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ABSTRACT

A "network interdictor" has a limited supply of resource with which to disrupt a

"network user's" flow of supplies in a capacitated transshipment network. The

interdictor' s problem of minimizing the maximum flow through the network is a difficult-

to-solve integer programming problem but we show that a heuristic based on Lagrangian

relaxation is very effective in approximately solving the problem.

We implement algorithms in C to approximately solve both the static (without

considering time) and dynamic network interdiction problems. Static test networks range

in size from 25 nodes and 64 arcs to 400 nodes and 1519 arcs. Using an IBM RS/6000

Model 590 workstation, we find optimal solutions for seven of 12 test networks and solve

the largest problem in only 31.0 seconds. We model a dynamic network in time-expanded

form in order to assign time weights of or 1 to flow, include repair time of interdicted

arcs, and provide a schedule to the network interdictor that identifies arcs and time

periods for interdictions. Dynamic networks range in size from 525 nodes and 1,344 arcs

to 40,400 nodes and 153,419 arcs (in time-expanded form). We find near-optimal

solutions in 13 of 24 test networks and solve the largest network in 1729.5 seconds.
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EXECUTIVE SUMMARY

Opponents face each other in a field of battle. The environment and terrain affect

both sides equally. To remain ready for battle, both sides need a constant supply of food,

fuel, and repair parts; disruptions of those flows cause an immediate loss of combat

power. In this scenario, one side uses a transportation network to provide supplies,

troops, and ammunition to his forces. The other side, far from home, has the ability to

identify his opponent's supply points and to temporarily stop movement of supplies over

segments of that opponent's transportation network.

This thesis develops mathematical programming methods for the effective

employment of limited interdiction assets to reduce the flow of a single commodity

through a capacitated transportation (transshipment) network. The network user strives

to maximize flow of a commodity through the network, while an interdictor, with limited

assets, attempts to interdict (destroy) arcs or links in the network to minimize the

maximum flow. We develop a dynamic model that allows the interdictor to assign time

weights of or 1 to the arrival of war material at battlefield destinations. The interdictor

allocates his resources appropriately, keeping in mind that interdicted arcs can be repaired

over time.

While this thesis is motivated by the possibility of weakening the military force of

the network user before engagement in battle, other uses may include disrupting the

escape routes of a fugitive or reducing the flow of illegal drugs and precursor chemicals

moving through a network of rivers and roads. This problem has been studied before,

during the Vietnam War and, more recently, in support of the war on illegal drugs.

Previous studies have not modeled the time aspect of moving logistics through a

network. By representing the network in time-expanded form, we can define a specific

time period of interest, include attributes such as a time-weighted value for flows arriving

at sinks, the repair of arcs after interdiction, and a schedule for the employment of

interdiction assets.
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We assign time weights of or 1 to flow arriving at a sink. We give value of 1 to

flow arriving at a sink before the end of a "cutoff' time and otherwise. A more general

version of the dynamic network model might include arbitrary non-negative time weights

but is beyond the scope of this thesis. We model repair of arcs by allowing interdictions to

be effective for limited periods of time. We assume complete interdiction of an arc until

repair, i.e., an interdicted arc has zero capacity until it is repaired. A repaired arc is

restored to its nominal capacity.

The network interdiction problem is difficult to solve due to the interdiction

budget constraint for the network interdictor. We relax this constraint using a Lagrangian

relaxation that allows the interdictor to violate the constraint while paying a penalty. For a

fixed value of a penalty parameter, the relaxation is an easy-to-solve maximum flow

problem with a solution that provides a lower bound on the optimal solution to the

network interdiction problem. The solution may or may not be feasible. We maximize the

lower bound using binary search on the value of the penalty parameter, solving a

maximum flow problem at each step. The best feasible solution obtained is the heuristic

solution to the problem. The maximized lower bound and the objective value of the

solution to the best feasible solution are compared to judge solution quality.

We implement algorithms to approximately solve both the static (without

considering time) and dynamic network interdiction problems in C using an IBM RS/6000

Model 590 workstation. The static test networks range in size from 25 nodes and 64 arcs

to 400 nodes and 1519 arcs. We find optimal solutions for seven of 12 test networks

solving the largest problem in only 31.0 seconds. Dynamic networks range in size from

525 nodes and 1,344 arcs to 40,400 nodes and 153,419 arcs (in time-expanded form). We

find near-optimal solutions in 13 of 24 test networks and solve the largest network in

1729.5 seconds.
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I. INTRODUCTION

Opponents face each other in a field of battle. The environment and terrain affect

both sides equally. To remain ready for battle, both sides need a constant supply of food,

fuel, and repair parts. Disruptions of those flows cause an immediate loss of combat

power. In this battle, one side uses a transportation network to provide supplies, troops,

and ammunition to his forces. The other side, far from home, has the ability to identify

his opponent's supply points and to temporarily stop movement of supplies over

segments of the opponent's transportation network.

This thesis develops new mathematical programming methods for the effective

employment of limited interdiction assets to reduce the time-weighted flow (weights are

or 1) of a single commodity through a capacitated transshipment network. The network

user strives to maximize flow of a commodity through the network, while an interdictor,

with limited assets, attempts to interdict (destroy) arcs or links in the network to

minimize the maximum flow. The interdictor knows that his adversary values the

commodity differently depending upon its time of arrival. The interdictor therefore gives

weighted values to the arrival of war material at battlefield destinations and wishes to

allocate his resources appropriately keeping in mind that broken arcs can be repaired over

time. While this thesis is motivated by possibility of weakening the military force of the

network user before engagement in battle, other uses may include disrupting the escape

routes of a fugitive or reducing the flow of illegal drugs and precursor chemicals moving

through a network of rivers and roads.

We introduce the reader to the network interdiction problem and its notation in

this chapter. We heuristically solve a static model in Chapter II using a Lagrangian

relaxation heuristic that relaxes the network interdictor's resource budget constraint.

Although the network interdiction problem is difficult to solve, later, we see that this

method often produces an optimal solution. In Chapter EI we introduce the reader to the

dynamic model and the time-expanded form of a network. Through the dynamic models

presented in Chapter HI, we can consider time-weighted flow and the repair of interdicted



arcs. Our solutions tell the interdictor not only where to strike but also when to strike. A

Lagrangian heuristic provides reliable solutions for the dynamic network, also.

A. BACKGROUND

Using limited resources, an interdictor attempts to restrict an enemy's use of a

capacitated transshipment network. For a military interdictor, the immediate objective

could be to decrease the fighting effectiveness of the enemy by minimizing the amount of

supplies such as shipments of fuel, repair parts, ammunition, available to the enemy

commander who is the "network user." Another objective might be to limit the enemy

commander's ability to maneuver for a specified time period by destroying the bridges and

roads around him. We model the logistic network as a single-commodity dynamic

transshipment network with capacities and transit times on its arcs. The network has

several sources, the supply points, and several sinks, the military units in the field. Arc

capacities restrict flow rates while transit times determine how long each unit of flow

spends traversing the network.

The goal of the network user is to move an appropriate amount of flow, the war

material, out of each source and into each sink. The interdictor decides which arcs to

interdict, the "interdiction set," while recognizing the time-weighted value of the logistics.

In this thesis, the values of the time weights are or 1 for reasons explained later. Each

interdiction consumes an amount of a limited resource that may depend on the particular

arc. There is a fixed amount of total resource available to the interdictor. Our models do

not allow partial interdiction; interdicted arcs have zero capacity until repaired. We

assume that the network user repairs each interdicted arc, restoring the arc to full capacity

within a specified number of time units.

In this chapter, we introduce the notation and models used in solving a simple

network interdiction problem. We describe the problem from the network user's point of

view, the maximum flow model. Building on the maximum flow model, we develop the



network interdiction model. This model, an integer program, finds an interdiction set that

minimizes the maximum network flow subject to limited assets.

In Chapter II, we solve the static network interdiction problem. The integer

program for this model is hard to solve in practice, so we use a Lagrangian relaxation

heuristic to solve the problem approximately. By adding small random amounts to arc

capacities, the heuristic often finds an optimal solution.

We address the time-expanded network and repair of arcs in Chapter III. We use

a single commodity dynamic transshipment network in time-expanded form. This form of

the network allows us introduce a time-weighted aspect to network flow and to model the

repair and possible re-attack of interdicted arcs during the time periods under

consideration. We assume complete repair of arcs at the end of a repair interval. Our

solution identifies a set of arcs to interdict and the time period in which to attack or re-

attack these arcs.

B. NETWORKS AND INTERDICTION

We first address interdiction in a static network, that is, one without time

attributes. We present the maximum flow, minimum cut, and a simple network

interdiction model to help the reader understand the basic problem. Most definitions

follow Cormican (1995).

1. Description of a Static Network

We define a network with respect to a directed graph G - (N, A) where N is a set

of n nodes and A is a set ofm directed "edges" or "arcs." In a transshipment network, an

arc (i,j) can be thought of as a length of roadway, river segment, etc., that provides a

path for the flow of a commodity from /' to j. A node, /, can be thought of as a road

junction or the endpoint of a road segment. A commodity flowing through the network

originates at a "source node" a^N'm the network and flows to "sink node" beN. If there

is more than one source or sink, we create a "super-source" and/or a "super-sink" and



artificial arcs with appropriately large capacities linking them to the sources and sinks,

respectively. This idea is graphically presented in Figure 1 . We expand the set of arcs A

to include the artificial arcs and another artificial "return arc," {b,a) , from the sink to the

source or (b' ,a') from the supersink b
y

to the supersource a'

.

Sink 1 Source 1 Sinkl

Super-sink

Sink 2

(a) Original network (b) Network with artificial arcs

Figure 1 . Network with and without artificial arcs.

Each arc (i,j) has an associated set of parameters that describes its

characteristics. The finite nominal capacity or maximum allowable flow on an arc is

denoted u
l}

, where u
tJ

> 0. The capacity of the artificial return arc is large, such as

T]«« + 1 - The cost, in units of resource, to interdict an arc (i,j) is designated r
l}

, and

0J)eA

is typically assumed to be a small integer. It may occur that an arc cannot be interdicted at

any cost for political, tactical, or other reasons and therefore the interdiction cost is large,

r
l}

.
= oo

. The interdictor has a total ofR units of resource available for interdiction. In this

thesis, we assume a single type of interdiction resource. A natural extension would

include multiple types of interdiction resources available to the attacker and arcs that

require specific types of resource to interdict them.

2. Network Maximum Flow Models

The task of the network user is to move supplies from the sources to the sinks.

The standard maximum flow linear programming model (e.g., Ahuja, Magnanti, and Orlin



1993, p. 168) determines the maximum quantity of a single commodity that can be moved

through a capacitated network from source node a to sink node b. This maximum flow

model, denoted MF, is:

MF

Indices:

/', j<=N Nodes of G = (N, A) , includes two special nodes: a, the source or super-

source and b, the sink or super-sink

(ij)eA ArcsofG = (N,A)

Data:

w
y

Nominal capacity of arc (i,j)

Decision variable:

x
y

Amount of flow on arc (i,j)

The Formulation:

max x <*ua^ variables

st
- 2>*- 2X =0 ViGN :a,

(1)

(,J)eA (j,i)zA

0<x
v
<u,

}
V{i,j)eA Aj

(2)

The quantity x
y

is the flow of the commodity from node / to nodey on directed arc

(i,j) e A , and xba is the flow from sink node b to source node a, on artificial arc (b,a)

,

the return arc. The flow on arc (b,a) is the sum of all the flows from the source to the

sink. Maximizing flow xba is equivalent to maximizing flow through the network. The

flow balance constraints (1) require that the flow arriving at a node equal the flow leaving

the node. The capacity constraints (2) require a non-negative flow on an arc that is not

greater than the capacity of the arc.



The dual of the maximum flow problem is the minimum cut problem. The dual

variables of the maximum flow model, a
i
and 6

X)
are shown in MF. When we find an

optimal solution to a maximum flow problem, we also find an optimal solution to the

minimum cut problem.

A "cut" is a partition of the node set N into two sets N
a
and Nb , with a eNa

and b eN
b . Each cut defines a set of arcs that have one endpoint in N

a
and the other

endpoint in N
b . With respect to the cut, an arc (i,j) is a "forward" arc if it is directed

from a node / e Na to a node j
; eNb . The capacity of the cut is the sum of the capacities

of all the forward arcs associated with the cut. A minimum cut, then, is a cut of minimum

capacity among all possible cuts in the network. (The above definitions follow Ahuja et al.

(1993).) By the maximum flow-minimum cut theorem (Ford and Fulkerson, 1956), the

maximum flow equals the capacity of a minimum cut. A minimum cut can be found

directly by solving the dual of the maximum flow problem MFD (e.g., Wood, 1993):

MFD

Indices:

i, j&N Nodes of G = (N, A) , includes two special nodes: a, the source or super-

source and b, the sink or super-sink

(i,j)eA ArcsofG = (N,A)

Data:

u
tj

Nominal capacity of arc (i,j)

Decision variables:

a
t

a
i
= 1 if / g Nb

else a, = if /' € N
a ,

i} i3
- 1 if (i,j) is a forward arc of the minimum capacity cut, else 6

l}
=



The Formulation:

s.t. a, -a
7
.+^>0 V(i,j)eA-(b,a)

(3)

a*-a
fl
+0ia >l

0„ >0 V(j,y)e,4

^=0

MFD is totally unimodular and if we arbitrarily set a
a
=0, then all variables will

be or 1 in an optimal extreme point solution. The variables in the model have the

following physical interpretation: a
t

= 1 indicates izN
b , a

t

=0 indicates i&N
a ,

6
tj
= 1 indicates arc (i,j) i eN

a , j eNb , and
1}

= 0, otherwise.

3. The Network Interdiction Model

The network interdiction problem can be formalized in a min-max flow-based

model. The network user attempts to maximize the flow across the network, while the

interdictor simultaneously strives to minimize this maximum flow. The network

interdictor's activities are limited by a budget constraint. The standard network

interdiction model is:

S-NIM
Indices:

/', jgN Nodes of G = (N, A) , includes two special nodes: a, the source or super-

source and b, the sink or super-sink

(iJ)sA ArcsofG = (N,A)

Data:

u
tJ

Nominal capacity of arc (/', j)

r
tj

Amount of resource required to interdict arc (/',_/)



R Total amount of resource for interdiction available to the network interdictor

Network user decision variables:

Xy Amount of flow on arc (/',/)

Network interdictor decision variables:

Yii Yij - 1 indicates arc (i,j) is interdicted; else y v
=

The Formulation:

z* = min max x
ba (5)

St H X,j- Z X
7>
=0 V/' GN (6>

(iJ)eA (i,j)£A

0<x
v
< Wy (i- r .) V(i,j)eA (7)

where Y \y\ J^r9r9
^ R, Y, e {0,1} V(/,y) g A (8)

The objective function (5) seeks to minimize the maximum flow. Constraints (6)

are just the flow balance constraints from MF. The arc capacity constraints (7) restrict the

amount of flow on the arc to either the nominal capacity if the arc is not interdicted or

zero if the arc is interdicted. In this model, y tJ

=1 if arc (i,j) is interdicted and y v
=0 i£

the arc is not interdicted. Interdiction resource constraint (8) limits the interdiction

decisions. Each interdiction consumes an amount of interdiction resource, r
y

. The total

resource consumed by the interdiction set must be less than the amount of resource

available R.

Wood (1993) shows that the inner maximum flow model can be converted to its

dual and the minimum cut model and the resulting nonlinear integer program linearized.

This model is a simple minimizing integer program that will be addressed in Chapter II

together with a solution method using Lagrangian relaxation.



C. LITERATURE SEARCH

There was strong interest in the network interdiction problem during the Vietnam

War. Works during this time period were either very general, such as Wollmer (1964), to

the very specific also by Wollmer (1970). More recently, the war on illegal drugs

generated new interest in network interdiction, Phillips (1992). There are other

contributors to the topic but almost all these works share the characteristic of being

specific to the application and not easily generalizable. More recent works by Steinrauf

(1991), Wood (1993) and Cormican (1995) overcome this limitation by adopting a

mathematical programming approach. The advantage of this approach is that it readily

generalizes and is easily adaptable to a variety of network interdiction problems. These

mathematical models, however, are integer and mixed-integer programs that are difficult

to solve. Wood (1993) shows that the basic network interdiction problem is NP-

complete, even when restricted to planar graphs where interdictions require varying

amounts of resource, or to non-planar graphs requiring only one unit of resource to

interdict any arc.

We have found no sources that address the network interdiction problem in time-

expanded form. Only Wollmer (1970) addresses repair time of arcs. Wollmer allows

partial interdiction of arcs and finds the best single arc to break, repeating the process for

multiple interdictions. His algorithm selects an arc for interdiction that maximizes the sum

of the repair cost plus the product of the repair time and the cost increase of a minimum-

cost circulation flow. Wollmer' s methodology determines an approximately optimal

interdiction set in exponential time.

Ratliff, Sicillia, and Lubore (1975) solve the network interdiction problem by

finding a set of n arcs whose simultaneous removal from a connected single commodity

network results in the greatest decrease in the throughput capacity of the remaining

system between the source and the sink. The method applies to planar and non-planar

networks but addresses neither a dynamic network nor repair of arcs.



Steinrauf (1991) develops a mathematical programming approach for the network

interdiction problem using integer programming. It solves small problems but is not very

useful for large integer problems. A relaxation or decomposition is needed.

Cormican (1995) develops a deterministic model using Benders decomposition

with an original "flow-dispersion heuristic." The flow-dispersion heuristic achieves a

maximum flow while keeping flows on individual arcs as small as possible. This serves to

decrease solution time by reducing the number of iterations that Benders decomposition

requires for convergence. Cormican extends the method to include stochastic arc

capacities.

Phillips (1992) describes pseudo-polynomial time algorithms that provide the

interdictor with a strategy that optimally uses exactly the amount of resources he is willing

to commit to the attack. Phillips proves that for a fixed cut, a greedy attack strategy is

optimal. A greedy attack strategy is one that removes as much of the cut's fixed capacity

as possible, expending exactly the entire interdiction budget. A simple algorithm for the

network interdictor's problem would enumerate all cuts, (an exponential number are

possible), compute the result of a greedy attack on each, and pick the best one. Phillips'

method does not solve an integer problem and instead assigns some benefit to partial

interdictions. Recognizing the need for faster algorithms, Phillips proposes pseudo-

polynomial-time algorithms for planar graphs and shows how to convert them into fully

polynomial-time approximation schemes.

Wood (1993) develops integer programming models for the network interdiction

problem and its variations. He develops a simple minimization model that is derived from

the formal min-max network interdiction model. The problem is shown to be NP

complete. He does not consider the time-expanded dynamic network.

This thesis continues the work of others to develop mathematical programming

models for the network interdiction problem. We seek to include aspects associated with

time in our models by using a time-expanded form. This form allows us to model time

weights on flow of or 1 and arcs that are repaired a certain amount of time after

10



interdiction. We have already introduced the maximum flow model with its dual and the

standard network interdiction model. In Chapter II, we develop the network interdiction

problem in its simpler, static form, without time attributes, and present a Lagrangian

relaxation heuristic to find a good feasible set of arcs to interdict.

11
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n. SOLVING THE BASIC MODEL

In Chapter I, we presented the standard network interdiction problem S-NIM.

Because S-NIM involves static flows, i.e., does not involve flows over time, we call it a

"static version" of the network interdiction problem to differentiate it from the "dynamic

version" covered in Chapter III. Wood (1993) shows that the static network interdiction

problem is NP-complete, even when restricted to planar graphs where interdictions require

varying amounts of resource. In this chapter, we seek faster methods to solve the static

problem (at least approximately) using Lagrangian relaxation. Although not guaranteed to

find an optimal solution, optimal solutions are consistently obtained by the Lagrangian

relaxation method described in this chapter when r
l}
= 1 for all arcs (i,j)

.

A. THE INTEGER PROBLEM

Recall from Chapter I that the standard network interdiction model, S-NIM, is

stated as a min-max problem where the network user attempts to maximize flow across

the network while the interdictor is simultaneously striving to minimize that flow subject

to the interdiction budget constraint.

For a fixed interdiction decision, note that the inner maximization of S-NIM is just

a maximum flow problem. We can take the dual of the inner maximum flow model and

linearize the resulting model to obtain the simple network interdiction model (Wood,

1993):

NTM

Indices:

z, jgN -Nodes of G = (N, A) , includes two special nodes, a the source or super-

source, and b, the sink or super-sink

(iJ)eA AicsofG = (N,A)
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Data:

u
SJ

Nominal capacity of arc (/',/')

r
i}

Amount of resource required to interdict arc (i,j) , r
i}
> and integer

R Total resource for interdiction available to the network interdictor, R > and

integer

Decision variables:

«, a, = 1 if / e Nb , a, - if / e Na ,

Pl} j5 l}
= 1 if arc (/,_/) is in the cut and not interdicted, otherwise /? .

-

Yq Yij
~ 1 indicates arc (/,y) is interdicted; otherwise y v

=

The Formulation:

z* = min ]£>,,#,

s.t. a
t -aj+r 9 +fi9 Z0 \/(iJ)zA-(b,a)

(Xb-aa+Yba+Pba * ]

a, e {0,1} V/gJV

A>e {0,1} V (ij) gA

A.-0
2>,r*** (9)

^G{0,l}V(iJ)e^

Note that this model resembles the dual of the maximum flow model, MFD, from

Chapter I, but with
IJ

replaced by y i}
+ pv

. NTM identifies a cut where the variables a
x

have the same meaning as in MFD. y and fit
represent interdiction decisions and have

the following interpretation: For forward arcs (/',_/') in the cut, a
l

-a.--\ so

Yij + Py — 1 is required. So, either y l}
=1, indicating that this arc is interdicted, or

P tJ

= 1 , indicating that this arc forms part of the minimum capacity cut after interdiction.

14



Yij
- P,j

~ outside the cut indicating that these arcs are neither interdicted nor do they

form part of the minimum capacity cut after interdiction.

B. LAGRANGIAN RELAXATION FOR THE SIMPLE INTEGER

PROBLEM

The basic integer program formulation NIM is known to be hard to solve.

Without the complicating interdiction budget constraint (9), the problem is an easy-to-

solve model like MFD. While constraint (9) cannot be ignored, it can be relaxed: We use

a Lagrangian relaxation of the interdiction resource constraint. The relaxation allows us

to approximately solve the problem by moving the resource constraint into the objective

function. The resulting problem is almost as easy to solve as if constraint (9) were

ignored. NIM, with the Lagrangian relaxation, is:

LR(A)

(11)

z{X) = min 2>V£,+AV,)-JK < l0 >

s.t. a
t -aj+ri+fi,*0 V(iJ)eA-(b,a)

<* b -ct a +y ba +Pba
>\

a, e{0,1} V/eJV

a a =0,a b
=1

^€{0,1} V(i,f)eA

A.-0
r,G{0,l} V{i,j)eA

The objective function (10) incorporates the resource constraint and a Lagrangian

multiplier X. The function z(X) is a concave function in X so that we can find the best

value for z{X) by iteratively adjusting X using a binary search. The objective function is

15



derived from min
d̂
u

ij
fi ij

+ /l( ^f,jX„ - R) where the reader can more clearly observe
a 'r 'P

(i,j)eA (iJ)eA

the interdiction resource constraint (9) in the objective function with multiplier A.

Because of the relaxation, z{X) <z* but as we adjust X we may find a multiplier

such that z(X) - z *
. In fact when we have found a Lagrangian multiplier such

that 2^7,, =fl, then

VJ)eA

z(X) = min 2X*p +H Sv, - R) = min ^fi, = ,•

.

< 12 >

However, we cannot be assured of an optimal solution if some portion of the interdiction

resource, R, remains unused. In this case, A( ^r
v y v

-R) <0 and there may be some
('J)eA

benefit in expending more interdiction resource. Therefore, a solution with Vr^ < R
('J)eA

may not be optimal.

With the interdiction budget constraint in the objective function, LR(A) is

unimodular and can be solved as a linear program. Since the extreme point solutions to

the related dual of the maximum flow problem are binary, we can remove the upper bound

constraints on a
i
and fifj

and y v
in the linear relaxation without changing the solution.

The relaxation of LR(A) is:
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LRR(A)

z(Z)= min ^(u
vfi9

+Ar
9r9

)-^R

s.t. a
i
-a

j +r9 +fi9 >0 \/(i,j)zA-(b,a)

ab -aa +rba +fiba >l

a, > V# e N
a a =0, a b

=\

Pv
>0 V(i,j)eA

7^0 V(i,j)eA

LRR(/l) looks similar to the dual to the maximum flow problem MFD which also has

integer extreme points. As a result, we may solve LR(A) by solving LRR(A), or more

importantly, through its dual. For a fixed A, the AR term is a constant and remains in the

objective function for the dual. The dual of the relaxed model of the Lagrangian

relaxation is:

-D1(A)

z{X) - max xba
- AR

0<x
9
<u

9
\/(i,j)eA

0<x
v
<Ar

v
V{i,j)eA

Since the flow must meet both capacity constraints, the capacity constraints can be

restated as 0< x
y
< min{ty,Jrv } . Model LRR-D2(A) is equivalent to LRR-Dl(/l) with

the restated capacity constraint:

17



LRR-D2(A)

z{X) = max x
ba

- AR

st 2X - 2X = ° V/eA^

ii,j)eA (j,i)sA

0<x
y
<min{Wy ,^} VQ,j)eA

This is very similar to the maximum flow model, MF, with capacities modified by

the dual cost of interdicting the arc. Any solution to LRR-D2(/l) finds a minimum

capacity cut that corresponds to a feasible or infeasible solution to the original problem

NIM as follows:

a. a, =1 Vi tN
b , a, = Vi eNa .

b. py =1 if i eNa ,j e ./Vj, and x
jy
= w

()
, i.e., if (i,j) is a forward arc of the

minimum cut and u
tJ
< Ar

tJ
, then (i,j) is not interdicted.

c. Xij
~ 1 if ' € jV

a ,y g A^
6
and x

y
= Ar

i}
, i.e., if (/,/) is a forward arc of the

minimum cut and w
y
> Ar

tJ
, then (i,y) is interdicted.

d ^y =
^;> - V (/',_/') that are not forward arcs in the cut.

Note that A can always be perturbed so that u
1}

= Ar
tJ

does not occur. The

solution is feasible if the interdiction budget constraint (9) holds

C. SOLVING THE RELAXED NETWORK INTERDICTION PROBLEM

Given a fixed A, we can find a minimum capacity cut by solving LR(A) using an

easy-to-implement polynomial-time maximum flow algorithm for LRR-D2(/l). Arcs in the

minimum capacity cut, Ac , are examined to find the corresponding interdiction set,

Aj c: Ac , that may or may not be feasible. If A
1

is feasible for T, the corresponding

maximum flow value, z is an upper bound for z*, the solution to the network interdiction

model. We continue to adjust the Lagrangian multiplier, re-solving LRR-D2(/t) and trying
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to maximize z(A) , the lower bound until the "best" upper bound, the smallest value of z

found, and lower bound are equal, or the difference is as small as possible.

We iteratively solve LR(1) using binary search on A to find a good feasible

solution. We decrease A if ^L^y tj
< R encouraging use of more interdiction resource.

We increase A if 2^7 ;>
>R, raising the penalty for exceeding the interdiction budget.

We have found an optimal solution to NIM if TV^ - R since for this solution the

equality (12) holds. In words, the lower bound z(A) equals the upper bound z* and we

have found an optimal interdiction set.

The method may fail to find an optimal solution to NIM when it cannot identify a

set of arcs to interdict that consumes the entire interdiction resource budget. One such

failure occurs if the optimal cut found in LRR-D2(/l) is composed of a number of arcs

with equal capacity. For example, the network in Figure 2 consists of five arcs in parallel

between the source and sink with r
l}
- 1 and u

l}

= u V(/,y) . We have three units of

interdiction resource, i.e., R = 3. There is only one cut. For any A, the corresponding

solution to NTM interdicts all arcs (infeasible) or no arcs rather than the R = 3 arcs that are

optimal. Thus, Lagrangian relaxation will never find an optimal solution for this problem.

Figure 2. A network without an easy interdiction set

But, suppose that we add a very small random amount of capacity to each arc.

The algorithm is able to differentiate between arcs that would otherwise appear identical
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and the amount added is small enough not to affect the solution substantially. In practice,

we add a random 1/100,000 to 100/100,000 of capacity to each arc. We accomplish this

by multiplying all capacities by a scaling factor of 100,000 and then add a random amount

that varies uniformly from 1 to 100. This small amount causes only negligible changes in

the maximum flow in the network. This method has the advantage of only increasing

solution time by extra log (100,000) iterations while enabling the algorithm to solve a

difficult problem.

We use a shortest augmenting path algorithm (Edmonds and Karp, 1972) to solve

LRR-D2(X). (See Appendix A.) We modify the algorithm to find the "shortest

augmenting path," the augmenting path with as few arcs as possible, with maximum

capacity. We implement the Lagrangian relaxation and solve the maximum flow problem

to identify the minimum capacity cut Ac and the set of arcs to interdict A
1
c Ac .

We solve this problem for several test cases with the results discussed in Chapter

IV. The shortest augmenting path algorithm used in this thesis has a worst case

complexity of 0(nm 2

) (Ahuja et al., 1993, p. 213). The methods used to discriminate

between arcs, the random amount and the scaling, add a factor of log(100,000) to the

work of the algorithm. The process of finding the best Lagrangian multiplier using binary

search requires 0(1og(/) solutions of the maximum flow problem where U is the

maximum capacity of an arc in the network. The complexity of the relaxed network

interdiction problem is polynomial:

O(ww 2
(log£/ + log(100,000))) = 0(nm 2

logt/) .

We have tested the relaxed network interdiction problem with many different

networks. With r
l}

= 1 V (/,_/') e A , we often find an optimal solution. We find good

solutions that are sometimes optimal for the more general problem with general integer

h

Building on the material presented in this chapter, we next explore the dynamic

network in time-expanded form.
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ffl. THE TIME-EXPANDED PROBLEM

We have introduced the reader to the static network interdiction problem and will

now develop a dynamic version of that problem. We propose models in which the value

of the flow is time-weighted and interdicted arcs are repaired. In this thesis the time

weights are or 1 depending on the time of arrival of flow at sinks. The solution

identifies arcs and time periods of interdiction.

We introduce the reader to the dynamic model in Section A by developing the

time-expanded maximum flow model. In Section B, we develop the time-expanded

network interdiction model. In Section C, we develop a constrained minimum cut model

from the network interdiction model. In Section D, we use a Lagrangian relaxation to find

a feasible solution of the time-expanded network interdiction model. In Section E, we

present a method that implements the models of Section D to find a feasible interdiction

set for the time-expanded network interdiction problem.

A. DYNAMIC MAXIMUM FLOW MODELS

Dynamic network problems can be solved as traditional network problems on

exponentially (pseudo-polynomially) large, time-expanded networks. Our motivation for

using a dynamic network model is a desire to include additional attributes in the models

such as time-weighted flow, repair time for interdicted arcs, and a schedule for the

network interdictor to use in allocating assets. For a given network G = (N, A) , we form

a time-expanded network G T =(N T
,A

T
) as follows: The quantity T represents the

integer-valued time horizon for the dynamic problem consisting of T + 1 time periods; we

make T+ 1 copies i ,i
l
,i

2
,...,iT of each node i. Node i

t
in the time-expanded network

represents node / in the original network at time t. r
1Jt

is defined as the time required for

a commodity to traverse (/,_/) from / toy at time /. Normally, t
1}

= r
IJt

for all (i,j) e A

and all t. We include arc {i,j)
t
= (i,,j

t+Tl ) with capacity u
ljt

in G T
whenever (i,j) eA

and 0<t<T-T
y

. This allows flow to leave / at time t and arrive at j at time t + T
tJ

.
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The quantity x
ijt

denotes the amount of flow on (i,j)
t

. In a feasible dynamic flow, at

most u
lJt

units of flow can be sent on arc (i,j)
t
although we assume u

iJt
= u

i}
for all

(i,j) gA and all /.

The time-expanded problem requires us to adjust our definition of source and sink.

For each source and sink in the static network, there are T + 1 sources and sinks in the

time-expanded network. We add artificial arcs from super-source a' to each source

a
t
€ N T

, and artificial arcs from the sinks, b
t
eN t

to the super-sink b\ Each of these

artificial arcs is included in A T
. We also include an artificial arc "return arc" (b',a') from

the super-sink at time T to the super-source at time to complete the circulation of flow

from the sinks to the sources. The capacity of this arc is large and unconstraining, such as

^m, + 1 . We define the super-source to exist only at time period and the super-sink

only at the last time period T. Artificial arcs connecting the super-source to the regular

source nodes, (a' ,a
t )

, have za ,
- t . Artificial arcs connecting the sinks to the super-

sink, b\ , have rbb , = T- 1 . The return arc has rb ,a ,

t
= -T as a notational convenience.

In the dynamic maximum flow problem, the task of the network user is to find the

maximum amount of logistics that can move from the sources to the sinks, subject to arc

capacity constraints. The time-expanded maximum flow model, TE-MF, represents this

problem. Note that the objective function value x
b ,a ,T is the return arc representing the

total flow through the time-expanded network. The arrival of the flow at the sinks is not

time-weighted in this model.

TE-MF

Indices:

/', jeN Nodes of G = (N, A) , including two special nodes, a' the super-source, and

b' the super-sink

t,f Time periods: t,t — 0, 1, 2, ... , T
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(Jyj), Arc of G = (N,A) at time period t

Data:

M
y

Nominal capacity of arc (i,j)
t

r
l}

Traverse time of arc (i,j)
t

; flow leaves / at time / and arrives aty at time t +

Network user decision variable:

x
IJt

Flow on arc (i,j)
t

The Formulation:

max xb,a,T
: dual variables

st. Y,*m- ZV =0 V/,eATr
:a„

(12)

aj),zAT v,i),.€A
T
\r=t-t

0<x
1Jt
<u

v
V(i,j)

t
zA T

:0
lJt

(13)

The time-weighted maximum flow problem attaches different values, w
jb

,

t
, to the

arc flows depending on their time of arrival at the sink. This attribute recognizes that the

network user does not place equal value to the same shipment of supplies when it arrives

before a battle as when it arrives after the battle. The time-weighted maximum flow

model is:

TW-MF

maxZ Hwvtxm
r=o (i,b'),zA

T

<v

0<x
lJt
<u

v
\/(iJ)

t
zA T

(i,j),£A
r

(jj)t,£A
r
\t'=t-t

IJ
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A completely general dynamic network problem would allow each w
jb

,

t
to be an

arbitrary nonnegative value. This would significantly increase the difficulty of the

problem, however, and methods required to solve it are beyond the scope of this thesis.

(Benders decomposition may work; see Cormican (1995).) We use binary weights only:

We assign weights so that flow arriving at sink b, on or before the latest allowable time

period T
b
has a value of 1. Flow arriving after this cutoff time T

b
has a value of 0. Ifwe

simply remove the artificial arcs from A T
that have a time-weighted value of 0, TW-MF is

equivalent to TE-MF.

The dual of the maximum flow problem is the minimum cut problem. The dual

variables of the dynamic maximum flow model, a
lt
and 6

iJt
are shown in TE-MF. When

we find an optimal solution to a maximum flow problem, we also find an optimal solution

to the minimum cut problem.

We adjust our definitions pertaining to cuts to fit the time-expanded problem. A

"cut" is a partition of the node set N T
into two sets N T

a , and Nb , , with a 1

e N], and

b' g N
b

, . Each cut defines a set of arcs that have one endpoint in N T
a , and the other

endpoint in Nb . . The capacity of the cut is the sum of the capacities of the forward arcs in

the cut. We find a minimum capacity cut by solving TE-MFD:

TE-MFD

Indices:

/', jeN Nodes of G = (N, A) , including two special nodes, a' the super-source, and b

the super-sink

t,t Time periods: tj = 0, 1, 2, ... , T

(i,j)
t

Arc of G = (N, A) at time period t

Data:

Ujj Nominal capacity of arc {i,j)
t
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r
tj

Traverse time of arc (ij)
t

, flow leaves / at time / and arrives at./' at time / H

T
v

Decision variables:

a
tt au = 1 if i, e TV; , else a

lt
= if /, e tf

J.

,

^»f #«,» - 1 ^ ('»7)i is a forward arc of the minimum capacity cut, else 6
IJt

=

The Formulation:

nun I«A
.61

s.t. a
tt
-a

y(
+6

ijt
>0 V(iJ)

t
eA-(b',a')

T (14)

a fcT -ar
fl

. +^.flT
>1 (15)

0„>O V(/J), e^

^w = o

TE-MFD is totally unimodular and ifwe arbitrarily set a a , =0, then all variables

will be or 1 in an optimal extreme point solution.

B. THE TTME-EXPANDED INTERDICTION MODEL

Recall in Chapters I and II, that the network interdiction problem is stated as a

min-max problem. In the time-expanded network, the network user attempts to maximize

the time-weighted flow across the network over a specified time interval [0, T] . The

network interdictor attempts to minimize the time-weighted maximum flow by selecting an

appropriate interdiction set subject to the interdiction budget constraint.

We state the time-expanded model in a fundamentally different manner than we

state S-NTM. The approach that will be taken can best be illustrated with the static model

Recall that S-NTM is a min-max model in which interdictions reduce maximum arc

capacities to zero. An alternative formulation (Cormican, Morton and Wood, 1996)

subtracts interdicted flow in the objective function. This formulation is:
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S-NIM1

z*= min maxx
ba
- 2>„x,, (5')

st Z*#- T x,=° V/eAr <6>

(1,7 )e^ (',/)e/l

0<
XlJ <u tJ

V(i,j)eA (T)

where r = \y\ "£rijr,<R7 y i}
e{0,l} V(/,y) eA\ (8)

We extend this model to a time-expanded dynamic network interdiction model.

The dynamic network interdiction problem allows each arc to have an additional attribute,

qy
, an integer number of time periods required to repair arc (i,j) to full capacity starting

the period after the interdiction. Interdicting (/,/) at time t' means x
iJt
= for

t = t\t'+l,t
,

+2,...,?+q
iJ

. Nominal capacity u
i}

is restored for arc (i,j)
t

at time

t = f+q,+l.

The time-expanded, network interdiction, min-max model is:

TE-NIM

Indices:

i,jeN Nodes of G = (N,A) , including two special nodes, a' the super-source, and

V the super-sink

t,t' Time periods: t,f= 0, 1, 2, ... , T

(ij)
t

Arc of G - (N, A) at time period t

Data:

u
tJ

Nominal capacity of arc (i,j),

T
tJ

Traverse time of arc (i,j)
t

; flow leaves / at time /, arrives aty at time / + x
i}
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r
i}

Amount of resource required to interdict arc (i,j)
t

qv
Repair time interval for arc {i,j)

t
(begins the period after interdiction)

R Resource for interdiction available to the network interdictor

Network user decision variables:

x
IJt

Flow on arc (i,j)
t

Interdictor decision variables:

Y ,}t Y yt
- 1 indicates arc (i,j)

t
is interdicted at time /; otherwise y ijt

=

The Formulation:

,TE* = min max xbvT - ]T ( ^y ijV
)xm

{U)t eA* t'=t-
qiJ

(i,j),zA
T

U,i),,BA
T
\t'=t-z

y

0<x
tjt
<u

i}
\/{iJ)

t
zA-

wherer = j^ |

^r
ijYljt <R

(16)

(17)

(18)

(19)

The form of the objective function (16) reflects the struggle between the network user

who seeks to maximize flow through the network and the network interdictor who, using

interdiction resources, seeks to minimize that maximum flow. Flow through the network

is represented by the flow across the return arc {b\d) T . The network interdictor

removes flow from the network (effectively) by subtracting flow across interdicted arcs.

Constraints (17) are the flow balance constraints. (A model variant would allow storage

at node /, by creating "inventory" arcs from /, to iM .) The arc capacity constraints (18)

limit the maximum amount of flow entering an arc at time period t to the nominal capacity.

Interdiction resource constraint (19) limits the interdiction effort by the amount of

resource available R.
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C. A CONSTRAINED MINIMUM CUT MODEL

We convert the inner maximum flow problem of TE-NIM to its dual, the minimum

cut model to obtain:

TE-NIM1

Indices:

/, jeN Nodes of G = (N, A) , including two special nodes, a' the super-source, and

b
y

, the super-sink

t,f Time periods: t,f= 0, 1, 2, ... , T

(i,j), Arc of G = (N, A) at time period /

Data:

u
i}

Nominal capacity of arc (i,j)
t

Tjj Traverse time of arc (i,j)
t

, flow leaving / at time t, arrives aty at time / + x
t}

r
y

Amount of resource required to interdict arc (i,j)
t

qfj
Repair time interval for arc (i,j)

t
(begins the period after interdiction)

R Resource for interdiction available to the network interdictor

Decision variables:

a. a
it
- 1 if i

t
e Nb , , elsea

Jf
=

y ijt y IJt
= 1 indicates arc (i,j)

t
is interdicted at time t, otherwise y lt

=
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The Formulation:

TE " = min Yi/.r
*.r.fl *-* ? J

s.t. a
lt
-a

Jt
+ ^y &t , +b

iJt
>OV(i,j)

t
eA T

-(b',a') T
t'=t-qv

(20a)

<Xb<t-<Za>t+Yb>a<T+Pb>a>T ^ (20b)

a
lt
e{0,1}V/- GJV

r

^G{0,l}V(/,y)
t
E^

Aw - o

r,f
g{0,1} V(i,/)

t
eAT

r b .a .T ^o

Because there is no advantage gained by the interdictor interdicting more often

t

than necessary, we may assume that ^ y iit
, is or 1 in any optimal solution to TE-

NTM1. Thus, we may interpret a solution of this model as in the static model: The

solution of this model identifies a cut defined by a
lt
= 1 for all i

t
e Nl and a

it
= for all

i
t
g N T

a
. For arcs (i,j)

t
not in the cut, y lJt

= fiijt
- 0. For arc (i,j)

t
in the cut, either

fiijt
- 1 , indicating that this arc forms part of the minimum capacity cut after interdiction

or the arc is part of the interdicted set A] where

A] = {(i,j)
t
eA T

\y jr
= 1 for / - q tj

< /'< t) . So, the interdicted set identifies arcs and

time periods in which those arcs are interdicted or are under repair (and thus out of

commission).

Note the distinction between "interdiction set" and "interdicted set" for the

dynamic problem: The interdiction set A T

S c A] comprises those arcs, (i,j)
t

for which

y ijt
= 1 indicating a "strike" or interdiction resource expenditure occurs. Arcs in the
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interdicted set with y lJt
- have previously been interdicted and are still under repair

during time period t; they have no capacity, but require no expenditure of interdiction

resource.

TE-NIM is clearly an NP-complete problem, and even small problems can be

difficult to solve. However, ifwe could relax the interdiction budget constraint, TE-NIM 1

would become easy.

D. LAGRANGIAN RELAXATION FOR TE-NEVI1

We approach Lagrangian relaxation for TE-NTM as we did for S-NDVI: We move

the budget constraint, with a Lagrangian multiplier, into the objective function. The

Lagrangian relaxation model provides a lower bound to z
m * and when we relax the

integrality constraints, is a concave function in X. In the process of finding lower bounds

we find feasible and infeasible solutions to TE-NIM 1. (A feasible solution is a binary

solution for which constraint (19) holds.) Any feasible solution yields an upper bound on

z

Since z
m

(X) is a concave function, we look for the best X using binary search to

find the greatest lower bound. The Lagrangian multiplier acts as a penalty adding cost to

the minimization. Large values of X encourage less use of interdiction resources while

small values encourage use ofmore resource to minimize the overall cost. As we adjust X,

we hope to find a solution for which the difference between the upper and lower bounds is

small.

Because of the relaxation, z
TE (X)<z TE

*, but as we adjust X we may find a

Lagrangian multiplier such that ^L r
l}Y i}t

- R Then,

'r 'H
(uj),£A

T
(>J),eA

r '
H

(,,j),eA
T

(21)
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and the corresponding set of interdiction decisions is both feasible and optimal. In

economic terms, at optimality, the value of the Lagrangian multiplier A is the value of an

additional unit of interdiction resource.

The Lagrangian relaxation of TE-NTM1 is:

TE-LR(A)

JE (A)= min 2K£*+'V*)-AK (22)
a,r 'P

V,j)t eA
T

st aM -a, + j>r +fim*° v&/)i ^A T -{b\a% (23)

<xbr-<Za>o+rb<a<T
+ 0bVT^l

a
lt
free V/

f
g^ 7

PlJt
>0 VQ,j)

t
eAT

^,£{0,1} VQ9j) t
eAT

If we restrict y ijt
to binary values, TE-LR(A) will naturally have binary extreme

point solutions. We can therefore relax the binary constraints on a
lt
and fim . We then

relax the binary constraint on y lJt
to 0<y

iJt
< 1. The relaxation of TE-LR(A) is:
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TE-LRR(A)

,7,P
(»,/), eA

T

t

s.t. a
it
-a jt

+ 2> y,
+ /?,„ ^0 V(/,y)

f
<=A

T
-(b',a')T

a
it
>0 V/, gN t

a a'0
=

,
a b'T

= ]

p 1Jt
>0 V(i,j)

t
eA T

0< r ..,<i V(i,j)
t
*A T

Yb'a'T =

For a fixed A:

z
ro

(A) ^ z'
7® (1) - AR where z™ (A) = min £ («„^ + A- y )

.

Note that 2
rF

(A) will still yield a valid lower bound on z
rc

*. Instead of solving TE-

LRR(A) directly, we can solve its dual:

TE-LRR-Dl(A)

z
TE

(A) = max x
b ,a ,T

- AR

St
- IX" ZV = ° Vi,€#r

(24)
(iJ)t eA

T
( 7>;),.e^

r
|/

,=f-r,

0<x
y/
< W . V(i,j)

t
eA : (25)

0<X x„,<^. V{i,J) t
eAT (26)

TE-LRR-Dl(A) would be a simple maximum flow problem without constraints

(26). We replace these constraints with restrictions of the constraints, specifically
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< x
ijt
< ^L . The restriction is reasonable since the flow on (ij), falls into one of three

categories:

1

.

x
IJt
= because there is no "useful" path from a source node to a sink

node that includes (i,j), ; therefore constraint (26) is slack (a useful path is

a path from a source to a sink with flow arriving at a sink before time

period T+ 1),

2. arc capacities do not change over time, and thus

3

.

the same amount of flow will be pushed along in every time period until

any path containing (ij) is no longer useful, and x
iJt

goes to zero.

Note that a restriction of this model must still lead to a valid lower bound on z
TE *

.

As in the static problem, the flow on each arc must meet both of the capacity

constraints, (25) and (26). We restate model TE-LRR-Dl(zl) with the restricted capacity

constraints (26) as:

TE-LRR-D2(A)

z™ (A) = max xb ,a .T
- AR

Jt- 2X" Iv =0 Vi, eJV1

(iJ)^A' ijj)t.<U
TW=t-tj

t

0<*
y
,<min{Wy ,^} V(iJ)

t
€AT

<27>

This model is much like the maximum flow model TE-MF with capacities modified

by the value of an interdiction. Any solution to TE-LRR-D2(/l) finds a minimum capacity

cut {N*,,N£} that corresponds to a feasible or infeasible solution to the original problem

TE-NIM1 as follows:

1. a
lt
=\ \fi

t
eNT

v ,ait
=\ Vi, eA^,

2. y =
fi.Jt

= V arcs (ij), that are not forward arcs in the cut,
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3. for t = \,...,T, i
t
&NT

a,Jt &Nl and x
1Jt
=-^, for each arc in the

interdicted set, y ... is defined recursively as y ... = 1 - max y llt
.

,' J
max{0,f-<j. }<t'<t-\ ]

4. rv = Vz, € A^
, 7 , g A^

fc

r
and *,, <^ , and

5. pijt
= 1 if i

t
&N T

a,,j t
eN£ and x

l}t
= u

1}
, i.e., if (i,j)

t
is a forward arc of

the minimum cut and u
tJ

< —^ , then (i,j)
t

is not in the interdicted set.

Note that X can always be perturbed so that u
tj
= —^ does not occur. The solution is

feasible if the interdiction budget constraint (19) holds.

E. A METHOD OF SOLVING THE TIME-EXPANDED NIM

As in the static problem, we use a polynomial-time maximum flow algorithm to

solve TE-LRR-D2(A). (See Appendix B.) The algorithm actually runs in pseudo-

polynomial-time since the network is represented in time-expanded form. As in the static

network interdiction model, arcs in the minimum cut are examined to find the

corresponding interdicted set Aj that may or may not be feasible. If Aj is feasible for T,

the maximum flow for the time-expanded network after interdiction is an upper bound on

the solution to the network interdiction model.

The objective function for model TE-LRR(/l) is a concave function in X. We find

the maximum value of z
TE

(X) using binary search on X. Given a starting value for X, and

given an interdiction vector T, we decrease X if ^JuTm < ^ encouraging use of more

interdiction resource. We increase X if ^r
ffya > R, raising the penalty for exceeding

the interdiction budget. In equation (21) for NTM, we know that have found an optimal

solution the static problem if ^^yT y
- -^ ana< we st0P our search for the best value of X,

0,J)€A

X*. For the dynamic problem, we cannot make the same claim nor should we stop our
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search for A*. Because we use a restricted form of constraint (26) in TE-LRR-D2(/l), we

may find two interdiction sets, both consuming R units of interdiction resource and one set

may be better than the other. For example, suppose solving TE-LRR-D2(X) for a value of

X identifies interdiction set A, which consumes R units of interdiction resource and

contains (i,j)
t
and (jJ)M with q l}

=1. We re-solve TE-LRR-D2(A) for a value of

X + s {s > and small) finding interdiction set B, also consuming R units of interdiction

resource and containing (i,J)M (and not (i,j)
t
). If x

lj(l+2) <jJ^, then interdiction set B

is not optimal. It may be that, if we do not restict constraint (26), then any solution that

uses exactly R units of interdiction resource, is optimal. We are not able to test this theory

in this thesis.

In Chapter II, we introduced a method for discriminating between arcs with equal

capacity. This method is particularly useful in the time-expanded network since each arc

is represented in multiple time periods. We again add a very small random amount of

capacity to each arc. We add a random (r+l)/l,000,000 to 2,500(7'+l)/l,000,000 of

capacity to each arc. We accomplish this by multiplying all capacities by a scaling factor

of 1,000,000 and then add a random amount that varies uniformly from 1 to 2,500

multiplied by the number of time periods plus one.

Additionally, the algorithm may need to discriminate between the same arc in

different time periods. After scaling and randomization, we add one unit of capacity for

each time period so that each copy of arc (i,j) has an increasing capacity over time. As a

result, u
lJt
<w,

y(r+1)
and if (i,j)

t
is in the interdicted set, then —j^ < u

ijt
<u

ij(t+])
so that

(i,j)M is also in the interdicted set. However, since u
lj{t_ X)

<u
1Jt

, then we may have

u
v(t-\)

< T^T < u
i,t

anc* arc (JJ) t-\
would not be in the interdicted set.

Because of these small amounts of additional capacity for each arc, the algorithm is

able to differentiate between arcs that would otherwise appear identical. These

perturbations cause only negligible changes in the maximum flow in the network.
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We use the same modified shortest augmenting-path algorithm (Edmonds and

Karp, 1972) to solve LRR-D2(^) as we use for solving TE- LRR-D2(A). We implement

the Lagrangian relaxation and solve a maximum flow problem to identify a minimum cut

A T
C and a set of interdicted arcs Aj c A T

C . An interdicted set may contain the same arc

in multiple time periods. We therefore screen the interdicted set to find the interdiction set

by selecting arcs that would not be under repair from an interdiction in a previous time

period. For example, suppose arc (/,./), with a repair time of two time periods is

interdicted at time t — 21. If arcs (i,j)
22 , (',y) 23 and (/,y) 24

also appear in the

interdicted set, then arcs (i,j)
22

an<̂ ('»./") 23 are not Part °f tne interdiction set since they

are under repair. Arcs (i,j)
2i

and (i,j)
24 are in the interdiction set consuming r

%
+r

ij

units of interdiction resource. After finding the interdiction set, the algorithm adds the

amount of interdiction resource required for the current interdiction set and adjusts the

Lagrangian multiplier accordingly. Uninterdicted flow is the sum of the flow on arcs in

the cut that are not in the interdicted set.
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IV. COMPUTATIONAL RESULTS

Chapters II and III show how to use Lagrangian relaxation to approximately solve

static and dynamic network interdiction problems. The algorithms that implement the

methods are described in Appendices A and B. In this chapter, we provide computational

results for these algorithms. We describe the networks tested in Section A, present the

results for the static problem in Section B and the results for the dynamic problem in

Section C.

A. TEST NETWORK DESIGN

We do not attempt to model an actual transportation network in this thesis since

our purpose is simply to test the proposed formulations and methods. We generate

several grid networks of various sizes with random integer arc data r
J}

and u
1}

for the

static networks and, r
tj , u

tJ
, r

y
and ql}

for the dynamic networks. We use single- and

multiple-source networks and single- and multiple-sink networks. We include arcs that

are uninterdictable and some arcs with z
y
= in the dynamic networks. In general, arcs

immediately adjacent to the source (or super-source) and sink (or super-sink) are given a

large capacity and large r
y

so that a trivial interdiction set adjacent to these nodes is not

optimal.

As stated in the appendices, we employ a maximum flow algorithm that uses a

breadth-first-search labeling method to find a shortest augmenting path from a source to a

sink. The test programs implement the Static Network Interdiction Heuristic of Appendix

A which solves LRR-D2(/l) (the dual of the Lagrangian relaxation of NTM-1), and

implement the Dynamic Network Interdiction Heuristic of Appendix B which solves TE-

LRR-D2(A) (the dual of the Lagrangian relaxation of TE-NIM1).

We study six test networks, called SNET25, DNET25, SNET100, DNET100,

SNET400, and DNET400. A general description of each test network follows: SNET25
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has 25 nodes and 64 arcs with artificial arcs from a super-source to five sources and

artificial arcs from four sinks to a super-sink. We include 1 1 arcs that are uninterdictable.

DNET25 is a dynamic network that shares the same arc attributes as the static test

network, SNET25, plus the time attributes. DNET25, in time expanded form, has 525

nodes with 1,344 arcs for T= 20, and 1,275 nodes with 3,264 arcs for T= 50. It also has

artificial arcs from a super-source to five sources and artificial arcs from four sinks to a

super-sink for each time period.

SNET100 is based on a 10-node by 10-node grid and has 100 nodes and 359 arcs.

A super-source is connected to five sources in each network and a super-sink is connected

to five sinks in each network. Only these artificial arcs are uninterdictable. DNET 1 00 has

the same structure as SNET100, but in time-expanded form. It has 5,100 nodes with

17,901 arcs for T= 50, and 8,100 nodes with 28,431 arcs for T= 80

SNET400 is based on a 20-node by 20-node grid and has 400 nodes and 1519

arcs. A super-source is connected to eleven sources in each network and a super-sink is

connected to ten sinks in each network. These artificial arcs are uninterdictable, as are

several arcs that we arbitrarily selected in the center of the grid; perhaps these arcs are

uninterdictable for political reasons. DNET400 has the same structure as SNET400, but

in time-expanded form. It has 32,400 nodes with 123,039 arcs for T = 80, and 40,400

nodes with 153,419 arcs for T= 100

B. STATIC NETWORKS

The results of testing static networks SNET25, SNET100 and SNET400 are listed

in Tables 1 and 2. Testing indicates that the Static Network Interdiction Heuristic

(Appendix A) often finds an optimal or near-optimal solution, but sometimes fails

dramatically. Data sets with r
i}

= 1 are usually solved optimally.

The best upper bound, z *, on a solution to the network interdiction problem is

the maximum flow in the network after the best (feasible) interdiction set is applied. By

"best" we mean the smallest observed maximum flow over all feasible solutions obtained
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by the algorithm. The best lower bound, z(X*) , is the value of z(X) , computed from

LRR-D2(A), maximized over all values of X. (Actually, the lower bound is slightly

pessimistic because we stop the algorithm when the interval of uncertainty on X* is less

than or equal to 1.) The optimality gap, both absolute and relative measures the quality of

the best solution found. The absolute optimality gap is computed as z * -z(X*) and the

. . . \00%(z * -z(X*))
relative optimality gap is . The network interdictor would probably be

z(X*)

more interested in knowing the quality of the solution in terms of interdicted flow. The

percentage of maximally interdicted flow achieved is a percentage of the "worst case"

100%(z *-z*)
interdiction divided by the "best case" interdiction where z* is the value

(z *-z(X*))

of the maximum uninterdicted network flow. The "worst case" is the best known feasible

solution that interdicts (z *-z*) units of flow. The "best case" is an unknown solution

that may interdict as much as (z * -z(X*)) units of flow.

It is interesting to see how solution quality varies as a function of the arc

parameters and the amount of interdiction resource applied. Table 2 gives the results of

sensitivity testing using SNET400 as the test network and varying R and the parameters

r and u
IJ

*""* *~y

For results A, we vary r
i}

and R such that R is six times the midpoint of the r
y

interval. Solution quality in terms of either the optimality gap or the percentage of

maximally interdicted flow shows no relationship with increasing the interval width on r
X]

.

While the algorithm seeks the best interdiction set for a given amount of interdiction

resource, we find that in some cases, generally where the quality of the solution is poor,

decreasing R slightly and re-solving the problem provides a result that interdicts the same

amount of flow. For example, comparing SNET400-1 (the first result for SNET400) in

Table 1, with result A-l in Table 2, we see that the upper bounds are the same. Result A-

1 is just as effective at interdicting the network flows with R = 6 as the Table 1 result
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fewer units of interdiction resource. When the relative optimality gap and the percent of

maximally interdicted flow indicate a poor quality solution, we recommend that the

network interdictor vary the amount of interdiction resource available and re-solve the

problem.

For results B, we vary the interval width on the uniformly distributed capacities

u
tj

. Results B-l and B-2 have the same network structure and interval width. The

capacities are scalar multiples of each other and, as expected, the bounds and network

flows are also scalar multiples. Results B-l through B-6 are optimal for SNET400 with

six units of interdiction resource allowed. We use the same random number seed to

generate the random arc capacities for each test network and, as a result, find the same

interdiction set for each solution.
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C. DYNAMIC NETWORKS

As described in Section A, the dynamic test networks have the same u
fj

and r
tj

as the

corresponding static test networks in Section B with the additional arc attributes of T
i}
and q l}

. The

results of testing the dynamic networks are listed in Tables 3 and 4. Testing indicates that the

Dynamic Network Interdiction Hueristic (Appendix B) finds results with a relative optimality gap of

less than 15% in 13 of 24 test networks but sometimes fails to find an answer with a relative

optimality gap of less than 100%.

The long run times associated with the dynamic networks are due to the exponential (pseudo-

polynomial) increase in size of the network and a similar increase in the number of paths to the sinks.

The results show that run times of the time-expanded problems depend strongly on the time horizon,

T. We are unable to test a network with 10,000 arcs because of excessive run time.

The best upper bound, z
TE
\ on a solution to the time-expanded network interdiction

problem is the maximum flow in the network after the best (feasible) interdiction set is applied. As in

the static problem, by "best" we mean the smallest observed maximum flow over all feasible

solutions obtained by the algorithm. The best lower bound, z
TE

(A*), is the value of z
TE

(X),

computed from TE-LRR-D2(A), maximized over all values of X. We again use optimality gap, both

absolute and relative, to measure the quality of the best solution found.

The results for the dynamic networks show a general decline in solution quality for the larger

networks. While static networks with r
t}
= 1 are often solved optimally, dynamic networks with

r
l}

- 1 are not usually solved optimally and consistently yield results that are worse than networks

with r
X]

distributed uniformly on [1,10]. While we are unable to find the reason for the declining

solution quality, sensitivity testing, described next, gives us some insight into possible causes.
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Table 4 gives the results of sensitivity testing using DNET400 as the test network and

varying the parameters u
l}

, r
l}

, r
y
and qv

. The arc attributes tested are uniformly distributed on the

interval indicated and the random number seed is the same for each network tested. The results

show that solution time and the quality of the solution are insensitive to u
tj
and x

i}
.

For results C, we vary r
tJ

and R such that R is six times the midpoint of the r
tj

interval. The

solution quality for each set is very poor in terms of both relative optimality gap and percent of

maximally interdicted flow. There seems to be a strong relationship between increasing interval

width on r
y

(with increasing R) and decreasing solution quality.

We observe several interesting interactions for this data set. As R increases, X *, which is

roughly the value of an additional unit of interdiction resource, decreases. Both the upper and lower

bounds are decreasing for increasing interval width on r
tJ

and increasing R, meaning more flow is

interdicted. As the optimality gap decreases, the relative optimality gap balloons since the

denominator, the lower bound gets smaller. We include another measure of the quality of the

solution for this purpose. The percent of maximally interdicted flow remains around 50% for results

C-2 through C-5.

It is interesting to compare Table 4, result C-l, with R = 6, to Table 3, DNET400-1 with R =

5. The Table 4, C-l result has a solution that removes 546 additional units of capacity from the

network by expending six units of interdiction resource versus five units for the Table 3, DNET400-1

result. With R = 6, the lower bound is less than with R = 5; this indicates a potential for an even

better solution when R = 6. Comparing the large relative optimality gaps of 392.6% for Table 4 C-l

and 181.8% for Table 3, DNET400-1, we are less sure of the quality of the known result forR = 6.

The optimality gaps for Table 4 C-3, C-4 and C-5 are extremely large and out of proportion

to the percent of maximally interdicted flow. The rapidly degrading quality of the solutions leads us

to investigate better solutions such as adjusting R slightly. Testing the network C-4 with R = 22

instead ofR =24, we find a solution that has the same upper bound. To compare the solutions we

use the percent of maximally interdicted flow, 52.5% for R = 22 compared to 49.6% for R = 24, a

small improvement. This leads us to recommend that the network interdictor use the percent of

maximally interdicted flow as an indicator of whether it would be useful to look for other solutions
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by varying the amount of interdiction resource available by one or two units and re-solving the

problem.

For results D in Table 4, we vary the interval width on the uniformly distributed capacities

u
l}

. The first two results have the same structure with arc capacities that are approximate scalar

multiples. (Recall that we increase the capacity of each arc one unit per time period after scaling.)

As expected, the interdiction sets are the same and the bounds with for D-2 are approximately 50

times those of D-l. In the static network sensitivity testing, the interdiction set was consistent across

the six test networks. The dynamic test networks have interdiction sets that change for each change

in capacity interval width.

For results E, we vary the interval width on the uniformly distributed arc traversal time, r

.

There is no observable relationship between the interval width and solution quality. As expected, the

amount of flow through the network decreases as the average traversal times increase.

For results F, we vary the interval width on the uniformly distributed repair times q, . There

is strong relationship between this interval width and the quality of the solution both in terms of the

relative optimality gap and the percent of maximally interdicted flow: Solution quality declines as we

increase the interval width. Result F-l assumes repair occurs immediately after interdiction, i.e.,

q fJ

= and we find an optimal solution.
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The poor quality of our results for the dynamic networks seems to be caused

largely by including arc repair time in the model. However, including arc repair time is

one of the major motivations for exploring dynamic networks in this thesis. There may be

methods for improving the bounds and the quality of the results that take into account the

width of the interval for q 1}
. Due to time constraints, we cannot explore such possibilities

in this thesis.

Our testing found several test networks, both static and dynamic, where the

algorithm never finds a solution that uses all R units of interdiction resource. For

A-A*-s (s>0 and small) we find an interdiction set that is infeasible while for

X - X * +s we find an interdiction set that is feasible but does not use all R units of

interdiction resource. There should be a solution that consumes all R units of resource for

networks with r
i}

. = 1 . However, we have been unable to find this solution using the

methods proposed in this thesis.

We use a modified shortest augmenting path maximum flow algorithm by

Edmonds and Karp (1972) which runs in 0{nm 2

) time for a network with n nodes and m

arcs. The run times can probably be improved significantly by using a faster pre-flow push

maximum flow algorithm such as the excess scaling algorithm which runs in

0(nm + n
2
logf/) time (e.g., Ahuja, et al., 1993, p. 239).
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V. CONCLUSION

This thesis presents optimization-based heuristic methods to solve two forms of a

network interdiction problem, a "static network interdiction problem" and a "dynamic

time-expanded network interdiction problem." While static network interdiction models

have been studied before, we develop a new heuristic method that provides a good

feasible solution and upper and lower bounds on the optimal solution value. We also

develop heuristic methods to find a good feasible solution to a time-expanded dynamic

network interdiction model with bounds on the optimal solution value. The dynamic

model allows us to consider arc traversal times, repair of interdicted arcs and time-

weighted flow— the weight is a or 1 depending on the time that the flow arrives at the

sink.

We model network interdiction problems as min-max models where the network

user maximizes flow through a capacitated network while the network interdictor

minimizes that maximum flow by interdicting (destroying) arcs using limited assets.

Both static and dynamic forms of the problem can be formulated as constrained

minimum cut models that are difficult to solve. An interdiction budget constraint

complicates the problem. By relaxing this constraint, we are able to use a sequence of

maximum flow problems to approximately solve the original problem. For both forms of

the problem, we use Lagrangian relaxation to find a lower bound on the optimal solution

value. In the process of maximizing the lower bound, we find feasible solutions with

corresponding upper bounds. The difference between the upper and lower bounds, the

optimality gap, indicates the quality of the solution. We search for the best lower and

upper bounds and hope that the difference is small.

The Lagrangian relaxation procedure for both the static and dynamic problems can

have difficulty finding an optimal solution when many arcs have the same capacity. In

particular, the solution methodology may interdict all of the arcs in a cut with the same

capacity or none of them. To avoid this, all arc capacities are randomized by small
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amounts. As a result the algorithm is able to differentiate between arcs in a cut, yet the

optimal solution value changes only negligibly. Additionally, the dynamic network

interdiction problem requires that we have a method to differentiate between copies of an

arc in multiple time periods. We accomplish this by adding a small increment of capacity

for each time period so that arc capacity u
IJt
< «

y(f+1)
for all arcs (i,j) and time periods t.

Testing with several grid networks shows that 7 of 12 instances of the static

network interdiction problem are solved optimally. Four more solutions have relative

optimality gaps that are less than 30%. The remaining solution has a relative optimality

gap of 81.5%. The quality of this last solution is poor since only a part of the available

interdiction resource is used. The result can probably be improved by further perturbing

the arc capacities so that more of the interdiction resource is expended.

The dynamic networks in time-expanded form are 20 to 100 times larger than the

static networks. This results in longer computation time and larger optimality gaps than

seen for the static networks. Specifically, 13 of 24 solutions have relative optimality gaps

that are less than 15% and six more are between 15% and 30%. The remaining five

solutions are of poor quality with relative optimality gaps between 30% and 195%.

Closing these optimality gaps will require further research.

We have several suggestions for further work and possible model improvements

for the dynamic network interdiction problem.

1. We do not model arbitrary time-weighted flow since the decomposition

methods that are probably required to solve such a problem are beyond the

scope of this thesis. However, military engagements often last for long

periods of time and there may be a need to assign one weight for flows

arriving before a battle, another weight for replenishing expended wartime

commodities such as ordnance and fuel during the battle, and another

weight for flow arriving after the battle. The Bender's decomposition
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method described by Cormican (1995) for the static network interdiction

problem would probably be applicable to this problem.

2. The restriction step that converts constraints (26) to constraints (27)

reduces the quality of the lower bounds obtained. It may be possible to

avoid this by:

(a) reformulating the resource constraint,

Yr y <R
(>,;),^

r

into multiple constraints:

EV*-*,=0 ^rt=\,...,T (19a)

^ (19b)

I'M*
t=\

and

(b) using Lagrangian relaxation on (19a) and (19b) with separate

Lagrangian multipliers for each relaxed constraint.

This would entail more computational effort, but the improved solution

quality might be worth the effort.

3

.

There is an assumption that the capacity and traversal time of each arc in a

network are known and fixed. In fact, environmental effects and congestion

may add a stochastic element to the arc capacities and traversal times. The

dynamic network interdiction model could be improved by using stochastic arc

capacities (Cormican, Morton and Wood, 1996) and stochastic traversal times.

These extensions would be difficult, however.

4. It is assumed in our model that the repair time of an arc is fixed and that an

interdicted arc has no capacity until repair is complete. While the "all or

nothing" arc capacity may be valid from some arcs such as a bridge

crossing a ravine, when the interdiction on an arc is in the form of an

inspection or blockade, the effect of the interdiction will tend to degrade
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with time. Interdictions could be modeled with a decreasing effectiveness

as time passes.
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APPENDIX A. HEURISTIC ALGORITHM FOR THE STATIC NIP

The heuristic algorithm described here finds a feasible solution and bounds for the

static network interdiction problem. Essentially, it maximizes the lower bound, z(X), the

value of the Lagrangian relaxation, LRR-D2(X) but it also identifies feasible solutions to

the network interdiction problem and reports the best lower and upper bounds and the

best set of arcs to interdict (the interdiction set). The upper bound corresponds to the

maximum flow through the network when a feasible interdiction set is found.

Static Network Interdiction Heuristic

This heuristic seeks X*, the best value of the Lagrangian multiplier, by conducting a binary

search on the interval of uncertainty for X. The heuristic solves a maximum flow problem

for each value of X using the results to adjust X and the endpoints of the interval. The

initial left endpoint of the interval of uncertainty is slightly smaller than the smallest arc

capacity, and the right endpoint is slightly larger than the largest arc capacity. X is initially

set to the value of the right endpoint. Inside a do-while loop, the heuristic defines arc

capacities as min{ u
tJ

, Xr
tJ

}. The arc capacities and the network graph are inputs to the

procedure findmax flow, which solves the maximum flow problem, identifying a cut Ac ,

arc flows and the maximum flow through the network xba . The cut, arc flows, and

original arc capacities are passed to the procedure find_interdiction_set. This procedure

interprets the results from the maximum flow procedure returning the interdiction set, a

potential upper bound and the amount of interdiction resource consumed by the

interdiction set. If a feasible solution is found, the heuristic compares the incumbent upper

and lower bounds with the current bounds keeping the better values. The heuristic also

stores the best interdiction set. The procedure adjustlambda takes X and the endpoints of

the interval of uncertainty, the interdiction resource consumed by the current solution, and
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the amount of interdiction resource available as input, and returns a new value for X with

adjusted endpoints for the new interval of uncertainty. The heurustic re-starts the

sequence with a new value of X until either an optimal solution is found (the interdiction

set expends exactly R units of interdiction resource) or the endpoints of the interval of

uncertainty for X converge to a value within one unit of A*. The heuristic prints the best

interdiction set found, the upper and lower bounds, and the amount of interdiction

resource consumed by the interdiction set.

procedure BOUND_THE_STATIC_PROBLEM

Input: Network G = (N,A) with source or super-source, a e N and sink or super-

sink identified, b gN
,

u , integer arc capacities u
y
> V(z,y) e A

,

r , integer interdiction resource requirements r
t]
> V(i,j) e A , and

R, total interdiction resource available.

Output: The best feasible interdiction set found A
2 ,

UB , an upper bound for the network interdiction problem,

LB , a lower bound for the network interdiction problem,

R, the amount of interdiction resource required for A
1

.

Begin {

LB <- -oo

;

UB <r- +oo

;

A, ^0;

/* find the initial endpoints for the interval of uncertainty for X */

^ m»v <— max u„ +1

;

max ,. .. . /L . y '

^ m ,n
<- nrin «„ - 1;min -. ... - « . II '

(i,j)£A-(b,a) J

56



Do{

£ <— ;
/* reset all network flows */

u' <- min{w
J}
.,^/;

y
} for all (i,j) &A; I* reset the adjusted arc capacities*/

( Ac , £ , x
fca )

<- find_maxflow( G, a, b, u' );

(A; ,
£/5' , R) <— find_interdiction_set( ^4C , £, u );

if ( R < R ) {
/* a feasible solution has been found*/

Z£ <- max{ LB, x
fca

- AR};

if(UB'<UB){

UB<-W;

Aj <-Aj;

>

}

(^^ min^ miJ<-adjust_lambda(A,A mm ,A max ,A^);

} while (A_ - A mln >l and tf * tf)

print(^, UB,LB,R);

} End;

The procedure find_max_flow finds the standard maximum flow in the directed

network G with source a, sink b and arc capacities u'

.

procedure find_max_flow( G, a, b, u'

)

Input: Network graph G - (N, A) with source or super-source, a e N and sink or

super-sink identified, b gN
,

u', integer arc capacities u
tJ

> V(z,y) e ^4 .

Output: ^c , a minimum capacity cut Ac a A
,
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£ , vector of maximum arc flows x
i;
> V(/,y) e A

,

xba , maximum flow value.

{ This procedure uses a standard shortest-augmenting path maximum flow algorithm

(Edmonds and Karp, 1972) that is modified to find the maximum residual capacity

among all the "shortest paths." Shortest path means the path with the minimum

number of arcs.

return ( Ac , £ , x
ba );

}End;

The procedure findinterdictionset takes the cut, network arc flows, and arc

capacities as input. It identifies and returns an interdiction set, an upper bound, and the

amount of resource consumed.

procedure findinterdictionset ( Ac , £, u

)

Input: Ac , minimum capacity cut in G,

£ , vector ofmaximum arc flows, and

u , original capacity of each arc in the network.

Output: A

j

, an interdiction set,

UB , a potential upper bound on the optimal solution of the network

interdiction problem,

R , the amount of resource consumed by the interdiction set.

Begin {

A
}
^0;

£©'<-<);

for (each (ij) eAc ) {
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/*upper bound is the capacity of the minimum cut after interdiction*/

UB't-UB'+Uy;

else{

add (ij) to A,;

}

}

return (Ali UB\R)\

}End;

The procedure adjust_lambda returns a new value for X and adjusted endpoints for

the new interval of uncertainty. We look for X* using binary search until either an optimal

solution is found or the endpoints for the interval of uncertainty converge. If the

endpoints converge, X < X* < X + 1 and we have found the maximum lower bound with

only negligible error.

procedure adjustlambda (X, X min , X max , R, R)

Input: X , Lagrangian multiplier,

X mm ,X max , lower and upper endpoints for interval of uncertainty on X
,

R , amount of resource consumed by the interdiction set, and

R, amount of interdiction resource available.

Output: X , new value of the Lagrangian multiplier, and

X min , X max , new lower and upper endpoints for X .

Begin {

if (R = R ) /*an optimal solution has been found*/
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else if ( R > R ) /*solution is infeasible, need a larger value of X */

X- <r- X
;mm '

else /*feasible solution has been found, try a smaller value of X */

A — "T A,*™ + ^™,« i2 L_ max mm J '

return(A,A mm ,A max );

}End;
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APPENDIX B. HEURISTIC ALGORITHM FOR THE DYNAMIC NIP

This heuristic algorithm finds a feasible solution and bounds for the dynamic

network interdiction problem. Essentially, it maximizes the lower bound, z
TE

(X), the

value of the Lagrangian relaxation, TE-LRR-D2(A) but it also identifies feasible solutions

to the network interdiction problem and reports the best lower and upper bounds and the

best set of arcs to interdict (the interdiction set). The upper bound corresponds to the

maximum flow through the dynamic network when a feasible interdiction set is found.

Dynamic Network Interdiction Heuristic

This heuristic seeks X*, the best value of the Lagrangian multiplier, by conducting a binary

search on the interval of uncertainty for X. The heuristic solves a maximum flow problem

for each value of X using the results to adjust X and the endpoints of the interval. The

initial left endpoint of the interval of uncertainty is slightly smaller than the smallest arc

capacity, and the right endpoint is slightly larger than the largest arc capacity. X is initially

set to the value of the right endpoint. Inside a do-while loop, the heuristic defines arc

capacities as min{ u
X]

, Xr
t]
j'(qv

+ 1) }. The arc capacities and the time-expanded network

graph are inputs to the procedure findmax flow, which solves the maximum flow

problem, identifying a cut A T
C , arc flows and the maximum flow through the network

xbwr The cut, arc flows, original arc capacities, and the time horizon are passed to the

procedure findinterdictionset. This procedure interprets the results from the maximum

flow procedure returning the interdiction set, a potential upper bound and the amount of

interdiction resource consumed by the interdiction set. If a feasible solution is found, the

heuristic compares the incumbent upper and lower bounds with the current bounds and

keeps the better values. The heuristic also stores the best interdiction set. The procedure

adjust_lambda takes X and the endpoints of the interval of uncertainty, the interdiction
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resource consumed by the current solution, and the amount of interdiction resource

available as input, and returns a new value for A with adjusted endpoints for the new

interval of uncertainty. The heuristic then re-starts the sequence with a new value of X

until the endpoints of the interval of uncertainty for A converge to a value within one unit

of A*. The heuristic prints the best interdiction set found, the upper and lower bounds,

and the amount of interdiction resource consumed by the interdiction set.

procedure BOUND_THE_DYNAMIC_PROBLEM

Input: Network G T =(NT
,A

T
) with super-source, a' eiV

7
, and super-sink,

b'eN T
identified,

u, integer arc capacities w
y
> V(/,y)

t
e A T

,

r , integer interdiction resource requirements r
X)
> V(/,y), £A T

,

R, total interdiction resource available, and

time horizon T.

Output: Best interdiction set found AJ ,

UB , an upper bound for the network interdiction problem,

LB , a lower bound, for the network interdiction problem,

R , amount of interdiction resource required for A,Ls

Begin {

LB < oo

;

UB <- +oo

;

A T

S ^0;

/* find the initial endpoints for the interval of uncertainty for A */

*««<-(...jjjk _«f+i) *fo,+i);
(i.j)t£A -{b',a')T

mm t 'J
'

62



Do{

£ <-
;

/* reset all network flows */

u'<-min{tt
iy
,ifo;

y /(<7,y
+1)} for all (i,j) eA; /* reset the adjusted arc

capacities */

(A£, £, x
b ,a ,T ) <- findmaxflow (G

T
,a',b',u'),

(As ,\JB\R)<r- findjnterdictionset ( A
T
C , £, u, T );

if(R<R){ /* a feasible solution has been found*/

LB <- mzx.{LB,x
b

,

a
,T
- AR)

;

if(CZB'<L®) {

UB<^UB';

As <r- As ;

}

}

(>M„^max)<- adjustJambda (K* mmA m^R,R)\

} while (^ max
-^ mm >l)

print (AT
S ,UB,LB,R)\

} End;

The procedure findmaxflow finds the standard maximum flow in the directed

network G T
with super-source a' , super-sink b , and arc capacities u'

.

procedure findmaxflow (G
T
,d ,V

,

u'

)

Input: Network graph G T = (N T
,A

T
) with super-source, a' e 7V

r
, and super-sink,

b'&N T
identified,

u', integer arc capacities w
y
> V(z',y) e A .
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Output: A T

C , a minimum capacity cut A T
C a A,

£ , vector of maximum arc flows x
it
> V(/',y), e A T

,

x
fe

,aT , maximum flow value.

{ This procedure uses a standard shortest-augmenting path maximum flow

algorithm (Edmonds and Karp, 1972) that is modified to find the maximum

residual capacity among all the "shortest paths." Shortest path means the path

with the minimum number of arcs.

return (AT
C , £ , x

b
,a ,T );

}End;

The procedure find_interdiction_set takes the cut, network arc flows, arc

capacities, and time horizon as input. It compares arcs in the cut by time period from

earliest to latest to identify an interdiction set. When an interdictable arc is found, the

procedure scans the cut marking that arc each time it appears from one to qt]
time periods

after interdiction,. The procedure returns an interdiction set, an upper bound, and the

amount of resource consumed.

procedure findinterdictionset (A£ ,i, u, T)\

Input: A T
C , a minimum capacity cut in G T

,

£ , vector of maximum arc flows, and

u , the original capacity of each arc in the network.

Output: A\ , an interdiction set,

UB , a potential upper bound on the optimal solution of the network

interdiction problem,

R , the amount of resource consumed by the interdiction set.

Begin {
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UB'<-0;

A T
C
<- unmark(^) ; /*reset an indicator variable*/

for (t = to 7) {

for (each (/J), e^T) {

/*upper bound is the capacity of the minimum capacity cut after

interdiction*/

UB'<-UB'+u
v ;

else if ((/', 7) t
unmarked) {

add (ij)
t
to A T

S ;

R^R + r,
}

;

foi (f=t + \\f<t + qij
\f++) {

if((iJ)
t
,GAT

c )

/*mark arcs under repair from interdicting (i,j)
t

*/

mark (i,j)
t
,;

}

>

}

}

}

return {A
T
S ,UB\R);

}End;

The procedure adjustlambda returns a new value for X and adjusted endpoints for

the new interval of uncerainty. We look for A* using binary search until the endpoints of
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the interval of uncertainty for X converge. When the endpoints converge, X < X* < X + 1

and we have found the maximum lower bound with only negligible error.

procedure adjustjambda (X, X mm , X max , R, R)

Input: X , Lagrangian multiplier,

X min
,X max , lower and upper endpoints for interval of uncertainty on X

,

R, amount of resource consumed by the interdiction set, and

R , amount of interdiction resource available.

Output: X , new value of the Lagrangian multiplier, and

X mm ,X miX , new lower and upper endpoints for X .

Begin {

if ( R > R

)

/* solution is infeasible, need a larger value of X */

X mm <- X
;mm '

else /* solution is feasible, try a smaller value of X */

^ =
2L^max + ^mmj'

retum(X,Xmm ,X max ),

}End;
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