function, 

As executed in the code, the scaling factor qi is a parameter in quantizerJLm. A value of 16 for q! means 
no scaling of the values in Figure II-6. A value smaller than 16 results in finer quantization and less 
quantization noise, qi must be positive. 
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raster.m; vertical raster scans are performed by the function, verticalm. Upon 

completion of the run-length encoding accomplished by the functions 

make_it_compact.m and parse_3D.m, each coefficient is represented by a set of 

codewords. Each codeword is then mapped to an entry in a custom VLC table via the 

function get_bits2.m. The VLC table is provided in Appendix A. Its structure mirrors 

the three-dimensional (3-D) event structure employed by the H.263 coding standard [26], 

and the methodology of its creation is presented in the next section. 

Parent Subband Raster Scan 
Order 

LL Horizontal 

LH Horizontal 

HL Vertical 

HH Horizontal 

Table ni-2: Scan Order for Run-Length Encoding Quantized Coefficients. 

The quantization and encoding process for selected macroblocks from static 

sequences is shown in Figure HI-17. This process differs from the motion video process 

in three ways. JPEG-based quantization is not used; all sixteen subbands are supplied to 

one of three independent uniform quantizers with fixed step sizes of qi, qi, and q3. 

Contrary to the motion macroblock scheme, the step sizes are not associated with layers, 

but with the partitions depicted in Figure IE-15. Finally, the VLC table that is provided 

in Appendix B and customized for static slides is used. The same three functions cited 

above accomplish these steps with the appropriate VLC table being employed via the 

argument kind in the function get_bits2.m signaling the type of frame under 

consideration - motion video or static slide. 
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Figure III-17: Quantization and Coding for Static Macroblocks. 

Neither Figure DDL-16 nor Figure III-17 indicates the presence of the control signal 

from the Control Unit shown in Figure III-3. The control signal allows manipulation of 

ql, q2, and q3 as required by a bit rate control scheme. Rate control is covered later. 

5.        Generating Customized VLC Tables 

The VLC coding scheme mirrors the 3-D event structure employed by the H.263 

standard. Each non-zero coefficient is replaced by an equivalent event described by three 

RLE parameters [26]:{LAST, RUN, LEVEL}, where LAST indicates whether there are 

any more non-zero coefficients in the current subband, RUN indicates the number of 

successive zeros that precede the non-zero coefficient, and LEVEL represents the non- 

zero magnitude of the quantized coefficient. Each event maps to a VLC codeword to 

which a sign bit is appended to represent the sign of the coefficient. 

Using various combinations of qi, qz, and q3, a series of representative motion 

video test sequences was processed. The processing followed the implementation as 

discussed thus far (except for the last step of mapping each codeword obtained form RLE 

to a VLC table.) The relative frequency of occurrence of each RLE codeword was then 

used to create a Huffman VLC utilizing an optimal binary-branching tree. Since every 

possible {LAST, RUN, LEVEL} event is not guaranteed to be formed by the set of test 

video sequences, the custom VLC table further mirrors the H.263 standard in that a 

default codeword length of 22 bits is used for any event not contained elsewhere in the 

table. 
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A Huffman code offers the following advantages. The average codeword length 

is minimized because the more frequently occurring events are assigned shorter 

codewords (fewer bits) while the less frequently occurring codewords are assigned longer 

codewords (more bits). Additionally, each codeword is uniquely decipherable ensuring 

that no codeword can be a prefix to a longer codeword. 

This same procedure is used here for both motion video sequences and static slide 

sequences. Again, using different VLC tables for the two basic types of video content is 

advantageous because of the inherent difference between their frequency content and, 

consequently, the different makeup of the RLE codeword population. 

6.        Rate-Distortion Relationship 

Compressed video is inherently variable bit rate since compression gain varies 

with scene activity and complexity. However, transmission channels inevitably require a 

constraint on bit rate due to finite channel capacity or QoS guarantees. Most commonly, 

bit rate is constrained to maintain a constant rate or to maintain a constant local-average 

bit rate over time. Many factors affect bit rate, but the most important is the tradeoff 

made between quantizer step size and image fidelity. A larger step size results in a lower 

bit rate and a larger amount of distortion. Reducing the step size increases the bit rate but 

reduces the amount of distortion. Rate control therefore requires evaluation of the rate- 

distortion relationship created by a particular coder design. 

The rate control problem may be posed as a resource allocation problem in terms 

of the rate-distortion relationship, where the goal is to minimize distortion D for a bit rate 

R subject to a bit rate constraint Rc [24], i.e., min{Z)}, subject to R < Rc. The 

corresponding optimization problem is solved using Lagrangian methods and yields the 

optimal solution for a particular rate constraint as a point along the rate-distortion curve. 

Figure III-18 shows a typical rate-distortion curve and an optimal solution for a bit rate of 

R0. While the true rate-distortion curve is guaranteed to be convex [17], the operational 

curve is influenced by the coder design including the motion-detection scheme, the 

quantizer design, and lossless coding gains. Therefore, rate control schemes tend to only 
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approximate the true rate-distortion relationship when determining a method for varying 

quantizer step size to achieve the desired bit rate. 

D a 

Do 

R0 R 

Figure 111-18: Rate Distortion Curve with Possible Optimal Solution. 

Additionally, for a layered coder where multiple quantizer parameters are 

employed, the corresponding multi-dimensional aspect of the rate-distortion curve 

complicates the rate-control problem. Assuming distortion for each layer i is additive, 

the rate control problem becomes minimizing 
N-l 

;=o 

subject to 
AT-l 

2*,**e. 

(ffl-7) 

(ffl-8) 
i=0 

where N is the total number of layers. The assumption of additive distortion implies that 

a decrease in rate requires a suitable decrease in all quantizer parameters to yield an 

optimal solution. However, since the rate-distortion curves in the operational coder are 

not necessarily convex, the approach above does not necessarily give-optimal results. An 

alternate, albeit heuristic, approach proposed by Parker [9] is to simplify the control 

problem by creating a simplified, operational rate-distortion curve. 

Considering the test motion video sequences, an operational distortion curve is 

created by first plotting total bit rate and distortion (measured by pSNR) separately 

through a three-dimensional space spanned by the set of candidate quantizers. This 

process captures the operational effect of the coder design, such as the values of the 
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quantizer parameters {qi,q2,q3} and the VLC coding gain as well as any interdependence 

between layers, on the rate-distortion relationship. The result is best described as a four- 

dimensional (4-D) surface wherein both rate and distortion are functions of a triplet of 

quantizer parameters {qi,q2,q3}. Recall that the first parameter represents the JPEG 

scaling factor while the remaining parameters represent the actual quantizer step sizes. 

Next, the points representing the pSNR surface are sorted in a descending order 

and associated with their corresponding average bit rates and quantizer triplets. Any 

triplet set yielding a higher average bit rate for the same or lower pSNR is discarded. The 

result is an implicit vector quantization of the operational 3-D rate-distortion space. The 

dimensionality of the operational rate-distortion curve is therefore reduced to 1-D as 

shown in Figure IJJ-19. Each point on the curve represents results from a single optimal 

triplet. Considering only those quantizer triplets associated with average bit rates about 

the target bit rates of 64-96 kbps and considering a 5% change in the average bit rate of 

the coarsest quantizer triplet as a reasonable control step, the operational rate-distortion 

curve of Figure IJJ-19 reduces to that shown in Figure III-20. The corresponding 

quantizer triplets are plotted in Figure JU-21. These results indicate that an optimal rate 

control scheme does not necessarily increase/decrease each quantizer parameter in 

lockstep as would be expected if distortion in each layer were independent. 

100 
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Figure HI-19: Operational Rate Distortion Curve (Motion Video). 
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Figure HI-20: Reduced Operational Rate-Distortion Curve (Motion Video). 
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Figure ffl-21: Quantizer Table Triplet Values (Motion Video). 

The same approach was followed for static slide sequences. However, a slightly 

different behavior was observed. Instead of the expected continued decrease in MSE as 

bit rate increased with finer quantization, the behavior was as depicted in Figure DI-22. 

Past a limiting value of MSE, finer quantization and the related increase in bit rate 

yielded no increase in image fidelity. After reconstructing the custom VLC table with the 
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quantizer triplet at that limiting point ({qi:q2:q3} equal to {4:16:16}) the average bit rate 

became approximately 44 kbps as shown. Since this bit rate is below 64 kbps, no 

additional bit rate control scheme was deemed necessary; all static slide sequences are 

quantized with the same triplet. 
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Figure 111-22: Operational Rate-Distortion Curve (Static Slides). 

7.        Bit Rate Control 

This approach to the rate-distortion problem provides a potential method for a 

simplified layered rate control scheme since the set of possible quantizer parameters is 

reduced to a far smaller set of parameters. Considering each triplet as an optimal 

quantizer state, any control scheme would manipulate the quantizers for each layer of a 

motion video sequence by selecting only entries from this set via a simple table lookup. 

Parker [9] proposes two such schemes. One functions at the frame level; the other 

operates at the macroblock level. The former was examined and implemented for this 

thesis in the coder. 

Using the operational rate-distortion curve, a linear control curve relating bits per 

frame B to quantizer setting Q is created as shown in Figure 111-23. The slope AB/Aß 

represents the average increment or decrement in bits per frame with a step change in the 

quantizer table. Dividing this quantity by the average number of macroblocks selected 

per frame in the test sequences, M , yields the desired control parameter ß: 
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The calculated value of ß resulting from the test motion video sequences was -11.346. 

This control parameter was then used to adjust the coder quantizer setting in accordance 

with the following scheme. 

12000 

11000 - 

-e- Control Curve 
  Linearized Control 

Figure 111-23: Operational Rate Control Curve (Motion Video). 

At call setup, the average bit allocation per frame B is set to 

_    Rt. B = target 
(111-10) 

where i?^,., is the channel bit rate, and /is the frame rate. For each new frame i, the 

actual bit allocation from the last frame (z-1) is used to estimate the bit allocation error or 

deviation expected to result from the current frame i if the quantizer setting used in the 

previous frame is not changed. Accounting for the change in the number of macroblocks 

selected between the last and current frames, the deviation expected is: 
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ABint„ =B 
( M ^ 

BH,. (m-ii) 

where Af, is the number of macroblocks selected for transmission in the current frame, 

Mi-i is the number of macroblocks selected for transmission in the previous frame, and 

i?r._j is the number of bits used in the transmission of the previous frame. The required 

change in the quantizer setting is calculated using the deviation Aß inter, the number of 

macroblocks selected for transmission in the current frame M„ and the control parameter 

ß: 

Aß,= 
Aßinter (m-12) 

L M,ß J 
Here, [ J is the fixed integer operator that discards the decimal portion of the result. The 

result indicates the quantizer setting from the last frame should be incremented or 

decremented by Aß, • If the quantizer has reached the upper or lower limit of the table, 

the value is not changed. This quantizer triplet selection scheme is accomplished via the 

function, get_qd_entryf.m. 

This control scheme is only applicable for motion video; a single quantizer 

parameter triplet is used for static slides. The only exception is due to a scene change. 

When a scene change is detected by the coder (as defined in the next section), so much of 

the frame is selected for transmission that a spike in bit rate would occur if quantized 

with any of the triplets available in the control table. To avoid this undesirable spike, the 

first frame of a new scene is heavily compressed. Following this initial frame, the 

appropriate quantization technique ensues. 

8.        Scene Change Detection and Scene Type Determination 

Since the bit rate must be suppressed during a scene change and the coder must 

determine which of two possible layering schemes to employ following a scene change, 

these criteria must be defined. The coder concludes that a scene change has occurred if 

the number of macroblocks selected exceeds a threshold. This threshold was determined 

from the block selection statistics of the test video sequence containing the most highly 
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active content (though still considered low-motion video) of all the test video sequences 

examined. For this sequence, the average number of macroblocks selected per frame was 

34.61 and their standard deviation was 10.19. The threshold was set at three standard 

deviations above the mean (65). The comparison operation is performed in the main 

code block, thesis, m. A frame sequence is determined to be static when macroblocks 

chosen for transmission result solely from aging. In this case, the fixed quantizer triplet 

and the static VLC table from Appendix B are used. Otherwise, the sequence is deemed 

motion video, and the bit rate control scheme discussed above is employed with its 

associated custom VLC table from Appendix B. This determination is performed within 

the function, m_blk_id_xr.m.- 

This chapter began with a presentation of the three basic techniques available for 

layered video coding. The approach implemented here, as proposed by Parker [9], is 

frequency-based and utilizes the FHT and the 2-D DCT for motion video sequences and 

the FHT alone for static slide sequences. Different frequency transforms are used due to 

the inherent differences in the perceptual frequency content within the two types of 

sequences. The method of implementing frame refreshment was detailed as a block 

selection scheme applied at the macroblock level that captures perceptual changes due to 

motion within a scene and limits the duration of decoder errors at receivers by forcing 

macroblock updates via an aging algorithm. Quantization and encoding techniques were 

presented with the implementation including the use of the JPEG standard and uniform 

quantization coupled with one of two custom VLC tables. The issue of rate control was 

addressed, and the implementation of a scheme that reduces a 4-D rate control surface to 

a simple quantizer table lookup to control bit rate at the frame level was discussed. 

Finally, the manner by which the coder detects a scene change and determines the type of 

sequence under consideration was delineated. 
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IV.      RESULTS 

This chapter presents some results from a short video segment consisting of 100 

frames of a single speaker followed by 50 frames of a presentation slide filled with line 

diagrams and text. The Matlab code is contained in Appendix C. A sample frame from 

each sequence is shown in Figure IV-1 and Figure IV-2. Each shows the original frame 

and the reconstructed frame with only the base layer received, with the base layer and the 

first enhancement layer received, and with all layers received. 

Original Frame Layers 1, 2, and 3 

Figure IV-1: Original and Reconstructed Frames from a Motion Video Sequence. 
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Figure IV-2: Original and reconstructed Frames from a Static Video Sequence. 

Figure IV-3 shows the bit rate traces for the 150-frame layered video segment. 

Part (a) displays the traces resulting from the constant motion video quantizer triplet 

({6,12,20}) expected to yield 80 kbps based on the average bit rate resulting form all test 

motion video sequences and the fixed static sequence quantizer triplet. Part (b) displays 

the traces resulting from the bit rate control scheme for the motion video frames with the 

coder attempting to achieve an average 80 kbps and the fixed static sequence quantizer 

triplet. Bit rate spike suppression is employed for the initial frame of each scene as 

discussed previously. The distribution of bit rate offered by a layered video coder is 

evident with the bit rate ratio among layers being approximately 5:3:2 for both sequences. 

As congestion occurs in the network, the higher layers can be dropped to combat the 

congestion while maintaining much of the quality as illustrated in Figure IV-1 and Figure 

IV-2. Neglecting the initial frame, the average bits per frame for the motion video 
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sequence without the control scheme is 7454 bpf with a standard deviation of 1362 bpf. 

With the control scheme, the average and standard deviation are 7988 bpf and 942 bpf, 

respectively. As expected, the bit rate from the static sequence is much lower since the 

bit rate results solely form macroblock aging. This illustrates that rate control is not of 

significant benefit for static sequences. 

12000 

20 40 80 
Frame Number 

(a) 

100 120 140 

12000 

2000 

20 60 80 
Frame Number 

(b) 

100 120 

Figure IV-3: Bit Rates for (a) Fixed Quantization and (b) Bit Rate Control. 

Figure IV-4 quantifies the progressive improvement in quality of the 

reconstructed video based on pSNR for the same 150-frame layered video segment 

illustrated in Figure IV-1 and Figure IV-2. At the beginning of each sequence, quality 

ramps up over the aging interval following a scene change. After this period, quality is 

observed to remain relatively flat for each sequence regardless of the number of layers. 

For the motion video sequence, the base layer provides a smoothed but acceptable 

display. Text is not readable but the speaker's movements are easy to follow. Adding 

the first enhancement layer improves sharpness and adds a 4 dB improvement in pSNR 
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although small text is still difficult to discern. The second enhancement layer only adds 

1-2 dB improvement, but small text is clearly readable and other features with fine edges 

are sharper. With static video, the role of the enhancement layers is even more dramatic. 

Even though most of the macroblock's energy is included in the base layer and 

contributions from each frequency band are included, the base layer still shows much 

softness although the shapes are readily identifiable. The first enhancement layer adds a 

7 dB improvement and dramatically improves sharpness. The final layer, even though 

the bit rate contribution is the smallest of the three layers, almost doubles the pSNR, and 

the reconstructed frame is virtually identical to the original frame. Neglecting the initial 

frame, the average pSNR utilizing all layers for the motion video sequence without the 

control scheme is 29.5 dB with a standard deviation of 1.7 dB. With the control scheme, 

the average and standard deviation are 29.8 dB and 1.9 dB, respectively. Note that these 

values include the ramp up in quality following the initial scene change. These average 

pSNR values are not directly comparable, however, because of the difference in average 

bit rates; the higher quality, rate control approach uses approximately 500 more bits per 

frame. But since this quality is achieved within the desired bit budget of 80 kbps, the rate 

controller allows more effective utilization of the available bandwidth to better image 

fidelity. The statistics obtained from the motion video sequence traces in Figure IV-3 

and Figure IV-4 are summarized in Table IV-1. 
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Figure IV-4: pSNR for (a) Fixed Quantization and (b) Bit Rate Control. 

Parameter WithlRatelCMrbl    Without Rate Control 
Mean Bit Rate (bpf) 
Bit Rate STD(bpf) 
Mean pSNR (dB) 
pSNR STD (dB) 

7998 
942 

29.83 
1.92 

7454 
1362 
29.51 
1.74 

Table IV-1: Rate Controlled and Uncontrolled Motion Video Sequence Statistics. 

Additionally, the issue of the layered video codec's resilience to bit errors 

introduced during transmission was examined using the same motion video sequence as 

above. Using loss rates of 10%, 25%, and 50%, four different case were tested. Case one 

distributed the bit errors across the layers in proportion to their contribution to the total 

bit rate and utilized zero-order error concealment; the reconstructed frame retained the 

content of the previous frame for that portion lost during transmission. If the loss 
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occurred in the base layer, the enhancement layers were neglected. If the loss occurred in 

an enhancement layer, the reconstruction was performed utilizing the base layer and the 

other enhancement layer. Case two treated all layers as a single video stream and utilized 

zero-order error concealment; that is, a transmission loss was a loss for all layers. Cases 

three and four are identical to cases one and two, respectively, except that no error 

concealment was used. Instead an information loss caused the decoder to assign the 

value of zero to all coefficients in the affected layers. As Figure IV-5 illustrates, 

spreading bit errors across multiple layers has less negative impact on the reconstructed 

image at high loss rates. 

30 

25 

20 

m 
c15 
CO 
Q. 

10 

layered with zero order concealment 
single stream with zero order concealment 
layered with no concealment 

G- single stream with no concealment 

10' 10 
Lossrate 

Figure IV-5: Comparison of Error Resilience. 

Considering static slide sequences, the relationship is more complicated. In 

general, since the frame content is entirely static, the best reconstruction in an error prone 

environment is to forgo a macroblock update if the update would be made with fewer 
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layers than the present reconstruction of that macroblock. Further study into the 

implementation of such a scheme is warranted. 

This chapter presented representative frames from a video segment consisting of 

motion video and static slides. For each type of content, the original frame and the 

reconstructions with one, two, and three layers were given. Also presented were plots of 

the bits per frame and pSNR as a function of the frame sequence for both fixed 

quantization and variable quantization using the bit rate control scheme. These plots 

served to quantify the quality depicted in the reconstructions and to illustrate the bit 

allocation among the layers. Finally, the effect of spreading bit errors across layers 

compared to confining them to a single video stream was presented. 
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V.       CONCLUDING REMARKS 

A. CONCLUSIONS 

This thesis has presented the development and implementation of a new layered 

video codec proposed by Parker [9] that emphasizes robust transmission of a video 

teleconference (VTC) at low bit rates. The dual nature of the targeted scene content - 

low-motion video and static slide sequences consisting of text and line drawings - and 

the assumed application in a multicast, heterogeneous, wireless network environment 

required significant flexibility in the implementation. The essential features of the coder 

are summarized as follows. 

Frame refreshment is accomplished via block updating and an aging algorithm, 

both applied at the macroblock level. This approach promotes greater robustness because 

spatial error propagation is eliminated and temporal error propagation is greatly limited. 

The combined technique captures perceptual changes due to motion within the scene, 

limits the duration of error artifacts in the reconstruction at receivers, and ensures that 

new participants in a VTC session that is already in progress receive a complete frame in 

a timely manner. 

The macroblocks selected for transmission are decomposed in frequency using the 

fast Haar transform (FHT). For motion video sequences, the lowpass subband is further 

processed with the two-dimensional discreet cosine tranform. The horizontal and vertical 

edge detail subbands are further decomposed with a repeated application of the FHT. 

Static slide sequences are decomposed solely by a second order FHT analysis. 

The lowpass subband of motion video is quantized and encoded using the JPEG 

standard in order to exploit the human visual system perceptive characteristics. The 

remaining subbands of motion video sequences are subjected to uniform quantization and 

encoding with a custom variable length coding (VLC) table. All subbands of static slides 

are subjected to uniform quantization and encoding with a separate custom VLC table. 

All quantization is performed using a triplet of quantizers, and each subband is quantized 

with one of the triplet parameters based on the variance of subband coefficients. 
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Subbands are assigned to layers by grouping bands of coefficients with similar 

variances into a common layer. Three layers are used in the coder. The base layer is 

independently decodable and yields an acceptable, minimum-quality reconstruction; each 

enhancement layer progressively improves the quality of the reconstruction. 

Bit rate is controlled at the frame level by selecting the quantizer triplet to be used 

in the current frame based on the number of bits used in the previous frame, the desired 

average bit rate, and the number of macroblocks selected for transmission. The 

implementation involves a simple table lookup, which resulted from the optimal one- 

dimensional reduction of a four-dimensional control surface. 

B. FUTURE WORK 

The implementation and the results presented here suggest that the layered video 

codec has potential practical utility to video teleconferencing in multicast, heterogeneous, 

wireless networks. Now, several aspects of the coder can be pursued further. For 

example, although three layers were used in the present implementation, the techniques 

employed can be used to scale the coder to include an arbitrary number of layers. Work 

on techniques to dynamically change the layering scheme within a sequence is desirable. 

The ability to handle color and audio needs to be incorporated into the code. Further 

refinement of the block search pattern utilized for macroblock selection and the 

possibility of rate control at the macroblock level can be evaluated. Also, with regard to 

static slide sequences, investigation of the ability to detect and reconstruct slight 

movement within such a frame, such as the movement of a cursor, is warranted. Finally, 

implementation in a high level language or hardware is another potential future task. 
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APPENDIX A. MOTION VIDEO VARIABLE LENGTH CODING TABLE (VLC) 

The following is the custom VLC table used with motion video sequences. The 

last character in the codeword s indicates the appended sign bit. 

INDEX LAST RUN LEVEL BITS CODEWORD 
1 0 0 1 3 1 1 s 
2 0 0 2 5 0101s 
3 0 0 3 6 10010s 
4 0 0 4 9 10100011s 
5 0 0 5 12 10111001101s 
6 0 0 6 14 1011111001110s 
7 0 1 5 01 00s 
8 0 2 7 100111s 
9 0 3 10 001000101s 
10 0 4 12 10111110000s 
11 0 5 17 1011010010000111s 
12 0 6 14 1011010010100s 
13 0 2 1 5 0000s 
14 0 2 2 8 1011001 s 
15 0 2 3 12 01110001010s 
16 0 2 4 13 001000110110s 
17 0 3 1 6 01111s 
18 0 3 2 9 01100100s 
19 0 3 3 11 1011100101s 
20 0 3 4 13 101101011001s 
21 0 4 1 6 00011s 
22 0 4 2 9 01110010S 
23 0 4 3 10 10110101Os 
24 0 4 4 15 00101101001 111s 
25 0 5 1 6 10010s 
26 0 5 2 10 000101101S 
27 0 5 3 12 10111110001s 
28 0 5 4 16 10110100100011 1s 
29 0 6 1 7 011101s 
30 0 6 2 10 000101110s 
31 0 6 3 14 0111000100000s 
32 0 6 4 16 10110100100011Os 
33 0 7 1 7 011011s 
34 0 7 2 10 001000100s 
35 0 7 3 14 1011111001111s 
36 0 7 4 16 101101001000001s 
37 0 8 1 7 011000s 
38 0 8 2 9 00100100s 
39 0 8 3 10 001011011s 
40 0 8 4 13 011100010001s 
41 0 9 1 8 0010111s 
42 0 9 2 11 001001101Os 
43 0 9 3 14 1001101011000s 
44 0 10 1 8 1011011s 
45 0 10 2 11 1001101001 s 
46 0 10 3 14 001001101101Os 
47 0 10 5 16 101101001000000s 
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14 
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13 
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12 
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9 
13 
17 
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14 
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15 
11 
17 
11 
11 
11 
17 
12 
12 
16 
12 
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16 
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16 
12 
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12 
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14 
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13 
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17 
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001 
001 
101 
001 
01 1 
101 
000 
101 
1 01 
001 
001 
001 
101 
01 1 
101 
1 01 
1 00 
000 
01 1 
101 
101 
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01 1 
01 1 
01 1 
1 01 
000 
001 
001 
1 01 
101 
001 
1 01 
1 01 
1 01 
000 
1 01 
001 
101 
1 01 
101 
1 01 
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1 00 
1 01 
1 00 
1 01 
1 01 
1 01 
001 
1 01 
1 01 
1 01 
1 00 
1 01 
000 

01 10 
0001 
1010 
0000 
1000 
1111 
1 01 1 
1 100 
1111 
01 1 0 
001 0 
0001 
101 0 
0010 
1010 
0001 
1101 
101 1 
0010 
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1 01 0 
001 0 
001 0 
1 000 
1 010 
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01 10 
0001 
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001 1 
1 010 
1111 
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1010 
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1 010 
1 01 0 
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1 1 01 
1 01 0 
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1010 
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1 01 0 
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1 1 01 
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1 01 1 

0s 
1 10 
010 
s 
1 1s 
001 
001 
Os 
111 
1 00 
1s 
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010 
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001 
00s 
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1 10 
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01 1 
01 0 
01 1 
1 10 
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1 00 
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111 
000 
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Os 
101s 

00s 
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1s 
1 100s 

11s 
011010s 

01 1s 

0010s 
s 
011111s 
s 
s 
s 
011110s 
1 s 
1s 
11101s 
1 s 
1101s 
s 
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000100s 
1s 
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Os 
010101s 
OS 
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Os 
010100s 
1 s 
01 Os 
00s 
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1 Os 
010000s 
00s 
010011s 
Os 
01001Os 
00s 
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01 S 
1s 
10s 
00s 
010s 
Os 

s 
Os 
1 000s 
01001001s 

101s 
110101s 
00001011s 
001000011Os 
s 
0101s 
111101s 
001000101s 

1 10s 
100100s 
010010000s 
s 
10111s 
001011000s 
001000100s 
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160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 

5 
5 
5 
6 
6 
7 
7 
7 
8 
8 
8 
9 
9 
9 
10 
10 
11 
11 
11 
12 
12 
12 
13 
13 
14 
14 
14 
15 
15 
15 
15 
16 
16 
17 
18 
19 
20 
20 
21 
22 
23 
23 
24 
24 
25 
26 
27 
28 
29 
30 
31 
31 
32 
32 
33 
34 

1 
2 
3 
1 
2 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
1 
2 
3 
1 
2 
3 
1 
2 
1 
2 
3 
1 
2 
3 
4 
1 
2 
1 
1 
1 
1 
2 
1 
1 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
2 
1 
2 
1 
1 

8 
15 
15 
8 
13 
8 
12 
14 
8 
13 
16 
9 
15 
17 
8 

15 
8 
14 
17 
8 
13 
16 
9 

14 
9 

18 
17 
8 
13 
14 
15 
12 
16 
13 
14 
13 
13 
18 
14 
13 
12 
15 
14 
17 
13 
14 
14 
14 
13 
13 
13 
17 
14 
17 
15 
14 

1 01 
000 
000 
000 
100 
01 1 
1 00 
1 00 
000 
101 
101 
01 1 
001 
101 
1 00 
001 
101 
100 
101 
101 
001 
1 01 
001 
01 1 
01 1 
000 
1 01 
000 
01 1 
000 
001 
1 01 
001 
01 1 
000 
001 
001 
000 
1 01 
001 
000 
1 01 
01 1 
1 01 
1 01 
01 1 
1 01 
1 01 
1 01 
1 00 
1 01 
1 01 
101 
1 01 
01 1 
01 1 

111 
101 
101 
100 
1 10 
001 
1 1 0 
1 1 0 
101 
1 1 0 
1 01 
100 
01 1 
101 
1 10 
01 1 
000 
1 10 
101 
1 1 0 
01 1 
1 01 
001 
1 00 
1 00 
1 01 
1 01 
1 00 
001 
101 
01 1 
101 
01.1 
001 
101 
000 
001 
101 
111 
000 
101 
1 01 
001 
1 01 
1 01 
001 
1 1 0 
1 01 
101 
110 
1 1 0 
1 01 
111 
1 01 
001 
001 

0s 
100 
1 00 
1 s 
1 01 
1s 
111 
1 01 
OS 
01 0 
001 
1 1 s 
01 0 
001 
Os 
010 
OS 
101 
001 
1s 
010 
001 
1 1s 
01 0 
00s 
1 00 
001 
Os 
01 1 
111 
010 
01 1 
01 0 
01 1 
111 
1 10 
1 01 
1 00 
111 
111 
1 00 
000 
01 1 
000 
01 1 
01 1 
01 1 
000 
000 
1 00 
01 1 
001 
111 
001 
01 1 
01 1 

10001s 
10010s 

101s 

1 1 s 
1001s 

01 Os 
011011s 

00011s 
0011000s 

00010s 

1110s 
0011011s 

001s 
011010s 

0001s 

1 1 100111s 
0000101s 

1 1 0 
101 
01 1 
1 1s 
01 0 
100 
101 
101 
100 
111 
101 
111 
01 S 
01 0 
001 
01 0 
000 
1 01 
001 
001 
000 
01 1 
000 
001 
101 
001 
001 
101 

s 
1s 
1 Os 

101s 
s 
Os 
s 
s 
00110s 
1s 
s 

01 s 
Os 
1001s 
s 
s 
s 
s 

1 
1 
1 
s 
s 
s 
01 1 
Os 
01 1 
1 Os 
Os 

1s 

Os 
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216 I                35 14 0111000100101s 
217 I                36 14 0010001110101s 
218 I                37 14 0010011011011s 
219 I                38 13 1011 1001 1111s 
220 I                39 13 001001100101s 
221 I               40 14 0010001110100s 
222 I               41 13 100110100010s 
223 I                42 14 1001101111000s 
224 I               43 14 0010001110111s 
225 I                44 15 00010110010101s 
226 I               45 14 101101000001Os 
227 I               46 13 101110010000s 
228 I               47 13 101111100101s 
229 I          .     48 13 001000110100s 
230 I               48 2 17 1011010010011111s 
231 I               49 14 1001101011101s 
232 I               50 15 00101101000001s 
233 I                51 14 1011111001101s 
234 I                52 15 00010110010100s 
235 I               53 13 100110111010s 
236 I                54 14 1011010001001 s 
237 I                54 2 17 1011010010011110s 
238 I                55 12 10111111011s 
239 I                55 2 17 1011010010011001 s 
240 I               56 12 10111111101s 
241 t               56 2 16 001011010010110s 
242 I               57 13 101110010011s 
243 I               58 14 0001011001111s 
244 1               59 15 000 101100101 1 1 s 
245 1               60 15 0001011001011Os 
246 1                61 14 1011010001000s 
247 t                62 14 1001101011111s 
248 1                63 14 0010001110110s 
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APPENDIX B. STATIC SLIDE VARIABLE LENGTH CODING TABLE (VLC) 

The following is the custom VLC table used with static slide sequences. The last 

character in the codeword s indicates the appended sign bit. 

INDEX LAST RUN LEVEL BITS CODEWORD 
1 0 0 1 4 1 01 s 

2 0 0 2 4 1 10s 

3 0 0 3 5 1 000s 

4 0 0 4 7 1 1 1100s 

5 0 0 5 7 00111Os 

6 0 0 6 6 0011Os 

7 0 0 7 13 01101101001 1 s 

8 0 0 8 10 01110101 1s 

9 0 0 10 11 1111101011s 

10 0 0 11 11 1001000100s 

11 0 0 13 11 1001101000s 
12 0 0 20 15 00111101111100s 

13 0 0 24 12 00111101100s 
14 0 0 28 11 0110110101s 
15 0 0 32 9 00001100s 
16 0 0 36 9 01111100s 
17 0 0 40 8 0000100s 
18 0 0 44 8 1001100s 
19 0 0 48 6 0001 1 S 
20 0 0 52 8 011001 1 s 
21 0 0 56 8 0010101s 
22 0 0 60 9 0010001Os 
23 0 0 64 4 01 OS 
24 0 1 6 11100s 
25 0 2 6 0001Os 
26 0 3 8 0111011s 
27 0 4 10 111111111s 
28 0 5 10 001111110s 
29 0 6 9 00100001S 
30 0 7 16 001111011110010s 
31 0 8 12 10010010111s 
32 0 10 14 0111101001000s 
33 0 13 15 11111110000101s 
34 0 2 1 7 011100s 
35 0 2 2 7 011010s 
36 0 2 3 8 001001 1 s 
37 0 2 4 11 0111101100s 
38 0 2 5 9 1001001 1 s 
39 0 2 6 9 10011110s 
40 0 2 7 17 0011110111111110 
41 0 2 8 12 0010100111 OS 
42 0 2 10 14 1111111000001s 
43 0 2 11 15 11111110011000s 
44 0 2 13 14 1111111000011s 
45 0 3 1 8 0111100        S 
46 0 3 2 8 0110000s 
47 0 3 3 9 00001101s 
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48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 
9 
10 
10 
10 
10 
10 

4 
5 
6 
7 
8 
10 
11 
13 
1 
2 
3 
4 
5 
6 
8 
1 
2 
3 
4 
5 
6 
8 
1 
2 
3 
4 
5 
6 
10 
1 
2 
3 
4 
5 
6 
7 
10 

1 
2 
3 
4 
5 
6 
8 
10 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 

11 
10 
10 
17 
13 
15 
15 
16 
8 
8 
9 
10 
11 
9 

15 
10 
9 
10 
12 
12 
11 
15 
9 
9 
10 
13 
11 
12 
15 
10 
10 
11 
15 
16 
13 
16 
15 
9 
9 
10 
11 
12 
10 
15 
15 
9 
9 

11 
15 
11 
13 
12 
11 
13 
15 
13 

00001 
001 00 
00111 
001 1 1 
1 0010 
11111 
11111 
01 1 01 
01 1 00 
01111 
001 00 
1 001 1 
00001 
00100 
11111 
01111 
01 1 01 
01111 
1 001 1 
001 1 1 
11111 
11111 
11111 
00001 
1 001 1 
11111 
1 001 0 
01111 
11111 
11110 
001 00 
1001 1 
01101 
001 00 
01110 
001 1 1 
11111 
001 01 
001 01 
1 001 1 
001 00 
1 001 1 
01111 
11111 
11111 
11110 
10010 
001 01 
001 1 1 
11110 
11111 
001 1 1 
001 00 
001 00 
001 1 1 
001 1 1 

11000s 
1010s 
1101s 
101111 
0 01011 
11001 1 
110011 
101001 
01 s 
11s 
100s 
01 01s 
11001s 
01 1s 
1 10010 
1010s 
100s 
0101 s 
1 1 1001 
100010 
01000s 
11001 0 
01 1s 
01 0s 
0111s 
110111 
01000s 
011011 
110011 
1000 s 
0000s 
01001s 
101001 
101100 
101000 
101111 
110011 
000s 
111s 
01 10s 
10111s 
1 1 1000 
0111s 
110010 
110011 
101s 
000s 
00110s 
101110 
1001Os 
110111 
101101 
00011s 
000101 
101110 
101001 

11001s 
1s 
100s 
01 1 S 
0111s 

000s 

s 
s 

01 1s 

1s 

s 
111s 

01 Os 
001 1s 
OS 
1101s 
1 1 Os 

01 Os 
001s 

001 s 

Os 
s 

1 s 
01 1s 
1s 
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104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
Ö 
0 
0 
0 

10 
10 
11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
14 
14 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
2 
2 
2 
2 
2 
2 
2 

6 
8 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
3 
5 
1 
2 
3 
4 
5 
6 
7 
8 
10 
11 
13 
32 
36 
40 
44 
48 
52 
56 
60 
64 
1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
4 
5 
6 
8 
13 

13 
15 
14 
11 
12 
15 
15 
15 
12 
12 
14 
13 
16 
13 
13 
12 
13 
15 
16 
15 
14 
6 
6 
7 
9 
9 
8 
14 
12 
12 
13 
14 
13 
13 
12 
14 
10 
12 
12 
13 
8 
8 
8 
10 
14 
13 
13 
17 
9 
9 
11 
15 
13 
14 
14 
15 

1 1 1 
1 1 1 
1 00 
01 1 
1 1 1 
1 1 1 
001 
1 1 1 
001 
01 1 
001 
1 00 
001 
01 1 
1 00 
001 
001 
001 
001 
1 1 1 
01 1 
1 1 1 
000 
1 00 
000 
000 
01 1 
100 
001 
111 
111 
111 
001 
001 
1 00 
001 
001 
001 
01 1 
111 
01 1 
111 
111 
000 
001 
001 
001 
001 
01 1 
1 00 
001 
01 1 
01 1 
01 1 
001 
111 

1 1 0 
111 
111 
01 1 
101 
111 
111 
111 
111 
1 10 
111 
100 
111 
101 
111 
01 0 
000 
111 
111 
111 
101 
01 S 
00s 
101 
010 
01 1 
01 1 
1 00 
000 
1 10 
1 1 0 
111 
111 
111 
1 00 
111 
111 
001 
1 1 0 
1 1 0 
001 
1 10 
111 
01 1 
111 
111 
001 
111 
1 01 
111 
111 
1 1 0 
101 
101 
001 
111 

101 
1 00 
111 
01 1 
001 
100 
01 1 
100 
000 
1 00 
010 
01 
01 
01 
11 
01 1 
001 
01 1 
01 1 
100 
01 0 

s 
1 1s 
1 1s 
1s 
010 
001 
1 00 
101 
1 00 
010 
01 1 
101 
01 1 
1 00 
01 1 
1 00 
101 
0s 
OS 
OS 
101 
010 
01 0 
01 1 
01 1 
00s 
01s 
001 
1 10 
01 0 
01 0 
01 1 
100 

001S 
11101s 
1111s 
1s 
1 1 s 
10110s 
11101s 
10001s 
1 1s 
00 s 
001 1s 
101s 
110001 
010s 
1 10s 
1 1s 
010s 
1001 OS 
11001 1 
10100s 
0011s 

1 100s 
00s 
10s 
01 1s 
0000s 
010s 
101s 
10s 
1101s 
s 
01 s 
1 1 s 
01 Os 

s 
0010s 
000s 
001s 
1111111s 

Os 
1001Os 
01 1s 
001 OS 
0001s 
00100s 

71 



160 1                 3 1 8 0010110s 
161 1                 3 2 8 1111011s 
162 1                 3 3 9 10011100s 
163 1                 3 4 12 01111101100s 
164 1                 3 5 11 1001111101s 
165 1                 3 6 11 0011111110s 
166 1                 3 7 17 0011110111111000s 
167 1                 3 11 15 11111110011010s 
168 1                 4 1 11 0011110000s 
169 1                 4 2 10 00101001Os 
170 1                 4 3 13 011110110101s 
171 1                 4 4 14 1001000101101s 
172 1                 4 5 17 0011110111111101s 
173 1                 4 6 14 0111101001001s 
174 1                5 1 10 001011100s 
175 1                5 2 10 1 1 1 1 1 1 1 1 OS 
176 1                5 3 14 1001111111110s 
177 1                6 1 11 1 001001010s 
178 1                6 2 12 11111110110s 
179 t                6 3 15 01111011010011s 
180 1                6 5 14 1111111000111s 
181 1                7 1 10 001011101s 
182 1                7 2 10 1 00100011s 
183 1                7 3 14 0111101101000s 
184 1                8 1 11 1001111110s 
185 t                8 2 12 01110101010s 
186 1                 8 4 16 011011010010110s 
187 1                 8 6 14 111111 1000110s 
188 1                9 1 11 0111110111s 
189 1                9 2 12 01111010001S 
190 1                9 3 14 0110110100100s 
191 1                9 4 15 00111101110000s 
192 1                 9 5 16 00100101100001Os 
193 1                10 1 11 00111 1001 1 s 
194 I                10 2 15 00100101100000s 
195 I                11 1 11 1111111010s 
196 I                11 2 11 0011110101s 
197 I                11 3 12 10011111110s 
198 I                11 4 14 1111111000100s 
199 I                11 5 17 0011110111111100s 
200 11 6 13 111110101000s 
201               1 12 1 11 001 1111111s 
202               1 12 2 11 011011011Os 
203               1 12 3 12 11110100110s 
204               1 12 4 13 1 00100010100s 
205               1 12 5 16 001111011110000s 
206               1 12 6 13 011110100101s 
207               1 13 1 12 01101101000s 
208               1 13 2 12 11111010011s 
209              1 13 3 15 11111110010101s 
210               1 14 1 12 01110101011s 
211               1 14 2 11 1001001001s 
212               1 14 3 •    15 11111110010111s 
213               1 15 2 12 01111101101s 
214               1 15 3 14 1111111000101 s 
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APPENDIX C. MATLAB CODE LIBRARY 

This appendix contains the Matlab code used in the layered video codec. The 

main code block, thesis.m, is provided first, and the supporting functions follow in 

alphabetical order. As provided, thesis.m processes four video sequences: two motion 

video sequences of 100 frames each, followed by two, static slide sequences of 50 frames 

each. 

% thesis 

format compact 
clear all 
close all 

global QDJTABLE VLC_DYN VLC_STA RV HUFFJTABLE LAST 

load(' g:\QD_TABLE') 
load('g:\VlC_dyn') 
load('g:\VLC_sta1) 

VLC_DYN = VLC_dyn; clear VLC_dyn 
VLC_STA = VLC_sta; clear VLC_sta 
slides 

rand('state',0) 
RV = floor(21*rand(99,U); 
HUFFJTABLE = make_HAC_table; 
LAST = ones(99,1); 
threshold = 160; 
count = -1; 
mse = 1; 
display =1; 
write = 1; 
last = 299; 
tOff = 0; 
frame_type = 0; 
m_mat_ndx = []; 
selected) 
f_vec = zeros(1584,16); 

f_far_ll = double(zeros(792,8)) 
f_far_lh = double(zeros(792,8)) 
f_far_hl = double(zeros(792,8)) 
f far hh = double(zeros(792,8)) 

f_far_ll_pl = double(zeros(792, 8)) 
f_far_lh_pl = double(zeros(792,8)) 
f_far_hl_pl = double(zeros(792,8)) 
f_far_hh_pl = double(zeros(792,8)) 

f_far_ll_p2 = double(zeros(792,8)) 
f_far_lh_p2 = double(zeros(792,8)) 
f_far_hl_p2 = double(zeros(792,8)) 
f far_hh_p2 = double(zeros(792, 8)) 

f_l = double(zeros(1584,16)) 
f_2 = double(zeros(1584,16)) 
f 3 = double(zeros(1584,16)) 

% gets custom VLC table for motion video 
% gets custom VLC table for static 

% seed for reproductivity 
% for aging algorithm 
% gets JPEG standard table 
% sets block selection to 1 initially 
% for use with asd 
% where is it in the loop? 
% calculate MSE? 
% show the images? 
% write to file for evaluation? 
% last frame # to consider 
% intialize (used with scene change) 
% initialize (zero means dynamic scene) 
% initialize (track macroblocks 

% initialize (reshaped frame) 

% initialize for decoder 
% initialize for decoder 
% initialize for decoder 
% initialize for decoder 

% initialize for decoder 
% initialize for decoder 
% initialize for decoder 
% initialize for decoder 

% initialize for decoder 
% initialize for decoder 
% initialize for decoder 
% initialize for decoder 

% initialize for decoder 
% initialize for decoder 
% initialize for decoder 
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beta = -11.346; % slope of rate control curve 

br = input('Enter the target bitrate (Kbps) \n » ') 
B_bar = br * 1024/10; 
qd_entry = min (find (B_bar > QD_TABLE (:, 4))),-    % intial triplet based on test averages 

for i = 0:last 

count = count+1 

if (i<=99) 
i_present = get_next_image(i),- 

elseif ( (i>=100) & (i<=199) ) 
i_present = get_next_image_2(i-100); 

elseif (i==200) 
i_present = get_next_image(101); 

elseif (i==250) 
i_present = get_next_image(102); 

else 
i_present; 

end 

if display 
figure; 
subplot(2,2,l) 
image(i_present) 
colormap(gray(256)) 
titled'Original']) 
axis off 

end 

% loop through frames 

% read head#.bmp 

% read ncaat.bmp 

% read busy text slide 

% read line drawing slide 

% diplays original if desired 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Coder %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Change dimensions of image and identify macroblocks by threshold %%%%%%%% 

f_last = f_vec; % buffers previous frame 
f_vec = shape(i_present); % shapes current frame 
[m_vecjidx,frame_type] = m_blk_id_xr(f_last,f_vec,threshold); % compare current to 

last 
m_mat_ndx = [m_mat_ndx,m_vec_ndx]; 

if (sum(m_vec_ndx) >= 65) 
tOff = 1; 

end 

if (tOff) 
tOff = 0; 
flag = 1; 
ql = 64; 
q2 = 1000; 
q3 = 1000; 

elseif frame_type 
ql = 4; 
q2 = 16; 
q3 = 16; 

else 

% matrix of MB's selected 

% triggers a scene change 
% "trigger" flag set "on" 

% scene change just occured 
% resets "trigger" flag 
% "flag" for 1st frame after scene change 
% heavily compressed scene change 

% triplet for static sequence 

% a dynamic frame sequence 
delta_Binter = BJbar - (sum(m_vec_ndx)/sum(m_mat_ndx(:,i))) * total(i); 
qd_entry = get_qd_entryf(flag,B_bar,qd_entry,delta_Binter,sum(m_vec_ndx),beta); 
flag =0; % resets flag 
ql = QD_TABLE(qd_entry,l) 
q2 = QD_TABLE(qd_entry,2) 
q3 = QD_TABLE(qd_entry,3) 

end 

Q = get_Ql_matrix(ql); 

if -frame_type 

% rate control triplets fetched 

% quantizer matrix (via JPEG standard) 

% if dynamic frame sequence 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Transforms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[f_fht_ll ,f_fht_lh,f_fht_hl, f_ Eht_hh ] = f ht (f _vec, m. _vec_ndx,16); % FHT Of frame 

f_fht_ll = f fht_ll - 128; % level shift of LL 

f_fht_ll = dct_of_fht(f_fht_ll m_vec_ .ndx) ; % 2_D DCT of LL 

[f_fht_lh _11, f_fht_lh_lh, f_fht. _lh_hl f_fht_ .lh_hh] = .. 

fht(f_ fht_lh,m_vec_ndx,8); % subband LH FHT 

[f_fht_hl _11, f_fht_hl_lh, f_fht. _hl_hl f_fht_ .hl_hh] = .. 

fht(f_ fht_hl,m_vec_ndx,8) ; % subband HL FHT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Quantizing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f_fht_ll_q = quantizer_ll(f_fht_ll,Q,m_vec_ndx);      % quantize LL 

f_fht_hh_q = round(f_fht_hh/q3); % quantize HH 

f_fht_lh_ll_q = round (f_fht_lh_.il/q2) 
f_fht_lh_lh_q = round(f_fht_lh_lh/q2) 
f_fht_lh_hl_q = round(f_fht_lh_hl/q3) 
f_fht_lh_hh_q = round (f_fht_lh_hh/q3) 

f_fht_hl_ll_q = round(f_fht_hl_ll/q2) 
f_fht_hl_lh_q = round(f_fht_hl_lh/q3) 
f_fht_hl_hl_q = round(f_fht_hl_hl/q2) 
f_fht_hl_hh_q = round(f_fht_hl_hh/q3) 

% quantize of LH subbands 

% quantize of HL subbands 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on LL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% zig-zag scans each LL 8x8 (Results are one 6336x1 vector [ll_zz] and the index 
% of the last non-zero entity [last_ll_zz]. Get "inf" if a group of 
% 64 is all zeros.) 
[last_ll_zz,ll_zz] = zzb(f_fht_ll_q,8); 

% gets rid of trailing zeros (one big vector of varying size.) 
a_ll_zz = make_it_compact(ll_zz,last_ll_zz,8); 

% parsing LL with Huffman routine 
parsed_ll_zz = parse_Huff(a_ll_zz,last_ll_zz); 

% gets bits per frame due to LL 
bits_ll_zz(i+l) = get_bits_Huff(parsed_ll_zz); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HH 8x8 (Results are one 6336x1 vector [hh_r] and the index of the last 
% non-zero entity [last_hh_r], where r indicates horizontal raster 
% the scan method. Get "inf" if a group of 64 is all zeros.) 
[last_hh_r,hh_r] = raster(f_fht_hh_q,8); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hh_r = make_it_compact(hh_r,last_hh_r,8); 

% parsing HH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hh_r_3D = parse_3D(a_hh_r,last_hh_r); 
l_p_hh_r_3D(i+1) = length(parsed_hh_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hh_r_3D(i+D, hh_r_22(i+1)3 = get_bits2(parsed_hh_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on LH subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

75 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_LL 4x4 (Results are one 1584x1 vector [lh_ll_r] and the index of 
% the last non-zero entity [last_lh_ll_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_ll_r,lh_ll_r] = raster(f_fht_lh_ll_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_ll_r = make_it_compact(lh_ll_r>last_lh_ll_r,4) ; 

% parsing LH_LL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_ll_r_3D = parse_3D(a_lh_ll_r,last_lh_ll_r); 
l_p_lh_ll_r_3D(i+1) = length(parsed_lh_ll_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_ll_r_3D(i+l), lh_ll_r_22(i+1)] = get_bits2(parsed_lh_ll_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_LH 4x4 (Results are one 1584x1 vector [lh_lh_r] and the index of 
% the last non-zero entity [last_lh_lh_rj, where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_lh_r,lh_lh_r] = raster(f_fht_lh_lh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_lh_r = make_it_compact(lh_lh_r,last_lh_lh_r,4) ; 

% parsing LH_LH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_lh_r_3D = parse_3D(a_lh_lh_r/last_lh_lh_r); 
l_p_lh_lh_r_3D(i+l) = length(parsed_lh_lh_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_lh_r_3D(i+1), lh_lh_r_22(i+1)] = get_bits2(parsed_lh_lh_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_HL 4x4 (Results are 1584x1 vector [lh_hl_r] and the index of 
% the last non-zero entity [last_lh_hl_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_hl_r,lh_hl_r] = raster(f_fht_lh_hl_q/4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_hl_r = make_it_compact(lh_hl_r,last_lh_hl_r,4); 

% parsing LH_HL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_hl_r_3D = parse_3D(a_lh_hl_r,last_lh_hl_r) ; 
l_p_lh_hl_r_3D(i+l) = length(parsed_lh_hl_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_hl_r_3D(i+l), lh_hl_r_22(i+1)] = get_bits2(parsed_lh_hl_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_HH 4x4 (Results are 1584x1 vector [lh_hh_r] and the index of 
% the last non-zero entity [last_lh_hh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_hh_r,lh_hh_r] = raster(f_fht_lh_hh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
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a_lh_hh_r = make_it_compact(lh_hh_r,last_lh_hh_r,4); 

% parsing LH_HH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_hh_r_3D = parse_3D(a_lh_hh_r,last_lh_hh_r); 
l_p_lh_hh_r_3D(i+l) = length(parsed_lh_hh_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_hh_r_3D(i+D, lh_hh_r_22(i+1)] = get_bits2(parsed_lh_hh_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HL subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_LL 4x4 (Results are a 1584x1 vector [hl_ll_v] and the index of 
% the last non-zero entity [last_hl_ll_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_ll_v,hl_ll_v] = vertical(f_fht_hl_ll_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_Jil_ll_v = make_it_compact(hl_ll_v,last_hl_ll_v,4); 

% parsing HL_LL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_ll_v_3D = parse_3D(a_hl_ll_v,last_hl_ll_v); 
l_p_hl_ll_v_3D(i+l) = length(parsed_hl_ll_v_3D(:,l)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hl_ll_v_3D(i+D, hl_ll_v_22 (i+1) ] = get_bits2 (parsed_hl_ll_v_3D, frame_type) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_LH 4x4 (Results are a 1584x1 vector [hl_lh_v] and the index of 
% the last non-zero entity [last_hl_lh_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_lh_v,hl_lh_v] = vertical (f_fht_hl_lh_q, 4) ,- 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_lh_v = make_it_compact(hl_lh_v,last_hl_lh_v,4); 

% parsing HL_LH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_lh_v_3D = parse_3D(a_hl_lh_v, last_hl_lh_v) ,- 
l_p_hl_lh_v_3D(i+1) = length(parsed_hl_lh_v_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hl_lh_v_3D(i+D, hl_lh_v_22(i+1)] = get_bits2(parsed_hl_lh_v_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hl_v] and the index of 
% the last non-zero entity [last_hl_hl_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_hl_v/hl_hl_v] = vertical(f_fht_hl_hl_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_hl_v = make_it_compact(hl_hl_v,last_hl_hl_v,4); 

% parsing HL_HL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_hl_v_3D = parse_3D(a_hl_hl_v,last_hl_hl_v); 
l_p_hl_hl_v_3D(i+l) = length(parsed_hl_hl_v_3D(:,l)) ,- 
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% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bitsJil_hl_v_3D(i+U, hl_hl_v_22(i+1)] = get_bits2(parsed_hl_hl_v_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hh_v] and the index of 
% the last non-zero entity [last_hl_hh_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_hh_v,hl_hh_v] = vertical(f_fht_hl_hh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_hh_v = make_it_compact(hl_hh_v,last_hl_hh_v,4) ,- 

% parsing HL_HH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_hh_v_3D = parse_3D(a_hl_hh_v,last_hl_hh_v); 
l_p_hl_hh_v_3D(i+1) = length(parsed_hl_hh_v_3 D(:,1)) ; 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
tbits_hl_hh_v_3D(i+l), hl_hh_v_22(i+1)] = get_bits2(parsed_hlJrii_v_3D,frame_type); 

% getting bits per frame per layer 
layerl(i+1) = bits_ll_zz(i+1); 
layer2(i+l) = bits_lh_ll_r_3D(i+l) + bits_lh_lh_r_3D(i+l) + ... 

bits_hl_ll_v_3D(i+l) + bits_hl_hl_v_3D(i+l) ,- 
layer3(i+l) = bits_hh_r_3D(i+l) + bits_lh_hl_r_3D(i+l) + bits_lh_hh_r_3D(i+l) + ... 

bits_hl_lh_v_3D(i+l) + l_p_hl_hh_v_3D(i+l) ; 
total(i+1) = layerl(i+1) + layer2(i+l) + layer3(i+1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % 
% Channel % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Unquantize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f_fht_ll_uq = unquantize_ll(f_fht_ll_q,Q,m_vec_ndx); % unquantize LL 

f_fht_hh_uq = f_fht_hh_q * q3; 

f_fht_lh_ll_uq 
f_fht_lh_lh_uq 
f_fht_lh_hl_uq 
f_fht_lh_hh_uq 

f_fht_lh_ll_q * q2 
f_fht_lh_lh_q * q2 
f_fht_lh_hl_q * q3 
f_fht_lh_hh_q * q3 

% unquantize HH 

% unquantize of LH subbands 

% unquantize of HL subbands f_fht_hl_ll_uq = f_fht_hl_ll_q * q2 
f_fht_hl_lh_uq = f_fht_hl_lh_q * q3 
f_fht_hl_hl_uq = f_fht_hl_hl_q * q2 
f_fht_hl_hh_uq = f_fht_hl_hh_q * q3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inverse Transform %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f_far_ll fc invdct_of_fht(f_fht_ll_uq,m_vec_ndx);   % inv 2-D dct of LL 
f_far_ll = f_far_ll + 128; % level shift 
f_far_lh = remake_3(f_far_lh,f_fht_lh_ll_uq, f_fht_lh_lh_uq, f_fht_lh_hl_uq, ... 

f_fht_lh_hh_uq,m_vec_ndx,8); % LH subband inv FHT 
f_far_hl = remake_3 (f_far_hl, f_fht_hl_ll_uq, f_fht_hl_lh_uq, f_fht_hl_hl_uq, ... 

f_fht_hl_hh_uq,m_vec_ndx,8); % HL subband inv FHT 
f_far_hh = f_fht_hh_uq; 

f_far_ll_p2 = f_far_ll; % LL p2 assignment 
f_far_lh_p2 = remake_3(f_far_lh_p2,f_fht_lh_ll_uq,f_fht_lh_lh_uq,... 

0,0,m_vec_ndx,8),- % LH p2 subband inv FHT 
f_far_hl_p2 = remake_3(f_far_hl_p2,f_fht_hl_ll_uq,0,... 

f_fht_hl_hl_uq, 0,m_vec_ndx,8); % HL p2 subband inv FHT 
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f_far_hh_p2 =0; % HH p2 assignment 

f_far_ll_pl = f_far_ll; % LL pi assignment 
f_far_lh_pl =0; % HH pi assignment 
f_far_Jil_pl = 0; % HH pi assignment 
f_far_hh_pl =0; % HH pi assignment 

f_3 = remake_3(f_3,f_far_ll,f_far_lh,f_far_hl,... 
f_far_hh,m_vec_ndx,16); % frame inv FHT with 3 layers 

f_2 = remake_3(f_2,f_far_ll_p2,f_far_lh_p2,f_far_hl_p2,... 
f_far_hh_p2,m_vec_ndx,16); % frame inv FHT with 2 layers 

f_1 = remake_3{f_1,f_far_ll_pl,f_far_lh_pl,f_far_hl_pl,- - - 
f_far_hh_pl,m_vec_ndx,16); % frame inv FHT with 1 layer 

else % a staic frame sequence 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Transforms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[f_fht_ll,f_fht_lh,f_fht_hl,f_fht_hh ] = fht(f_vec,m_vec_ndx,16);  % FHT of frame 

[f_fht_ll_ll,f_f ht_ll_lh,f_fht_ll_hl,f_fht_ll_hh] = ... 
fht(f_fht_ll,m_vec_ndx,8); % subband LL FHT 

[f_fht_lh_ll,f_fht_lh_lh,f_fht_lh_hl,f_fht_lh_hh] = ... 
fht(f_fht_lh,m_vec_ndx,8); % subband LH FHT 

[f_fht_hl_ll,f_fht_hl_lh,f_fht_hl_hl,f_fht_hl_hh] = ... 
fht(f_fhtjil,ni_vec_näx,8); % subband HL FHT 

[f_fht_hh_ll,f_fht_hh_lh,f_fht_hh_hl,f_fht_hh_hh] = ... 
fht(f_fht_hh,m_vec_ndx,8); % subband HH FHT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Quantizing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% quantize of LL subbands 

% quantize of LH subbands 

% quantize of HL subbands 

% quantize of HL subbands 

f_fht_ll_ll_q = round(f_fht_ll_ll/ql) 
f_fht_ll_lh_q = round(f_fht_ll_lh/q2) 
f_fht_ll_hl_q = round(f_fht_ll_hl/q2) 
f_fht_ll_hh_q = round(f_fht_ll_hh/q3) 

f_fht_lh_ll_q = round(f_fht_lh_ll/q2) 
f_fht_lh_lh_q = round(f_fht_lh_lh/q2) 
f_fht_lh_hl_q = round(f_fht_lh_hl/q3) 
f_fht_lh_hh_q = round(f_fht_lh_hh/q3) 

f_fht_hl_ll_q = round(f_fht_hl_ll/q2) 
f_fht_hl_lh_q = round(f_fht_hl_lh/q3) 
f_fht_hl_hl_q = round(f_fht_hl_hl/q2) 
f_fht_hl_hh_q = round(f_fht_hl^hh/q3) 

f_fht_hh_ll_q = round(f_fht_hh_ll/q3) 
f_fht_hh_lh_q = round(f_fht_hh_lh/q3) 
f_fht_hh_hl_q = round(f_fht_hh_hl/q3) 
f_fht_hh_hh_q = round(f_fht_hh_hh/q3) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% working on LL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LL_LL 4x4 (Results are one 1584x1 vector [ll_ll_r] and the index of 
% the last non-zero entity [last_ll_ll_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_ll_U_r,ll_ll_r] = raster(f_fht_ll_ll_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_ll_ll_r = make_it_compact(ll_ll_r,last_ll_ll_r,4) ; 

79 



% parsing LL_LL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_ll_ll_r_3D = parse_3D(a_ll_ll_r,last_ll_ll_r); 
l_p_ll_ll_r_3D (i+1) = length (par sed_ll_ll_r_3D (:, 1)),- 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_ll_ll_r_3D(i+l), ll_ll_r_22(i+1)] = get_bits2(parsed_ll_ll_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LL_LH 4x4 (Results are one 1584x1 vector [ll_lh_r] and the index of 
% the last non-zero entity [last_ll_lh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_ll_lh_r/ll_lh_r] = raster (f_fht_ll_lh_q, 4) ,- 

% gets rid of trailing zeros (one big vector of varying size) 
a_ll_lh_r = make_it_compact(ll_lh_r,last_ll_lh_r,4); 

% parsing LL_LH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_ll_lh_r_3D = parse_3D(a_ll_lh_r,last_ll_lh_r); 
l_p_ll_lh_r_3D(i+l) = length(parsed_ll_lh_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_ll_lh_r_3D(i+U, ll_lh_r_22(i+1)] = get_bits2(parsed_ll_lh_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LL_HL 4x4 (Results are 1584x1 vector [ll_hl_r] and the index of 
% the last non-zero entity [last_ll_hl_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_ll_hl_r,ll_hl_r] = raster(f_fht_ll_hl_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_ll_hl_r = make_it_compact(ll_hl_r,last_ll_hl_r,4); 

% parsing LL_HL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_ll_hl_r_3D = parse_3D(a_ll_hl_r,last_ll_hl_r); 
l_p_ll_hl_r_3D(i+1) = length(parsed_ll_hl_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_ll_hl_r_3D(i+U , ll_hl_r_22(i+1)] = get_bits2(parsed_ll_hl_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LL_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LL_HH 4x4 (Results are 1584x1 vector [ll_hh_r] and the index of 
% the last non-zero entity [last_ll_hh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 

[last_ll_hh_r,ll_hh_r] = raster(f_fht_ll_hh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_ll_hh_r = make_it_compact(ll_hh_r,last_ll_hh_r,4); 

% parsing LL_HH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_ll_hh_r_3D = parse_3D(a_ll_hh_r, last_ll_hh_r) ,- 
l_p_ll_hh_r_3D(i+l) = length(parsed_ll_hh_r_3D(:, 1)) ,- 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 

[bits_ll_hh_r_3D(i+D, ll_hh_r_22 (i+1) 3 = get_bits2 (parsed_ll_hh_r_3D, frame_type) ; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on LH subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_LL 4x4 (Results are one 1584x1 vector [lh_ll_r] and the index of 
% the last non-zero entity [last_lh_ll_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_U_r,lh_ll_r] = raster(f_fht_lh_ll_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_ll_r = make_it_compact(lh_ll_r,last_lh_ll_r,4); 

% parsing LH_LL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 

parsed_lh_ll_r_3D = parse_3D(a_lh_ll_r,last_lh_ll_r); 
l_p_lh_ll_r_3D(i+l) = length(parsed_lh_ll_r_3D(:,l)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_ll_r_3D(i+D, lh_ll_r_22(i+1)] = get_bits2(parsed_lh_ll_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_LH 4x4 (Results are one 1584x1 vector [lh_lh_r] and the index of 
% the last non-zero entity [last_lh_lh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_lh_r,lh_lh_r] = raster (f_fht_lh_lh_q,4) ,- 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_lh_r = make_it_compact(lh_lh_r,last_lh_lh_r, 4) ; 

% parsing LH_LH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_lh_r_3D = parse_3D(a_lh_lh_r,last_lh_lh_r); 
l_p_lh_lh_r_3D (i+1) = length (parsed_lh_lh_r_3D (:, 1)) ,- 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_lh_r_3D(i+U, lh_lh_r_22 (i+1) ] = get_bits2 (parsed_lh_lh_r_3D, frame_type) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_HL 4x4 (Results are 1584x1 vector [lh_hl_r] and the index of 
% the last non-zero entity [last_lh_hl_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_lh_hl_r,lh_hl_r] = raster(f_fht_lh_hl_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_hl_r = make_it_compact (lh_hl_r, last_lh_hl_r, 4) ; 

% parsing LH_HL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_hl_r_3D = parse_3D(a_lh_hl_r,last_lh_hl_r); 

l_p_lh_hl_r_3D(i+l) = length(parsed_lh_hl_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_hl_r_3D(i+U, lh_hl_r_22(i+1)] = get_bits2(parsed_lh_hl_r_3D,frame_type) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the LH_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each LH_HH 4x4 (Results are 1584x1 vector [lh_hh_r] and the index of 
% the last non-zero entity [last_lh_hh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
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% zeros.) 
[last_lh_hh_r,lh_hh_r] = raster(f_fht_lh_hh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_lh_hh_r = make_it_compact(lh_hh_r/last_lh_hh_r,4); 

% parsing LH_HH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_lh_hh_r_3D = parse_3D(a_lh_hh_r,last_lh_hh_r); 
l_p_lh_hh_r_3D(i+1) = length(parsed_lh_hh_r_3D(:, 1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_lh_hh_r_3D(i+l), lh_hh_r_22(i+1)] = get_bits2(parsed_lh_hh_r_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HL subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_LL 4x4 (Results are a 1584x1 vector [hl_ll_v] and the index of 
% the last non-zero entity [last_hl_ll_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_ll_v,hl_ll_v] = vertical(f_fht_hl_ll_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_ll_v = make_it_compact (hl_ll_v,last_hl_ll_v, 4),- 

% parsing HL_LL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_ll_v_3D = parse_3D(a_hl_ll_v,last_hl_ll_v); 
l_p_hl_ll_v_3D(i+l) = length(parsed_hl_ll_v_3D(: ,1)) ,- 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hl_ll_v_3D(i+l), hl_ll_v_22(i+1)] = get_bits2(parsed_hl_ll_v_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_LH 4x4 (Results are a 1584x1 vector [hl_lh_v] and the index of 
% the last non-zero entity [last_hl_lh_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_lh_v,hl_lh_v] = vertical(f_fht_hl_lh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_lh_v = make_it_compact(hl_lh_v,last_hl_lh_v,4); 

% parsing HL_LH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_lh_v_3D = parse_3D(a_hl_lh_v,last_hl_lh_v); 
l_P_hl_lh_v_3D(i+l) = length(parsed_hl_lh_v_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hl_lh_v_3D(i+l), hl_lh_v_22(i+1)] = get_bits2(parsed_hl_lh_v_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hl_y] and the index of 
% the last non-zero entity [last_hl_hl_v], where the v indicates 
% vertical raster scan method.  Get "inf" if a group of 16 is all 
% zeros.) 
[last_hl_hl_v,hl_hl_v] = vertical(f_fht_hl_hl_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_hl_v = make_it_compact(hl_hl_v,last_hl_hl_v,4); 
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% parsing HL_HL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_hl_v_3D = parse_3D(a_hl_hl_v,last_hl_hl_v); 
l_p_hl_hl_v_3D(i+l) = length (parsed_hl_hl_v_3D (:,U) ; 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hl_hl_v_3D(i+l)/ hl_hl_v_22(i+1)] = get_bits2(parsed_hl_hl_v_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HL_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HL_HL 4x4 (Results are a 1584x1 vector [hl_hh_v] and the index of 
% the last non-zero entity [last_hl_hh_v], where the v indicates 
% vertical raster scan method. Get "inf" if a group of 16 is all 
% zeros.} 
[last_hl_hh_v,hl_hh_v] = vertical(f_fht_hl_hh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hl_hh_v = make_it_compact(hl_hh_v,last_hl_hh_v,4); 

. % parsing HL_HH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hl_hh_v_3D = parse_3D(a_hl_hh_v/last_hl_hh_v); 
l_p_hl_hh_v_3D(i+l) = length(parsed_hl_hh_v_3D(:,l)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hl_hh_v_3D(i+l), hl_hh_v_22(i+1)] = get_bits2(parsed_hl_hh_v_3D,frame_type); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on HH subbands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_LL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HH_LL 4x4 (Results are one 1584x1 vector [hh_ll_r] and the index of 
% the last non-zero entity [last_hh_ll_r], where the r indicates 
% horizontal raster scan method.  Get "inf" if a group of 16 is all 
% zeros.) 
[last_hh_ll_r,hh_ll_r] = raster(f_fht_hh_ll_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hh_ll_r = make_it_compact(hh_ll_r,last_hh_ll_r,4); 

% parsing HH_LL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hh_ll_r_3D = parse_3D(a_hh_ll_r,last_hh_ll_r); 
l_p_hh_ll_r_3D(i+l) = length(parsed_hh_ll_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hh_ll_r_3D(i+D, hh_ll_r_22 (i+1) ] = get_bits2 (parsed_hh_ll_r_3D, frame_type) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_LH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HH_LH 4x4 (Results are one 1584x1 vector [hh_lh_r] and the index of 
% the last non-zero entity [last_hh_lh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hh_lh_r,hh_lh_r] = raster(f_fht_hh_lh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hh_lh_r = make_it_compact (hh_.lh._r, last_hh_lh_r,4) ; 

% parsing HH_LH and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hh_lh_r_3D = parse_3D(a_hh_lh_r,last_hh_lh_r); 
l_P_hh_lh_r_3D(i+l) = length(parsed_hh_lh_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
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[bits_hh_lh_r_3D(i+U , hh_lh_r_22 (i+1) ] = get_bits2 (parsed_hh_lh_r_3D, frame_type) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_HL subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HH_HL 4x4 (Results are 1584x1 vector [hh_hl_r] and the index of 
% the last non-zero entity [last_hh_hl_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hh_hl_r,hh_hl_r] = raster(f_fht_hh_hl_q,4),- 

% gets rid of trailing zeros (one big vector of varying size) 
a_hh_hl_r = make_it_compact(hh_hl_r,last_hh_hl_r,4) ; 

% parsing HH_HL and getting the number of parsings for later used in eval_thesis to 
% get the percent of time that the default bit number is used. 
parsed_hh_hl_r_3D =. parse_3D(a_hh_hl_r,last_hh_hl_r) ; 
l_P_hh_hl_r_3D(i+l) = length(parsed_hh_hl_r_3D(:,1)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hh_hl_r_3D(i+D, hh_hl_r_22 (i+1) ] = get_bits2 (parsed_hh_hl_r_3D, frame_type) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Doing the HH_HH subband %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% scans each HH_HH 4x4 (Results are 1584x1 vector [hh_hh_r] and the index of 
% the last non-zero entity [last_hh_hh_r], where the r indicates 
% horizontal raster scan method. Get "inf" if a group of 16 is all 
% zeros.) 
[last_hh_hh_r,hh_hh_r] = raster(f_fht_hh_hh_q,4); 

% gets rid of trailing zeros (one big vector of varying size) 
a_hh_hh_r = make_it_compact (hh_hh_r/last_hh_hh_r,4) ,- 

% parsing HH_HH and getting the number of parsings for later used in eval_thesis to ■ 
% get the percent of time that the default bit number is used. 

parsed_hh_hh_r_3D = parse_3D(a_hh_hh_r,last_hh_hh_r); 
l_P_hh_hh_r_3D(i+1) = length(parsed_hh_hh_r_3D(:,!)); 

% gets bits per frame and number of times the default is chosen 
% (includes 99 COD bits) 
[bits_hh_hh_r_3D(i+D, hh_hh_r_22(i+1)] = get_bits2(parsed_hh_hh_r_3D,frame_type); 

% getting bits per frame per layer and total 
layerl(i+l) = bits_ll_ll_r_3D(i+l) + bits_ll_lh_r_3D(i+l) + ... 

bits_lh_ll_r_3D(i+l)+ bits_lh_lh_r_3D(i+l) + ... 
bits_ll_hl_r_3D(i+l)+ bits_hl_ll_v_3D(i+l) + ... 
bits_hh_ll_r_3D(i+l)+ bits_hl_hl_v_3D(i+l) + ... 
bits_hh_hh_r_3D(i+l); 

layer2(i+l) = bits_ll_hh_r_3D(i+l) + bits_lh_hl_r_3D(i+l) + ... 
bits_lh_hh_r_3D(i+l) + bits_hl_lh_v_3D(i+l) + ... 
bits_hl_hh_v_3D(i+l); 

layer3(i+l) = bits_hh_lh_r_3D(i+l) + bits_hh_hl_r_3D(i+l); 
total(i+l) = layerl(i+l) + layer2(i+l) + layer3(i+1); 

Channel 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Unquantize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f_fht_ll_ll_uq = f_fht_ll_ll_q * ql 
f_fht_ll_lh_uq = f_fht_ll_lh_q * q2 
f_fht_ll_hl_uq = f_fht_ll_hl_q * q2 
f_fht_ll_hh_uq = f_fht_ll_hh_q * q3 

f_fht_lh_ll_uq = f_fht_lh_ll_q * q2 
f_fht_lh_lh_uq = f_fht_lh_lh_q * q2 
f_fht_lh_hl_uq = f_fht_lh_hl_q * q3 

% unquantize of LH subbands 

% unquantize of LH subbands 
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f_fht_lh_hh_uq = f_fht_lh_hh_q * q3; 

f_fht_hl_ll_uq = f_fht_hl_H_q * q2 
f_fht_hl_lh_uq = f_fht_hl_lh_q * q3 
f_fht_hl_hl_uq = f_fht_hl_hl_q * q2 
f_fht_hl_hh_uq = f_fht_hl_hh_q * q3 

f_fht_hh_ll_uq = f_fht_hh_U_q * q3 
f_fht_hh_lh_uq = f_fht_hh_lh_q * q3 
f_fht_hh_hl_uq = f_fht_hh_hl_q * q3 
f_fht_hh_hh_uq = f_fht_hh_hh_q * q3 

% unquantize of HL subbands 

% unquantize of HH subbands 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inverse Transform %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f_far_ll = remake_3(f_far_ll,f_fht_ll_ 
f_fht_ll_hh_uq/m_vec_ndx,8); 

f_far_lh = remake_3(f_far_lh,f_fht_lh_ 
f_fht_lh_hh_uq,m_vec_ndx, 8); 

f_far_hl = remake_3(f_far_hl,f_fht_hl_ 
f_fht_hl_hh_uq/m_vec_ndx,8); 

f_far_hh = remake_3(f_far_hh,f_fht_hh_ 
f_fht_hh_hh_uq,ni_vec_ndx,8) ; 

.ll_uq, f_fht_ll_lh_uq, f_fht_ll_hl_uq, 
% LL subband inv FHT 

.ll_uq, f_.fht_lh_lh_uq, f_fht_lh_hl_uq, 
% LH subband inv FHT 

.ll_uq, f_fht_hl_lh_uq, f_fht_hl_hl_uq, 
% HL subband inv FHT 

,ll_uq, f_fht_hh_lh_uq, f_fht_hh_hl_uq, 
% HH subband inv FHT 

f_far_ll_p2 = remake_3(f_far_ll_p2,f_fht_ll_ll_uq,f. 
f_fht_ll_hl_uq,f_fht_ll_hh_uq,m_vec_ndx,8); 

f_far_lh_p2 = remake_3(f_far_lh_p2,f_fht_lh_ll_uq,f. 
f_fht_lh_hl_uq,f_fht_lh_hh_uq,m_vec_ndx,8); 

f_far_hl_p2 = remake_3(f_far_hl_p2,f_fht_hl_ll_uq,f. 
f_fht_hl_hl_uq,f_fht_hl_hh_uq,m_vec_ndx,8); 

f_far_hh_p2 = remake_3(f_far_hh_p2,f_fht_hh_ll_uq,0, 
f_fht_hh_hh_uq,m_vec_ndx,8); 

.fht_ll_lh_uq, ... 
% LL p2 subband inv FHT 
.fht_lh_lh_uq, ... 
% LH p2 subband inv FHT 
.fht_hl_lh_uq, ... 
% HL p2 subband inv FHT 
0,... 
% HH p2 subband inv FHT 

f_far_ll_pl = remake_3(f_far_ll_pl,f_fht_ll_ll_uq,f_fht_ll_lh_uq,... 
f_fht_ll_hl_uq,0,m_vec_ndx,8); % LL pi subband inv FHT 

f_far_lh_pl = remake_3(f_far_lh_pl,f_fht_lh_ll_uq,f_fht_lh_lh_uq,... 
0,0,m_vec_ndx,8); % LH pi subband inv FHT 

f_far_hl_pl = remake_3(f_far_hl_pl,f_fht_hl_ll_uq,0,... 
f_fht_hl_hl_uq,0,m_vec_ndx,8); % HL pi subband inv FHT 

f_far_hh_pl = remake_3(f_far_hh_pl,f_fht_hh_ll_uq,0,... 
0,f_fht_hh_hh_uq,m_vec_ndx,8); % HH pi subband inv FHT 

f_3 = remake_3(f_3,f_far_ll,f_far_lh,f_far_hl,... 
f_far_hh,m_vec_ndx,16); % frame inv FHT with 3 layers 

f_2 = remake_3(f_2,f_far_ll_p2,f_far_lh_p2,f_far_hl_p2,... 
f_far_hh_p2,m_vec_ndx,16); % frame inv FHT with 2 layers 

f_l = remake_3(f_l,f_far_ll_pl,f_far_lh_pl,f_far_hl_pl  
f_far_hh_pl,m_vec_ndx,16); % frame inv FHT with 1 layer 

end % ends frame_type descrimination 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Make Display Size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fig_3 = shape_back(f_3); 
fig_2 = shape_back(f_2); 
fig_l = shape_back(f_1); 

L3 = round(fig_3); 
L2 = round (fig_2) ; 
LI = round(fig_l); 

% make display dimensions 
% make display dimensions 
% make display dimensions 

% for viewing 
% for viewing 
% for viewing 

%%%%%%%%%%%%%%%%%%%%%%% Calculates the mean-square-error per frame %%%%%%%%%%%%%%%%% 
if mse 

MSE_3L(i+l,l) 
MSE_2L(i+l,l) 
MSE_lL(i+l,l) 

end % end if mse 

(sum(sum((i_present - fig_3)."2)))/176/144 
(sum(sum((i_present - fig_2).*2)))/176/144 
(sum(sum((i_present - fig_l).A2)))/176/144 
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if display 

% The following lines show the figure with 3 layers 
subplot(2,2,2) 
image(L3) 
axis off 
title('Layers 1, 2, and 3') 

% The following lines show the figure with 2 layers 
subplot(2,2,3) 
image(L2) 
title('Layers 1 and 2') 
axis off 

% The following lines show the figure with 1 
subplot(2,2,4) 
image(LI) 
title('Layer 1 Only') 
axis off 
drawnow 

layer 

end % ends if display 

% closing reconstruction occasionally to conserve memory 
if ((i==20)|(i==40)|(i==60)|(i==80)|(i==100)|(i==120)|(i==140)|(i==160)|(i==180) 

(i==200)j(i==220)|(i==240)|(i==260)|(i==280)) 
close all 

end 
end % ends looping through frames 

% The following lines simply rename variables to be consistent with an off-line 
% evaluation program used in the development. 

% LL dynamic 
BITS_LL_HUFF = bitS_ll_ZZ'; 

% LL static 
BITS_LL_LL_3D = bits_ll_ll_r_3D' 
SCAN_LL_LL_22 = ll_ll_r_22'; 
SCAN_LL_LL_LEN = l_p_ll_ll_r_3D' 

BITS_LL_LH_3D = bits_ll_lh_r_3D' 
SCÄN_LL_LH_22 = ll_lh_r_22'; 
SCAN_LL_LH_LEN = l_P_ll_lh_r_3D' 

BITS_LL_HL_3D = bitS_ll_hl_r_3D' 
SCAN_LL_HL_22 = ll_hl_r_22'; 
SCAN_LL_HL_LEN = l_P_ll_hl_r_3D' 

BITS_LL_HH_3D = bits_ll_hh_r_3D' 
SCAN_LL_HH_22 = ll_hh_r_22'; 
SCAN_LL_HH_LEN = l_p_ll_hh_r_3D' 

% LH both types of slide 
BITS_LH_LL_3D = bits_lh_ll_r_3D' 
SCAN_LH_LL_22 = lh_ll_r_22' ; 
SCAN_LH_LL_LEN = l_P_lh_ll_r_3D' 

BITS_LH_LH_3D = bits_lh_lh_r_3D' 
SCAN_LH_LH_22 = lh_lh_r_22'; 
SCAN_LH_LH_LEN = l_p_lh_lh_r_3D' 

BITS_LH_HL_3D = bits_lh_hl_r_3D' 
SCAN_LH_HL_22 = lh_hl_r_22'; 
SCAN_LH_HL_LEN = l_P_lh_hl_r_3D' 

BITS_LH_HH_3D = bits_lh_hh_r_3D' 
SCAN_LH_HH_22 = lh_hh_r_22'; 
SCAN_LH_HH_LEN = l_p_lh_hh_r_3D' 

% HL both types of slides 
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BITS_HL_LL_3D = bits_hl_H_v_3D' 
SCAN_HL_LL_22 = hl_ll_v_22' ,- 
SCAN_HL_LL_LEN = l_p_hl_ll_v_3D' 

BITS_HL_LH_3D = bits_hl_lh_v_3D' 
SCÄN_HL_LH_22 = hl_lh_v_22',- 
SCAN_HL_LH_LEN = l_p_hl_lh_V_3D' 

BITS_HL_HL_3D = bits_hl_hl_v_3D' 
SCAN_HL_HL_22 = hl_hl_v_22'; 
SCAN_HL_HL_LEN = l_p_hl_hl_v_3D' 

BITS_HL_HH_3D = bits_hl_hh_v_3D' 
SCAN_HL_HH_22 = hl_hh_v_22'; 
SCAN_HL_HH_LEN = l_p_hl_hh_v_3D' 

% HH from dynamic 
BITS_HH_3D = bits_hh_r_3D'; 
SCÄN_HH_22 = hh_r_22'; 
SCAN_HH_LEN = l_p_Jih_r_3D'; 

% HH from static 
BITS_HH_LL_3D = bits_hh_ll_r_3D' 
SCAN_HH_LL_22 = hh_ll_r_22' ,- 
SCAN_HH_LL_LEN = l_p_hh_ll_r_3D' 

BITS_HH_LH_3D = bits_hh_lh_r_3D' 
SCAN_HH_LH_22 = hh_lh_r_22'; 
SCAN_HH_LH_LEN = l_p_nh_lh_r_3D' 

BITS_HH_HL_3D = bits_hh_hl_r_3D' 
SCAN_HH_HL_22 = hh_hl_r_22'; 
SCAN_HH_HL_LEN = l_p_hh_hl_r_3D' 

BITS_HH_HH_3D = bits_hh_hh_r_3D' 
SCAN_HH_HH_22 = hh_hh_r_22'; 
SCAN_HH_HH_LEN = l_p_hh_hh_r_3D' 

% saves parameters for evaluation later 
if write 

s = char('g:\thesis\BR') ; 
s = strcat(s,num2str(br)); 
save(s, 'm_mat_ndx','BITS_*','MSE_*','SCAN_*' 

end % if write 

,'layer*') 

function [output] = dct_of_fht(input,m_vec_ndx) 

% performs the 2D DCT of input. m_vec_ndx identifies where this operation needs 
% to be performed. 

output = zeros(792,8); 
offset = -8; 

for ndx =1:99 
offset = offset + 8; 

if m_vec_ndx(ndx) 

end 
output(offset+l:offset+8,:) = dct2{input(offset+l:offset+8, :)); 

end 
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function [f_fht_ll,f_fht_lh,f_fht_hl,r_fht_hh] = fht (f_vec,m_vec_ndx,in) 

% Performs the FHT of the appropriate IN x IN macroblocks of F_VEC as 
% specified by M_VEC_NDX. Returns four sets of 99 IN/2 x IN/2 matrices, 
% each stacked into one big 99*IN/2 x IN/2 matrix. The places 
% where the fht was not performed are filled with zeroes as place-holders. 

half = in/2; 
f_fht_ll = zeros(99*half,half) 
f_fht_lh = zeros(99*half,half) 
f_fht_hl = zeros(99*half,half) 
f_fht_hh = zeros(9 9 *half,half) 
mask_lh = [1 1;-1 -1] 
maskJil = [1 -1;1 -1] 
mask_hh = [1 -1;-1 1] 

offset = -in; 

for ndx =1:99 
offset= offset+in; 
oso2 = offset/2; 

if m_vec_ndx(ndx) 

for rndx = l:half 

for cndx = l:half 
f_fht_ll(rndx+oso2,cndx) = ... 

sum(sum(f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4; 
f_fht_lh(rndx+oso2,cndx) = sum(sum(mask_lh .* ... 

f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4; 
f_fht_hl(rndx+oso2,cndx). = sum(sum(mask_hl .* ... 

f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4; 
f_fht_hh(rndx+oso2,cndx) = sum(sum(mask_hh .* ... 

f_vec(rndx*2-l+offset:rndx*2+offset,cndx*2-l:cndx*2)))/4; 

end 

end 

end 

end 

function [bits] = get_bits_Huff(parsed) 

% Uses Huffman table to get bits for JPEG-based compression of PARSED. 

global HUFF_TABLE 

bits = 0; 
[r,c] = size(parsed); 

for ndx = l:r 

while(parsed(ndx,1) >= 15) 
bits = bits + 11; 
parsed(ndx,l) = parsed(ndx,1) - 15; 

end 

table_row = find((HÜFF_TABLE(:,2) == parsed(ndx,1)) & ... 
(HUFF_TABLE(:,3) == parsed(ndx,2))); 

bits = bits + HUFF_TABLE(table_row,4) + parsed(ndx,2); 
end 
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bits = bits + 99*4; 

function [bits,count] = get_bits2(parsed,kind) 

% Uses PARSED to fetch bits from custom VLC tables 
% KIND will be 1 for static scenes 
% KIND will be 0 for dynamic scenec 

global VLC_DYN VLC_STA 

bits = 0; 
count = 0; 
parsed = abs(parsed) ; 
[r,c] = size(parsed); 

if kind 
for ndx = l:r 

poss_rows = find(VLC_STA(:,2) == parsed(ndx,l)); 
start = poss_rows(l); 
poss_rows = find(VLC_STA((poss_rows(1):poss_rows(length(poss_rows))),3) ==. 

parsed(ndx,2)); 

if -(isempty(poss_rows)) 
poss_rows = poss_rows + start - 1; 
start = poss_rows(1); 

end 

if -(isempty(poss_rows)) 
poss_rows = find(VLC_STA((poss_rows(1):poss_rows(length(poss_rows))),4) 

parsed(ndx,3)); 
poss_rows = poss_rows + start - 1; 

end 

if -(isempty(poss_rows)) 
bits = bits + VLC_STA (poss_rows, 5) ,- 

else 
bits = bits + 22; 
count = count + 1; 

end 

end 

else 

for ndx = l:r 
poss_rows = find(VLC_DYN(:,2) == parsed(ndx,1)); 
start = poss_rows(l); 
poss_rows = find(VLC_DYN((poss_rows(l):poss_rows(length(poss_rows))),3) ==. 
parsed(ndx,2)); 

if -(isempty(poss_rows)) 
poss_rows = poss_rows + start - 1; 
start = poss_rows(1); 

end 

if -(isempty(poss_rows)) 
poss_rows = find(VLCJDYN ((poss_rows{1):poss_rows(length(poss_rows))),4) 
parsed(ndx,3)); 
poss_rows = poss_rows + start - 1; 

end 

if -(isempty(poss_rows)) 
bits = bits + VLC_DYN(poss_rows,5); 

else 
bits = bits +22; 
count = count + 1; 
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end 

end 

end 
bits = bits + 99; 

function [f] = get_next_image(num) 

% Gets next frame as a .bmp file converts to form needed in MATLÄB 

s = char('g:\pictures\Head'); 
fn = strcat(s,num2str(num)); 
f = imread(fn,'bmp'); 
f = double(f(:,:,!)); 

function [f] = get_next_image_2(num) 

% Gets next frame as a .bmp file converts to form needed in MATLAB 

s = char('g:\pictures\ncaa'); 
fn = strcat(s,num2str(num)); 
f = imread(fn,'bmp'); 
f = double(f(:,:,!));; 

function [Q] = get_Ql_matrix(ql) 

% makes the JPEG standard quantization matrix and multiplies it by ql. 
% ql = 16 will result in no scaling of the matrix when coupled with the rest 
% of the code,  ql < 16 is finer quantization, i.e. less quantization noise results. 

Q = [16 11 10 16 24 40 51 61; 
12 12 14 19 26 58 60 55; 
14 13 16 24 40 57 69 56; 
14 17 22 29 51 87 80 62; 
18 22 37 56 68 109 103 77; 
24 35 55 64 81 104 113 92; 
49 64 78 87 103 121 120 101; 
72 92 95 98 112 100 103 99] .* ql; 

function [out] = get_qd_entryf(flag,default,entry,delta_Binter,MBnum,beta) 

% selects the appropriate quantizer triplet based on the input parameters 
% FLAG implies the first frame following a scene change frame.  DEFAULT is the 
% choice of triplet based on test sequences and serves as a starting point for a 
% new sequence.  ENTRY hold the table entry from the previous frame.  The remaining 
% parameters ara as defined in the thesis. 

global QD_TABLE 

if (flag) 
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out = min(find(default > QD_TABLE(:,4))),- 
else 

deltaQ = fix(delta_Binter/MBnum/beta); 
out = entry + deltaQ; 
if (out > 17) 

out = 17; 
end 
if (out < 1) 

out = 1; 
end 

end 

function [run] = get_run(seq_to_code,len) 

% Called by the parsing functions PARSE_3D and PARSE_HUFF, this function obtains 
% the RON field for RLE. 

run = zeros(len,1); 

count =0; 
place = 1; 
mdx =1; 

while (mdx <= length(seg_to_code)) 
if seq_to_code(mdx) 

place = place + 1; 
mdx = mdx + 1; 

else 
while (seg__to_code(mdx) == 0) 

mdx = mdx + 1; 
count = count + 1; 

end 
run(place) = count; 
count = 0; 
place = place + 1; 
mdx = mdx + 1; 
end 

end 

function [output] = invdct_of_fht(input,m_vec_ndx) 

% Performs the inverse 2D DCT. M_VEC_NDX identifies where this operation needs to be 
% performed. 

output = zeros(792,8),- 
offset = -8; 

for ndx =1:99 
offset = offset + 8; 

if m_vec_ndx(ndx) 
output(offset+l:offset+8,:) = idct2(input(offset+l:offset+8, :)); , 

end 

end 
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function [m_vec_ndx,byAge,b_count,mb_count] = m_blk_id_xr(fl,f2,T) 

% Figures out which 16x16 macroblocks of the 144x176 image need to be further 
% processed via an absolute sum of differences between the last frame fl and 
% the current frame f2. m_vec_ndx is 99x1 vector of 0 or 1 raster scanned. 
% T is the threshold utilized. byAge is 1 if macroblocks are selected only due 
% to aging.  byAge is 0 otherwise. b_count and mb_count were used in refining the 
% search sequence. b_count is "block count." mb_count is "macroblock count." As 
% are artifacts now, they are commented-out. 

global LAST RV 

%b_count = 0; 
%mb_count = 0; 
r_count = 0; 
m_vec_ndx = zeros(99,1); 

for ndx =1:99 
if (RV(ndx) == 0) 

m_vec_ndx(ndx) = 1; 
RV(ndx) = floor(21*rand); 

else 
RV(ndx) = RV(ndx) - 1; 

end 
end 

byAge1 = sum(m_vec_ndx); 

for rndx = 1:16:1584 
r_count = r_count +1; 

if (-m_vec_ndx(r_count)) 
go = 1; 
if ((LAST(r_count) == 1) & (go)) 

for cndx = 1 
fl_8x8 = f1(rndx:rndx+7,cndx:cndx+7); 
f2_8x8 = f2(rndx:rndx+7,cndx:cndx+7); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 1; 
LAST(r_count) = 1; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15) ; 
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15) ; 
asd = abs(sum(sum(fl_8x8-f2_8x8))); • 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 2; 
LAST(r_count) = 3; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15) ; 
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15); 
asd = abs(sum(sum(fl_8x8-f2_8x8))) ,- 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID's position 
%mb_count = mb_count + 1; 
%b_count = b_count + 3; 
I»AST(r_count) = 2; 
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go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7); 
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if   (asd > T) 
m_vec_ndx(r_count)  = 1;  % ID'S position 
%mb_count = ntb_count + 1; 
%b_count = b_count + 4; 
LAST(r_count) = 4; 
go = 0; 

end 

end %for cndx 
end % if LAST 

if ((LAST(r_count) == 2) & (go)) 
for cndx = 1 

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15); 
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 1; 
LAST(r_count) = 2; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7) ,- 
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 2; 
LAST(r_count) = 4; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15); 
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15) ; 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count +3; 
LAST(r_count) = 3; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx:rndx+7,cndx:cndx+7); 
f2_8x8 = f2(rndx:rndx+7,cndx:cndx+7) ; 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 4; 
LAST(r_count) = 1; 
go = 0; 

end 
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end %for cndx 
end % if LAST 

if ((LAST(r_count) == 3) & (go)) 
for cndx = 1 

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15); 
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_courit + 1; 
LAST(r_count) = 3; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx:rndx+7,cndx:cndx+7); 
.f 2_8x8 = f 2 (rndx: rndx+7, cndx: cndx+7) ; 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 2; 
LAST(r_count) = 1; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7); 
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count +1; 
%b_count = b_count + 3; 
LAST(r_count) = 4; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15); 
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15) ; 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
ni_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 4; 
LAST(r_count) = 2; 
go = 0; 

end 

end %for cndx 
end % if LAST 

if <(LAST(r_count) == 4) & (go)) 
for cndx = 1 

fl_8x8 = fl(rndx+8:rndx+15,cndx:cndx+7); 
f2_8x8 = f2(rndx+8:rndx+15,cndx:cndx+7); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID's position 
%mb_count = mb_count + 1; 
%b_count = b_count + 1; 
LAST(r_count) = 4; 
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go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx:rndx+7,cndx+8:cndx+15); 
f2_8x8 = f2(rndx:rndx+7,cndx+8:cndx+15); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 2; 
LAST(r_count) = 2; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx:rndx+7,cndx:cndx+7); 
f2_8x8 = f2(rndx:rndx+7,chdx:cndx+7); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = rob_count + 1; 
%b_count = b_count + 3; 
LAST(r_count) = 1; 
go = 0; 
break; % gets out of the inner loop if justified now 

end 

fl_8x8 = fl(rndx+8:rndx+15,cndx+8:cndx+15); 
f2_8x8 = f2(rndx+8:rndx+15,cndx+8:cndx+15); 
asd = abs(sum(sum(fl_8x8-f2_8x8))); 

if (asd > T) 
m_vec_ndx(r_count) = 1; % ID'S position 
%mb_count = mb_count + 1; 
%b_count = b_count + 4; 
LAST(r_count) = 3; 
go = 0; 

end 

end %for cndx 
end % if LAST 

end %if ~m_vec_ndx 

end % for rndx 

byAge2 = sum(m_vec_ndx); 
byAge = (byAgel == byAge2); 

function [table] = make_HAC_table() ; 

% Generates the Huffman VLC table 

vecl = ones(10,1); 
vec2 = (1:10)'; 

index = (1:162)'; 
runn = [0;vecl*0;vecl;vecl*2;vecl*3;vecl*4;vecl*5;vecl*6; 

vecl*7;vecl*8;vecl*9;vecl*10;vecl*ll;vecl*12;vecl*13; 
vecl*14;vecl*15;153; 

siz = [0;vec2;vec2;vec2;vec2;vec2;vec2;vec2;vec2;vec2; 
vec2; vec2; vec2; vec2;vec2; vec2; 0;vec2 ] ; 

cw_len = [0;2;2;3;4;5;7;8;10;16;16;4;5;7;9;11;16;16;16;16; 
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16;5;8;10;12;ones(6,l)*16,-6;9;12;ones(7,l)*16;6;10; 
ones(8,l)*16;8;ll;ones(8,l)*16;7;12;ones(8,l)*16;8; 
12;ones(8,l)*16;9;ones(9,l)*16;9;ones(9,l)*16;9; 
ones(9,l)*16;10;ones(9,l)*16;10;ones(9,l)*16;ll; 
ones(19,1)*16;ll;ones(10,1)*16]; 

table = [index, runn, siz, cw_len]; 

function [a] = make_it_compact(big,index,size) 

% gets rid of trailing zeros in the vector BIG that resulted from scanning 99 matrices 
% of dimensions SIZExSIZE. INDEX holds the position of the last non-zero entry in each of 
% the 99 matrices. 

entry = sizeA2; 
offset = -entry; 
a = []; 
for ndx =1:99 

offset = entry + offset; 
if isinf(index(ndx)) 

a = [a ; inf]; 
else 

a = [a ; [big(offset+l:offset+index(ndx))]]; 
end 

end 

function [parsed] = parse_3D(vector,index) 

% RLE's VECTOR into the {last,run,level} format.  INDEX is the position of the last non 
% zero entity in each of the 99 matrices. 

last = []; 
level = []•; 
run = []; 

for ndx =1:99 
if isinf(index(ndx)) 

index(ndx) =1; 
end 
point = sum(index(l:ndx)); 
seq_to_code = vector(point-index(ndx)+l:point); 
len = length(seq_to_code) ; 
if (den == 1) & isinf (seq_to_code)) 

last = [last,-0]; 
level = [level;0]; 
run = [run; 6]; 

else 
dummy = seq_to_code(find(seq_to_code)); 
level = [level;dummy]; 
last = [last;zeros(length(dummy)-1,1) ,-l]; 
this_run = get_run(seq_to_code,length(dummy)); 
run = [run;this_run]; 

end 
end 

parsed = [last, run,level]; 
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function [parsed] = parse_Huff(vector,index) 

% Parses VECTOR into the JPEG format. INDEX holds the position of the last non-zero 
% value of each of the 99 matrices. 

last = [ ]; 
level = []; 
run = [ ] ,- 

for ndx =1:99 
if isinf(index(ndx)) 

index(ndx) = 1; 
end 
point = sum(index(1:ndx)); 
seq_to_code = vector(point-index(ndx)+l:point); 
len = length(seq_to_code); 
if (den == 1) & isinf(seq_to_code)) 

level = [level;0]; 
run = [run;0]; 

else 
dummy = seq_to_code(find(seq_to_code)); 
level = [level;dummy]; 
this_run = get_run(seq_to_code,length(dummy)); 
run = [run;this_run]; 

end 
end 

level = abs( level),- 
S = zeros(length(level),1) ; 

for mdx = 1:length(level) 
if level(mdx) 

S(mdx) = length(dec2bin(level(mdx))); 
else 

S(mdx) = 0; 
end 

end 

parsed = [run,S],- 

function [ll_q] = quantizer_ll(ll,Q,m_vec_ndx) 

% Quantizes matrix 11 with quantization matrix Q. M_VEC_NDX identifies 
% where this quantization need be performed. 
% 
% see UNQUANTTZE_LL 

ll_q = zeros(792,8),• 
offset = -8; 
11 = 11* 16; 

for ndx =1:99 
offset = offset + 8; 

if m_vec_ndx(ndx) 
ll_q(offset+l:offset+8,:) = round(ll(offset+l:offset+8, :) ./Q); 

end 

end 

97 



function [out,rast] = raster(mat,in) 

% Horizontal raster scans the input matris MAT of dimensions INxIN. 

entry = in~2; 
offset = -entry; 
mat = mat.'; 
rast = reshape(mat,entry*99,l); 

for ndx =1:99 
offset = offset+entry; 
dummy = max(find(rast(offset+1:offset+entry))) ; 

if isempty(dummy) 
out(ndx) = inf; 

else 
out(ndx) = dummy; 

end 

end 

out = out.'; 

function [out] = remake_3(f_3,f_fht_ll,f_fht_lh,f_fht_hl,f_fht_hh,m_vec_ndx,in) 

% Performs the inverse FHT. F_3 is the present content of the reconstructed image. 
% The next for parameters are the subbands that update this content as dictated 
% by the content of M_VEC_NDX.  INxIN is the matrix dimensions. 

half = in/2; 

if (f_fht_ll == 0) 
f_fht_ll = zeros (99*half,half),- 

end 

if (f_fht_lh == 0) 
f_fht_lh = zeros(99*half,half); 

end 

if (f_fht_hl ==0) 
f_fht_hl = zeros(99*half,half); 

end 

if (f_fht_hh == 0) 
f_fht_hh = zeros(99*half,half); 

end 

B = [111 1,-1 1 -1 -1;1 -1 1 -1;1 -1 -1 1]; 
x = zeros(4,1); 
a = zeros(4,1); 
offset = -half; 
out = zeros(99*in,in); 
f_3 = f_3 /4; 

for ndx =1:99 
offset = offset + half; 
ost2 = offset*2; 

if m_vec_ndx(ndx) 

for rndx = l:half 

for cndx = l:half 
x = [f_fht_ll(rndx+offset,cndx); 
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f_fht_lh(rndx+offset,cndx); 
f_fht_hl(rndx+offset,cndx); 
f_fht_hh(rndx+offset,cndx)]; 

a = B \ x; 
f_3(rndx*2-l+ost2:rndx*2+ost2,cndx*2-l:cndx*2) 

[a(D a(2); a(3) a(4)]; 

end 

end 

end 

end 

out = f_3*4; 

function [f_out] = shape(f_in) 

% Shapes the 144x176 f_in into a 1584x16 matrix taken 16 rows at a time 
% left to right, top to bottom, (raster scans the macroblocks.) 

f_out = [],- 

for rndx = [1 17 33 49 65 81 97 113 129] 
for cndx = [1 17 33 49 65 81 97 113 129 145 161] 

f_out = [f_out;[f_in(rndx:rndx+15,cndx:cndx+15)]]; 
end 

end 

function [f_out] = shape_back(f_in) 

% Shapes the 1584x16 matrix back into a 144x176 image. 

f_out = []; 
f_row = []; 
offset = -176; 

for i = 1:9 
offset = offset + 176; 
for rndx = (tl 17 33 49 65 81 97 113 129 145 161] + offset) 

f_row = [f_row,[f_in(rndx:rndx+15, :) ] ] ; 
end 
f_out = [f_out;f_row]; 
f_row = []; 

end 

function  [11]   = unquantize_ll(ll_q,Q,m_vec_ndx) 

% Unquantizes  ll_q with quantization matrix Q.  M_VEC_NDX idenntifies where this 
% unquantization need be performed. 
% 
% see QUANTIZE_LL 

11 = zeros(792,8); 
offset = -8; 
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for ndx =1:99 
offset = offset + 8; 

if m_vec_ndx(ndx) 
ll(offset+l:offset+8,:) = ll_q(offset+1:offset+8,:) .*Q; 

end 

end 

11 = 11 / 16; 

function [out,vert] = vertical(mat,in) 

% raster scans vertically top to bottom 99 matrices of size INxIN contained in MAT. 

offset = -in; 
offset2 = -inA2; 
vert = zeros(offset2*99,1); 

if (in == 8) 
for ndx =1:99 

offset = offset + 8; 
offset2 = offset2 + 64; 
vert(offset2+l:offset2+64,1)=[mat(offset+1:offset+8,l),-mat(offset+1:offset+8,2); 

mat(offset+l:offset+8,3);mat(offset+l:offset+8,4);mat(offset+l:offset+8,5); 
mat (of f set+1: of fset+8, 6) ,-mat (of f set+1: of fset+8, 7) ,-mat (of f set+1: of fset+8,8) ] ; 

dummy = max(find(vert(offset2+i:offset2+64))); 

if isempty(dummy) 
out(ndx) = inf; 

else 
out(ndx) = dummy; 

end 

end 

else 

for ndx =1:99 
offset = offset + 4; 
offset2 = offset2 + 16; 
vert (of f set2+l:of f set2+16,1) = [mat (of f set+1: of f set+4,1) ,-mat (of f set+1: of f set+4,2) ; 

mat(offset+l:offset+4,3);mat(offset+l:offset+4,4)]; 
dummy = max(find(vert(offset2+l:offset2+16))); 

if isempty(dummy) 
out(ndx) = inf; 

else 
out(ndx) = dummy; 

end 

end 

end 

out = out.'; 

function [place,out] = zzb(bigmat,M) 

% zigzag scans the 99 matrices of size MxM contained in BIGMAT. 
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vec = zeros(M*M,1); 
loop = 0; 
out = []; 

for ndx = 1:M:M*99 
loop = loop + 1; 
mat = bigmat(ndx:ndx+M-l,:); 
vec(l) = mat(1,1); 

% start scan at 
x = 2; 
y = 1; 
index = 2; 

% initial scan direction 
xstep = -1; 
ystep =1; 

% process each interior diagonal 
for i=2:(2*M-2) 

% determine diagonal length 
if (i > M) 

len = 2*M - i; 
else 

len = i; 
end 

% run the diagonal 
for j = l:len 

vec(index) = mat(y,x); 

% move to next point 
x = x + xstep; 
y = y + ystep; 
index = index + 1; 

end 

% set up next pass 
xstep = -xstep; 
ystep = -ystep; 

if (x == 0) 

if (y <= M) 
x = 1; 

else 
x = x + 2; 
y = M; 

end 

elseif (x > M) 
x = M; 
y = y + 2; 

end 

if (y == 0) 

if (x <= M) 
y = 1; 

else 
x = M; 
y = y + 2; 

end 

elseif (y > M) 
y = M; 
x = x + 2; 

end 
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end 

vec(M*M)   =mat(M,M); 
duirany = max (find (vec)) ; 

if isempty(dummy) 
place(loop) = inf; 

else 
place(loop) = dummy; 

end 

out = [out;vec]; 
end 

place = place'; 
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