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ABSTRACT

The fundamental factors affecting the impact toughness of four gas metal arc welds

(GMAW) made on HSLA-1 00 base plate using a newly developed steel weld wire were studied.

The weld metal analysis, included chemistry, mechanical testing (hardness, CVN/FATT), as well as

optical, scanning and transmission electron microscopy. Studies of inclusion composition using

energy dispersive x-ray (EDX), and electron energy loss spectroscopy (EELS) in the transmission

electron microscope were also performed.

It was found that increasing oxygen content of the weld metal (due to increased oxygen in

the shielding gas) led to increased non-metallic inclusion size and volume fraction; which in turn,

led to both decreasing strength and toughness. The strength was lowered because increasing

oxygen in the shielding gas led to increased 'consumption' of strengthening alloys such as carbon,

manganese and silicon. The toughness was compromised by the increasing size and number of

oxide inclusions as these provide sites for void formation and subsequent fracture.
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I. INTRODUCTION

HY-100 is the primary high strength steel used in US Navy shipbuilding today. While

HY-100 is the workhorse of modern shipbuilding, this steel requires highly trained welders and

careful temperature control (preheat/interpass) of weld metal cooling to prevent cracking. In

order to reduce in process fabrication control, and the resulting shipbuilding and repair costs, the

US Navy has undertaken a research program to develop a new welding consumable for high

yield strength steels (above 100 ksi). The goal of this research program is:

• to develop a welding consumable which can be deposited over a wide range of heat

inputs and cooling rates without the need for interpass and preheat temperature

control, and

• to fundamentally understand the metallurgical reasons behind the success of the

developed wire.fRef.l]

In order to meet these research goals, the Naval Surface Warfare Center (NSWC),

Carderock Division, Bethesda, Md., in conjunction with, the Naval Postgraduate School, has

undertaken the task of developing a solid filler wire for use in the Gas Metal Arc Welding

(GMAW) of High Strength Low Alloy (HSLA-100) steel. [Refl] Once developed, the filler wire

must meet the mechanical property requirements of MIL-120S as outlined in the Military

Specification for Electrodes and Rods - Welding, Bare, Solid, or Alloyed Cored, Low Alloy

Steel (MIL-E-23765/2E(SH). MIL-120S requires the following mechanical properties for the as-

welded GMAW welds:

• Yield strength between 703 MPa ( 1 02 ksi) and 848 MPa ( 1 23 ksi), and

• Charpy V-notch minimum toughness of 61J (45 ft-lb.) at -51°C (-60° F), and 81 J

(60 ft-lb.) at -18° C (0° F).[Ref.2]

The purpose of the present study is to investigate the fundamental characteristics of gas

metal arc welds consisting of HSLA-100 as the base plate material, and an experimental ultra

low carbon steel filler wire (solid). Four GMAW welds were produced by NSWC with varying

cover gas combinations in order to analyze the effect of weld metal oxygen content on non-

metallic inclusion size / chemistry, microstructure, and resulting mechanical properties.





II. BACKGROUND

A. HIGH STRENGTH STEELS

HY-100 steels, which are extensively used in the shipbuilding industry, require strict

control of heat input, cooling rate, and welding procedures, in order to prevent hydrogen induced

cracking in the heat affected zone of welds. This high level of in-process, and post-production,

fabrication control results in increased costs for shipbuilding and repair. HSLA-100 steels were

developed in order to provide similar strength characteristics as HY-100 steels without the

limitations and costs necessary to prevent cracking. The improved weldability of HSLA-100 has

been achieved by reducing the carbon content from around 0. 1 5 wt. % (HY-1 00) to about 0.06 wt.

% (HSLA) and offsetting the strength losses due to reduced carbon content by increasing the

alternative alloy content (copper and nickel). This is graphically illustrated in Figure 2-1 . Table

2-1 illustrates the major elements which compose HY-100, HSLA-100, and the filler wire used in

this study.

1. HY-100 Steel

The addition of alloys to iron provides a method to improve the properties of the pure

metal. The main purpose of alloying in high strength steels is to increase the strength of the

material while maintaining favorable impact and toughness properties. While HY-100 and HSLA-

100 have similar strength and toughness, the method of achieving these properties is entirely

different.

HY-100 is essentially a martensitic steel containing 0.13-0.17 wt.% carbon that has been

tempered to achieve specified strength and toughness. Martensite is the hardest, strongest, and

least ductile microstructure that may be formed for a given steel. The ability of a steel to form

martensite is termed hardenability and is most strongly affected by the alloy addition of carbon.

Carbon, as a solid solution strengthener and an interstitial impurity, acts as an impediment to

dislocation motion and reduces the steels ductility. The higher the percentage of carbon in a given

steel, the higher the hardenability[Ref.3].



Tempering martensitic steel, allows a very hard and strong microstructure some measure

of ductility. Tempering refers to the practice of raising the temperature of a martensitic steel to

allow for the diffusion controlled formation of a very fine mixture of ferrite and cementite. The

formation of these phases reduces the strength of the HY-100 steel somewhat, but allows for

improved toughness and ductility. During the welding process, the properties gained during heat

treatment are lost, and the cooling rate of the steel must be carefully controlled to prevent the

formation of martensite, particularly in the coarse grained heat affected zone (HAZ). High

strength steels are particularly susceptible to weld cracking particularly when hydrogen is present;

this is termed hydrogen induced cracking (HIC). HIC has three main causes: "Hydrogen in the

weld metal, high stress, susceptible microstructure (martensite), and relatively low temperature

(between 200 and - 100° C)."[Ref.4] Hydrogen, stress, and temperature can be controlled during

the welding process with strict controls on in-process fabrication procedures. In order to reduce

the susceptibility of high strength steel to the formation of martensite, a high strength steel is

needed which relies less on the strengthening due to carbon, and more on the strengthening

achieved through alternative alloy additions.

2. HSLA-100

HSLA steels were developed by the US Navy to provide the same strength and toughness

as HY steels, but without the inherent weldability problems due to the higher carbon content of

HY-100 steels (0.13-0.17 wt.%). HSLA steels are also quenched and tempered steels which

develop their strength from a combination of lath ferrite/martensite formation, solid solution

strengthening, precipitation strengthening (copper), and grain size control effected through pinning

of grain boundaries by niobium carbonitride during a non-recrystallization controlled final roll

pass. HSLA steels are more resistant to hydrogen induced cracking in the heat affected zone due to

a lower carbon content (lower carbon martensite), and thus should not require the same fabrication

controls as HY-100; particularly the requirement for a preheat and a controlled interpass

temperature. Fewer fabrication controls naturally result in reduced costs.

In order for HSLA steels to attain the same strengths as HY steel the addition of more

alloying elements to replace the solid solution strengthening effect of carbon are required.

Alloying additions must be carefully chosen; while an increase in strength may be realized by the

addition of an element , it may also reduce the impact transition temperature to an unacceptable



level. Figure 2-2 illustrates the effects of various elements and structural factors on the impact

transition temperature. In the comparison of HY and HSLA steels (Table 2-1), the primary

chemical differences he in the increased amounts of nickel, copper, manganese, and niobium, and

the lower carbon content ofHSLA steels.

After carbon , manganese is considered the best alloy addition to steel to increase

hardenability without sacrificing impact toughness. Niobium is added as a grain refiner (increases

both strength and toughness), while copper is added to HSLA steel to provide precipitation

strengthening. Nickel is added to improve toughness and as a solid solution strengthener, and the

combination of nickel, manganese and copper act as austenite stabilizers. [Ref.5]

The filler wires currently in use with HSLA-100 steels meet the compositional

requirements of MIL-120S. MIL-120S filler wire was designed for use with HY-100 steels and

resembles the composition of HY-100, but with a somewhat reduced carbon content of about 0.07

wt. %.[Ref. 3] The higher carbon content of the filler wire (relative to the HSLA base plate)

results in a cooling rate sensitive microstructure due to the higher hardenability and thus tendency

to form brittle microstructures at fast cooling rates. This cooling rate sensitive weld metal requires

similar in- process fabrication controls as if welding with HY-100. The objective of the current

welding consumable research in the US Navy is to develop a filler wire specifically for use with

HSLA-100 in the GMAW process which requires less in-process fabrication controls. To achieve

this the carbon content must be significantly less than 0.07 weight percent.

B. GAS METAL ARC WELDING (GMAW)

In the GMAW process an electric arc is established between the filler wire (acting as an

electrode) and the base metal which generates temperatures high enough to melt and fuse the base

and filler wire into a molten pool. Figure 2-3 illustrates typical GMAW equipment arrangement.

A cover gas, typically a combination of an inert gas (argon or helium) and carbon dioxide (C02 ) or

oxygen, is blown over the molten weld pool to prevent atmospheric contamination Three basic

types of metal transfer are employed in the GMAW process: short circuiting, spray, and globular.

Short circuiting occurs when the filler wire is in contact with the base metal and will not be

considered in this study. In the globular, or spray transfer method , metal drops detach from the

filler wire and travel across the arc gap to be deposited in the molten base metal. The spray



transfer method is typically used with direct current reverse polarity (DCRP) for steel applications.

DCRP refers to the polarity of the welding equipment with the electrode being attached to the

positive terminal of the welding machine. The electrode positive arrangement generates more heat

at the electrode rather than at the base metal, and in GMAW is preferred as the majority of the heat

generated in the welding process (approximately two thirds) is used to melt the filler wire. In gas

tungsten arc welding (GTAW), the polarity is typically direct current straight polarity (DCSP) so

that the majority of the heat generated in the welding process is used to melt the base metal vice the

tungsten electrode. In GMAW, the composition of the shielding gas, the heat input, and the

electrode size determine the method of metal transfer. [Ref. 4,6]

The GMAW welding process is preferred over the gas tungsten arc welding (GTAW),

when circumstances permit, due to its deeper penetration welds, higher deposition rate and

resulting reduced cost. While the depth of penetration, and rate of deposition, for GMAW is not as

satisfactory as submerged arc welding (SAW), GMAW has the advantage over SAW in the fact

that it is a virtually all position welding process, and SAW cannot usually be used for repair

work. [Ref. 6]

C. ULTRA LOW CARBON FILLER WIRE

The primary purpose of the chemical composition of the filler wire is similar to the reason

behind the microalloying of the base plate material: to ensure the mechanical properties of the weld

meet required specifications by control of the final weld rnicrostructure through the suppression of

the austenite to pro-eutectoid ferrite reactioa[Ref.5] The delay of the proeutectoid ferrite reaction

allows for the formation of higher strength competitive growth mechanisms (bainite and

martensite). The toughness of martensite and bainite are not as good as ferrite, but in appropriate

situations it can meet MIL-120S requirements. The objective of this filler wire development

program is to chemically control the rnicrostructure of the weld metal in order that the required

mechanical properties can be achieved irrespective of cooling rate and thus welding heat input

(power). This control is achieved by ensuring that the carbon contents of the transformation

products are kept as low as possible. If the same desirable rnicrostructure can be obtained over a

wide range of cooling rates then the in-process fabrication controls needed for HY steels will not

be required. Figure 2-5 illustrates a continuous cooling transformation diagram for a HSLA steel.



The large flat topped acicular ferrite (AF) and granular ferrite (GF) start curve represent an

essentially bainitic microstructure over a wide range of cooling rates. Reducing the carbon content

further allows a large extension of the flat topped region thus making the material less cooling rate

sensitive.

A secondary purpose of elements added to the filler wire is to deoxidize the weld pool.

Oxygen in the cover gas, added to stabilize the arc, will generate porosity in the weld if excess

oxygen in the weld pool is not captured by deoxidizers.[Ref.7] Oxygen, as well as hardenability

elements, can effect weld metal microstructure and mechanical properties. The strongest

deoxidizer is aluminum, followed by titanium, silicon, and manganese. If zirconium is present this

is also a very strong deoxidizer. Manganese can also react with sulfur to form MnS and, if copper

is present in sufficient amounts, CuS can also form The ability to generate MnS prevents the

formation of FeS which forms liquid films at grain boundaries and can lead to hot cracking. These

complex oxides, and sulfides, which are formed in the weld pool are termed non-metallic inclusions

and will be discussed further in section Dl

.

D. WELD METAL MICROSTRUCTURE

The International Welding Society identifies five microstructural features of HSLA weld

metals in the optical microscope:

• primary ferrite (PF): includes both grain boundary ferrite and intragranular polygonal

ferrite

• acicular ferrite (AF)

• ferrite with second phase (FS): includes aligned and non-aligned second phase (upper

and lower bainite)

• ferrite carbide aggregate (FC): (pearlite)

• martensite (M): includes lath and twin.[Ref.8]

Primary ferrite is the initial transformation product as the weld metal cools from the

austenitic range. A diffusion controlled reaction, primary ferrite is a high temperature

transformation product that begins at prior austenite grain boundaries. Slower cooling rates, high

weld metal oxygen contents (high inclusion density), and fine prior austenite grain size, promote

the growth of primary ferrite and will result in lowering of the impact transition temperature or

toughness of the weld.[Ref.9]



The most advantageous microstructure in weld metal is acicular ferrite, which can be

generated when the weld metal oxygen content is of the order of 300ppm in the form of appropriate

intragranular oxide inclusions, and when the prior austenite grain size is relatively large (> 45

microns). [Ref. 7] In high strength steels these oxide inclusions are usually manganese alumino-

silicates which contain some titanium, often as TiO. Acicular refers to the appearance of the

microstructure in the optical microscope - small needle like laths finely interlocked. Acicular

ferrite is believed to provide optimum weld mechanical properties in both strength and toughness

by providing a fine interlocking microstructure which hinders crack propagation. [Ref. 9] Acicular

ferrite can often be found in GMAW welds if cooling rates and oxygen contents are appropriate.

As the weld pool begins to cool below 600° C, the thermodynamic driving force behind the

transformation of austenite begins to increase, and intragranularly nucleated phases (acicular

ferrite) become more favored. As the austenite begins to decompose into ferrite, carbon is being

rejected form the ferrite into the adjoining austenite. This carbon enrichment of the austenite

suppresses ferrite formation in these areas and can lead to the formation of ferrite with a second

phase (bainite). With low intragranular inclusion density, the ferrite growth from the grain

boundary continues relatively unimpeded and results in large aspect ratios (10:1) with interspersed

carbide particles or ferrite carbide aggregate (pearlite).[Ref.8]

Martensite is an extremely strong and brittle microstructure. Martensite is formed when

the cooling rate is fast enough (< 5s from 800 to 500° C) prevent the diffusion controlled reactions

from starting. [Ref. 5] A low temperature, combined with a large thermodynamic driving force for

the decomposition of austenite, results in martensite. Martensite may also become trapped between

ferrite laths, resulting in martensite islands in the microstructure due to the carbon enrichment of

the austenite and a rapid cooling rate.

The micro-constituents present in the final weld microstructure formed is dependent on the

interaction of the following variables:

total alloy content (base metal and filler wire)

the size, chemical composition, and distribution of non-metallic inclusions

the solidification microstructure

the prior austenite grain size

the weld power (heat input), and therefore the weld thermal cycle or cooling rate

during the transformation of metastable austenite. [Ref. 5]



1. Non-Metallic Inclusions

Inclusions are formed by the interaction of oxygen in the cover gas with the iron alloying

agents in the weld pool. These oxide, or oxy-sulfide inclusions in some cases, float to the surface

and form slag, but more frequently are trapped by the rapid solidification process in the weld pool.

The formation of the weld metal oxides is a complex thermal process, but can be simplified by a

two stage model:

• a high temperature portion, where some reactions are near equilibrium, and

• a cooling stage where the concentrations established during the high temperature stage

are adjusted by the precipitation of new phases.

The high temperature portion of the model represents the area from the arc tip to the molten pool

below the arc gap. The temperature range of the high temperature stage is 1 600-2400° C. The

cooling stage covers the period of time from after the passage of the arc tip and is characterized by

the deoxidation reactions [Ref.5].

There are three primary sources for the inclusions in steel: primary, secondary and

exogenous. Primary inclusions are generated before weld pool solidification, and secondary

inclusions are formed form in the supersaturated regions of the interdendritic melt. Exogenous

inclusions are formed from outside the melt. The composition and role of inclusions in the

manufacture of steel plate are well understood, and microstructure and mechanical properties can

be reasonably well predicted. Steel manufacturing data cannot predict weld metal results as the

rapid weld pool cooling process precludes attainment of an equilibrium condition. [Ref. 10,1 1] The

nature, and chemical composition of inclusions in weld metal is currently an intense area of study

since appropriate inclusions promote the development of acicular ferrite within the solidified weld

metal [Ref. 10]

2. Characterization of Inclusions in High Strength Steel Weld Metal

Inclusion phases and compositions are analyzed in the transmission electron microscope

(TEM) by energy dispersive x-ray (EDX) microanalysis, and electron energy loss spectroscopy

(EELS), and diffraction . When a high energy electron impacts an atom and removes an electron,

an electron from an outer shell drops down to fill the hole generated by the removal. The

difference in the energies of the removed and outer shell electrons can be made up in two ways:



• emission of a photon (x-ray) whose energy is characteristic of the atom, or

• by ejecting a nearby electron (Auger electron). [Ref.20]

The ratio of photons to Auger electrons emitted is termed fluorescent yield (to) and is characteristic

of the atom and electron shells involved EDX microanalysis consists of hitting inclusions with

high energy electrons (e.g. 200kV) in a transmission electron microscope (TEM) and measuring the

intensity of the characteristic x-rays emitted from the specimens. An EDX spectrum provides a plot

of x-ray intensity vs. energy of characteristic emissions. EELS measures the energy losses of the

high energy electrons as they passes through the inclusion. EELS losses include the characteristic

x-ray as well as the ejected Auger electrons. An EELS spectra provides a plot of intensity vs.

energy loss. One advantage of EELS analysis is that the detection of light elements is much

improved Light element x-rays are typically absorbed by the EDX detector windows and the

efficiency of generation of x-rays for light elements is poor. EELS spectra also provide the

capability to determine not only the concentration of the phases present, but can also give

information on the way the elements are bonded in these phases.

TEM EDX analysis is considered superior to scanning electron microscope (SEM)

analysis of inclusions and was used in this study. SEM EDX analysis is not considered optimum

in that the generation of electrons and x-rays from the sample is in the shape of a bulb which

penetrates approximately 2|j.m into the sample. [Ref.20] Figure 2-6 graphically illustrates the bulb

of interaction. As the typical weld pool inclusion is approximately 0.4|jm in diameter, the SEM

plus EDX results include components of the base metal which cannot be separated from the

inclusion data.

For TEM analysis, inclusions are removed from the base metal by a carbon replica

technique. A thin foil of the carbon coating and the removed inclusion is placed on a 3mm copper

grid and then analyzed in the TEM. TEM analysis of inclusions result in a thin foil approximation

which avoids the base metal contamination of SEM EDX analysis. The x-ray measured intensity

is a function of the following:

IA =iQcon (2.1)

where,

IA = the intensity generated by element A
i = the current incident on the inclusion

10



Q = the cross section per cm2
for the ionization event

co= fluorescent yield

n= the number of atoms in the excited volume. [Ref. 20]

In an element composed of elements a and b, the ratio of

na/ IAQB coBaB Vba/ —

where,

(2.2)

aA = fraction of K,L,M line collected, and

rjA = detector efficiency,

is the basis for microanalysis of inclusions. [Ref.20] With a measured intensity value for each

element, the number of atoms of each element present can be easily calculated. The ratio of the

number of atoms of a and b can provide the concentration of elements present in inclusions. For

specimens that are too thick for the thin foil approximations, a correction must be made for the

absorption of the x-ray energies as they leave the specimen. Absorption corrections were made in

this study as appropriate [Ref. 20].

Research to date indicates that the inclusions in high strength steel weld metal contain

several different compounds which vary in composition depending on the welding conditions (heat

input/cooling rate), the total alloy content (base metal and filler wire), and the cover gas, or flux, in

use. Previous research by many workers has indicated that these inclusions contain MnO, Si02 ,

A12 3 , and usually a titanium oxide (often TiO),as well as CuS and MnS.[Ref. 5,8,9,10,12,13]

These multi-phase inclusions are typically spherical particles, but often have angular facets in the

titanium rich areas. The equilibrium ternary phase diagram illustrated in Figure 2-7 details the

coexisting compositions and compounds of the system Al2 O3 - MnO - Si02 . While this ternary is

a good approximation of the phases present in inclusions it has several shortcomings. First, the

ternary describes an equilibrium state and the formation of inclusions is not an equilibrium process

due to the rapid cooling rate within the weld pool. Second, most inclusions analyzed have a

definite titanium concentration which is not represented in this ternary. To include titanium would

result in a Al2 3 -TiO- MnO or Al2 O3 -TiO- MnO-Si02 quartenary diagrams, which were not

identified after literature searches by Dowling et al.-and are not yet apparently available [Ref. 10]

11



The composition and distribution of non-metallic inclusions are of interest in welding

research due to their roll in transformation kinetics. Inclusions promote the growth of acicular

ferrite and thus contribute to the improved mechanical properties of the weld metal.

3. Transformation Kinetics

Solid state transformations occur heterogeneously at the most energetically favorable sites.

These high energy sites are grain boundaries, grain corners, inclusions, dislocations, and vacancy

clusters. In weld metal transformations the non-metallic inclusions provide sites to promote the

energetically favorable heterogeneous nucleation. Research performed by Ricks et al., indicates

that the nucleation of ferrite at inclusions is always energetically more favorable than homogeneous

nucleation, but less favorable than nucleation at austenite grain boundaries. [Ref.14] The most

favorable nucleation sites were found to be particles of radius 0.2-0.5um. This range of particle

size is the most prevalent for non-metallic inclusions in many steel weldments. Ricks et al., did not

consider the effects of strain caused by the different thermal properties existing between the

austenite and the inclusions, or the possibility of the ferrite to adopt favorable orientations with the

austenite and the inclusions. Grong et aL, considered these oversights to strongly influence the

transformation process, and may explain why certain types of inclusions (composition and shape)

may be excellent nucleation sites for acicular ferrite. [Ref. 5]

On cooling below the Ac3 temperature, ferrite will nucleate initially at the austenite grain

boundaries and begin to form allotriomorphs. As the degree of under-cooling increases the

diffusion controlled transformations begin to slow down and the formation of displacive

mechanisms begin to control the transformation. The cooling time between 800-500°C is

considered the critical range for the austenite to ferrite transformation. The cooling time from 800-

500°C is proportional to the heat input and may be approximated by the following formula:

At
i/5 = 5tjE (2.3)

where, r\ = the arc efficiency (0.65-0.85 for GMAW), and E= the heat input [kJ/mm].[Ref. 5] The

alloys in the filler wire chemically suppress the ferrite grain boundary transformation until the

degree of undercooling will allow intergranular nucleation of acicular ferrite and displacive phases
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(bainite/martensite) in the weld metal. The initial solidification of the weld structure takes place

epitaxially, where the partly melted base metal grains at the fusion boundary act as seed crystals

for the columnar grains. The growth of the grains continues in the direction of the maximum

thermal gradient in the weld pool. In order to prevent this coarse columnar structure from

dominating the microstructure, and providing propagation paths for cracks, the number and size of

non-metallic inclusions again plays a dominant role. The heterogeneous nucleation of new grain

structure ahead of the solidification front is dependent on the non-metallic inclusions. Figure 2-5

illustrates the ideal continuous cooling transformation curve in that the bainitic microstructures

(AF and GF) will be realized over a wide range of cooling rates. A low cooling rate (high heat

input) will produce Widmanstatten and polygonal ferrite, and a rapid cooling rate will generate a

martensitic structure. [Ref. 5,15] The best mechanical properties of strength and toughness are

obtained with the acicular microstructures. In order to obtain an acicular vice a granular

microstructure, the inclusion size and volume fraction must be optimized to provide sufficient

intragranular nucleation sites. The size and volume fraction of inclusions both increase with

increasing weld metal oxygen [Ref. 16]. These results suggest that optimizing the weld metal

oxygen activity and total alloy content will have definite role in the final microstructure. Work to

date on high strength steel (such as HY-100)indicates an oxygen content of ~250ppm with average

inclusion size -0.04 urn is optimum for acicular ferrite formation provided the cooling rate Atgoo-500

is about 15 seconds. [Ref.28]

E. MECHANICAL PROPERTIES

An analysis of the mechanical properties of materials can reveal important information

on the lattice structure and imperfections in materials. In this study, the strength (yield) and the

toughness (impact transition temperature) of the as-solidified welds are of primary concern. The

yield strength of a material represents the stress level at which plastic deformation of a material

begins. The magnitude of yield strength represents the weld metal resistance to plastic

deformation, and is a function of strength and hardness. The toughness of a weld metal refers to

the ability of the metal to absorb energy up to fracture, and is a function of strength and ductility.

A Charpy V-notch (CVN) test is usually used to measure the impact toughness of weld metals

under a dynamic, tri-axial stress state through a range of temperatures. Steels, or body centered
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cubic (BCC) structures are particularly susceptible to a significant decrease in toughness at low

temperatures, and in order to ensure the satisfactory service of weld metals through an entire range

of possible temperatures, the Charpy V-notch test is utilized.

The factors affecting the CVN toughness of ultra low carbon weld metals are the strength,

the size and distribution of non-metallic inclusions, and the final solidified microstructure.[Ref.l7]

Increasing strength and carbon content lead to reduced toughness. Higher carbon content metals

tend form harder and more brittle microstructures. The increased carbon content results in a

greater percentage of carbide aggregates in the weld metal. These carbide aggregates form in the

carbon enriched areas adjacent to ferrite laths and provide a brittle crack propagation

path. [Ref. 3, 17]. Strength is a function of the final microstructure formed in the weld metal with

martensite being the strongest structure formed, but also the least ductile [Ref.3,17].

The size and distribution of inclusions are important in that as the total volume fraction of

inclusions increases, the CVN upper shelf energy decreases as a power function. [Ref. 17] The

reasoning behind this is that large inclusions strain the surrounding microstructure and provide

excellent initiation sites for cracking and micro-void coalescence. Inclusions also play a role in

decreasing the amount of columnar grains present in the final solidified weld.

Columnar grains typically form in GMAW welds in the final solidified microstructure due

to the relatively fast cooling rate (5-10sec) and limited number of passes. [Ref. 5] These columnar

grains provide excellent crack propagation paths and are an impediment to toughness and impact

strength. Good impact properties typically depend on a fine, interlocking , microstructure to

prevent crack propagation. Acicular ferrite is generally believed to be the optimum final

microstructure to provide the best impact properties. However, the ultra low carbon weld metals

previously studied (both GMAW and GTAW) have very low (10-15%) or no acicular ferrite

present respectively, and provide excellent impact properties and transition temperatures. [Ref. 17]

The low acicular ferrite percentages ofGMAW and GTAW welds combined with excellent

toughness suggests that acicular ferrite does not appear to be a major contributing factor to the

toughness of the ultra low carbon welds studied so far.

Improvement in impact properties (toughness) can be achieved through decreasing

strength, carbon content, nitrogen content, inclusion size and volume fraction, and the amount of

columnar solidified structure. When these complex factors can be optimized, toughness equivalent
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to tempered martensite may be realized in steel weld metal. [Ref. 17] The focus of this study is to

examine the factors affecting the impact toughness ofGMAW ultra low carbon welds.
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Element HY-100 HSLA-100 Filler Wire

C 0.17 0.034 0.03

Mn 0.25 1.18 1.51

P 0.01 0.008 < 0.004

S 0.005 0.002 0.002

Si 0.25 0.25 0.35

Cr 1.40 0.047 0.009

Ni 2.90 3.51 4.95

Mo 0.40 0.18 0.54

Cu 0.05 1.25 0.003

Nb — 0.039 < 0.002

V 0.01 0.001 0.002

C.E. 0.81 0.64 0.78

CE= Carbon Equivalent

Mn + Si Ni + Cu Cr + Mo + V
CE = C+^ +-^ + j

Table 2-1 Chemical Composition of HY-100, HSLA-100, and Filler Wire
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III. EXPERIMENTAL PROCEDURE

A. WELD SAMPLES

One Charpy impact specimen (MV14) and three weld samples (JB32, JB33, JB34) were

forwarded from Naval Surface Warfare Center (NSWC), Bethesda, Maryland for analysis. All

welds, including MV14, were fabricated by GMAW process using 51 mm thick HSLA-100 steel

for the base plate material and an ultra low carbon steel filler wire. The filler wire was 1 .6 mm

square in cross section and was manufactured by successive rolling (with intermittent vacuum

annealing) from 19 mm square cross sections removed from ingots of experimental ultra low

carbon steel plate material. Welding parameters are shown in Table 3-1. All welds, including

MV14, were 16 mm deep with a 60° included angle single V. Weld samples were removed with

a transverse orientation to the direction of weld travel. The Charpy sample was also removed

from the weld in a transverse orientation with the V-notch aligned in the center of the fusion

zone. Weld sample chemical analysis were taken from the middle of the fusion zone (same

position as Charpy samples). The method and precision of chemical analysis were as reported in

Table 3-2.

B. SAMPLE PREPARATION

All weld samples were ground using 180, 240, 320, 400, 600, and 800 grit silicon

carbide paper, followed by final polishing with 3pm water based diamond on Beuhler Texmet

1000 and 0.05pm alumina on Beuhler Microcloth. All samples were ground and polished using

the Beuhler Ecomet 4 with Automet 2 Power Head.

C. SCANNING ELECTRON MICROSCOPY

Polished weld samples were placed in the Cambridge Stereoscan 200 scanning electron

microscope ( SEM) for inclusion size and volume fraction analysis. For improved resolution and

contrast, the SEM was operated in the backscatter mode. One hundred random fields were

selected for analysis from the fusion zone of all weld samples. All inclusion measurements and

counts were taken with the SEM LaB 6 filament energized to 20 kV, a 9mm working distance and

at magnification 4000X. Figure 3-1 illustrates a typical inclusion field and method of inclusion
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diameter measurement. The inclusion field size was 510.6 x 10" 12 m 2
for all measurements.

Figures 3-2 through 3-5 illustrate inclusion histograms, mean diameter, and volume fraction

measurements for each sample.

Inclusion volume fraction was calculated from mean diameter data using the following

formula:

j2

VolFr = — X7T— (3.1)
/ 4

s = Average # inclusions / field

f = inclusion field size ( 510.6 x 10' l2 m 2
)

d = inclusion mean diameter

The area fraction and volume fraction can be considered as equivalent with the following

assumption:

• The plane of polish analyzed has the same probability of any other plane as having

equivalent inclusion statistics.[Ref.21]

Table 3-3 lists a summary of inclusion statistics.

Two Charpy bars were returned by NSWC for fractographic analysis in the SEM. One

upper shelf and one lower shelf sample from MV14 were photographed and analyzed in the

secondary electron mode of the SEM (20kV) at various magnifications to determine the

mechanism of failure.

D. TRANSMISSION ELECTRON MICROSCOPY

The TOPCON 002B transmission electron microscope (TEM) with LaB6 filament

energized to 200kV was utilized for energy dispersive x-ray (EDX) analysis of twenty randomly

chosen inclusions. TEM samples were prepared from polished weld samples that had been

etched in a solution of 5% Nitric acid and 95% Methanol (Nital) for 25 seconds. Etched samples

were then carbon coated using an Ernest F. Fullam Mk II carbon coater. Two strands of carbon

fiber were utilized to coat the samples which were approximately 3.20 cm from the filament.

Coated samples were then scribed in several 3 mm squares in the fusion zone of each weld to

promote separation upon deep etching. Samples were then deep etched in Nital for

approximately 5 minutes until the carbon coating began to float off. The carbon coating and
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attached inclusions were placed into a 5% by volume solution of acetone and water. The surface

tension of the acetone and water solution flattened out the carbon replica so that it could be

placed on a 400 mesh copper TEM grid. TEM samples for analysis were tilted 10 degrees

toward the EDX detector for improved results. The Topcon TEM uses a super ultra thin window

for improved detection of light elements. EDX data was analyzed using EDAX/EDX software.

Figures 3-6 through 3-9 illustrate typical EDX spectra obtained for each sample, and Tables 3-4

through 3-7 report inclusion chemical analysis results.

In addition, confirmation ofEDX results was obtained through the parallel electron

energy loss spectrum (PEELS) analysis of several thin inclusions. A typical PEELS spectrum is

illustrated in Figure 3-10.

Samples for TEM microstructural analysis were cut from the Charpy sample fusion zone

ofMV14 using a high speed diamond saw in 1mm thick slices. Samples were then mechanically

thinned by hand using 400, 600, and 800 grit silicon carbide paper. Three millimeter disks were

punched out of the thinned sample and twin-jet electro-polished in a solution of3% Perchloric

acid, 35% Butanol, and 62% Ethanol at -50 C until a small hole developed. The E.A. Fischione

Instrument, Mfg., twin-jet electropolisher was utilized with settings of 75 volts and 5 milli-amps.

E. OPTICAL MICROSCOPY

The Zeiss Stereomicroscope was utilized to obtain type 667 Polaroid film photographs of

the MV-14 Charpy fracture surfaces. The upper and lower shelf fracture surfaces of MV- 14 are

illustrated in Figure 3-11. After polished weld samples were etched for 6 seconds, the Zeiss

Jenaphot 2000 optical photomicroscope with attached 35mm camera was used to obtain

representative pictures of the fusion zone microstructure. Figures 3-12 through 3-15 represent

typical fusion zone microstructure for all samples. The percentage of acicular ferrite in the weld

metal was determined by taking ten random photos (type 667 Polaroid film) in the fusion zone

and then superimposing an approximately 1 .27cm rectangular grid pattern, resulting in 48 grid

points per photo. This technique resulted in 480 grid points per sample for microstructural

analysis. Figures 3-16 and 3-17 illustrate representative photos used for AF percentage analysis.

As explained in previous work (Clark), ASTM standard E 562-89 was used as a guide in the

determination of percentage of phases present, but was not followed in the area of the
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recommended number of grid points per volume fraction being analyzed, or in the area of

statistical analysis. [Ref.22,23] The following binomial approximation was utilized vice ASTM

standard E 562-89 :

C5
2 =p(\-p)ln (3.2)

where, a = standard deviation

p = proportion of phases being analyzed

n = number of grid points. [Ref.24]

Table 3-8 reports the AF phase percentages and standard deviation calculated for all weld

samples.

The Zeiss stereomicroscope was used to take macrograph photos of the weld at 8x.

Photos were then digitized by Semicaps capture software and stored on floptical disks. Printed

photographs were then pieced together in a montage. The completed montage was then

photographed on Polaroid 35mm film for a final magnification of approximately 3x.

F. MICROHARDNESS MEASUREMENTS

Microhardness measurements were made using the Beuhler Micromet 2004 with a one

kilogram load and diamond pyramid indenter. Polished samples were etched for 6 seconds in

Nital prior to indentation to ensure all measurements were taken in the fusion zone. Ten

randomly chosen indentations were made in the center of the fusion zone (same location as the

Charpy bars V-notch). All results are reported in Table 3-9 using the Vickers scale.

G. MECHANICAL TESTING

NSWC conducted all Charpy V-notch tests and determined resulting FATT

temperatures. After converting hardness data from the Vickers to the Brinell scale, specimen

tensile strengths were calculated using the following formula:

Sy = 0A5HB (3.3)

where,

Sv = Ultimate Tensile Strength [ksi]

HB
= Brinell Hardness.[Ref.25]
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Weld sample yield strengths were calculated from tensile strength results using the following

approximation based on considerable amounts of previous work at the Naval Postgraduate

School:

SY =SU (0.9) (3.4)

where,

SY
= Yield Strength. [Ref. 19,22]

Tensile and yield strength data are reported in Table 3-10. NSWC conducted tensile and yield

strength tests ofMV14 (pull tests) and obtained data comparable to calculated values (Sy = 126

ksi;SY = 105 ksi).

H. ERROR

Error bars on all data plots represent 95% confidence intervals for either large (n>30) or

small (n<30) sample size using the following formulas respectively [Ref. 26]:

Sx

where,

li = x±tau ~f= (3.6)

u. = true mean value

x = calculated mean value

z =distribution, large sample size

c = confidence interval

Sx = standard deviation

n = sample size

a = 1 - c

v = (1 - n) degrees of freedom

t = distribution, small sample size.
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SAMPLE WELD TYPE / #

PASSES
COVER GAS POWER

[KJ/IN]

VOLTAGE CURRENT
[AMPS]

TRAVEL SPEED
[IN/MIN]

MV14-9 GMAW/7 95% Ar- 5%COj 62 28.4 311-317 8.5

JB-32 GMAW/8 98% At- 2%02 60 27 320 - 340 8.4 - 8.9

JB-33 GMAW/8 95% At- 5%Oi 60 26.9 - 27.4 340 8.9

JB-34 GMAW/8 90% At- 10% Ch 60 26.9-27.4 340 8.9

Table 3-1 Weld Parameters
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Element Analysis Method

Confidence

Limit +/-

(wt %)

Carbon Combustion Infrared 0.001

Manganese Plasma Emission 0.02

Silicon Plasma Emission 0.01

Phosphorus Plasma Emission 0.002

Sulfur Combustion Automatic

Titration

0.001

Nickel Plasma Emission 0.05

Molybdenum Plasma Emission 0.01

Chromium Plasma Emission 0.02

Vanadium Plasma Emission 0.001

Aluminum Plasma Emission 0.002

Titanium Plasma Emission 0.001

Zirconium Plasma Emission 0.001

Copper Plasma Emission 0.001

Oxygen Inert Gas Fusion, TC 136 0.001

Nitrogen Inert Gas Fusion, TC 136 0.001

Boron Plasma Emission 0.001

Hydrogen Vacuum Hot Extraction 0.00001

Niobium Plasma Emission 0.001

Table 3-2 Method of Chemical Analysis and Precision [from Ref. 19
]
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Sample ID Total Count Mean Diameter

[microns]

Std Dev

[microns]

Volume fraction

[%]

MV14 526 0.481810.0392 0.34871 188 10.005828

JB32 589 0.439710.0317 029877 0.175 10.004375

JB33 525 0.5208 10.0369 0.32757 0.21910.006789

JB34 364 0.8575 10.0759 0.56227 0.412 10.03003

Table 3-3 Summary of Inclusion Statistics

Al [at.%] Si [at.%] S [at.%] Ti [at.%] Mn [at.%]

36.7 13.6 5.0 8.9 35.8

35.4 17.2 2.3 13.6 31.5

33.4 14.7 8.9 11.6 31.2

35.6 16.1 1.9 13.7 32.7

32.1 189 1.9 13.4 33.7

36.8 19.3 1.3 10.5 32.2

43.1 14.5 15 12 5 28 4

38.6 194 1.1 12.2 287
41.9 148 26 103 30 4

39.3 16.5 1.6 11.5 31.1

42.1 15.8 0.5 10.6 31.0

42.2 13.3 3.2 10.7 30.6

29.0 25.5 2.1 10.0 33 4

31.2 16 9 3.3 12.5 36.0

38.1 12.5 63 12 3 308
33.6 164 46 117 33.7

37.2 14.4 4.7 12.9 30.9

27.5 275 1.8 8.4 349

31.3 184 3.3 13 1 33.8

Average:

36.06 17. 14 3.05 11.60 32.15

Note: Data represents the EDX analysis (TEM 200kV) of twenty randomly chosen inclusions

Table 3-4 MV14 Inclusion Chemical Analysis
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Al [at.%] Si [at.%] S(at%] Ti [at.%] Mn (at %)

4.6 27.4 10.5 209 36 5

4.7 25.3 5.2 20.2 44,6

3.1 30.6 3.6 169 45 8

5.4 29.0 30 18.2 44 4

4.0 30.3 2.8 21.9 41

11.7 29.6 2.2 163 40 2

11.7 28.5 0.9 184 40.5

9.8 29.1 1.9 170 42 3

9.6 30.0 66 18.4 35 4

12.5 .29.5 4.2 183 35 4

11.0 29.4 2.2 156 41 7

50 26.8 5.5 23 7 39 2

9.2 34 4 159 2.70 37 8

10.8 268 57 198 37

13.1 27.0 65 189 34 5

7.4 269 2.8 187 44.2

11.1 26 63 189 37 7

11.9 32.8 2.0 14 .1 39.2

12.5 31.3 53 154 35 6

9.4 30.7 40 160 39.8

Average:

8.93 29.07 4.86 17 52 39 64

Note: Data represents the EDX analysis (TEM 200kV) of twenty randomly chosen inclusions

Table 3-5 JB32 Inclusion Chemical Analysis

Al [at. %] Si [at.%] S [at.%] Ti [at. %] Mn [at %]

1.6 37.0 3.0 89 49 5

1.9 39.2 3.6 11.8 43 6

2.5 39.9 3 3.6 51

1.8 39.5 4.0 5.6 49

1.9 29.6 3.5 14.2 50 8

2.3 37.8 3.3 85 48 1

2.0 37.0 3.2 86 49 2

2.4 34.0 18 11.3 50 4

2.5 35.3 26 102 49 5

3.0 32.3 2.5 138 48 4

2.2 325 4.6 17 2 43 4

28 29.6 3.5 172 47

1.8 39 8 4.6 5.6 48 2

2.4 39.2 34 11 6 43 5

4.6 40.2 2.7 39 48 5

20 38.3 43 99 45 6

1.8 37 4 39 94 47 5

1.6 384 4.2 7 48 8

1.7 37.6 54 68 48 5

1.9 39.6 42 7 2 47 1

Average:

2.24 36.71 357 9 62 47 SS

Note: Data represents EDX analysis (TEM 200k V) of twenty randomly chosen inclusions

Table 3-6 JB33 Inclusion Chemical Analysis
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Al [at.%] Si [at.%] S [at.%] Ti [at %] Mn [at %]

10.2 38.9 2.8 50 43 .1

6.4 36.4 3.5 5.7 480
9.8 38.3 3.2 6.1 42.6

7.0 35.6 1.8 7 8 47.9

10.5 34.8 1.7 8.2 44.7

7.6 365 28 59 47.2

8.3 30.5 1.5 135 463

6.0 364 32 6.3 48.1

9.8 37.3 1 9 69 44

7.6 34.1 20 7.8 48 5

9.3 348 1.5 69 47 4

5.9 29.9 1.6 89 53.7

5.6 26.9 1.3 62 599

6.7 27.3 1 4 87 55 9

6.4 30.2 1.9 9.2 52 3

9.1 334 1 4 72 489

7.7 37.6 1 5 56 476

11.9 36.7 1.4 4 1 46

14.2 35.5 1.0 4.8 44 6

10.5 28.7 1.3 14 3 45 2

Average:

853 34 00 1 94 7 46 48 10

Note: Data represents the EDX analysis (TEM 200kV) ol twenty randomly chosen inclusions.

Table 3-7 JB34 Inclusion Chemical Analysis

Sample ID Acicular Fernte [%] Standard Deviation [%]

MV14 14.79 1.62

JB32 8.33 1.26

JB33 8.13 1.25

JB34 5.00 0.994

Table 3-8 Weld Metal Acicular Ferrite Percentages
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Test# MV14 [HV] JB32 [HV] JB33 [HV] JB34 [HV]

1 316.8 267.2 257.8 244.1

2 322.7 256.0 259.7 258.4

3 333.2 258.1 259.4 236.2

4 317.6 271.1 251.6 230.9

5 320.2 263.1 234.9 240.0

6 316.8 266.6 273.7 249.8

7 297.1 260.9 258.7 240.8

8 290.8 269.8 251.3 244.4

9 326.6 265.6 235.9 262.4

10 323.6 270.8 237.5 255.7

Average: 316.54 264.92 252.05 246.27

Table 3-9 Hardness Data

Sample I D HV [Vickers] HR [Brinell] Su [kpsi] (MPa) SY [kpsi] (MPa)

MV14 316.54 299.25 134.66 (927.68) 121.19(834.91)

JB32 264.92 251.92 113.36(780.95) 102.02 (702.86)

JB33 252.05 241.05 108.47 (747.26) 97.62 (672.53)

JB34 246.27 234.92 105.71 (728.25) 95.14(655.43)

Table 3-10 Tensile / Yield Strength Data
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Figure 3-1 1 (a) Upper Shelf, and (b) Lower She'if CVN Fracture Surface MV'14
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Figure 3-1 5 Representative Fusion Zone Microstructure JB34
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IV. ANALYSIS, RESULTS, AND DISCUSSION

A. WELD METAL CHEMISTRY

The final weld metal composition, shown in Table 4-1, is dependent on the compositions of

the base plate, the filler wire, and the cover gas. The filler wire composition for both oxygen and

nitrogen are very low for typical GMAW applications due to the method of fabrication (vacuum

degassing). The nitrogen levels of the resulting weld metal remain low for typical GMAW welds

and indicate an effective cover gas in shielding the weld pool from atmospheric contamination

While weld metal nitrogen levels remain low, the weld metal oxygen levels increase. Increased

cover gas oxygen leads to increased weld metal oxygen content and increased 'consumption' of the

deoxidizing elements Mn, Al, Ti, Si and Zr (if present). Figure 4-1 illustrates the linear increase of

weld metal oxygen content with cover gas oxygen content. In the development of Figure 4-1

,

100% of the oxygen in the cover gas was assumed to be available for reaction in the weld pool for

welds with Ar-02 cover gas combinations (JB32, JB33, JB34).[Ref. 19,28] For the weld with an

Ar-CC»2(C5) cover gas (MV14), the disassociation of COy.

C02
^CO +-0

2 (4.1)

CO++C + O (4.2)

is anticipated to result in less than 100% of the oxygen being available for reaction in the weld

pool. [Ref. 1 9,28] Equation 4.3 was utilized to calculate the effective oxygen content (in volume %)

of the shielding gas when using carbon dioxide:

Eff02
= -0.088 + 0.148[CO2 f

"524
(4.3)

where,

Eff02
= Effective Oxygen Content [vol.%]

CO2 = volume percent of carbon dioxide in cover gas.[Ref.28]

The increased oxygen content of the weld pool results in the depletion of the strong deoxidizing

elements as non-metallic inclusions are formed. Referring to Table 4-1, the chemical composition

of the filler wire is compared to the final weld metal chemical composition for welds JB32, JB33,

and JB34. MV14 is plotted for comparison only due to the use of C5 cover gas for this weld and a
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slightly higher heat input (62 instead of 60 KJ/in). The composition of the strongest deoxidizer,

aluminum (AT), remains constant as the oxygen content increases. While it is anticipated that the

Al content would decrease as the oxygen level increases, the low levels of Al within the filler wire,

and weld metaL are very near the level of precision reported in Table 3-3 for measuring the Al

content.( 0.003 wt.% in the weld metal compared to a level of precision of 0.002 wt %) These low

levels of Al are believed to be too low for trend identification purposes. The Titanium (Ti) levels

for the weld metal of JB32, JB33, and JB34 also appear to remain fairly constant as the oxygen

level increases. The level of Ti in the weld metal is also anticipated to decrease as the oxygen level

increases; however, the Ti levels of the weld metal indicate a significant reduction in the filler wire

Ti levels, indicating a possible maximum has been reached in reactivity. The manganese (Mn),

nickel (Ni), and silicon (Si) contents are also seen to decrease with increasing oxygen contents in

welds JB32, JB33, and JB34 indicating the anticipated increased involvement of these alloys in the

deoxidation of the weld pool and the resulting formation of non-metallic inclusions. The

molydemum (Mo) content of these welds is seen to decrease with increasing oxygen activity as

well, with the exception of JB32, which shows a level greater than the filler wire, or the base plate,

composition. The Mo level reported for the weld metal of JB32 is believed to be in error and will

be estimated at 0.5 weight percent for further calculations..

The carbon content of the weld metal is seen to decrease with increasing oxygen content

due to the formation of carbon dioxide gas and the resulting escape to the atmosphere.(Eqn. 4.2)

MV14 is seen to have the highest carbon content due to the disassociation of the C5 cover gas into

carbon and oxygen and the resulting entrapment of carbon in the weld pool.(Eqn. 4.1) Carbon has

the strongest effect of all alloying elements on the hardenability of steel. The weld metal final

hardness (strength) is determined primarily by the depletion of the final carbon content of the weld

metal , and to a lesser extent the weak depletion of the inclusion forming alloys (Mn, Si, AL and

Ti). As illustrated in Equation 4.4, the hardness of steel alloys are often expressed in terms of the

carbon equivalent (CE) for comparison purposes. [Ref. 22]

Mn + Si Ni + Cu Cr + Mo + V
CE = C + + - + (4.4)

ID J

In this equation, carbon has a one to one effect on strength (CE) while, other alloys have a reduced

impact due to the constants in their denominators. Figure 4-2 demonstrates the decrease in the

weld metal carbon equivalent as the cover gas oxygen content increases. The overall effect of the
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decrease in the weld carbon equivalent is confirmed by Figure 4-3; where the weld metal hardness

vs. weld metal oxygen content is plotted Increasing cover gas oxygen results in decreasing

hardness. MV14 has the highest hardness due to its high carbon content, and was not included in

the trend due to the additional contribution of the C5 cover gas.

B. NON-METALLIC INCLUSIONS

1. Size and Volume Fraction

The inclusions contained within the fusion zone of all welds were analyzed for mean

diameter and volume fraction data as described in section IIIC. Figures 4-4, and 4-5 graphically

illustrate the mean inclusion diameter vs. weld metal oxygen content, and the inclusion volume

fraction vs. weld metal oxygen content respectively. With weld MV14 once again treated as an

outlier for studying trends, the data associated with welds JB32, JB33, and JB34, illustrate that

with increasing weld metal oxygen content the mean inclusion size and volume fraction both show

a strong increase which appears to be linear. The increase in inclusion mean diameter and volume

fraction with weld metal oxygen content is anticipated since increased oxygen content results in the

increased reaction of deoxidizing elements within the weld pool leading to more numerous and

large inclusions.

2. Inclusion Chemical Composition

Weld metal non-metallic inclusions, captured by carbon extraction and analyzed in the

TEM by EDX, were found to be predominantly spherical in shape, multi-phase, and composed of

the following elements combined with oxygen, sulfur, or a combination of both: AL, Ti, Si, and Mn.

In addition to these elements copper and carbon were identified by EDX spectra analysis of

inclusions. The copper signal arose primarily from the copper grids on which the samples were

mounted, although occasionally CuS was found in the inclusions. The carbon spectra indications

were believed to be from the film from the carbon extraction technique. Typical spectra from each

samples inclusions are illustrated in Figures 3-6 through 3-9.

Figure 4-6 illustrates the variation in inclusion aluminum content vs. weld metal oxygen

content. Although MV14 was produced with a different type of cover gas (which means the cover

gas oxygen activity was lower) there is evidence that the Al content of the inclusions is decreasing

with increasing weld metal oxygen content. It should be noted however that for the three welds
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made with Ar/02 combinations a downward trend (if any) is not clear. This is because the Al

content of the weld is low and close to the equilibrium value.

Figure 4-7 illustrates the variation in inclusion titanium content vs. weld metal oxygen

content. Significant data scatter was noted for all welds, as well as a weak decreasing trend in

inclusion titanium content for welds JB32, JB33, and JB34. Titanium, as a strong de-oxidizer, is

expected to decrease with increasing weld metal oxygen content.

Figure 4-8 illustrates the variation in inclusion silicon content vs. weld metal oxygen

content. It was difficult to detect a trend for silicon. With the most reactive elements Al, and Ti,

reacting with the available oxygen at low oxygen levels and becoming depleted, it is anticipated

that the more abundant silicon would then react with the excess oxygen at higher levels. This

silicon reaction at higher oxygen levels should result in increasing inclusion silicon levels with

increasing weld metal oxygen content.

Figure 4-9 illustrates the variation in inclusion manganese content vs. weld metal oxygen

content. A weak increasing trend of inclusion manganese content was noted with increasing weld

metal oxygen. As with silicon, this increasing trend in inclusion manganese content is anticipated.

At higher oxygen levels with the strong de-oxidizers depleted, silicon and manganese should

become a larger contributor to inclusion composition

In addition to EDX analysis of twenty randomly chosen inclusions, several thin inclusions

were identified for PEELS analysis, as well as EDX analysis of specific phase areas identified

within the inclusions. Figure 4-9 illustrates a typical thin inclusion with two phases (one dark and

faceted and the other lighter and spherical), with the EDX spectra from each phase. EDX analysis

of each phase was accomplished by utilizing a small probe size and hitting only the area of interest.

As noted in Figure 4-1 0, the dark and faceted area was found to rich in titanium and manganese,

while the lighter spherical area was found to be rich in silicon and manganese. Several thin

inclusions from various weld samples were probed and found to be similar to Figure 4-9. In all

cases, faceted areas of the inclusions were found to be rich in titanium as compared to the other

phases of the inclusion. PEELS and diffraction, analysis of several thin inclusions was also

conducted, with results indicating the titanium present to be in the form of TiO, rather than Ti02or

Ti2 3 . While PEELS spectra were readily obtained, the PEELS mapping of different

compounds/elements proved to be difficult because the thin inclusions and carbon films were

damaged by the excessive amount of time/energy required for probing and mapping inclusions.
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C. MECHANICAL PROPERTIES

The objective of the current US Navy welding consumable research is to develop a solid

filler wire for use with GMAW that meets the requirements of MIL-120S. MIL-120S requires the

following properties for the GMAW welds:

• yield strength between 703 MPa (102 ksi), and 848 MPa (123 ksi), and

• Charpy V-notch niinimum toughness of 6U (45 ft-lb. ) at -5 1
° C (-60° F) and 8 1 J (60

ft- lb.)at-18°C(0°F).[Ref.3]

1. Yield Strength

Figure 4-1 1 illustrates the weld metal yield strength vs. weld metal oxygen content. With

MV14 plotted for comparison purposes only, JB32 ,JB33, and JB34, illustrate that yield strength

decreases linearly with increasing oxygen content. In comparison with the requirements of MIL-

120S, MV14 and JB32 meet yield strength requirements while JB33 and JB34 do not. Yield

strength is primarily a function of hardness and as illustrated in Figure 4-3, the hardness of the

welds decrease with increasing oxygen content. The increased oxygen content depletes the carbon

and the de-oxidizing alloys by forming carbon monoxide gas and non-metallic inclusions

respectively. With carbon as the most effective hardening alloy, Figure 4-12 illustrates the weld

metal hardness vs. weld metal carbon content. With JB32 ,JB33, and JB34 utilized for trends ,and

MV14 plotted only for comparison, the increasing weld metal carbon content results in a linear

increase in weld metal hardness as anticipated.

2. Impact Properties

NSWC reported data for Charpy V-notch tests and Fracture Appearance Transition

Temperatures (FATT) are illustrated in Figures 4-13 through 4-16. Welds MV14, JB32, and

JB33 meet MIL-120S requirements while JB34 does not meet specifications. Figure 4-17

illustrates FATT vs. weld metal oxygen content. FATT temperatures for welds JB32 ,JB33, and

JB34, show a weak linear increase with increasing oxygen content - indicating a loss of toughness.

While the FATT temperature for MV14 is reported to be significantly better than JB32 (-89 vs.-

70° C), the data scatter in the Charpy tests for MY14 (Fig. 4-13) suggests that the true value of

MV1 4 FATT may be closer to the value reported for JB32. Figure 4-18 illustrates the weld metal

hardness vs. FATT data for all welds. For JB32 ,JB33, and JB34, increasing hardness results in a

lower FATT temperature, with MV14 being the hardest weld and also the weld with the lowest

FATT temperature. This increase in strength and toughness is a very important trend and indicates
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the importance of the size and volume fraction of inclusions on weld metal toughness. The smaller

the mean inclusion size, and a lower volume fraction of inclusions, results in a stronger and tougher

weld. MV14 and JB32 have the highest Mn and carbon contents, smallest inclusion mean diameter

and volume fraction, and result in the strongest and toughest welds. MV14 and JB32 both meet

MIL-120S requirements for strength and toughness. Increased size and volume fraction of

inclusions provides increased nucleation sites for micro-void formation during failure, and

increased crack propagation paths.

As mentioned in section IV(A) the filler wire and resulting weld metal nitrogen levels are

low for typical GMAW weldments. These low nitrogen levels may be a contributing factor to the

overall toughness of the weld and should be investigated in future research.

D. FRACTOGRAPHY

Figure 3-1 1 illustrates the macrographic upper and lower shelf fracture surfaces for

sample MV14. These samples are particularly interesting in that the lower shelf fracture surface

(-100°C) still demonstrates some ductile features at the outermost edge of the fracture surface.

Figure 4-19 illustrates the microscopic (SEM photo) upper and lower shelf fracture surfaces for

sample MV14. The upper shelf , or high temperature, fracture surface illustrates a typical ductile

fracture surface: A dimpled and topographical appearance with a large number of micro-voids

visible. The lower shelf fracture surface failure mode appears to be primarily brittle cleavage with

some ductile features (micro-voids). Of particular interest is the inclusion (denoted by the arrow)

centered within a micro-void, indicating the initiation site for the ductile mode of failure.

E. MICROSTRUCTURAL AND MACROSTRUCTURAL ANALYSIS

1. Macroscopic

Figure 4-20 illustrates a macrograph of the GMAW weld at approximately 3x. Readily

discernible in the montage of photographs (looking from outer edge of weld toward the center) is

the base metal, heat affected zone (both fine and coarse grained), and the papullary nature (upright

horseshoe) of the individual GMAW weld passes. The grain structure of the individual passes is

seen to be columnar in appearance and growing toward the center of the weld, or high temperature

regions.
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2. Microscopic

Figure 4-21 illustrates a TEM bright field photograph of the typical microstructure seen

for all welds. While some acicular ferrite, retained austenite and lath martensite, were visible, the

microstructure of all welds was primarily granular ferrite. This microstructure was anticipated due

to the calculated cooling rate through the critical temperature range (800-500° C) of 7.5 to 10

seconds (Eqn. 2.3), and the combination of the final weld metal alloy content and oxygen level.

Figure 4-22 illustrates the effects of heat input, cooling rate, alloy content, and oxygen content on

weld metal microstructure. Optical photography observations confirm TEM observations.

Optical photographs Figures 3-16 and 3-17 were used to calculate acicular ferrite

percentages. Figure 4-23 illustrates a plot of acicular ferrite vs. weld metal oxygen content. Using

weld JB32, JB33, and JB34 for trending purposes, the acicular ferrite percentage was seen to

decrease with increasing weld metal oxygen content. While this decreasing trend agrees with

results predicted by Figure 4-22, the calculation of acicular ferrite percentages are highly

dependent on the personal observations (expertise) of the author and may be subject to greater than

statistical error. The low acicular ferrite percentages present in the welds studied were due

primarily to the fast cooling rate (7.5-10 seconds), and the lack of the optimum weld metal oxygen

contents.(too low for welds MV14: 170ppm and JB32: 220ppm, and too high for JB34: 470ppm).

Optimum conditions for acicular ferrite formation are 1 5seconds through the critical temperature

range (800-500° C) and a weld metal oxygen content of 250ppm[Ref. 22] JB33 has very nearly

the optimum oxygen content at 260ppm, but the cooling rate remains less than optimum and

appears to dominate in the final microstructural determinations.
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V. SUMMARY

A. CONCLUSIONS

The weld metal strength and toughness requirements of MIL-120S were met by two of

the welds in this study (MV14 and JB32). High strength and toughness were seen to be a

function of:

• weld metal microstructure- determined primarily by the cooling rate from 800-500°

C (a function of heat input), and

• low weld metal oxygen content (< 250ppm) which results in smaller mean inclusion

size and volume fraction, and lower filler wire alloy dilution- primarily carbon.

The microstructure formed in the welds of all samples was primarily granular ferrite with some

acicular ferrite. While acicular ferrite is thought to lead to optimum impact properties, the low

percentages of acicular ferrite in all welds studied indicates that for an ultra low carbon steel

filler wire used in the GMAW process, predominantly granular ferritic microstructures can

achieve the required strength and toughness.(MIL-120S)

The increasing oxygen content of the cover gas and resulting weld metal, led to a

reduction of the weld metal alloy constituents (used for strengthening in the place of carbon for

HSLA-100 steel) due to the formation of non-metallic inclusions. These alloy constituents (Al,

Ti, Mn, Si, S) formed multi-phase oxide/sulfide inclusions. Inclusion size and volume fraction

were both found to increase with increasing weld metal oxygen content. EDX and PEELS

analysis of selected thin inclusions from each weld sample revealed a segregation of phase areas.

Phases which are high in titanium concentration typically have angular facets and are contained

within the mostly spherical inclusion. The titanium compound present is believed to be TiO,

although more work is needed to support this conclusion.

B. RECOMMENDATIONS

The success of the experimental ultra low carbon filler wire in meeting MIL-120S

requirements for strength and toughness should warrant further study. GMAW welds utilizing

ultra low carbon filler wire should be studied with C5 cover gas at various heat inputs which may

help in the formation of additional acicular ferrite. Also, GMAW welds with a fixed Ar-0 : cover
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gas with oxygen levels below 250ppm should be studied at various heat inputs to judge the

effects of cooling rate/heat input on strength and toughness properties. In order to determine the

effect of the low nitrogen levels in the developmental filler wire on overall toughness, additional

study should also be conducted to vary weld metal nitrogen levels.
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Element HSLA-100 Filler Wire MV-14 JB-32 JB-33 JB34
C 0.034 0.03 0.029 0.025 0.024 0.021
Mn 1.18 1.51 1.2 1.23 1.11 1.01
Mo 0.18 0.54 0.48 1.51 0.50 0.49
Ni 3.51 4.95 4.18 4.67 4.65 4.59
No 0.039 < 0.002 < 0.002 0.003 0.002 0.006
Cr 0.047 0.009 0.016 0.015 0.013 0.017
Si 0.25 0.35 0.28 0.26 0.18 0.19
Cu 1.25 0.003 0.18 0.16 0.19 0.3
S 0.002 0.002 0.005 0.002 0.002 0.003
P 0.008 < 0.004 0.006 < 0.004 < 0.004 < 0.004
Al 0.035 0.003 0.003 0.003 0.002 0.003
Ti 0.010 0.022 0.010 0.009 0.005 0.008
N 0.005 0.001 0.004 0.002 0.004 0.004
O 0.0009 0.0061 0.017 0.022 0.026 0.047
V 0.001 0.002 0.002 0.002 0.002 0.002
H 0.00009 0.00025 0.00013 0.00015 0.00018 0.00012

1

B < 0.005 0.0011 0.003 0.001 0.0008 0.0006

Note: All data in weight percent [wt. %].

Table 4-1 Chemical Composition of the Base Plate, Filler Wire, and Weld Metal
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Figure 4-20 Representative Macrograph of a Gas Metal Arc Weld
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Figure 4-21 TEM Bright Field Micrograph of Representative Weld Metal Microstructure

84



A

UJ
or
Z)
\-
<
or
uj
a.

UJ

Increasing Alloying Elements

Decreasing Oxygen Contents

COOLING TIME

Figure 4-22 Representative Weld Metal Continuous Cooling Transformation Diagram

[from Ref.4]



20

18

16

14

^12
o

CD
u. 10

1 i

MV14 o- data [AF]

— Linear Data Fit [Least Squares]

RA2=0.9911

JB33

JB32

JB34

0.015 0.02 0.025 0.03 0.035 0.04 0.045
Weld Metal Oxygen Content [wt.%]

0.05 0.055

Sample ID. Weld Metal Oxygen Content

[wt%]

Acicular Ferrite [%]

MV14 0.017 14.8

JB32 0.022 8.3

JB33 0.026 8.1

JB34 0.047 5.0

Figure 4-23 Acicular Ferrite vs. Weld Metal Oxygen Content

86



LIST OF REFERENCES

1. Deloach, Jr.,J.J., Franke, G.L., Vassilaros, M.G., Wong,R.J. and Denale,R., "Current Welding

Consumables Research in the U.S. Navy," Carderock Division, Naval Surface Warfare Center

CARDIVNSWC-SSM-6 1-93/09, March, 1993 .

2. Department of the Navy Military Specification MIL-E-23765/2E(SH), Electrodes and Rods-

Welding, Bare, Solid, or Alloy Cored; and Fluxes, Low Alloy Steel, 22 April 1994.

3. Callister W.D., Materials Science and Engineering: an Introduction, John Wiley and Sons,

1991.

4. Kou, S,. Welding Metallurgy, John Wiley and Sons, Inc., New York, 1987.

5. Grong, O., Matlock, D.K., "Microstructural Development in Mild and Low-Alloy Steel Weld

Metals", International Metals reviews, v. 31, 1986

6. Brumbaugh, James E., Welders Guide, Macmillan Publishing Company, 1986.

7. Widgery, AD., "Deoxidation Practice for Mild Steel Weld MetaL" Welding Research

Supplement, March, 1976.

8. Liu, S., "Metallography of HSLA Steel Weldments," Key Engineering Materials, Vol. 69-70

1992.

9. Liu, S., Olsen, D.L., "The Role of Inclusions in Controlling HSLA Steel Weld Microstructure",

Welding Research Supplement, June 1986.

10. Dowling, J.M., Corbett, J.M., Kerr, H.W., "Inclusion Phases and the Nucleation of Acicular

Ferrite in Submerged Arc Welds in High Strength Low Alloy Steels", Metallurgical Trans-

actions A, 1986.

1 1

.

Harrison, P.L., Farrar, R.A, "Application of Continuous Cooling Transformation Diagrams

for Welding of Steels", International Materials Reviews, Vol. 34, No. 1, 1989.

12. Fox, AG., Brothers, D.G., "The Role of Titanium in the non-Metallic Inclusions Which

Nucleate Acicular Ferrite in the Submerged Arc Weld (SAW) Fusion Zones ofNavy HY-
100 Steel", Scripta Metallurgica etMateriala, 1995.

13. Babu, S.S., David, S.A, Vitek, J.M., Mundra, K., Debroy, T., 'Development of Macro-

and Microstructures of Carbon-Manganese Low Alloy Steel Welds: Inclusion Formation",

Materials Science and Technology, 1995.

87



14. Ricks, R.A, Howell, P.R., Barrite, G.S., "The Nature of Acicular Ferrite in HSLA Steel

Weld Metals", Journal ofMaterial Science, 1982.

15. Thompson, S.W., Colvin, D.J., Krauss, G.," Continuous Cooling Transformations and

Microstructures in a Low-Carbon, High-Strength Low-Alloy Plate Steel", Metallurgical

Transactions A, Vol. 21A, June 1990.

16. Fox, AG., Eakes, M.W., Wong, R., "The Effect of Gas Composition on the Microstructure

and Mechanical Properties of Gas-Metal-Arc-Weld Metal ofNavy HSLA-100 Steels",

submitted, Welding Research Supplement to The Welding Journal, 1995.

17. Fox, AG., Blackburn, J.M., Vassilaros, M., " Factors Affecting the Impact Toughness of

Low Carbon Bainitic Weld Metal", Paper Presented Fourth International Conference of

Trends in Welding Research, Gatlinburg, Tennessee, June 1995

1 8. Pickering, F.B., Physical Metallurgy and the Design ofSteels, Applied Science Publishers

Ltd., London, 1978.

19. Reck, V., Jr., Mechanical and Microstructural Properties of Ultra-Low Carbon Bainitic

Steel Weld Metal, Masters Thesis, Naval Postgraduate School, Monterey, CA, 1995.

20. Smallman, R.E., Modern Physical Metallurgy, Butterworth-Heinemann Ltd., Oxford, 1992.

21. DeHoff, R.T., Rhines, F.N., Quantitative Microscopy, McGraw-Hill Inc., 1968

22. Clark, AL., The Effect of Varying theMnO Content ofthe Flux Usedfor the SubmergedArc

Welding ofNavy HY-100 Steel, Masters Thesis, Naval Postgraduate School, Monterey, CA,
1995.

23. ASTM Standard E 562-89, "Standard Test Method for Determining Volume Fraction

by Systematic Manual Point Count", Annual Book ofASTM Standards, 1995.

24. Gladman, T., Woodhead, J.H., "The Accuracy of Point Counting in Metallographic

Investigations", Journal ofthe Iron and Steel Institute, February, 1960.

25. Mischke, C.R., Shigley, J.E., Mechanical Engineering Design, McGraw-Hill, Inc., 1989

26. Beckwith, T.G., Lienhard V, J.H., Marangoni, R.D., Mechanical Measurements, Addison-

Wesley Publishing Company, Fifth Edition, 1995.

27. Fox, AG., Eakes, M.W., Franke, G.L., " The Effect of Small Changes in Flux Basicity on the

Acicular Ferrite Content and Mechanical Properties of Submerged Arc Weld Metal ofNavy

HY-100 Steel", accepted for publication in Welding Research Supplement to the

Welding Journal.



28. Onsoien, M.I., Liu, S., Olson, D.L., "Shielding Gas Oxygen Equivalent in Weld Metal

Microstructure Optimization", Welding Research Supplement to the Welding Journal, July,

1996.

89



90



INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center

8725 John J. Kingman Road, Ste 0944

Ft. Belvoir, Virginia 22060-6218 2

2. Dudley Knox Library

Naval Postgraduate School

411 Dyer Rd.

Monterey, California 93943-5101 2

3. Naval/Mechanical Engineering Curricular Offce, Code 34

Naval Postgraduate School

Monterey, California 93943-5000

Department Chairman, Code ME
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943-5000

5. Dr. Alan G. Fox, Code ME/FX
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943-5000

Mr. Joe Blackburne

Naval Surface Warfare Center

Carderock Division, Code 61

5

9500 McArthur Boulevard

Bethesda, Maryland 20084-5000.

Mr. R. DeNale

Naval Surface Warfare Center

Carderock Division, Code 615

9500 McArthur Boulevard

Bethesda, Maryland 20084-5000.

Mary E. Gwin

1 05 Magnolia Street

Trussville, Alabama 35173

91





Y KNOX LIBRARY
TGRADUATE SCHOOL

EX CA 93943-5101



DUDLEY KNOX LIBRARY

3 2768 00324276 9


