
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2000-12-01

Interconnectivity via a consolidated type hierarchy

and XML

Lyttle, Brian J.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7722





DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

MONTEREY CA 93943-5101







NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INTERCONNECTIVITY VIA A CONSOLIDATED TYPE
HIERARCHY AND XML

by

Brian J. Lyttle

Todd P. Ehrhardt

December 2000

Co-Advisors: Valdis Berzins

Ge Jun

Second Reader: Paul E. Young

Approved for public release; distribution is unlimited.





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for

reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis

Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

Interconnectivity via a Consolidated Type Hierarchy And XML
6. AUTHOR(S)

Lyttle, Brian J. and Ehrhardt, Todd P.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department

of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)
We propose building a software system that passes any message type between

legacy Command, Control, Communications, Computer, Intelligence, Surveillance and

Reconnaissance (C4ISR) systems. The software system presents significant cost

savings to the Department of Defense (DoD) because it allows us continued use of

already purchased systems without changing the system itself.
In the midst of the information age, the DoD cannot get information to the

warfigher. We still maintain and use heterogeneous legacy systems, which send

limited information via a set of common messages developed for a specific domain or

branch of DoD. Our ability to communicate with one message format does not meet our

needs today, though these stovepipe C4ISR systems still provide vital information.

By combining these systems, we will have a synergistic effect on our information

operations because of the shared information.
Our translator will resolve data representational differences between the legacy

systems using a model entitled the Common Type Hierarchy (CTH) . The CTH stores the

relationships between different data representations and captures what is needed to

perform translations between the different representations. We will use the

platform neutral extensible Mark-up Language (XML) as an enabling technology for the

CTH model.
14. SUBJECT TERMS
Interoperability, Interconnectivity, Legacy Systems, XML, Consolidated Type Hierarchy, Information

Systems

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES 1Q4

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18



THIS PAGE INTENTIONALLY LEFT BLANK

11



Approved for public release; distribution is unlimited

INTERCONNECTIVITY VIA A CONSOLIDATED TYPE HIERARCHY AND XML

Brian J. Lyttle

Captain, United States Army
B.S., United States Military Academy, 1992

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Todd P. Ehrhardt

Lieutenant, United States Navy

B.S. San Jose State University, 1993

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2000



_ooO.(2

-VTT L€.^

THIS PAGE INTENTIONALLY LEFT BLANK



DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL

TABLE OF CONTENTS MONTEREY CA 93943-5101

I. INTRODUCTION 1

II. CURRENT STATE OF AFFAIRS 5

A. A MEGAPROGRAM 5

B. Message formats 7

C. Background research 9

D. Previous attempts 11

/. Canonical Data Model 11

2. Metadata 12

E. Respectful Type Conversion 13

F. The extensible Mark-up Language (XML) 14

1. Meta-Language 75

2. XML Trees 16

3. Parsers 16

4. Validation 17

5. Transformation 19

III. XML USAGE EXAMPLE SYSTEM 21

A. The JBMI Experiment 21

B. Assumptions 25

IV. THE CONSOLIDATED TYPE HD2RARCHY 27

A. THEORY 27

1. System Schemas 27

2. The Global Schema 28

3. Consolidated Types 28

4. TheCTH 29

B. Implementation & Example 30

/. Schemas 30

2. Consolidated Types 34

C. CTH Use 36

/. Before Run-Time 38

2. During Run-Time 44

D. Results 47

V. CONCLUSIONS 51

LIST OF REFERENCES 55

BIBLIOGRAPHY 57

APPENDIX A-ARMYMESSAGE.XML 59

APPENDIX B-NAVYMESSAGE.XML 61

APPENDIX C-SALUTESCHEMA.XSD 63

APPENDIX D-TRACKSCHEMA.XSD 65



APPENDIX E-GLOBALSCHEMA.XSD 67

APPENDIX F-CT.XML 69

APPENDIX G-ARMY2GLOBAL.XSL 71

APPENDIX H-NAVY2GLOBAL.XSL 73

APPENDIX I-GLOBAL2ARMY.XSL 75

APPENDIX J-GLOBAL2NAVY.XSL 77

APPENDIX K-GRID2LATLONG.XSL 79

APPENDIX L-LATLONG2GRID.XSL 81

APPENDIX M-NEWGLOBAL.XML 83

APPENDIX N-NEWNAVY.XML 85

APPENDIX ONEWGLOBAL2.XML 87

APPENDIX P-NEWARMY.XML 89

APPENDIX Q-ARMY2GLOBAL.XSL USING "XSL:EVAL" 91

INITIAL DISTRIBUTION LIST 93

VI



I . INTRODUCTION

In today's combat environment, the United States

military and its allies find themselves in the midst of the

information age they helped start. Information and systems

that use information abound in all parts of the services and

all locations on the globe. No longer can the. side with the

best trained and best equipped force be confident of

victory. If an opponent can conduct efficient information

operations, they have a significant edge. An important fact

is that information operations take place throughout the

spectrum of combat, from peacetime operations such as

refugee relief to armed conflicts similar to Operation

Desert Storm. This fact implies we will always conduct

information operations, regardless of the place or time.

Information operations are "Actions taken to affect

adversary information and information systems while

defending one's own information and information systems."

[DTIC] Information systems are normally the computer

systems that receive, manipulate, and disseminate

information. From this definition of information operations

we realize these operations are both offensive and defensive

in nature. An astute information operator could use

propaganda in an offensive manner to destroy the public

support of his enemy. Or, the operator could publish

incorrect information about an operation in order to deceive



the enemy. Properly conducted, information operations are a

powerful combat force multiplier that can significantly

increase our ability to shape the environment and influence

decisions at all levels of combat.

To influence decisions, commanders and their staffs

need the most up-to-date information available. This

information comes from many different sources, but

especially from computer systems. The Department of Defense

(DoD) developed many of these computer systems over the last

few decades before interoperability became a concern. Often

systems cannot pass information to each other because they

use incompatible message sets.

One agency within DoD that tries to solve joint war-

fighting problems is the U.S. Joint Forces Command (JFCOM)

.

A subordinate element of JFCOM is the Joint Battle Center

(JBC) in Suffolk, Virginia, which tries to resolve Command,

Control, Communications, Computers, Intelligence,

Surveillance, and Reconnaissance (C4ISR) issues, especially

between the various information systems. Part of their

C4ISR involvement is the assessment of new technology to

solve interoperability problems between the services.

Many of the established information systems use message

formats that possess a structured, though limited method of

communication. Information is passed via a set of messages

contained in a message set . These sets are rigid by design



and cannot be changed. However, one format cannot satisfy

the needs of the entire DoD, not to mention our allies.

Commanders need all possible information in order to

make accurate and timely decisions. The various information

systems contain valuable data, but it cannot reach the

commander because of incompatible data formats between

information systems. Thus, there exists a need to increase

the flow of information to the commanders, yet save

development time and costs due to budget constraints. We

believe DoD can continue to use the legacy systems if some

method is developed that allows message passing between the

computer systems

.

We seek to design a format that bridges the differences

between all the message formats called the Consolidated Type

Hierarchy (CTH) . The CTH is formed from all the message

formats contained in the network of information systems,

thus allowing a free-moving flow of information to all

systems that desire it.

One new technology that has emerged recently is the

extensible Mark-up Language (XML) . With roots in the

publishing industry (the Standard Generalized Markup

Language) , XML is now used by the e- commerce industry to

allow interoperability between a variety of databases in a

near- real time manner. Though these applications are

business oriented, the application of XML shows great



promise in solving some of the DoD interoperability-

problems. We used XML to implement the CTH in our thesis.

By using the CTH model, we believe DoD can start

integrating the legacy computer systems with significant

cost savings. Our results on a small set of messages show

the concept has promise and hope for interoperability.



II. CURRENT STATE OF AFFAIRS

One of the main difficulties in information operations

is the task of getting relevant information to the user in

the correct format . Many of our current systems are

heterogeneous systems that do not communicate outside of

their own format. Thus, we need the ability to share data

with computer systems that were developed for diverse user

communities with very different data needs and requirements.

We are currently limited to sending text messages common to

the various computer systems, and some systems cannot even

do that

.

A. A MEGAPROGRAM

We can think of attempts to continually use legacy

systems and their information as an example of

megaprogramming [GW92] . Megaprogramming is a concept

developed by the Defense Advanced Research Projects Agency

(DARPA) as part of an effort to reuse systems that already

exist. A megaprogram is a software program that utilizes

commercial off the shelf (COTS) , and government off the

shelf (GOTS) software systems as if they were modules. The

modules, or megamodules as the authors call them, are

internally homogeneous, independently maintained software

systems managed by a community with its own terminology,

goals, knowledge and programming traditions. We call the



concepts, terminology, and interpretation associated with

each domain specific megamodule an ontology.

Unlike the distributed federated databases used in

[GW92] , our legacy system megamodules possess only the

ability to export information through a set of standardized

messages. This constitutes a key difference between tying

together legacy systems and the megaprogramming previously

envisioned. Megaprogramming relies heavily on databases to

furnish the ability to import and extract data from the

heterogeneous systems, whereas our system must rely on the

information sources to push the information out. We have no

mechanism to actively query or pull information from the

source. This limits our ability to access information

within the megamodule.

Because some systems cannot automatically extract data

from a distant machine, they are reliant on other machines

to send regular updates consisting of any new data they

find. This feature is unfortunate because the remote

systems are not always configured to meet the needs of the

other systems. In some cases operator action is required to

send and receive information from the source. System

operators must then rely on standard operating procedures

(SOPs) for regular updates of information outside of our

local system. This does not agree with the mega -programming

concept as stated in the paragraph above. This makes reuse



of legacy systems a limited example of mega -programming, but

still useful

.

B. MESSAGE FORMATS

In previous years, information systems defined a set of

messages for each system. This set of messages contained

the information most commonly needed by consumer systems,

and was often domain specific. One common message format

used by many systems is the United States Message Text

Format (USMTF) . The U.S. and our NATO allies used USMTF to

increase our ability to communicate tactical and other

information. The format of USMTF is well established, but

its fixed field format wastes bandwidth by sending empty

information. Because USMTF messages require larger

bandwidth capabilities than most land forces possess, the

land forces use variants of USMTF. USMTF may also provide

more information than the destination system needs.

Coalition Information exchange (CIX) is a newer data

message format constructed by Defense Information Systems

Agency (DISA) with more capabilities than the Over the

Horizon Gold (OTH-G) message format used by the Navy and

Marine Corps. However, unless the receiving system can

translate from CIX, the information is unused and useless.

To communicate between different message formats such

as CIX and USMTF, current implementations use software

programs called translators. The translator alters a system



message from one legacy computer system format into another

format for a different legacy system. The translator is

implemented via a third generation language such as C+ + or

Ada. Providing some way for different existing systems to

share data presents an opportunity to save significant

development costs in the design of replacement systems built

to share data. Enabling systems to share data also saves

end-user time, since data does not have to be entered by

hand from one format or system into another.

However, making translators is a time consuming task

when constructed manually. [Sin98] The programmer must map

the systems' message types, find corresponding messages,

find data within the message that can translate between

systems, and finally code the translator from scratch. Once

completed, the translator only works from one message format

to another specific message format. Although these

translators are better than the manual transportation of

data between systems, their creation is time consuming and

of limited use. Each translator is expensive because of the

specialized knowledge contained in the two systems. This

also causes maintenance problems when the programmer leaves

or a heterogeneous system changes its message format.

At this time, we do not possess an automated way of

resolving representational differences between systems.

Thus, the programmer must still complete the mapping by

hand. We seek to construct a translator that uses a pre-

8



runtime developed framework to perform run-time message

translation. This method would enable reuse of common

translation routines, and would be able to translate

messages among many different formats.

C. BACKGROUND RESEARCH

Part of our research revealed the similarities between

integration of heterogeneous databases and legacy system

integration. Since message formats share data among

systems, we can consider messages to be results from a

database query. Many current commercial databases share

data between heterogeneous systems connected via networks

.

Reconciling differences between databases must be done over

several levels.

At the highest level, databases must be reconciled over

different schemas. Database schemas define the structure of

the data, and how each piece of data is related to each

other, how it's organized. The differences include

resolving the representations between the tables found in

each database. [HMS] This representational heterogeneity is

defined as "variations in the meaning in which data is

specified (for the data) and (the way it is) structured in

different components". It is a natural consequence caused

by creating independent data structures . [HM99]

The next level of reconciliation involves the naming

conventions used in each database. A major cause of



conflict is the use of homonyms and synonyms. Homonyms use

the same word for different concepts, such as "fire." In

one context, the phrase results in artillery rounds

impacting on a target, while in another context, the phrase

summons the fire department. Synonyms describe the same

object, but use different terms. Soldiers commonly use

position and location to mean the same place.

Representational differences make up a third level for

reconciliation. As shown in Figure 2-1, one community may

define a geospatial position using the Military Grid

Reference System, while another defines the position using a

latitude/longitude representation. Both methods define the

same real world objecc, but implement different methods and

ocssess different attributes.

X
position

W i
/""""

MGRS Lat/long ^>

Grid sq.

Hasting
Northing

Latitude
Longitude

Figure 2-1 Different representations of the same location

Seme other causes of differences in daca representation

include the low- level format of the data, such as precision

or units of measurement. [KX98] Another cause is the range

of values for a data type, which may vary from system to

10



system depending on the needs of the user and the hardware

and software the user possesses. Older systems cannot

represent larger numbers due to the size of the allocated

memory or the processor used in the hardware.

D. PREVIOUS ATTEMPTS

Because of the many different systems and formats we

are looking for a systematic way to construct translators,

which opens the door to automation. This will save time,

money, and results in more reliable communications.

In our search for a solution to the problem, we found

several systems that try to achieve similar results.

One thing that almost all these systems or models have

in common is the use of some kind of universal

representation of data, or some universally agreed upon

vocabulary. Most systems have these universally accepted

terms and build on that in different ways.

1 . Canonical Data Model

Roantree, Keane, and Murphy call their universal model

a Canonical Data Model (CDM) . This is similar to a

universally agreed upon representation for a location. They

introduced a model containing three layers. From top to

bottom, the layers are: the Federation Layer, the Component

Layer, and the Integration Layer. They use the lowest layer

to isolate the effects of changes in a member database. The

Integration Layer changes with the database in order to

11



maintain a consistent interface with the upper layers. Any

time a change is made in the design or schema of a

particular constituent database, its corresponding

integration layer changes. [RKM]

2 . Metadata

Another approach presented by Narinder Singh is to use

metadata, which is information about data, to dynamically

determine how to respond to a query. In this system,

information providers must supply a description of the

information they have to offer in terms of a standard

vocabulary. This standard vocabulary is a list of

universally agreed upon set of words, each word having a

single meaning. Middleware provides access to the data

sources. When a query is submitted from a user, the

Tesserae Integration Engine dynamically creates a search

plan and retrieves the information. [Sin98]

One drawback to this system is the time cost of

creating a search plan on the fly. In a dynamic environment

such as the web, the benefits would outweigh the costs; but,

in our context there is no advantage to creating a search

plan

.

These previous methods have their merits, and we have

tried to incorporate some of their achievements into our

system. For example, it is apparent that in order to

reconcile information from different databases, there has to

12



be at least some a priori agreement on what some of the

terms mean. However, our context is different from the

typical scenario in which databases are being integrated,

since we don't have the ability to query data sources, and

we don't want to assume the existence of a central data

store

.

E. RESPECTFUL TYPE CONVERSION

One of the most pertinent articles to our research is a

paper written by Jeannette Wing and John Ockerbloom

[JMJO00] . Their paper discussed the conversion of different

types in such a manner that no data was lost. This pertains

directly to interoperability because of the problems

associated with data differences.

In their paper, Wing and Ockerbloom assume a normal

subtype and supertype inheritance relationship, and call an

instance of a type an object. The types follow what is

known as the Liskov substitution principle, which is

outlined in the article. The Liskov substitution principle

says that the subtype inherits the attributes of the

supertype, and an instantiated object of the subtype acts

the same as the supertype when the supertype ' s method is

invoked. A respectful type converter will convert two

subtypes with a common supertype ancestor while preserving

the behavior observable through the interface of the common

ancestor supertype . [JMJO0 0]

13



Wing and Ockerbloom recognize type hierarchies may-

solve many interoperability issues by reducing the number of

translators required from N2 to 2*N translators. [JMJO00]

They base their examples on an assumption that only one type

will exist per file, which is unlikely to occur in our

messaging system. A message may contain a position and a

text message that have different supertypes . Unlike the

paper, we must construct translators that contain many

different functions because our messages will contain many

different types.

Additionally, our system cannot actively retrieve

information because of how the message systems are

constructed. Rather, the information providers will push

their data, as opposed to the data being pulled from its

source. Therefore, a system that derives a search plan

would not be appropriate.

F. THE EXTENSIBLE MARK-UP LANGUAGE (XML)

In order to construct our program, we needed a method

that allowed us to express information in a manner

independent of any platform yet still capture the meaning of

the data. We found the extensible Mark-up Language (XML)

met these criteria. Since XML is a fairly new language, we

searched for current examples that utilized XML commercially

and in DoD. In order to understand these examples and our

thesis, we must first explain what XML is.

14



1. Meta-Language

XML is a meta language, which means it describes the

data contained inside an XML document . XML separates the

content of the document from the presentation of the data,

which enables more programs to read the document. [PROXML]

The separation occurs because XML only provides the means to

describe the data, leaving presentation of the data to the

receiver.

Mark-up tags surround the data in an XML document. The

tags are very similar to Hyper-Text Mark-up Language (HTML)

tags, with an important exception. While XML tags may use

all but a small set of characters, HTML tags are predefined

and restrictive. Unlike XML, the HTML language possesses

functions that tell an HTML browser how to display the data.

Figure 2-3 is an example of how an XML document could

describe a person. Note the document root mark-up tag

entitled people, and how it surrounds the nested elements.

<people>< ! --This is a comment block- ->

<person>
<firstName>Brian</f irstName>
<middleName>John</middleName>
<lastName>Lyttle</lastName>

</person>
<person>

</person><! --This is an empty person element using open and close

tags-->
</people>

Figure 2-3 Sample XML Document

15



2

.

XML Trees

XML works by forming a tree from the data contained in

the XML document . The document must possess a root node in

order for the parser to construct a tree from the elements

within the document. Elements may be nested repeatedly

beneath the root node, and may contain duplicate element

names at the same level within the tree.

XML contains a powerful concept called a namespace that

effectively allows homonyms. The namespace allows the

writer to use the same name but with different associations,

provided the writer distinguishes the namespaces. This

allows the transformations and formatting functions at each

viewer's platform to take the appropriate actions when

parsing the document tree. [PROXML]

3 . Parsers

In order to take actions on an XML document, we must be

able to construct the tree in memory. The software program

that constructs the document tree is called a parser. It is

not responsible for presenting data to the user, unlike

HTML. The parser ensures the document is "well-formed"

,

which means the document obeys the XML syntax rules. XML

parsers are powerful tools freely available from several

sources. Both Internet Explorer 5.0 and Netscape's Mozilla

6.0 contain XML parsers in addition to HTML parsers. The

IBM Apache Group (http://www.apache.org) wrote and provided

16



the source code for their Xerces processor for anyone to

utilize for free. The Xerces parser is written in both C++

and Java, and is available for a variety of operating

systems to include Windows, Linux, Unix, AIX, and Sun

Solaris. The Xerces parser is the official parser of the

World Wide Web Consortium (W3C) at this time, and is fully

compliant with the approved W3C recommendations. It does

not expand upon the approved requirements of the W3C for

XML.

4. Validation

All of the parsers mentioned above are examples of a

validating parser. Validating parsers verify the XML

document obeys more stringent rules than the generic XML

syntax. These rules are specified in a Document Type

Definition (DTD) or a Schema. DTDs and schemas allow us to

specify rules about what elements may appear in a document,

the structure of the tree, and to a limited extent, what

format (e.g. the order and number of occurrences) the

elements must follow. DTDs and schemas serve the same

purpose. They were designed to facilitate content checking,

to some degree. Obeying the DTD ensures all users of our

namespace can read our document using the same standard.

The DTD is a W3C recommendation; schemas are only a W3C

candidate recommendation. According to the W3C, "a

Candidate Recommendation is work that has received

17



significant review from its immediate technical community.

It is an explicit call to those outside of the related

Working Groups or the W3C itself for implementation and

technical feedback. " Also, "a Recommendation is work that

represents consensus within W3C and has the Director's stamp

of approval. W3C considers that the ideas or technology

specified by a Recommendation are appropriate for widespread

deployment and promote W3C's mission." [W3C] However,

schemas were designed to make up for some of the

shortcomings of DTDs; and tools that support schemas are

already on the market.

Schemas have several advantages over DTDs. Schemas

allow open content models. An open content model provides

extensibility to a schema. This means that I can reuse

someone else's schema. If their schema doesn't contain all

the elements I want to include in my schema, I can add

elements. This allows greater reuse of schemas. Open

content models are optional; however, and a closed content

model can be specified in a schema if desired.

Schemas also provide some support for data types. Data

types can be specified for elements and/or attributes.

Beyond the typical data types found in common programming

languages, the following data types are some of those

supported: string, id, idref, nmtoken, nmtokens, entity,

entities, enumeration, and notation.

Other advantages of schemas [MSDN]

:

18



Greater specificity of the number of occurrences of

an element

.

Ability to specify if sub-elements must appear in a

certain order.

Accessible from Microsoft's Document Object Model.

Schemas are well -formed XML documents (unlike DTDs,

which have their own syntax)

.

We believe that although schemas are relatively new,

their additional capabilities provide them a substantial

advantage over DTDs. We recommend the use of schemas.

5. Transformation

If two users have different formats for their data,

like many Defense organizations, we can transform the XML

document using the extensible Stylesheet Language

Transformation (XSLT) . XSLT enables us to translate between

vocabularies as well as merge existing resources. We can

determine the correct stylesheet to use at runtime to

dynamically translate between documents. We do not have to

write procedural language code for most applications,

although it may be necessary in some cases.

Stylesheets provide a major contribution toward

achieving our goals. They are a part of the XML world, and

as such, share many of the same benefits. They can be

transferred using the ubiquitous hypertext transfer protocol

(HTTP) . They can be applied to XML documents by the XML

19



processors. The XML processors are COTS, and are available

for free. Stylesheets can also refer to other stylesheets.

Therefore, they can be used and reused in a modular way,

also providing cost savings.

Internet Explorer 5.0 and the MSXML 3.0 parser allow

the programmer to write procedural JavaScript functions in

order to assist with transformation. We have not found any

other free commercially available parsers that allow us to

do this in a packaged format, though we can construct a

parser from source code like Xerces and write functions in

the same manner.

However, this requires a compiler for each target

machine for the functions each programmer may write.

Parsers perform much of the work contained by the XML

language, and a good working parser should not be modified

greatly. The commercial parsers such as Internet Explorer

and Mozilla provide the functionality we need for this

demonstration

.

20



III. XML USAGE EXAMPLE SYSTEM

A. THE JBMI EXPERIMENT

One organization with XML experience is the Joint

Battle Center (JBC) based in Suffolk, Virginia. JBC is part

of Joint Forces Command (JFCOM) , and is charged with finding

joint solutions for Command, Control, Communications,

Computer, Intelligence, Surveillance, and Reconnaissance

Systems (C4ISR) inter-operability . In order to fulfill this

mission, they conduct experiments with several organizations

each year.

We witnessed Phase Two of an experiment entitled the

Joint Battle Management Initiative (JBMI) . JBMI sought to

prove XML is a valid technology for improving inter-

operability and inter-connectivity between systems. All

four services provided computer systems for the experiment.

JBC defined two different levels of sharing information

between systems in accordance with the Defense Information

Infrastructure Common Operating Environment (DII COE)

.

Interoperability at its highest level allows systems to

import and export information as if the remote site were

actually part of the user's system. Inter-connectivity is

several steps lower, and allows systems to pass limited

messages between different systems.

21



The computer systems at JBMI accurately reflected the

problem in DoD today. The primary system was the Global

Command and Control System (GCCS) , which controls high level

operational units across DoD. It specifically targets units

the equivalent of an Army Brigade level or higher. It

utilizes CIX as its means of message passing. The Navy and

Marine Corps also sent their versions of GCCS, which are

compatible with the other services' GCCS systems.

The U.S. Army provided a system entitled the Advanced

Field Artillery Tactical Data System (AFATDS) . AFATDS is a

member of the Army Battle Control System set, and is the

command and control system for all ground fire- support

systems in both the Army and Marine Corps. AFATDS also

interacts with our English and German allies using its own

specific format developed many years ago. It can send and

receive a limited number of USMTF messages.

In an interesting twist, JBC integrated two devices

currently available on the commercial market. The first was

a Palm Pilot V, which is a personal digital assistant. JBC

programmed the simple USMTF Call for Fire and Observation

Report messages into the PDA. They programmed the same

ability into a cellular telephone, and communicated using

the Wireless Application Protocol to the networked systems.

All the systems connected via a hardwire LAN into a web

server. The web server allowed each unique system to

subscribe to a message set or an individual message type

22



from the USMTF . As each legacy system produced a message, a

software wrapper transformed the message into an XML

formatted message. It then sent the XML mark-up message to

the web server.

The web server received the message and removed the XML

mark-up from the message. It parsed the message to discover

the USMTF message type . The server then found a data

directory specific to that message type, and saved the

message. A Visual Basic monitor script periodically checked

the directories for new information. If the monitor found

new information, it checked a database to discover

subscribers of that message type

.

If a subscriber was found, it called upon functions

constructed in Java code to transform the message into the

appropriate type. If the destination system required the

message in the HTML format, the XSLT processor was called to

make the conversion. Most systems subscribed for an HTML

representation of the USMTF message or email.

This system allowed the cell phone user to send a Call

for Fire message to the AFATDS system via the web server.

The AFATDS equipped unit could then provide indirect fire

support onto the target. It also allowed the GCCS system to

update its database, and the Air Force TCDB to enter the

target information for use in plotting aircraft routes or

further intelligence usage.

23



Other abilities included at this demonstration were

comma -delimited files used in spreadsheets and word-

processing documents. Since many of our allies do not have

the funds required to make military specific information

systems, they must rely on Commercial Off The Shelf (COTS)

products

.

An extremely useful application of COTS and XML was the

target list used in the joint targeting process. Using

AFATDS , a message containing a target list was sent to the

web server. Upon receiving the message, the JBMI engine

found the coalition subscribers that wanted a copy of the

list. The engine translated the target list into a

spreadsheet file, and sent it to the destination machine via

email. Though the system lacked security restraints, it

demonstrated the ability of XML to send various messages

using COTS equipment.

Given the accomplishments of the JBMI engine, we knew

XML presented a means to accomplish interoperability between

systems. It allowed messages to transform from native

legacy format into XML and then be used in a different

system. However, the engineers were required to write

source line code in Java to accomplish this. We believe

using XML and other COTS tools along with a different

methodology can accomplish interoperability between systems

cheaper and faster than writing source code.

24



B. ASSUMPTIONS

We made several assumptions in our thesis. We assumed

all the messages we received were well-formed XML documents

and complied with a DTD for that specific message type. We

assumed this because each system should send messages in the

correct format, else it would not be fielded to the force.

The parser would not read messages with incorrect formats

because it would fail the validity check when a stylesheet

or a DTD was applied to it. In a fielded system, a failed

message would be returned to the sender with the appropriate

error message. This service would take a small amount of

time, and not impact the performance of the system.

Additionally, we did not think we needed to check for

transmission errors because the TCP/IP protocol stack

conducts those error checks for us.

In our environment, we assumed an experienced software

engineer would use the system. The messages will depart and

arrive in an XML mark-up format of the original system

message

.

While we knew the translator system could be

implemented either in a point-to-point system or in a

publish/subscribe architecture, we chose to implement the

point-to-point system. Although not as robust as the

publish/subscribe architecture, the point-to-point

implementation is sufficient as a first step for a proof of

25



concept. The point-to-point implementation can then form

the basis for subsequent implementations. In the point-to-

point system, each system possesses a copy of the translator

and a means of communicating to the other system.

We assumed individual systems using this software would

possess similar capabilities to our own, because our

demonstration is based on the systems used by JBC during the

JBMI exercise. That is, it would be a machine using Windows

95, Windows NT, or Windows 2000.

Given these assumptions and requirements, we can now

describe the design of our system.

26



IV. THE CONSOLIDATED TYPE HIERARCHY

As we introduce you to the Consolidated Type Hierarchy

(CTH) , remember our goal: we are trying to achieve

interoperability between legacy systems that have different

views and representations of data. Our general approach is

to set up a common framework that we can use in matching

data sources with potential consumers. Translations will be

defined in terms of the framework before run- time, and will

be applied at run-time. Since the legacy systems we have in

mind traditionally have shared their data through messages,

we will consider the message formats they use rather than

the data stores internal to the systems themselves. Before

we explain what the CTH is, we will discuss what we need in

order to create a CTH, the environment.

A . THEORY

1. System Schemas

Schemas provide a blueprint for the data to be shared.

They can be thought of as Application Programmer Interfaces

(APIs) . Each message format will have its own schema. It

is our way of knowing what data is contained within and

provided by that data source or consumed by that recipient.

If we only had to be concerned with converting between

two message formats, we could easily map data fields from

one message format to the other. This simplified problem

27



would be trivial and not warrant further effort. However,

as more formats are considered, the task becomes more

complicated and requires considerably more work. If you had

N different formats to reconcile with each other, N2 direct

mappings would be required. [JWJO00]

2 . The Global Schema

The global schema is a global view of the data to be

shared. It provides the context for data to be shared among

systems. The elements of the system schema have a "kind-of"

relationship with the elements of the global schema. For

example, one element in the global schema might be a

location. Although latitude-longitude and MGRS coordinates

have different formats, they are both a kind-of location.

They convey the same information.

The real purpose of the global schema is to capture the

structure of composite types. If we were to send a list of

locations, it would be meaningless. We must put information

in its context. In other words, a position is an attribute

of some other thing, like a ship, a tank, or an aircraft

route. The global schema captures the contexts in which it

is used.

3 . Consolidated Types

Every element within the global schema is a

consolidated type. In the example mentioned above, location

28



is a consolidated type and latitude-longitude and MGRS

coordinates are legacy system subtypes.

Consolidated types are more than just an abstraction.

Consolidated types must have a concrete representation in

order to gain the advantages offered by having them. It's

important to consider the physical representation of a

consolidated type with care. Consolidated types are derived

from pre-existing subtypes that are to be reconciled.

Therefore, one method of choosing a representation would be

to adopt the representation of one its subtypes. However,

we would like to be able to convert from a subtype to the

consolidated type and back to the same subtype without

losing any information. Consequently, is important to

select the representation with the highest degree of

precision.

4. The CTH

The global schema represents a global view of

information that is to be exchanged. It is a bridge format,

which reduces the number of translations that must be

defined. The elements of the global schema are consolidated

types. The CTH does more than describe the structure of

the global schema. It also contains the relationships

between its elements and the elements of its constituent

schemas. We introduce a separate term for the consolidated

type hierarchy because neither the global schema nor its

29



elements capture both the structure of the consolidate types

and their relationships with the elements of the various

system schemas

.

Now that we have explained the theory of the different

parts and their relationships, it's time to look at how we

implemented and integrated these pieces.

B. IMPLEMENTATION & EXAMPLE

We have created a simple example to illustrate how the

different parts of our system fit together to achieve the

desired result. In our example we have two message formats

that we want to reconcile. We invented the message formats

for the purpose of this example, but they are adequate to

show the relationships between the different parts of our

system and how they are used.

Both formats carry information about tactical units in

a battlespace. The Army message format is designed to

contain information about ground forces. Originally

constructed as a voice message, it is now a standard digital

message as well. The Navy message format contains data

about ships sent via tactical data links from a variety of

sensors. Both messages contain information about objects

the operators are observing.

1 . Schemas

The schemas were simply implemented as XML schemas.

For our purposes, the essential requirement was to be able

30



to capture the structure of the data. This could have been

done in many different ways, including UML diagrams.

However, since DTDs or XML schemas can also be used for

validating the XML documents, they might already exist for

some systems and they could serve a dual purpose. We prefer

the use of schemas over DTDs for reasons given in chapter 3,

and our example uses XML Schemas.

Before we go further, we'd like to acknowledge a

valuable tool we discovered in our research called XML Spy.

XML Spy is the product of Altova GmbH, of Austria. It is an

easy to use integrated development environment for XML, with

authoring tools for XML documents, DTDs, schema, and style

sheets. The product is available for download at

www . xml spy . com and free thirty day trial downloads are

available. We used XML Spy for all the XML and related

coding for our examples. We have included partial screen

shots of the program in Figures 4-1 through 4-3 below. We

are using the program to show the schema, because it can

display them in a graphical representation, rather than

having to look at the code; however the code is included in

the Appendices.

The Army message format we called a SALUTE message.

Figure 4-1 depicts the schema for the message format. The

root element in the SALUTE schema is the element named

SOURCE. The Type element contains information about the

message type, and the GroundUnit element contains the

31



information or. the ground units. Note the symbology depicts

that there car. be a sequence of GroundUnit elements

contained in a valid XML document.

XML Spy - [nc»fSAtUT£scbcmaj«sdl

' c-:*. c>.* z~r

2 && @
M. ^TO/ScVsna Scfwm-s design XSU Convert Jobfe v«w growser j£*>dow f*

I « > '; J a 1'

Type

SOURCE E—

j

E—
-'Activity i

H5
I

—

|

Location g- D 1 1 Worthing

GrourKJUrut B- —j Easting

Equipment

OisSjncetnKrrw

Figure 4-1 Schema for the Army Salute message format from XML Spy

Figure 4-2 depicts the Navy message format. It has

some fields that will map to che Army message format, and

some that do not

.

>XML Spy - [newTraclcSchefnajKsd]

cw growler WrxJCW Mew2e 9« £<*" 2-owr: >XL B.7WSchen«o Schema dewjn XS^ C.c<ivert Tefcue
J

2 ©; o* 2i y i S <fe ? • r or 2| as g g S &

— Type

—'Number
1

1

—i* Latitude i

SOURCE &-( )=— — Coordinates 9—i
—

—
"Lor«oitu<Jc :

—"Course
|

IrMnc f*l
' Vl -^

Track U ,
.

J_j
'- '

1 «c — Siotu-s •

— IFF

—"GMT

—"OtsUocetnMdes

Figure 4-2 Schema for the Track Report message format from XML Spy

32



The global schema in Figure 4-3 depicts a composite

view of the information provided by both message formats.

Here you can see that Location is a consolidated type.

XML Spy - [newGtobaScbemajtsd}

IFfe 6* Project XML JpDJSAema S:Qerii ttecgn XSL. Convert Table View growser w»«o« Heb

: ^d| Hi; s ; % • 1 El SI a

SOURCE

Type

-c

f Number

GMT

•
—"Longjtudc

-EStatus

—| Ttotdt $-(——]3 TCourse

:—j'Speed

IFF

—j'Size

Eouiproent

- Oist*r>cclnM»lcs

Figure 4-3 Global Schema from XML Spy

Also, notice that we included elements in the global

schema, such as Course and Speed, which did not have a

corresponding element in the Army schema. If a Navy system

were to send a message to an Army system, the Army system

has no use for such information. This begs the question,

why include these elements in the global schema?

There are two reasons to include those elements in the

global schema. The first reason relates to the comment we

made earlier about choosing the representation with the

greatest precision. If we convert a Navy message to conform

33



to the global schema without those elements, we would lose

the Course and Speed information in the process. If we then

convert it back to the Navy message format, we can't get

that information back. We threw away that information. We

would like to be able to convert from any system format to

the global format and back without losing any information.

The second reason to include unique elements in the

global schema is to make it easier to find compatible

elements between schemas . Imagine that we decide to

integrate a third message format into the global schema, and

we left out Course, Speed and other elements unique to each

of the preexisting Army and Navy schemas. If the new schema

we want to introduce has elements that do correspond to the

previously unique elements, we may never discover the

correspondence, unless we also look for corresponding

elements in the Army and the Navy message schemas. Instead,

if we include all of the elements, then when we integrate a

new schema, we will be able to discover the common

information to be shared among systems, without having to

analyze each system independently.

2 . Consolidated Types

We captured the consolidated types in an XML document

we named CT.XML. Pictorially, you can think of CT.XML as

shown in Figure 4-4. Each root node represents a

34



consolidated type. Each child node depicts the

corresponding element from a particular messaae format.

CT.XML

A» A^ ! AA
Figure 4-4 Symbolic view of CT.XML

Figure 4-5 is an excerpt from CT.XML, the XML

representation of the consolidated cype hierarchy. The full

listing is included in Appendix ?.

<Location>
<TrackReport name= " Coordinates " /

>

<Salute name=" Location"
upXlate= "Grid2LatLong . xsl

"

dnXlate= " LatLong2Grid . xsl " /

>

</Location>
Figure 4-5 The consolidated type Location from CT.XML

Figure 4-5 shows how the consolidated type,

Location, is entered. The outer-most element is the name of

the consolidated type, which comes from the global schema.

The nested elements name the message formats that have a

kind-of Location. Since both track report messages and

salute messages have attributes that are a kind-of location,

they are both listed here. Each of the nested elements may

have between one and three attributes. The name attribute

specifies the name of the corresponding element in their

respective message formats. The upXiate attribute contains

the name of the style sheet chat will translate from the

35



enclosing message format to the format of the consolidated

type. The style sheet named in the dnXlate attribute will

perform the reverse operation, taking an instance of a

consolidated type, and transforming it to conform with a

specific message format.

Like many other aspects of our implementation, there

were alternate ways of implementing the mappings between

message formats and the global schema. One disadvantage of

the way we implemented it is that searching through CT.XML

for the translations would be slow compared to other

methods, such as a table lookup or database query. But,

since CT.XML will be searched when the stylesheets are

generated, which happens prior to run-time, the speed of the

search will not affect run-time performance.

C. CTH USE

Figure 4-6 shows a conceptual view of the CTH. The

Army schema is in the upper plane, and the global schema is

in the lower plane. The dashed arrows represent the

associations and the translations between elements in the

global schema and the Army schema, information that is

stored in CT.XML. We have only included the Army Salute

schema in the figure in the interest of readability, but we

could have presented another plane for the Navy Track Report

schema as well.

36



Global Schema

Figure 4-6 Conceptual View of the CTH. The Army schema is in the upper plane, and the global

schema in the lower plane.

37



This is all we need to have a translator. When a

translator receives a message it could determine the format,

then recursively apply translations defined in the CTH by

the arrows. Currently we create stylesheets before run-time

based on the information contained in the CTH. At run- time

we let the XSL processor act as our translator using the

stylesheets to give it processing instructions.

1. Before Run-Time

a ) Mapping

The CTH is a framework for matching potential data

sources and consumers. It enables the sharing of that data,

despite representational differences. When a system is

introduced into a network, a schema for the data it exports

and/or imports must be available or must be produced so that

its elements can be mapped to the global schema. In our

work, we performed this by hand.

In our system we generated the initial global

schema from the Navy schema. Then we integrated the Army

schema into this initial global schema. We will walk

through the steps we followed during this process.

We started with the root element in the Army

schema and looked for a corresponding element in the global

schema. We descended through the structure of the Army

schema, establishing these correlations at every level



possible. When we mapped the Army Schema to the global

schema, we established these relationships:

Army Schema Element Name Global Schema Element Name
GroundUnit Track
Size
Activity Status
Location Location

GridID
Northing
Easting

UnitID Number
Time GMT
Equipment
Di stance InKms DistancelnMiles

Table 4-1 Initial Mapping of Elements in the Army Schema to the Global Schema

As you can see, Size and Equipment in the Army

schema did not have corresponding elements in the global

schema, so we added them to the global schema and we add

them to CT.XML as consolidated types. GridID, Northing, and

Easting also did not have corresponding elements in the

global schema; however, we did not add those elements to the

global schema as we did with Size and Equipment. This is

where an engineer will have to decide whether to incorporate

the elements into global schema, or define a translation at

a higher level that will perform the conversion. Table 4-1

shows the mappings between the two schemas at this stage.

39



Army Schema Element Name Global Schema Element Name
GroundUnit Track
Size Size
Activity Status
Location Location

Translations

:

Grid2LatLong . xsl
LatLong2Grid . xsl

GridID
Northing
Easting

UnitID Number
Time GMT
Equipment Equipment
DistancelnKms Di stance InMiles

Table 4-2 Initial Mapping of Elements in the Army Schema to the Global Schema

b) Translating

When the mapping is complete, the engineer needs

to determine which of two types of translations are

required. The two types of translations are those that

consist of nothing more than an element name change; and

those that require a change in the data. Since XSLT

facilitates modularity, some of the latter types of

translations might already be defined. In our example, we

defined translations that converted from grid to lat-long

and back, and made the appropriate entries in CT.XML.

Figure 4-5 shows the CT.XML entry for Location. Although

our stylesheets do not actually convert a grid position to a

latitude and longitude position, the intent here is to

outline the process of reconciling a schema with the global

schema

.

40



Once each element's translation is defined, a pair

of stylesheets can be generated that will translate from the

particular message format to the global format, and back

down, as in Figure 4-7.

Let's look at one of the stylesheets to see how

the translations are defined in XSLT and how the process of

CT.XML

*t*A<MA
GlobalSchema . xsd

I h

r

ArmySchema .xsd

Army2Global .xsl

<

V

Global2Army . xsl

Figure 4-7 Generation of the Stylesheets

generating the stylesheet could be automated once the

mapping has been completed. (This explanation assumes the

reader is somewhat familiar with the way that stylesheets

work . )

Our example comes from Appendix G, which is a

stylesheet that transforms an Army SALUTE message (Appendix

A) into the global CTH format. The first significant

41



instruction is on line 9. Line 9 tells the processor to

look for an element named SOURCE in the XML document to be

translated. We used SOURCE as a root node that would be

common to all schemas, or message types. Nested in the

SOURCE element is the element named Type, which we also used

as an element common to all message formats. They serve as

an identifier for the source and message type. Lines 10

through 13 are what the processor will output when a SOURCE

element is found by the processor. Line 11 is significant

because it specifies the schema that the output XML document

must conform to, GlobalSchema . xsd. Given that the SOURCE

and Type elements are standard elements in all messages, and

given the schema for the output message, an automated

stylesheet generator could produce this code in a

stylesheet

.

Lines 18 through 30 tell the processor how to

translate a GroundUnit element. They tell the processor

that the equivalent name in the global schema is a track,

and they specify the order in which to process the children

of the GroundUnit element. It is important for the sub-

elements to appear in the output document in the correct

order so that the document conforms to the global schema.

Notice that the order of the output elements is specified in

terms of the source schema element names, except lines 24

through 26. Those lines correspond to elements in the

42



global schema that have no equivalent element in the Salute

schema

.

A program could automatically generate this XSL

code as well. The name correspondences between the schemas

'

elements are contained in CT.XML. The order in which the

sub-elements should be processed is specified in the output

schema, in this case the global schema.

Recall that earlier we said there are two basic

types of translations. One type of translation merely

involves a name change, and the other translation involves a

change in the data. Most of the translations contained in

Army2Global . xsl are of the former type. However, the

translation from MGRS coordinates to latitude/longitude

coordinates does require a change in the data. Line 5 is an

import instruction to the processor. When the processor

sees line 5, it effectively reads the stylesheet

Grid2LatLong. xsl and pastes it in place of the import

statement. Again, the information required for this line is

contained in CT.XML. Incidentally, we chose to use the

import statement to demonstrate modularity of stylesheets;

however, we could have just done the copy-paste operation

ourselves, or a program that generates the Army2Global

stylesheet could do it

.

We used JavaScript to perform the conversion from

miles to kilometers, but we were unable to use the import

functionality of XSL because of it. We'll discuss those

43



efforts later in this chapter. For the present discussion

our aim has been to show the content of Army2Global . xsl , and

that it could be generated automatically.

2 . During Run-Time

Sending a message from System A to System B involves

two translations. The first translation will transform the

message from System A's format to the global format, the

upward translation. The second translation will convert

from global to System B's format, the downward translation.

Both translations could be performed on either side of the

transmission, as long as they're done in the proper order.

That is, both could be done by the sender's translator, both

by the receiver's translator, or one on each side.

There are two basic problems with doing both the upward

and downward translations at the source. First, the source

translator would have to know who all the recipients are,

along with the appropriate translation for each. It would

perform the upward translation and then it would have to

perform downward translations for every different type of

recipient, and send out multiple versions of the same data.

The second potential problem is that changes in a consumer's

schema might require the use of a new stylesheet that

performs the new downward translations. Now we have to

44



worry about how to disseminate the new stylesheet to every

source that produces information for the modified consumer.

The problem with performing both upward and downward

translations at the consumer is essentially the same as the

second issue, above. We must have a method of disseminating

changes in a producer's upward translations to each of its

consumers. Furthermore, both methods would involve some

kind of lookup table that would be used at run- time in order

to identify the appropriate stylesheet to apply to an

outgoing or incoming document

.

It is much simpler however, to perform the upward

translation at the source and the downward translation at

the receiver. This implementation eliminates the

complications posed by the other two. Only one version of

the document has to be sent. No lookup tables are required

because producers always apply the same upward translations

to their outgoing messages, and consumers always apply the

same downward translations to incoming messages. Also,

changes to producer and consumer schemas are localized.

Figure 4-8 is a collaboration diagram showing how the system

would work.

The CTH will not solve every problem by itself.

Translations will still have to be written for many

conversions between consolidated types and data contained in

specific message formats. What the CTH will do for us is

vastly reduce the number of translations that must be

45



defined, and in some cases enables reuse of those

translations. It may also provide a framework for semi-

automated generation of the translations.

Army System

produces

ArmyMessage . xml
receives &

-validates

ArmySchema . xsl , retrieves XML Processor

Army2Global . xsl

Navy System

consumes

roduces

NavyMessage . xml

GlobalMsg . xml
Produces

receives &
-validates

GlobablSchema . xsl . retrieves XML Processor

Global2Navy . xsl
'retrieves &

applies

Figure 4-8 Collaboration Diagram of Proposed Implementation

46



D . RESULTS

We tested our system using a series of steps,

incrementally checking what's been advertised about XML

against what we were able to achieve. We started by

creating two XML documents, one to represent a fictitious

Army message format Appendix A, and the other, Navy,

Appendix B. We created schemas for them, Appendices C and

D, respectively. Next, we created a global schema that

incorporated elements from both message formats, Figure 4-3

and Appendix E. Then we created CT.XML, Appendix F, to show

the relationships between the elements of the global schema

and its constituent schemas.

After entering correspondences between the message

formats within CT.XML, we created the stylesheets to

translate from the Army SALUTE message directly into the

Navy Track Message. The main goal at this step was to

verify the performance of an XSL processor. To execute the

translations, we used a freeware program named Xalan

constructed by IBM Apache Group (http://xml.apache.org/).

Xalan is an XSL processor written in a variety of languages

for different operating systems. The program takes command

line parameters to specify the input and output XML

documents, and which stylesheet to apply. The program and

the stylesheet worked, and we also found that the resulting

47



message conformed to TrackSchema, which is the schema

defined for the Navy Track Message.

Our next step was to create four stylesheets that

performed the upward and downward translations for both Army

and Navy message formats. We wanted to test the ability to

translate from Army to Navy via the global schema, and

perform the reverse. We also wanted to test the modularity

of the stylesheets; so, we created two more just to handle

the translation of positions, going from MGRS format to

latitude-longitude format.

However, translating from MGRS to latitude -longitude

requires the use of capabilities the W3C implementation does

not support. Functional code is required in order to

perform calculations on the data contained by an XML

document. The Microsoft implementation of XSL supports

JavaScript and Visual Basic Script (VBScript) functions that

provide this capability. It uses the xslreval statement to

invoke script functions from those two languages, but it

does not support the import or include instructions as

outlined in the W3C XSL namespace. [MSDN2] We implemented

some of the final stylesheets (Appendices I and Q) using the

xsl:eval processing instruction to demonstrate that XSL is

capable of invoking a functional transformation for a user's

specific needs, such as converting miles to kilometers .We

converted the miles element into kilometers using

JavaScript's math library. The stylesheet invokes the

48



commands using xslreval, which then searches for the

language, specified in the second line of the stylesheet, as

in Appendix I. Since this is an ability that Microsoft

implemented for their own XSL processor, MSXSL [MS] , the

Xalan processor does not process the xslreval command.

Table 4-3 is a listing of all the files we used, and their

purpose

.

49



Appendix File Name Description

A ArmyMessage . xml Message generated by an Army system. Valid
in accordance with SALUTEschema .xsd

B NavyMessage . xml Message generated by a Navy system. Valid
in accordance with TrackSchema .xsd

C SALUTEschema . xsd XML schema for validating messages generated
by an Army system.

D TrackSchema . xsd XML schema for validating messages generated
by a Navy system.

E GlobalSchema . xsd Contains the global view of data to be
shared. Puts consolidate types in context.
Also used for validating messages translated
into the global schema.

F CT . xml Contains the relationships between the
elements of the global schema and the
elements of the Army & Navy schemas. (Not

used at run-time)

.

G Army2Global .xsl Translates an Army message into a global
message

.

H Navy2Global . xsl Translates a Navy message into a global
message

.

I Global2Army .xsl Translates a global message into an Army
message

.

J Global2Navy.xsl Translates a global message into a Navy
message

.

K Grid2LatLong . xsl A stylesheet module.

L LatLong2Grid.xsl A stylesheet module.

M NewGlobal . xml An Army XML document that has been
translated into a global XML document.

N NewNavy . xml An Army XML document that has been
translated to a global, and then to a Navy
XML document

.

NewGlobal2 .xml A Navy XML document that has been translated
into a global XML document.

P NewArmy . xml A Navy XML document that has been translated
to a global, and then to a Navy XML
document

.

Q Army2Global .xsl Translates an Army Message into a Global
message using Javascript commands

Table 4-3 Listing of files used in example

50



V. CONCLUSIONS

The purpose of our research was to find a means of

communication between legacy systems, preferably using XML.

While we were successful in the very limited demonstration

of our consolidated type hierarchy, more work must be done

to prove its applicability in C4ISR systems. This research

was a first step, and should be followed by incorporating

more functional transformations into the stylesheets, and

then the application of the CTH to a set of real message

formats

.

The biggest advantage offered by the CTH is the

reduction in the number of translations that must be

defined. This advantage is realized by using a global, or

bridge format for the various message types. Another

significant benefit from the CTH model is the opportunity to

automate part of the process of defining the translations.

Automation could play a role at different stages in the

generation of the stylesheets.

First, it is possible to create tool support for

identifying elements in the new schema that correlate to an

element in the global schema. [SC99] proposes a method for

reconciling databases through semantic and structural

matching. Since XML is a meta- language and is extensible,

descriptive element names can be used, which lends itself to

some level of syntactic matching between schemas. Since XML

51



also captures the structure of the data, structures can also

be compared between schemas in order to find potential

matches. Such a tool would identify possible matches in a

graphical display, allow the engineer to confirm, override,

or manually identify matches; and then make the appropriate

entries in the global schema and CT.XML.

Another tool that would make the CTH easier to use- is

automated generation of the stylesheets. Once a message

format has been mapped to the global schema, and the

translations for individual elements have been identified in

CT.XML, then the program should be able to automatically

generate the stylesheets that translate entire messages to

and from the global schema. All of the necessary

information would be contained in the three documents of

CT.XML, the global schema, and the system schema.

Another potential area for future work is to create a

tool that would search a library of stylesheets in order to

facilitate reuse of those transformations.

The best method of implementing the CTH may be in a

publish/subscribe architecture. As the different systems

log into the networked battlefield, the system would request

to receive messages of a certain type. As each individual

legacy system sends data over the network, a wrapper would

intercept the message. The wrapper would mark up the

message into a CTH XML representation, then send it to a web

server. The web server would check the list of valid

52



subscribers for that message format, and send the message to

those destinations. The destination system's XML wrapper

would translate from the CTH mark-up form into the correct

legacy system format

.

By reutilizing the legacy systems similar to the mega-

programming concept , we hope to save DoD thousands of

dollars from cost savings and cost avoidance. Growing a

Consolidated Type Hierarchy from our model will enable a

variety of systems to communicate information across the

battlefield regardless of branch or nationality.

The CTH is a powerful model that will allow more than

just message systems to exchange information. It could be

used for object-oriented databases, as well as source code

files and initially any other kind of data. An application

of this nature would allow more reuse of previously

developed code and reduce development time and costs. An

issue that remains to be investigated is the degree of

overhead relative to real-time constraints and optimization

methods for mitigating time and space overhead.

53



THIS PAGE INTENTIONALLY LEFT BLANK

54



LIST OF REFERENCES

[DTIC] Defense Technical Information Center, Department
of Defense Dictionary.
http://www.dtic.mi1/doctrine/iel/doddict/data/i/03
090 .html

[GW92] Wiederhold, G., Wegner, P., and Ceri, S. Toward
Megaprogramming. Communications of the ACM (Nov.
1992) .

[HMS] Hammer, J.; McLeod, D; Si, A.; Object Discovery
and Unification in Federated Database Systems.

[JWJO0 0] Wing, J. , and Ockerbloom, J. Respectful Type
Converters. IEEE Transactions on Software
Engineering (July 2000) .

[KM98] Kahng, Jonghyun; McLeod, D. Dynamic
Classificational Ontologies for Discovery in
Cooperative Federated Databases. Cooperative
Information Systems, 1996. Proceedings, First
IFCIS International Conference on , 1996. Pages:
26 -35.

[MS] http: //msdn. microsoft . com/downloads/default .asp ?

URL=/ code /sample . asp?url=/MSDN-
FILES/02 7/0 01/4 85/msdncompositedoc.xml

[MSDN] http: //msdn. microsoft . com/library/default . asp?URL=
/Iibrary/psdk/xmlsdk/xmlp7k6d. htm .

[MSDN2] http : //msdn . microsoft . com/xml/XSLGuide/conformance
. asp

[PROXML] Anderson, Richard; Birbeck, Mark; Kay, Michael;
Livingstone, Steven; Loesgen, Brian; Martin,
Didier; Mohr, Stephen; Ozu, Nicola; Peat, Bruce;
Pinnock, Jonathon; Stark, Peter; Williams, Kevin.
Professional XML. Wrox Press, August, 2 000. p.
242.

[RKM] Roantree, M. ; Keane, J. ; Murphy, J. A Three- layer
Model for Schema Management in Federated
Databases. System Sciences, 1997, Proceedings of
the Thirtieth Hwaii International Conference on ,

Volume: 1 , 1997 Pages: 44 -53 vol.1.

55



[SC99] S. Castano and V. De Antonellis. "A Schema
Analysis and Reconciliation Tool Environment for
Heteregeneous Databases", IEEE Databases, Feb
1999, pp. 53-62.

[Sin98] Narinder Singh. Unifying heterogeneous
information models. Communications of the ACM 41,
5 (May. 1998), Pages 37 - 44.

[W3C] http://www.w3 . org/TR/#About ®1995-2000, W3C.

56



BIBLIOGRAPHY

[AD99] van Deursen, T. Kuipers . "Identifying Objects using
Cluster and Concept Analysis", Proceedings, 21st
International Converference on Software
Engineering, ICSE-99, ACM, 1999.

[CY94] C. Yu and W. Meng . "Progress in Database Search
Strategies", IEEE Software, Oct 1994, pp. 1-19.

[EL99] E. Lee. "Embedded Software-An Agenda for Research",
University of California Berkeley, Dec 1999.
Available as UCB/ERL No. M99/63

.

(http: //ptolemy . eecs .berkeley.edu/publications/pape
rs/ 9 9 /embedded/)

[DF91] D. Fang, J. Hammer, and D. McLeod. "The
Identification and Resolution of Semantic
Heterogeneity in Multidatabase Systems", IEEE
Transactions on Software Engineering, Mar 1991, pp.
136-143 .

[DHOO] D. Hina. "Evaluation of the Extensible Mark-up
Language as a Means for Establishing
Interoperability between Heterogeneous Department
of Defense (DoD) Databases." Naval Postgraduate
School, Sep. 2000.

[HQDA] Headquarters, Dept . of the Army. Information
Operations, Field Manual 100-6, Washington, DC:

USGPO, 2 7 August 1996, p. iv.

[JBC] Joint Battle Center. "Joint Battle Management
Integration (JBMI) Use Cases", Joint Battle
Management Integration Assessment -Phase 2, 21 Aug
2000. (internal document) [MH99] Hiemstra,
Michael A., Colonel, U.S. Army. Center for Army
Lessons Learned, NEWSLETTER NO. 99-2: "10 in a

Peace Enforcement Environment" , Fort Leavenworth,

KS: USGPO, 19 June 1999.

57



[JH94a] J. Hammer, D. McLeod, and A. Si. "An Intelligent
System for Identifying and Integrating Non-Local
Objects in Federated Database Systems", University
of Southern California. Available as a technical
report on the internet

.

(ftp : //ftp .use . edu/pub/csinfo/ tech-
reports /papers/ 94 -575 . ps . Z)

[JH94b] J. Hammer, D. McLeod, and A. Si. "Object Discovery
and Unification in Federated Database Systems",
University of Southern California. Available as a
technical report on the internet,
(ftp: //ftp .use . edu/pub/csinfo/tech-
reports/papers/94-574 .ps . Z)

[L88] Luqi, V. Berzins, and R. Yeh. "A Prototyping
Language for Real-Time Software", Software
Engineering, IEEE Transactions on , Volume: 14
Issue: 10 , Oct. 1988, pp. 1409 -1423.

[TA0 0] T. Tran and J. Allen. "Interoperability and
Security Support for Heterogeneous COTS/GOTS/Legacy
Component Based Architecture. Naval Postgraduate
School, Sep. 2000.

[VL99] V. Berzins, Luqi, B. Schultes, J. Guo, J. Allen, N
Cheng, K. Gee, T. Nguyen, E. Stierna.
"Interoperability Technology Assessment for Joint
C4ISR Systems". Naval Postgraduate School, Sep.
2000.

58



APPENDIX A-ARMYMESSAGE.XML

This is the source file for the Army SALUTE message in
XML. This was an input to translator along with a
stylesheet, and was transformed into a global message,
"NewGlobal .xml"

.

<!-- edited with XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmlspy.com) by Brian Lyttle (Home) -->

<!-This file captures the representation of an Army SALUTE Report. It is used when soldiers find an enemy on the

battlefield, and

report the enemy's activity. The Army constructed the report before automation, but today it still contains the same
information.

The information is structured like this:

S: Size of the enemy unit, ie people, vehicles.

A: Activity of the enemy, ie walking, emplacing, sleeping.

L: Location in Military Grid Reference Position, with Grid identifier, Northing, and Easting.

U: Unit identification, to include distinctive symbols, patches, vehicle numbers.

T: Time the activity was observed.

E: Equipment the enemy possessed during the activity, such as M60 Machine Guns, AK-47s, mortars->

<SOURCE name-'ArmySystem" xmlns:xsi- 'http://www.w3.Org/2000/1 0/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newSALUTESchema.xsd">

<Type MsglD="SALUTE7>
<GroundUnit>

<Size>10</Size>

<Activity>Wa I kingN E</Activity>

<Location>

<GridlD>NK</GridlD>

<Northing>1 00</Northing>

<Easting>400</Easting>

</Location>

<UnitlD>1 50MRR</UnitlD>

<Time>2159Z</Time>
<Equipment>AK_47sampAT</Equipment>
<DistancelnKms>10</DistancelnKms>

</GroundUnit>

<GroundUnit>

<Size>5</Size>

<Activity>RunningNE</Activity>

<Location>

<GridlD>NK</GridlD>

<Northing>50</Northing>

<Easting>350</Easting>

</Location>

<UnitlD>100MRR</UnitlD>

<Time>21 59Z</Time>

<Equipment>M16</Equipment>
<DistancelnKms>25</DistanceinKms>

</GroundUnit>

</SOURCE>

59



THIS PAGE INTENTIONALLY LEFT BLANK

60



APPENDIX B-NAVYMESSAGE. XML

This is the source file for the Navy Track Report message
in XML. It shows what a Track Report would look like in
XML.

<!~The Navy TrackReport possesses a set of tracks that identify objects. The objects are identified by a variety of

sensors such as Airborne radars and shipboard sensors. They communicate

information to each other via Tactical Data Links (TADIL) in a near real time fashion. The computers on-board the

sea and air platforms receive the infomration via the TADIL link, and use them in the information system as part of

a display for the operator. The display contains a picture of all nearby objects detected by the sensors. Our
representation is a simplified version used for our puposes to demonstrate the abilities of the CTH.

The entries for track are:

Number: the number given to the object by the TADIL system.

Coordinates: the latitude/longitude position of the object.

Course: the direction (in degrees) of the object

Speed: how fast the object is traveling in miles per hour

Status: tells if the object is friendly, enemy, or unknown.

IFF: the Identification Friend or Foe code that is received from the beacon on the object.

GMT: time of the last sighting of this object, in Greenwich Mean Time.~>

<SOURCE name="NavyMessage"xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newTrackSchema.xsd
n>

<Type MsglD="TrackReport'7>

<Track>

<Number>1000</Number>
<Coordinates>

<Latitude>32-36N</Latitude>

<Longitude>30-20W</Longitude>

</Coordinates>

<Course>0</Course>

<Speed>14</Speed>
<Status>Unknown</Status>

<IFF/>

<GMT>1502</GMT>
<DistancelnMiles>100</DistancelnMiles>

</Track>

<Track>

<Number>1 1 1 1 </Number>

<Coordinates>

<Latitude>32-35N</Latitude>

<Longitude>30-21W</Longitude>

</Coordinates>

<Course>0</Course>

<Speed>14</Speed>
<Status>Unknown</Status>

<IFF/>

<GMT>1503</GMT>
<DistancelnMiles>10</DistancelnMiles>

</Track>

</SOURCE>

61



THIS PAGE INTENTIONALLY LEFT BLANK

62



APPENDIX C-SALUTESCHEMA.XSD

This is the XML Schema for the Army SALUTE Report,
"SaluteSchema.xsd" . It defines the structure of the
"ArmyMessage . xml" document. This is the code represented by
Figure 4-1.

<?xml version-"!.0" encoding="UTF-8"?>
<!-- edited with XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmlspy.com) by Brian Lyttle (Home) ->

<!--W3C Schema generated by XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmlspy.com)->

<xsd:schema xmlns:xsd="http://www.w3. org/2000/1 0/XMLSchema" elementFormDefault="qualified">

<xsd:element name="SOURCE">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="Type">
<xsd:complexType>

<xsd:attribute name-'MsgID" type="xsd:sthng" use="required"/>

</xsd:complexType>

</xsd:element>

<xsd:element name-'GroundUnit" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name-'Size" type="xsd:byte"/>

<xsd:element name-'Activity" type="xsd:string'7>

<xsd:element name="Location">

<xsd:complexType>

<xsd:sequence>

<xsd:element name-'GridID" type="xsd:string'7>

<xsd:element name-'Northing" type="xsd:string7>

<xsd:element name-'Easting" type="xsd:string"/>

</xsd:sequence>

</xsd :complexType>
</xsd:element>

<xsd:element name-'UnitID" type="xsd:string"/>

<xsd:element name-Time" type="xsd:string"/>

<xsd:element name="Equipment" type="xsd:string"/>

<xsd:element name-'DistancelnKms" type="xsd:float"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required'7>

</xsd :complexType>

</xsd:element>

</xsd:schema>

63



THIS PAGE INTENTIONALLY LEFT BLANK

64



APPENDIX D-TRACKSCHEMA.XSD

This is the XML Schema for the Navy Track Report,
"TrackSchema .xsd" . It defines the structure of
"NavyMessage . xml " . This is the code represented by Figure
4-1.

<?xml version-"!.0" encoding="UTF-8"?>
<!-- edited with XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmlspy.com) by Brian Lyttle (Home) ->

<!--W3C Schema generated by XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmlspy.com)-->

<xsd:schema xmlns:xsd="http://www.w3.org/2000/1 0/XMLSchema" elementFormDefault="qualified">

<xsd:element name="SOURCE">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="Type">

<xsd:complexType>

<xsd: attribute name-'MsgID" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

<xsd:element name-Track" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name-'Number" type="xsd:string"/>

<xsd:element name="Coordinates">

<xsd:complexType>

<xsd:sequence>

<xsd:element name-'Latitude" type="xsd:string7>

<xsd:element name-'Longitude" type="xsd:string'7>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name-'Course" type="xsd:string'7>

<xsd:element name-'Speed" type="xsd:string'7>

<xsd:element name="Status" type="xsd:string'7>

<xsd:element name="IFF" type="xsd:string'7>

<xsd:element name="GMT" type="xsd:string'7>

<xsd:element name-'DistancelnMiles" type="xsd:string7>

</xsd:sequence>

</xsd :complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name-'name" type="xsd:string" use="required'7>

</xsd:complexType>

</xsd:element>

</xsd:schema>

65



THIS PAGE INTENTIONALLY LEFT BLANK

66



APPENDIX E-GLOBALSCHEMA.XSD

This is the code from "GlobalSchema.xsd" . It is
represented by Figure 4-3. The global schema defines the
structure of a global message, as in "NewGlobal . xml" and
nNewGlobal2.xml"

.

<?xml version-"!. 0" encoding="UTF-8"?>
<!- edited with XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmlspy.com) by Brian Lyttle (Home) ->

<!~W3C Schema generated by XML Spy v3.5 NT beta 2 build Dec 1 2000 (http://www.xmispy.comj->

<xsd:schemaxmlns:xsd="http://www.w3.org/2000/10/XMLSchema"elementFormDefault="qualified">

<xsd:element name="SOURCE">
<xsd :complexType>

<xsd:sequence>
<xsd:element name='Type">

<xsd:complexType>

<xsd:attribute name-'MsgID" type="xsd:string" use="required"/>

</xsd :complexType>
</xsd:element>

<xsd:element name='Track" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Number" type="xsd:string"/>

<xsd:element name-'GMT" type="xsd:string"/>

<xsd:element name="Location">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Latitude" type="xsd:string'7>

<xsd:element name="Longitude" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Status" type="xsd:string"/>

<xsd:element name="Course" type="xsd:string"/>

<xsd:element name="Speed" type="xsd:string"/>

<xsd:element name="IFF">

<xsd :complexType/>

</xsd:element>

<xsd:element name="Size" type="xsd:string"/>

<xsd:element name="Equipment" type="xsd:string"/>

<xsd:element name="DistancelnMiles" type="xsd:string'7>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

67



THIS PAGE INTENTIONALLY LEFT BLANK

68



APPENDIX F-CT.XML

This file contains the relationships between the
consolidated types found in the global schema and the
elements found in the Army and Navy schemas . This is a
concrete example of Figure 4-4.

<?xml version-"!. 0" encoding="UTF-8"?>

<ConsolidatedTypes xmlns-'www.nps. navy.mil/sw/CTH/Global">

<Track>

<TrackReport name-Track" upXlate="Navy2Global.xsl" dnXlate="Global2Navy.xsl"/>

<Salute name-'GroundUnit" upXlate="Army2Global.xsl" dnXlate="Global2Army.xs<"/>

</Track>

<Number>
<TrackReport name="Number'7>

<Salute name="UnitlD" upXlate="UnitlD2Track.xsl" dnXlate="Track2UnitlD.xsl7>

</Number>
<Location>

<TrackReport name="Location"/>

<Salute name-'Location" upXlate="Grid2LatLong.xsl" dnXlate="LatLong2Grid.xsl"/>

</Location>

<Course>
<TrackReport name="Course'7>

</Course>

<Speed>
<TrackReport name="Speed'7>

</Speed>

<Status>

<TrackReport name="Status'7>

<Salute name="Activity'7>

</Status>

<IFF>

<TrackReport name="IFF7>

</IFF>

<GMT>
<TrackReport name="GMr7>
<Salute name="Time'7>

</GMT>
<Size>

<Salute name="Size'7>

</Size>

<Equipment>
<Salute name="Equipment"/>

</Equipment>

<Latitude>

<TrackReport name="Latitude'7>

</Latitude>

<Longitude>

<TrackReport name="Longitude'7>

</Longitude>

<DistancelnMiles>

<TrackReportname="DistancelnMiles7>

<SALUTE name="DistancelnKms7>

</DistancelnMiles>

</ConsolidatedTypes>

69



THIS PAGE INTENTIONALLY LEFT BLANK

70



APPENDIX G-ARMY2GL0BAL.XSL

This XSLT stylesheet transforms an Army SALUTE report
into a global message. When we applied this stylesheet to
"ArmyMessage .xml" the message produced was "NewGlobal . xml"
Line numbers have been added to facilitate referral in the
text

.

1 <?xml version-"!. 0" encoding="UTF-8"?>

2 <xsl:stylesheet version="1 .0" xmlns:xsl=http://www.w3.orq/1999/XSI-/Transform

3 xmlns:fo="http://www.w3.org/1999/XSL/Format">

4 <!-Stylesheet to translate from Army SALUTE Report to a CTH message->

5 <xsl: import href=".\Grid2LatLong.xsl"/>

6 <xsl template match = "/">

7 <xsl:apply-temp!ates/>

8 </xsl:template>

9 <xsl:template match="SOURCE">
10 <SOURCE name="GlobalMessage" xmlns:xsi="http://www.w3.org/2000/10/XlvlLSchema-instance"

1

1

xsi:noNamespaceSchemaLocation=".\GlobalSchema.xsd" >

12 <xsl:apply-templates/>

13 </SOURCE>
14 </xsl:template>

15 <xsl:template match='Type">

16 <Type MsglD='TrackReport"/>

17 </xsl:template>

18 <xsl:template match="GroundUnit">

1

9

<Track>

20 <xsl:apply-templates select="UnitlD7>

21 <xsl:apply-templates select- Time"/>

22 <xsl:apply-templates select="Location"/>

23 <xsl:apply-templates select="Activity"/>

24 <Course/>

25 <Speed/>

26 <IFF/>

27 <xsl:apply-templates select="Size"/>

28 <xsl:apply-templates select="Equipment"/>

29 </Track>

30 </xsl:template>

31 <xsl:template match="UnitlD">

32 <Number>
33 <xsl:value-of select="."/>

34 </Number>

35 </xsl:template>

36 <xsl:template match='Time">

37 <GMT>
38 <xsl:value-of select-'. "/>

39 </GMT>
40 </xsl:template>

71



41 <xsl:template match="Location">

42 <Location>

43 <xsl:apply-templates/>

44 </Location>

45 </xsl:template>

46 <xsl:template match="Activity">

47 <Status>

48 <xsl:value-of select-'. "/>

49 </Status>

50 </xsl:template>

51 <xsl:template match="Size">

52 <Size>

53 <xsl:value-of select=".7>

54 </Size>

55 </xsl:template>

56 <xsl:template match="Equipment">

57 <Equipment>

58 <xsl:value-of select-'. "/>

59 </Equipment>

60 </xsl:template>

61 </xsl:stylesheet>

72



APPENDIX H-NAVY2GLOBAL. XSL

This XSLT stylesheet transforms a Navy Track report into
a global message. When we applied this stylesheet to
"NavyMessage .xml" the message produced was "NewGlobal2 .xml"

<?xml version-"!. 0" encoding="UTF-8"?>

<xsl:stylesheet version="1 .0" xmlns:xsl="http://www.w3.org/1999/XSUTransform"

xmlns:fo="http://www.w3.org/1999/XSL7Format">

<!--Stylesheet to translate from a Navy Track Report to a CTH message->

<xsl:template match = "/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="SOURCE">
<SOURCE name="GlobalMessage" xmlns:xsi="http://www.w3.org/2000/1 0/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newGlobalSchema.xsd" >

<xsl:apply-templates/>

</SOURCE>
</xsl:template>

<xsl:template match="Type">

<Type MsglD='TrackReport"/>

</xsl:template>

<xsl:template match="Track">

<Track>

<xsl:apply-templates select="Number"/>

<xsl:apply-templates select="GMT7>

<xsl:apply-templates select="Coordinates"/>

<xsl:apply-templates select=
n
Status7>

<xsl:apply-templatesselect="Course7>

<xsl:apply-templates select="Speed"/>

<xsl:apply-templates select- 'IFF7>

<Size/>

<Equipment/>

<xsl:apply-templatesselect="DistancelnMiles'7>

</Track>

</xsl:template>

<xsl:template match="Number">

<Number>
<xsl:value-of select-'. "/>

</Number>

</xsl:template>

<xsl:template match="Coordinates">

<Location>

<xsl:apply-templates/>

</Location>

</xsl:template>

<xsl:template match="Latitude">

<Latitude>

<xsl:apply-templates/>

73



</Latitude>

</xsl:template>

<xsl:template match="Longitude">

<Longitude>

<xsl:apply-templates/>

</Longitude>

</xsl:template>

<xsl template match="Course">

<Course>

<xsl:value-of select-'.7>

</Course>

</xsl:template>

<xsl:template match="Speed">

<Speed>
<xsl:value-of select=".7>

</Speed>

</xsl:template>

<xsl:template match="Status">

<Status>

<xsl:value-of select-'.7>

</Status>

</xsl:template>

<xsl:template match="IFF">

<IFF>

<xsl:value-of select="."/>

</IFF>

</xsl:template>

<xsl:template match="GMT">
<GMT>

<xsl:value-of select-'.7>

</GMT>
</xsl:template>

<xsl:template match="DistancelnMiles">

<DistancelnMiles>

<xsl:value-of select=".7>

</DistancelnMiles>

</xsl:template>

</xsl:stylesheet>

74



APPENDIX I -GLOBAL 2ARMY. XSL

This XSLT stylesheet transforms a global message into an
Army SALUTE report. When we applied this stylesheet to
"NewGlobal . xml " the message produced was " NewArmy . xml "

.

<?xml version="1.0" encoding=
n
UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/TRA/VD-xsl" language="JavaScript">

<!--Stylesheet to translate from a CTH message to an Army SALUTE Report-->

<!-- <xsl:import href=".\LatLong2Grid.xsl7>-->

<xsl:template match = T>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="SOURCE">
<S0URCE name="ArmySystem"xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newSALUTEschema.xsd" >

<xsl:apply-templates/>

</S0URCE>
</xsl:template>

<xsl:template match="Type">

<Type MsglD="SALUTE7>
</xsl:template>

<xsl:template match="Track">

<GroundUnit>

<xsl:apply-templates select="Size"/>

<xsl:apply-templates select="Status"/>

<xsl:apply-templates select="Location'7>

<xsl:apply-templates select="Number"/>

<xs!:apply-templates select="GMT7>

<xsl:apply-templates select="Equipment"/>

<xsl:apply-templates select="DistancelnMiles"/>

</GroundUnit>

</xsl:template>

<xsl:template match="Number">

<UnitlD>

<xsl:value-of select=".7> .

</UnitlD>

</xsl:template>

<xsl:template match="GMT">
<Time>

<xsl:value-of select=".7>

</Time>

</xsl:template>

<xsl:template match="Location">

<Location>

<xsl:apply-templates/>

</Location>

</xsl:template>

75



<xsl:template match="Latitude">

<GridlD>

</GridlD>

<Northing>

<xsl:value-of select-'.7>

</Northing>

</xsl:template>

<xsl:template match="l_ongitude">

<Easting>

<xsl:value-of select=".7>

</Easting>

</xsl:template>

<xsl:template match="Status">

<Activity>

<xsl:value-of select=".7>

</Activity>

</xsI:template>

<xsl:template match="Size">

<Size>

<xsl:value-of select-'. "/>

</Size>

</xsl:template>

<xsl:template match="Equipment">

<Equipment>

<xsl:value-of select-'. "/>

</Equipment>

</xsl:template>

<xsl:template match="DistancelnMiles">

<DistancelnKms><xsl:eval>this.nodeTypedValue*(2.21)</xsl:eval></DistancelnKms>

</xsl:template>

;/xsl:stylesheet>

76



APPENDIX J -GLOBAL2NAVY. XSL

This XSLT stylesheet transforms a global message into a
Navy Track report. When we applied this stylesheet to
"NewGlobal2 .xml " the message produced was "NewNavy . xml "

.

<?xml version-' 1 .0" encoding="UTF-8"?>

<xsl:stylesheet version="1 .0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL7Format">

<!--Stylesheet to translate from a CTH message to a Navy Track Report~>

<xsl:template match = "/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="SOURCE">
<SOURCE name-'NavyMessage"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newTrackSchema.xsd" >

<xsl:apply-templates/>

</SOURCE>
</xsl:template>

<xsl:template match="Type">

<Type MsglD="TrackReport"/>

</xsl:template>

<xsl:template match='Track">

<Track>

<xsl:apply-templates select="Number7>

<xsl:apply-templates select- 'Location"/>

<xsl:apply-templates select="Course7>

<xsl:apply-templates select="Speed"/>

<xsl:apply-templates select="Status'7>

<xsl:apply-templates select="IFF7>

<xsl:apply-templates select="GMT"/>

<xsl:apply-templates select="DistancelnMiles7>

</Track>

</xsl:template>

<xsl:template match="Number">

<Number>
<xsl:value-of select-'.7>

</Number>
</xsl:template>

<xsl:template match-'Location">

<Coordinates>

<xsl:apply-templates/>

</Coordinates>

</xsl:template>

<xsl:template match="Latitude">

<Latitude>

<xsl:apply-templates/>

</Latitude>

77



</xsl:template>

<xsl:template match="Longitude">

<Longitude>

<xsl:apply-templates/>

</Longitude>

</xsl:template>

<xsl:template match="Course">

<Course>

<xsl:value-of select-'. "/>

</Course>

</xsl:template>

<xsl:template match="Speed">

<Speed>
<xsl:value-of select="."/>

</Speed>

</xsl:template>

<xsl:1emplate match="Status">

<Status>

<xsl:value-of select=".7>

</Status>

</xsl:template>

<xsl:template match="IFF">

<IFF>

<xsl:value-of select=".7>

</IFF>

</xsl:template>

<xsl:template match="GMT">
<GMT>

<xsl:value-of select-'.7>

</GMT>
</xsl:template>

<xsl:template match="DistancelnMiles">

<DistancelnMiles>

<xsl:value-of select-'. "/>

</DistancelnMiles>

</xsl:template>

</xsl:stylesheet>

78



APPENDIX K-GRID2LATL0NG.XSL

This XSLT stylesheet is imported by "Army2Global .xsl "

.

This stylesheet does not actually convert a grid position
into a latitude-longitude position. We used this stylesheet
to test and demonstrate the modularity of XSLT stylesheets.

<?xml version- "1.0" encoding- 'UTF-8"?>

<xsl:stylesheet version="1 .0" xmlns:xsl="http://www.w3.org/1999/XSI_/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:template match="GridlD">

</xsl:template>

<xsl:template match="Northing">

<Latitude>

<xsl:value-of select=".7>

</Latitude>

</xsl:template>

<xsl:template match="Easting">

<Longitude>

<xsl:value-of select=".7>

</Longitude>

</xsl:template>

</xsl:stylesheet>

79



THIS PAGE INTENTIONALLY LEFT BLANK

80



APPENDIX L-LATL0NG2GRID.XSL

This XSLT stylesheet is imported by "Global2Army .xsl "

.

This stylesheet does not actually convert a latitude-
longitude position into a grid position. We used this
stylesheet to test and demonstrate the modularity of XSLT
stylesheets

.

<?xml version-"!. 0" encoding="UTF-8"?>

<xsl:stylesheet version- "1 .0" xmlns:xsl="http://www.w3.org/1 999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSUFormat">

<xsl:template match="Latitude">

<GridlD>

</GridlD>

<Northing>

<xsl:value-of select=".7>

</Northing>

</xsl:template>

<xsl:template match="Longitude">

<Easting>

<xsl:value-of select=".7>

</Easting>

</xsl:template>

</xsl:stylesheet>

81



THIS PAGE INTENTIONALLY LEFT BLANK

82



APPENDIX M-NEWGLOBAL.XML

This is the output of the XSL processor when
"Army2Global . xsl" is applied to "ArmyMessage .xml

"

<SOURCE name-'GlobalMessage" xmlns:xsi="http://www.w3.org/2000/1 0/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newGlobalSchema.xsd">

<Type MsglD="TrackReport"/>

<Track>

<Number>
150MRR

</Number>

<GMT>
2159Z

</GMT>
<Location>

<Latitude>

100

</Latitude>

<Longitude>

400

</Longitude>

</Location>

<Status>

WalkingNE

</Status>

<Course/>

<Speed/>

<IFF/>

<Size>

10

</Size>

<Equipment>

AK_47sampAT
</Equipment>

<DistancelnMiles>

4.52488687782805

</DistancelnMiles>

</Track>

<Track>

<Number>
100MRR

</Number>

<GMT>
2159Z

</GMT>
<Location>

<Latitude>

50

</Latitude>

<Longitude>

350

</Longitude>

</Location>

<Status>

RunningNE

</Status>

<Course/>

83



<Speed/>

<IFF/>

<Size>

5

</Size>

<Equipment>

M16
</Equipment>

<DistancelnMiles>

11.3122171945701

</DistancelnMiles>

</Track>

</SOURCE>

84



APPENDIX N-NEWNAVY.XML

This is the output of the XSL processor when
"Global2Navy.xsl" is applied to "NewGlobal .xml"

<SOURCE name-'NavyMessage" xsi:noNamespaceSchemaLocation=".\newTrackSchema.xsd"

xmlns:fo="http://www.w3.org/1 999/XSL/Format" xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

<Type MsglD="TrackReport"/>

<Track>

<Number>
150MRR

</Number>
<Coordinates>

<Latitude>

100

</Latitude>

<Longitude>

400

</Longitude>

</Coordinates>

<Course/>

<Speed/>

<Status>

WalkingNE

</Status>

<IFF/>

<GMT>
2159Z

</GMT>
<DistancelnMiles>

4.52488687782805

</DistancelnMiles>

</Track>

<Track>

<Number>
100MRR

</Number>
<Coordinates>

<Latitude>

50

</Latitude>

<Longitude>

350

</Longitude>

</Coordinates>

<Course/>

<Speed/>

<Status>

RunningNE

</Status>

<IFF/>

<GMT>
2159Z

</GMT>
<DistancelnMiles>

11.3122171945701

</DistancelnMiles>

85



THIS PAGE INTENTIONALLY LEFT BLANK

86



APPENDIX 0-NEWGL0BAL2.XML

This is the output of the XSL processor when
"Navy2Global . xsl" is applied to "NavyMessage .xml

"

<?xml version-"!.0" encoding="UTF-16"?>

<SOURCE name-'GlobalMessage" xsi:noNamespaceSchemaLocation=".\newGlobalSchema.xsd"

xmlns:fo="http://www.w3.org/1999/XSIJFo^mat"xmlns:xsi-
,

http://www.w3.org/2000/10/XMLSchema-instance">

<Type MsglD='TrackReport7>

<Track>

<Number>1 000</Number>
<GMT>1502</GMT>
<Location>

<Latitude>32-36N</Latitude>

<Longitude>30-20W</Longitude>

</Location>

<Status>Unknown</Status>

<Course>0</Course>

<Speed>1 4</Speed>

<IFF/>

<Size/>

<Equipment/>

<DistancelnMiles>100</DistancelnMiles>

</Track>

<Track>

<Number>1 1 1 1 </Number>

<GMT>1503</GMT>
<Location>

<Latitude>32-35N</Latitude>

<Longitude>30-21W</Longitude>

</Location>

<Status>Unknown</Status>

<Course>0</Course>

<Speed>14</Speed>
<IFF/>

<Size/>

<Equipment/>

<DistancelnMiles>10</DistancelnMiles>

</Track>

</SOURCE>

87



THIS PAGE INTENTIONALLY LEFT BLANK

88



APPENDIX P-NEWARMY.XML

This is the output of the XSL processor when
"Global2Navy .xsl" is applied to "NewGlobal .xml"

<SOURCE name="ArmySystem" xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=".\newSALUTEschema.xsd">

<Type MsglD="SALUTE7>
<GroundUnit>

<Size/>

<Activity>

Unknown
</Activity>

<Location>

<GridlD/>

<Northing>

32-36N

</Northing>

<Easting>

30-20W
</Easting>

</Location>

<UnitlD>

1000

</UnitlD>

<Time>
1502

</Time>

<Equipment/>

<DistancelnKms>221</DistancelnKms>

</GroundUnit>

<GroundUnit>

<Size/>

<Activity>

Unknown
</Activity>

<Location>

<GridlD/>

<Northing>

32-35N

</Northing>

<Easting>

30-21W
</Easting>

</Location>

<UnitlD>

1111

</UnitlD>

<Time>
1503

</Time>

<Equipment/>

<DistancelnKms>22.K/DistanceinKms>

</GroundUnit>

</SOURCE>

89



THIS PAGE INTENTIONALLY LEFT BLANK

90



APPENDIX Q-ARMY2GLOBAL. XSL USING "XSL:EVAL"

This is file differs from Appendix G because it uses the "xsl:eval" command and does not use the import ability

implemented in the w3c version of XSL. However, it does convert from kilometers to miles and still transforms

MGRS to lat/long coordinates.

<?xml version- "1.0" encoding="UTF-8"?>

<xsl:stylesheet version-"!. 0" xmlns:xsl="http://www.w3.org/TR/WD-xsl" language="JavaScript">

<!--Stylesheet to translate from Army SALUTE Report to a CTH message->
<!-- <xsl:include href=".\Grid2LatLong.xsl"/>->

<!—The include statement is an accepted statement in a different XSL namespace called

xmlns:xsl- 'http://www.w3.org/1999/XSL/Transform".

However, in the namespace used by this stylesheet, "include" and "import" are not accepted commands. Since we
wanted to demonstrate the

ability of XML to functionally transform objects, we selected the above namespace. The "XSL/Transform"

namespace is used to transform the

trees formed by the two documents, while the "TR/WD-xsl" namespace is used to format objects for a destination

system.

The w3c is reviewing different recommendations, and we hope the two namespaces are combined :).->

<xsl:template match="/">

<xsl :apply-templates/>

</xsl:template>

<xsl:template match="SOURCE">
<SOURCE name-'GlobalMessage"

xmlns:xsi="http://www.w3.org/2000/1 0/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="AnewGlobalSchema.xsd" >

<xsl:apply-templates/>

</SOURCE>
</xsl:template>

<xsl [template match="Type">

<Type MsglD="TrackReport7>

</xsl:template>

<xsl:template match="GroundUnit">

<Track>
<xsl:apply-templates select="UnitlD7>

<xsl:apply-templates select="Time"/>

<xsl:apply-templates select="Location'7>

<xsl:apply-templates select="Activity"/>

<Course/>

<Speed/>

<IFF/>

<xsl:apply-templates select="Size'7>

<xsl:apply-templates select- 'Equipment"/>

<xsl:apply-templatesselect="DistancelnKms"/>

</Track>

</xsl:template>

<xsl:template match="UnitlD">

<Number>
<xsl:value-of select-'.7>

</Number>
</xsl:template>

<xsl:template match='Time">

<GMT>
<xsl:value-of select=".7>

</GMT>
</xsl:template>

91



<xsl:template match="Location">

<Location>

<xsl:apply-templates/>

</Location>

</xsl:template>

<xsl:template match-'Activity">

<Status>

<xsl:value-of select-'. "/>

</Status>

</xsl:template>

<xsl:template match="Size">

<Size>

<xsl:value-of select=".7>

</Size>

</xsl:template>

<xsl:template match="Equipment">

<Equipment>

<xsl:vaiue-of select=".7>

</Equipment>

</xsl:template>

<xsl:template match="GridlD7>

<xsl:template match="Northing">

<Latitude>

<xsl:value-of select-'.7>

</Latitude>

</xsl:template>

<xsl:template match="Easting">

<Longitude>

<xsl:value-of select=".7>

</Longitude>

</xsl:template>

<xsl:template match="DistancelnKms">

<DistancelnMiles>

<xsl:eval>this.nodeTypedValue/(2.21)</xsl:eval>

</DistancelnMiles>

</xsl:template>

</xsl:stylesheet>

92



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
8725 John J. Kingman Rd. , STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Engineering & Technology Curriculum 1

Code 34
Naval Postgraduate School
70 Dyer Rd. , Room 115
Monterey, California 93943-5107

Computer and Information Programs Office 1

Code 3 2

Naval Postgraduate School
833 Dyer Rd. , Room 404
Monterey, California 93943-5120

Dr Luqi 1

Naval Postgraduate School
83 3 Dyer Rd.
Monterey, California 93943-5118

Dr Valdis Berzins 2

Naval Postgraduate School
83 3 Dyer Rd.
Monterey, California 93943-5118

Dr Ge Jun 2

Naval Postgraduate School
833 Dyer Rd.
Monterey, California 93943-5118

Captain Paul E . Young 1

Naval Postgraduate School
83 3 Dyer Rd.
Monterey, California 93943-5118

Lieutenant Todd P . Ehrhardt 2

3 88 Woodhams Rd.
Santa Clara, CA 95051

93



9. Captain Brian J. Lyttle
7321 East 66 th Pi.
Tulsa, Oklahoma 74133

10 . Professor Dan Boger
Naval Postgraduate School
83 3 Dyer Rd.
Monterey, California 93943-5111

94





b/02
22527-200 nu










