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ABSTRACT

For centuries, military forces have used camouflage to obscure potential targets

from the enemy. Because the eye is fairly adept at picking out edges, colors, and

bright areas, camouflage is often used to degrade these qualities from human detection.

The purpose of this thesis was to investigate the role of certain spatial, temporal, and

chromatic features on the human visual system and how these features may aid the

quest for better camouflage. Methods: Test patterns were spatio-temporal raised

cosines of varying orientation (horizontal or vertical and oblique), spatial frequency (1,

3, and 7 cpd), and modulated at 2.0 Hz. Color contrast thresholds were determined

from 16 different red-green color mixture ratios. This methodology eliminates the

problems with luminance artifacts and the need to determine exact equiluminance.

Results: The data formed an ellipse with the half-length measuring color discrimination

and the half-width measuring brightness discrimination. A maximum likelihood

method was used to fit the data. Three of the four subjects showed a 3 cpd chromatic

oblique effect, while the 1 and 7 cpd achromatic and chromatic oblique effect was

inconsistent across subjects. Conclusions: While real-world objects are more complex

than laboratory stimuli, knowledge of spatial and chromatic qualities that inhibit

detection will aid the quest for better camouflage.
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EXECUTIVE SUMMARY

For centuries, military forces have used camouflage to obscure potential targets from

the enemy. Because the eye is fairly adept at picking out edges, colors, and bright areas, these

are the qualities that camouflage seeks to degrade. The purpose of this thesis was to

investigate the effects of certain spatial, temporal, and chromatic features on the human visual

system and how these features may aid the quest for better camouflage.

Camouflage targets tend to match their backgrounds both in color and structure.

Netting or paint can make detection of a potential target more difficult by reducing chromatic

contrast. They can also reduce structural contrast by reducing sharp edge effects. This is

evident in the "stealth" design in which the lack of defined edges helps reduce the radar

signature. By removing defined edges, and thus high spatial frequency components, the visual

signature is also reduced since "stealth" ships and aircraft generally have backgrounds

consisting primarily oflow frequencies (sea and sky). The perception aspects of this real world

example can be simplified by examining less complex stimuli in the laboratory. For example,

camouflage design would be affected if it were known that oblique chromatic lines were more

difficult to detect than horizontal or vertical chromatic lines.

It has been shown that horizontal and vertical achromatic lines are easier to detect than

oblique achromatic lines. This phenomenon is known as the "oblique effect," which in this case

is an achromatic oblique effect. Several studies have shown that the magnitude of the oblique

effect is largest with high spatial and a low temporal frequency sinusoidal gratings. Previous

researchers have used this knowledge to design experiments testing for a chromatic oblique

effect, but have had problems with luminance artifacts due to the difficulty of obtaining exact

equiluminance. By adapting the methodology of an earlier researcher the problem of

determining exact equiluminance was avoided and an experiment to test for a chromatic

oblique effect was designed.

The experiment was conducted concurrently at the Naval Postgraduate School (NPS)

and the University of Louisville, Kentucky (UL). Four subjects, 2 NPS and 2 UL, volunteered

for this experiment. All subjects had normal (20/20), or corrected to normal, acuity and color
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vision. Stimuli were presented by a VisionWorks computer graphics system (Vision Research

Graphics, Inc.) on an IDEK MF-8521 high resolution color monitor (21" X 20" of viewable

area). The monitor had a resolution of 800 by 600 pixels (x=75.02 and y=74.92 pixels/degree),

98.9 Hz frame-rate, mean chromaticity of r = 0.334, g = 0.336, b = 0.300 (1931 CEE), and a

maximum luminance of 1 00 cd/m2. The University of Louisville's apparatus and procedure

were identical to the Naval Postgraduate School's, except that the stimuli were displayed on a

17" Nanao Flexscan F2.21 color monitor. Subjects viewed the monitor from 1.5 meters and

were positioned by an adjustable chinrest.

Sinusoidal gratings were presented within a spatially windowed circular test field that

subtended 7.59 of visual angle. The Gaussian window was truncated at ±1 standard

deviations for both x and y directions. The test patterns were one-dimensional spatio-temporal

sinusoids of varying orientation (principal and oblique), spatial frequency (1.0, 3.0, and 7.0

cycles/degree), and color contrast. Test patterns for each subject consisted oftwo orientations,

principal (0° and 90°) and oblique (45° and 135°). For each subject, maximum sensitivity for

each orientation within the principal and oblique grouping was chosen. All sinusoids were

raised cosines temporally modulated at 2.0 F£z. The sinusoid pattern was presented in a 1500

msec interval with contrast ramped on and off according to a linear window. (Contrast

peaked at 202 msec and fell at 1304 msec. Color contrast was computed by different ratios of

percent red and green. Sixteen different sinusoidal red-green color mixtures were generated by

changing the red phosphor only, green phosphor only, or by changing the red and green guns in

fixed proportions. Color contrast was defined according to the Michelson formula. Thresholds

were determined by a sequential two-alternative forced choice adaptive psychometric

procedure, QUEST. Threshold was defined at 75 percent correct. A total of 480 trials, 30

trials per condition, were randomly presented within each session. A session (~ 45 minutes)

consisted of one sinusoidal condition with 16 different red-green color mixtures. A subject had

to complete six sessions to contribute one set of 16 thresholds for each condition.

Numerous surveys of differential thresholds have been carried out, but one of the more

extensive ones was completed by D.L. MacAdam. The data from this survey was elliptical (the
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closed curves connecting the thresholds were elliptical in shape). It was shown that the errors

ofthresholds about these closed curves were Normally distributed, therefore the curves should

be ellipses, as they appeared to be.

The elliptical properties of the experimental data were used to fit ellipses using the

method of maximum likelihood a nested F-test (which is only approximate, because of non-

linearity) was used to examine the significance of the different orientations. Results of this test

showed that the chromatic oblique effect was inconsistent across the spatial frequencies of 1, 3

and 7 cycles/degree (cpd). The lack of a 1 cpd chromatic oblique effect was due to the

insensitivity ofthe chromatic channel at the lower spatial frequencies. Two of the four subjects

showed a graphical 7 cpd chromatic oblique effect, but this was non-significant. Chromatic

aberration may have been a factor. Three of the four subjects showed a 3 cpd chromatic

oblique effect with two significant and the third marginally significant. It is predicted that the

marginally significant subject would show significance with additional trials.

The main value of this study is the tool it provides for further investigation of a

chromatic oblique effect without the problems associated with luminance artifacts.

Additionally, further investigation of a chromatic oblique effect will likely provide knowledge

of spatial and chromatic qualities that inhibit detection. Knowledge of these qualities will aid

the quest for better camouflage
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I. INTRODUCTION

The continual decline of the military budget has necessitated the increased protection of

current and future war-fighting assets. This increase, coupled with public expectation of zero

or close-to-zero casualties, has forced the services to reassess the way they conduct operations.

Today's political climate necessitates this reassessment since the potential loss of public support

for military actions generally increases with the number of American casualties.

A cruise missile attack is an effective method used to minimize civilian and friendly

casualties. For example, cruise missile attacks were successful against Iraq's military targets

during the Gulf War. Although the cruise missile is an effective weapon, it is an expensive

resource for the United States military inventory. A less expensive alternative is an air strike,

but the disadvantage of an air strike is the increased likelihood of aircrew casualties and missed

targets. Ideally, the aviator would like to enter the threat zone undetected, thereby increasing

the probability of locating the target without becoming engaged by the enemy.

The ability to avoid detection is a distinct advantage during battle. For centuries, the

element of surprise has resulted in a quick and decisive destruction of forces. For example, the

U.S. Air Force F-117 "stealth" fighter was responsible for much of the precision bombing

during the Gulf War. Because their aircraft was nearly invisible within the Iraqi air defenses,

pilots had additional time to accurately drop bombs on target. This near-invisibility must

extend beyond the visible spectrum since today's battlefields are equipped with electro-optical

sensors that often extend the range and increase the probability of detecting potential threats.

Electro-optical sensors make detection possible through visual, infrared, thermal and other

means. For example, shielding hot parts of a vehicle is part of the vehicle's thermal camouflage

as it tries to disperse its thermal signature.

But, even with these technological advances, a large threat to operations, and to

reconnaissance operations in particular, is often the most common sensor--an enemy's eyes.

Prior to the start of the Gulf ground war, U. S. forces had reconnaissance teams operating in

the interior of Kuwait. These teams used their speed and camouflage to prevent detection and

capture. If their camouflage had been inadequate, capture and death would have been likely,
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delaying the start of the ground offensive. While the saying "if they can't see you, they can't

hurt you" is no longer true, the likelihood of being hurt is reduced when the enemy cannot see

you.

To make the enemy's task of detection more difficult, camouflage is used. Since

detection has traditionally been associated with visual detection, camouflage is generally

thought of as making the visual detection of personnel or any potential target more difficult. It

is in this sense that camouflage will be discussed.

Camouflage has many different applications, ranging from the clothes and face paint of

an infantryman to the netting used to cover tanks and vehicles to the paint used on larger

platforms such as aircraft and ships. Since the eye is fairly adept at picking out edges and

bright areas, camouflage is often used to break up edges and to cover or conceal bright areas.

All objects possess certain unique qualities of shape and color. In order to deceive a sensor,

the object must blend with the background. An invisible object would match the background,

while an easily identifiable target would contain noticeable spatial, temporal, or chromatic

features. By manipulating the spatial, temporal and chromatic features, an object can be made

more difficult to detect. Knowledge of the range of these features will aid military designers in

their quest for better camouflage.

To understand how to make detection more difficult, one must also understand the

sensors that will be used. Since, in this discussion, the primary sensors are the enemies' eyes,

either directly or through some sort of image intensifying mechanism, a working knowledge of

how the eye works and what cues it uses to accomplish detection is essential.



II. BACKGROUND

The ability to perceive an object is an unconscious, automatic process. The world is

filled with a variety of sensory information that stimulates our senses. This information is

obtained through visual, auditory, tactile and olfactory inputs. We use our senses to collect this

information and translate it into meaningful units of sensory awareness. This information is

then relayed to the brain, resulting in the formation of perceptions. The brain then categorizes

this sensory data and compares it to past experiences. Thus, perceptions are a culmination of

sensory inputs that are organized into a meaningful representation of the outside world. The

study of perception involves a complete understanding of the description of objects,

appearances and events in the outside world (Sekuler and Blake, 1994). In brie£ sensation and

perception refer to a sequence of events: stimulation of an external object; machinery to

capture this information; and translation of this information into electrical energy to form an

experience. Perceptual experiences guide our actions in the world. This thesis investigates the

different techniques of manipulating visual sensory input to change the appearance or

perception of an object. (Sekuler and Blake, 1994)

The basic function of the eye is to capture visual sensory input or light and focus it on

the retina, a thin layer of receptor cells located in the back of the eye. The light must pass

through these retinal cells before reaching the photoreceptors, which convert the light into an

electrical signal. This process of converting an external stimulus into a neural signal is called

transduction. These neural signals are then sent through the network of retinal cells, which, in

turn, are sent to the brain (Figure 2. 1).

The human retina contains two major classes ofphotoreceptors, rods and cones. There

are approximately 8 million cones and 120 million rods. The fovea, located at the center ofthe

retina, has the greatest concentration of cones. The cones are sensitive to daylight and provide

high-acuity color vision, while the rods are used for night viewing and are thought to be

achromatic. Between five and ten percent ofthe total cone population are sensitive to short
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Figure 2. 1 . A cross section of the human retina. From Sekuler and Blake [1994].



wavelengths, with a peak sensitivity of 420nm. This cone class is referred to as S or blue

cones. A few S cones are located at the fovea, but the largest concentration of S cones forms a

ring around the fovea. This large concentration of cones tapers off with increasing distance

(eccentricity) from the fovea. The remaining cone population is sensitive to middle (peak

sensitivity of 530nm) and long wavelengths (peak sensitivity of 565nm). The long-wavelength

(L or red) cones outnumber the middle-wavelength (M or green) cones two to one. The R and

G cone distribution is randomly mixed throughout the retina, with the greatest concentration

located inside the fovea. (Tovee, 1996)

While he did not directly identify cones, Thomas Young believed that the retina

contained three receivers that were sensitive to a limited number of light vibrations. These

receivers are now known as cones. Young also is responsible for one of the first explanations

ofhow we perceive color. Earlier, Newton had demonstrated that white light could be split by

a prism into a spectrum of colored lights. He found that recombining some of these colored

lights resulted in the original white light. Newton mixed and subtracted colors, but he did

not attempt to explain how we perceive color. Young, however, postulated that color

perception is due to the vibrations of light interacting with the retina. The three receivers in the

retina were broadly tuned with overlapping sensitivities. Helmholtz confirmed and elaborated

Young's color theory by showing that there are three types of receivers (cones or

photoreceptors) in the human retina, and that each type contains a different pigment. The

spectral sensitivity of the cone is determined by the absorption spectrum of its photopigment.

(Mcllwain, 1996)

Young hypothesized that there were three broadly tuned receivers in the retina

because, he reasoned, a single broadly-tuned receiver could not provide enough information

about the wavelength of light. If there were two receivers, then there would be one particular

frequency that excited both receivers equally, and thus white light would be produced

(intersection of the curves in Figure 2.2b). Since Young did not observe white light in the

color spectrum produced by a prism, he concluded that the visual system must have three

broadly tuned receivers. A single cone pigment cannot discriminate between changes in

wavelength and changes in the intensity of light. A cone can only increase or decrease its



output, so its signal is ambiguous as to whether the change is due to a shift in the light's

wavelength or to a change in its intensity. This type of response is explained by the principle of

univariance. For example, a retina that contains one cone class may give the same response to

two different wavelengths, while a two-cone class retina may excite the receptors in different

ratios (Figure 2.2). Therefore, the retina needs at least two cone types to distinguish between

changes in wavelengths. Primate vision can discriminate millions of colors with three cone

types, whereas non-primate mammals, which usually have two cone types, cannot. These

mammals tend to rely much more heavily upon auditory and olfactory sensory inputs to

survive. (Tovee, 1996)

*3

400 500 600

Wavelength

400 500 600

Wavelength

Figure 2.2. Wavelength discrimination by (a) a one-class retina and (b) a two-class retina.

A retina that contains one cone pigment responds more or less with the same energy for

some wavelength within its spectral sensitivity—the principle of univariance. A retina that

contains two cone pigments will have different responses depending upon the location of

the two wavelengths. From Mcllwain [ 1996].

The Young-Helmholtz trichromatic theory accounts for many, but not all, of the

phenomena associated with color vision. The theory predicts that a signal comprised of a

certain combination of long and medium wavelengths cannot be distinguished from a specific

third wavelength (yellow), but it does not account for the fact that the signal appears yellow

rather then red-green or green-red. Additionally, the phenomenon where an object's color

appears to vary depending on the colors viewed immediately before viewing the object

(successive color contrast) or on the colors surrounding the object (simultaneous color
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contrast), cannot be accounted for. A theory that does account for both these phenomena and

those explained by the Young-Helmoltz theory is known as the opponent-color theory.

(McBwain, 1996)

The opponent-color theory was first introduced in 1878 by Hering and has been

furthered through the work ofHurvitch and Jameson. Hering postulated that there were three

visual processes, two chromatic and one achromatic. The processes consist of three

antagonistic or opponent pairings. These pairings are red-green and yellow-blue for the

chromatic processes and black-white for the achromatic process. Such opponent pairs are well

explained by the center-surround or on-center and off-center type ganglion cells consisting of

the aforementioned pairings. These opponent pairs account for the fact that the colors in these

pairings cannot be seen at the same time; thus, there are no reddish-green hues. The inputs

from the S, M and L cones in the first diagram of Figure 2.3 display in a simplified way how

these inputs are combined to form a signal that we perceive as blue. The second diagram in the

Figure is identical to the first, except that the weightings ofthese signals result in the perception

of yellow instead of blue. Intermediate weightings of the signals displayed result in our

perception ofmany more colors than the six shown in Figure 2.3. (Tovee, 1996)

A&& 444 A A A A A A A A A A A A&A£i mM*m m^kf*

"BLUE" "YELLOW" "GREEN" "RED"

W+Y

"WHITE" "8LACK ,:

Figure 2.3. Simplified hypothetical display for a model based on color opponency. From

Mcllwain [1996].

The cones relay their information by synapsing onto ganglion cells, whose axons travel

through the optic nerves to the visual cortex located in the back of the brain. The human eye

contains approximately one million ganglion cells. The input of 128 million photoreceptor

signals has been reduced to an output produced by these one million ganglion cells. In 1938,
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Hartline discovered that the retinal ganglion cells of the frog were comprised of two

concentrically shaped ring-like areas on the retina (Figure 2.4). He found that certain ganglion

cells increased their electrical energy when a light was passed through their center or inner ring

and decreased their electrical energy when a light was passed through the outer ring. Hartline

called these ON-center ganglion cells. Cells that respond vigorously to a dark center and a

light edge are called OFF-center ganglion cells. A network of such ON-center and OFF-center

cells is responsible for providing edge detection as well as orientation information. Hartline'

s

work laid the foundation for later work by Devalois (1958), who discovered that primate

ganglion cells behaved in a similar manner. (Sekuler and Blake, 1996)

The morphological and physiological properties of primate ganglion cells are

divided into three categories: large size Pa or A cells, small size Pp or B cells, and Pr or W-

like cells. Livingstone and Hubel (1988) classify two major types of ganglion cells, Pa and

Pp cells, and their projections to different cortical regions within the primate visual system.

Pa cells (ten percent of ganglion cells) have high conduction velocities, transient

responses, no color sensitivities, high contrast sensitivity and very good temporal

frequency modulation. Pp cells (80 percent of ganglion cells) have lower conduction

velocities, sustained responses, low contrast sensitivity, color opponency and moderate

temporal resolution. Both Pa and Pp neurons are segregated into two different pathways

which project to different locations within the lateral geniculate nucleus (LGN), VI, and

higher cortical regions within the primate cortex (Livingstone and Hubel, 1984). Refer to

Figure 2.5 for a graphical representation of the visual pathway. (Merigan, 1989)

The magnocellular pathway (M pathway) receives input from Pa ganglion cells that

project first to layers 1-2 of the LGN. Cells in the magnocellular geniculate layers project

to layer 4Ca of the primary visual cortex. From layer 4Ca they project to layer 4B, which,

in turn, projects to visual area 2 and to the medial superior temporal area (Tovee, 1996).

This pathway is thought to involve spatial awareness, that is, 'where' an object is located

in space. Alternatively, the parvocellular pathway (P-pathway) receives input from Pp

ganglion cells and first projects to layers 3-6 of the LGN. Cells in the parvocellular
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Figure 2.4. Receptive field layout of a retinal ganglion cell with (a) an "ON" center

excitory and "OFF" periphery inhibitory and (b) an "OFF" center excitory and "ON"
periphery inhibitory. From Schiffinan [1996].
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Figure 2.5. Images were obtained from Dr. Van Essen's laboratory home page, Washington

University, St. Louis, Mo.



geniculate layers project to layer 4Cg in the primary visual cortex. From layer 4C3 they,

in turn, project to layers 2 and 3. From these two layers, information is sent to visual area

2, layer 4, and then to the inferior temporal cortex (Tovee, 1996). The inferior temporal

cortex is thought to be concerned about the 'what' of an object. In summary, a crude but

simple classification of the P and M pathways can be characterized as the 'what and

where' of objects that an observer perceives. (Livingstone and Hubel, 1988)

Scientists have learned about the P and M pathways and their contributions to vision

through studies that observed one pathway after the other pathway had been made inoperative

by lesioning it. In 1990, Schiller and Logothetis created lesions in the P or M pathway of

monkeys and then conducted various tests, including color perception, texture perception,

acuity, pattern perception, flicker perception, and contrast perception. The results of these

tests indicate that particular functions do tend to be associated with a specific pathway. In

general, the P pathway is associated with color perception, texture perception, pattern

perception, acuity, and contrast perception, whereas the M pathway is associated with flicker

and motion perception. While only parvocellular lesions had an effect on the monkey's ability

to discriminate between subtle color differences, these same lesions did not affect the monkey's

ability to detect a single large target whose color differed from its background, even when the

target was equiluminous with its background. This implies that the M pathway is capable of

conducting some gross color information and can do so at isoluminance. While lesions in the

M pathway resulted in a deficit offlicker perception, this was universally true for high temporal

frequencies only. For low temporal frequencies, lesions in the M pathway had no effect, thus

demonstrating that the P pathway is capable of transmitting low temporal frequency

information. (Sekuler and Blake, 1994)

The P pathway also provides information to bloblike regions of the visual cortex.

Unlike most ganglion cells, the cells in these bloblike regions are not at all concerned about

orientation. These cells called blobs exhibit color opponency in a manner similar to that of the

ON and OFF center cells. However, these cells turn ON and OFF in response to a specific

chromatic illumination instead of an overall illuminance (Sekuler and Blake, 1994). Having this
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basic physiological background, we can now focus on possible physiological explanations for a

phenomenon known as the "oblique effect."

It is well documented that horizontal and vertical lines are easier to see than lines at

oblique angles, a phenomenon known as the "oblique effect" (Campbell, Kulikowski and

Levinson., 1966; Appelle, 1972). This phenomenon has been observed in a variety of visual

tasks. Essock (1980) divided the oblique effect into two classes. Oblique effects arising from

basic visual functions such as detection, acuity, and other measures of sensitivity are termed

Class I oblique effects. The Class I oblique effect is not caused by a bias in the optics of the

eye (Campbell and Kulikowski, 1966), but is thought to result from the orientation bias of the

P-cells located in the visual cortex (Lennie, 1974). Several studies have shown that an oblique

effect is most observable when a stimulus with a high spatial frequency and a low temporal

frequency is presented to the fovea (Maffei and Fiorentini, 1973; Berkley, Kitterle and

Watkins, 1975; Camissa, Blake and Lema, 1977).

Class II oblique effects arise from tasks that require subsequent processing of stimulus

information. For example, a task measuring the detection threshold of a stimulus oriented

either obliquely or non-obliquely would result in a Class I oblique effect. When an observer

must press one of two buttons indicating whether two simultaneously-presented stimuli of

various orientations are the same, or whether they are different, the result would be a Class II

oblique effect. This Class II oblique effect would be the result of encoding or further

processing of stimulus information required for task completion. An important distinction,

however, is that the Class I oblique effect discussed above results from achromatic stimuli. For

chromatic stimuli, the results are not clear and leave uncertainty as to whether an oblique effect

exists (Kelly, 1975b; Murasagi and Cavanagh, 1989). This thesis explores a Class I oblique

effect and will be specific as whether this oblique effect is a result of achromatic or chromatic

stimuli. (Essock, 1980)

There are various hypotheses explaining why the oblique effect exists. One suggests

that the world we live in, especially urban areas, contains more stimuli oriented horizontally or

vertically as opposed to obliquely; thus, visual experience plays a role in determining sensitivity

(Annis and Frost, 1973). However, the oblique effect has been demonstrated with infants as
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young as six weeks old (Leehy, Moskowitz-Cook, Brill and Held, 1975). It seems unlikely

that the visual experience of infants would be sufficient to account for the oblique effect. To

further confuse the issue, it has been shown that with extensive practice detecting diagonal

lines, observers may improve their oblique sensitivity until it is equal to their sensitivity for

detecting horizontal and vertical lines (Mayers, 1983; Krebs, 1992). A more widely accepted

hypothesis suggests that more cells are tuned to vertical and horizontal stimuli than to oblique

stimuli.

Similarly disputed is whether the oblique effect is a retinal or a neural phenomenon.

Campbell and Kulikowski (1966) and Mtchel and Muir (1967) used lasers to bypass the optics

of the eye by projecting stimuli directly onto the retina. The oblique effect was obtained in

both studies. Other studies involving head tilt (Rock and Heimer, 1957; Attneave and Reid,

1968) further investigated whether the oblique effect was a retinal phenomenon. When

subjects viewed tilted stimuli with their heads tilted the same amount as the stimuli, the stimuli

were retinally upright, but phenomenally oblique. ("Phenomenally" describes the stimuli's

orientation in the visual frame of reference of the subject [Lasaga and Garner, 1983]. The

phenomenal frame of reference in this case would be gravitational.) Other, similar studies have

adopted an arbitrary frame of reference (Rock and Heimer, 1957). In a study by Attneave and

Reid (1968), subjects were told to think of the top of their heads as vertical, regardless of

whether or not they were tilted. For head-tilt experiments in which subjects had their heads

tilted 45 degrees, stimuli that were horizontal/vertical were retinally oblique, but were

phenomenally upright. Unless otherwise instructed, subjects tended to adopt a phenomenal

frame of reference rather than a retinal frame of reference. Therefore, when a subject's head

was tilted 45 degrees, an oblique effect was obtained for oblique stimuli, even though these

stimuli were not retinally oblique (Attneave and Olsen, 1967). However, when subjects were

told to think of the top of their heads as vertical, regardless of their 45 degree head tilt, they

displayed an oblique effect for stimuli that were gravitationally upright, but retinally oblique

(Attneave and Reid, 1968). In light ofthese studies, the oblique effect is highly unlikely to be a

retinal phenomenon.
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Another possible cause of the oblique effect is a neural phenomenon. This hypothesis,

and that the origin of this neural phenomenon arises in the P pathway, seem credible even

without the additional evidence provided by Rabin's (1992 and 1994) work with Visual

Evoked Potentials (VEPs). The P pathway is responsible for acuity information and, thus,

spatial information and is capable of processing low frequency temporal information. The

Class I oblique effect has been observed primarily at high spatial frequencies and low temporal

frequencies.

While the origin of the Class I achromatic oblique effect has been disputed, the dispute

about a Class I chromatic oblique effect is not over its origin, but over its very existence. One

of the earliest articles discussing the Class I oblique effect and chromaticity is a 1975 study by

D. H. Kelly.

The stimuli Kelly used in the experiment were striped luminous-contrast gratings

flickering sinusoidally. A grating is a pattern of adjacent light and dark bars or stripes, and a

sinusoidal grating, shown in Figure 2.6, has a gradual transition from light areas to dark areas

with no sharp edges (Schiffrnan, 1996). The gratings were presented horizontally, vertically,

Figure 2.6. Sinusoidal gratings. Wide stripes correspond to low spatial frequencies. As

the spatial frequency increases the stripes become thinner.

and at angles of 45 and 135 degrees (obliquely). A plot of the mean threshold at each

orientation for various temporal frequencies ranging from approximately 1-40 hertz is shown in

Figure 2.7. As the figure shows, the thresholds for the oblique presentations are consistently
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lower than those for the non-oblique presentations for all temporal frequencies. This result is

consistent with previous results. (Kelly, 1975)
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Figure 2.7. Achromatic sine-wave flicker sensitivity curves. 10' = 3 cpd and 22' = 1.36

cpd. From Kelly [1975].

Although this result was consistent, Kelly wanted to test the hypothesis that luminous

contrast was a necessary condition for the oblique effect. He repeated the experiment, but

changed the stimulus to a red-green equiluminous grating. The thresholds obtained, presented

in Figure 2.8, showed that for the 10-minute stripes, an oblique effect was present for temporal

frequencies under approximately 10 hertz. However, for the 22-minute stripes, no oblique

effect was observed. This is due to the luminous grating sensitivity decreasing with decreasing

spatial frequency, whereas chromatic grating sensitivity remains constant (Kelly, 1975). Kelly
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concluded that the oblique effect for the 10-minute stripes was probably a hybrid response

resulting from a spurious luminous component. This spurious luminous component was likely

5 - TO , 20

Frequency (hertz}

Figure 2.8. Chromatic sine-wave flicker sensitivity curves. From Kelly [1975].

a result of the stimuli not being isoluminant for the observer. Obtaining exact

isoluminance is not an easy task. (Kelly, 1975)

Kelly provided a study that could be used directly in the dispute over a possible Class I

chromatic oblique effect. Other studies were used indirectly and provided better tools or

research methods. One such study by Mullen (1985) had important implications for future

vision research in this area.
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Mullen's article, "The Contrast Sensitivity ofHuman Colour Vision to Red-Green and

Blue-Yellow Chromatic Gratings," described an innovation with her experimental design which

led to measurements without any type of chromatic aberration. By using a large field size, she

was able to measure thresholds for low spatial frequencies without the reduction in luminous

sensitivity shown to occur with spatial frequencies below approximately four cycles/deg.

Instead of using only one chromatic intensity value for all specific spatial frequencies, as had

often been done before, Mullen used a number of selected points. This provided more

accuracy. These factors combined to give the chromatic contrast sensitivity function (CSF)

obtained for red-green gratings a much different look than previously thought. The CSF still

had the same basic shape, but the cutoff for high frequencies occurred much earlier at

approximately 10-12 cycles/deg. (Mullen, 1985)

The CSF is a method used to describe the visual system's sensitivity to sinusoidal

waveforms. Contrast, as defined in a CSF, is a relative measure that is computed rather

than measured. Contrast, the difference between stimuli elements, is formally defined as

the amplitude of a waveform relative to its mean. Therefore, at a mean luminance level of

.5 cd/m
2

, a sinusoidal grating with a contrast of 50 percent would have a trough of .25 and

a peak of .75 cd/m
2

. This same waveform at a mean luminance level of 500 cd/m
2
would

still have a contrast of 50 percent if its peak were at 750 and its trough were at 250 cd/m
2

(Schiffinan, 1996). The use of sensitivity (1 /threshold contrast) in CSF is similar to

everyday usage; therefore, a low detection threshold is equivalent to high sensitivity.

(Schiffinan, 1996)

A CSF for spatial frequency is shown in Figure 2.9. Peak sensitivity is found at

approximately three cycles per degree (cpd), with approximately 50 cpd being the cutoff

for high frequency acuity.

Prior to Mullen's work, studies with red-green stimuli used frequencies more than

20 cpd and suggested resolution above 25 cpd (Mullen, 1985). Mullen's work provided a

template for further research. It is not by coincidence that Murasagi and Cavanagh's 1989

article dealing with the chromatic oblique effect, and using red-green stimuli, chose spatial

frequencies under the 10-12 cpd cutoff proposed by Mullen.
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This article by Murasagi and Cavanagh further explored earlier work by Kelly

regarding the oblique effect for luminous, as well as chromatic, stimuli. Kelly had

postulated the absence of an oblique effect for chromatic channels ifthe opponent-color
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Figure 2.9. Contrast Sensitivity Function. From [Schiffinan, 1996].

pathways for humans, like those in monkeys, were not orientation selective. However,

research published the same year as Kelly's article (Poggio, Baker, Mansfield, Sillito and

Grigg, 1975), as well as additional research a few years later (Michael, 1978), revealed

that monkeys might possess orientation selectivity in their chromatic channel. The

possibility of the chromatic channel analyzing orientation independently of the luminous

channel led the authors to design an experiment to test this possibility in humans by

determining if an oblique effect obtained with chromatic stimuli differed from that

obtained with strictly achromatic stimuli. (Murasagi and Cavanagh, 1986)

To test this possibility, the researchers used a constant temporal frequency of 2 Hz

and spatial frequencies of 2, 4 and 8 cpd were used. The stimuli were sinusoidal gratings.

The gratings were presented at oblique (45 and 135 degrees) and non-oblique (0 and 90

degrees) angles. Axial chromatic aberration was taken into account by having the subjects

view the stimuli through an achromatizing lens. A revised ascending method of limits was

used to determine thresholds for both luminance and chromatic stimuli. Since the

production of an isoluminant stimulus is a non-trivial matter, with isoluminance varying

slightly from subject to subject, Murasagi and Cavanagh used stimuli in five different areas
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in the neighborhood of equiluminace. The maximum threshold for the spatiotemporal

region they were investigating was assumed to occur at equiluminance. They made this

assumption because a chromatic grating with no luminous component should be the

hardest to detect, as detection is by color alone rather than by color and luminance.

A significant main effect of orientation was present for all observers, as was a

significant three-way interaction between grating types. Spatial frequency and orientation

effects were present for three of the four observers. This showed that, for three of the

four observers, the effects of the four orientations at certain spatial frequencies were

different for achromatic and chromatic stimuli.

Like Kelly, Murasagi and Cavanagh have possible problems with spurious

luminous components. By taking five measurements in the neighborhood of

equiluminance, the contribution of these components has probably been reduced.

However, if the actual isoluminance point were in a region between the areas they picked,

then a luminous component would be present in their stimuli. Additionally, while spatial

frequencies of 2, 4 and 8 cpd were used, a chromatic oblique effect was present only at 8

cpd for three of the four observers. At 8 cpd, chromatic aberration is a factor. The

researchers used an achromatizing lens to account for axial chromatic aberration, but they

did not take into account lateral chromatic aberration. Post hoc analysis minimized the

possibility of this being a factor. As the authors themselves state, any slight misalignment

between a subject and the achromatizing lens would result in a spurious luminance

component. (Murasagi and Cavanagh, 1986)

During the same time frame as the Murasagi and Cavanagh work, Bradley,

Switkes and De Valois, were also exploring Kelly's earlier work. The authors designed an

experiment to compare the visual processing of chromatic and luminance information.

The prolonged viewing or adaptation of a sinusoidal grating desensitizes the observer to

similar gratings, especially when the similarity is in orientation or spatial frequency.

However, this desensitivity is not present for gratings with orientations differing by

approximately 45 degrees or spatial frequencies differing by 1.5 octaves. Thus, this

adaptation has been termed selective.
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The effects of selective adaptation have been used as psychophysical evidence for

the presence of spatial frequency-selective and orientation-selective neurons in the human

visual system. However, the behavior of cells displaying selective adaptation for spatial

frequency when measured psychophysical^ has not always been consistent with their

physiology. Thorell, De Valois, and Albrecht (1984) observed neurons that displayed

different spatial frequency tuning depending on whether the stimulus contained luminance

or color. They observed low-pass tuning for chromatic gratings, but band-pass tuning for

luminance gratings. Additional studies by Livingstone and Hubble (1984) and Lennie,

Sclar and Krauskopf (1985) found that cells in the visual cortex that responded to

isoluminant color contrast did not display selective adaptation for orientation or spatial

frequency. (Bradley, Switkes and De Valois, 1988)

Bradley et al. (1988) set out to explore this inconsistency with spatial frequency

adaptation and orientation for chromatic gratings. The zero contrast condition for all

gratings was a uniform yellow field with a chromaticity that was adjusted for each

observer's differing sensitivity to red and green phosphor emissions. This varying of the

zero contrast condition enabled presentation of the red-green sinusoidal gratings at each

observer's isoluminance axis. Both isochromatic and isoluminant gratings were presented

and were viewed through an achromatizing lens. To overcome problems associated with

making repeated measurements of a decaying effect, the researchers used a long initial

adaptation period followed by alternation of a brief stimulus presentation with a brief

adaptation period. The stimuli used for adapting was a 2 cpd grating, run separately for

each of the four possible conditions of horizontal or vertical and luminance or chromatic.

For a spatial frequency of 2 cpd, thresholds for luminance gratings were similar in both

pre- and post-adaptation trials for oblique angles and showed the desensitivity expected at

horizontal and vertical angles. However, while the pre-adaptation data for chromatic

gratings at this frequency did not show an oblique effect, an oblique effect was evident in

the post-adaptation data. (Bradley, et al., 1988)

A similar experiment varying spatial frequency while keeping orientation constant

confirmed that, for varying spatial frequencies, a specific spatial frequency adaptation
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effect can be observed for sinusoidal luminous gratings. This experiment was repeated

with chromatic gratings, and a specific spatial frequency adaptation effect was also

observed with sinusoidal chromatic gratings. The results of this study along with previous

psychophysical studies demonstrating the parallels between the data for luminance and

color (De Valois and Switkes, 1983; Switkes and De Valois, 1983; and Ware and

Mitchell, 1974) suggest that for the beginning stages ofhuman vision, color and luminance

are processed in a similar manner. (Bradley, et al., 1988)

In addition to the numerous psychophysical studies on the oblique effect, other

studies have been conducted electrophysiologically. When studying primates or other

animals, collecting data is often not possible through psychophysical means. Although an

animal may not be able to verbalize or react, a response may still be obtained

electrophysiologically. By electrically stimulating an individual cell, it is possible to

monitor the cell output. VEPs provide an additional method of studying the role of

chromatic patterns in perception (Rabin, 1994). In Rabin's 1992 paper "VEP's in Three-

Dimensional Color Space," a Class I oblique effect at isoluminance or a chromatic oblique

effect was shown at the spatial frequency of 1 cpd. Psychophysical^, the Class I oblique

effect for luminance or chromaticity is typically not obtained at low spatial frequencies.

The Class I oblique effect for achromatic stimuli has been obtained under a number

of different conditions. It has been demonstrated psychophysical^ (Campbell and

Kulikowski, 1966; Camisa, et al., 1977) and electrophysiologically (Maffei and Campbell,

1970; Rabin, Switkes, Crognale, Schneck and Adams, 1994). Electrophysiologically the

oblique effect is evident by comparing the output of microelectrodes for oblique and non-

oblique stimuli. These microelectrodes monitor the VEPs of cells as they are exposed to

different stimuli. Psychophysical^, the Class I oblique effect is evident by comparing the

responses of subjects for oblique and non-oblique stimuli. A Class I chromatic oblique

effect could be measured the same way. However, the Class I oblique effect for chromatic

stimuli has not been obtained under various conditions, and whether such an oblique effect

actually exists is a matter of debate. To participate in this debate, it is necessary to

understand how the information that the eye collects is processed. One explanation is that
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the eye uses a process similar to Fourier analysis so named after the nineteenth century

mathematician responsible for this analysis.

Jean Baptiste Fourier studied how heat flows through an object when it is heated

up and found that heat behaved in waves. He modeled these waves using complex

equations, and discovered that they consist of periodic waveforms. Fourier found that any

quantity that changed in a complex manner over time could be converted into a series of

simple sinusoidal functions. Each sinusoidal pattern could be defined by its period,

frequency, and angular velocity. This process is now known as Fourier analysis. (Who is

Fourier?, 1995)

Fourier analysis can be used to analyze a natural scene by decomposing it into a

sum of a series of sinusoidal components, each having a different spatial frequency,

amplitude, and orientation. Vision scientists believe that the human visual system uses a

process similar to Fourier analysis to process visual imagery. The human eye receives

different intensities of light reflected from an object. These light intensities pass through

the cornea and filter down into the photoreceptors. The photoreceptors then send an

electrical signal to the brain, where these neural responses are categorized into specific

spatial channels. Psychologists believe that this sensory input is transformed into a neural

response, which is then categorized into a perceptual experience. If the visual system

passes the image, and this image corresponds to a perceptual experience, then the observer

can recognize the object. However, if your cornea is degraded--e.g., a cataract—high

spatial frequency sinusoidal waves will not pass through the lens and be sent to the brain.

A degraded signal such as this or a lack of a similar perceptual experience may result in

failure to recognize the object. The absence of high spatial frequencies will cause the

image to appear blurry. In some cases, the amplitude of those missing high spatial

frequencies can be increased so that these signals can be sent to the brain.

Scene (Figure 2.10) can be broken down into many different visual components by

Fourier analysis or other tools. These components or parameters include color,

orientation, and spatial qualities and include the scene as a whole, as well as for the

individual objects that comprise the scene. By manipulating the parameters of an object
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(e.g., armored personnel carrier [APC]) in a scene, it is possible to camouflage this object.

This may be done by changing the object's color to match that of its background through

Figure 2. 10. Armored Personnel Carrier

temporary means such as netting, or by more permanent means such as paint. A Fourier

analysis shows the spatial composition of the scene. The low spatial frequencies are

located in the center of Figure 2.11, and the high spatial frequencies are found in the

corner regions of the figure. The high spatial regions result from the edges of the APC.

These high spatial frequencies contrast with the low spatial frequencies found elsewhere in

the scene. Netting would reduce these high spatial frequencies and would also lessen the

edge effect evident in Figure 2. 12, thereby enhancing the APC's camouflage.

We have looked at a scene's color, orientation, and spatial information and how

these parameters can be manipulated to achieve better camouflage. The parameters

manipulated in the experiment in this thesis are spatial and orientation. Since the Class I

oblique effect has been primarily observed at low temporal and high spatial frequencies, a

temporal frequency of 2 Hz and spatial frequencies of 1, 3 and 7 cpd were chosen. The
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Figure 2.11. Fast Fourier Transformation on the APC.
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Figure 2.12. High-pass filter ofthe APC originally shown in Figure 2. 10.

red-green spatial CSF begins to decrease at frequencies greater than 1 cpd; therefore the

frequencies of 3 and 7 were chosen knowingly, trading off sensitivity for the advantages of

a higher spatial frequency where there would be a higher likelihood of observing an

oblique effect. Frequencies higher than 7 cpd were not chosen due to increasing effects of

chromatic aberration.

A Class I chromatic oblique effect was expected to be observed at spatial

frequencies of 3 and 7 cpd. Psychophysical^, the Class I oblique effect has not been

readily observed at spatial frequencies as low as 1 cpd and accordingly a Class I chromatic

oblique effect was not expected to be observed at this spatial frequency.
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III. METHODS

A. SUBJECTS

The experiment was conducted concurrently at the Naval Postgraduate School

(NPS) and the University of Louisville, Kentucky (UL). Four subjects, 2 NPS and 2 UL,

volunteered for this experiment. All subjects had normal (20/20), or corrected to normal,

acuity and color vision. Color vision was verified with pseudo-isochromatic plates. Two

of the four subjects (1 NPS and 1UL) were naive as to the purpose of the experiment.

The other two subjects, the author and the remaining UL subject, were experienced

psychophysical observers. All subjects signed an informed consent and were briefed on

the ethical conduct for subject participation specified in the Protection ofHuman Subjects,

SECNAV Instruction 3900.39B. Subjects were screened for uncorrected astigmatic

errors by determining spatial resolution limits for 0°, 45 °, 90 °, and 135 °.

B. APPARATUS

Stimuli were presented by a VisionWorks computer graphics system (Vision

Research Graphics, Inc.) on an IDEK MF-8521 high resolution color monitor (21" X 20"

of viewable area) equipped with an non-glare, anti-reflect, P-22 phosphor. The monitor

had a resolution of 800 by 600 pixels (x=75.02 and y=74.92 pixels/degree), 98.9 Hz

frame-rate, mean chromaticity of r = 0.334
, g = 0.336, b = 0.300 (193 1 CIE), and a

maximum luminance of 100 cd/m2. Refer to Table 3.1 for the chromaticity and

luminance coordinates for each phosphor. The University of Louisville's apparatus and

procedure were identical to the Naval Postgraduate School's, except that the stimuli were

displayed on a 17" Nanao Flexscan F2.21 color monitor. Subjects viewed the monitor

from 1.5 meters and were positioned by an adjustable chinrest. A small floor lamp (2.6

cd/m2) was positioned behind the monitor to reduce screen glare.
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CIE

X y z J^uminance ( cd/m )

Red phosphor .617 .345 .038 24.0

Green phosphor .334 .581 .085 88.7

Blue phosphor .162 .081 .757 12.7

Table 3.1. Chromaticity and luminance of monitor

C. STIMULI

Sinusoidal gratings were presented within a spatially windowed circular test field that

subtended 7.59° of visual angle. The Gaussian window was truncated at ±1 standard

deviations for both x and y directions. The test patterns were one-dimensional spatio-temporal

sinusoids of varying orientation (principal and oblique), spatial frequency (1.0, 3.0, and 7.0

cycles/degree), and color contrast. Test patterns for each subject consisted oftwo orientations,

principal (0° and 90°) and oblique (45° and 135°). For each subject, maximum sensitivity for

each orientation within the principal and oblique grouping was chosen. All sinusoids were

raised cosines temporally modulated at 2.0 Hz. The sinusoid pattern was presented in a

1500 msec interval with contrast ramped on and off according to a linear window.

(Contrast peaked at 202 msec and fell at 1304 msec).

Color contrast was computed by different ratios of percent red and green (Sellers

et al.,1986). The monitor was controlled by a Cambridge Research Systems VSG 2/4

video board that was linearized to 10 bits of resolution per gun. The outputs of each gun

were linearized by means of stored look-up table file. Sixteen different sinusoidal red-

green color mixtures were generated by changing the red phosphor only, green phosphor

only, or by changing the red and green guns in fixed proportions. Color contrast was

defined according to the (Michelson) formula shown in Equation 3.1. Blue gun was held

constant in all quandrants. Red and green gun values were used in the determiniation of

red and green contrast as shown in Equations 3.2 and 3.3.
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contrast = (peak - trough) / (peak + trough) 3 .

1

red contrast = (red gun value - 50) / 50 3.2

green contrast = (green gun value - 50) / 50 3.3

D. PROCEDURE

Thresholds were determined by a two-alternative forced choice adaptive

psychometric procedure, QUEST (Watson and Pelli, 1983). Threshold was defined at 75

percent correct. A total of 480 trials, 30 trials per condition, were randomly presented

within each session. A session (~ 45 minutes) consisted of one sinusoidal condition with

16 different red-green color mixtures. A subject had to complete six sessions to

contribute one threshold point for all conditions.

At the beginning of each session, subjects dark-adapted for approximately five

minutes before initiating the first experimental trial. Three of the four subjects were tested

monocularly, while the fourth subject (UL) was tested binocularly. At the beginning of

each trial, the subject was instructed to focus on a fixation cross (.19° by .13°) located in

the center of the screen. The subject initiated the first trial with a keyboard response, the

fixation cross extinguished followed by presentation of the first interval, 121 msec ISI, and

then presentation of the second interval. The subject's task was to detect which interval

contained the sinusoidal grating. The next trial followed 250 msec after the subject's

keyboard response.

Color contrast thresholds were determined from 16 different color-mixture ratios.

The sixteen different ratios could be divided into four different percent red and green

quadrants. Quadrant one started with 100 percent green and percent red, quadrant two

started at 100 percent red and percent green, quadrant three started at -100 percent

green and percent red, and quadrant four started at -100 perecent green and percent

red. The red-green ratios within each quadrant were 0.0, 0.5, 1.0, and 2.0. The

thresholds from these red-green ratios will form an ellipse with the half-length of the axis

27



measuring color discrimination and the half-width of the axis measuring brightness

discrimination (Sellers, 1986).
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IV. RESULTS

Many researchers have carried out experiments to determine visual sensitivity to color

differences. One way of determining these differing sensitivities is through differing values of

International Commission on Illuminance (ICI or, more commonly, CIE, for the French translation)

primaries (Kaiser and Boynton, 1996). These primaries allow all colors to be specified in terms of

three numbers representing the red, green and blue primaries. The color-matching type experiment

is set up to test if an observer can discriminate between a chosen color and another color similar to

this color. Color-matching experiments have looked at the standard deviations of color-matchings

for representative colors throughout the color spectrum. These standard deviations are directly

related to the corresponding just-noticeable difference of colors. (Brown and MacAdam, 1949)

Numerous surveys of differential thresholds have been carried out, but W. D.Wright (1941)

and D.L. MacAdam (1942) completed two ofthe more extensive surveys. "MacAdam plotted the

results ofthe survey on the chromaticity diagram in terms ofthe standard deviation of color-matching

in several directions for selected colors."(Brown and MacAdam, 1949) The figures resulting from

this survey formed closed curves on the diagram and the closed curves were elliptical in shape.

(Brown and MacAdam, 1949)

In a later paper, Silberstein and MacAdam discussed that the errors of these closed curves

were Normally distributed. They deduced that the curves should be ellipses, as they appeared to be.

They further expostulated that ifthe variations were not confined to chromaticity, the closed curves

would form ellipsoids rather than ellipses. Using the assumption that the probability of making a

match that falls within a specific region of color space, near the target color, was not changed by any

change of primaries, Silberstein proved the standard deviation figures to be ellipsoids. (Brown and

MacAdam, 1949)

The fact that there was a theoretical explanation for MacAdam' s ellipses and not just an

empirical observation was interesting. However, the discrimination ellipsoids of Brown and

MacAdam were obtained for a bipartite field only. Noorlander, Heuts and Koenderink (1979 and

1980) and Noorlander and Koenderink (1983) furthered the work of Brown and MacAdam by
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extending their methodology from a simple bipartite field to more complicated stimuli by varying

temporal and spatial frequencies. When three primaries are used discrimination ellipsoids are

obtained. However, ifjust two primaries are used, such as red and green, than a cross-section of a

discrimination ellipse is obtained. Neurlander, Heuts and Koenderink (1980) did this by obtaining

discrimination ellipses for a number of different spatial and temporal frequencies. The lengths ofthe

major and minor axes ofthese ellipses, as well as their orientation, are highly dependent on both the

spatial and temporal frequencies.

The finding that the cross-section of a discrimination ellipsoid is an ellipse was also used by

Sellers et al. (1986) in a study of congenital and acquired color defects. However, in the Sellers et

al. paper, the axes of their graphs were not primaries as in Brown and MacAdam's or Neurlander
,

Heuts and Koenderink' s, but were percent red contrast and percent green contrast. Even without

knowledge of discrimination ellipsoids, the fact that Sellers et al.'s data form an ellipse can be

explained by examining the following model. The central dashed line in Figure 4.1 is the

equiluminance axis. Assume there are two luminance processes for detecting the brightening and

darkening of a spot. The thresholds of these processes are displayed in Figure 4. 1 with dashed lines

and are labeled "BRIGHT" and "DARK." Similarly, the processes for detecting color are labeled

"REDl"and"GREENl." ("RED2" and "GREEN2" refer to two different thresholds.) Asafirst

approximation, the visual threshold will be determined by whichever process has the lowest threshold.

Therefore, this will be the parallelogram bounded by the four lines "BRIGHT," "DARK," "RED1,"

AND "GREEN 1 ." A phenomenon known as probability summation accounts for the rounding ofthe

corners of the parallelogram, and an ellipse is formed. Probability summation occurs near the corners

ofthe parallelogram and can be thought of as a sum oftwo processes, e.g. "BRIGHT" and "RED1."

For example, if the probability of either of the processes detecting a stimulus is .5, then if both

processes are independent, the probability of either ofthem (or both) detecting a stimuli is .75. Thus,

a contour connecting points where the probability of detection is .5 will exclude the corners ofthe

parallelogram (Graham, 1989). (Sellers, 1986)

A ratio can be determined by dividing the length of the major axis by the length of the minor

axis. For ellipses with a ratio greater than four, the major axis nearly coincides with the

equiluminance axis. The angle of discrepancy between the equiluminous axis and the major axis
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Figure 4.1. Detection model. From Sellers et al.[ 1986].

varies approximately as the inverse square of the length/width ratio. Therefore, elongated ellipses

have a major axis that nearly coincides with their equiluminous axis. (Sellers et al., 1986)

The paper by Sellers et al. (1986) is extremely important to this thesis in that its methodology

provided a foundation for the methodology used in this thesis. Using percent red contrast as the x-

value and percent green contrast as the y-value, thresholds were determined for 16 different rays.

For each ray, the proportion of percent red contrast to percent green contrast is constant along the

ray. When plotted, the thresholds form an ellipse where the half-length ofthe major axis is a useful

measure of color discrimination, and the half-width is a useful measure of brightness discrimination.

Sellers et al. were interested in length and orientation, since they used these values for classification

of color deficient subjects. Major axis length and orientation are important in this thesis. However,

the crucial fact that Sellers et al.'s methodology resulted in data that theoretically forms ellipses is the

crucial item. Data points from rays in the vicinity ofisoluminance will have high leverage since they

will be close to the end of the major axis, but they do not need to be at isoluminance.
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The subjects run in this experiment did not have any color defects. Thus, collecting data on

these subjects for classification purposes was not an exceptionally interesting endeavor. However,

the possibility of using this methodology to explore a chromatic oblique effect was interesting. If

oblique and non-oblique sensitivities are the same, and if oblique and non-oblique information is

processed in an identical manner, then the ellipse obtained from a subject responding to non-oblique

(horizontal or vertical) chromatic stimuli and the ellipse obtained from the same subject at the same

temporal and spatial parameters, but with oblique chromatic stimuli, should be identical. A

"spurious" luminous component is not a problem. Since the data points theoretically form an ellipse,

the requirement for a point exactly at isoluminance no longer holds.

The elliptical nature of the data has been used to fit ellipses to the data by the method of

maximum likelihood. A well-known result from linear regression informs us that the method of

maximum likelihood is identical to the method of least squares in this case (Larsen and Marx, 1986).

The programs used here to fit ellipses minimize the sum of the squared error. Assistant Professor

Professor Samuel Buttrey of the Naval Postgraduate School in Monterey, CA. created these

programs, their sub-programs and other programs of use. He created these programs, which are

found in Appendix A, using the statistical package S-Plus.

The following terminology will be used to describe ellipses and their parameters (Figure 4.2).

terminology definition

a half-length of the major axis of an ellipse

b half-length ofthe minor axis of an ellipse

6 angle as measured from the x-axis to the major axis of an ellipse

x
t

x-coordinate for data point i. X-axis is percent red contrast

y, y-coordinate for data point i. Y-axis is percent green contrast

xc x-coordinate for the center of an ellipse

yc y-coordinate for the center of an ellipse

r, distance from (x
c , yc ) to a point on the ellipse along the ray

e, error term

/, polar angle of r,
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Five-Parameter Ellipse
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Figure 4.2. Five parameter ellipse. Created by Professor Samuel Buttrey.

The parameters for the true ellipse are unknown, but they may be estimated from the data. Three

models were used to represent the underlying ellipse, and ellipses will be classified according to the

method in which they were modeled. The polar angle relative to the coordinate t
t
is fixed at the start

ofthe experiment and is determined by tan(^ =y
i
/x

i
. The sixteen values for f, in degrees are (0, ±30,

±45, ±60, ±90, ±120, ±135, ±150,180). Each oftheses ellipses possesses an equiluminous axis along

which, by definition, luminance is constant. The exact determination of this equiluminous axis is

difficult, but for ellipses with an a/b ratio greater than four, this equiluminous axis is closely

approximated by the major axis of the ellipse (Sellers, et al., 1986). A ray that coincides with the

equiluminous axis will vary in color along r„ but will have a constant luminosity. Any ray that is not

aligned with the equiluminous axis will have a constant red to green percent contrast ratio along the
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ray, but luminosity will not be constant along the ray. Both x and y values can be positive or

negative.

A. CLASS I-TYPE ELLIPSES

The Class I-type ellipse has five estimated parameters. These parameters are a, b, 0, x
0>

and

y . The predicted r
;
or A, is a function of the estimated parameters and f. =f(a,b,Q, x

cy c t)t . The

actual model used is r, = r + €j. Here €j are independent identically distributed (iid) and N(0,o2
).

The function J[a,b,d, xc yc \) is complicated and can be found in Appendix A (ell.pred). The

objective function is the sum of the squared differences between the observed r, and the predicted

f. . Data were collected from both oblique and non-oblique stimuli; the class I-type ellipse is an

ellipse that is obtained by fitting an ellipse to all of the data for a specific spatial frequency. For

example, Subject One completed five runs at each condition. Each run results in the calculation of

a threshold along each ray; thus, 16 thresholds were determined for this subject on five different

sessions. This resulted in 80 data points for the non-oblique condition and 80 data points for the

oblique condition for each ofthe three spatial frequencies used. Class I-type ellipses are fitted to the

combined data of a subject at a specific spatial frequency. For Subject One, 160 data points were

used, and an ellipse was fitted by the method of maximum likelihood. In the past, the ellipses

obtained in this manner have been forced to have their center at the origin (Sellers, et al., 1986).

However, much better fitting ellipses are obtained by allowing the center not to be pinned to the

origin. The centers obtained for most subjects were generally close to the origin. The fact that a

better fit was obtained by letting the ellipse be centered at coordinates other than the origin may be

an indicator that centers may have some sort of bivariate distribution across subjects, or it may be an

effect caused by the monitor. However, data from UL were definitely not centered on the origin and

tended to have a center in the second quadrant. The ellipse programs in Appendix A allow the ellipse

center to be pinned at the origin (fit.center=F) or to "float" (fit.center=T), but it did not make sense

to pin the center to the origin when some of the actual ellipse centers obtained were definitely not at

the origin.
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B. CLASS-II TYPE AND CLASS-HI TYPE ELLIPSES

The Class-II Type ellipse has six (program ellipse.II) and the Class-in Type ellipse has seven

(program ellipse. Ill) estimated parameters. The models for the f. for the three classes of ellipses are

shown below. The model for Class-II Type ellipses may be changed so that it \sf(a, b + 6b , 0, xc

and yj by changing which.type from one to two in the program ellipse.II.

f[class I type ellipses) = f[a,b,d,x
c,yc) 4.1

f[class II type ellipses) = j(a+d
a
,b,d,x

c,yc) 4.2

r[class III type ellipses) = f(a+ba
,b+6

b
,Q,x

c ,yc) 4.3

The Class-II Type and Class-IQ Type ellipses use the information ofwhether the data were

from an oblique or non-oblique condition. An ellipse is then fitted to the data, but the additional

information of whether the data were from an oblique condition or a non-oblique condition is used

to determine a 6aand/or a 6b . This is done by fitting a Class-II or Class-IH Type ellipse to the data.

Actually, two ellipses are fit to the data, one to the non-oblique data and one to the oblique data; but

a common ellipse center and theta are maintained for both ellipses. If the sum of the objective

functions for the ellipse fitted to the non-oblique data and the ellipse fitted to the oblique data is

smaller than the objective function for the ellipse fitted to all of the data, then there will be a 5
a
and/or

a 6b . If the 6
a or5b are small (This will be quantified in the next section), then this orientation

information does not significantly improve the fit of the ellipse. If the 6
a and 6b are large, then this

additional information significantly improves the fit of the ellipse.

C. STATISTICAL TESTS

A complete discussion ofthe statistical test used for comparing ellipses can be found on pages

103-104 of Bates and Watts (1988). This test is an approximation, due to non-linearity, of an F-test.

The derivation of this F statistic and how it is obtained are shown in Table 4.1 and Equation 4.4

respectively. For this experiment, the full model consists of Class-Ill type ellipses, and the partial
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model consists of Class-II type ellipses. The full and partial models were chosen this way because

of interest in the significance ofthe difference in the length ofthe major axis between non-oblique and

oblique data.

Source

Sum of

Squares

Degrees of

Freedom

Mean Square F Ratio

Extra parameters

Full model

se=sp
-sf

sf

v
e = Pf-P

p

vf=N-Pf

se
2 = S e

/v
e

sf
2 =Sf /vf

s
e

2
/sf

2

Partial Model Sp N-P
p

Table 4. 1. Extra sum of squares analysis. From Bates and Watts [1988].

e e approximately

SA
F.vjN-P„

f

4.4

If the equiluminous axis is identical to the major axis of an ellipse, then if the length of the

major axis for oblique stimuli is greater than the length of the major axis for non-oblique stimuli, a

chromatic oblique effect has been observed. Additionally, if the length ofthe ellipse minor axis for

oblique stimuli is greater than the length ofthe minor axis for non-oblique stimuli, a luminous oblique

effect has been observed. For ellipses with a major axis to minor axis ratio of four or greater, the

equiluminous axis is closely approximated by the major axis (Sellers et al., 1986). The ellipses

obtained generally had a ratio less than four, but the major axis was still used as the equiluminous axis

as a rough approximation.

Four subjects took part in this experiment. Data from Subjects One and Three were collected

at the NPS, while data from Subjects Two and Four were collected at UL. The data for these

subjects at a spatial frequency of one cpd and both oblique and non-oblique orientations are shown

in Figure 4.3. The measurements for a, b, theta, x
c
and yc are shown on the individual graphs and are

displayed in Table 4.2, as well.
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Sub 1 1 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

Sub 2 1 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

pare ant rad centrist

non-obliqua a- 04703 b- 0.03424 cbliqu. • 04691 b= 0.0351

ttiatt- 1 527 r- 0O4S y 0X6 p-val<ja= 375

Sub 3 1 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

pare ant rad contrast

non-oUiqua «= 0.05541 b- 0.02196 obliqua »= 04845 t- 0.01964

ttwba- -11 343 «- -0 0026 y* 0057 p-v«Jua= 0.091

Sub 4 1 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

° e . . .
.« „. . .

..^Js*^^-^^ ...I^i^.

4 ^TVv.

.

» -—-J

• • •

parcant rad contrast

non-obfraua a- 0.06444 b« 0.04976 ofcJiqua a= 006013 b= 0.04103

that** 36.733 x= 0.0059 y= -0.004 p-vaju*- 0.312

parcant rad contrast

non-oblqua a* 0.09675 b* 0.02294 obtqu* a- 09061 b- 0.0304

thata= -15 689 «= -0 0033 y= 0053 p-valua= 0.513

Figure 4.3. Ellipses and values for Subjects 1-4 at 1 cpd

Ellipse Type Subj a b theta centerjc center.y delta.a delta.b *p-value

non -oblique 1 0.04703 0.03424 -1 .5274 0.00447 0.00064

oblique 1 0.04691 0.0351 -1 .5274 0.00447 0.00064 -0.0001 0.0009 0.975

non-oblique 2 0.05541 0.02196 -1 1 .349 -0.0028 0.00569

oblique 2 0.04845 0.01964 -1 1 .349 -0.0028 0.00569 -0.007 -0.0023 0.091

non-oblique 3 ! 0.06444 0.04976 36.733 0.00593 -0.004

oblique 3 | 0.06013 0.04103 36.733 0.00593 -0.004 -0.0043 -0.0087 0.312

non -oblique 4 I 0.09675 0.02294 -15.689
|

-0.0033 0.00525

oblique 4 0.09081 0.0304 -15.689 -0.0033 0.00525 -0.0059 0.0075 0.513

*Ho delta.a=0

Ha delta.a<>0

Table 4.2. Ellipse values for Subjects 1-4 at 1 cpd
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The p-values were obtained by the F-test approximation discussed in the models section;

however, an example is shown below for further clarification. For Subject One the ellipse from the

non-oblique data and the ellipse from the oblique data are almost identical, whereas for Subjects Two

and Three the opposite of a chromatic oblique effect (oblique ellipses with shorter a's than non-

oblique ellipses) is displayed and for Subject Four, a chromatic oblique effect is shown. However,

with an alpha of .05, none of these results are significant.

Here is an example ofhow the p-values were calculated. Subject 1 completed 5 runs at all

conditions. For each run, a total of 16 thresholds were calculated, so for a spatial frequency of 1 cpd

a total of 80 oblique data points and 80 non-oblique data points were collected for this subject. The

data was input to the program ellipseTH, and the ellipse center was allowed to float or not be pinned

to the origin. From the output of this program, the objective function value is obtained. This

objective function value is the sum ofthe squared error (SSm for Class-Ill Type ellipses). This value

is subtracted from the objective function value obtained from the output of a Class-II Type ellipse

obtained with the same data, SSn . The difference is then divided by the difference in the number of

estimated parameters, or degrees of freedom, between the two classes of ellipses. This is the

numerator for the equation. There is only one additional estimated parameter for Class-in Type

ellipses, compared to Class-II Type ellipses, so this number is a one. Finally, the denominator is the

value ofthe objective function obtained from the Class-Ill Type ellipse output divided by its degrees

of freedom. For Class-Ill Type ellipses, seven parameters are estimated, so the 160 degrees of

freedom for subject One decreased to 153 degrees of freedom. The resulting fraction is shown in

equation 4.5. This fraction is referred to theF distribution with 1 and 1 53 degrees of freedom. Thus

the fraction is approximately an F random variable with degrees of freedom given by 1 and 153,

(ssH - ssHI)i{\) 45
SSm /l53

ifthe hypothesis that the ellipses differ only by 6^ and if iid Normal errors are true. A p-value is then

calculated through tables or statistical programs. P-values for other subjects were calculated
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similarly, with the degrees offreedom reflecting the number of observations the subject had for that

condition.

The data for subjects at a spatial frequency ofthree cpd and both oblique and orientations are

shown in Figure 4.4. The measurements for a, b, theta, xc and yc
are shown on the individual graphs

and are displayed in Table 4.3, as well. A chromatic oblique effect is shown for Subjects One, Two

and Three and is significant for Subjects One and Two.

The data for the subjects at a spatial frequency of seven cpd and both oblique and non-oblique

orientations are shown in Figure 4.5. The measurements for a, b, theta, x,. and yc
are shown on the

individual graphs, and are displayed in Table 4.4. An achromatic oblique effect is expected here and

is evidenced by 6b<X) leading to larger b values for oblique ellipses compared to the b values for non-

oblique ellipses. A peculiarity of the program that determines the 6 values is that if the 6 value is

negative and if it is larger in magnitude than the value to be added to, then the signs of both values

must be reversed. The hypothesis of6b
<>0 was tested in a manner similar to 6

a
<>0, and all subjects

displayed an achromatic oblique effect. This achromatic oblique effect was significant for Subjects

One, Two and Four. A chromatic oblique effect is shown for Subjects One and Two, but is not

significant for either.

The data collected from the subjects were extremely variable. This variability is not only from

subject to subject, but also from day to day and run to run. To display some of this variability, Table

4.5 shows p-values (uncorrected for multiple comparisons) for a subject's run at a specific condition

against all of the other runs at this identical condition.

In summary, at one cpd neither an achromatic nor a chromatic oblique effect was shown. At

three cpd a chromatic oblique effect was shown for three subjects and was significant for two of

them. At seven cpd both achromatic and chromatic oblique effects were shown. All four subjects

showed an achromatic oblique effect and this oblique effect was significant for three ofthem. Only

two of the four subjects showed a chromatic oblique effect, but neither of the p-values were

significant.
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Sub 1 3 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

Sub 2 3 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

pircant red contrast

nnrvoUiqu. »= 05594 b- 0.02284 obliqu* • 0.06445 b* 01256

m«a=-1853SK= 00122y= 00001 p-vmlu*= 0.028

p**x«nt red contrast

norkobkqu. 1=0 0459 6=0 01365 obliqu* «= 0656 b= 01554

»i*t.= -16.952 x=-0 0153 y" 0.0131 p-v»lu*-0 005

Sub 3 3 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

Sub 4 3 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

percent red contrast

non-obtiqu* a= 0.08941 b= 0.02025 obliqu* a= 0.10976 b= 0.02385

th»a- -11315 x« 008 y- 0023 p-v«lu*= 0.057

p«rc*nt red contrast

ncn-obtqu. «= 0.1722 b= 0.02344 obliqu* a= 020257 b> 0.03495

m»B = -1 7.602 x- -0.0054 y= 0093 p-valuc 0268

Figure 4.4. Ellipses and values for Subjects 1-4 at 3 cpd

Ellipse Type Subj a b theta centerjc center.y delta.a delta.b *p-value

non-oblique 1 0.05594 0.02284 -0.3235 0.01224 0.0001

oblique 1 0.06445 0.02256 -0.3235 0.01224 0.0001 0.0085 -0.0003 0.028

non-oblique 2 0.0459 0.01365 -0.2959 -0.0153 0.01315

oblique 2 0.0556 0.01554 -0.2959 -0.0153 0.01315 0.0097 0.0019 0.005

non-oblique 3 0.08941 0.02025 -0.2149 0.00796 0.00232

oblique 3 0.10976 0.02385 -0.2149 0.00796 0.00232 0.0203 0.0036 0.057

non-oblique 4 0.1722 0.02344 -0.3072 -0.0054 0.0093

oblique 4 0.14182 0.03495 -0.3072 -0.0054 0.0093 -0.0304 -0.0584 0.268

*Ho delta.a=0

Ha delta.a<>0 1

Table 4.3. Ellipses and values for Subjects 1-4 at 3 cpd
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Sub 1 7 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

Sub 2 7 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

parcant rad contrast

non-obiiqua a* 0.06371 b= 0.02391 obliqua a- 06646 b= 03584

thata "-20 009 *" 0052 y 00001 p-valua" 0588

• • •---«>--

parcant rad contrast

non-obiiqua a- 0.07852 b= 01751 obliqua •- 09241 b= 0.02723
thata= -1 6684V -0.006 y* 0.008 [> vslua- 0.087

Sub 3 7 cpd 2 hz

non-oblique = points/solid line oblique = pluses/dashed line

Sub 4 7 cpd 2 hz

non-oblique points/solid line oblique = pluses/dashed line

parcant rad contrast

non-obliqua a= 5.35208 b- 0.0178 obliqua •= 1 1977 b= 02 158

thata- -14.176 x- -0.0077y 0.0024 p-valiM- 0.059

parcant rad contrast

non-obtqu* a> 021246 b* 0.04223 obtqua a- 0.1788 b- 0.0*

thata- -1 3456 *• 0.0O81 y» 0.0018 p-vakia- 0.43

Figure 4.5. Ellipses and values for Subjects 1-4 at 7 cpd

Ellipse Type Subj a b theta centerjc center.y delta.a delta.b *p-value

non-oblique 1 0.06371 0.02391 -0.3492 0.00517 0.00012

oblique 1 0.06646 0.03584 -0.3492 0.00517 0.00012 0.0028 0.0119 0.588

non-oblique 2 0.07852 0.01751 -0.2912 -0.006 0.00799

oblique 2 0.09241 0.02723 -0.2912 -0.006 0.00799 0.0139 -0.0447 0.087

non-oblique 3 5.35208 0.0178 -0.2474 -0.0077 0.00238

oblique 3 0.11978 0.02158 -0.2474 -0.0077 0.00238 -5.2323 -0.0394 0.059

non-oblique 4 0.21246 0.04223 -0.2349 0.00806 0.00179

oblique 4 0.1788 0.04969 -0.2349 0.00806 0.00179 -0.0337 0.0075 0.43

*Ho delta.a=0

Ha delta.a<>0

Table 4.4. Ellipses and values for Subjects 1-4 at 7 cpd
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1 cpd 3 cpd 7 cpd

run non-oblique oblique non-oblique oblique non-oblique oblique

Subject 1 1 0.359 0.436 0.000 0.562 0.000 0.397

2 0.056 0.199 0.242 0.048 0.191 0.393

3 0.818 0.544 0.680 0.000 0.558 0.933

4 0.399 0.673 0.152 0.181 0.529 0.001

5 0.066 0.831 0.722 0.141 0.762 0.975

Subject 2 1 0.065 0.695 0.812 0.758 0.000 0.000

2 0.070 0.800 0.005 0.620 0.899 0.146

3 0.222 0.019 0.900 0.014 0.462 0.013

4 0.002 0.004 0.002 0.676 0.000 0.126

Subject 3 1 0.000 0.604 0.021 0.759 0.834 0.217

2 0.770 0.033 0.796 0.095 0.006 0.231

3 0.226 0.017 0.079 0.001 0.101 0.004

Subject 4 1 0.320 0.752 0.057 0.394 0.000 0.071

2 0.777 0.258 0.546 0.042 0.513 0.000

3 0.397 0.926 0.415 0.000 0.136 0.000

4 0.620 n/a n/a 0.659 0.003 n/a

Table 4.5. P-values for comparing one subjects run against their other runs at that same condition.

P-values have not been corrected for multiple comparisons. Bold values are less than .05/(number of

runs at that condition).
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V. CONCLUSIONS

The purpose of this thesis was to investigate the human visual system's ability to

detect certain simple targets. This thesis investigated how an object's spatial, temporal, and

color features affected humans' detection of objects. The results showed that certain spatial

and chromatic qualities do, indeed, inhibit detection. While real-world objects are much more

complex than laboratory stimuli, knowledge of spatial and chromatic qualities that inhibit

detection will assist military designers in the quest for better camouflage.

Other studies ofuse to military designers include the numerous studies documenting

an achromatic Class-I oblique effect and the fact that it is generally found psychophysical^

only at high spatial frequencies. This study produced similar results with all subjects

displaying an achromatic Class-I oblique effect (p-values of 0, 0, .139 and 0) at a spatial

frequency of7 cpd. Previous studies documenting a chromatic Class-I oblique effect, or lack

thereof, are less useful due to conflicting results and possible problems with luminance

artifacts tainting results (Kelly, 1976; Murasagi and Cavanagh, 1988). Indeed, the work done

by Kelly and Murasagi and Cavanagh highlighted the problems in determining a chromatic

oblique effect due to the difficulty ofobtaining isoluminance for a subject. Any deviation can

lead to the introduction of luminance artifacts and can corrupt the results ofthe experiment.

The methodology used in this thesis takes advantage of the elliptical shape of the curve

connecting thresholds at a fixed temporal and spatial frequency, and makes the exact

determination of isoluminance unnecessary.

This thesis supports the hypothesis that a Class-I chromatic oblique does exist. At a

spatial frequency of 3 cpd, a chromatic oblique effect is evident. A chromatic oblique effect

is shown for three of the four subjects and, with an alpha of .05, is significant for two of the

four subjects. Additionally, while the p-value for Subject Three (057) is not less than .05,

this subject conducted only three runs with 12 thresholds. An additional run would likely

reduce this p-value to a value less than .05.
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The main value of this study is the tool it provides for further investigation of a Class-I

chromatic oblique effect without the problems associated with luminance artifacts. However,

this tool does have its drawbacks. The data collection required is extremely time-intensive.

A total of at least five runs at each spatial frequency is desirable due to the variability of the

data. With each session lasting approximately 45 minutes to an hour and one run consisting

of an oblique session and a non-oblique session, the time required for five runs is

approximately 7.5 to ten hours. This time does not account for three sessions needed to

determine a subject's maximum oblique and non-oblique sensitivity. This large time

commitment on the part of subjects poses problems, as their motivation begins to wane.

Motivation was a possible problem, as UL subjects did not run consistently; their average run

time (days) was 19 and 18 versus 10 and 12 for the NPS subjects. This undoubtedly affected

the variability oftheir data, as evidenced by the number oftheir p-values in Table 4.5 less than

.05.

While the determination of exact isoluminance is not required, it is desirable to

determine an approximate isoluminance axis. If an ellipse major to minor axis ratio is four

or greater, then Sellers et al. (1986) state that the major axis is a good approximation of the

equiluminous axis. Major to minor axis ratios in this study averaged 3.3 and exceeded four

only one-third ofthe time. For Subject One at 7 cpd graphically (Figure 4.3), it appears that

a Class-I chromatic oblique effect is evident. Taking into account that the highest major to

minor axis ratio for this subject at this spatial frequency is 2.66, a chromatic oblique effect is

even more likely since the equiluminous axis is not likely approximated that well by the major

axis. In this case, the p-value of .588 does not provide much information regarding what

actually occurred. The statistical test resulting from the model formulation tests the

significance in the difference of the length of the axes and does not account for the fact that

the true isoluminance axis may not be aligned with the major axis.

This thesis has provided an excellent tool for further research. Possible improvements

include determination ofa subject's equiluminous axis prior to running the experiment, thus

enabling the experimenter to choose ratios that would run through this approximate axis. A

spatial frequency of 3 cpd is worthy of further study with more runs and fewer confounding

variables (different monitors).
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APPENDIX A. S-PLUS CODE

> ellipse
function (x, y, a = 2, b = 3, e = 0, theta = 0, fit. center = F, grad = T,

is . there .hess = T, plot.it = T, chat = T)

{

# This is for a Class-I type ellipse
# Fit a least-squares ellipse centered at with semi-axes (a, b)

# and angle to the origin theta, to the data in x, y. The ellipse
# is here parameterized by a, e (the eccentricity) and theta,
# in that order, a is always > b.
# a,b,e and theta are starting points
# fit.center=F pins the ellipse to the origin when this is true the
# ellipse is allowed to "float"
# grad=gradient
# .hess=hessian
# plot.it activates plot
# chat=T shows values as they are computed
#

# If a is supplied, and it's a vector, then we've been given
# starting points for all the parameters. Use 'em, first making
# sure that there is the right number (3 if we're not fitting
# the center, and 5 if we are)

.

#

if ( Imissing (a) && length(a) > 1) {

if ( (fit. center && length(a) != 5) || (! fit. center &&
length(a) != 3) )

stop (paste ( "Parameter vector has length", length (a),
", expecting ", ifelse (fit . center, 5, 3)))

if (length (names (a [2] ) ) ==
| | names (a [2]) == "e") {

if (length (names (a [2] ) ) == 0)

warning ( "No param names: using e in pos. 2")

e <- a[2]
b <- a[l] * sqrtd - e^2)

}

else {

b <- a[2]
e <- sqrt (1 - (b/a[l] ) ~2)

}

theta <- a [3]

if (fit. center) {

center. x <- a[4]
center. y <- a[5]

}

a <- a[l]

}

else {

if (missing (a)

)

a <- 0.5 * diff (range (x)

)

if (missing (b)

)

b <- 0.5 * diff (range (y)

)

e <- ifelse (a > b, sqrt(l - (b/a) /v 2), sqrtfl - (a/b)"2)
if (missing (theta) ) {

Is. out <- lsfit(x, y)
theta <- atan (ls.out$coef [2] )
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}

center. x <- mean(x)
center. y <- mean(y)

}

tt <- ell.tt(x, y)
if(plot.it) {

graph <- dev.listO [ "win. graph"] [1]

if (length (graph) ==
| | all (is . na (graph) )

)

win. graph (

)

else dev. set (graph)

}

if (grad)
grad.func <- ell. grad

else grad.func <- NULL
if (fit . center) {

start. vec <- c(a = a, e = e, theta = theta, center. x =

center. x, center. y = center. y)

lower. vec <- c(0.0001, 0.0001, -2 * pi, - Inf, - Inf)
upper. vec <- c(Inf, 0.999999, 2 * pi, Inf, Inf)

}

else {

start. vec <- c (a = a, e = e, theta = theta)
lower. vec <- c(0.0001, 0.0001, -2 * pi)
upper. vec <- c(Inf, 0.999999, 2 * pi)

}

out <- nlminb (start = start. vec, objective = ell. res, gradient =

grad.func, hessian = is . there. hess, lower = lower. vec, upper
= upper. vec, tt = tt, my.x = x, my.y = y, plot.it =

plot.it, chat = chat, is . there. hess = is . there. hess,
fit. center = fit. center, step.min = 100 *

.Machine$double. eps, scale. upd =1) #

### p. names <- names (out$parameters)
### cat ("In ellipse, check p.names\n")
### browser ()

b <- out$parameters["a"] * sqrt(l - out$parameters [ "e"] ~2

)

if (length (out$parameters) > 3) {

out$parameters <- c (out$parameters ["a"] , b = b, out$
parameters [3 : length (out$parameters) ] ) #

names (out$parameters) <- c("a", "b", "theta", "center. x",

"center. y") # Beats me...
}

else {

out$parameters <- c (out$parameters [ "a"] , b = b, out$
parameters [3] ) #

names (out$parameters) <- c("a", "b", "theta")
}

out$sigma.sq <- out$obj /length (x)

out$sigma <- sqrt (out$sigma. sq)
out$aux <- NULL
out$x <- x
out$y <- y
if (length (out$hessian) > 0) (

if (qr (out$hessian) $rank < ncol (out$hessian)

)

out$cov <- "Can't invert Hessian"
else out$cov <- out$sigma.sq * solve (out$hessian)

}

out$tt <- tt
out$fitted. tt <- ell.tt(x - center. x, y - center. y)
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pred <- ell.pred (out$fitted. tt, out$parameters [ "a"]

,

out$parameters [ "b" ] , out$parameters [ "theta" ] ,

return. unrotated. too = F, fit. center = fit. center,
center. x = ifelse (fit . center, out$
parameters [ "center. x"] , 0), center. y = ifelse (fit . center,
out$ parameters [ "center . y"] , 0))

out$fitted.x <- pred$x
out$fitted.y <- pred$y
out$fitted.r <- sqrt (pred$x A 2 + pred$y~2)
class (out) <- "ellipse"
return (out)

}

> ellipse. II
function (x, y, a = 2, b = 3, theta = 0, delta = 0, fit.-center = F, grad

= T, is. there. hess = T, plot.it = T, chat = T, class. I = rep(T,
length(x)), which. type = 1)

{

# This is for a Class-II type ellipse
# class. I seperates oblique and non-oblique data. For an x vector of
# length 160 where the first 80 points were non-oblique data the
# class. I vector should consist of a boolean vector or length 160 #

comprised of 80 T's followed by 80 F'

s

# which. type=l when testing differences in the major axes (a's or #

chromaticity)
# which. type=2 when testing differences in the minor axes (b's
# or luminance)
# This version of ellipse works, but you must set grad=F, is. there. hess=F
# and plot.it=F
#

# Fit a least-squares ellipse centered at with semi-axes (a, b)

# and angle to the origin theta, to the data in x, y. The ellipse
# is now parameterized by a, b (not e) and theta, in that order.
# a is always > b; we can enforce that at the end.
#

if (is. matrix (x) && ncol(x) > 1) {

if (any(dimnames (x) [ [2] ] = "y")) {

y <- x[, "y"]

if (any(dimnames(x) [ [2] ] == "x"))
x <- x[, "x"]

else x <- x[, 1]

else

}

{

y <-

x <-
x[, 2]

x[, 1]

}

i f ( is .list

(

if (ar

}

else

X) ) {

ty (names (x) == "y"

y <- x$y
i f ( any ( names ( x

)

x <- x$x
else x <- x[ [1]

]

) ) {

MX .
') )

{

y <-

x <-
x[[2]]
x[[l]]

47



}

}

#

# If a is supplied, and it's a vector, then we've been given
# starting points for all the parameters. Use 'em, first making
# sure that there is the right number (3 if we're not fitting
# the center, and 5 if we are) . These #'s increase 1 for every delta
# estimated.

if ( Imissing (a) && length(a) > 1) {

if ( (fit. center && length(a) != 5) || (!fit. center &&
length(a) != 3)

)

stop (paste ( "Parameter vector has length", length (a),
", expecting ", ifelse ( fit . center, 5, 3)))

b <- a[2]
e <- sqrt (1 - (b/a[l] )~2)

theta <- a[3]
if (fit . center) {

center. x <- a[4]
center. y <- a[5]

}

a <- a[l]

}

else {

if (missing (a)

)

a <- 0.5 * diff (range (x)

)

if (missing (b)

)

b <- 0.5 * diff (range (y)

)

if(a < b) {

switcheroo <- a
a <- b
b <- switcheroo

}

e <- sqrt(l - (b/a)*2)
if (missing (theta) ) {

Is. out <- lsfit(x, y)
theta <- atan(ls.out$coef [2]

)

}

center. x <- mean(x)
center. y <- mean(y)

}

tt <- ell.tt(x, y)
if(plot.it) {

graph <- dev. list ()[ "win. graph"] [1]
if (length (graph) ==

| | all (is .na (graph) )

)

win. graph (

)

else dev. set (graph)

}

if (grad)
grad.func <- ell. grad. II

else grad.func <- NULL
if (fit . center) {

start. vec <- c(a = a, b = b, theta = theta, center. x =

center. x, center. y = center. y, delta = delta)
lower. vec <- c(0. 00001, 0.00001, -2 * pi, - Inf, - Inf,

Inf

)

upper. vec <- c(Inf, Inf, 2 * pi, Inf, Inf, Inf)
}

else
{
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start. vec <- c(a = a, b = b, theta = theta, delta = delta)
lower. vec <- c(0. 00001, 0.00001, -2 * pi, - Inf)
upper. vec <- c(Inf, Inf, 2 * pi, Inf)

}

out <- nlminb (start = start. vec, objective = ell. res. II, gradient
= grad.func, hessian = is . there .hess, lower =

lower. vec, upper = upper. vec, tt = tt, my.x = x, my.y
= y, plot.it = plot.it, chat = chat, is . there . hess =

is . there. hess, fit. center = fit. center, class. I =

class. I, which. type = which. type, step.min = 100 *

. Machine$double. eps, scale. upd =1) #

### p. names <- names (out$parameters)
### cat ("In ellipse, check p.names\n")
### browser ()

if (length (out$parameters) > 4)

names (out$parameters) <- c("a", "b", "theta", "center. x",

"center. y", "delta") # Beats me...
else names (out$parameters) <- c("a", "b", "theta", "delta")
out$sigma.sq <- out$obj /length (x)

out$sigma <- sqrt (out$sigma. sq)
out$aux <- NULL
out$x <- x
out$y <- y
if (length (out$hessian) > 0) {

if (qr (out$hessian) $rank < ncol (out$hessian)

)

out$cov <- "Can't invert Hessian"
else out$cov <- out$sigma.sq * solve (out$hessian)

}

out$tt <- tt
out$fitted. tt <- ell.tt(x - center. x, y - center. y)
pred<-ell

.
pred(out$ fitted. tt, out$parameters ["a"]

,

out$parameters [ "b"] , out$parameters [ "theta"] ,

return. unrotated. too = F, fit. center = fit. center,
center. x = ifelse (fit . center, out$parameters [ "center . x" ] ,

0), center. y = ifelse ( fit . center, out$parameters [ "center. y"]
,

0))
out$fitted.x <- pred$x
out$fitted.y <- pred$y
out$fitted.r <- sqrt (pred$x~2 + pred$y~2)
class (out) <- "ellipse"
return (out)

> ellipse. Ill
function (x, y, a = 2, b = 3, theta = 0, delta. a = 0, delta. b = 0,

fit. center = F, grad = T, is . there .hess = T, plot.it = T, chat =

T, class. I = rep(T, length(x)))
{

# This is for Class-Ill ellipses
# This version of ellipse works, but you must set grad=F, is. there. hess=F
# and plot.it=F
#

#

# Fit a least-squares ellipse centered at with semi-axes (a, b)

# and angle to the origin theta, to the data in x, y. The ellipse
# is now parameterized by a, b (not e) and theta, in that order.
# a is always > b; we can enforce that at the end.
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if (is .matrix (x) && ncol(x) > 1) {

if (any (dimnames (x) [ [2] ] == "y")) {

y <- x[, "y"]

if (any (dimnames (x) [ [2] ] == "x") )

x <- x[, "x"]
else x <- x[, 1]

}

else {

y <- x[, 2]

x <- x[, 1]

}

}

if (is. list (x) ) {

if (any (names (x) == "y"))
{

y <- x$y
if (any (names (x) == "x"))

x <- x$x
else x <- x[ [1]

]

}

else {

y <- x[[2]]
x <- x[[l]]

}

}

#

# If a is supplied, and it's a vector, then we've been given
# starting points for all the parameters. Use 'em, first making
# sure that there is the right number (3 if we're not fitting
# the center, and 5 if we are) . These #'s increase 1 for every delta
# estimated

if ( Imissing (a) && length(a) > 1) {

if ( (fit. center && length(a) != 5) || (! fit. center &&
length (a ) != 3)

)

stop (paste ( "Parameter vector has length", length (a),
", expecting ", ifelse (fit . center, 5, 3)))

b <- a[2]
e <- sqrt (1 - (b/a[l]

)

A
2)

theta <- a [3]

if (fit . center) {

center. x <- a[4]
center. y <- a[5]

}

a <- a[l]

}

else {

if (missing (a)

)

a <- 0.5 * diff (range (x)

)

if (missing (b)

)

b <- 0.5 * diff (range (y)

)

if (a < b) {

switcheroo <- a

a <- b
b <- switcheroo

}

e <- sqrt (1 - (b/a) "2)

if (missing (theta) ) {

Is. out <- lsfit(x, y)
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theta <- atan (ls.out$coef [2] )

}

center. x <- mean(x)
center. y <- mean(y)

}

tt <- ell.tt(x, y)
if(plot.it) {

graph <- dev. list ()[ "win. graph"] [1]

if (length (graph) ==
| | all (is. na (graph) )

)

win. graph (

)

else dev. set (graph)

}

if (grad)
grad.func <- ell. grad. Ill

else grad.func <- NULL
if (fit . center) {

start. vec <- c(a = a, b = b, theta = theta, center. x =

center. x, center. y = center. y, delta. a = delta. a,
delta. b = delta. b)

lower. vec <- c(0. 00001, 0.00001, -2 * pi, - Inf, - Inf, 0,

0)

upper. vec <- c(Inf, Inf, 2 * pi, Inf, Inf, Inf, Inf)

}

else {

start. vec <- c(a = a, b = b, theta = theta, delta. a =

delta. a, delta. b = delta. b)
lower. vec <- c(0. 00001, 0.00001, -2 * pi, 0, 0)

upper. vec <- c(Inf, Inf, 2 * pi, Inf, Inf)

}

out <- nlminb (start = start. vec, objective = ell. res. Ill, gradient
= grad.func, hessian = is . there. hess, lower = lower. vec,
upper = upper. vec, tt = tt, my.x = x, my.y = y, plot.it =

plot.it, chat = chat, is. there. hess = is . there. hess,
fit. center = fit. center, class. I = class. I, step.min = 100 *

.Machine$double . eps, scale. upd =1) #

### p. names <- names (out$parameters)
### cat ("In ellipse, check p.names\n")
### browser ()

if (length (out$parameters) > 4)

names (out$parameters) <- c("a", "b", "theta", "center. x",

"center. y", "delta. a", "delta. b") # Beats me...
else names (out$parameters) <- c("a", "b", "theta", "delta. a",

"delta. b")

out$sigma.sq <- out$obj /length (x)

out$sigma <- sqrt (out$sigma. sq)
out$aux <- NULL
out$x <- x
out$y <- y
if (length (out$hessian) > 0) {

if (qr (out$hessian) $rank < ncol (out$hessian)

)

out$cov <- "Can't invert Hessian"
else out$cov <- out$sigma.sq * solve (out$hessian)

}

out$tt <- tt
out$fitted. tt <- ell.tt(x - center. x, y - center. y) #

### pred <- ell.pred(out$fitted.tt, out$parameters [ "a"]

,

### out$parameters

[

### "b"], out$parameters [ "theta"] , return. unrotated. too = F,
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### fit. center = fit. center, center. x = ifelse ( fit . center, out$
### parameters [ "center . x"] , 0), center. y = ifelse ( fit . center,
### out$parameters ["center. y"] , 0))

### out$fitted.x <- pred$x
### out$fitted.y <- pred$y
### out$fitted.r <- sqrt (pred$x A 2 + pred$y^2)

class (out) <- "ellipse"
return (out)

> ell . res
function (params, tt, my.x, my.y, is . there. hess, fit. center, plot.it,
chat)

{

#

# ell. res: Compute objective to be minimized.
#

# This computes the objective function: the sum of squared
# differences between the observed points on the ellipse
# (after transformation) and the predicted ones.
#

# "params" is the vector (a, e, theta) . Get them out, and
# compute rat, the ratio a/b.
#

a <- params [1]

e <- params [2]

if (e > 0.99)
return (1000)

b <- a * sqrt(l - e^2)
theta <- params [3] #

if (fit .center == T) {

center. x <- params [4]

center. y <- params [5] #

tt <- ell. tt (my.x - center. x, my.y - center. y)

}

else {

center. x <- center. y <-

}

fitted. r <- ell.pred(tt, a, b, theta, fit. center = fit. center,
center. x = center. x, center. y = center. y) #

new.x <- fitted. r$x
new.y <- fitted. r$y #

# Plot it: add dotted lines at x = and y = 0.

#

if(plot.it)
{

plot (my.x, my.y, xlim = range (my.x, new.x), ylim =

range (my.y, new.y))
ablinefh = 0, lty = 2)

abline(v = 0, lty =2) #

points (new. x, new.y, pch = 1, col =4) #

points (center .x, center. y, pch = 1, col = 2)

}

### ford in l:length(tt) )

### polar(c(0, 0.5), rep(tt[i], 2), type = "1") #

#

# Get fitted x and y; compute and return objective.
#
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obj <- sum( (my.x - new.x) A
2) + sum((my.y - new.y) A

2) #
if(chat) cat ("a:", signiffa, 4), ",b:", signif (b, 4), ",th:",

signif (theta, 4), ifelse (fit . center, paste ( ";x, y: ", signif(
center. x, 4), signif (center

. y, 4)), ""), ";obj:",
signif (obj, 4), "\n") ### " cat("BTW: "

)

### ell
.
grad (pa rams, tt, my.x, my.y, is . there. hess)

### cat("\n")
return (obj

)

> ell. res. II
function (params, tt, my.x, my.y, is. there. hess, fit. center, plot.it,

chat, class. I, which. type)

{

#

# ell. res: Compute objective to be minimized. This version is the
# Class-II one.
#

# This computes the objective function: the sum of squared
# differences between the observed points on the ellipse
# (after transformation) and the predicted ones.
#

# "params" is the vector (a, b, theta)

.

#

a <- params [1]

b <- params [2]

theta <- params [3] #

if (is .null (class . I) ) {

class. I <- rep(T, length (my .x)

)

delta <-

}

if (fit . center == T) {

center. x <- params [4]

center. y <- params [5] #

delta <- params [6]

tt <- ell. tt (my.x - center. x, my.y - center. y)

}

else {

center. x <- center. y <-
delta <- params [4]

}

if (sum(class . I) < length (my .x) ) {

fitted. r. I <- ell .pred (tt [class . I] , a, b, theta, fit. center
= fit. center, center. x = center. x, center. y =

center. y) #

if (which. type == 1)

fitted. r. II <- ell .pred (tt [! class. I] , a + delta, b,

theta, fit. center = fit. center, center. x =

center. x, center. y = center. y)

else fitted. r. II <- ell. pred (tt [! class . I] , a, b + delta,
theta, fit. center = fit. center, center. x =

center. x, center. y = center. y) #

}

else fitted. r. I <- ell.pred(tt, a, b, theta, fit. center =

fit. center, center. x = center. x, center. y = center. y) #

new.x <- numeric (length (my. y) )

new.y <- numeric (length (my. y)

)
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new. x [class . I] <- fitted. r.I$x
new. y [class . I] <- fitted. r . I$y
if (sum( iclass.I) > 0) {

new.x[ ! class . I] <- fitted. r. II$x
new. y [! class. I] <- fitted. r. II$y

}

#

#

# If plot it, add dotted lines at x = and y = 0, plus points.
#

if(plot.it) {

plot (my. x, my.y, xlim = range (my. x, new.x), ylim =

range (my. y, new.y))
abline(h = 0, lty = 2)

abline(v = 0, lty =2) #

points (new.x, new.y, pch = 1, col =4) #

points (center .x, center. y, pch = 1, col = 2)

}

#

cat ( "grad. norm is ", sum(ell
.
grad. II (params, tt, my.x, my.y,

is . there. hess, fit. center, class. I, which. type) ^2) , "\n")

#

# Get fitted x and y; compute and return objective.
#

obj <- sum((my.x - new.x)^2) + sum((my.y - new.y) /N
2) #

if (chat)
cat ("a:", signif(a, 4), ", delta: ", signif (delta, 4),

",b:",signif (b, 4), ",th:", signif (theta, 4), ifelse(
fit. center, paste ( ";x, y: ", signif (center .x, 4),
signif (center. y, 4)), ""), ";obj:", signif (obj, 4),
"\n")

return (obj

)

}

> ell. res. Ill
function (params, tt, my.x, my.y, is . there. hess, fit. center, plot.it,

chat, class. I)

{

#

# ell. res: Compute objective to be minimized. This version is the
# Class-Ill one.
#

# This computes the objective function: the sum of squared
# differences between the observed points on the ellipse
# (after transformation) and the predicted ones.
#

# "params" is the vector (a, b, theta)

.

#

a <- params [1]

b <- params [2]
theta <- params [3] #
if (is .null (class . I ) ) {

class. I <- rep(T, length (my . x)

)

delta. a <- delta. b <-

}

if ( fit . center == T) {
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center. x <- params[4]
center. y <- params[5] #

delta. a <- params[6]
delta. b <- params[7]
tt <- ell.tt(my.x - center. x, my.y - center. y)

}

else {

center. x <- center. y <-
delta. a <- params[4]
delta. b <- params[5]

}

if (sumfclass . I ) < length (my .x) ) {

fitted. r. I <- ell .pred(tt [class . I] , a, b, theta, fit. center
= fit. center, center. x = center. x, center. y =

center. y) #

fitted. r. II <- ell.pred (tt [ ! class. I] , a + delta. a, b +
delta. b, theta, fit. center = fit. center, center. x =

center. x, center. y = center. y) #

}

else fitted. r. I <- ell.pred(tt, a, b, theta, fit. center =

fit. center, center. x = center. x, center. y = center. y) #
new.x <- numeric (length (my

. y)

)

new.y <- numeric (length (my
. y)

)

new. x [class. I] <- fitted. r.I$x
new. y [class. I] <- fitted. r.I$y
if (sum( Iclass.I) > 0) {

new.x [! class . I] <- fitted. r . II$x
new. y [ ! class . I] <- fitted. r. II$y

}

#

#

# If plot it, add dotted lines at x = and y = 0, plus points.
#

if(plot.it) {

plot (my. x, my.y, xlim = range (my. x, new.x), ylim =

range(my.y, new.y))
abline(h = 0, lty = 2)

abline(v = 0, lty =2) #

points (new.x, new.y, pch = 1, col =4) #

points (center. x, center. y, pch = 1, col = 2)

}

###
## cat ( "grad. norm is ", sum(ell

.
grad. II (params, tt, my.x, my.y,

## is . there. hess, fit. center, class. I, which. type) A
2) , "\n")

#

# Get fitted x and y; compute and return objective.
#

obj <- sum ( (my.x - new.x) A 2) + sum((my.y - new.y) A
2) #

if (chat)
cat ("a:", signif(a, 4), ", delta. a: ", signif (delta . a, 4),

",b:", signif (b, 4), "delta. b: ", signif (delta .b, 4),
",th:", signif (theta, 4), ifelse ( fit . center, paste

(

";x,y:", signif (center .x, 4), signif (center .y, 4)),
""), ";obj:", signif (obj, 4), "\n")

return (obj

)

55



> ell
.
grad

function (params, tt, my.x,

{

my.y, is . there. hess, fit. center)

###
###
###

tol <- le-006
a <- params [1]

e <- params [2]

theta <- params [3]

if (fit. center == T) {

center. x <- params [4]

center. y <- params [5]

tt <- ell. tt (my.x - center. x, my.y - center. y)

}

else {

center. x <- center. y <-

sqrtd - e A
2)b <- a

fitted <- ell.pred(tt, a, b, theta, return. unrotated. too = T,

fit. center = fit. center, center. x = center. x, center. y =

center. y)

xprime <- fitted$x. prime
yprime <- fitted$y .prime
x <- fitted$x
y <- fitted$y
cos. theta <- cos (theta)
sin. theta <- sin (theta)
cos. 2. tt. theta <- cos (2

sin. 2 . tt. theta <- sin(2
sinsq. tt. theta <- (sin(tt - theta)

)

A 2

cossq.tt. theta <- (cos(tt - theta)

)

A 2

sinsq. 2. tt. theta <- (sin(2 * (tt - theta]
consq.2.tt. theta <- (cos (2 * (tt - theta]
one. minus. e. sq <- 1 - e A 2

denom <- cossq. tt. theta * one. minus. e. sq + sinsq. tt. theta
dxprime.da <- xprime/a
dxprime.de <-

( ( - a A 2/(4 * xprime)) * (e *

(tt
(tt

theta)

)

theta)

)

) )

) )

sinsq. 2 . tt . theta) ) / (denom' 2)

dxprime.de [abs (xprime) < tol]
dyprime.da <- yprime/a
dyprime.de <- - (one. minus.

e

-xprime A
2) ) /yprime

dyprime.de [abs (yprime) < tol]
dx.da <- cos. theta
dx.de <- cos. theta
dy.da <- sin. theta
dy.de <- sin. theta
x.diff <- my.x - x
y.diff <- my.y - y

<-

sq * xprime * dxprime.de + e

<-
dxprime.da - sin. theta * dyprime.da
dxprime.de - sin. theta * dyprime.de
dxprime.da + cos . theta * dyprime.da
dxprime.de + cos . theta * dyprime.de

#

a A 2

grad. mat <- matrix(0, length(x), 3)

grad.mat[, 1] <- -2 * (x.diff * dx.da + y.diff * dy.da)
grad. mat[, 2] <- -2 * (x.diff * dx.de + y.diff * dy.de)
grad. a <- -2 * sum(x.diff * dx.da + y.diff * dy.da)
grad.e <- -2 * sum(x.diff * dx.de + y.diff * dy.de)
num <- one. minus. e. sq * sin(2 * (tt - theta))
dxprime.dtheta <- (a A 2/ (2 * xprime)) *

dxprime.dtheta [abs (xprime) < tol] <-
dyprime.dtheta <- - (one .minus . e. sq *

yprime
dyprime.dtheta [abs (yprime) < tol] <-

(num/denomA
2)

xprime * dxprime.dtheta)/
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dxprime.dtheta -dx.dtheta <- - (y - center. y) + cos.theta
sin.theta * dyprime . dtheta

dy.dtheta <- (x - center. x) + sin.theta * dxprime.dtheta +
cos.theta * dyprime .dtheta
grad.theta <- -2 * sum(x.diff *

#

(x.diff *

is. . An")
grad.mat

)

### grad.mat [, 3] <- -2 *

### cat("Grad mat approx.
### print (t (grad.mat) %* s

<

if (fit. center == F)

grad <- c(grad.a, grad.e,
else {

dx.dtheta + y.diff

dx.dtheta + y.diff

dy.dtheta)

dy.dtheta)

grad. theta)

dxprime.dt <-

dyprime. dt <-

R.sq <- (my.x
dt.dxO <- (my
dt.dyO <- -

- dxprime.dtheta
- dyprime. dtheta

- center. x) ^2 + (my.y - center. y) ^2
.y - center

. y) /R. sq
(my.x - center .x) /R. sq

dxprime.dxO <- dxprime.dt * dt.dxO
dxprime.dyO <- dxprime.dt * dt.dyO
dyprime. dxO <- dyprime. dt * dt.dxO
dyprime. dyO <- dyprime. dt * dt.dyO
dyprime.dxprime <- one. minus . e. sq
dyprime.dxprime [abs (yprime) < tol]
dx.dxO <- (cos.theta

dyprime. dxO) +
dy.dxO <- (sin.theta

dyprime.dxO)
dx.dyO <- (cos.theta

dyprime. dyO)
dy.dyO <- (sin.theta

dyprime. dyO) +

#
:

(

<-
dxprime.dxO)

dxprime.dxO)

dxprime.dyO)

dxprime.dyO)

- xprime/yprime)
#

(sin.theta *

grad.xO <- -2

grad.yO <- -2
sum(x.diff * dx.dxO
sum(x.diff * dx.dyO

+ (cos.theta

- (sin.theta *

+ (cos.theta

+ y.diff * dy.dxO)
+ y.diff * dy.dyO)

grad <- c (grad. a, grad.e, grad.theta, grad.xO, grad.yO]
}

if (is . there .hess == F)

return (grad)
d2xprime.da2 <- d2yprime.da2 <-
d2xprime.dade <- dxprime.de/a
d2yprime . dade <- dyprime. de/a
d2xprime.dadtheta <- dxprime.dtheta/a
d2yprime.dadtheta <- dyprime. dtheta/a
ddenom.de <- -2 * e * cossq. tt. theta
ddenom. dtheta <- - e A 2 * sin(2 * (tt - theta))
terml <- (

- a~2 * sinsq.2 . tt . theta) /4
xprime.denom. sq <- xprime * denom^2
d2xprime.de2 <- xprime. denom. sq - e

xprime * denom * ddenom.de)
d2xprime.de2 <- (terml/xprime. denom. sq

A
2)

d2xprime.de2 [abs (xprime) < le-006] <-
d2yprime.de2 <- one. minus . e . sq * (-2 * xprime

dxprime. de

d2xprime. de2

denom~2 + 2 *

d2xprime . de2
xprime * dxprime.de - 2dxprime. de^2) + 8 * e

xprime"2

)

terml <- - a^2 * e

d2xprime . dedtheta <- - xprime . denom. sq
sinsq. 2 . tt . theta * (xprime * denom
dxprime.dtheta * denom~2)

d2xprime .dedtheta <-
( ( - a"2 * e) /xprime . denom. sq~2

)

[a?2

sin(4 * (tt - theta)
ddenom. dtheta +
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#

#

# s

#

d2xprime . dedtheta
d2xprime. dedtheta [abs (xprime) < le-006] <-

d2yprime. dedtheta <- (-l/yprime A 2 ) * (yprime ( ( one. minus . e. sq

* d2xprime . dedtheta + dxprime.dtheta '

xprime * dxprime.dtheta) - one. minus,
xprime
2 * e
dxprime.dtheta * dxprime.de)

d2yprime . dedtheta [abs (yprime) < le-006] <-
dnum.dtheta <- -2 * one. minus . e. sq * cos(2 *

dxprime.de)

)

e.sq * xprime

(tt - theta)

* d2yprime. dade
* d2yprime. dade
d2yprime.de2
d2yprime. de2

dx.de - y.diff i

d2xprime .dtheta2 <- xprime .denom. sq * dnum.dtheta - num * (2 *

xprime * denom * ddenom.dtheta + denomA 2 * dxprime.dtheta)
d2xprime.dtheta2 <- (d2xprime. dtheta2 * aA2)/(2 *

xprime .denom. sq
A 2) d2xprime. dtheta2 [abs (xprime) < le-006] <-0

d2yprime . dtheta2 <- - ( one. minus . e. sq/yprime) * (yprime * (xprime
* d2xprime. dtheta2 + dxprime.dtheta A 2) - dyprime.dtheta *

(

xprime * dxprime.dtheta))
d2yprime.dtheta2 [abs (yprime) < le-006] <-
d2x.dade <- cos. theta * d2xprime.dade - sin. theta
d2y.dade <- sin. theta * d2xprime . dade + cos. theta
d2x.de2 <- cos. theta * d2xprime.de2 - sin. theta *

d2y.de2 <- sin. theta * d2xprime.de2 + cos. theta *

grad.a2 <- 2 * sum(dx.da A 2 + dy.da A
2)

grad.ae <- 2 * sum( - x.diff * d2x.dade + dx.da *

d2y.dade + dy.da * dy.de)
d2x.dadtheta <- cos. theta * d2xprime.dadtheta - sin. theta *

d2yprime . dadtheta - dy.da
d2y.dadtheta <- sin. theta * d2xprime. dadtheta + cos . theta *

d2yprime .dadtheta + dx.da
d2x. dedtheta <- cos. theta * d2xprime .dedtheta - sin. theta *

d2yprime .dedtheta - dy.de
d2y. dedtheta <- sin. theta * d2xprime .dedtheta + cos . theta *

d2yprime . dedtheta + dx.de
d2x.dtheta2 <- cos . theta * d2xprime.dtheta2 - sin. theta *

d2yprime.dtheta2 - 2 * dy.dtheta + x
d2y.dtheta2 <- sin. theta * d2xprime. dtheta2 + cos. theta *

d2yprime.dtheta2 + 2 * dx.dtheta + y
grad.atheta <- 2 * sum( - x.diff * d2x. dadtheta + dx.da *

dx.dtheta - y.diff * d2y. dadtheta + dy.da * dy.dtheta)
grad.e2 <- 2 sum( - x.diff * d2x.de2 + dx.de A 2 - y.diff

d2y.de2 + dy.de A
2)

grad.etheta <- 2 * sum( - x.diff * d2x. dedtheta + dx.de *

dx.dtheta - y.diff * d2y. dedtheta + dy.de * dy.dtheta)
grad.theta2 <- 2 * sum( - x.diff * d2x.dtheta2 + dx.dtheta A 2

y.diff * d2y.dtheta2 + dy.dtheta A
2) #

### grad.mat <- matrix (c (grad. a2, grad.ae, grad.atheta, grad.ae,
grad.e2, grad.etheta, grad.atheta, grad.etheta,

grad.theta2) , 3, 3, T)

### cat("Hessian approx. is...\n")
### print (solve (grad.mat )

)

if ( fit . center == F)

hessian <- c(grad.a2, grad.ae, grad.e2, grad.atheta,
grad.etheta, grad.theta2)

else {

econd derivatives: a and xO, a and yO

d2xprime.dadx0 <- dxprime.dxO/a
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d2yprime.dadx0 <- dyprime.dxO/a
d2xprime.dady0 <- dxprime. dyO/a
d2yprime.dady0 <- dyprime. dyO/a
d2x.dadx0 <- cos.theta

d2yprime . dadxO
d2y.dadx0 <- sin.theta

d2 yprime . dadx #

and the gradient
grad.axO <- 2 * sum( - x

y.diff * d2y.dadx0
d2x.dady0 <- cos.theta *

d2yprime . dadyO
d2y.dady0 <- sin.theta *

d2yprime . dadyO

d2xprime.dadx0 - sin.theta *

d2xprime. dadx + cos.theta *

diff * d2x.dadx0 + dx.da *

+ dy.da * dy.dxO)
d2xprime.dady0 - sin.theta

d2xprime.dady0 + cos.theta

dx.dxO

grad.ayO <- 2 * sum( - x.diff * d2x.dady0 +. dx.da * dx.dyO
y.diff * d2y.dady0 + dy.da * dy.dyO) #

e A 2 * sin.2.tt.theta
e A 2 * sin. 2. tt. theta
denomA 2

* xprime

ddenom.dxO <-
ddenom.dyO <-

A <- xprime *

dA.dxO <- denom * (2

dxprime.dxO)
dA.dyO <- denom * (2 * xprime

dxprime.dyO)
out. front <- - (a A 2 * e)/4
z <- sinsq.2 . tt . theta/A #

z[abs(A) < tol] <-
d2xprime.dedx0 <- out. front *

dt.dxO)/A - ((dA.dxO * ;

d2xprime.dedy0 <- out. front *

dt.dyO)/A - ((dA.dyO *

d2xprime.dedx0 [abs (A) < tol]
d2xprime.dedy0 [abs (A) < tol]

Here's one from Mathematica.

dt.dxO
dt.dyO

* ddenom.dxO + denom *

ddenom.dyO + denom

'
( (2 *

z)/A))
r

( (2 *

Z)/A) )

<-
<-

sin(4

sin (4 *

(tt - theta)

)

(tt - theta)

)

<-
d2xprime.dedx0 - sin.theta *

d2xprime.dedx0 + cos.theta *

- x.diff

d2yprime.dedx0 <- (
- (3 * e)/2 *

sin . 2 . tt . theta ) /denomA 2

d2yprime.dedx0 [abs (yprime) < tol]
d2x.dedx0 <- cos.theta

d2yprime . dedxO
d2y.dedx0 <- sin.theta

d2yprime . dedxO
grad.exO <- 2 * sum

y.diff * d2y.dedx0 + dy.de
d2yprime.dedy0 <-

(
- (3 * e)/2

sin. 2 .tt. theta) /denomA 2

d2yprime.dedy0 [abs (yprime) < tol] <-
d2x.dedy0 <- cos.theta * d2xprime . dedyO -

d2yprime . dedyO
d2y.dedy0 <- sin.theta

d2yprime . dedyO
grad.eyO <- 2 * sum( -

yprime * dt.dxO *

d2x.dedx0 + dx.de * dx.dxO -

dy.dxO)
yprime * dt.dyO *

sin.theta *

d2xprime.dedy0 + cos.theta

y.diff * d2y.dedy0

Here's another from Mathematica.

diff * d2x.dedy0 + dx.de
+ dy.de * dy.dyO) #

dx.dyO -
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dt.dxO
dt . dyO #

prime * (3

dt.dxO
dt.dyO #

out. front <- (xprime * (1 - 2 * e A 2 + e A 2

cos. 2 . tt . theta) ) / denom~2
out . front [abs (denom) < tol] <-
d2xprime .dthetadxO <- out. front
d2xprime. dthetadyO <- out. front
out. front <-

( (one. minus . e. sq) * yprime * (3 -• 2 * denom))/
denomA 2

out . front [abs (denom) < tol] <-
d2yprime. dthetadxO <- out. front '

d2yprime. dthetadyO <- out. front '

d2x. dthetadxO <- - dy.dxO + cos. theta * d2xprime .dthetadxO
- sin. theta * d2yprime . dthetadxO

d2y. dthetadxO <- (dx.dxO - 1) + sin. theta *

d2xprime. dthetadxO + cos. theta * d2yprime .dthetadxO
grad.thetaxO <- 2 * sum( - x.diff * d2x. dthetadxO +

dx.dtheta * dx.dxO - y.diff * d2y. dthetadxO +

dy.dtheta * dy.dxO)
d2x. dthetadyO <- - (dy.dyO - 1) + cos. theta *

d2xprime. dthetadyO - sin. theta * d2yprime. dthetadyO
d2y. dthetadyO <- dx.dyO + sin. theta * d2xprime . dthetadyO +

cos. theta * d2yprime. dthetadyO
grad.thetayO <- 2 * sum( - x.diff * d2x. dthetadyO +

dx.dtheta * dx.dyO - y.diff * d2y. dthetadyO +

dy.dtheta * dy.dyO)
#

d2t.dx02 <- -2 * (dt.dxO * dt.dyO)
d2t.dx0dy0 <- -1/R.sq + 2 * (dt.dxO) A 2

d2t.dy02 <- - d2t.dx02
d2xprime.dx02 <- - dxprime. dtheta * d2t.dx02 -

d2xprime. dthetadxO * dt.dxO
d2yprime.dx02 <- - dyprime . dtheta * d2t.dx02 -

d2yprime. dthetadxO * dt.dxO
d2x.dx02 <- cos. theta * d2xprime.dx02 - sin. theta *

d2yprime . dx02
d2y.dx02 <- sin. theta * d2xprime.dx02 + cos. theta *

d2yprime . dx02
grad.x02 <- 2 * sum( - x.diff * d2x.dx02 + dx.dx0 /v 2 - y.diff

* d2y.dx02 + dy.dx0 A
2) #

d2xprime.dx0dy0 <- - dxprime. dtheta * d2t.dx0dy0 -

d2xprime. dthetadyO * dt.dxO
d2yprime.dx0dy0 <- - dyprime. dtheta * d2t.dx0dy0 -

d2yprime. dthetadyO * dt.dxO
d2x.dx0dy0 <- cos. theta * d2xprime .dxOdyO - sin. theta *

d2yprime . dxOdyO
d2y.dx0dy0 <- sin. theta * d2xprime .dxOdyO + cos. theta *

d2yprime . dxOdyO
grad.xOyO <- 2 * sum( - x.diff * d2x.dx0dy0 + dx.dxO *

dx.dyO - y.diff * d2y.dx0dy0 + dy.dxO * dy.dyO) #

d2xprime.dy02 <- - dxprime. dtheta * d2t.dy02 -

d2xprime. dthetadyO * dt.dyO
d2yprime.dy02 <- - dyprime. dtheta * d2t.dy02 -

d2yprime. dthetadyO * dt.dyO
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d2x.dy02 <- cos.theta * d2xprime.dy02 - sin.theta *

d2yprime . dy02
d2y.dy02 <- sin.theta * d2xprime.dy02 + cos.theta *

d2yprime . dy02
grad.y02 <- 2 * sum( - x.diff * d2x.dy02 + dx.dyO A 2 - y.diff

* d2y.dy02 + dy.dyCT2)
hessian <- c(grad.a2, grad.ae, grad.e2, grad.atheta,

grad.etheta, grad.theta2, grad.axO, grad.exO,
grad. thetaxO, grad.x02, grad.ayO, grad.eyO,
grad. thetayO, grad.xOyO, grad.y02) #

### print (hessian)

}

thing <- list (gradient = grad, hessian = hessian)
return (thing)

> ell. grad. II
function (params, tt, my.x, my.y, is . there. hess, fit. center, class. I,

{

which. type)

tol <- le-006 #

a <- params [1]

b <- params [2]

e <- sqrt(l - (b/a) A
2)

theta <- params [3]

if (fit .center == T) {

center. x <- params [4]

center. y <- params [5]
delta <- params [6]

tt <- ell.tt(my.x - center. x, my.y - center. y)

}

else {

delta <- params [4]

center. x <- center. y <-

}

if (sum(class . I) == length (my . x) ) {

fitted <- ell.pred(tt, a, b, theta, return. unrotated. too =

T, fit. center = fit. center, center. x = center. x, center.

y

center. y)
xprime <- fitted$x. prime
yprime <- fitted$y. prime
x <- fitted$x
y <- fitted$y

}

else {

fitted. I <- ell .pred (tt [class . I] , a, b, theta,
return. unrotated. too = T, fit. center = fit. center,
center. x = center. x, center. y = center. y)

if (which. type = 1)

fitted. II <- ell.pred(tt [ Iclass.I] , a + delta, b,

theta, return. unrotated. too = T, fit. center
= fit. center, center. x = center. x, center.

y

= center. y)

else fitted. II <- ell .pred (tt [! class . I] , a, b + delta,
theta,

return. unrotated. too = T, fit. center =

fit. center, center. x = center. x, center. y =
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center. y)

xprime <- yprime <- x <- y <- numeric (length (my . x]

xprime [class . I] <- fitted. I$x. prime
xprime [! class. I] <- fitted. II$x. prime
yprime [class . I] <- fitted. I$y. prime
yprime [! class . I] <- fitted. II$y. prime
x[ class. I] <- fitted. I$x
x[!class.I] <- fitted. II$x
yfclass.I] <- fitted. I$y
y[!class.I] <- fitted. II$y

}

if (which. type == 1) {

a <- rep (a, length (my .x)

)

a[!class.I] <- a[!class.I]
}

else {

+ delta

b <- rep (b, length (my .x)

)

b[!class.I] <- b[ Iclass.I]
}

cos . theta <- cos(theta)
sin.theta <- sin(theta)
cos.2.tt. theta <- cos (2

sin. 2. tt. theta <- sin{2
sinsq. tt . theta <-
cossq. tt. theta <-

sinsq. 2 . tt. theta <- (sin(2

+ delta

(tt - theta)

)

(tt - theta)

)

sinftt - theta) ) ~2
cos(tt - theta)

)

A 2

(tt - theta) )

)

(tt - theta) )

)

consq. 2 . tt . theta <- (cos (2

one. minus .e.sq <- 1 - e~2
denom <- cossq. tt. theta * one. minus . e. sq + sinsq. tt. theta
dxprime.da <- xprime/a
dxprime.de <-

( ( - a"2/(4 * xprime)) * (e *

sinsq. 2. tt. theta) ) / (denom^2)
dxprime.de [abs (xprime) < tol] <-
dyprime.da <- yprime/a
dyprime.de <- - ( one. minus . e. sq * xprime

- xprime A
2) ) /yprime

dyprime.de [abs (yprime) < tol] <- #

dxprime.de + e !a
A 2

#

# Okay. Here's where we go from "e" to "b". We still need dx/y.de
#

de.db <- - b/ (a~2 * e)

dx.da <- cos. theta * dxprime.da sin. theta
dx.de <- cos. theta
dx.db <- cos. theta

dyprime.da #

dxprime.de sin.theta * dyprime.de
dxprime.de * de.db - sin.theta * dyprime.de *

dxprime.da
dxprime.de
dxprime.de

cos. theta * dyprime.da #

cos. theta * dyprime.de
dyprime.de *de.db + cos. theta

de.db
dy.da <- sin.theta
dy.de <- sin.theta
dy.db <- sin.theta

de.db
x.diff <- my.x - x
y.diff <- my.y - y
grad.a.indiv <- -2

grad.a <- sum(grad. a . indiv)
### grad.e <- -2 * sum (x.diff * dx.de + y.diff * dy.de)
grad.b. indiv <- -2 * (x.diff * dx.db + y.diff * dy.db)
grad.b <- sum (grad.b. indiv)
if (which. type == 1)

grad. delta <- sum(grad. a . indiv[ ! class . I]

)

(x.diff * dx.da + y.diff * dy.da)
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xprime * dxprime . dtheta)

/

else grad. delta <- sum(grad.b . indiv[ ! class . I]

)

num <- one. minus . e. sq * sin(2 * (tt - theta)

)

dxprime. dtheta <- (a A 2/ (2 * xprime)) * (num/denomA
2)

dxprime. dtheta [abs (xprime) < tol] <-
dyprime. dtheta <- - (one .minus . e. sq

yprime
dyprime. dtheta [abs (yprime) < tol] <-

dx. dtheta <- - (y - center. y) + cos.
sin. theta * dyprime. dtheta

dy. dtheta <- (x - center. x) + sin. theta
cos. theta * dyprime . dtheta
grad. theta <- -2 * sum(x.diff * dx. dtheta + y.diff * dy. dtheta)

#

theta dxprime. dtheta -

dxprime. dtheta +

if (! exists ("killme", frame =0))
browser (

)

if (fit .center == F)

grad <- c(grad.a, grad.b, grad. theta,
else {

dxprime. dt <- - dxprime. dtheta
dyprime. dt <- - dyprime. dtheta
R.sq <- (my.x - center. x)

A 2 + (my
dt.dxO <- (my.y - center

. y) /R. sq
dt.dyO <- - (my.x - center. x) /R. sq
dxprime. dxO <- dxprime. dt * dt.dxO
dxprime. dyO <- dxprime. dt * dt.dyO
dyprime. dxO <- dyprime. dt * dt.dxO
dyprime. dyO <- dyprime. dt * dt.dyO #

dyprime .dxprime <- one. minus . e. sq *
(

dyprime. dxprime [abs (yprime) < tol] <-
dx.dxO <- (cos. theta * dxprime. dxO) -

dyprime. dxO) + 1

dy.dxO <- (sin. theta
dyprime. dxO)

dx.dyO <- (cos. theta
dyprime. dyO)

dy.dyO <- (sin. theta
dyprime. dyO) + 1

grad.xO <- -2 * sum(x.diff * dx.dxO -t

grad.yO <- -2 * sum(x.diff * dx.dyO -i

grad <- c (grad. a, grad.b, grad. theta,
grad. delta)

grad. delta)

y - center. y)
A 2

dxprime . dxO)

dxprime.dyO)

dxprime . dyO)

- xprime/yprime)
#

(sin. theta *

(cos. theta *

(sin. theta *

(cos. theta *

y.diff * dy.dxO)
y.diff * dy.dyO)
grad.xO, grad.yO,

if (is. there. hess == F) {

print (grad)
return (grad)

}

d2xprime.da2 <- d2yprime.da2 <-
d2xprime.dade <- dxprime. de/a
d2yprime.dade <- dyprime. de/a
d2xprime . dadtheta <- dxprime . dtheta/a
d2yprime.dadtheta <- dyprime .dtheta/a
ddenom.de <- -2 * e * cossq. tt. theta
ddenom. dtheta <- - e A 2 * sin(2 * (tt - theta))
terml <-

(
- a A 2 * sinsq. 2 . tt . theta) /4

xprime .denom. sq <- xprime * denomA 2

d2xprime.de2 <- xprime . denom. sq - e * (dxprime.de
xprime * denom * ddenom.de)

d2xprime.de2 <- ( terml/xprime. denom. sq
A 2) * d2xprime.de2

denomA 2 + 2 *
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d2xprime.de2 [abs (xprime) < le-006] <-
d2yprime.de2 <- one. minus. e. sq * (-2 * xprime * d2xprime.de2 - 2 *

dxprime.de A 2) + 8 * e * xprime * dxprime.de - 2 * (a A 2 -

xprime A
2

)

terml <- - a A 2 * e

d2xprime.dedtheta <- - xprime. denom. sq * sin (4 * (tt - theta) )
-

sinsq. 2 . tt . theta * (xprime * denom * ddenom.dtheta +
dxprime. dtheta * denomA 2)

d2xprime.dedtheta <-
( ( - a A 2 * e) /xprime. denom. sq

A 2) *

d2xprime . dedtheta
d2xprime.dedt.heta [abs (xprime) < le-006] <-
d2yprime. dedtheta <- (-l/yprime A 2) * (yprime *

( (one. minus . e . sq *

(

xprime * d2xprime. dedtheta + dxprime. dtheta * dxprime.de)) -

2 * e * xprime * dxprime .dtheta) - one .minus . e. sq * xprime *

dxprime. dtheta * dxprime.de)
d2yprime. dedtheta [abs (yprime) < le-006] <-

dnum. dtheta <- -2 * one. minus . e. sq * cos(2 * (tt - theta))
d2xprime .dtheta2 <- xprime. denom. sq * dnum. dtheta - num * (2 *

xprime * denom * ddenom.dtheta + denomA 2 * dxprime . dtheta)
d2xprime.dtheta2 <- (d2xprime. dtheta2 * a A 2)/(2 *

xprime . denom. sq
A
2

)

d2xprime.dtheta2 [abs (xprime) < le-006] <-
d2yprime .dtheta2 <- - (one. minus . e. sq/yprime) * (yprime * (xprime

* d2xprime.dtheta2 + dxprime. dtheta A 2) - dyp rime. dtheta *
(

xprime * dxprime. dtheta)

)

d2yprime.dtheta2 [abs (yprime) < le-006] <- #

d2e.db2 <- (b * de.db - e)/(a * e) A 2

d2e.dadb <- (2 * b)/(a A 3 * e) #

### d2x.dade <- cos . theta * d2xprime. dade - sin. theta * d2yprime . dade
d2x.dadb <- cos. theta * (dxprime.de * d2e.dadb + d2xprime.dade *

de.db) - sin. theta * (dyprime.de * d2e.dadb + d2yprime .dade
* de.db) #

### d2y.dade <- sin. theta * d2xprime.dade + cos. theta * d2yprime .dade
d2y.dadb <- sin. theta * (dxprime.de * d2e.dadb + d2xprime . dade *

de.db) + cos. theta * (dyprime.de * d2e.dadb + d2yprime .dade
* de.db) #

### d2x.de2 <- cos. theta * d2xprime.de2 - sin. theta * d2yprime.de2
### d2y.de2 <- sin. theta * d2xprime.de2 + cos. theta * d2yprime.de2

d2x.dadb <- cos. theta * (dxprime.de * d2e.dadb + d2xprime . dade *

de.db) - sin. theta * (dyprime.de * d2e.dadb + d2yprime .dade
* de.db)

d2y.dadb <- sin. theta * (dxprime.de * d2e.dadb + d2xprime . dade *

de.db) + cos. theta * (dyprime.de * d2e.dadb + d2yprime .dade
* de.db)

d2xprime.dedb <- d2xprime.de2 * de.db
d2yprime.dedb <- d2yprime.de2 * de.db
d2x.db2 <- cos. theta * (dxprime.de * d2e.db2 + d2xprime.dedb *

de.db) - sin. theta * (dyprime.de * d2e.db2 + d2yprime.dedb *

de.db)
d2y.db2 <- sin. theta * (dxprime.de * d2e.db2 + d2xprime.dedb *

de.db) + cos. theta * (dyprime.de * d2e.db2 + d2yprime.dedb *

de.db)
grad.a2 <- 2 * sum(dx.da A 2 + dy.da A

2) #

### grad.ae <- 2 * sum( - x.diff * d2x.dade + dx.da * dx.de - y.diff *

### d2y.dade + dy.da * dy.de)
grad.ab <- 2 * sum( - x.diff * d2x.dadb + dx.da * dx.db - y.diff *

d2y.dadb + dy.da * dy.db)
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d2x.dadtheta <- cos.theta * d2xprime. dadtheta - sin.theta *

d2yprime. dadtheta - dy.da
d2y. dadtheta <- sin.theta * d2xprime . dadtheta + cos.theta *

d2yprime. dadtheta + dx.da #

### d2x.dedtheta <- cos.theta * d2xprime . dedtheta - sin.theta *

### d2yprime. dedtheta - dy.de
### d2y. dedtheta <- sin.theta * d2xprime. dedtheta + cos.theta *

### d2yp rime. dedtheta + dx.de
d2x.dbdtheta <- cos.theta * d2xprime .dedtheta * de.db - sin.theta

* d2yp rime. dedtheta * de.db - dy.db
d2y.dbdtheta <- sin.theta * d2xprime. dedtheta * de.db + cos.theta

* d2yprime. dedtheta * de.db + dx.db
d2x.dtheta2 <- cos.theta * d2xprime.dtheta2 - sin.theta *

d2yprime.dtheta2 - 2 * dy.dtheta + x
d2y.dtheta2 <- sin.theta * d2xprime.dtheta2 + cos.theta *

d2yprime.dtheta2 + 2 * dx.dtheta + y
grad.atheta <- 2 * sum( - x.diff * d2x. dadtheta + dx.da *

dx.dtheta - y.diff * d2y. dadtheta + dy.da * dy.dtheta) #

### grad.e2 <- 2 * sum( - x.diff * d2x.de2 + dx.de A 2 - y.diff * ###
d2y.de2 + dy.de A

2)

### grad.etheta <- 2 * sum( - x.diff * d2x. dedtheta + dx.de *dx.dtheta
### - y.diff * d2y. dedtheta + dy.de * dy.dtheta)

grad.b2 <- 2 * sum( - x.diff * d2x.db2 + dx.db A 2 - y.diff *

d2y.db2 + dy.db"2)
grad.btheta <- 2 * sum( - x.diff * d2x.dbdtheta + dx.db *

dx.dtheta - y.diff * d2y.dbdtheta + dy.db * dy.dtheta)
grad.theta2 <- 2 * sum( - x.diff * d2x.dtheta2 + dx.dtheta^2 -

y.diff * d2y.dtheta2 + dy.dtheta~2)
if (fit . center == F)

hessian <- c(grad.a2, grad.ab, grad.b2, grad.atheta,
grad.btheta, grad.theta2)

else {

#

#

# Second derivatives: a and xO, a and yO
#

d2xprime.dadx0 <- dxprime.dxO/a
d2yprime.dadx0 <- dyprime.dxO/a
d2xprime.dady0 <- dxprime.dyO/a
d2yprime.dady0 <- dyprime.dyO/a
d2x.dadx0 <- cos.theta * d2xprime.dadx0 - sin.theta *

d2yprime . dadxO
d2y.dadx0 <- sin.theta * d2xprime.dadx0 + cos.theta *

d2 yprime . dadx #

# and the gradient
grad.axO <- 2 * sum( - x.diff * d2x.dadx0 + dx.da * dx.dxO -

y.diff * d2y.dadx0 + dy.da * dy.dxO)
d2x.dady0 <- cos.theta * d2xprime.dady0 - sin.theta *

d2yprime . dadyO
d2y.dady0 <- sin.theta * d2xprime. dadyO + cos.theta *

d2yprime.dady0 #

#

grad.ayO <- 2 * sum( - x.diff * d2x.dady0 + dx.da * dx.dyO -

y.diff * d2y.dady0 + dy.da * dy.dyO) #

ddenom.dxO <- e~2 * sin. 2 . tt . theta * dt.dxO
ddenom.dyO <- e~2 * sin. 2 . tt . theta * dt.dyO
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# Here's
#

###
###
###
###
###
###

A <- xprime * denom~2
dA.dxO <- denom * (2

dxprime. dxO)
dA.dyO <- denom * (2

dxprime. dyO)
out. front <- - (a"2 * e)/4
z <- sinsq.2.tt.theta/A #

z[abs(A) < tol] <-
d2xprime.dedx0 <- out. front *

( (2 *

dt.dxO)/A- ((dA.dxO * z)/A))
d2xprime .dedyO <- out. front *

( (2 *

dt.dyO)/A- ((dA.dyO * z)/A))
d2xprime.dedx0 [abs (A) < tol] <-
d2xprime.dedy0 [abs (A) < tol] <-

one from Mathematica.

xprime * ddenom.dxO + denom *

xprime * ddenom.dyO + denom *

sin (4 * (tt - theta) )
*

sin(4 * (tt - theta) )
*

d2xprime.dedx0 -

d2xprime.dedx0 +

d2x.dedx0

de.db
d2xprime . dedxO
de.db

###
###
###
###

d2yprime.dedx0 <- (
- (3 * e)/2

sin . 2 . tt . theta ) /denom~2
d2yprime.dedx0 [abs (yprime) < tol] <-
d2x.dedx0 <- cos. theta

d2yprime . dedxO
d2y.dedx0 <- sin. theta

d2yprime . dedxO
grad.exO <- 2 * sum( - x.diff

y.diff * d2y.dedx0 + dy.de * dy.dxO
d2x.dbdx0 <- cos. theta * d2xprime. dedxO *

* d2yprime.dedx0 *

d2y.dbdx0 <- sin. theta *

* d2yprime.dedx0 *

grad.bxO <- 2 * sum( - x.diff * d2x.dbdx0
y.diff * d2y.dbdx0 + dy.db * dy.dxO

d2yprime.dedy0 <-
(

- (3

sin . 2 . tt . theta ) /denom"

2

d2yprime. dedyO [abs (yprime) < tol] <-
d2x.dedy0 <- cos. theta * d2xprime .dedyO

d2yprime . dedyO
d2y.dedy0 <- sin. theta

d2yprime . dedyO
d2x.dbdy0 <- cos. theta

* d2yprime.dedy0
d2y.dbdy0 <- sin. theta

* d2yprime.dedy0
grad.byO <- 2 * sum( -

yprime * dt.dxO *

sin. theta *

cos. theta *

+ dx.de * dx.dxO -

de.db - sin. theta

de.db + cos. theta

+ dx.db * dx.dxO -

e) /2 * yprime * dt.dyO

d2xprime. dedyO +

# Here's
#

y.diff * d2y.dbdy0

another from Mathematica

d2xprime .dedyO *

de.db
d2xprime .dedyO *

de.db
diff * d2x.dbdy0
+ dy.db * dy.dyO

#

sin. theta *

cos. theta *

de.db - sin. theta

de.db + cos. theta

+ dx.db * dx.dyO -

#

"2 + e"2out. front <- (xprime * (1 - 2 * e
cos.2.tt. theta) ) / denom"

2

out . front [abs (denom) < tol] <-
d2xprime.dthetadx0 <- out. front * dt.dxO
d2xprime.dthetady0 <- out. front
out. front <-

( (one. minus .e. sq)
denom"

2

out . front [abs (denom) < tol] <-
d2yprime.dthetadx0 <- out. front * dt.dxO
d2 yprime. dthetadyO <- out. front * dt.dyO

dt . dyO
yprime ' denom) )

/
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d2x.dthetadx0 <- - dy.dxO + cos.theta * d2xprime . dthetadxO
- sin.theta * d2yprime. dthetadxO

d2y. dthetadxO <- (dx.dxO - 1) + sin.theta *

d2xprime. dthetadxO + cos.theta * d2yprime. dthetadxO
grad.thetaxO <- 2 * sum( - x.diff * d2x. dthetadxO +
dx.dtheta * dx.dxO - y.diff * d2y. dthetadxO +

dy.dtheta * dy.dxO)
d2x.dthetady0 <- - (dy.dyO - 1) + cos.theta *

d2xprime. dthetadyO - sin.theta * d2yprime.dthetady0
d2y.dthetady0 <- dx.dyO + sin.theta * d2xprime. dthetadyO +

cos.theta * d2yprime . dthetadyO
grad.thetayO <- 2 * sum( - x.diff * d2x. dthetadyO +
dx.dtheta * dx.dyO - y.diff * d2y. dthetadyO +

dy.dtheta * dy.dyO)
#

d2t.dx02 <- -2 * (dt.dxO * dt.dyO)
d2t.dx0dy0 <- -1/R.sq + 2 * (dt.dxO) A 2

d2t.dy02 <- - d2t.dx02
d2xprime.dx02 <- - dxprime . dtheta * d2t.dx02 -

d2xprime. dthetadxO * dt.dxO
d2yprime.dx02 <- - dyprime. dtheta * d2t.dx02 -

d2yprime. dthetadxO * dt.dxO
d2x.dx02 <- cos.theta * d2xprime.dx02 - sin.theta *

d2yprime.dx02
d2y.dx02 <- sin.theta * d2xprime.dx02 + cos.theta *

d2yprime . dx02
grad.x02 <- 2 * sum( - x.diff * d2x.dx02 + dx.dx0^2 - y.diff

*d2y.dx02 + dy.dxO A
2) #

#

d2xprime.dx0dy0 <- - dxprime. dtheta * d2t.dx0dy0 -

d2xprime. dthetadyO * dt.dxO
d2yprime.dx0dy0 <- - dyprime. dtheta * d2t.dx0dy0 -

d2yprime. dthetadyO * dt.dxO
d2x.dx0dy0 <- cos.theta * d2xprime.dxOdyO - sin.theta *

d2yprime . dxOdyO
d2y.dx0dy0 <- sin.theta * d2xprime.dx0dy0 + cos.theta *

d2yprime . dxOdyO
grad.xOyO <- 2 * sum( - x.diff * d2x.dx0dy0 + dx.dxO *

dx.dyO - y.diff * d2y.dx0dy0 + dy.dxO * dy.dyO) #

#

d2xprime.dy02 <- - dxprime. dtheta * d2t.dy02 -

d2xprime. dthetadyO * dt.dyO
d2yprime.dy02 <- - dyprime. dtheta * d2t.dy02 -

d2yprime. dthetadyO * dt.dyO
d2x.dy02 <- cos.theta * d2xprime.dy02 - sin.theta *

d2yprime.dy02
d2y.dy02 <- sin.theta * d2xprime. dy02 + cos.theta *

d2yprime . dy02
grad.y02 <- 2 * sum( - x.diff * d2x.dy02 + dx.dy0 /v 2 - y.diff

* d2y.dy02 + dy.dy0~2)
hessian <- c(grad.a2, grad.ab, grad.b2, grad.atheta,

grad.btheta, grad.theta2, grad.axO, grad.bxO,
grad.thetaxO, grad.x02, grad.ayO, grad.byO,
grad.thetayO, grad.xOyO, grad.y02) #

### hessian <- c(grad.a2, grad.ae, grad.e2, grad.atheta,
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### grad.etheta, grad. theta2, grad.axO, grad.exO,
### grad. thetaxO, grad.x02, grad.ayO, grad.eyO,
### grad.thetayO, grad.xOyO, grad.y02) #

### print (hessian)

}

thing <- list (gradient = grad, hessian = hessian)
return (thing)

> ell.pred
function (tt, a, b, theta = 0, return. unrotated. too = F, fit. center = F,

center. x = 0, center. y = 0)

{

#

# Get fitted x and y for ellipse with points at angles "tt",
# with eccentricity = e and a = a. Rotate by theta afterwards,
# if asked. Finally, if fit. center = T, move everything by
# center. x in the x direction and by center. y in the y direction.
#

# A little algebra shows that
# a A 2 sin A 2 (pi/2 - tt) (1 - e A

2)

# x A 2 = if a > b.

# sin A 2(tt) + sin A2(pi/2 - tt) (1 - e A 2)

#

# (If a < b, that's y
A
2, except you have to switch the tt * s and the

# (pi/2 - tt)'s.). The sin A 2 (pi/2-tt) term is "thang." So take
# x (if a > b) to be the positive square root of that for the
# moment. Then y

A 2 = (a - ex) A 2 - (ae - x) A 2. So get that, too.
#

new.tt <- tt - theta
if (a > b) (

e <- sqrt(l - (b/a) A
2) #

### if(e > 0.99) return (1000 * length (x))

thang <- (sin (pi/2 - new.tt) A 2) * (1 - e A
2) #

x <- sqrt((a A 2 * thang) / (sin (new. tt) A 2 + thang))
yy <- (a - e * x) A 2 - (a * e - x) A 2 #

# Make sure y
A 2 is always positive (round-off errors can hurt here);

# then get y.

#

yytyy < 0] <- o

y <- sqrt (yy) #

}

else {

e <- sqrt(l - (a/b) A
2) #

### if(e > 0.99) return (1000 * length (x))
thang <- (sin (new. tt) A

2) * (1 - e A 2) #

y <- b * sqrt (thang/ (sin (pi/2 - new.tt) A 2 + thang))
xx <- (b - e * y)

A 2 - (b * e - y)
A 2 #

xx [xx < 0] <-

x <- sqrt(xx) #

}

quad <- new.tt %% (2 * pi)
quad. 2. 3 <- quad > pi/2 & quad < (3 * pi)/2
x[quad.2.3] <- - x[quad.2.3]
quad. 3.4 <- quad > pi
y[quad.3.4] <- - y[quad.3.4]
rotated. data <- matrix (c (cos (theta) , - sin (theta), sin (theta),
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cost theta)), 2, 2, T) %*% rbind(x, y)
if (fit .center == F) {

center. x <-
center. y <-

}

if (return. unrotated. too == T)

return (list (x = rotated. data [1, ] + center. x, y =

rotated. data [2, ] + center. y, x. prime = x, y. prime
= y))

else return (list (x = rotated. data [1, ] + center. x, y =

rotated. data [2, ] + center. y)

)

}

> ell.tt
function (x, y)

{

#

# ell.tt: get angle values for data. It's acos (x/r)

# in the first quadrant, etc.
#

tt <- numeric (length (x)

)

ratio <- x/sqrt(x^2 + y~2)
ratio[ratio > 1] <- 1

ratio [ratio < -1] <- -1

ind <- x >= & y >=
tt[ind] <- acos (ratio [ind]

)

ind <- x < & y >=
ttfind] <- pi - acos ( - ratio [ind])
ind <-x<0&y<0
tt[ind] <- pi + acos ( - ratio [ind])
ind <- x >= & y <

tt[ind] <- 2 * pi - acos (ratio [ind] ) #
tt

}
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APPENDIX B. EXAMPLES

pclssl = pc is subject l's initials

the 1 is the spatial frequency

ssl means sum of squares obtained from ellipse (vice ellipse. II or

ellipse,m)
pclall = a data frame containing all of the data at 1 cpd for pc

this data always consists of non-oblique data followed by oblique data.

For this subject the first 80 (x,y) pairs are non-oblique and 81-160 are

oblique data

fit.center=T lets the ellipse center "float" vice being pinned to the origin

> pclssl_ellipse(pclall[,l], pclall[,2], fit.center=T)

a: 0.0615 ,b: 0.05194 ,th: -0.005236 ;x,y: 0.001551 0.00008819 ;obj: 0.06455

a: 0.02742 ,b: 0.02742 ,th: -0.07295 ;x,y: 0.01894 -0.001528 ;obj: 0.07366

removed middle output to save space

a: 0.04698 ,b: 0.03466 ,th: -0.02604 ;x,y: 0.004495 0.0006379 ;obj: 0.02068

a: 0.04698 ,b: 0.03466 ,th: -0.02605 ;x,y: 0.004495 0.0006379 ;obj: 0.02068

a: 0.04698 ,b: 0.03466 ,th: -0.02605 ;x,y: 0.004495 0.0006379 ;obj: 0.02068

> pclssl

Message was

RELATIVE FUNCTION CONVERGENCE
a b theta center.x center.y

0.04698378 0.03466318 -0.02604936 0.004495335 0.0006378881

> pel ssl [2]

Sobjective:

[1] 0.02068425

pclss2.IH = pc is subject l's initials

the 1 is the spatial frequency

ss2 means sum of squares obtained from ellipse.!! or ellipse.III

.ITT lets us know this is from ellipse.III

> pclss2.ni_ellipse.m (pclall[,l], pclall[,2], grad=F,

+ is.there.hess=F, fit.center=T, class.I = (1:160) < 81, plot=F)

a: 0.07282 , delta.a: ,b: 0.0615 delta.b: ,th: -0.005236 ;x,y: 0.001551

0.00008819 ;obj: 0.1364

a: 0.07283 , delta.a: ,b: 0.0615 delta.b: ,th: -0.005236 ;x,y: 0.001551

0.00008819 ;obj: 0.1364

removed middle output to save space

6 ;x,y: 0.004467 0.0006382 ;obj: 0.02067

a: 0.04703 , delta.a: -0.0001285 ,b: 0.03424 delta.b: 0.0008527 ,th: -0.0266

6 ;x,y: 0.004467 0.0006382 ;obj: 0.02067
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a: 0.04703 , delta.a: -0.0001281 ,b: 0.03424 delta.b: 0.000853 ,th: -0.02666

;x,y: 0.004467 0.0006382 ;obj: 0.02067

a: 0.04703 , delta.a: -0.0001281 ,b: 0.03424 delta.b: 0.0008523 ,th: -0.0266

6 ;x,y: 0.004467 0.0006382 ;obj: 0.02067

Warning messages:

1: singularity encountered in: nlminb.0(temp, p, liv, lv, objective, bounds,

scale)

removed identical warnings numbered 2 and 3

4: singularity encountered in: nlminb.0(temp, p, liv, lv, objective, bounds,

scale)

> pclss2.III

Message was

RELATIVE FUNCTION CONVERGENCE
a b theta center.x center.y delta.a

0.04703421 0.03424435 -0.0266577 0.004466774 0.0006382473 -0.0001281251

delta.b

0.0008526696

this is the objective function value which the program minimizes

> pclss2.ffl[2]

Sobjective:

[1] 0.02067104

p-values for the ellipses being different?

>l-pf(((pclssl[[2]]-pclss2.m[[2]])/2)/(pclssl[[2]]/(160-5)),2,155)

[1] 0.9517269

>l-pf(((pc3ssl[[2]]-pc3ss2.m[[2]])/2)/(pc3ssl[[2]]/(160-5)),2,155)

[1] 0.07660905

>l-pf(((pc7ssl[[2]]-pc7ss2.ni[[2]])/2)/(pc7ssl[[2]]/(160-5)),2,155)

[1] 1.822829e-007

are the b's significant

>l-pf((pclss2.n[[2]]-pclss2.III[[2]])/(pclss2.ni[[2]]/153),l,153)

[1] 0.7693711

>l-pf((pc3ss2.n[[2]]-pc3ss2.III[[2]])/(pc3ss2.ni[[2]]/153),l,153)

[1] 0.837154

> 1 -pf((pc7ss2.II[[2]]-pc7ss2.III[[2]])/(pc7ss2.in[[2]]/l 53), 1, 1 53)

[l]2.110824e-008

changing which.type to 2 forces the non-oblique and oblique ellipses to have the

same major axis.
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> pclss2.II.which.type.2_ellipse.II(pclall[,l],pclall[,2],fit.center=T,class.I = (1:160) <

8 1 ,which.type=2,grad=F,is.there.hess=F,plot.it=F)

>pc3ss2.n.which.type.2_ellipse.II(pc3all[,l],pc3all[,2],fit.center=T,class.I = (1:160) <

8 1 ,which.type=2,grad=F,is.there.hess=F,plot.it=F)

>pc7ss2.II.which.type.2_ellipse.II(pc7all[,l],pc7all[,2],fit.center=T,class.I = (1:160) <

8 1 ,which.type=2,grad=F,is.there.hess=F,plot.it=F)

are the a's significant ?

subject 1 at 7 cpd
> l-pf((pc7ss2.n.which.type.2[[2]]-pc7ss2.ni[[2]])/(pc7ss2.m[[2]]/153),l,153)

[1] 0.5883988

subject 1 at 3 cpd
> l-pf((pc3ss2.II.which.type.2[[2]]-pc3ss2.III[[2]])/(pc3ss2.III[[2]]/153),l,153)

[1] 0.02835718

subject 1 at 1 cpd
> l-pf((pclss2.n.which.type.2[[2]]-pclss2.in[[2]])/(pclss2.m[[2]]/153),l,153)

[1] 0.9753455
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