
NPS ARCHIVE
1997«Ok
WAWRZYNIAK, D.

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Thesis
W2945

THESIS

ELECTROMAGNETIC IMAGING OF
AXISYMMETRIC SCATTERERS

by

Daniel J. Wawrzyniak

June 1997

Thesis Advisor: Michael A. Morgan

Approved for public release; distribution is unlimited.



OX LIBRARY
TGRAOUATE SCHOOL
CA S3&43JS101

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5101



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-01 88

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office ofManagement and Budget, Paperwork Reduction Project (0704-01 88) Washington DC 20503

1 . AGENCY USE ONLY (Leave blank) REPORT DATE
June 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE: ELECTROMAGNETIC IMAGING OF AXISYMMETRIC
SCATTERERS

6. AUTHOR(S) Daniel J. Wawrzyniak

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Radar cross-section is a key element of low-observability. In order to reduce the cross-section of a particular

platform, it may be necessary to determine the induced source distribution on the platform which produces the scattered

electromagnetic radiation. Determining the distribution may be possible using a probe to measure fields on or near the

outer surface of the object. However, the act of measuring may indeed influence the currents being measured. An

alternate method is to back-propagate measurements made at distances beyond the realm of strong influence on the

parameters of interest to construct visualizations of the local on-surface radiation contributions. This has been

demonstrated for the case of cylindrical geometry. The theory is extended in this thesis to axisymmetric bodies for the

special case of rotationally symmetric fields.

14. SUBJECT TERMS *Back-propagation, axisymmetric scatterers, finite elememt method,

FEM
15. NUMBER OF

PAGES 111

16. PRICE CODE

17. SECURITY CLASSIFICA-

TION OF REPORT

Unclassified

18. SECURITY CLASSIFI-

CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-

TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-1 8 298-102





Approved for public release; distribution is unlimited.

ELECTROMAGNETIC IMAGING OF AXISYMMETRIC SCATTERERS

Daniel J. Wawrzyniak

Major, United States Marine Corps

B.E.E., Villanova University, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

a
JTe 1997

I





DUDLEY KNOX LIBRARY OX LIBRARY
NAVAL POSTGRADUATE SCHOOL "GRADUATE SCHOOL
MONTEREY, CA 93943-5101

ABSTRACT

Radar cross-section is a key element of low-observability. In order to

reduce the cross-section of a particular platform, it may be necessary to determine

the induced source distribution on the platform which produces the scattered

electromagnetic radiation. Determining the distribution may be possible using a

probe to measure fields on or near the outer surface of the object. However, the

act of measuring may indeed influence the currents being measured. An alternate

method is to back-propagate measurements made at distances beyond the realm of

strong influence on the parameters of interest to construct visualizations of the

local on-surface radiation contributions. This has been demonstrated for the case

of cylindrical geometry. The theory is extended in this thesis to axisymmetric

bodies for the special case of rotationally symmetric fields.
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I. INTRODUCTION

A. BACKGROUND

1. The Importance of Stealth

The concept of stealth has been around since long before man made his appearance

on earth. Nature realized that the survival of its creatures depended on their blending in

with the background. Evolution has provided the means for nature's creatures to develop

and refine stealth capabilities. It has been during the last fifty or so years that the military

forces ofthe world have taken a keen interest in stealth [1]. The results were displayed

by the success of the Fl 17A stealth aircraft during the Persian GulfWar [2, 3,4].

The success of these aircraft during the GulfWar can be attributed to many

factors. By far the most important factor was possession and use of stealth technology.

The U.S. military had it and the enemy did not. More importantly, the enemy did not

possess the technology to defeat a stealthy airborne platform. That was in 1991, more

than six years ago. Since then stealth technology has been ever so slowly let out of its

"black box." It is no longer "our own little secret weapon" that only the U.S. military

possesses, and there is no guarantee that during the next conflict our adversaries will not

possess anti-stealth technology. In fact ultra-wideband radar (UWB) was being

developed for detection of stealth platforms before the GulfWar began [5]. In 1994 the

United States Air Force admitted that some radars, including some mobile units, could

detect the B-2 bomber [6]. And as one would expect, the Russians are also developing

their own anti-stealth technology [6]. The bottom line is that if stealth platforms are to

remain stealthy, they need to continue to decrease their observability.



The idea of stealth is comprised of several aspects of observability including

infrared radiation, optical, acoustic, and radar echo. The objective is to minimize the

observables associated with your platform so as to reduce the chances of being detected

by the enemy. While current stealth platforms have incorporated reductions in each of

these areas, the most emphasis has been placed on reduction of radar signature. This is a

consequence of radar being the primary means of detection for the U.S. military, its allies,

and its adversaries. That being the case, this thesis attempts to take one small step in the

direction of radar cross section reduction by determining the induced source distribution

on a body which produces scattered electromagnetic radiation.

2. Goals of the Research

Radar cross-section (RCS) reduction is a key element of low-observability.

Current techniques used in determining the RCS of a platform rely on analysis of

measurements made in the far-field. Generally these measurements provide a gross picture

of the platform's overall RCS as a function of viewing angle. This information enables

engineers to then modify the design in an attempt to reduce its RCS. This becomes an

iterative process with design modifications leading to measurements which lead to more

design modifications.

At the other end of the spectrum, measurements made using a probe on or near the

outer surface of the body may influence the quantities being measured. In other words the

act of measuring would induce errors into the quantities being sought.

The focus of this study is to more accurately determine the source of scattering on

a body. This will be done by evaluating the viability of back-propagating measurements

to an axisymmetric body to image the source of scattering on the body. This analysis will



enable more precise location of scattering sources than does gross analysis of the far-field.

Once the local scatterers have been identified it is then theoretically possible to remove or

reduce them in the overall effort of radar cross-section reduction.

The objective of this study is to investigate the viability of back-propagating

electromagnetic field measurements to an axisymmetric body in order to determine the

source distribution for radiated power from the body. If this is indeed possible, then the

follow-on objectives include determining the range and spatial resolution at which

measurements must be made in order to provide meaningful results.

B. SOURCE IMAGING

1. Acoustics Work with Cylinders

A brief history of this subject starts with researchers attempting to determine

sources of acoustic noise on a body. It was shown that acoustic intensity could be used to

localize sources of sound on structures which radiate to the far field. A new quantity

called the supersonic acoustic intensity vector was defined and its application to

measurements on plate and cylinder-like structures was demonstrated [7].

"Supersonic intensity is composed only of wave components which

radiate to the far field (supersonic), with the non-radiating (subsonic)

components eliminated. The normal component of this supersonic intensity

vector, measured in the extreme near field or on the surface of the

structure, provides an accurate tool for locating regions ("hot spots") on

the structure which radiate to the far field. Furthermore, the supersonic

intensity provides an accurate quantification of these source regions,

providing a ranking of the strength of the identified source regions as a

function of frequency. This identification and ranking provides a powerful

new tool in the understanding and control of radiated noise." [7]



Coupled with the finding that acoustic source regions could be determined through

back-propagation was that the results were obtained in two dimensions. Using a cylinder

as the scattering body, scattering data measurements were made on an arc of a circle with

diameter on the axis of the cylinder [8]. In the spherical (r,0,<f>) coordinate system this

translates to measurements over 6 at a constant <j> . The restricted case of axisymmetric

fields and currents is the next level of difficulty before working with full three dimensional

shapes.

2. Extension to Electromagnetics for Cylinder Geometry Case

The discoveries employing supersonic modes to enhance acoustic imaging on

cylindrical shells has been translated into the realm of electromagnetics for the case of

cylindrical geometry. It was shown that superluminal modes which satisfy |kz |
< k and

have faster-than-light axial propagation velocity provide time-average power to the far

field. An optimal propagation deconvolution filter was implemented to remove the effects

of the subluminal modes during back propagation. [9]

3. Extension to General Non-separable Geometries Using Finite Element

Methods

The goal of this research is to extend the concepts developed in previously

conducted research to bodies with non-separable geometries. By definition these bodies

have shapes that do not lend themselves to explicit rigorous solutions using separable

modes, such as cylindrical or spherical wave functions. A finite element method (FEM) is

used to relate the conditions at the boundary (measuring region) to conditions on the

surface of the body, in this case relating the scattered field to the source current that



generated it. The number of elements used is chosen so that the contour of the body is

closely matched. Figure 1 shows a meridian plane of a sphere surrounded by a finite

element mesh which connects the surface of the sphere to the arc of a circle with diameter

on the axis of the sphere, as previously mentioned. In Figure 2, the body represented is a

cone. The more contours on the body, the greater the number of elements required to

closely match those contours. Ultimately the accuracy of the solution is determined by

the number of elements used.

2-D Axisymmetric Shape with mesh

Mesh Parameters:
Nodes: 315
Elements: 544
Unknowns: 264

4 6

Figure 1 . Sphere (Meridian Plane) Surrounded by Finite Element Mesh



2-D Axisymmetric Shape with mesh

Mesh Parameters:
Nodes: 331
Elements: 578
Unknowns: 282

4 6

meters

Figure 2. Cone (Meridian Plane) Surrounded by Finite Element Mesh

In the chapters that follow, the source current on the surface of an axisymmetric

body is determined through back-propagation of the scattered field it generates. In

Chapter II, the scattered field (measured field) is determined through numerical integration

of a surface current induced on an axisymmetric body by a locally placed elemental dipole.

Chapter III details the back-propagation of the scattered field. Chapter IV provides an

analysis of both the numerical integration results and the back-propagation results.

Conclusions are presented in Chapter V. An appendix which includes all pertinent

computer code is also included to assist in the understanding and continuation of this

research.



n. GENERATION OF SCATTERED FIELD (MEASURED FIELD)

A. BACKGROUND

Before the scattered field can be back-propagated it must be measured. To

simulate the process and control the sources of error, the measured field is computed to a

specified level of accuracy. While reducing potential error associated with field

measurements, generating fields leads to an additional hurdle, namely how to generate a

scattered field from an arbitrary axisymmetric body. This problem is solved by inducing a

surface current on the body and integrating it to find the resulting scattered field.

Potential error is introduced as a result of integration accuracy. A sphere is first chosen as

the arbitrary axisymmetric body in order to test the accuracy of the general source

integration algorithm.

A particular scattered field is generated by placing a radial directed elemental

dipole in the vicinity of the metal sphere. The dipole induces a surface current J
s
on the

sphere which in turn generates scattered fields E
s
and H

s
. The measured field H at

some specified distance from the sphere is composed of the field scattered (H
s ) from the

sphere, and the field incident (H
t
) from the elemental dipole. The 'exact' induced

currents and scattered fields can be computed for this test case and used to validate the

accuracy of the numerical integration and finite element algorithms. Calculation of the H

field is considered in Section C. It is generated using the program DIPSPHR2.M found in

the Appendix. Field integrations for axisymmetric currents are detailed in Section D and

integration results are provided in Section E of this chapter.



B. SPECIALIZATION TO AXISYMMETRIC FIELD CASES

Determining the source distribution on bodies with non-separable geometries is the

ultimate objective of research in this area. This thesis reduces the problem from three

dimensions to two dimensions by assuming axisymmetric fields generated by axisymmetric

currents on a body of revolution. There are two special cases to be considered: the TE^

case in which the E field and the surface current are transverse to , and its dual, the

TMf case in which the H field is transverse to (ft and the surface current is ^ -directed.

These cases are depicted in Figure 3.

H

Restricted Case: TE^ Dual: 7M,

Figure 3. Axisymmetric Field Cases

This thesis will investigate the TE^ case. The fields for this special case are,

H(p,z) = H,(p,z)<f>

E(p,z) = Ep (p,z)p +E2
(p,z)z

(la)

(lb)



The fields for the dual special case, 7M, , are,

E(p,z) = E+(p,z)<j> (2a)

H(p,z) = H
p
(p,z)p + H,(p,z)z (2b)

Maxwell's curl equations are: (with co = Irf)

VxH = j6)£~E + J (3a)

WxE = -jo)mH (3b)

Using Equation (3 a) for the assumed field components in Equation (1) gives

jaS'*Ta"";J' (4a)

** miii;w-iJ' (4b)

These are the generating equations for E in terms of H^ and known source current J t .

Using Equation (3b) for the assumed fields in Equation (2) gives

1 cE*

1 1 d
jcoH

t
= —(pEJ (5b)

pp dp

These are the generating equations for H in terms of E+

.

C. OFFSET DIPOLE TO GENERATE SURFACE CURRENT ON SPHERE

A radial directed dipole located in the vicinity of a metallic sphere is used to

generate surface currents on the sphere. These surface currents are then integrated to find

the scattered field at a specified distance. The dipole case is also used to test the



integration accuracy by providing a nearly exact scattered field. Figure 4 shows an

elemental dipole located in the vicinity of a metal sphere in the spherical coordinate

system.

z-Directed Elemental

Dipole at (0,0,z )

Metallic Sphere of

radius a

Figure 4. Dipole in Vicinity ofMetal Sphere

The procedure for determining the surface current consists of several steps. The

E
t
and //, fields due to the dipole are represented in (r,0,</>) coordinates of the centered

sphere. The scattered fields E
s
and H

s
due to the induced currents on the sphere are

then expanded using spherical harmonic expansions with unknown coefficients. Enforcing

10



f x (E
t
,
+E

s )
= => Ex™ = on the sphere surface allows solution for the expansion

coefficients. Finally J
s
=rx (H

i
+H

S ) is used to find induced surface currents which

produce E
s
and H

s
fields scattered from the sphere.

An elemental dipole placed at the origin produces the following fields [10]:

Pra

jprd (6a)

Void!

4 n
sin 0, ^+4

fir.

IP** (6b)

Ml
• „H * = sin <9U 4„

^- + -i - jP'd (6c)

The position of the dipole must then be translated to the position z = z
Q . This

translation is accomplished using the following transformation formulas:

rd = yjr
2 +z\- 2rz cosO

cos#d =
rcos9-zn

(7a)

(7b)

sin#d =
rsin#

(7c)

Ee = E6d
cos(0-ed)-Erd

sm(e-0d )

E
r
= E

e<t
sm(0-0d ) + Erd

cos(0- d )

H* = H*

(8a)

(8b)

(8c)

11



The transformation formulas in Equations (7) and (8) are then used with

Equation (6) to express the fields due to the dipole on the surface of the metal sphere,

E0i(a,0), Eri (a, 0)and H^(a,0). This field will induce a surface current J = J {6)6

on the surface of the sphere which will, in turn, generate scattered fields E0S , Ers , and

Hf S
. The tangential E field at the sphere surface will exactly cancel the tangential E

field due to the dipole thus producing a total tangential E field of zero

EBt (a,ff) = -E9i (a,0) (9a)

The surface current will also satisfy J = nx Htotal on the surface:

J = f x (H$i + H, M)j\ = - (H„ + H,
s)§\ (f x f) = -0

r T r-a r T r=a

=> J,{ff) = -[H„(a,0) + Hi t
(a,0)) (9b)

This Jg(0) is what needs to be integrated to find the radiated H^ s (r,0) at locations off

the surface ofthe metal sphere. The result is i/^which will be used to compare results of

the integration covered in the following section.

Note that although Jg is produced by the total H± on the metal surface, it

generates only the scattered field. The scattered field has an E0S which exactly cancels

out the E
0i of the incident dipole field on the sphere surface.

To determine the "exact" solution, the scattered fields can be expressed as

weighted sums of spherical harmonics [11],

E*(r,0) = jriZam
" ^Vj(cos^) (10a)

12



00 H{2)(BA
Hts(r,0) = Z°n ".J

'̂(cosfl) (10b)

where H^tjfr) = J„(J3r)-jYn (flr) is the "Riccati" spherical Hankel function of the

second kind representing outbound waves. P„'(cos#) is the "associated Legendre

function" and is the m = 1 case of i^"(cos#) . To numerically solve the problem,

truncate the series in Equation (10) and solve for N values of complex a
n . Using

Equation (9a) and defining Dn
= gives

Pa

JrhZ^D^icosO) = -E9i (a,$) (11)

The a
n
are found by use of orthogonality of the associated Legendre functions,

P"{cos0) . For the special case m=\,

'2n(n + \)

\pXcos6)P
l
\cos0)sin6d0 =

l = n
2n + \

'

(12)

l*n

We can sift out coefficients:

2n{n + 1)
JrkflA^^—r1 = ~ \Eei

(a,0)P;(cos0)smOi0 (13a)
2« + l i

=i.

jri,D,2n(n + l)

The /„ integration can be performed numerically to any accuracy since EBi (a,0) and

Pj(cos#) can be obtained using as many # -points as desired. Once the a
n
are found the

13



Je{6) can be computed at any 6 value by use ofEquation (9b) with H+
s
given by

Equation (10b).

D. FIELD INTEGRATION FOR AXISYMMETRIC CURRENTS

As noted in the introduction, the first step is to measure the field that will be back-

propagated to the surface ofthe axisymmetric body. For our purposes we will assume an

axisymmetric surface current distribution on the body. The "measured" fields will actually

be determined through the integration ofthe surface current. In this context the scattered

field is generated through integration rather than through illumination and measurement.

The surface of an arbitrary axisymmetric body of revolution can be defined by use

ofthe generating contour p'(z') using the (p,$,z) cylindrical coordinate system as

shown in Figure 5. Source points on the body are defined by individual (p,z) pairs. The

field point in space is located at (p,</>,z) . The axisymmetric surface current distribution is

J
s
(r') = J

t
(p\z')t + Jf($',z')<f> . The unit vectors / and

<f>
are tangent to the surface at

each point and both J
t
and J^ are constant with changing <j>

.

14



Field Point

tangent unit

vectors

body of revolution

surface

Figure 5. Axisymmetric Body ofRevolution

The fields will be numerically evaluated via the vector potential formulation given

by [11]:

H(r) = —VxA(r) (14a)

E = V x H = ja)A-—V(V • A)
JQ)S CO^iS

(14b)

where

— — e
JPRm^ S J.(r-)—-dS-

An
surface

R
(15)

15



with R — r — r' and R = \r — r'\. For field points and source points with coordinates

(p,0,z) and (p' ,(f>'
,z') the law of cosines gives

R = i]p
2 + p' 2 - 2pp' cos(^ - <f>')

+ (z - z')
2

(16)

The curl operator in Equation (14a) is taken inside the integral in Equation (15) and note

that it only operates on the e /^ term (unprimed position in R = \r - r'\ )

H<T) =T II
V "5" x Mr'W (17a)

surface

where

( e
-w >

= -<-^F%"R
<17b>

Thus the general solution is:

H(r) = j- \\\J.<F) x RJl±lB^ e
-^ dS '

(18)

surface

The next step is to derive the explicit integrations to be performed. To do so we

select r in the x-z plane, with
<f>
- as shown in Figure 6. Since J

s
and the resulting

fields so derived are axisymmetric (not functions of
<f> ) we lose no generality by doing this.

In fact, ifwe find Hx,Hy and H
2
at this field point we note that for other locations where

<j> * the substitutions Hx
-> H

p
\H

y
-> H+ and H

z
-» H

z
apply. Also note that

r - px + zz (19a)

r' = p' cos<f>'x + p' sin
<f>'y

+ z'z (19b)

16



R = r-r' = (p- p' cos^'Jx - p' sin ^ 'y + (z - z')z

R = \R\ = ^P
2
+ P'

2 ~ 2pp' cos^' + (z - z'f

(19c)

(19d)

Field Point

(x,0,z)

x = p

<J>',<f>',z')

Figure 6. Geometry for Explicit Integrations

The field integrations will be performed numerically by breaking the axisymmetric

surface into a large number of flat circular rings as shown in Figure 7a. These rings are

stacked to approximate the surface of revolution. Each ring is "flat" in the direction of

/ and curved in the direction of
<f>

as depicted in Figure 7b.
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Stacked Circular

Rings

Figure 7a: Stacked Circular Rings form Axisymmetric Body

Single Circular

Ring

"Flat" in / direction

Curved in direction

y

Figure 7b: Single Circular Ring

Figure 7. Decomposition of Axisymmetric Body
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Consider now evaluating H(r) in Equation (18) due only to J
s
{r') - J

t
(s)i over

a single ring as in Figure 7b. Over the ring we will approximate J
t
(s) as piecewise linear,

specified using its values at the top and bottom ofthe ring, J
t
(s, ) and J,(s

2 )
via

J^^JtMf^^+J.Mf^ (20)

V5]
S2) \

S
2

S
\)

This equation is a straight line interpolating function between known values at s, ands2
.

A single ring is shown in Figure 8a where s is the path length over the ringed surface from

the + z axis. The piecewise linear variation of J, (s ) between s, and s
2

is shown in

Figure 8b.

To evaluate Equation (18) for J
s
(r') = J,(s)* over a single ring, we note that

t = cosacosfi'x + cosasmtfi'y-sinaz (21)

where cosa = i p and - sina = i • z . After simplifying,

txR = x(t
y
R

2
- t

2
R
y ) + y(t

2
Rx

- txR,) + z(txRy
- t

y
Rx )

(22)

and substituting Equation (22) into Equation (18) with restriction to one ring gives,

1

*2

Hx
=— JJ

t
(s)Uz-z')cosa-p'sina\Fs (s)p'ds (23a)

1
**

H
y
=— JJ, (5){[p' sin a-(z-z') cosa]Fc (s') - p sin aF

x
(s))p'ds (23b)

H
z
= —\j

t
(s)pcosaF

s
(s)p'ds (23c)
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s = s2

Figure 8a: Single Ring

Jt(s2)

Jt(si)

Sl s2

where

Figure 8b: Piecewise Linear Variation J
t
(s)

Figure 8. Surface Current Variation Over One Ring

F,(,)=J«n#(±^)e-'*^ (24a)

,(l +WFc (s)=\cos<f>\^^)e-><«dtR 3
(24b)
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W = ][±p)e-»*df (24c)

-IT

As we vary
<f>'

while holding s constant (e.g. p',z' constant), R(</>') is an even

1 + -//5RV-**;
function: R{-<f>') = R{4>') Therefore I

—-5—Je ^ is also an even function of <j>'

Since sin^' is an odd function of
(f>'

the integrand in Equation (24a) is also odd giving

Fs (s) m 0. We are left with only H
y

in (10b) since Hx
= H

2
= 0.

Extending this to any position r , we have for J
s
- J

t
(s)i

,

H = H+(r)j> (25a)

where

H^ =— J J, (s)]\p' sin a-(z-z') cos«jFc (s)-p sin aF
}
(s)\p'ds (25b)

An
s

and

Fc (s) = 2\cos<l)'\
+^R

)e-
iPR

d(f>' (26a)
v R J

F
1 (5) =

2j(i^)^^' (26b)

E. CENTERED SPHERE INTEGRATION TEST CASES

A centered sphere was chosen as the test case to determine the accuracy of the

integration algorithm. The integration algorithm was developed using the trapezoidal rule.

Nine cases were tested with sphere sizes ranging from a radius of one wavelength to ten

wavelengths. For each sphere size the H field was generated at three different locations:

0.2, 1 and 3 wavelengths from the outer surface of the sphere.
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The offset distance of the dipole was kept constant for each ofthe three cases associated

with the three different sphere sizes. The number ofmodes used was determined by the

following:

N=integer(2 ka + 2 ), (27)

where k is the wave number {2k I X) and a is the sphere radius. In each of the nine

cases the frequency of operation was 300MHz. The RMS error was determined by

comparing the H field determined through integration to the H field exact solution found

using the procedure developed in Section II.C. Each ofthe cases was tested with

increasingly fine segmentation in 6 and <j> on the sphere surface until the RMS error was

in the neighborhood of one percent. In order to achieve the desired integration accuracy,

the number of integration points on the body was increased. This relates to the spatial

resolution required when measuring the H field in order to achieve acceptable results

when back propagating that field. As the number of integration points on the body

increases, the measured H field becomes more accurate. The more accurate the

measured field, the better the surface current on the sphere can be resolved. The test

cases summarized in Table 1 are chosen based solely on the RMS error associated with

each being in the neighborhood of one percent.

The results shown in Table 1 indicate the RMS error for source integrated//^

observed at the "field distance" radius. The RMS error is a function of the number of

surface points at which the surface current was integrated. Figures 9 through 12 show

how the integration results converge for several of the cases shown in Table 1. For the
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CENTERED SPHERE INTEGRATION RESULTS

Case Sphere

Radius

w

Field

Distance

(*)

*

Segments

e

Segments

Dipole

Offset

Modes

RMS Error

(%)

la 1 1.2 21 21 5 14 1.1490

lb 1 2 21 21 5 14 1.1620

lc 1 4 21 21 5 14 1.1510

2a 5 5.2 78 78 9 64 1.0310

2b 5 6 78 78 9 64 0.1220

2c 5 8 78 78 9 64 0.1250

3a 10 10.2 157 157 14 128 0.8268

3b 10 11 157 157 14 128 0.0456

3c 10 13 157 157 14 128 0.0459

Table 1 . Centered Sphere Integration Results

cases in Table 1, the number of (j> and 6 segments is based on the radius of the sphere.

However, the number of </> segments remains constant as the radius of each ring (see

Figure 7) decreases near both poles of the sphere. This finer
<f>

segmentation gives

increasingly narrower patches of surface area over which the integration is performed.

Consequently, the RMS error does not appear to decrease significantly as the number of

<f>
segments is increased. This is a result of the increased

<f>
segmentation that is "built in'
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as the radius ofthe rings decrease. An increase in RMS error is observed for the

decreased field distance from the sphere in Cases 2a and 3a. Since the field distance is

only 0.2/1 from the sphere surface in these cases, the large relative contribution and rapid

variation of inverse distance terms in the integrand ofEquation (18) for surface points

closest to the field point require increasingly fine segmentation for accurate numerical

integration.

Integration Convergence: Casela

30 30
theta segments

Figure 9. Integration Convergence: Casela

phi segments
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Integration Convergence: Caselb

30 30
theta segments

Figure 10. Integration Convergence: Case lb

phi segments

Integration Convergence: Case2a

90 90
theta segments

Figure 11. Integration Convergence: Case 2a

phi segments
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Integration Convergence: Case2b

0.08
70

90 90 phi segments
theta segments

Figure 12. Integration Convergence: Case 2b

The magnitude and phase of the H field at the measured distance are presented in

Figures 13 through 30. These figures help to tell the complete story of the computed H

field. In each figure the "exact" quantity computed via series solution is depicted by a line

and the "measured" quantity is depicted by dots. Note that in both the magnitude and the

phase plots the measured quantity closely matches the exact quantity. These results

indicate that the integration produces an H field with minimal error. This knowledge will

help isolate the source of error that may present itself due to the back-propagation

process, which will be described in Chapter III.
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Hexact (line) & Hinteg (dots): Casela; RMS Error= 1.149%
0.025

100 150
Theta (degrees)

Figure 13. Magnitude Comparison: Case la

200

Hexact (line) & Hinteg (dots): Casela

50 100 150
Theta (degrees)

Figure 14. Phase Comparison: Case la

200
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Hexact (line) & Hinteg (dots): Caselb; RMS Error= 1.162%

0.02

100 150
Theta (degrees)

Figure 15. Magnitude Comparison: Case lb

200

Hexact (line) & Hinteg (dots): Caselb

50 100 150
Theta (degrees)

Figure 16. Phase Comparison: Case lb

200
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Hexact (line) & Hinteg (dots): Caselc; RMS Error= 1.151%

0.01

50 100 150
Theta (degrees)

Figure 17. Magnitude Comparison: Case lc

200

Hexact (line) & Hinteg (dots): Caselc

50 100 150
Theta (degrees)

Figure 18. Phase Comparison: Case lc

200
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Hexact (line) & Hinteg (dots): Case2a; RMS Error= 1.031%

0.04

0.035 -

100 150
Theta (degrees)

Figure 19. Magnitude Comparison: Case 2a

200

Hexact (line) & Hinteg (dots): Case2a

50 100 150
Theta (degrees)

Figure 20. Phase Comparison: Case 2a

200
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Hexact (line) & Hinteg (dots): Case2b; RMS Error= 0.122%
0.025

100

Theta (degrees)

Figure 21. Magnitude Comparison: Case 2b

200

Hexact (line) & Hinteg (dots): Case2b

50 100 150
Theta (degrees)

Figure 22. Phase Comparison: Case 2b

200
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Hexact (line) & Hinteg (dots): Case2c; RMS Error= 0.1259%
0.02

100 150
Theta (degrees)

Figure 23. Magnitude Comparison: Case 2c

200

Hexact (line) & Hinteg (dots): Case2c

50 100 150
Theta (degrees)

Figure 24. Phase Comparison: Case 2c

200
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Hexact (line) & Hinteg (dots): Case3a; RMS Error= 0.8268%

0.05

0.04

"§0.03

I 0.02

0.01

100
Theta (degrees)

Figure 25. Magnitude Comparison: Case 3a

200

Hexact (line) & Hinteg (dots): Case3a

50 100 150
Theta (degrees)

Figure 26. Phase Comparison. Case 3a

200
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Hexact (line) & Hinteg (dots): Case3b; RMS Error= 0.04562%
0.035

50 100 150
Theta (degrees)

Figure 27. Magnitude Comparison: Case 3b

200

Hexact (line) & Hinteg (dots): Case3b

50 100 150
Theta (degrees)

Figure 28. Phase Comparison: Case 3b

200
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Hexact (line) & Hinteg (dots): Case3c; RMS Error= 0.04596%
0.02

50 100 150
Theta (degrees)

Figure 29. Magnitude Comparison: Case 3c

200

Hexact (line) & Hinteg (dots): Case3c

50 100 150
Theta (degrees)

Figure 30. Phase Comparison: Case 3c

200
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m. BACK PROPAGATION OF SCATTERED FIELD (MEASURED FIELD)

A. BACKGROUND

A finite element method is used to back-propagate the measured field to the

surface of the sphere. The measured fields that are back-propagated are those determined

in Chapter II and summarized in Table 1 . Once the measured field is back-propagated, the

surface current is determined using Equation (9b). The surface current due to back-

propagation (Je^ ) is compared to the original surface current (Je^ ) due to the

elemental dipole which is computed using a spherical harmonic series, per Section II. C.

The following section describes the finite element formulation.

B. FINITE ELEMENT FORMULATION FOR AXISYMMETRIC FIELDS

For the special case being considered, with no ^ variation in materials or sources,

and J4 - , the fields are derived in Section II.B., results ofwhich are repeated here for

convienence,

H(p,z) = H,(p,z)t (28a)

E(p,z) = E
p
{p,z)p +E

2
{p,z)z (28b)

Maxwell's curl equations are: (with a> = Irf)

VxH = jo)sE + J (29a)

V x E = -jcofiH (29b)
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Using Equation (29a) for assumed fields in Equation (28) gives

jcoEn = ——J„J p € dz e p

\\ d 1

(30a)

(30b)

These are the generating equations for E in terms of H^ and known source

current J . In this case Equation (29b) simplifies to:

jcu(W xE)-<j>=ja)
dE

p cE
2

dz dp
= a>

2

vH+ (31)

Substituting the E fields from Equation (30) into Equation (31) gives the partial

differential equation (PDE) satisfied by H^ :

d_

dp

1 d

ep dp 9 dz e dz

i d \ d \

dz e
(32)

where e = s{p,z) is allowed to be to be inhomogeneous.

The PDE in Equation (32) will be numerically solved using the finite element

method (FEM), where H+ is approximated with electrically small triangular element

regions in the (p,z) plane. [12]

A variational Euler-Lagrange algorithm is used to implement the finite element

method. This algorithm replaces the solution of the PDE in Equation (32) with finding the

stationary point in complex function space of a quadratic (in H^ ) functional. We first

expand the field using pyramidal basis functions, u
n
(p,z), defined for each node in the

mesh and having support of the surrounding triangular elements,
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H*(P,z) = lLhnU»(P,Z) (33)
n=\

and then substitute Equation (33) into the functional. The stationary solution is found by

differentiating with respect to the unknown values of H* , located at the m-th nodes, to

yield the linear system

i>« If
^V0*myV(puH)-k

2
P»Jt/ipdz = (34)

n— 1 overlapping elements '

Defining the double integrals indexed on m,n as T(w,«) , the linear system in Equation

(34) can be rewritten as,

£ hj(m,n) = - 5>„T(iimi) (35)
n inside boundary n on boundary

-*na(n)

i

na(m)

Nm*Nm Squart Amfl

(very sparse)

h
hb(n)

h = B

• J^Nm.

boundary

values
(36)

(sparse)

The m-th row of A and B is formed by Equation (35) with the n-th term

corresponding to a column of A if h
n

is unknown. The appropriate column of B is filled

if hn is a boundary node. There is no contribution to A or B for nodes on the z-axis

{p = 0) since H^{p = 0) = and those nodal values of h
n
are known. [13]

C. FINITE ELEMENT METHOD LIMITATIONS

The finite element method was successful for back-propagation of fields measured

at distances less than 0.25 wavelengths from the surface of the sphere. When the field was
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measured at distances greater than 0.25 wavelengths, errors due to back-propagation

increased significantly. The same cases for which the measured field was generated were

used for back-propagation. These results are summarized in Table 2. The program

FEM2.M was used to determine the surface current due to back-propagation. It can be

found in the Appendix.

BACK-PROPAGATION RESULTS: FINITE ELEMENT METHOD

Case Sphere

Radius

M

Field

Distance

Modes

RMS Error

(%)

RMS Error

(%)

FEMla 1 1.2 14 0.0590 0.9976

FEMlb 1 2 24 0.0338 30.09

FEMlc 1 4 50 0.0147 25.87

FEM2a 5 5.2 64 0.0043 0.7406

FEM2b 5 6 74 0.0052 57.18

FEM2d 5 5.26 64 0.0042 662.9

FEM3a 10 10.2 128 0.0017 0.7333

FEM3d 10 10.26 128 0.0063 5.547

Table 2. Centered Sphere Back-Propagation Results: Finite Element Method
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The magnitude and phase of the surface current on the PEC sphere, as determined

through the finite element method, is shown in Figures 3 1 through 42. These figures help

to tell the complete story of the accuracy in back propagating to obtain the current. In

each figure the "exact" quantity is depicted by a solid line and the calculated quantity is

depicted by dots. Note that in both the magnitude and phase plots the calculated quantity

closely matches the exact quantity for the cases in which the H field is measured less than

0.25 wavelengths away from the surface ofthe sphere. In the cases where the distance is

one wavelength, the error is immense. Cases FEM2d and FEM3d have been added to the

original nine test cases in order to demonstrate what happens when the measurement

distance is increased to 0.26 wavelengths from the surface of the sphere. The following

section will investigate the cause of this error.
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Jexact (line) & Jback (dots): FEM1a; RMS Error= 0.9976%
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Figure 31. Magnitude Comparison: FEMla
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Jexact (line) & Jback (dots): FEMla
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Figure 32. Phase Comparison: FEMla
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Jexact (line) & Jback (dots): FEM1b; RMS Error= 30.09%
0.05

50 100 150
Theta (degrees)

Figure 33. Magnitude Comparison: FEMlb

200

Jexact (line) & Jback (dots): FEMlb

50 100 150
Theta (degrees)

Figure 34. Phase Comparison: FEMlb

200
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Jexact (line) & Jback (dots): FEM1c; RMS Error= 25.87%

100 150
Theta (degrees)

Figure 35. Magnitude Comparison: FEMlc

200

Jexact (line) & Jback (dots): FEMlc

100 150
Theta (dearees)

Figure 36. Phase Comparison: FEMlc

200
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Jexact (line) & Jback (dots): FEM2a; RMS Error= 0.7406%
0.1

0.08-
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Theta (degrees)

Figure 37. Magnitude Comparison: FEM2a

200

Jexact (line) & Jback (dots): FEM2a
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Figure 38. Phase Comparison: FEM2a

200

45



Jexact (line) & Jback (dots): FEM2b; RMS Error= 57.18%
0.1

50 100 150
Theta (degrees)

Figure 39. Magnitude Comparison: FEM2b
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Jexact (line) & Jback (dots): FEM2b
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Figure 40. Phase Comparison: FEM2b

200
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Jexact (line) & Jback (dots): FEM2d; RMS Error= 662.9%
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Figure 41. Magnitude Comparison: FEM2d
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Jexact (line) & Jback (dots): FEM2d
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Figure 42. Phase Comparison: FEM2d
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Jexact (line) & Jback (dots): FEM3a; RMS Error= 0.7333%
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Figure 43. Magnitude Comparison: FEM3a
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Jexact (line) & Jback (dots): FEM3a
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Figure 44. Phase Comparison: FEM3a

200
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Jexact (line) & Jback (dots): FEM3d; RMS Error= 5.547%
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Figure 45. Magnitude Comparison: FEM3d
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Jexact (line) & Jback (dots): FEM3d
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Figure 46. Phase Comparison: FEM3d

200
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When back-propagating measurements are made at distances greater than 0.25

wavelengths from the surface ofthe sphere using the FEM approach, the RMS error of the

predicted surface current tends to increase dramatically relative to the situation of smaller

distances. This appears to result from resonant modes injecting themselves into the

solution in varying degrees. Figure 47 shows the single mode RMS error for a centered

PEC sphere used in case FEMla. Note that the RMS error associated with each mode is

relatively low; all but two are below one percent. The results shown Table 2 indicate that

back-propagation gave a solution with less than one percent RMS error. Figure 48 shows

the single mode RMS error for case FEMlb. In this case the measured field was one

wavelength from the surface of the sphere. Note that the lower order modes generally

have RMS error in the neighborhood of five percent or less, except for mode n = 5 which

is nearly fifty percent RMS error. This error "spike" indicates a resonant mode that

significantly alters the solution. As can be seen in Figures 48 through 53, the resonant

modes seem to appear in only the cases where the measurement distance is greater than

0.25 wavelengths from the surface of the sphere.
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Single Mode RMS Error for Centered PEC Sphere: FEM1a
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Mode Index "n"

Figure 47. Single Mode RMS Error: CaseFEMla

Single Mode RMS Error for Centered PEC Sphere: FEM1b
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Figure 48. Single Mode RMS Error: CaseFEMlb
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Single Mode RMS Error for Centered PEC Sphere: FEM2a
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Mode Index "n"

Figure 49. Single Mode RMS Error: Case FEM2a

Single Mode RMS Error for Centered PEC Sphere: FEM2b
250
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Mode Index "n"

Figure 50. Single Mode RMS Error: CaseFEM2b
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Single Mode RMS Error for Centered PEC Sphere: FEM2d
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Figure 51. Single Mode RMS Error: CaseFEM2d

Single Mode RMS Error for Centered PEC Sphere: FEM3a
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Figure 52. Single Mode RMS Error: Case FEM3a
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Single Mode RMS Error for Centered PEC Sphere: FEM3d
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Figure 53. Single Mode RMS Error: Case FEM3d

Another way to view this phenomenon is by looking at the product solution parts

of Hf(r,0) = g(r) h{6) for a given mode, n. The radial variation, g(r) , to be shown in

the upper subplots, indicates the contribution at the PEC sphere surface due to a constant

contribution of g(b) = 1 on the outer boundary. Figures 54 and 55 show the radial

variation for modes n = 4 and n = 5, respectively, for the case FEMlb. Note that mode 4

provides relatively small contribution at the PEC sphere surface. Mode 5, however,

indicates an extremely large contribution at the PEC sphere surface. Two additional cases

have been added here to further illustrate this observation. Cases FEM2d and FEM3d

shown in Figures 56 and 57, respectively, are both cases in which the measured field is

0.26 wavelengths from the surface of the sphere. Note the large contribution at the

surface of the sphere due to the resonant modes captured in each of these figures.
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Product Solution Parts of Hphi(r,theta): FEM1b; n=4
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Figure 54. Product Solution Parts: Case FEMlb, n = 4

Product Solution Parts of Hphi(r.theta): FEMlb; n=5
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Figure 55. Product Solution Parts: Case FEMlb, n = 5
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Product Solution Parts of Hphi(r.theta): FEM2d; n=8
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Figure 56. Product Solution Parts: Case FEM2b, n = 8

Product Solution Parts of Hphi(r.theta): FEM3d; n=16
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Figure 57. Product Solution Parts: Case FEM3b, n = 16
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Additional insight is provided by viewing the resonant modes that appear when the

field is measured at varying distances from a fixed size sphere. Figure 58 considers modes

n = 1 to 100. Each line in Figure 58 displays the contribution of g(a) from a single mode

at the sphere surface as a result of a constant contribution of g(b) = 1 at the boundary

distance. The "best radius," b = 5.641 ^ in this case, provides the minimum g(a) from

all modes applied as g(b) = 1 . From the perspective of minimal resonance effects, this is

the best location to measure the field.

Hphi(a) due to PnA 1 at b; a = 5wl; n = 1:100

5.4 5.6

b (wavelengths)

Figure 58. Resonant Effects at Various Outer Boundary Locations

D. TRANSFER MATRIX FOR CENTERED SPHERE

As can be seen in Table 2 the results due to back-propagation are poor for

measurements made greater than approximately 0.25 wavelengths from the surface of the

sphere. A transfer matrix using spherical harmonics for a centered sphere was developed
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to accurately back propagate the field on the outer boundary to that on the sphere,

without the bothersome injection of resonant modes as appear with the FEM solution.

This method will give some indication as to the spatial resolution required when measuring

the field so that the source current on the sphere can be accurately determined.

Figure 58 shows a meridian plane for a centered sphere of radius a enclosed by an

outer boundary arc of radius b . For any radius r , where a < r < b , the total H field can

be determined by: [14]

N

H,{r,e) = ^an
n=\

l(kr) H?\kr)
+ 0.

kr kr
Pt(cose) (37)

where:

b=- J'Ska)

H'«\ka)
(38)

forces Ee = for each mode on the surface ofthe sphere.

A specified f{6) = H^(b
y
O) will provide a set \an j . The a

n
coefficients are

determined by moment matching, using orthogonality ofLegendre functions. This

technique is detailed in [14 ]. The transfer matrix H
s

'\s developed such that

H,{a,e
q ) = Hs

(q,p)H,(b,e
p ) (39)
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Centered Sphere radius = 2; Arc radius = 5

8 10

Figure 59. Meridian Plane of Centered Sphere

where HJb,0 )is a column array of the 6
p
sampled field at radius Z>, as determined in

Chapter II. The array product results in the column array of H^ at radius a which

corresponds to the surface of the sphere. From this result the surface current is then

determined using Equation (9b). The test cases using the transfer matrix were generated

using the program HSPHERE1.M which can be found in the Appendix. Table 3 tabulates

the results and compares them to those obtained using the finite element method. It

should be noted that the transfer matrix works only for a centered sphere and can not be

applied to any arbitrary axisymmetric body.

59



SURFACE CURRENT RESULTS USING TRANSFER MATRIX

Case Sphere

Radius

(A.)

Field

Distance

(*)

Modes e

Segments RMS Error

(%)

RMS Error

(%)

la 1 1.2 14 94 0.0590 0.8085

lb 1 2 24 125 0.0338 0.6271

lc 1 4 50 188 0.0147 0.7349

2a 5 5.2 64 408 0.0043 0.7946

2b 5 6 74 376 0.0052 0.9453

2d 5 5.26 64 408 0.0042 0.7764

3a 10 10.2 128 801 0.0017 0.7885

3d 10 10.26 128 801 0.0063 0.7827

Table 3. Surface Current Results Using Transfer Matrix

The magnitude and phase ofthe surface current on the PEC sphere, as determined

by the transfer array, is shown in Figures 60 through 77. Once again these figures help to

tell the complete story of the surface current. In each figure the exact quantity is depicted

by a solid line and the calculated quantity is depicted by dots. Note that in both the

magnitude and phase plots the calculated quantity closely matches the exact quantity.
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Jexact (line) & Jback (dots): Casela; RMS Error= 0.8085%
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Figure 60. Magnitude Comparison: Casela
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Jexact (line) & Jback (dots): Caselb; RMS Error= 6271%
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Figure 62. Magnitude Comparison: Caselb
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Jexact (line) & Jback (dots): Caselc; RMS Error= 0.7349%
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Figure 64. Magnitude Comparison: Caselc
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Figure 65. Phase Comparison: Caselc
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Jexact (line) & Jback (dots): Case2a; RMS Error= 0.7945%
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Figure 66. Magnitude Comparison: Case2a

200

Jexact (line) & Jback (dots): Case2a

50 100 150
Theta (degrees)

Figure 67. Phase Comparison: Case2a
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Jexact (line) & Jback (dots): Case2b; RMS Error= 0.9453%
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Figure 68. Magnitude Comparison: Case2b
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Figure 69. Phase Comparison: Case2b
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Jexact (line) & Jback (dots): Case2c; RMS Error= 0.5991%
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Figure 70. Magnitude Comparison: Case2c
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Figure 71. Phase Comparison: Case2c
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Jexact (line) & Jback (dots): Case3a; RMS Error= 0.7885%
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Figure 72. Magnitude Comparison: Case3a
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Figure 73. Phase Comparison: Case3a
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Jexact (line) & Jback (dots): Case3b; RMS Error= 0.8645%
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Figure 74. Magnitude Comparison: Case3b
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Figure 75. Phase Comparison: Case3b
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Jexact (line) & Jback (dots): Case3c; RMS Error= 0.7846%
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Figure 76. Magnitude Comparison: Case3c
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IV. ANALYSIS OF RESULTS

A. THE INTEGRATION ALGORITHM

Since the "measured" fields to be back-propagated were to be determined through

integration, the first part of this thesis was dedicated to generating accurate fields through

numerical integration. As is shown in Table 1, properly performed numerical integration

provides highly accurate measured fields. Figures 9 through 12 provide several examples

ofhow quickly the integration converges. In each case the percent RMS error is

determined essentially by the number of points on the sphere surface over which the

integration takes place. For the cases included in this thesis the number of points was

chosen such that the error due to back-propagation, as determined by the transfer matrix,

would be kept below one percent.

Figures 13 through 30 show the magnitude and phase of the measured field

determined through numerical integration. For each figure the measured field is over-laid

on the exact field. Visual inspection indicates the magnitudes are nearly the same over the

entire range of theta. RMS error computations indicate a difference of only a few

hundredths of one percent. Visual inspection of the phase comparison gives similar results

- both the computed and the exact are nearly the same.

As the number of surface points increase for a constant sphere size, the accuracy

of the measured H field increases. This result takes the form of decreasing RMS error as

shown in the integration convergence of Figures 9 through 12. As the measurement

distance increases for a constant sphere size, the number of points required for accurate

integration results decreases. This can be seen by comparing Cases 2a and 2b shown in
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Figures 1 1 and 12. For the larger measurement distance of Case 2b the RMS error is

significantly smaller using the same number of points as Case2a.

B. FINITE ELEMENT METHOD PROBLEMS

The finite element method was used successfully to determine the source current

on the PEC sphere when the field was measured at distances less than 0.25 wavelengths

from the sphere surface. Table 2 summarizes the test cases used in this thesis.

The large errors that arise when the field to be back-propagated was measured at

distances greater than 0.25 wavelengths from the sphere surface appear to be caused by

resonant modes. These modes are shown for several cases in Figures 48, 50, 52 and 53.

When back-propagated, these modes provide overwhelmingly disproportionate

contributions at the sphere surface. These contributions are shown for a few

representative cases in Figures 55, 56, and 57. It appears these resonant modes come

about as a result of the boundary conditions placed on the outer boundary, the location at

which the field is measured. As can be seen in Figures 48, 50, 51 and 53, these resonant

modes appear as sharp spikes in the plot.

C. TRANSFER MATRIX

The transfer matrix that was used to determine the source current on the body

gave results with less than one percent RMS error. The low error is a result of the number

of surface points used to determine the measured field, and the number of points at which

the field was measured at the outer boundary. The relationship between number of

surface points and numerical integration accuracy was discussed in Section A. As can be

seen in Equation (18), the measured field varies inversely with distance from segment to
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field point. This inverse distance variation is the main point of concern when R is small at

the closest point of approach. There is a large relative contribution to the integration

from this surface region and the variation in the field is rapid. The number of segments on

the sphere surface in this near-region must be increased to ensure the accuracy of

numerical integration.
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V. CONCLUSIONS

The objective of this research was to investigate the viability of back-propagating

electromagnetic field measurements to an axisymmetric body in order to determine the

source distribution for radiated power from the body. The method for achieving this

objective was straightforward. First, the "measured fields" were simulated through

numerical integration. Second, these fields were input into a finite element algorithm to

determine the source current on a PEC axisymmetric body. The original thrust of the

thesis was to investigate the ranges and resolution at which the fields could be measured in

order to provide a usable level of accuracy in determining the source distribution on the

body. The test cases were to include various "arbitrary" axisymmetric shapes to include

cones, offset cones, offset spheres, and various cone-cylinder-sphere combinations. The

centered sphere was to be used for very basic test purposes only.

Along the way to the objective it was found that the finite element method

provided inaccurate results in the centered sphere tests for all but very limited cases. This

discovery prompted a redirection of efforts to investigate the sources of error.

Consequently, progress towards the original goals was sidetracked; but, that is often the

nature of true research into the unknown.

The integration program developed to determine the measured fields was found to

converge to an accurate solution. Although the shape tested was a sphere, the theory

developed in Chapter II using stacked circular rings can be easily extended to arbitrary

axisymmetric shapes.

The finite element method was selected as a means to determine the source current

on the sphere through back-propagation. The errors associated with this method for the
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centered sphere were unexpected. Consequently, solving these associated resonance

problems was not intended to be the focus of this thesis. Further testing of the FEM

solution will be done as part of extensions to this effort in follow-on thesis efforts and

techniques for mitigating resonance effects will be explored.
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APPENDIX - MATLAB CODES

%thesis2.M by Dan Wawrzyniak 5/10/97

% updated 5/14/97

% Combines all programs into one

% Includes checking integration error first

% Allows user to save data in a .mat file for future use

clear all;

case = input('What case are you running? ','s');

fO = input('Enter frequency in MHz: ');

lambda = 3e2/f0;

disp(['Wavelength = ',num2str(lambda),' meters']);

al = input('Enter metal sphere radius in terms ofwavelength: ');a = al*lambda;

rl = inputCEnter outer boundary in terms ofwavelength: ');r = rl *lambda;

eta = 120*pi; % free-space Z_0

Idl =1; % dipole moment

B = 2*pi/lambda; % wavenumber

zOl = inputCEnter z-position of elemental dipole in terms of wavelength: ');

zO =z01*lambda;

Nthl = input('Enter number of theta points: '); Nth = Nthl-1;

ppwl = inputCEnter number points per wavelength: ');

dth=pi/Nth; th=(0:dth:pi)'; thdeg=180*th/pi;

sth=sin(th); cth=cos(th);

% computing rd, sin(thd), and cos(thd) for sphere surface (r=a)

rd=sqrt(a*a+z0*z0-2*a*z0*cth);sthd=a*sth./rd;cthd=(a*cth-z0)./rd;

% computing field components in dipole centered coordinates

Fth=Idl*exp(-j*B*rd)./(4*pi*rd);

Hpi=Fth.*sthd.*G*B + l./rd);

Etd=eta*Fth.*sthd.*(j*B + l./rd - j./(B*rd.*rd));

Erd=2*eta*Fth.*cthd.*(l./rd-j./(B*rd.*rd));

% translating incident field spherical components

cdth=cth.*cthd + sth.*sthd; sdth=sth.*cthd - cth.*sthd;

Eti=Etd.*cdth - Erd.*sdth; % note that Hpi=Hpd

% Computing spherical harmonic coefficients for scattered field

% Ets expansion which minimizes the total sphere surface

% tangential field = Eti+Ets

Nmax = fix(2*B*r);

disp(['Nmax = ',num2str(Nmax)]);

N = input('Enter number of spherical harmonics: ');

Sn=-dth*Eti.*sth; Pnl=legpol2(cth,N); In=(Pnl.')*Sn;

n=(l :N)'; cn=(2*n+l)./(2*n.*(n+l));

Ba=B*a; [Hn,DHn]=shan3(Ba,N);

Hn = Hn.'; DHn = DHn.';

Dn=DHn/Ba; an=(cn.*In)./(j*eta*Dn);

Ets=j*eta*Pnl*(an.*DHn)/Ba; Ett=Eti+Ets; % ideally Ett ->
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Hps=Pn 1 *(an. *Hn)/Ba; Hpt=Hpi+Hps; % Jtheta=H_pt

Jtheta = -Hpt;

Br=B*r; [Hn,DHn]=shan3(Br,N);

Hn = Hn.'; DHn = DHn.';

Ets=j*eta*Pnl *(an.*DHn)/Br; Hps=Pnl *(an.*Hn)/Br;

numring = Nth; % number of rings

inc = input('Enter number of face segments: ');

ppoints = input("Enter phipoints - wavelength factor: ');

% Field Point Inputs

% Input the Field Point in terms of theta.

radius = r; % radius of field point

numFP = length(Hps);

thetaFP = linspace(0,pi,numFP);

thetaFPd = 180*thetaFP/pi;

rho = radius. * sin(thetaFP);

z = radius. *cos(thetaFP);

% Jt is the tangential surface current at the nodes.

% The nodes are defined by rhop & zp.

Jt = Jtheta;

% Determine the thetas for the sphere

dtheta = pi/numring; % gives the delta theta

theta = 0: dtheta: pi; % gives numring +1 values of theta.

thetad = theta. * 1 80/pi; % theta in degrees

% Determine (rhoprime,zprime) pairs on the sphere

rhop = a*sin(theta);

zp = a*cos(theta);

% Find the length "s" of each face.

s = sqrt(rhop(2)A2 + (zp(l)-zp(2))A2);

% Find the angle associated with each face

alpha =acos(rhop(2)/s) + theta(l:numring); % radians

alphad = alpha* 1 80/pi; % degrees

talpha = tan(alpha);

alpha 1 = ones(inc+ 1,1 )*alpha;

alpha = reshape(alphal,numring*(inc+l),l);

dzf = (zp( 1 :numring)-zp(2 :numring+ 1 ))/inc;

phipoints = round(pi.*a*ppoints/lambda)+l;

dphi = pi./phipoints;

phi = 0:dphi:pi;

cp = cos(phi);

for n = 1 :numring; % loops through rings

zf(:,n) = (zp(n):-dzf(n):zp(n+l))';

rhof(:,n) = (linspace(rhop(n),rhop(n+l),inc+l))';

JT(:,n) = Jt(n)*(zf(l :inc+l,n)-zp(n+l))/(zp(n)-zp(n+l ))+...

Jt(n+1 )*(zf( 1 :inc+ 1 ,n)-zp(n))/(zp(n+ l)-zp(n));

end
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% Reshape the matrices to column vectors

zf = reshape(zf,numring*(inc+ 1 ), 1 );

rhof= reshape(rhof,numring*(inc+l), 1);

JT = reshape(JT,numring*(inc+ 1 ), 1 );

for FP = 1 :numFP; % loops through field points

Rl = 2*rho(FP)*rhof*cp;

R2 = (rho(FP)A2+rhof A2+(z(FP)-zf) A
2)*ones(l,length(cp));

R = sqrt(R2-Rl);

[Fcs,Fls] = fcsfls2(cp,dphi,R);

Ha = rhof.*sin(alpha);

Hb = (z(FP) - zf).*cos(alpha);

Hc = (Ha-Hb).*Fcs;

Hd = rho(FP).*sin(alpha).*Fls;

H =(Hc-Hd).*JT;

H =reshape(H,inc+l,numring);

HI = a*((l/(4*pi))*(trapz(H)));

Hl=dzf.*Hl;
HH(l:numring,FP) = Hl.';

end

Hphi = sum(HH);

%% RMS Error Calculations

E = 100*sqrt((Hps - Hphi.')'*(Hps - Hphi.'))./sqrt(Hps'*Hps);

figure

plot(thdeg,abs(Hphi),'ko',thdeg,abs(Hps),'k')

title([
rHps (exact: -, integrated: o): ',eval('case'),'; RMS Error= 'inumlstrtEX'Vo'])

xlabel(Theta (degrees)');

ylabel('|Hscattered|');

figure

plot(thdeg,real(Hphi),'k*',thdeg,imag(Hphi),
,

k+',thdeg,real(Hps),...

'k\thdeg,imag(Hps),'ko');

title([
r
Hexact(real: -, imag: o) & Hint(real: *, imag: +): ',eval('case')])

xlabel('Theta (degrees)')

ylabelCHps (Amps/meter)')

%text(.55,.95,['Frequency=',num2str(fD),'Mhz'],'color',...

% 'g'/units'/normalized');

%text(.55,.90,['Wavelength=',num2str(lambda),
,

meters'],'color',...

% 'g'/units'/normalized');

%text(.55,.85,[T)ipoleOffset=',num2str(z01),'*lambda
,

],'color',...

% 'gVunits'.'normalized');

%text(.55,.80,['RadiusofSphere=',num2str(al),'*lambda'],'color',...

% 'gVunits'/normalized');

%text(.55,.75,['Radius of Field Point= ',num2str(rl),'*lambda'],
,

color',...

% 'gVunits'/normalized');

%text(.55,.70,['Number Rings= ',num2str(numring)],'color',...

% 'gVunits'/normalized');
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%text(.55,.65,['Face Segments= ',num2str(inc)],'color',...

% 'g','units','normalized');

%text(. 5 5, .60, ['Phi-Wavelength Factor= ',num2str(ppoints)],'color', ..

.

% 'gVunits'/normalized');

%text(.55,.55,['Field Points= ',num2str(numFP)],'color',...

% 'gVunits'/normalized');

%text(.55,.50,[Tield Points per wl= ',num2str(ppwl)],'color',...

% 'g','units','normalized');

%text(.55,.45,['Number modes= ',num2str(N)],'color',...

% 'g','units','normalized');

%text(.55,.40,['RMS Error= ',num2str(E),' %'],'color',...

% 'r','units','normalized');

%%%%%%%%%%%%%%%%%%%%%%%%%%Vo% /o /o/o%%%%%%%% /o% /o

% Computes Hphi incident at the field point radius due to the dipole.

% This result is added to the Hphi scattered computed using Dan's

% integration program

dth=pi/Nth; th=(0:dth:pi)'; thdeg=180*th/pi;

sth=sin(th); cth=cos(th);

% computing rd, sin(thd), and cos(thd) for sphere surface (r=a)

rd=sqrt(r*r+zO*zO-2*r*zO*cth);sthd=r*sth./rd;cthd=(r*cth-zO)./rd;

% computing field components in dipole centered coordinates

Fth=Idl*exp(-j*B*rd)./(4*pi*rd);

Hpi=Fth.*sthd.*(j*B + l./rd);

Hphi = Hphi.'; % make Hphi a column vector

%%%%%%%%%%%%%%%%%% /o/o%%%%% /o /o /o% /o% /o% /o /o% /o% /o% /o%

% This program loads the transfer function Hs from femdat.mat

% and created by FEM2.M and dots it with Hphi stored in

% source.mat from Dan's integration program SOURCE.M.
%
% The result is the current on the surface of the sphere

% arrived at through the back propagation of the scattered

% H field.

%
% The result (Jback) is compared to the surface current used in

% Dan's program (Jtheta, stored in jtheta.mat).

%
% The surface current is generated by DIPSPHR2.M
%
load femdat.mat

% Add Hphi scattered from sphere and Hpi incident from dipole

Hphitot = -(Hphi + Hpi);

% Determine Surface current due to back-propagation ofHphi

% Hhpi is UNFILTERED
Jback = Hs*Hphitot;

% Determine Surface current due to back-propagation ofHphi
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% RMS Error Calculations

E = 100*sqrt((Jtheta - Jback)'*(Jtheta - Jback))./sqrt(Jtheta'*Jtheta);

figure

plot(thdeg,abs(Jtheta),
,k ,

,thdeg,abs(Jback),
,ko,

)

title(['Jexact (-) & Jback (o): ^evalCcase'),'; RMS Error= ',...

num2str(E),'%'])

xlabel(Theta (degrees)')

ylabelC|Jtheta|')

%legend('Jtheta - dipsphr2.mVJback: no filtering - fem2.m')

figure

plot(thdeg,real(Jtheta),'k*,thdeg,imag(Jtheta),'ko
,

,thdeg,real(Jback), . .

.

,

k*
,

,thdeg,imag(Jback),
,

k+')

title(['Jexact(real: -, imag: o) & Jback(real: *, imag: +): ',eval('case')]);

xlabel('Theta (degrees)')

ylabel('Jtheta (Amps/m*m)')

yn = input('Save data from this run? (Y/N): 7s');

if~isempty(yn)

ifyn= y |yn= 'Y'

clear eta Idl B a zO dth th sth cth rd sthd cthd Fth Etd Erd cdth sdth ...

Eti r Sn Pnl In ncnBaHn DHn Ets Br Dn Ett Fls FP Fes E
clear H HI HH Ha Hb He Hd JT Jt R Rl R2 alpha alphal alphad an cp dphi.

dtheta dzf rb fho rhof rhop rs s talpha yn z zb zf zp zs

clear Hpt Nmax Nth f phi phipoints...

radius rho theta thetaFP thetaFPd thetad

save (eval('case'))

%save fO lambda al zOl rl Nth N inc ppoints Hs Hps numring ppoints numFP...

% ppwl name thdeg Hps Jback Hphi Hphitot

end

end
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function [Fc_s,Fl_s] = fcsfl s2(cp,dphi,R)

% For use with HPHIERR2.M
%
% This function does the integration to find Fc(s) & Fl(s)

% updated 4/19/79 at home Dan Wawrzyniak

lambda = 1;

beta = 2*pi/lambda;

phase = exp(-i*beta.*R);

same = (l+i*beta.*R)./R.A3;

Fl = same.*phase;

Fl_s = (2*dphi*(trapz(Fl. '))).';

Fc = ones(size(Fl_s))*cp.*same.*phase;

Fc_s = (2*dphi*(trapz(Fc.'))).';
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% DipSpr2.M computes scattered fields due to an elemental z-axis

% dipole positioned above the north pole of a metallic sphere.

% Mod-2 by M.A. Morgan 3/14/97

% shan3.m & legpol2.m loaded 5/2/97

clear all;

eta=120*pi; % free-space Z_0

Idl=l; % dipole moment

f0=300; % 300 MHz
B=2*pi*f0/300; % wavenumber

zO=input('Enter z-position of elemental dipole in meters: ');

a=inputCEnter metal sphere radius in meters: ');

Nth=inputCEnter number of theta segments: ');

dth=pi/Nth; th=(0:dth:pi)'; thdeg=180*th/pi;

sth=sin(th); cth=cos(th);

% computing rd, sin(thd), and cos(thd) for sphere surface (r=a)

rd=sqrt(a*a+z0*z0-2*a*z0*cth);sthd=a*sth./rd;cthd=(a*cth-z0)./rd;

% computing field components in dipole centered coordinates

Fth=Idl*exp(-j*B*rd)./(4*pi*rd);

Hpi=Fth.*sthd.*G*B + l./rd);

Etd=eta*Fth.*sthd.*(j*B + l./rd -j./(B*rd.*rd));

Erd=2*eta*Fth.*cthd.*(l./rd-j./(B*rd.*rd));

% translating incident field spherical components

cdth=cth.*cthd + sth.*sthd; sdth=sth.*cthd - cth.*sthd;

Eti=Etd.*cdth - Erd.*sdth; % note that Hpi=Hpd

% Computing spherical harmonic coefficients for scattered field

% Ets expansion which minimizes the total sphere surface

% tangential field = Eti+Ets

N=inputCEnter number of spherical harmonics: ');

Sn=-dth*Eti.*sth; Pnl=legpol2(cth,N); In=(Pnl.')*Sn;

n=(l:N)';cn=(2*n+l)./(2*n.*(n+l));

Ba=B*a; [Hn,DHn]=shan3(Ba,N);

Hn = Hn.'; DHn = DHn.';

Dn=DHn/Ba; an=(cn.*In)./(j*eta*Dn);

Ets=j*eta*Pnl*(an.*DHn)/Ba; Ett=Eti+Ets; % ideally Ett -->

Hps=Pn 1 *(an. *Hn)/Ba; Hpt=Hpi+Hps; % Jtheta=H_pt

Jtheta = -Hpt;

save dipsphr2 Jtheta thdeg

% Plotting expansions on sphere surface

elf reset; plot(thdeg,abs(Eti),thdeg,abs(Ett),'.');

xlabel("theta (deg)');

ylabel('|E_theta|: Incident (solid); Total (dots)');

title([T)ipole at z0-,num2str(z0),'; Sphere Radius-,num2str(a),...

'; No. Modes=',int2str(N)]);

figure(l);

hcpy=inputCEnter 1 for Hard Copy: ');
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ifhcpy= 1, print; end;

elf reset; plot(thdeg,abs(Hpi),thdeg,abs(Hps),'.
,

,thdeg,abs(Hpt),
,

~');

xlabel('theta (deg)');

ylabel('|H_phi|: Incident (solid); Scattered (dots); Total (dashed)');

title([T>ipole at z0-,num2str(z0),'; Sphere Radius-,num2str(a),...

*; No. Modes=',int2str(N)]);

figure(l);

hcpy=inputCEnter 1 for Hard Copy: ');

ifhcpy= 1, print; end;

% Now compute scattered fields at specified radius

r=inputCEnter radius in meters to field point: ');

Br=B*r; [Hn,DHn]=shan3(Br,N);

Hn = Hn.';DHn = DHn.';

Ets=j*eta*Pnl*(an.*DHn)/Br;Hps=Pnl*(an.*Hn)/Br;

% Plotting scattered field expansions

elf reset; plot(thdeg,abs(Ets),thdeg,eta*abs(Hps),V);

xlabel('theta (deg)');

ylabel('|E_theta| (solid); eta*|H_phi| (dots)');

title(['Scattered Fields at r=',num2str(r),' m; Dipole at zO-,...

num2str(z0),'; Sphere Radius- ,num2str(a),'; No. Modes- ,int2str(N)]);

figure(l);

hcpy=input('Enter 1 for Hard Copy: ');

ifhcpy= 1, print; end;

end;
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% FEM2.M provides finite-element solution for user-specified

% metallic body of revolution using VARELA algorithm.

% By M.A. Morgan 3/20/97- 4/17/97

clear all

% Generating surface and boundary points then mesh topology

sgen=inputCEnter name of surface generation program: ','s');

eval(['[rs zs rb zb]- ,sgen, ';']);

[rho zee nd elnd]=mesh2(rs,zs,rb,zb); % Computing mesh

% Computing Mesh Parameters

N=length(rho); % Number ofNodes in Mesh
L=length(elnd(:, 1)); % Number ofElements in Mesh
Ns=length(nd); % No. of Surface or Boundary Nodes
Nm=N-nd(l)-nd(Ns)-Ns+2; % Number ofNodes for Unknown Hphi

dispC ')

disp(Tinite Element Mesh Parameters: ')

disp([' Number ofNodes: ',int2str(N)])

disp([' Number of Elements: ',int2str(L)])

disp([' Number ofUnknowns: *,int2str(Nm)])

disp(")

disp(Tress a Key to Display Mesh or <Ctl> C to Abort');

pause

% Plotting Mesh Nodes and Elements

%clf reset

figure('PaperPosition',[1.5 0.5 5 3.75])

ifNs <=19, plot(rho,zee,'go');

else, plot(rho,zee,'k.'); end

hold on

for 1=1 :L

nds=elnd(l,:);

rl=[rho(nds); rho(nds(l))]; zl=[zee(nds); zee(nds(l))];

plot(rl,zVk');

end

v=axis; v(l)=0; v(2)=v(4)-v(3); axis(v); axis square;

title('2-D Axisymmetric Shape with mesh')

xlabel('meters')

ylabel('meters')

text(2.7*v(2)/5,5*v(4)/6,'Mesh Parameters: ')

text(3*v(2)/5,3*v(4)/4,['Nodes: ',int2str(N)])

text(3*v(2)/5,2*v(4)/3,['Elements:',int2str(L)])

text(3*v(2)/5,7*v(4)/12,['Unknowns:',int2str(Nm)])

yn=inputCPrint Hard Copy ? (Y/N): '/s');

if ~isempty(yn), ifyn= 'y'
|

yn= 'Y
1

,
print; end; end

% Loading System Matrices By Indexing Through Elements

disp('Sparse Matrix Loading Using Element Contributions Can Now Begin')

f=inputCEnter Frequency in MHz to Start Loading; <Ctl> C to Stop: ');
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k2=(pi*ffl50)A2; T=zeros(3,3);

A=sparse(Nm,Nm); B=sparse(Nm,Ns-2);

12=0; nf=cumsum(nd); ns=nf-nd+l; % node finish/start per row

for i=2:Ns;

11=12+1; 12=ll+nd(i)+nd(i-l)-3; % start/finish elements

for 1=11:12

nds=elnd(l,:); rp=rho(nds); zp=zee(nds);

T=varela(k2,rp,zp);

disp(['Loading Element ',int2str(l),' of \int2str(L)])

% Loading sparse matrix contributions

for m=l:3;

ma=0;

if nds(m) ~= nf(i-l) & nds(m) ~=nf(i), % m not on boundary

ifnds(m) > nf(i-l) & i < Ns,

ma=nds(m)-ns(2)-i+3; end

if nds(m) < ns(i) &i>2,
ma=nds(m)-ns(2)-i+4; end

ifma > 0, % m is a solution node

forn=l:3;

na=0;

if nds(n) ~= nf(i-l) & nds(n) ~=nf(i),

ifnds(n)>nf(i-l)&i<Ns,

na=nds(n)-ns(2)-i+3; end

if nds(n) < ns(i) & i > 2,

na=nds(n)-ns(2)-i+4; end

ifna>0,

A(ma,na)= A(ma,na)+T(m,n); end

end % n not on boundary end

if nds(n)= nf(i-l) & i > 2,

B(ma,i-2)=B(ma,i-2)-T(m,n); end

ifnds(n)= nf(i) &i<Ns,
B(ma,i-l)=B(ma,i-l)-T(m,n); end

end % n-loop end

end % ma > end

end % m not on boundary end

end % m-loop end

end % 1-loop end

end % i-loop end

dispCMatrices Loaded, Now Solving System ... Be Patient')

% Solve sparse matrix system to construct transfer function

% array relating internal Hphi to Ns-2 nodal boundary values

H = A\B; % clear A B C D % freeing memory

% Extract rows to form transfer array relating Ns nodal values

% ofHphi (including two z-axis Hphi=0 BC's) to Ns nodal values

% of Hphi on the PEC surface. Note that the PEC surface output
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% column vector has Hphi(l)=Hphi(Ns)=0 since these correspond

% to nodes on the z-axis.

Hs=zeros(Ns,Ns);

row=l; Hs(2,2:Ns-l) = H(row,:);

for n=3:Ns-l;

row=row+nd(n-l)-l; Hs(n,2:Ns-l) = H(row,:);

end

n=l:Ns; elf; plot(n,diag(Hs),V)

v=axis; axis([l Ns v(3) v(4)])

xlabel('row(n)'); ylabel('Real diag[Hs]')

title([T)iag[Hs] for ',sgen,'; Ns=',int2str(Ns),'; N=',int2str(N),...

'; Nm=',int2str(Nm),'; L=',int2str(L)]); figure(l)

yn=inputCPrint Hard Copy ? (Y/N): ','s');

if ~isempty(yn), ifyn= 'y*
|

yn= 'V, print; end; end

% Saving Needed Parameters and Hs Transfer Function Array

save femdat f rs zs rb zb Hs
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% Program FEMCHK4.M compares exact and FEM2.M computed

% nodal values for spherical harmonic single mode solutions

% of an offset metal sphere. By M.A. Morgan 4/21/97

% Mod-2a (4/30/97) uses MatLab Bessel and Hankel Functions in shan3.m

% Mod-3 (5/2/97) uses Wronskian to simplify r=a "exact" solution

% and computes and plots errors for applied modes

%Mod-4 (5/3/97) uses real mode BC'sPnAl(cos(theta)) on r=b

% which produces a real internal solution

clear all;

case = inputCWhat case are you running? ','s');

load femdat; % loading f rs zs rb zb Hs
k=pi*f7150; Ns=length(rs);

d=(zs( 1 )+zs(Ns))/2 - (zb( 1 )+zb(Ns))/2; % computing offset

a=zs(l)-d; b=zb(l); Ra=k*a; Rb=k*b; % reset sphere centers

zbd=zb-d; r_b=sqrt(rb.A2+zbd.A2); b=zb(l);

th=linspace(0,pi,Ns)'; c_a=cos(th); th_a=linspace(0,180,Ns)';

c_b=zbd./r_b; th_b=l 80*acos(c_b)/pi;

N=input('Enter Upper Spherical Harmonic Mode to Check: ');

[hna,Dhna]=shan3(Ra,N);[hnb,Dhnb]=shan3(Rb,N);

DJna=real(Dhna); Jnb=real(hnb);

DNna=-imag(Dhna); Nnb=-imag(hnb);

Dn=(Jnb.*DNna-DJna.*Nnb); An=ones(Ns,l)*DNna; Bn=ones(Ns,l)*DJna;

[Hn,DHn]=shan3(k*r_b,N); Jn=real(Hn); Nn=-imag(Hn);

pna=legpo!2(c_a,N); pnb=legpol2(c_b,N); pct=zeros(N,l);

Ha=b*pna./(a*ones(Ns,l)*Dn); " % "exact" r=a

Hb=b*pnb.*(An.*Jn-Bn.*Nn)./(r_b*Dn); % "exact" r=b

Hc=Hs*Hb; % Computed solution on r=a

forn=l:N;

pct(n)=100*sqrt((Ha(:,n)-Hc(:,n))'*(Ha(:,n)-Hc(:,n)))/...

sqrt(Ha(:,n)'*Ha(:,n));

end

[tsegl,tseg2] = size(Hs);

figure('PaperPosition',[1.5 0.5 5 3.75])

bar(l:N,pct,V), v=axis; v(l)=0; v(2)=N+l; v(3)=0; axis(v);

xlabel('Mode Index "n"'); ylabel(Tercent');

title(['Single Mode RMS Error for Centered PEC Sphere: ^evaK'case')])

yn=input('Print Hard Copy ? (Y/N): '/s');

if ~isempty(yn), ifyn= 'y'
|

yn= 'Y', print; end; end

while 1,

n=input(['Enter n <= ',int2str(N),...

1

for Spherical Harmonic (0 to stop): ']);

if isempty(n), break;

elseif n= 0, break;

elseif n > N, disp('n exceeds N'); break; end

figureCPaperPosition'^1.5 0.5 5 3.75])
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plot(th_b,Hb(:,n),
,

k')

xlabel(Theta (deg)'); ylabel(*Hphi (A/m)');

title(['Single Mode Hphi at Outer Boundary: ',eval('case'),.

'; n=',int2str(n)])

v=axis; axis([0 180 v(3) v(4)]);

yn=input('Print Hard Copy ? (Y/N): ','s');

if ~isempty(yn), ifyn= 'y'
|

yn= 'Y
1

,
print; end; end

if length(tha) < 38,

figure('PaperPosition',[1.5 0.5 5 3.75])

plot(th_a,Ha(:,n),
,k,

,th_a,Hc(:,n)
)

,

k.')

titleCfExact (line), FEM (dots): ^evalCcase'),...

'; n=',int2str(n),'; RMS Error=\num2str(pct(n)),,0
/o'])

else,

figure(TaperPosition',[1.5 0.5 5 3.75])

plot(th_a,Ha(:,n),
,

k',th_a,Hc(:,n),
,

k.');

title(['Exact (line), FEM (dots): '^valCcase'),...

'; n=',int2str(n),'; RMS Error=
,

,num2str(pct(n)),'%'])

end

xlabel(Theta (deg)'); ylabel('Hphi (A/m)');

v=axis; axis([0 180 v(3) v(4)]);

yn=input(Trint Hard Copy ? (Y/N): ','s');

if ~isempty(yn), if yn= 'y'
|

yn= 'Y', print; end; end

end
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% hspherel.m

% Program Hsphere.M uses spherical harmonics to compute

% the Hs array for a centered PEC sphere. Saves in same

% format as FEM2.m and can be used in FEMCHKxx.m programs

% By M.A. Morgan 5/2/97

% 5/10/97 modified by Dan Wawrzyniak

% Nmax = 2*k*b

clear all

fHnputCEnter frequency in MHz: '); k=pi*f/150; lambda = 3e2/f;

a=input('Enter metal sphere radius "a" in meters: ');

b=input('Enter outer mesh radius "b" in meters: ');

Nsl=input('Enter number oftheta points per wavelength: ');

Ns = fix(pi*b*Nsl/lambda);

disp([Total theta points = ',int2str(Ns)])

th=linspace(0,pi,Ns); thd=linspace(0, 180,Ns); dthl2=pi/(12*(Ns-l));

Ra=k*a; Rb=k*b; cth=cos(th); sth=sin(th); Nmax=2*fix(Rb);

disp(' '); disp(['Estimated Nmax=integer[2*k*b] is ',int2str(Nmax)])

N=inputCEnter Upper Mode Order to Use in Computing Hs: ');

dispC ')

[Hna,DHna]=shan3(Ra,N);[Hnb,DHnb]=shan3(Rb,N);

Pnl=legpol2(cth,N); n=l:N; Cn=(2*n+l)./(2*n.*(n+l));

Qn=(b/a)./(real(DHna). *imag(Hnb)-real(Hnb). *imag(DHna));

n=l:N; A=zeros(N,Ns); Hs=zeros(Ns,Ns);

% Numerical integration of up(th)*Pnl(cth)*sth

forp=2:Ns-l;

fh=Pnl(p-l:p+l,:); g=sth(p-l:p+l);

Inp=dthl2*(fh(l,:)*g(l)+6*fh(2,:)*g(2)+fh(3,:)*g(3)+...

m(l,:)*g(2)+fh(2,:)*g(l)+m(2,:)*g(3)+fh(3,:)*g(2));

A(:,p)=(Cn.*Qn.*Inp).';

end

Hs=Pnl*A;

n=l:Ns; elf; plot(n,diag(Hs),'r')

v=axis; axis([l Ns v(3) v(4)])

xlabel('row(n)'); ylabel('Real Hs Diagonal')

title(['Diag[Hs] using Hsphere.m for Ns- ,int2str(Ns),...

'; Nmax=',int2str(N),]);

figure(l)

yn=input('Print Hard Copy ? (Y/N): ','s');

if ~isempty(yn), ifyn= 'y'
|

yn= 'Y', print; end; end

rs=a*sth'; zs=a*cth'; rb=b*sth'; zb=b*cth';

% Saving Needed Parameters and Hs Transfer Function Array

save femdat f rs zs rb zb Hs
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function [Hn,DHn] = shan3(X,N)

% Riccati Spherical Hankel Function HnA(2)(X) = Jn(X) -j*Yn(X)

% and Derivative. Using MatLab cylindrical functions of order n+1/2.

% Function returns: Hn(n)=HnA(2)(x) and DHn(n)=dHnA(2)(x)/dx
% for n=l to N. Input N is a positive integer. X is an array

% of real or complex values [xl x2 ... xM]. Output Hn(xm) and

% DHn(xm) are M by N complex arrays. By M.A. Morgan.

% Mod-3 (5/1/97) allows X to be either row or column array.

[ml m2]=size(X); M=max(ml,m2); Hn=zeros(M,N); DHn=Hn;
ifml=l, x=X; else, x=X; end

Nu=(l:N)+0.5; xn=x*ones(l,N);

J0=sqrt(pi*x/2).*besselj(0.5,x);

Jn=sqrt(pi*xn/2). *besselj(Nu,x);

N0=sqrt(pi*x/2).*bessely(0.5,x);

Nn=sqrt(pi*xn/2). *bessely(Nu,x);

Hn=Jn-j*Nn; H0=J0-j*N0; DHn(:,l)=HO-Hn(:,l)./x;

ifN > 1, DHn(:,2)=Hn(:,l)-2*Hn(:,2)./x; end

ifN > 2,

for n=3:N; DHn(:,n)=Hn(:,n-l)-n*Hn(:,n)./x; end

end
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function Pnl = legpol2(X,N)

% Computing a matrix of associated Legendre polynomials

% PnAm(x) with m=l, for n=l, 2, .. N where N is a positive integer

% and X is an M-element array of real values [xl x2 ... xM].

% Computed real array Pnl(xm) has M rows and N columns.

% Using upward recurrence formula from page 953 ofBalanis -

% Advanced EM Engineering, Wiley, 1989. Program by M.A. Morgan
% Mod-2 (5/1/97) allows either row or column input X array

[ml m2]=size(X); M=max(ml,m2); Pnl=zeros(M,N);

ifm1=1, x=X*; else, x=X; end

Pn 1=zeros(M,N); Pn 1 (:, 1 )=-sqrt( 1 -x. *x);

ifN> 1, Pnl(:,2)=3*x.*Pnl(:,l); end

ifN > 2,

forn=2:N-l;

nl=l/n;Pnl(:,n+l)=(2+nl)*x.*Pnl(:,n)-(l+nl)*Pnl(:,n-l);

end

end
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function [rs,zs,rb,zb] = osphere

% Computing meridian surface coordinates for offset sphere

% (rs,zs) with a=radius and d=z-axis offset. Outer

% mesh boundary is centered b=radius sphere (rb,zb).

% Returning coordinates in Ns x 4 array.

% By M.A. Morgan 3/24/97

disp('Offset Sphere Surface and Mesh Boundary Program');

a=input('Enter sphere radius (meters): ');

d=inputCEnter sphere offset (meters): ');

b=input(TEnter mesh radius (meters): ');

Ns=input('Enter number of surface points: ');

tha=linspace(0,pi,Ns)'; sta=sin(tha); cta=cos(tha);

rs=a*sta; zs=a*cta+d;

thb=tha-asin(d*sin(pi-tha)/b); stb=sin(thb); ctb=cos(thb);

rb=b*stb; zb=b*ctb;

elf reset; plot(rs,zs,rs,zs,'.g',rb,zb,rb,zb,'.g')

v=axis; v(l)=0; v(2)=v(4)-v(3); axis(v); axis square;

xlabel('Press a Key to Display Mesh or <Ctrl> C to Abort')

figure(l)
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function [rs,zs,rb,zb] = cone

% Computing meridian surface coordinates for centered cone

% (rs,zs) with h=height and b=base radius . Outer

% mesh boundary is centered a=radius sphere (rb,zb).

% Returning coordinates in Ns x 4 array.

% By M.A. Morgan 3/27/97

disp('Conical Surface and Spherical Mesh Boundary Program');

h=inputCEnter cone height (meters): ');

b=inputCEnter cone base radius (meters): ');

a=inputCEnter outer mesh spherical radius (meters): ');

Ns=inputCEnter number of surface points: ');

rs=zeros(Ns,l); zs=rs; th=rs;

S=b+sqrt(b*b+h*h); % total surface length on cone

Nb=fix(Ns*b/S)+l; ifNb>Ns-2, Nb=Ns-2; end; db=b/Nb; Nz=Ns-Nb;
rs(l :Nz)=linspace(0,b,Nz); zs(l :Nz)=linspace(h/2,-h/2,Nz);

rs(Nz+l :Ns)=linspace(b-db,0,Nb); zs(Nz+l :Ns)=(-h/2)*ones(Nb, 1);

% distort boundary node positions to improve mesh near corner

a2=atan(h/b)/2; gm=a2+pi/2; c=(h/2)-b*tan(a2);

dl=asin(c*sin(gm)/a); thc=gm+dl; dtb=(pi-thc)/Nb;

th(l :Nz)=linspace(0,thc,Nz); th(Nz+l :Ns)=linspace(thc+dtb,pi,Nb);

st=sin(th); ct=cos(th); rb=a*st; zb=a*ct;

elf reset; plot(rs,zs,rs,zs,'r.',rb,zb,rb,zb,'g.')

v=axis; v(l)=0; v(2)=v(4)-v(3); axis(v); axis square; figure(l)

xlabel('Press a Key to Display Mesh or <Ctrl> C to Abort')
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