
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2000-06

Implementation of a fault tolerant computing testbed:

a tool for the analysis of hardware and software fault

handling techniques

Summers, David C.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7713

NPS ARCHIVE
2000.06
SUMMERS, D.

:.«*XS SCHOOL

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

IMPLEMENTATION OF A FAULT TOLERANT
COMPUTING TESTBED:

A TOOL FOR THE ANALYSIS OF HARDWARE AND
SOFTWARE FAULT HANDLING TECHNIQUES

by

David C. Summers

June 2000

Thesis Co-advisors: Alan A. Ross

Herschel H. Loomis

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

Implementation of a Fault Tolerant Computing Testbed: A Tool for the Analysis of Hardware and

Software Fault Handling Techniques

6. AUTHOR(S)

Summers, David C.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey. CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

Defense or the U.S. Government.

1 2a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

With spacecraft designs placing more emphasis on reduced cost, faster design time, and higher performance, it is easy to

understand why more commercial-off-the-shelf (COTS) devices are being used in space based applications. The COTS devices

offer spacecraft designers shorter design-to-orbit times, lower system costs, orders of magnitude better performance, and a much

better software availability than their radiation hardened (radhard) counterparts. The major drawback to using COTS devices in

space is their increased susceptibility to the effects of radiation, single event upsets (SEUs) in particular.

This thesis will focus on the implementation of a fault tolerant computer system. The hardware design presented here has

two different benefits. First, the system can act as a software testbed, which allows testing of software fault tolerant techniques in

the presence of radiation induced SEUs. This allows the testing of the software algorithms in the environment they were designed

to operate in without the expense of being placed in orbit. Additionally, the design can be used as a hybrid fault tolerant computer

system. By combining the masking ability of the hardware with supporting software, the system can mask out and reset processor

errors in real time. The design layout will be presented using OrCAD® schematics.

14. SUBJECT TERMS
Fault Tolerant Computing, Triple Modular Redundancy (TMR), Commercial-Off-The-Shelf (COTS) Devices,

Single Event Upsets (SEU)

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A FAULT TOLERANT COMPUTING TESTBED:
A TOOL FOR THE ANALYSIS OF HARDWARE AND SOFTWARE FAULT

HANDLING TECHNIQUES

David C. Summers
Captain, United States Marine Corps

B.S., Texas A&M University, 1995

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2000

DUDLEY KNOX LIBRARY

W OSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

ABSTRACT

With spacecraft designs placing more emphasis on reduced cost, faster design

time, and higher performance, it is easy to understand why more commercial-off-the-

shelf (COTS) devices are being used in space based applications. The COTS devices

offer spacecraft designers shorter design-to-orbit times, lower system costs, orders of

magnitude better performance, and a much better software availability than their radiation

hardened (radhard) counterparts. The major drawback to using COTS devices in space is

their increased susceptibility to the effects of radiation, single event upsets (SEUs) in

particular.

This thesis will focus on the implementation of a fault tolerant computer system.

The hardware design presented here has two different benefits. First, the system can act

as a software testbed, which allows testing of software fault tolerant techniques in the

presence of radiation induced SEUs. This allows the testing of the software algorithms in

the environment they were designed to operate in without the expense of being placed in

orbit. Additionally, the design can be used as a hybrid fault tolerant computer system.

By combining the masking ability of the hardware with supporting software, the system

can mask out and reset processor errors in real time. The design layout will be presented

using OrCAD® schematics.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THE SPACE ENVIRONMENT 2

1. Vacuum 2

2. Meteoroids 3

3. Temperature 3

4. Radiation 4

B. SINGLE EVENT EFFECTS (SEE) 5

1. Single Event Latchup (SEL) 6

2. Single Event Transient (SET) 6

3. Single Event Upsets (SEU) 7

C. COMMERCIAL-OFF-THE-SHELF VS. RADIATION HARDENED
DEVICES 7

1. Cutting Edge Technology 8

2. Faster Design-to-Orbit Time 8

3. Reduced Cost 8

D. PURPOSE 9

E. THESIS ORGANIZATION 10

II. BACKGROUND 11

A. REDUNDANCY 1

1

1. Software Redundancy 11

2. Information Redundancy 12

3. Time Redundancy 13

4. Hardware Redundancy 13

5. TMR Implementations 15

B. SOFTWARE VS HARDWARE REDUNDANCY 16

C. TMR MICROPROCESSOR DESIGN 17

1. Processor Selection 17

2. Hardware Design 18

3. Software Design 20

III. HARDWARE DESIGN SPACE 23

A. DESIGN PARAMETERS 23

1. Evaluation Board 24

2. Space Flight Board 25

3. Accelerator Testing 25

B. SYSTEM OVERVIEW 26

C. SYSTEM SUPPORT ELEMENTS 29

1. Discrete Components 29

2. Timing Interface 29

a) CPU Oscillator 30

vii

b) UART Oscillator 31

c) Buffer/Driver Logic 32

3. Reset System 33

4. Mode Select 35

5. Test Connectors 37

D. MICROPROCESSOR AND ADDRESS LATCH 38

1. Microprocessor 38

2. Address Latch 39

E. MEMORY SPACE 39

1. R3081 Memory Space 39

2. PROM 40

3. SRAM 42

a) Size 42

b) Memory Segments 43

4. Input/Output (I/O) 44

a) Interface Type 45

b) I/O Interface Implementation 47

F. FIFO INTERFACE 49

1. Control Bus Design 49

2. FIFO Selection 50

IV. PROGRAMMABLE LOGIC DESIGN 53

A. PLD DESIGN 54

1. Memory Controller PLD 56

a) Counter 57

b) Cycle End (CYCEND*) 58

c) Read Buffer Clock Enable (RDCEN*) 59

d) Acknowledge (ACK*) 60

e) Bus Error (BUSERR*) 61

f) Voter Interrupt (VOTINT*) 61

2. Memory Enable PLD 62

a) Read Enable (RDEN*) 62

b) Write Enables 63

c) Data Enables 64

d) Synchronous Resets 65

B. FPGA DESIGN 66

1. FPGA Selection 66

2. Address Voter, Memory Decoder, and Timer FPGA 69

a) Address Voter 69

b) Memory Decoder 71

c) Timer 72

3. Control and Data Voter FPGA 76

a) Control Voter 76

b) Data Voter/Transceiver 77

c) Synchronization Signal (SYNC) 79

\ in

4. System Controller FPGA 81

a) Interrupt Enable (INTEN*) 82

b) Control UART (CUART) Initialization 83

c) FIFO Data Collection 84

d) FIFO Data Transfer 87

e) TMR Mode Control 93

C. DETAILED SYSTEM TIMING ANALYSIS 94

1. Single Word Read Cycles 95

2. Quad-Word Read Cycles 98

3. Write Cycles 101

V. MANUFACTURING AND DESIGN REVIEW 103

A. PCB FABRICATION 103

B. WHITE WIRES 105

VI. CONCLUSIONS AND FOLLOW-ON RESEARCH 109

A. CONCLUSIONS 109

B. FOLLOW-ON RESEARCH 1 10

1

.

Completion of TMR Implementation Ill

2. Radiation Testing 112

3. Conversion to Space Flight Board 113

4. Application to a State-of-the-Art (SOTA) Processor 113

APPENDIX A. TMR IMPLEMENTATION ORCAD SCHEMATICS 115

APPENDIX B. WINCUPL FILES 135

1. MEMORY CONTROL PLD PROGRAM FILE 135

2. MEMORY CONTROL PLD SIMULATION OUTPUT FILE 139

3. MEMORY ENABLE PLD PROGRAM FILE 141

4 . MEMORY ENABLE PLD SIMULATION FILE 144

APPENDIX C. XILINX FOUNDATION DESIGNS 145

1. ADDRESS VOTER FPGA 145

2. DATA AND CONTROL VOTER FPGA 153

LIST OF REFERENCES 163

INITIAL DISTRIBUTION LIST 167

IX

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF FIGURES

Figure 2.1. 3-Bit Majority Voter Logic Diagram. After Ref. [7] 14

Figure 2.2. Basic TMR Circuit Implementation. After Ref. [7] 15

Figure 2.3. Triplicated TMR Voters. After Ref. [7] 16

Figure 2.4. Simple R3081 Board Design. After Ref. [11] 19

Figure 2.5. TMRR3081 Board Design. From Ref. [9] 19

Figure 2.6. TMR FIFO Interface. From Ref. [9] 21

Figure 3.1. TMRR3081 Block Diagram 26

Figure 3.2. Timing Interface 30

Figure 3.2. Timing Interface 30

Figure 3.3. TMR Reset System 34

Figure 3.4. Interrupt/Mode Logic 36

Figure 3.5. Virtual to Physical Address Translation. From Ref. [10] 40

Figure 3.6. Bus/UART/Line Driver Interconnections. From Ref. [22] 48

Figure 4.1. Programmable Logic Device Identifier 53

Figure 4.2. Memory Controller PLD 57

Figure 4.3. Memory Enable PLD 62

Figure 4.4. 3-Bit Majority Voter/Error Detector 70

Figure 4.5. Timer Enable/Disable/Interrupt Design 74

Figure 4.6. Transceiver Logic Design 78

Figure 4.7. SYNC Signal Design 81

Figure 4.8. INTEN* Signal Design 83

Figure 4.9. FWRCLK0 Signal Design 86

Figure 4.10. Header Byte Design 88

Figure 4.11. Data Transfer FSM Design 89

Figure 4.12. Processor Select FSM 90

Figure 4.13. FIFO Select FSM Design 91

Figure 4.14. Byte Select FSM Design 93

Figure 4.15. TMR Mode Select Register Design 94

Figure 4. 16. Zero Wait State Read Timing Diagram 97

Figure 4.17. Single Wait State Read Timing Diagram 97

Figure 4. 18. Zero Wait State Quaded Word Read Timing Diagram (1
st
Half) 99

Figure 4. 19. Zero Wait State Quaded Word Read Timing Diagram (2
nd

Half) 100

Figure 4.20. Single Wait State Quaded Word Read Timing Diagram (1
st
Half) 100

Figure 4.21. Single Wait State Quaded Word Read Timing Diagram (2
nd

Half) 101

Figure 4.22. Zero Wait State Write Timing Diagram 102

Figure 5.1. TMR R3081 PCB 105

Figure A.l. TMRR3081 Top Level Schematic 116

Figure A. 2. System Support Elements Schematic 1 17

Figure A. 3. CPU A Microprocessor and Latch Schematic 118

Figure A.4. CPU B Microprocessor and Latch Schematic 1 19

Figure A. 5. CPU C Microprocessor and Latch Schematic 120

xi

Figure A. 6. Address Voter FPGA Schematic 121

Figure A. 7. Data and Control Voter FPGA Schematic 122

Figure A.8. PROM Array Schematic 123

Figure A. 9. KRAM Array Schematic 124

Figure A.10. URAMO Array Schematic 125

Figure A. 11. URAM1 Array Schematic 126

Figure A. 12. URAM2 Array Schematic 127

Figure A.13. URAM3 Array Schematic 128

Figure A.14. Data UART Schematic 129

Figure A. 15. CPU A FIFO Array Schematic 130

Figure A. 16. CPU B FIFO Array Schematic 131

Figure A.17. CPU C FIFO Array Schematic 132

Figure A. 18. System Control FPGA Schematic 133

Figure A.19. Control UART Schematic 134

Figure C.l. Address Voter FPGA Top Level Schematic 146

Figure C.2. 18-Bit Counter 147

Figure C.3. 4-Bit Wide 3-Bit Majority Voter 148

Figure C.4. CPU A Address Bus Input Specification 149

Figure C.5. CPU B Address Bus Input Specification 150

Figure C.6. CPU C Address Bus Input Specification 151

Figure C.7. Voted Address Bus Output Specification 152

Figure C.8. Data and Control Voter FPGA Top Level Schematic 154

Figure C.9. 4-Bit Wide 3-Bit Majority Voter 155

Figure CIO. 8-Bit Wide 3-Bit Majority Voter 156

Figure C.l 1. Control Bus Input Specification 157

Figure C.12. Byte Enable Bus Input Specification 158

Figure C.13. CPU A Data Bus Input Specification 159

Figure C.14. CPU B Data Bus Input Specification 160

Figure C.15. CPU C Data Bus Input Specification 161

Figure C.16. Voted Data Bus Output Specification 162

Ml

LIST OF TABLES

Table 2.1. 3-Bit Majority Voter Truth Table 14

Table 3.1. Mode Selectable Features. From Ref. [10] 35

Table 3.2. R3081 Internal Registers 46

Table 4.1. Write Enable Assertion Table 64

Table 4.2. Chip Select Memory Map 72

Table 4.3. Memory Mapped Timer Modes 74

Table 5.1. Table of White Wires and Cuts 106

Table A.l. TMR R3081 System Schematics By Page Number 1 15

Table C.l. Address Voter Figures By Page Number 145

Table C.2. Data and Control Voter Figures By Page Number 153

XIII

THIS PAGE INTENTIONALLY LEFT BLANK

\i\

ACKNOWLEDGMENTS

The author would like to take this opportunity to thank all the people who

provided the support and assistance that made this work possible.

First of all, to my family, Sandra, Courtney, and Kristen Summers: Without your

unwavering support throughout this endeavor, its completion would not have been

possible.

To Captain Kim Whitehouse and Susan Groening: Your software expertise

provided great insight to the hardware/software interface requirements in this project.

Additionally, your friendships provided the nucleus of a team that I am proud to have

worked with. It is very unfortunate that the LED did not make it into the design!

To Jim Craybill: Your willingness to share your technical expertise in OrCAD and

WinCUPL went beyond the call of duty. Additionally, your efforts in producing the PCB

are greatly appreciated.

To Professor Alan Ross and Professor Herschel Loomis: Your guidance, patience

and tutelage were instrumental in the completion of this portion of the project.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

w i

I. INTRODUCTION

The decline of Department of Defense (DOD) funding of research into radiation

hardening and reliability of microelectronics since the end of the Cold War has had

serious impact on the price and availability of these parts. This, coupled with reductions

in the space budget, has spacecraft designers looking for alternative ways to implement

reliable systems with reduced cost, faster design time, and higher performance. One

alternative is the use of commercial-off-the-shelf (COTS) devices in place of radiation

hardened devices. COTS devices offer spacecraft designers shorter design-to-orbit times,

lower system costs, orders of magnitude better performance, and a much better software

availability than their radiation hardened (radhard) counterparts. The major drawback to

using COTS devices in space is their increased susceptibility to the effects of radiation,

both total dose and single event upsets (SEUs).

This thesis will present the implementation of a fault tolerant computer system.

The hardware design presented here has two different benefits. First, the system can act

as a software testbed, which enables the testing of software fault tolerant techniques in the

presence of radiation induced SEUs. This allows the testing of the software algorithms in

the environment they were designed to operate in without the expense of being placed in

orbit. Additionally, the design can be used as a hybrid fault tolerant computer system.

By combining the masking ability of the hardware with supporting software, the system

can mask out and reset single processor errors with small cost in time. Both of these

concepts will be discussed further in the body of the thesis.

A. THE SPACE ENVIRONMENT

The most important aspect to the designer of an electronic system is its function.

Another vital interest to the system designer is the environment the system is going to

operate in. If the environment is going to be space, then there are many factors that must

be taken into account. The uninformed might think space is a benign environment, but

that can not be farther from the truth. The vacuum, temperature extremes, debris, and

radiation all interact with the system in one way or another and special efforts must be

taken to account for their negative side effects.

1. Vacuum

As you move away from the Earth's surface, the number of particles per unit

volume continues to decrease. Starting at roughly 10
18

particles per cubic centimeter

(cm
3
) on the surface of the Earth, this number decreases drastically as you increase in

altitude. The average particle density from 600 to 1200 miles is only about 100 particles

per cm" . Additionally, as with the particle density, the pressure associated with an

altitude decreases as you move away from the surface of the Earth. While the pressure is

near 760 millimeters of mercury (mmHg) at the surface of the earth, it is only about 10"
"

to 10" 16 mmHg past 1200 miles. These low pressures are sometimes referred to as hard

vacuum. [Ref. 1]

One phenomena caused by the hard vacuum of space is called outgassing.

Outgassing occurs when a material actually loses mass because molecular gasses trapped

inside or on the surface of the material at ground level are pulled out and away by the

vacuum of space. A byproduct of outgassing is the cold weld. In the atmosphere, metal

surfaces have a thin layer of the molecular gas, which acts as a lubricant when two

surfaces are in contact. When the vacuum removes the gas, the metal surfaces are

allowed to touch and they will bond together. This issue is one to be dealt with by a

materials scientist. The solution to this problem usually relies on the selection of

appropriate materials to minimize the effects of the vacuum. [Ref. 1]

2. Meteoroids

Meteoroids and orbital debris pose a risk to satellites. Although there are a large

number of meteoroids and space dust near the Earth, most are fairly small and do not pose

a large risk of catastrophic damage to a satellite. There have been a couple of satellites

that have mysteriously quit working and the conjecture is that the failure might be due to

damage caused by impact with meteoroids. With this in mind, the system should be

designed to deal with the higher probability of micrometeoroid strikes, where only a small

portion of the system is damaged. One option is to design the system using redundancy, a

concept that will be explored later in this chapter. [Ref. 1]

3. Temperature

The Earth's atmosphere and the mass of the planet keep the ambient temperatures

within a fairly moderate range at the surface of the planet. That can not be said of the

space environment. Careful considerations with respect to thermal radiation must be

taken into account when designing systems for space application. The skin of a

spacecraft exposed to the sun will rise to a very high temperature while the shaded side

falls to an extremely low temperature. This causes a very high temperature difference

across the space vehicle. With that in mind, microelectronic devices used in systems

designed for space must function correctly over a much larger temperature range than

required within the Earth's atmosphere. [Ref. 1]

4. Radiation

Radiation is the emission or propagation of waves or particles. It is the key

element of the space environment that our design is taking into consideration. High-

energy charged particles can cause damage or disruptions, which are discussed later in the

chapter, in microelectronic devices. These particles are either ions or photons. Ions,

except for the neutron, have both a charge and mass associated with them. There are

basically four types of ions: electrons, neutrons, light, and heavy. Light ions have a very

low mass, such as protons, which are hydrogen atoms with the electron missing, and

alpha particles, which are helium atoms with both the electrons stripped off. Heavy ions

are any element heavier than helium with one or more electrons missing. Unlike ions,

photons have neither mass nor charge. They are just very short wavelengths of light, such

as X-rays and gamma rays. [Ref. 2]

There are several contributors to the radiation effects near the Earth. The largest

contributor to a device's total dose is from particles trapped in the Earth's geomagnetic

field. These trapped particles make up an area known as the Van Allen Belts. Any

satellite in orbit is subject to effects from the Van Allen Belts. Another contributor is

solar particles. Due to the high temperatures of the sun, many particles have enough

energy to escape the sun's gravity. Those particles continuously flow across the Earth in

what is called the Solar Wind. The sun continually moves through cycles of solar

activity, where a single cycle takes approximately eleven years to complete. Another

source of radiation is galactic cosmic rays. These are heavy ions produced by events,

such as exploding stars, outside our solar system. [Ref. 2]

When radiation interacts with microelectronic devices, it is either absorbed into or

passes through the semiconductor leaving a path of ionization. The radiation has four

major different types of effects on the semiconductor: Total Dose Effects, Dose Rate

Effects, Displacement Damage, and Single Event Effects (SEEs). [Ref. 2]

Total Dose Effects are device failures caused by the lifetime sum of radiation

absorbed by the device. Similarly, Dose Rate Effects are where the device fails to

function at a particular radiation rate, or number of particles per unit of time.

Displacement Damage deals with nuclear interactions between the particle and the

semiconductor. The radiation changes the nuclear makeup of crystal atoms within the

semiconductor, which leads to device failure. [Ref. 2] Finally, SEEs are the effects of

charged particles changing the state of transistors in the circuit. SEEs are the radiation

effect we are most interested in and are discussed in greater detail in the following

section.

B. SINGLE EVENT EFFECTS (SEE)

The main difference between SEEs and the radiation effects discussed in the last

section is that SEEs are not necessarily destructive in nature. SEEs are caused when an

ionized particle deposits enough charge to cause transistors to change state in a device. In

most cases, the transistor only changes state long enough for the charge to be absorbed

back into the system and then resumes its original state. The transistor's state change can

lead to latchup in parasitic transistors, be purely transient, or be latched into a storage

element. These three main types of SEE in Complimentary Metal Oxide Semiconductors

(CMOS), which is currently the most popular type of circuit implementation for

microelectronic devices, are discussed in the following sections. [Ref. 2]

1. Single Event Latchup (SEL)

When CMOS field effect transistors are fabricated near each other on a single

chip, one of the unwanted byproducts is a pair of vertical bipolar junction transistors. An

SEL is caused when a charged particle passes close enough to this circuit to bias the two

parasitic transistors on. This creates a very low impedance path to ground, which has two

possible outcomes. If the current drawn through the parasitic transistors generates more

heat than the device can dissipate, it will be destroyed. Even if the device can dissipate

the heat, the large amount of current drawn through the parasitic transistors prevents the

remainder of the circuit from operating correctly, which is a non-destructive SEL. The

normal manifestation of a non-destructive SEL is that of a hung system, which requires a

system reset for recovery. [Ref. 3]

2. Single Event Transient (SET)

Single Event Transients are unexpected, short duration changes in the output

value of a combinational logic circuit due to the influence of a charged particle. SETs are

not detrimental to the system. They only adversely effect the system if the pulse change

is near the clocking edge and is long enough to meet the setup and hold times of the next

storage unit in the cascade of stages. If the SET meets these criteria, then it manifests

itself as a single event upset (SEU). [Ref. 4]

3. Single Event Upsets (SEU)

An SEU is any unwanted value change in a memory cell, whether it be a latch,

register, or cache cell, that is caused by charge introduced into the circuit by radiation. In

microprocessors, SEUs are usually categorized into one of two error types: program flow

errors and data errors. Program flow errors are errors that occur in the program counter

(PC), control logic, or any other register that deals with the state of the processor. Data

errors are usually confined to the registers and data cache. These two types of errors are

not necessarily exclusive. A data error could occur in a register that is later used as a

jump address. When the PC jumps to the address held in that register it is in the wrong

location and begins to execute incorrect code. [Ref. 4]

C. COMMERCIAL-OFF-THE-SHELF VS. RADIATION HARDENED
DEVICES

The radiation effects discussed in the previous sections, with the exception of

SETs and SEUs, are destructive in nature. The main way of reducing their effects is by

using radiation hardened (radhard) devices or providing shielding. A radhard device is

one that is specifically designed to be able to withstand higher amounts of radiation than

standard commercial parts.

In a direct comparison of commercial-off-the-shelf (COTS) parts to radhard parts,

the first question someone is bound to ask is 'why would we use non-hardened parts in

such a harsh environment?' This section gives some insight into the answer of that

question.

1. Cutting Edge Technology

As alluded to in the introduction, companies developing and marketing radhard

devices are on the decline. Without DOD budget support for research into this area, there

is not sufficient demand from commercial sector customers to motivate companies to sink

large sums of money into research on these devices. For those reasons, the technology of

radhard devices is lagging behind state of the art technology by up to two or more

generations. As an example, a state of the art processor, the 600 MHz Intel Pentium m,

AMD K-6 II, or a RISC design, depending on your preferences, is available off the

commercial shelf. The nearest competitor on the radiation hardened shelf would be a 66

MHz 486 processor. This is a whole order of magnitude difference in processor

capability. [Ref. 5]

2. Faster Design-to-Orbit Time

Because many manufacturers of radhard devices offer them as a secondary

market, many do not readily stock the parts. This causes a delay in the design and test

phase of the project. With a move to COTS devices, the order delay is completely erased.

Most of these devices are available from multiple vendors, which gives the designer even

more leverage in selecting a vendor. Additionally, data on radiation testing for many

devices is now becoming available to help the designer make an informed decision on the

correct part to use based on the environment it is to be placed in. [Ref. 5]

3. Reduced Cost

Profit or lack thereof is one of the main reasons companies have moved aw a\

from the manufacture oi radiation hardened devices. The low demand for these devices

S

keeps the price hundreds of times higher than the commercial models for several different

reasons. Since radiation hardened devices employ different techniques in their design to

reduce the susceptibility to effects from ionized particles, they tend to be larger than the

non-hardened devices. This lowers the number that will fit on the wafer in the first place

and increases the probability that the devices will have defects. The reduction in yield

can be attributed to two main factors. The first is the higher probability of defects in each

device mentioned before and the second is from the limited number of runs of the

fabrication process. Because yield normally increases with the number of production runs

and radhard devices account for a small number of fabrication runs, radhard devices

normally do not show large improvements in yield. Since the demand for commercial

devices is much higher, the manufacturer can adjust the fabrication process over a large

number of runs to increase the yield, which results in lower cost to the consumer. [Ref. 2]

D. PURPOSE

The goal of this research is the implementation of a fault tolerant computer system

using COTS microprocessors that is able to accurately compute in the presence of

radiation induced SEUs. This research specifically concentrates on the ability of the

system to detect and mark or correct SEUs in a microprocessor in real time. This work

does not address error detection and correction (EDAC) of memory systems, which has

been previously researched [Ref. 6] and is a topic left for future inclusion.

There are two major benefits from this study. First, the system can act as a fault

tolerant software testbed. The processor is monitored for an SEU. When one is detected,

a time stamp is generated and the Operating System is observed in its handling of the

error. This allows the testing of the software algorithms in the environment they were

designed to operate in without the expense of being placed in orbit.

The system can also be used as a hybrid fault tolerant computer system. In this

use, the processor is also monitored for an SEU. When one is detected, the faulty data is

corrected in the processor and it continues to execute its instructions from the corrected

data. A major advance in this implementation is the ease with which the error can be

corrected. The normal mode from previous research in these types of systems has been to

just reset the processor when an SEU was detected, effectively loosing all computations

done up to the time of the SEU.

E. THESIS ORGANIZATION

The organization of this thesis follows closely to the design approach used in

developing the system. Chapter I has been a brief introduction into the environment that

the system will be operating in. Chapter II is background material on research that set the

foundation for this design. Chapter HI presents the hardware design of the system and

points out changes from the previous design. Chapter IV contains the design of the

programmable elements of the system, which include the Voter Modules and the System

and Memory Controllers. Chapter V presents the steps that were taken to have the

printed circuit board fabricated and the design review that was conducted after the board

was manufactured. Chapter VI presents the conclusions developed during this research

and discusses topics for follow-on work.

10

II. BACKGROUND

The study of fault tolerant computing systems has been going on for many years.

In fact, many early analog computer systems were designed with duplicate processing

units because of their propensity to have errors. The EDVAC computer, which was

designed in 1949, had duplicate Arithmetic Logic Units (ALUs) that continued to

compute as long as their results agreed. As computer systems moved further into the

digital era and became more reliable, fault tolerant designs took a back seat to designs

that improved performance and speed. When computers started to perform critical tasks

in systems, designers had to once again focus on fault tolerance. [Ref. 7]

The purpose of this chapter is to provide the reader a brief background for this

project and the key issues that make it important. The chapter starts by describing the

general concept of redundancy and focuses in on the design from which this system was

implemented.

A. REDUNDANCY

The fundamental concept for implementing fault tolerance is redundancy. In its

most basic form, redundancy is the addition of resources beyond those required by the

system for normal operation to achieve reliability, availability, or safety. There are four

different kinds of redundancy that can be implemented in a system. They are software,

information, time, and hardware redundancy, each of which is discussed below. [Ref. 7]

1. Software Redundancy

One of the key attributes of software redundancy is that it requires a minimal

amount of additional hardware to support it. Three typical software redundancy

11

techniques are consistency checks, capability checks, and n-version programming.

Consistency checks use a-priori knowledge of the data set to check it to ensure that it is

consistent with the expected values. Capability checks will test functional units of the

system to ensure they are in working order. While both of these methods are software

tests of hardware, n-version programming is a software test of software. Different

programmers code different versions of the same function. All of the versions are

executed and their results compared to ensure that all the results are the same. [Ref. 7]

2. Information Redundancy

Information redundancy provides additional bits along with the data to allow for

checking that the correct values are received at the destination. The additional

information can be small enough to allow error detection or robust enough to allow

multiple bit corrections. Two good examples of information redundancy are the parity bit

and the Hamming Code. The parity bit is a single bit appended to the data set that allows

for error detection. Parity can either be even or odd. If even parity is selected, the

number of ones in the data set and the parity bit should add up to an even number. If odd

parity is selected, the ones should add up to an odd number. If they do not, there is an

error in the information. The limit of the parity bit is its inability to determine which bit

is in error. The Hamming Code appends multiple bits to the data set. which allows for

error detection and correction by pointing out the faulty bit. The additional bits appended

by the Hamming Code are actually weighted parity bits. By determining which Hamming

Code bits are in error, the faulty data bit can be determined and corrected. [Ref. 7]

12

3. Time Redundancy

One of the costs associated with all forms of redundancy is the large overhead.

This overhead can be paid in the form of additional hardware, weight, and power

consumption. In some cases, these assets are not available for trade. When that happens,

another form of fault tolerance must be found. In systems where speed is not a critical

issue, time redundancy can be used. The premise behind time redundancy is that the

same calculations can be performed serially multiple times and the outputs compared to

check for errors. This requires the system to save the state before the calculation, perform

the calculation and save it, make a context switch back to the beginning of the

calculation, perform it again, and then compare the results of the two different

calculations. [Ref. 7]

4. Hardware Redundancy

When you mention redundancy to people, hardware redundancy is typically the

first thing that enters their mind. This form of redundancy is regaining popularity as the

cost for replicating hardware is getting less and less expensive. There are basically three

forms of hardware redundancy: passive, dynamic, and hybrid. Passive redundancy uses

fault masking to keep the fault from propagating out of the current process. This is

implemented using multiple modules and voting hardware. It does not require any

actions from the system or operator. Dynamic redundancy monitors the outputs of the

modules looking for faulty units. When one is detected, the system removes the faulty

unit from the system and replaces it with a good one if it is available. The hybrid

approach uses portions of both the passive and dynamic approaches. [Ref. 7]

13

A subset of passive hardware redundancy is the Triple Modular Redundant (TMR)

system. As the name implies, the TMR system takes the outputs of three replicated

modules and compares them in a voting unit. The voting unit passes the most common

input to the output, essentially masking out any single fault. The heart of a TMR system,

the voting unit, and its truth table are shown below in Figure 2.1 and Table 2.1.

B

C

OUT

Figure 2. 1 . 3-Bit Majority Voter Logic Diagram. After Ref. [7]

A 1 1 1 1

B 1 1 1 1

C 1 1 1 1

OUT 1 1 1 1

Table 2. 1 . 3-Bit Majority Voter Truth Table

The table shows that anytime two or more inputs have the same logic value, either

a zero or one, then that value is propagated to the output. This system can also be

extended to an N input model. As N gets larger, the logic required to realize the circuit

and the added levels of delay get prohibitively large. Typically N is held to three or five.

14

5. TMR Implementations

As stated before, by placing the three modules in parallel and voting their outputs,

a TMR circuit can be implemented. The basic TMR circuit is shown below in Figure 2.2.

The inputs and output of the modules do not have to be single values. There can be X

inputs and Y outputs associated with each module. All that needs to be done is place Y

single bit voters in parallel connected such that they vote each of the respective Y

outputs.

Input A

Input B

Input C

Figure 2.2. Basic TMR Circuit Implementation. After Ref. [7]

The single voter on the output of the TMR system is a single point of failure.

That is, if the voter fails and generates or propagates an error, then the error will be

propagated throughout the circuit. This could become a major problem in cascaded

circuits. To solve this problem, the voters at the end of each stage can also be triplicated.

[Ref. 7] An example of this is shown in Figure 2.3.

15

Input A

Input B

Input C

Figure 2.3. Triplicated TMR Voters. After Ref. [7]

B. SOFTWARE VS HARDWARE REDUNDANCY

The technology associated with very large-scale integrated circuit (VLSI) design

has advanced at a phenomenal pace. Systems that used to be produced as multiple chip

designs are now compacted into systems on a chip. Much of the current hardware design

emphasis is placed on reducing the transistor size in order to increase the capability and

decrease communication times within the chip. Since the communication times between

chips in a system has not progressed at the same rate as internal communication, the

addition of logic layers between the processor and its peripherals would require the

system bus clock to operate at a reduced frequency. Because of this, general trends have

moved the reliability issue to software.

When using software fault tolerant techniques, as in Checkpointing, the software

must run the same segment of code a minimum of two times. If the results of the first

two runs match, the processor can continue where it left off after it has saved its internal

slate. If the results do not match, the processor must run the code segment an additional

time to try to determine which of the first two runs were correct and then save the correct

16

internal state. This occupies over half of the processor's execution cycles in context

switching and rerunning code. [Ref. 8]

The option being investigated in this research is a move back to hardware

redundancy. By applying the TMR technique discussed earlier to the microprocessor, the

outputs of the processors can be combined through a voter. If an error occurs in one of

the processors the voter will mask it out and the bus cycle will complete normally. The

two good processors will then reset the errant processor to their good state and then all

three processors will continue executing the program.

A direct comparison of the two options is very difficult. Although the TMR

design looks like it can save over half the time required to perform a function, it can not

operate at the same clock speed that the Checkpoint model can. The TMR system has to

place additional logic between the processor and the memory space to perform the voting

operation, which decreases the maximum clock speed at which the processor can operate.

C. TMR MICROPROCESSOR DESIGN

The framework for the system implemented in this work was originally designed

and simulated using Verilog by Lieutenant John C. Payne, Jr., USN, as a Fault Tolerant

Computing Testbed. The remainder of this section is a brief synopsis of his TMR

Testbed Design. For a more detailed explanation, please see Ref. [9].

1. Processor Selection

Lt. Payne began his design with the logical step of selecting a microprocessor. In

his selection process he took into account such factors a COTS vs. Radhard, CISC vs.

RISC, size, pinout, power, bus width, memory size, speed, and multiple chip vs. single

17

chip implementations. His research led him to select the MIPS R3081 RISController

produced by Integrated Device Technologies (IDT). This device was selected over

AMD's AM29000 and AM29050; IBM and Motorola's PowerPC 603e, 604e, and 750;

and IDT's R36100, R4650, and R5000. A detailed description of the R3081 can be found

inRef. [10].

2. Hardware Design

With the processor selected, the next step was to integrate all the peripheral

components required for the R3081 to function as a TMR computer system. For

comparison purposes, a block diagram of a single processor system and a TMR system

are provided on the following page in Figure 2.4 and Figure 2.5, respectively.

From comparison of Figures 2.4 and 2.5, the architecture of the TMR

implementation has relatively few changes from the single processor design. The major

additions are CPU B and CPU C along with the Address, Data, and Control Voters.

The processors are connected in such a way that the Operating System acts as if

there is only one processor in the system. The processors are kept in lock step from boot

up by executing the same instructions in parallel. The processors Address, Data, and

Control busses are then routed to their respective voters. The voters perform a majority

vote on the signals and pass them on to the Memory Space and Memory Controller as in a

single processor system. If an error is detected in a voter, the Memory Controller

generates an interrupt. [Ref. 9]

Figure 2.4. Simple R3081 Board Design. After Ref. [11]

EPROM

Figure 2.5. TMR R3081 Board Design. From Ref. [9]

19

3. Software Design

The voters allow the fault generated in one of the processors to be masked out and

the bus cycle to complete correctly, but that does not completely remedy the situation.

The processor that had the error is now out of synchronization with the other two

processors. That is where the software design of the Interrupt Handler comes into play.

When a voter detects a miss compare on its inputs, it signals the Memory

Controller, which asserts an interrupt input to the processors. The Interrupt Handler

resets the invalid processor in a very simplistic way. It starts by saving the processor's

internal registers to memory. Since all three processors will be executing the instructions,

the Data Voter will mask out the invalid data from the corrupted CPU. The Interrupt

Handler then reloads the processors internal registers from memory. This puts the

corrupted processor back into synchronization with the other two processors. The

Interrupt Handler then acknowledges the interrupt and returns from the exception. The

processors then continue execution with the next instruction.

In order to determine which processor was corrupted, the internal registers of each

processor must be examined. The data must be captured prior to being voted or the error

is lost. By placing First-In-First-Out (FIFO) Registers on the address, control, and data

busses between the processors and voter, each processors internal state can be captured in

its corresponding FIFO. The arrangement is shown below in Figure 2.6.

20

R3081

RISC
CPU A

Address

Latches

Address

Bus .

Data

Bus

Control Bus

Buffer

A

R3081

RISC
CPUB

Address

Latches

Address

Bus ,

"lH

FIFO

A

Data

Bus

Control Bus

Buffer

B

YY5

R3081

RISC
CPUC

Address

Latches

Address

Bus .

Data

Bus

Control Bus

Buffer

C

U

T

FIFO

B

TZ

FIFO

C

Y

FIFO Write

Enable

& Buffer Select

Lines

From
Memory
Controller

Figure 2.6. TMR FIFO Interface. From Ref. [9]

Lt. Payne's design and simulations prove the fundamental concept of a working

TMR R308 1 system. The next logical step is to implement the system in hardware. The

next two chapters examine the transition of this design from simulation to hardware.

Chapter ELI presents the hardware implementation, while Chapter IV presents the

programmable logic synthesis. Because of hardware limitations and additional system

requirements, the transition is not a one-to-one process.

21

THIS PAGE INTENTIONALLY LEFT BLANK

::

III. HARDWARE DESIGN SPACE

The process of designing a complicated electronic system is very seldom linear in

nature. That is, the system originally conceived is seldom designed, simulated,

implemented, and manufactured without changes. Many factors affect the process as the

design matures, which can cause changes in areas of the design that were once thought to

be complete. This results in feedback loops in the design process. This design has not

been an exception to these effects. It has gone through several revisions in the

implementation and manufacturing phases due to feedback from several different factors,

including changes in requirements and parts availability. This chapter presents the final

hardware implementation and explains design changes where major deviations from the

simulation model were required.

A. DESIGN PARAMETERS

As discussed in Chapter I, the most important aspect of the system the designer

must be familiar with is its function. Chapter II presented a simulated design by Lt. John

Payne, Jr. [Ref. 9] that fulfilled all the functional requirements, but focused primarily on

validating the concept of TMR using the IDT R3081 microprocessor. The next step in

the design process is the hardware implementation. This implementation was developed

by making modifications to Lt. Payne's design and using three general functional

applications: use as an Evaluation Board, easy adaptation to a space flight board, and the

ability to be tested in a particle accelerator.

23

1. Evaluation Board

The evaluation board design parameter adds value by introducing flexibility and

visibility to the design. For flexibility, socketed parts and programmable logic are used.

By using socketed parts instead of parts that must be soldered to the printed circuit board

(PCB), the designer enables the user to quickly and easily exchange integrated circuit (IC)

chips. This allows easier replacement of damaged parts and requires fewer vias when

routing traces on the PCB layout, when compared to surface mount devices. Upgrades to

the system can also be easily incorporated if the new IC chip is pin compatible with the

old one. The most common use of this advantage would be upgrading to faster parts.

Using programmable logic to interface the processors and the peripherals is

another tool the system designer can use to increase flexibility. Unless the same

manufacturer builds the processor and peripheral, there is normally a requirement for

additional logic to be placed between the two components to allow them to function

together properly. The additional logic is usually referred to as "glue logic." By using a

programmable device to perform the glue-logic function, the system can easily be

expanded to incorporate system updates and changes.

Since evaluation boards are normally used to investigate new concepts, it is

important to be able to capture data from as many internal signal lines as possible.

Today's PCBs are normally fabricated using multi-layer designs, making it difficult to

capture signals residing on internal routes. Connecting the essential signals to a test

connector, which makes them visible to the user, can alleviate this problem.

24

2. Space Flight Board

Although it may seem that designing the initial implementation of a system with

such a futuristic goal would increase the complexity of the design, in this case it actually

narrowed the scope on many of the part choices. The premise of this design parameter

was to focus on parts, other than the microprocessor, that were available in both

commercial and rad-hard versions or parts that showed a reduced susceptibility to SEUs.

The pin compatibility and exact functionality between the commercial and rad-hard

versions of devices reduces the process of upgrading to a flight ready board to a simple IC

exchange with minor modifications to the timing parameters of the glue logic. As for

parts showing reduced susceptibilities to SEUs, different technologies used to implement

devices can have drastic differences in their SEU susceptibility, such as in the case of

static or dynamic RAM. When these choices were available, the technology offering the

lower susceptibility was used.

3. Accelerator Testing

One of the key functions of this system is its ability to test fault-tolerant software.

In order to achieve that function, the user must be able to operate the system in a particle

beam, which places added requirements on the implementation of the system. First, the

system must be able to communicate with the host interface over distances of fifty feet,

due to the shielding and physical layout of the testing facilities. Because heavy ion

testing requires the system to be placed in a vacuum chamber, the device must be able to

physically fit within the chamber and be reset remotely. The remote reset allows the user

to recover a "hung" system without having to bring the chamber back to local pressure,

25

reset the system, and then reapply the vacuum, which wastes expensive chamber/facility

time.

B. SYSTEM OVERVIEW

The final block diagram for the TMR R308 1 system as implemented is shown in

Figure 3- 1 . Compared to the simulated system depicted in Figures 2-5 and 2-6, there are

several differences. This section will discuss those differences.

Control

Interface

Control I/O

"3

R3081

CPU A

R3081

CPUB

R3081

CPUC

Address

Latch

Address

Blisses

Address

Latch

Data

Buses

Address

Latch

if
< 5
>

Voted

Adrir

Bus

Control

Biases

"a >

Voted

Dm
Bus

Voted

Control

Bus

Memory

3
a

Memory
and Error

Controller

Data

Interface

Figure 3.1. TMRR3081 Block Diagram

The most important difference between the two designs is the addition of a

System Controller to the implementation, since the Verilog® design suite acted as the

26

System Controller during simulation. For the implementation, an FPGA was selected to

perform the System Controller function. Its design is explained in Chapter IV.

The other main design change is concerned with the I/O interface. Since the

scope of the design in Ref. [9] did not require the loading and running of user programs,

an interface to provide that functionality was not included. Additionally, the simulation

used a System Interface module to read out the collected FIFO data. Although the System

Interface was expected to be a laptop or similar system, its interface was simulated using

a 104 bit wide interface, which could not be directly implemented into hardware. This

left a wide latitude in the implementation of the I/O interface. For reasons discussed

below, a dual-port interface was selected.

Although this thesis focuses on hardware implementation, two other major efforts

on this project were going on in parallel. Captain Kim Whitehouse, USMC, and

Lieutenant Susan Greoning, USN, conducted research into the selection of an operating

system for the TMR R3081 and the design of a Human Computer Interface (HCI). Their

research garnered the selection of VxWorks as a real-time operating system and the

design of a user interface for a software testbed which is presented in Ref. [12]. The

important aspect of the close association of the hardware and software designers is the

ability to effectively integrate the two designs, which is why several hardware design

decisions are based on the software interface requirements.

The functionality of the HCI plays a significant role in determining the design of

the I/O interface. The HCI controls the TMR's mode of operation, provides for a remote

reset, enables the user to download and run programs, and also provides a path for data

27

collected in the FIFOs to be returned for analysis. Serious consideration was given to the

use of a single communications port for this interface. Difficulties arose in the design

when trying to implement the remote reset function with a single port. Because the CPUs

control the transfer of data in a single port device, a "hung" system would not be able to

reset because it could not respond to the reset signal at the port. In order to achieve this

function a second port, controlled by the System Controller, was added to the

implementation.

With the decision made to use two ports, the next step was to determine what

functionality was associated with each port. To help distinguish the two ports, which

were depicted back in Figure 3.1, the processor-controlled port was named the Data Port

and the System Controller controlled port was named the Control Port. Since the ability

to download and run programs does not require interface with the System Controller, it

was left on the Data Port. In order to free the processors from the overhead associated

with transmitting the large FIFO data blocks and to provide the System Controller with

direct access to control and resets, these functions were assigned to the Control Port.

This separation lets the user interact with the downloaded program through the Data Port

and interact with the TMR hardware through the System Controller on the Control Port.

Now that the major changes in the implementation from the simulation have been

presented, the rest of the chapter discusses the individual pieces of the design. Section C

presents the design and implementation of the system support elements that were not

required during the simulation phase. The microprocessor and address latch selection is

28

then addressed in Section D. The design of the Memory Space and its components

follows in Section E. Finally, Section F presents the design of the FIFO buffer interface.

C. SYSTEM SUPPORT ELEMENTS

The detailed analysis of the TMR implementation starts with the system support

elements. These portions of the system are critical to the systems functionality, setup,

and testing, but are seldom included in simulations. One of the benefits of simulation is

the ability to only include the required portions of the system. The implementation must

account for all the elements that must be added to support the main system that were not

included in the simulation, such as pull-up and pull-down resistors, decoupling

capacitors, clocking and reset systems, mode select, and test connectors.

1. Discrete Components

One important change from a simulation environment to a hardware

implementation is the inclusion of the discrete resistors and capacitors used in the

circuits. When control signal lines are driven by devices that can tri-state their outputs

pull-up or pull-down resistors are required to maintain the signal line at a known value.

This prevents the device from misinterpreting the driver going into the high impedance

state as an active signal. Additionally, decoupling capacitors are required to reduce the

power fluctuations seen on the voltage bus during switching and to keep AC noise off the

DC bus.

2. Timing Interface

The Timing Interface consists of two different clocking systems, one for the CPUs

and one for the two universal asynchronous receiver transmitters (UARTs), which are

29

used to transmit data through the Data and Control Ports. The schematic for the Timing

Interface is given in Figure 3.2. The two oscillators and the buffer/driver are all socketed

to allow the user to easily change the oscillator frequency or the buffer/driver chip. The

frequency selections and buffer/driver logic selections are discussed below.

Y1

OUT
8

s 1

mo
20 MHZ 2

A1 Y1
A2 Y2
A3 Y3
A4 Y4
AS Y5
A6 Y6
A7 Y7
A8 Y8

G1
G2

.18
CPUCLK

3 gl7
(* 1Y2 4

UARTCLK

UARTNT
TIMERNT

SYSCLK"

1

^,

£ Us y V I

,>
1

OUT
8

6
UARTNfT
TlMERKr

< 7 \n >
I

>

I
^,

8 a
12 y

<* 19
SYSCLK

11.0592 NIHZ

I
>

1 C

^v I

193

74AHCT540/SO

Figure 3.2. Timing Interface

a) CPU Oscillator

For reasons discussed later, the 50 MHz model of the microprocessor was

selected for this implementation. Ref. [13] requires the Clkln signal, or CPU clock, to

have a period between 40 ns and 50 ns, which translates to between 20 MHz and 25

MHz. This is because the 50 MHz R3081 is restricted to the lx Clock Mode, where the

Clkln signal is passed to an internal clock doubler and converted to a double frequency

clock for signals internal to the processor. The CPU oscillator selected for this

implementation was the 20 MHz model, which provided a slightly longer clock period to

account for the added propagation delays of the Voter FPGAs.

30

b) UART Oscillator

The UART Oscillator provides a reference input to the two UARTs that is

used to generate the clock signals that control the serial communications between two

terminals. For the two devices to communicate, their UARTs must be set up to transfer

and receive data at the same rates. In order to accomplish this, the UARTs provide an

internal register that can be loaded with a divisor to generate any baud rate equal to or

lower than the reference signal. The divisor is usually used to generate one of the

industry standard baud rates, such as 38.4, 57.6, or 115.2 kbps. This allows the user

flexibility when selecting the interface frequency.

The design goal was to provide the highest data transfer rate possible

within the constraints of the I/O interface. Higher data transfer rates reduce the transfer

time required for user programs and CPU FIFO contents. The original oscillator

frequency selected was 16 MHz, which is the maximum allowed oscillator input to the

UART. This frequency allows the UART to transmit at its maximum rate of 1Mbps.

Unfortunately, other system constraints discussed in the I/O portion of the Memory Space

section of this chapter could not support the maximum transfer rate.

Since the maximum baud rate could not be supported, an attempt was

made to maximize the number of standard baud rates the system could support. This led

to the use of an 11 .0592 MHz oscillator. This frequency allows for standard baud rate

generation up to 1 15.2 kbaud, which is the maximum transfer rate currently supported by

the HCI serial port.

31

c) Buffer/Driver Logic

The main purpose of the Buffer/Driver chip is to buffer the low power

oscillator signals into output signals strong enough to drive the CPU and UART clock

inputs. The CPUCLK signal that emerges from the buffer/driver is the timing reference

signal used by the CPUs. Since the input signal to the buffer from the oscillator is not

referenced by any other component, the phase and delay of the buffered signal compared

to the oscillator signal does not matter. The same applies to the UARTCLK, since its

frequency only needs to be matched to the device it is communicating with.

Most buffer/drivers come in packages of eight. In order to minimize the

chip count, other uses of vacant glue logic chips were considered. In this case, three

additional buffers could be used if the buffer/driver inverted its inputs. Two interrupt

signals, UARTTNT and TIMERINT, are generated by their respective devices in positive

logic and the buffer/driver inverts them to the negative logic required by the CPUs.

Additionally, the SYSCLK* signal generated by the CPUs as a reference signal for bus

interface transactions is inverted by the buffer/driver to get the SYSCLK signal used by

the memory controller state machines out of phase from the CPU reference clock. This

allows the memory controller to meet the setup and hold times required by the CPU for

read and write cycles without adding additional wait states beyond those required by

memory access times.

There is a very large pool of inverting buffer/drivers to choose from. The

design goal used in the selection of the buffer/driver was a CMOS implementation with

less than 12 ns propagation delay. The CMOS implementation reduces the static power

\2

dissipated by the device, which is also one of the major considerations when selecting

parts for a space flight board. The restriction on the propagation delay was needed to

ensure the Read Clock Enable and Acknowledge signals reached the CPUs soon enough

to meet the required setup times. The Texas Instruments (TI) 74AHCT540 was selected

because it met these requirements [Ref. 14]. Chapter IV will present a detailed analysis

of these timing signals.

3. Reset System

Most computer systems have a single level reset circuit that is activated when

power is turned on or by a push button switch. The TMR implementation uses a two

level reset system that can be activated three different ways: power on, remotely, or by

push button switch. The Reset System design evolved from the system requirement of

being remotely reset and the use of serially programmed FPGAs. The main reason a two

level reset was implemented was to allow the system to be reset without having the delay

associated with reprogramming the FPGAs. A schematic diagram of the Reset System is

shown in Figure 3.3.

When power is initially applied to the system, the Supply-Voltage Supervisors

(SVSs) sense the level of the supply voltage. When the supply voltage crosses a point

near 3.6 V, their RESET outputs go active and the timer function is initiated, as long as

the RESIN* input is not active. The timer function is determined by td = 1.3 x 10
4
*Q,

where td is the delay time and Q is the total capacitance in the timer circuit. [Ref. 15]

33

1F -"

» *

J
T^T

L..j.

I

1 !i_ — *- —
*1 & *-*

1 ,

,

*—

c

«—

«

-pa?
p= 1! <

1

T -

1 ^
I" I"

>»t.Brr CT> 1

j

1. 4> 4' s ?>«

Nucn.D
j

Figure 3.3. TMR Reset System

The first SVS, U72, uses a 7 pF capacitor in its timer circuit to hold the

BRD_RESET* output low for 91 ms. The reset pulse allows the FPGAs to recognize the

reset signal and setup for their initialization. The BRD_RESET* signal is also routed

back to one of the inputs of a 3-input AND gate. The AND gate combines the three input

signals to the second SVS, U73. This feedback prevents the timer of the second SVS

from starting until the first timer has finished. The FPGAs use the time delay provided by

the second SVS, 1 second using a 77 p.F capacitor, to load the serial configuration data

from their PROMs and to initialize. The one-second delay for loading clearly meets the

200 (lls pulse required by the processor [Ref. 10]. If the two step approach were not used,

the processors would attempt to make memory accesses through the FPGA vote logic, but

no signals would pass through the FPGA because all the inputs and outputs of the FPGA

are in a high impedance state during initialization.

After the power on reset (POR) is completed and the board is operating, there are

two levels of reset the user can initiate. The first is a Board Level Reset. This reset goes

through the complete POR routine. The second level of reset is a System Level Reset. It

does not reset the FPGAs. but resets all the remaining de\ iees in the system.

\A

Each level of reset has two methods of activation. The first method is through a

normally open push button switch. Since the switch is normally open, the input to the

AND gate used by the switch must be pulled-up to Vcc. When either switch is closed, an

active low signal is applied to the respective AND gate, which causes the appropriate

RESIN* input to go active. The second method is initiated remotely by the HCI. The

HCI can send a new control word to the Control Register in the System Controller, which

is described in Chapter IV. The System Controller drives the SCBRD_RST* and

SCSYS_RST* inputs to the reset logic. When the System Controller activates one of

these inputs, the appropriate level reset is initiated remotely.

4. Mode Select

The IDT R3081 processors have several features that are selected during system

reset. The signals used to select these features are latched into the processor off the

Interrupt bus by the rising edge of RESET*. The input signals and the functions they

select are given on the following page in Table 3.1. [Ref. 10]

Interrupt Pin Mode Feature

INTO)* CoherentDMAEn*
INTO)* lxClockEn*

INTO)* Half-frequencv Bus*
SINTC2)* DblockRefill

SINT(l)* Tri-State*

SINT(O)* BigEndian

Table 3.1. Mode Selectable Features. From Ref. [10]

Since the Interrupt bus must provide both the Reset Vector and the Interrupt

signals, a system to multiplex the two signals had to be designed. A tri-statable non-

inverting buffer/driver was used to select between the two signals. The Interrupt bus is

35

routed through the buffer. During reset the buffer is held in the tri-state mode, effectively

blocking the interrupt signals. This allows the signals selected by pull-up and pull-down

resistors to be latched into the processor. After the reset is complete, the System

Controller activates the INTEN* signal, which allows the interrupt signals to drive the

processor interrupt inputs. A schematic of this system is shown in Figure 3.4.

+5V

+5V R2 ? R3
4.7K > 4.7K

R4
4.7K

R16
4.7K

WMfh-
UARTTvTT

It.TBJ'
T§5 9!

US.

A1
A2
A3
A4
A5
A6
A7
AH

Y1
Y2
Y'-

Y4
Y5
Y6
Y7
Y8

O G2

18 INT'3

17
TKTT

74AHCT541/SO

J
SW3

2
SW SLIDE

3

SW4

SW SLIDE

3

SW5

SW SLIDE

R7 / R6 ^ RS
47K > 4.7K > 4.7K

±
S^ INTI3.S]

Figure 3.4. Interrupt/Mode Logic

The three synchronous interrupt inputs. SINT*[0..2], are hardwired to Vcc. since

there was no need for the user to change them. They are hardwired to select Big

Endianess, not Tri-stated, and Data Block Refill. Since VxWorks requires Big Endian

functionality [Ref. 121. this mode selection was hardwired. Since there is no need to Tri-

30

State the processors outputs until another reset, essentially disabling the processor, this

input was tied inactive. Additionally, the Data Block Refill signal was asserted to make

the processor handle both data and address cache misses in exactly the same manner, as

quad word reads.

The remaining interrupt inputs, INT* [3.. 5], can be selected by the user at reset.

This enables different functionality if the 50 MHz processors are swapped out for a

slower frequency model. Since the 50 MHz R3081 is restricted to a one times clock input

and half frequency bus operation, the Half-frequencyBus* and lxClockEn* inputs,

INT(3)* and INT(4)* are asserted during reset. Additionally, the Coherent DMA Enable

is not asserted on INT(5)* because the implementation does not use DMA.

5. Test Connectors

Test connectors were designed into the schematic to allow for ease of

troubleshooting. The initial design had connectors on each bus of the system. They were

between each processor and the voter FPGAs, the voter FPGAs and the memory system,

the FTFOs and the System Controller, and one collecting up all the control signals.

Unfortunately, the Oread tool used by the contractor to convert the schematics to a PCB

Layout could not support the large number of pins in the system. The majority of the test

connectors had to be pulled from the design. Only the connectors between the FIFOs and

the System Controller remain in the implementation. For troubleshooting, chip clips will

have to be used to extract the signals from the board.

37

D. MICROPROCESSOR AND ADDRESS LATCH

Although the system requires the support elements to function correctly, the key

element in the system is the microprocessor. In the case of the TMR system, it is actually

the three parallel microprocessors. This section discusses the model selection of the

R3081 microprocessor. Since the hardware is being presented as it is grouped in the

schematics, the address latches are also discussed here. The schematic diagrams of the

three microprocessor/address latch pairs along with the rest of the system are given in

Appendix A.

1. Microprocessor

Even though the type of processor for the system was determined in Ref. [9], the

frequency and version of the model for the implementation still had to be selected. The

simulations conducted in the Ref. [10] used a 40 MHz system clock with a half-frequency

bus. In order to have the ability to replicate the simulation values and push the design

envelope, a processor with the ability to handle frequencies of 40 MHz or higher was

needed. The 50 MHz IDT 79R3081-50MJ was selected because it has an allowable

frequency range of 40 to 50 MHz. This processor comes in two versions, the base and

extended. The only difference between the two is the extended version adds a full-

featured Memory Management Unit (MMU) to manage the virtual to physical address

translation. Since the simulation used a base version and the processor is socketed for

ease of future upgrades, the base version was selected for this implementation and the

extended version was left for future inclusion. [Ref. 10]

*8

2. Address Latch

In order to reduce the pin count of the R308 1 , DDT chose to multiplex the address

and data bus together. This generates a requirement for the designer to separate the two

buses using a latch. The processor generates an ALE signal to capture the address into

the latch. Normally, a transparent latch is used, which allows the address to appear on the

address bus a short propagation delay after ALE goes high. This gives the memory

system more time to access the desired memory location.

In this design, the address latch that was simulated was a 74FCT373. The FCT

family of logic uses fast CMOS as its core logic with TTL inputs and outputs. The high

power consumption of the FCT logic family did not fit the design parameter of a future

space flight board. This led to the selection of the 74AHCT573 for the implementation to

take advantage of its low propagation delays and power requirements. [Ref. 17 and 18]

E. MEMORY SPACE

There are three types of devices found in the memory system of this design,

Programmable Read Only Memory (PROM), Random Access Memory (RAM), and

memory mapped I/O peripherals. This section will present an overview of the memory

space supported by the R3081 and the incorporation of the PROM, RAM, and I/O

peripherals into the memory space of the implementation.

1. R3081 Memory Space

The R308 1 supports a 4 GByte memory space, which is broken down into four

distinct virtual address areas: KUSEG, KSEGO, KSEG1, and KSEG2. The KUSEG, or

kernel/user segment, is a cacheable 2047 MByte area used for both kernel and user

39

processes. This gives the kernel access to user memory regions. KSEGO, or kernel

segment zero, is a cacheable 512 MByte area that is always translated to the 512 MByte

region of the physical address space beginning at address 0x0000_0000. Since this region

is cacheable it is normally used for kernel executable code and some kernel data.

KSEG1, or kernel segment one, is a non-cacheable 512 MByte area that is also mapped to

the lowest 512 MByte area of physical memory. Since this section is non-cacheable, it is

normally used for memory mapped I/O, boot ROM code, and operating system data areas.

KSEG2, or kernel segment two, is a cacheable 1023 MByte area analogous to KUSEG,

but it is only accessible from kernel mode. This area is normally used by operating

systems for stacks, process data, and dynamically allocated data areas. A diagram of the

base version of the virtual to physical address translation is shown in Figure 3.5. [Ref. 10]

oxitmm

OxcOOOOOOO

OxaOOOOOOO

0x80000000

0x00000000

; 1MB Kerne) Reserved

Kernel Cached
TasksKernel Cached

(kseg2)

Kernel Uncached

(Ksegl)

Kernel/User

Cached
Tasks

Kernel Cached

(ksegO)
i

1MB User fles«vBd

Kernel/User

Cached

(Kuseg)

inaccessible

Kernel Bool

and I/O

1024 MB

2048 MB

512MB

512MB

Figure 3.5. Virtual to Physical Address Translation. From Ref. [10]

2. PROM

Although the R3081 supports a 4 GByte memory space, there was no need to

populate the entire space for this implementation. The driving factor for the PROM size

40

and type for the implementation was the operating system (O/S). Since a set of boot

PROMs containing VxWorks was part of the O/S purchase, the PROM space was

designed around the VxWorks PROMs, which are standard 27C010 PROMs with 512

kBytes of storage and a 150 ns access time. This only required a minor change to the

simulated PROM space from Ref. [9], which is the addition of two address lines to

account for the increase from 128 kBytes to 512 kBytes.

In order to have the ability of running user defined boot programs, a set of Atmel

28C010-15 PROMs were ordered. The difference between the 28C010 and the 27C010

parts is that the 28s are electrically erasable, while the 27s need fifteen to twenty minutes

under an ultra violet light to be erased, otherwise they are functionally equivalent.

Because of long delivery times needed for the 28C010s, AMD 27C010-12s had to be

substituted. These parts have a 120 ns access time versus the 150 ns access time of the

VxWorks PROMs [Ref. 18]. Fortunately, the detailed timing diagrams presented in

Chapter IV show that the memory controller state machine will support both 120 and 150

ns accesses speeds without the need for changes.

As far as their location within the 4 GByte memory space, the PROMs were

physically located between addresses 0xlFC0_0000 and 0xlFC7_FFFF. The starting

location was specified by the R3081 architecture, because 0xlFC0_0000 is the address

vector loaded into the Program Counter during a reset [Ref. 10]. The schematic of the

PROM space can be found in Appendix A.

41

3. SRAM

Since the PROM usually only maintains a small kernel of boot code, the processor

needs a segment of SRAM to store the programs, applications and data that are needed

during execution. The design of the SRAM space for the TMR system was based on two

different factors: how large a memory space was needed and which segments of memory

to populate. The following sections present the decisions leading to the final

implementation of the SRAM space, which is shown in Appendix A.

a) Size

The memory space used in the simulated model of Ref. [9] was a 128

kByte block designed by placing four 32 k x 8 bit memory chips in parallel. This design

proved more than sufficient for the simulations. In fact, only a small portion of the

memory block had data placed in it. Because of the success during simulation, the

memory space for the implementation started with the same design concept. The only

question that remained was how many of the 128 kByte blocks would be required.

Because the Software Testbed function was expected to place a larger

demand on the memory system, that model was used to determine the amount of SRAM

needed for the implementation. In the Software Testbed model there are two contributing

factors to the size of the memory: the O/S and user programs. The minimum SRAM

requirement for a development system that includes all the standard VxWorks features is

2 MBytes [Ref. 19]. Because the implementation does not require the full complement of

features, such as the networking capabilities, the O/S SRAM requirements are reduced to

under 0.5 MByte. Allowing an additional 0.5 MByte for stacks and other dynamically

42

allocated memory, the total memory requirement for the O/S is estimated to be

approximately 1 MByte. Since the size of user programs can vary greatly, an additional

1.5 MByte of SRAM was included in the memory space. This brought the total SRAM

requirement to 2.5 MByte.

Using the simulated model of 128 kByte memory blocks, it would take 20

different memory blocks to implement the 2.5 MByte memory array. Furthermore, each

memory block would require its own chip select signal and it would take 80 chips to

implement, which would consume a very large area on the printed circuit board. In order

to reduce these requirements, a 128 k x 8 bit memory chip was selected. This reduced the

chip select signals to 5 and the chip count to 20.

The IDT71024 CMOS Static RAM was selected for the implementation of

the main memory. This chip was selected over other SRAM manufacturers because two

other major components of the TMR system were also manufactured by IDT: the

microprocessors and FIFOs. This was done to reduce the number of different

manufacturers used and to increase interoperability. The initial specification called for a

20 ns read/write cycle to allow for faster bus speeds when using 40 MHz processors.

Because the 20 ns SRAM was not available in a timely manner, the IDT71024S12 was

used, which has a faster read/write cycle time of 12 ns [Ref. 20].

b) Memory Segments

As discussed in the beginning of the memory section, the R3081 supports

four different virtual address segments. From the previous section, the design was

43

determined to consist of five different 0.5 MByte segments. This section looks at how the

five SRAM segments are used to populate the four virtual address segments.

Only two of the four virtual address segments are populated with SRAM. They

are the KUSEG and KSEGO. Since KSEGO is used for kernel code, one segment of the

O/S SRAM was placed there to provide a random access location for the contents of the

PROMs to be transferred to and executed from. The remaining O/S segment and the

three user segments were placed in the KUSEG in one contiguous memory space. This

was done to allow the O/S greater flexibility when assigning code to memory locations.

The other two virtual address segments, KSEG1 and KSEG2, are not populated

with SRAM in this implementation. Since KSEG1 is uncacheable and used as the address

area for the PROM and peripherals, there was no need to populate it with SRAM.

Because KSEG2 is restricted to kernel use and has the same functionality as KUSEG.

KSEG2 was not populated in this implementation. This area can be populated in later

designs simply by changing the Address Voter FPGA's chip select equations, since the

chip select signals are decoded from the voted upper address lines.

4. Input/Output (I/O)

Since the UART is a memory mapped peripheral, it seemed logical to discuss the

design of the I/O interface in the Memory Space portion of this chapter. A peripheral is

memory mapped if it is accessed by decoding an address placed on the bus. One of the

design issues associated with the I/O system was selecting the address for its registers.

Because the software development portion of this project had access to code mapping the

44

UART to 0xBFE0_0003 and that address was not used by any other peripheral, the

UART was assigned that address for sake of continuity.

The I/O interface performs the important function of interfacing the TMR system

to the HCI. Because the simulated model used the Verilog design suite to handle the

interface, this portion of the system had to be designed from the ground up. The design

of the interface consisted of selecting a type of interface and then implementing the

selection.

a) Interface Type

There are many different types of computer system interfaces on the

market today. When trying to determine which interface was best for this implementation

of the TMR R3081, several factors were considered. They were the amount of data that

needed to be transferred, how fast it needed to be transferred, and how far it needed to

travel. This section looks at how these factors contributed to the selection of the interface

for the TMR R3081 system.

In this design there are two major uses of the I/O interface. They are the

transfer of the user program to the TMR System from the HCI and the transfer of the

FIFO data to the HCI from the TMR System. Because radiation testing causes SEUs to

be induced at a much higher rate than the space environment, the FIFO data transfer was

considered to be the critical transfer. If the additional bus traffic before and after the

interrupt is ignored and only the register writes to memory are read into the FIFOs, there

is a requirement to transfer 140 register values from each processor [Ref. 10]. The 140

registers are broken down by location in the Table 3.2. The 140 registers contain 816

45

bytes of data. In order to transfer each byte of data there is normally an overhead of three

additional bits for start, stop and parity. This brings the total of bits to transfer to 8,976

per interrupt for each processor. With three processors, the TMR system will need to

transmit 26,928 bits to the HCI system for each vote error interrupt.

Register Location Number of Registers Bvtes/Register Registers*Bvtes

CPO Registers 10 4 40

GP Registers 32 4 128

FP Control 2 4 8

FP Registers 32 4 128

TLB 64 8 512

Total Bvtes Per Processor To Transfer 816

Table 3.2. R3081 Internal Registers

The speed of the transfer is somewhat related to the size of the data

element: the larger the data block to transfer, the higher you want the transfer rate. In this

implementation the goal was to be able to transfer the FIFO data to the HCI in

approximately 250 ms. This value was selected to allow four sets of interrupt data to be

transferred per second. In order to transfer 26,928 bits in under 250 ms a minimum baud

rate of 108 kbaud is required.

One of the most critical factors in choosing the interface was the distance

the data had to travel. One effect of increasing the transmission distance is a lowered

maximum frequency of the driver. This happens because the long communication lines

add capacitance to the load, which draw large currents and induce noise on the lines [Ref.

21]. Due to the physical layout of the radiation chambers a transmission length of

approximately fifteen meters is expected. This distance allows the testers to be shielded

from the radiation beam during testing.

46

To summarize, the interface needed for the implementation should be able

to transfer data near 108 kbaud over fifteen meters. Research into the different interfaces

led to solutions ranging from an Electronic Industry Association (EIA) 232-F, also known

as RS-232-F, to an Ethernet connection. In the end, the EIA-232-F was selected. Other

than meeting all the criteria, this interface was selected because it was the easiest to

understand and implement. This was important because the nature of this project has it

passed on from student to student and anything that can reduce the amount of ramp-up

time is a benefit. The actual implementation of the interface is presented in the following

section.

b) I/O Interface Implementation

The I/O interface is implemented using a universal asynchronous receiver

transmitter (UART) and a set of line drivers. The purpose of the UART is to convert

parallel data from the TMR system to serial data for transmission or convert received

serial data to parallel data for use by the TMR system. It also generates the control

signals used to establish communication between the two devices. The line drivers

convert the serial data and control signals from digital values to signals capable of being

transmitted across the serial cable. The selection of these two devices is presented in this

section and their general interconnections are shown in Figure 3.6. The design

schematics are located in Appendix A.

47

The selection of the UART turned out to be one of the easiest part

selections involved in the implementation. The Texas Instruments TL16C750 was

selected for the implementation for its maximum transfer rate of 1 Mbaud and its ability

to meet the EIA-232 standards [Ref. 22]. Additionally, it had 64 byte FIFO buffers for

both the transmitter and receiver, which allowed the processor more flexibility in reading

and writing to the UART. It also has a Programmable Baud Rate Generator to allow

different baud rates to be used for interfacing. Unfortunately, this part was not available

without a lengthy delay, so the TL16C550C was substituted. This part was completely

functional and pin compatible with the TL16C750, but only has 16 byte FIFO buffers.

[Refs. 22 and 23].

r
D7-D0

UEMRoriTiTf

VlfcMWor UON

RESET

AO

Al

D7-D0

wrT

INTRPT

MR

AO

SOUT

SIN

RTS

T5Th

DSR

DCD

TU5CE5CC
at (Act; m
A2

ADS

WR2

RD2

C52

Cfil

CSO

XIN

XOUT

BAUDOW

RCLK

EIA

232-D Driver*

and R«c«iv*rs o

IT
3.072 MHl

Figure 3.6. Bus/UART/Line Driver Interconnections. From Ref. [22]

Since the line drivers are the devices that adhere to the transmission

standards, they became the most important aspect of the I/O interface. The initial set of

48

drivers selected was the Texas Instruments MAX3243. Because very few high end line

drivers are available, it was very easy to make this part choice, but they were also

unavailable for delivery. The Maxim MAX239 was then substituted in its place. This

device meets all the requirements of the EIA-232-E standard and operates at baud rates of

up to 120 kbps [Ref. 24]. This allows data to be transferred at the maximum allowed rate

of the HCI at this time.

Two important notes about the I/O interface are that if the HCI gets

upgraded during follow on work to allow higher data transfer rates, the line drivers are

socketed to allow for easy exchange. Also, the UART and line driver pair are

implemented twice in the TMR R3081 system. One set is used for the Data Port and the

other set is used for the Control Port.

F. FIFO INTERFACE

The FIFO interface is used to collect data off the three microprocessors' A/D

busses during vote error interrupts. This is done by "snooping" the address and data

information off the bus during the interrupt handler. The data contains each of the

microprocessors' internal register sets, which are transferred out the Control Port to the

HCI for analysis. This section describes the design of the FIFO interface. A schematic

diagram of the FIFO array is given in Appendix A.

1. Control Bus Design

The simulated system of Ref. [9] used two Ik x 18 bit FIFO buffers in parallel to

collect the address, data, and control information from the busses of each processor. The

data was then read out of the FIFOs using the System Controllers 104 bit wide System

49

Interface. The interface of the FIFOs and the UART, which replaced the System Interface

in the implementation, created the design problem, because the 8 bit wide UART bus did

not match up with the 18 bit wide FIFO bus. Two solutions for this problem came to

mind: add glue logic between the FIFO and UART or redesign the interface. The later

solution won out. By replacing the two Ik x 18 bit FIFOs with five Ik x 8 FIFOs the

interface problem quickly disappeared. The first four FIFOs are used to collect the

address and data information, while the fifth one collects all the control information.

Since the FIFOs use tri-state outputs, all fifteen of the 8 bit wide FIFO output busses can

be placed on the same bus as the 8 bit wide UART bus, which provides a streamlined

connectivity to the UART.

2. FIFO Selection

For reasons discussed in the SRAM section, FIFOs manufactured by IDT were

selected for the implementation. The large number of FIFOs to choose from allowed

plenty of flexibility in the selection of the FIFO for the implementation. Since the

simulated version of this design did not need to handle a large number of interrupts, the

FIFO buffer could be relatively shallow. For the implementation, the design had to

ensure enough space in the FIFO to prevent the FIFO from overflowing and losing data.

By doubling the size of the buffer to a depth of 2,048 (2k), the system can support up to

seven errors without overflow, assuming no data is transferred out. Because both the

address and data bus contents are written into the FIFO for each register write, the 140

registers require 280 positions in the FIFO for each interrupt. Unfortunately, the 2k FIFO

was not available and the 4k FIFO had to be substituted in its place, which removed all

50

fears of overflow. The part number for this device is IDT72240L15TP and its

specifications can be found in Ref. [25].

This chapter has presented the design of the hardware used in the implementation

of the TMR system. In that discussion three very important pieces were omitted: the

design of the System Controller, Voters, and Memory Controller. One common element

all three of these devices share is that they are designed in programmable logic devices,

either FPGAs or PLDs. Because their design is more of a software implementation, they

are presented together in the following chapter.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

IV. PROGRAMMABLE LOGIC DESIGN

Because programmable logic offers flexibility to the system designer, it was

selected to perform several key functions in the TMR R3081 design. First, the Memory

Controller and Memory Enable functions were implemented in Programmable Logic

Devices (PLDs). The selection process used for the PLDs and a description of the signals

they produce are presented in Section A of this chapter. Field programmable gate arrays

(FPGAs) were used to implement the voting logic, address decoding, timer, and System

Controller functions. The selection process and the design of the three FPGAs used in the

system are presented in Section B of this chapter. Section C ends the chapter with a

detailed timing analysis of the processor interface with all the peripheral devices that

interact directly with the processors. The programmable logic components of the design

are identified as shaded blocks in Figure 4.1.

Control I/O

s e

I 8

$2

R3081

CPU A

R3081

CPUB

R3081

CPUC

Address [
Bn«w

Latch

Address

Latch

Data

Busaea

Address

Latch

g g

Control

Voted

Arlrtr

Voted

Dm

Voted

Conrml

Memory

Memory
and Error

Controller

Figure 4.1. Programmable Logic Device Identifier

53

A. PLD DESIGN

The simulated system design presented in Ref. [9] used three user-defined

modules to perform the Address Decoder, Memory Controller, and Memory Enable

functions. Those designs were based on PLDs presented in Ref. [11], which is an

Integrated Device Technology (IDT) system design example using an IDT R3051

microprocessor. Although this is an older processor with fewer capabilities, the

backward compatibility of the R3081 made it pertinent to this design. Because of its

applicability, it was also used as a design template for the implementation designed in

this thesis.

The design example in Ref. [11] used three PAL22V10s to perform the Address

Decoder, Memory Controller, and Memory Enable functions. Because of the number of

inputs and outputs required for each of these functions, the smallest PLD that they would

fit in was a PAL22V10. The FPGAs did offer one other option to the implementation of

these three functions. Since the two Voter FPGAs generate the majority of the input

signals used by these PLDs, the functions could have been incorporated into one or both

of the Voter FPGAs. It was decided to incorporate the Address Decoder into the Address

Voter FPGA for the following reasons:*6

• All the signals required to perform the address decoding were present in the

Address Voter FPGA.
• The FPGA had enough available I/O pins to accommodate the chip select

signals.

• The functions were similar enough that their consolidation did not obscure any

integral functionality of the system.

• The combination of the two functions streamlined the overall design.

54

Because the Address Decoder was incorporated into an FPGA, its design is presented

later in the chapter. Although the Memory Controller and Memory Enable functions met

most of the criteria used to incorporate the Address Decoder, they were left for

implementation in PLDs. The main reason was to provide better visibility of their

functionality for future changes or upgrades.

The next step in the process was to select the PLD to be used in the design. Since

the design example used 22V10s to implement their functions, it was also selected for the

implementation in order to facilitate continuity. Because the 22V 10 is a standard part that

is fabricated by many companies, the specific manufacturer was not as important as the

timing constraints of the available devices. The Atmel ATF22V10C-7PC was selected

for use in the implementation. This electrically erasable CMOS device offered a

maximum clock to output delay from registered outputs of only 2.5 ns and a maximum

propagation delay of 7.5 ns [Ref. 26].

The next issue faced in the design of the PLDs was how to actually program them.

Research led to a software program called WinCUPL, which is a Windows version of

Universal Compiler for Programmable Logic (CUPL). Like other programmable logic

compilers, CUPL defines its own language and syntax requirements for device design.

Designs may be implemented as logic equations, truth tables, or state machines and then

simulated using the software tools that are provided. The two most important factors

leading to the selection of CUPL as the design environment was that it is produced by

Logical Devices, Inc. (LDI) and that it has the ability to design FPGAs, Xilinx FPGAs in

particular. The connection to LDI was important because the device programmer being

55

used is also distributed by LDI. This hardware/software combination provides good

interoperability and is actually referenced in the CUPL Users Guide [Ref. 27]. For

reasons discussed in the FPGA Design Section of this chapter, the ability to program

Xilinx FPGAs was also thought to be important.

The schematics showing how the Memory Controller and Memory Enable PLDs

are interconnected within the TMR system are provided in Appendix A and the CUPL

design and simulation files for the PLDs are provided in Appendix B. The next two

subsections describe the two devices.

1. Memory Controller PLD

The Memory Controller PLD acts as the main piece of glue logic between the

microprocessors and the memory space. When the microprocessors generate the signals

initiating a bus transaction, the Data and Control Voter FPGA perform a majority vote on

them and pass them on to the Memory Controller PLD. The Memory Controller uses

those signals to generate the signals required by the memory space to perform the bus

cycle and the signals the processor requires to terminate the bus cycle. This section

describes the signals generated by the Memory Controller PLD. A diagram of the PLD

with its inputs and outputs is given in Figure 4.2 and its program file is in Section 1 of

Appendix B.

56

_U54
SYSCLK 1

11/CLK

12

13

14

15

16

17

18

19

110

111

112

1/01

I/02

1/03

1/04

1/05

I/06

I/07

I/08

1/09

I/O10

23 VOTNT-
INTCS- 2 22 RDCEN 1

RAM^S" 3 21 ACK-
TIMERCS- 4 20 BUSERR-
UARTCS- 5 19 AVOTERR
EPROMCS" 6 18 CYCBJD-
VOTBUR5T1

7 17 v
VOTRD' 8 16 v
VOTWR- 9 15 v
CVOTERR 10 14 V
DVOTERR 11

175

RESET 13

ATF22V10C-5JC
DIP.100/24/W.300/L1

Figure 4.2. Memory Controller PLD

a) Counter

The Memory Controller PLD uses an internal four-bit counter to provide a

timing reference for the different bus cycles. This allows the processors to interact with

devices of various speeds by introducing wait states into the bus cycle for devices that can

not respond in a single access time. Also, because the R3081 supports burst reads, which

is a read of four consecutive memory locations in a single read cycle, the counter also

provides a reference for each of the four memory accesses.

The counter is implemented in the PLD by using pins I/O[7..10] for

internal interconnect, which is why they are shown as unconnected in Figure 4.2. It uses

the RESET*, CYCEND*, SYSCLK, VOTRD*, and VOTWR* inputs to determine when

to count and when to reset back to zero. The RESET* signal originates from the System

Reset signal and is used to reset the counter whenever a system reset is required. The

CYCEND* signal is another internally generated signal used to identify the end of the

current bus cycle and to reset the counter back to zero. Its implementation is discussed

next. The VOTRD* and VOTWR* signals are the majority voted RD* and WR* signals

57

generated by the microprocessors to initiate the bus cycle. Unless the RESET* or

CYCEND* inputs are asserted, the counter increments on each rising edge of SYSCLK

after the VOTRD* or VOTWR* signal has been asserted. It will continue to count until

either the CYCEND* or RESET* inputs are asserted.

b) Cycle End (CYCEND*)

The CYCEND* signal is used to signal the end of the current bus cycle.

Since all the signals generated by the Memory Controller and Enable PLDs are registered,

they require a signal that will cause them to de-assert at the end of each bus cycle. This

function could be performed by using the negation of the VOTRD* or VOTWR* signal,

but it is not because they occur within the setup and hold times of the buffered/inverted

SYSCLK* signal [Ref. 11].

The CYCEND* signal is generated from the RAMCS*, EPROMCS*,

UARTCS*, TIMERCS*, INTCS*, VOTRD*, VOTWR*, VOTBURST* inputs and the

counter contents. The timing of the CYCEND* signal is dependant on the latency

required to access the device and the type of bus cycle that is being run. The five active

low chip select signals (those that end in CS*) and the counter contents are used to

determine the device latency. The VOTRD*, VOTWR*, and VOTBURST* signals are

used to determine the type of bus cycle. For this implementation, all the devices could

perform a single word read or write within a single access time, except for the EPROM.

which required one additional wait state for the read cycle and for which the write cycle is

not applicable. Quad word reads are only applicable to the SRAM and EPROM and are

detected by the VOTBURST* signal being asserted. During this type of read, the

58

CYCEND* signal is not asserted until the fourth word has been accessed, which takes six

clock cycles for SRAM and seven clock cycles for EPROM.

c) Read Buffer Clock Enable (RDCEN*)

The RDCEN* signal indicates to the microprocessors that the memory

system has sufficient time to process the read request and will have valid data on the A/D

bus when the microprocessor is ready to latch the data in. Because this signal has to be

asserted prior to the rising edge of SYSCLK* for the data to be latched in on the next

falling edge, valid data does not have to be on the bus when RDCEN* is asserted, only

prior to the next falling edge of SYSCLK*. During quad word reads, RDCEN* must be

asserted and de-asserted four times. Along with enabling the latch process, the RDCEN*

signal also serves to terminate the bus cycle, which will be explained with the ACK*

signal.

The RDCEN* signal is generated by the five CS* signals, VOTRD*,

VOTBURST*, and the counter. As the name implies, this signal is only asserted on read

transactions. With exception of the EPROM, the remainder of the memory system can

perform single word reads in a single clock cycle. Because of that, RDCEN* is asserted

with the rising edge of SYSCLK while the counter contents is 0x0. The EPROM requires

one wait state, therefore, RDCEN* is asserted on the following clock when the counter

contents is 0x1. During the burst read cycles, RDCEN* is asserted four times for each

bus transaction. Because the Memory Controller uses SYSCLK as the reference for the

state machine, the signal is asserted for one clock cycle and then de-asserted for the next

one. Since the SRAM does not require any wait states, RDCEN* is asserted during the

59

clock cycles when the counter contents are 0x0, 0x2, 0x4, and 0x6. The EPROM requires

a single wait state in the initial access time, but the remaining reads can be completed in

the time required to toggle the RDCEN* signal from on to off and back to on. Therefore,

it is asserted when the counter contents are 0x1, 0x3, 0x5, and 0x7 for EPROM burst

reads.

d) Acknowledge (ACK*)

The ACK* signal is sent to the microprocessor to indicate that the memory

system has processed the bus cycle sufficiently. The processor may then either move on

to the next write buffer or release the internal core to process the read data. On both

single word reads and burst reads, the microprocessor can implicitly generate ACK* and

terminate the bus cycle based on the RDCEN* signal, although this technique will

degrade performance on burst reads. To optimize performance, the ACK* signal was

generated by the Memory Controller for the burst read in this implementation. On writes,

the microprocessor uses the ACK* signal generated by the Memory Controller to

terminate the bus cycle. This specifies that the memory system has completed the

transaction and that the processor can stop driving the A/D bus with the data.

As with the other signals looked at, ACK* is generated by the five chip

select signals, VOTRD*, VOTWR*, and VOTBURST* inputs and the counter contents.

The ACK* signal for single word reads was not explicitly generated as discussed before.

The burst read ACK*, which improved performance by releasing the processing core to

use the data already in the read buffer, must not be generated more that four clock cycles

prior to the end of the transaction. This ensures that the last word of the read is in the

60

buffer by the time the execution core expects it to be there. This signal is generated when

the counter contents are 0x3 for SRAM reads and 0x4 for EPROM burst reads. This

signal must be explicitly generated on all writes. Since the EPROM can not be written to,

all acknowledges for write transactions occur without wait states or when the counter

contents are 0x0.

e) Bus Error (BUSERR*)

The BUSERR* signal is generated by the memory system to inform the

microprocessors that they have tried to access an invalid address. The BUSERR* signal

uses the counter to determine when this happens. The counter starts counting when a

VOTRD* or VOTWR* signal is asserted by the processors to signify the start of a bus

transaction. After initiating the bus cycle, the processor then waits for a RDCEN* or

ACK* signal from the memory system. These signals will never be generated, because

they require a valid address to generate the chip select signal that they are dependant on.

The counter will continue to count until it reaches OxF, which causes the BUSERR*

signal to be asserted.

f) Voter Interrupt (VOTINT*)

The VOTINT* signal is generated by the Memory Controller to indicate

that a miss-compare has happened in one of the Voter FPGAs. This signal is routed to

the INT3 input of the three microprocessors and held asserted until the processors

acknowledge it during the interrupt handling routine. This signal uses the AVOTERR,

CVOTERR, DVOTERR, and INTCS* inputs. The signal is asserted when any of the

xVOTERR signals are asserted. When the interrupt handler performs a write to the

61

Interrupt Acknowledge Address, the EMTCS* signal is generated and de-asserts the

VOTINT* signal.

2. Memory Enable PLD

The Memory Enable PLD supports the Memory Control PLD during bus

transactions. It does this by generating the read and write enable strobes for the memory

system, read and write data enable signals to control the drivers on chips between the

busses, and a positive and negative logic synchronous reset. The diagram of the Memory

Enable PLD with its inputs and outputs is given in Figure 4.3 and its program file is in

Section 3 of Appendix B.

JJ55.
SYSCLK 1

11/CLK

12

13

14

15

16

17

18

19

no
in
112

1/01

I/02

I/03

I/04

1/05

I/06

1/07

I/08

1/09

I/O10

23 RESET
VOTRD" 2 22 RESET
VOTWFV 3 21 XCYCEND4

4 20 * WRENA*

X- 5 19 WRENB-
VOTBEO* 6 18 WRENC-
VOTBE1- 7 17 WRENJD-
VOTBE2* 8 16 RDEM-
VOTBE3 1

9 15 WRDATAEN
10 14 RDDATAEV

A
11

175

SYS_RESET A
13

ATF22V10C-5JC
DIP.100/24/W.300/L1.

Figure 4.3. Memory Enable PLD

a) Read Enable (RDEN*)

The RDEN* signal works in conjunction with the chip select signal, which

is generated by the Address Voter FPGA, to activate the output drivers of a memory

device. Because all the logic between the processors and the chip select signal is

combinatorial, the possibility exists for the wrong chip-select signal to 'glitch' while the

Address Bus is settling. In order to avoid the wrong address being accessed during this

62

time, the RDEN* signal is held high until later in the bus transaction. This allows the

chip-select signal to stabilize and gives the memory device time to access the address

location and move the data requested to its outputs. The RDEN* signal is then used to

activate the device's output drivers in order to drive the Data Bus. Unlike the write

enable signals, only one RDEN* signal is required. Since reads are always done as

complete words, four bytes wide, there is no reason to select which bytes will participate

in the read. The RDEN* signal is just passed to all four devices in the memory block in

parallel.

The RDEN* signal is generated using the SYS_RESET*, CYCEND*, and

VOTRD* inputs. The RDEN* is asserted on the next rising edge of SYSCLK after

VOTRD* is asserted. The delay is used to allow the chip select signals to settle. The

signal is de-asserted by CYCEND* being asserted. This turns the output drivers of the

memory device off as early as possible in the bus transaction and helps reduce the

possibility of bus contention. The SYS_RESET* input only effects the RDEN* signal

during resets, at which time it de-asserts the signal if it was asserted.

b) Write Enables

Since the R3081 supports byte, halfword, tri-byte and full word writes, the

Write Enable strobes are used to determine which bytes of the word are going to be

involved in the write transaction. The four write enable signals that are produced are

WRENA*, WRENB*, WRENC*, and WREND*. WREND* corresponds to the most

significant byte and WRENA* corresponds to the least significant byte.

63

The Write Enable strobes are generated by the SYS_RESET*, VOTWR*,

CYCEND*, VOTBEO*, VOTBE1*, VOTBE2*, and VOTBE3* signals. The CYCEND*

and SYS_RESET* signals are used in the same manner for the Write Enables as the

RDEN* signal. Each of the Write Enable strobes corresponds to a single voted Byte

Enable signal from the microprocessors. When the VOTWR* signal is asserted, the

Write Enable strobe corresponding to each of the asserted Voted Byte Enable signals will

also be asserted. Additionally, the R3081 supports byte, half word, tri-byte, and full word

writes. To clarify the point, the truth table for this function is given in Table 4.1.

Because the signals are negative logic, the Os signify an asserted signal.

VOTWR* VOTBE13..01 WREND* WRENC* WRENB* WRENA*
1110 1 1 1

1101 1 1 1

1011 1 1 1

0111 1 1 1

1100 1 1

0011 1 1

1000 1

0001 1

0000 o

Table 4.1. Write Enable Assertion Table

c) Data Enables

The Read Data Enable (RDDATAEN) and Write Data Enable

(WRDATAEN*) signals are used to control the output drivers on devices separating

different data busses in the system. In this system, the Data Voter FPGA separates the

three microprocessor's A/D Busses from the VDATA Bus and the driver/transcei\er

separates the VDATA Bus from the memory system's DATA Bus. This has to be done to

prevent bus contention when the processor turns the bus at the end of a read transaction

64

after a device with a slow turn off time has been accessed. The faster turn off time of the

FPGA and driver/transceiver isolate the slower device until the bus is cleared for the next

transaction.

The WRDATAEN is a positive logic signal generated by SYS_RESET*,

VOTWR*, and CYCEND*. It allows data to flow from the processors, through the Data

Voter, and into the memory system. As with the RDEN* signal, the SYS_RESET* clears

the signal on reset. The VOTWR* is used to assert the signal and CYCEND* is used to

de-assert it. By using the CYCEND* to de-assert the strobe, the devices are tri-stated

earlier in the cycle, which allows them more time to turn completely off before the

processor drives the bus with the next address. The RDDATAEN* strobe works exactly

the same as the WRDATAEN strobe, except it is a negative logic strobe and uses the

VOTRD* signal instead of the VOTWR*.

d) Synchronous Resets

Since some of the peripherals in the Memory System required positive

logic resets and some required negative logic resets, a reset signal had to be generated for

both polarities. Although this could have been done by placing an inverter on the

SYS_RESET* signal to get the positive logic reset, it was implemented in the PLD. This

solution provided a common location for both the positive and negative logic

synchronous reset signals. These signals are just registered and registered/inverted copies

of the SYS_RESET* signal.

Although the Memory Controller and Memory Enable PLDs are key

elements of the glue logic in this system, they are not the only programmable devices

65

used. The next section of this chapter presents the selection and design of the three

FPGAs used in this system.

B. FPGA DESIGN

Although the simulated system in Ref. [9] used three user-defined modules to

perform the voter functions and the Verilog Design Suite to perform the System

Controller function, they were implemented in three FPGAs in this design. This section

of Chapter IV presents the FPGA selection process and the design of the three FPGAs

used in the system. Schematics of the FPGA designs are presented in Appendix C.

1. FPGA Selection

Unlike the PLD selection, the FPGA selection process required more research.

The initial focus of the FPGA search was trying to find an FPGA vendor that

manufactured the same FPGAs in both commercial and rad-hard versions. This was

important in maintaining the design goal of implementing a system that could easily be

converted for future space use. If the FPGA selected for the implementation was

available in both commercial and rad-hard versions, the upgrade to a space flight model

could be completed easily. The programming files designed for the commercial model

could also be used to program the rad-hard FPGA. This search criterion narrowed the

possible vendors down to Actel and Xilinx.

The next factor used to narrow down the search was FPGA size. Since FPGAs

are a very powerful implementation, the limiting factor for this design was not based on

internal logic, but on the number of user definable I/O pins. The FPGA had to be large

enough to hold a complete functional unit. That is, a complete 32-bit voter needed to fit

66

in a single FPGA. This required a minimum of 130 user definable I/O pins: three 32-bit

inputs, one 32-bit output, and at least two control lines. Actel had one rad-hard FPGA

that met the requirements with 140 user definable I/O pins and Xilinx had three with 192,

288, and 384 user definable I/O pins.

Although any one of the four FPGAs listed in the previous paragraph would have

worked in the implementation, a selection had to be made for the implementation. The

Xilinx FPGAs offered one advantage over the Actel FPGAs in the way that they were

programmed. Since the programming data is actually fused into the Actel FPGAs, they

would have to be physically taken off the PCB and reprogrammed whenever changes in

the design had to be made. The Xilinx FPGAs use a serial PROM (SPROM) to store the

programming data. Whenever the system is reset, the program data is restored into the

FPGA. By using the Xilinx FPGAs in the design phase, the 20-pin SPROM is removed

for reprogramming, not the 240-pin FPGA. Although this may not sound like much of an

advantage, the large number, small feature size, and close spacing of the FPGA pins

would make its removal and replacement a very difficult task. This narrowed the viable

options down to the Xilinx FPGAs.

The remainder of the selection process came down to how the implementation

could best be packed in the FPGAs. The total pin count for the entire FPGA solution was

383 I/O pins. This would have actually fit in the 384 pin FPGA. This option was not

taken because it did not leave enough room for design changes and future upgrades. The

first design used the 384 pin FPGA to perform the voting function and the 192 pin FPGA

to perform the System Controller function. When minimum order quantity requirements

67

and cost were factored in, the final design used three 192 pin FPGAs. The System

Controller, Address Voter and Decoder, and Data and Control Voter were each

implemented in separate FPGAs.

Once the FPGA selection process was completed, the next consideration was how

to program them. The software tool used to program the PLDs, WinCUPL, does offer a

method for writing, compiling, and converting designs for use with Xilinx FPGAs. The

only drawbacks were that the designs had to be entered in a hardware description

language (FJDL) and the conversion process was rather complicated. Because of this,

other options were looked into for the FPGA design. It turned out that the new text book

being used for the logic design course at NPS, Ref. [28], came with a student edition of

the Xilinx Foundation software. Xilinx designed this software for the purpose of

programming Xilinx FPGAs. After determining that it would support the FPGA selected

for the implementation, it was selected as the design medium for the FPGAs. This

software allows the design to be implemented in HDL, State Machine Design, Schematic

Representation, or any combination thereof [Ref. 29].

Since the majority of the voter functions are combinatorial, the decision was made

to design the Address and Data Voter FPGAs using the schematic representation. Their

designs are presented in the next two sections. Although the actual implementation of the

System Controller was not completed, its design is presented in Subsection 4 of this

chapter.

OS

2. Address Voter, Memory Decoder, and Timer FPGA

The first FPGA implemented was the Address Voter FPGA. Its functions are

performing the majority vote on the three 30-bit address busses, decoding the upper

thirteen bits of the voted address lines into chip select signals, and providing a system

timer. The logic design of these functions is presented in this section and their schematic

diagrams are provided in Section 1 of Appendix C.

a) Address Voter

Since the R3081 multiplexes its data and address pins, demultiplexers

must be used to separate the Data and Address busses. The A/D bus of the

microprocessor is split into two different paths, one registered and one not. The

unregistered path is the Data Bus and the registered path is the Address Bus. When the

R3081 initiates a bus cycle, the A/D bus is driven with the address to be accessed. The

R3081 then asserts the Address Latch Enable (ALE) strobe and the transparent latches of

the demultiplexer drive the Address Bus with the address to be accessed. The negation of

ALE latches the address off the A/D bus into the demultiplexer, where it is held on the

Address Bus until the following bus cycle when ALE is asserted again. Since all three of

the microprocessors do this in parallel, the three CPU Address Busses must be majority

voted prior to being passed to the Memory System.

The vote function for the Address Bus was designed hierarchically using

Macros, which is a term Xilinx uses to describe the building blocks or sub-functions used

to create an overarching design. First, a 3-bit Majority Voter/Error Detector, which is

presented in Figure 4.4, was designed. This module takes three inputs and performs a

69

majority vote on them and passes the output to the zero input of a multiplexer. The

DATAA input is directly connected to the other input of the multiplexer. The Force input

is connected to the control input of the multiplexer. When Force is not asserted, the

multiplexer passes the voted data to the circuit output. When Force is asserted, the

multiplexer passes the DATAA input to the circuit output. The circuit also uses a three

input AND and a three input NOR, which are ORed together to generate a negative logic

error signal when any of the input bits differ from the other two.

AND2
M2 1

O ,-;-;-•-

NOR3

Figure 4.4. 3-Bit Majority Voter/Error Detector

The next step was to combine four of the 3-bit Majority Voter/Error

Detectors into a macro called VOTER4. The schematic for the VOTER4 macro is given

in Appendix C. This macro takes three four-bit wide busses and a Force input and

produces two four-bit wide busses, a majority voted output bus and an error bus. The

Force input causes the data on the DATAA Bus to be forced onto the OUT Bus through

the multiplexer, which bypasses the vote logic.

70

Because the R3081 uses the four Byte Enable signals to select which of the

four bytes are participating in the bus cycle, the Address Voter only needs vote the

remaining 30 bits of the bus, because the Byte Enable signals are voted by the Control

Voter. The Address Voter takes the three 30-bit Address Busses and a Force input to

generate a 30-bit Voted Address Bus and a 30-bit Error Bus. It was implemented by

placing eight of the four-bit wide voters in parallel, the two most significant bits are not

used. The 30-bit Error Bus had to be reduced down to a single output, which was done

by ORing the signals together. Since the Error signals are active low and the output is

active high, the operation turned out to be a logical NAND. The Address Vote Error

(AVOTERR) signal was then passed to the appropriate output pin. The Address Voter

also separated the Voted Address Bus into two sections, the lower seventeen bits and the

upper thirteen bits. The lower seventeen bits are sent to the output pins to make the

VOTADDR[2..18] Bus, which is passed on to the Memory System for decoding. The

upper thirteen bits are passed on to the Memory Decoder, which is presented in the

following section.

b) Memory Decoder

The Memory Decoder takes the upper thirteen bits of the Voted Address

Bus from the Address Voter and decodes them into chip select signals. In order to

prevent multiple addresses being mapped to the same memory location, a full address

decoding scheme was implemented, which means all thirteen of the upper address bits

were used to generate the chip select signals. A chip select signal is generated for each of

the five SRAM memory blocks, the EPROM, the UART, the Timer, and the Interrupt

71

Acknowledge. Table 4.2 shows the chip select name, its physical address, its virtual

address, and the memory segment it belongs to. The addresses correspond to the thirteen

bits of VOTADDR[32..19] with three zero bits concatenated to the end. The table shows

that the Kernel SRAM resides in KSEG1, the remainder of the SRAM resides in the

KUSEG, and all of the peripherals and the EPROM reside in the uncached KSEG1 as

discussed in Chapter HI. The Memory Decoder schematic is presented in Section 1 of

Appendix C.

Signal Name Peripheral Physical

Address

Virtual Address Memory
Segment

KRAMCS* SRAM 0x0000 0x8000 KSEG1
URAMOCS* SRAM 0x4000 0x0000 KUSEG
URAM1CS* SRAM 0x4008 0x0008 KUSEG
URAM2CS* SRAM 0x4010 0x0010 KUSEG
URAM3CS* SRAM 0x4018 0x0018 KUSEG
THMERCS* TIMER 0x0440 0xA440 KSEG1
INTCS* INTERRUPT 0x1000 OxBOOO KSEG1

EPROMCS* EPROM OxlFCO OxBFCO KSEG1
UARTCS* UART OxlFEO OxBFEO KSEG1

Table 4.2. Chip Select Memory Map

c) Timer

The implementation of the timer in this design turned out to be one of the

most time consuming problems faced. The initial plan was to create the timer using an

integrated circuit designed specifically as a timing device. Unfortunately, neither of the

two timers selected could be found, because both had become obsolete. Because

VxWorks requires a system timer to function properly [Ref. 19], the timer had to be

implemented in one of the FPGAs.

72

The sole purpose of the timer is to interrupt the processor at predetermined

time intervals. In response to the interrupt, the operating system will update the system

clock. In order to prevent the system from spending too much time processing timer

interrupts, the goal was to keep the number of interrupts under 100 per second, but as

close to a whole number as possible.

Since SYSCLK is used by the timer and is operating at 10 MHz, 40

interrupts per second would require the counter to count to 250,000 before asserting the

interrupt. Since 250,000 is closer to 2
18

than 2
17

, the design was easier to implement with

a 19-bit counter. By using 2
18 ANDed with 2

10
as the reset and interrupt signal, the

counter will count to 263, 168 and then assert the interrupt. This works out to 38

interrupts per second.

To provide this functionality, a 19-bit counter macro was designed out of

Toggle flip-flops. The basic counter was designed by running the SYSCLK signal to the

first flip-flop's clock input. The output of the flip-flop was inverted and tied to the next

flip-flop's clock input. This was done repeatedly until nineteen flip-flops were in series.

The Timer schematic is provided in Section 1 of Appendix C.

Although this provided the basis for a timer circuit, certain functionality

had to be added to make it useful to the system, such as a Timer Enable, Timer Disable,

Timer Interrupt Enable, Timer Interrupt Disable, and a Timer Interrupt Acknowledge.

The system allows the Timer Mode to be changed by performing a dummy write to a

specific set of addresses. Table 4.3 lists the Timer Mode and its associated address.

73

Memory Address (Hexadecimal) Timer Function

0x04400000 Timer Interrupt Acknowledge
0x04400004 Timer Enable

0x04400008 Timer Disable

0x0440000C Timer Interrupt Enable

0x04400010 Timer Interrupt Disable

Table 4.3. Memory Mapped Timer Modes

This functionality was designed into the system using the

VOTADDR[17..2] Bus, the TIMERCS* signal, three D flip-flops, and some

combinatorial logic. The sixteen bits of VOTADDR[17..2] are fully decoded to provide

five signals representing each of the desired functions: TIMERINTACK, TIMEREN,

TIMERDIS, THMERINTEN, and TIMERTNTDIS. Figure 4.5 provides a schematic of the

Timer functionality design.

Figure 4.5. Timer Enable/Di sable/Interrupt Design

The TIMEREN signal is ANDed with an inverted TIMERCS* signal and

routed to the D input of the Timer Enable flip-flop. The TIMERDIS signal is ANDed

with the inverted TIMERCS* and routed to the reset input of the Timer Enable flip-flop.

The output of this flip-flop is routed to all of the Clock Enable and Toggle Enable inputs

74

of the T flip-flops. Whenever the Timer Enable flip flop is set, the Timer will count. If

the flip-flop is reset, the Timer will sit idle. To set the Timer Enable flip-flop, a write

transaction is performed to address 0x04400004. This asserts the TIMERCS* and

TIMEREN signals, which puts a one on the input to the Timer Enable flip-flop. The next

rising edge of SYSCLK latches the data into the flip-flop and enables the timer. The

output of the flip-flop is fed back to the input to hold the enable after the bus cycle has

ended. The same method is used for the Timer Disable, except the signal is routed to the

flip-flop's reset input and is asserted when a write is done to address 0x04400008.

When the counter reaches 263,168, the reset and interrupt signal is

asserted. It is routed to the D input of the Interrupt flip-flop and the reset inputs of all the

T flip-flops. On the next rising edge of SYSCLK, the counter is reset to zero and the

Interrupt flip-flop is set. When the processor acknowledges the interrupt by writing to

address 0x04400000, the inverted INTCS* is ANDed with the TIMERINTACK signal

and routed to the reset input of the Interrupt flip-flop. The next rising edge of SYSCLK

resets the Interrupt flip-flop and de-asserts the interrupt.

The output of the Interrupt flip-flop is ANDed with the output of the

Interrupt Enable flip-flop. If the Interrupt Enable flip-flop is not set, the zero it supplies

to the AND gate prevents the interrupt signal from being passed out of the FPGA. The

Timer Interrupt Enable flip-flop works exactly like the Timer Enable flip-flop, except the

TIMERINTEN and TEMERINTDIS signals are used when writes are done to addresses

0x04400010 and 0x04400018, respectively.

75

3. Control and Data Voter FPGA

Although the Control and Data Voter FPGA was implemented second, it was

actually the easier FPGA to design. The main reason for that was that the Voter/Error

Detector was already designed and just needed to be imported into this design. The only

new designs needed were the Bidirectional Transceiver part of the Data Voter and the

Synchronization Signal. The design of the Control Voter, Data Voter/Transceiver, and

Synchronization Signal are presented in Subsections a, b, and c of this section,

respectively. The schematic design of the Control and Data Voter is provided in Section

2 of Appendix C.

a) Control Voter

The R3081 has eight outputs that act as control signals in this design: four

Byte Enable signals, Burst (BURST*), Read (RD*), Write (WR*), and Data Enable

(DATAEN*). When these signals leave their respective processors, they are combined

into two 4-bit busses, BECPUx[3..0] and CTRLCPUx[3..0]. The small x in the name

represents the specific CPU the signals come from, such as A, B, or C. As an example.

CTRLCPUA[0..3] is the BURST*, RD*, WR*, and DATAEN* signals from CPU A

bussed together, where BURST* is bit zero, RD* is bit one, WR* is bit two. and

DATAEN* is bit three.

The Control Voter design uses two of the VOTER4 macros in parallel.

The first macro takes the three CTRLCPUx[3..0] busses and the Force signal as inputs to

generate the VOTCTRL[3..0] and CVOTERR[3..0] buses. This is done by performing a

majority vote and comparison on the three input busses and passing the appropriate

76

output based on the Force signal, as described in the Address Voter presentation. The

second macro generates the VOTBEN[3..0] and BEVOTERR[3..0] busses in the same

manner using the three BECPUx[3..0] busses and Force signal. The VOTCTRL and

VOTBEN busses are then routed to their respective output pins. The two 4-bit busses of

voter error signals are individually ANDed together to form the CVOTERR signal. This

signal is combined with the Synchronization Signal, which is discussed later in this

section, prior to being routed to its output pin, where it is used by the Memory Control

PLD to signal a miss compare.

b) Data Voter/Transceiver

The Data Voter/Transceiver is designed the same as the Address Voter

with two exceptions: it uses a different macro to perform the voter function and it is

designed to be bidirectional. For the voter function, a new macro named VOTER8 was

designed. Although the macro redesign was not required, it was done to help the

readability of the top-level design. The VOTER8 macro is designed in the same manner

as the VOTER4 macro except eight 3-bit Voter/Error Detectors are used in parallel

instead of only four, which gives it an 8-bit wide path instead of the 4-bit wide path of the

VOTER4 macro. This reduced the number of macros needed to vote a 32-bit bus to four.

The four 8-bit error busses generated by the four VOTER8 macros in the Data

Voter/Transceiver are combined in the same manner as the error busses in the Address

Voter to form the DVOTERR signal, which is also combined with the Synchronization

Signal discussed in the following section. The combined signal is then passed on to its

respective output pin.

77

Because the information passed across the data bus must flow in both

directions, the Data Voter/Transceiver had to be designed for bidirectional data flow. The

three data busses leaving the processors on write cycles need to be combined through the

vote logic and passed on to the Memory System. On reads, the single data bus coming

from the Memory System must bypass the vote logic and be split into three copies that are

passed back out to the processor's AID busses. This was done using multiple paths

separated by tri-state buffers. The RDDATAEN* and WRDATAEN signals from the

Memory Controller PLD are used to control the enable pins of the tri-state buffers.

Figure 4.6 shows how the transceiver portion of the Data Voter/Transceiver was designed

for each of the thirty-two bits on the data bus.

CH
~t>

~^L

<^>-r
~^r

^

r
-t>

^

=&

VOTER :Swr

r

1—

^

Figure 4.6. Transceiver Logic Design

The Transceiver logic is designed to flow through and around the voter

logic. On write bus cycles, data flows from left to right across the diagram, with the three

input pins being driven by their respective processors. The Memory Control PLD will

78

assert the WRDATAEN signal, which enables the BUFE tri-state buffers. The data flows

through each of the processor input line tri-state buffers, the vote logic, the output tri-state

buffer, and to the output pin. The voted data also returns towards the input pins, but is

stopped by the disabled BUFT tri-state buffers, which are controlled by the

RDDATAEN* signal.

On read bus cycles, data flows from right to left across the diagram, with

the single input pin being driven by the Memory System. As discussed earlier, the

Memory Control PUD asserts the RDDATAEN* signal and de-asserts the WRDATAEN

signal on read cycles. The signal on the input pin is routed through the input buffer and

to the three output BUFT tri-state buffers. The asserted RDDATAEN* signal enables the

tri-state buffers and lets the data flow through to the processor side pins. The de-asserted

WRDATAEN* signal prevents the read data from flowing back into the vote logic.

c) Synchronization Signal (SYNC)

Because skew will exist between the processors, the information on the

Address, Control, and Data busses will not arrive at the voters at exactly the same time.

Because of the way the Vote Error signal is designed, it will detect these differences and

will be asserted whenever the three signals do not match, including when the bus is

transitioning and not expected to match. The purpose of the Synchronization signal is to

prevent these 'false' voter error assertions from leaving the Voter FPGAs. This was done

by ANDing the outputs of the Voter Error signals with the Synchronization signal, which

will prevent the error signal from leaving the FPGA unless SYNC is asserted.

79

The SYNC signal was designed to be asserted during both read and write

cycles while valid data was expected to be on the Address, Control, and Data busses.

Since the address being used for the current bus cycle is captured by the demultiplexer,

the Address bus is held constant once ALE has been de-asserted. As for the Control bus,

its value is asserted early in the bus cycle and maintained throughout. The Data bus was

the key to the SYNC signal. On reads, RDCEN* is used to indicate valid data is on the

bus. On writes, the processor drives the bus shortly after ALE is de-asserted. The ACK*

signal is then used to terminate the bus cycle. Since both the RDCEN* and ACK*

signals indicate there is valid data on the bus, they were used to generate the SYNC

signal, along with the VOTRD* and VOTWR* signals. For the read portion of the

SYNC signal, VOTRD* is ANDed with RDCEN*. For the write portion, VOTWR* is

ANDed with ACK*. These two signals are then ORed together. Since these signals are

active low, the AND-OR is logically an OR-AND, which is shown in Figure 4.7. The

combined signal is then inverted and ANDed with an inverted SYSCLK. which is

accomplished logically with a NOR gate. The combination with the inverted SYSCLK

holds SYNC from being asserted until the second half of the clock cycle, which gives the

data bus ample time to settle after the memory system drives the bus on write cycles. The

SYNC signal is then routed to its output pin.

80

, VOTRD* J

NOR2

SYNC

, ACK*

OR2

<: ~«-

VOTWR-

SYSCLK

OR2

AND2
•

Figure 4.7. SYNC Signal Design

4. System Controller FPGA

As discussed before, LT Payne used the Verilog Design Suite to act as the System

Controller in the simulated design that was presented in Ref. [9]. The hardware

implementation chose to design the System Controller in an FPGA, since they are one of

the few programmable devices that are robust enough to hold all the functionality

required of the System Controller. As the design progressed and the test plan started to

take shape, the priority assigned to the design of the System Controller began to decrease.

Although no testing was conducted during this phase of the project, the initial plan for

testing the system is expected to progress as follows:

• Test and analyze system support signals to ensure the system comes out of

power-on-reset correctly.

• Test system in single microprocessor mode and validate correct operation of

each processor individually.

• Test TMR mode of operation, without collecting bus data.

Because the System Controller is not required to perform the first two sets of tests and the

other two Voter FPGAs and the PLDs are, the priority was placed on the design of the

other programmable devices. This section presents the initial design of the System

Controller, although its implementation was left for follow-on work.

81

The System Controller serves several functions in the TMR system. It enables the

interrupts for the microprocessors after resets, initializes the Control UART, collects and

transmits FIFO data, and controls the mode that the TMR R3081 system functions in.

The following subsections describe the requirements for each of the System Controller

functions and the initial design considerations in implementing them. Since most of the

functions are independent and translate easily to finite state machines (FSM), it is

recommended that future work use the Xilinx Foundation software to implement the

System Controller, since FSM design is one of the design alternatives provided by the

software.

a) Interrupt Enable (INTEN*)

The INTEN* signal is used by the Mode Select hardware to multiplex the

INT*[3..5] bus of the microprocessors. While the INTEN* signal is not asserted, the

74AHCT541 buffer's outputs are tri-stated and the INT*[3..5] bus is driven by pull-

up/pull-down resistors, which are used to select the mode the processors operate in.

Since the mode inputs are latched in by the RESET* signal's rising edge, the INTEN*

signal should be asserted after RESET* is negated and before the microprocessor's

interrupts are enabled.

The only two signals required in the generation of the INTEN* signal are

SYSCLK and RESET*. RESET* should be tied to the D input of a flip-flop and

SYSCLK to the clock input. The Q output of the flip-flop should then be inverted to

generate the negative logic INTEN* signal. This design generates the INTEN* signal on

the first rising edge of SYSCLK after RESET* is negated. Since the generation of the

82

INTEN* signal does not rely on any other function within the System Controller, this

function can and should happen simultaneously with the other functions. A diagram of

the INTEN* function is provided in Figure 4.8.

INTEN'

Figure 4.8. INTEN* Signal Design

b) Control UART (CUART) Initialization

Since the majority of the System Controller functions revolve around the

collection and transmission of data between the TMR system and the HCI, the CUART

plays a very large supporting role to the System Controller. Neither the FIFO Data

Transfer nor the TMR Mode Control functions can happen before the CUART is

initialized. Therefore, it is very important that this function take place as early in the

system initialization process as possible.

The CUART initialization is the process of configuring the UART to

communicate with both the CTRLDATA[0..7] bus and the device on the opposite end of

the serial port. The minimum initialization requirements for the CUART are to setup the

communications channel (baud rate, parity, even/odd, number of start and stop bits) and

to select the operation mode (polled or interrupt). If the interrupt mode is selected, the

initialization should also enable the interrupts. This is done through access to the

83

CUART Control Registers, which can be written to and read from. The specific values

used in the control registers for the initialization of the UART are developed in Ref. [23].

The System Controller should be able to read from and write to the UART

in order to accomplish this function. The state machine should be designed to follow this

pattern for a write cycle:

Assert the CUART chip select signal (CUARTCS*),

Assert the Control Register address on CTRLADDR[2..4],

Assert CUARTADS* (From Address Voter),

Assert data on CTRLDATA[0..7],

Assert Read Enable signal (CURDEN*),

Negate CURDEN* (Latches data into register),

De-assert CTRLDATA[0..7] and CUARTCS*.

The state machine should also be able to produce this pattern of signals for a read cycle:

• Assert the CUART chip select signal (CUARTCS*),
• Assert the Control Register address on CTRLADDR[2..4],

• Assert CUARTADS* (From Address Voter),

• Assert Write Enable signal (CUWREN*),
• Read data off CTRLDATA[0..7],

• Negate CUWREN* and CUARTCS *

.

In order to accomplish the read and write operations, all the signals required for the read

and write functions were routed between the System Controller FPGA and the CUART.

c) FIFO Data Collection

After the CUART is initialized, the System Controller must collect the

FIFO data before it can transfer it to the HCI. The final concept of data collection

involves a FIFO Array that continuously collects data. The initialization of the FIFO

Array would have the Write Pointer ten addresses ahead of the Read Pointer. The Read

and Write Pointers are pointers inside the FIFO that determine which location is read

84

from and written to. While normal execution of instructions occur, the FIFOs perform

two read/"dummy write" pairs for each bus cycle. It is referred to as a dummy write

because the output enables are not asserted and it only serves to increment the Read

Pointer. The first read/"dummy write" collects the address information off the A/D

busses and discards the address information from five bus cycles previous. The second

read/"dummy write" serves the same function, only for the data portion of the bus cycle.

This keeps five bus transactions in the FIFO Array at all times. When a VOTINT* is

detected, the "dummy write" is discontinued while the bus information is collected and is

restarted after all the FIFO data has been transferred to the HCI. This scheme provides

the five bus cycles prior to the error and the internal register contents of the processors to

the HCI for analysis.

Because of the large scale of the project, the approach taken with this

function of the System Controller was to design a function that would collect the A/D bus

information during the interrupt handler. This fulfilled the minimum requirement of

providing the contents of all the internal registers of the three processors to the HCI for

analysis. Once the system is running and has been tested, this function can easily be

expanded to provide the additional five bus cycles.

For the minimum functionality, the System Controller only requires five

signals, VOTINT*, SYSCLK, VOTWR*, FWRCLKO, and INTCS*. The System

Controller monitors VOTINT* for indication of a voter error. When VOTINT* is

asserted, the System Controller uses the write enable strobe (FWRCLKO) of the FIFO to

write both the address and data information from the A/D bus into the FIFOs. The

85

FWRCLKO signal is generated by combining the SYSCLK and VOTWR* signals.

SYSCLK is ANDed with an inverted VOTWR*. Since all the write bus cycles are two

clock periods long and the data is latched into the FIFO on the rising edge of the write

clock, the first rising edge of FWRCLKO latches the address and the second rising edge

latches the data. Since this signal should not be active at all times it should have an

enable that is based on the VOTINT* signal. This can easily be implemented by latching

VOTINT* into a D flip-flop and using its inverted output to enable the FWRCLKO signal.

After the interrupt handler has finished storing all the processor registers to memory, it

should acknowledge the interrupt, which negates the VOTINT* signal. With the

VOTINT negated, the FWRCLKO signal will be disabled and data collection will cease.

A diagram of the FWRCLKO signal design is shown in Figure 4.9.

, oi^Lrv ^_ FWRCLKO
FWRCLKOp >, VOTWR*

_yVJ FCLKEN)

1?FD

AJND2

, VOTINT* D Q

r

Figure 4.9. FWRCLKO Signal Design

Since the processors complete the interrupt handler and re-enable their

interrupts before the System Controller can transfer all the FIFO data to the HCI. the

System Controller must be able to determine if an additional interrupt has occurred while

data was being transferred from the previous one. Implementing an up/down counter in

so

the System Controller can do this. The Data Collection system will provide the input for

the up counter and the Data Transfer system will provide the input for the down counter.

When the INTCS* signal is asserted and negated, the counter will increment by one to

indicate a Vote Error Interrupt has been serviced. The fact that the counter contents is not

equal to zero is the signal for the Data Transfer system to begin transferring data to the

HCI.

d) FIFO Data Transfer

The FIFO Data Transfer system has two functions. First it transfers a

Header byte to the HCI to indicate which FIFO's data is about to be transferred. It then

transfers the complete contents of that FIFO to the HCI. Because the data transfer is a

cyclical operation, the best way to implement it is by using state machines. This section

will explain the Header byte and the state machine designs.

(1) Header Byte Design. When the HCI starts receiving data

from the TMR system, it has to know what the data represents in order to rebuild the data

structure and to conduct analysis on in. This information comes from two locations, the

interrupt handler and the Header Byte. By knowing the instructions the interrupt handler

is performing and the order it is performing them, the HCI can determine exactly what

each byte stored in the FIFOs represent. The list may look something like: Rl, R2,

R31,PC, Status, Cause...

The Header also provides information regarding the rebuilding of

the data structure. The Header contains two elements of information, which processor the

data originated from and which FIFO in the array the byte corresponds to. The three

87

processors in the TMR system are referred to as Processor A, B, and C. The fifteen

FIFOs in the system are broken down into arrays of five assigned to each processor,

which are numbered zero through four. It takes two bits of the Header byte to identify the

three processors and three bits to identify the FIFO. The breakdown of the header word is

presented in Figure 4.10. Bits and 1 make up the Processor Field, bits 2, 3, and 4 make

up the FIFO Field and bits 5, 6, and 7 are reserved for future use.

Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

V _A. A-V V V
Reserved For FIFO Processor

Future Use 000-0 100-4 00 -A
001-1 101 -NU 01-B

010-2 110-NU 10-C

011-3 111-NU 1 1 - Not Used

NU == Not Used

Figure 4.10. Header Byte Design

For each of the three processors, the data from one bus cycle is

split into ten bytes with two bytes stored in each FIFO. The first byte corresponds to the

address portion of the bus cycle and the second byte corresponds to the data portion.

When the Data Transfer system transfers the data to the HCI. it will transfer all of the data

corresponding to the current vote error from one FIFO before moving on to the next

FIFO. This method of transferring the data was preferred because it reduces the latency

of the transfer by not having to switch between FIFOs after each byte. The state

machines of the FIFO Data Transfer system, which are explained next, coordinate the

movement of the data from the FIFOs to the UART for transmission to the HCI.

ss

(2) State Machine Design. Because the majority of the

elements of the FIFO Data Transfer system involve sequential tasks, the system is best

suited to being designed as a set of finite state machines (FSMs). The FIFO Data

Transfer system is designed as a hierarchical set of five FSMs: Data Transfer FSM,

Processor Select FSM, FIFO Select FSM, Byte Select FSM, and Data Write FSM. This

section presents their design and discusses their interactions.

The Data Transfer FSM is the uppermost FSM in the system. It

monitors the Interrupt Counter discussed in the FIFO Data Collection section. When the

counter is no longer equal to zero, the Data Transfer FSM changes from the Wait state to

the Transfer Data state. While in this state, the FSM asserts an enable for the Processor

Select FSM and waits for the Transfer Complete signal to be returned, which signals the

completion of the FIFO data transfer. When the Transfer Data operation is completed,

the FSM returns to the Wait state and checks the value of the Interrupt Counter, which the

Processor Select FSM decrements. If the counter is zero, the FSM will idle in the Wait

state. If the counter is still not equal to zero, the FSM returns to the Transfer Data state.

The Data Transfer FSM is given in Figure 4.11.

|FPGA Inibalization

intCnt: '=

IntCnh

Transfer Complete

Figure 4.11. Data Transfer FSM Design

89

The next FSM is the Processor Select FSM. The purpose of this

FSM is to sequence through the three processors' FIFO arrays during the data transfer.

This FSM waits in its initial state until enabled by the Data Transfer FSM. When

enabled, the FSM transitions to the Processor A state, where it asserts an enable for the

FIFO Select FSM and waits for a CPU Complete signal. The CPU Complete signal

indicates that the FIFO contents of the current processor have been transferred to the HCI.

The FSM then completes this operation for Processors B and C. After Processor C's

FIFO contents are transferred, the next state decrements the Interrupt Counter and asserts

the Transfer Complete signal. The FSM then transitions back to its Wait state. The

Processor Select FSM is shown in Figure 4.12.

Wait Processor A Processor

B

ProcSelEn CPU Complete

Processor C

CPU Complete CPU Complete

Assert

Decrement &
Transfer

Complete

Figure 4.12. Processor Select FSM

The next FSM in the hierarchy is the FIFO Select FSM. The

purpose of this FSM is to sequence through each of the five FIFOs in the FIFO array

during a data transfer. This FSM waits in its initial state until enabled by the Processor

Select FSM. When enabled, the FSM transitions to the FIFO state, which corresponds

to the most significant byte (MSB) of the A/D FIFOs. During the FIFO state, the FSM

90

enables the Write Data state machine and waits for a FIFO Complete signal. The FIFO

Complete signal indicates that the Write Data FSM has transferred both the Header and

the contents of the current FIFO to the UART. When the FIFO Complete signal is

received, the FSM transitions to the next state and the process is repeated for each FIFO

in the array. The sequence for the FIFOs is A/D MSB, A/D next to MSB, A/D next to

LSB, A/D LSB, and Control byte. After the Control FIFO has been transferred, the next

state in the FSM asserts the CPU Complete signal and then transitions to its Wait state.

The FIFO Select FSM is shown in Figure 4.13.

Wait FIFOO

FIFOSefEn

FIFO 1

FIFO Comp

FIFO 2

FIFO Comp

FIFO Comp

FIFO 5

FIFO Comp

FIFO 4

FIFO Comp

FIFO 3

Figure 4.13. FIFO Select FSM Design

The Byte Select FSM is the next FSM in the hierarchy. The

purpose of this FSM is to sequence through the Header and each of the bytes of data in

91

the FIFO during a data transfer. This issue was complicated by the fact that the code to

the O/S was not available. In order to build a Rapid Prototype of the HCI that could be

tested, the initial data block agreed upon between the hardware and software system

designers was 41 of the processor's internal registers. The 41 -register block contains the

10 CPO control registers and 31 of the 32 general-purpose integer registers. R0 was not

transferred because it is a constant zero. Since the bus is sampled twice for each write

cycle, the System Controller is expected to put 82 bytes of data in the FIFO during the

interrupt handler. When the Header is added to this, the Byte Select FSM has 83 bytes of

data to sequence through and Wait and FIFO Complete states. This brings the initial total

to 85 states for this FSM. It waits in its initial state until enabled by the FIFO Select

FSM. When enabled, the FSM transitions to the Header state, which asserts the Data

Write Enable and waits for the Byte Complete signal. The Byte Complete signal

indicates that the Write Data FSM has transferred the Header byte to the UART. When

the Byte Complete signal is received, the FSM transitions to the next state and the process

is repeated for each byte in the FIFO. After the last byte in the FIFO has been transferred,

the next state in the FSM asserts the FIFO Complete signal and then transitions to its

Wait state. Since the Byte Select FSM is so large, only the initial portion of the design is

shown Figure 4.14.

92

Wait Header

Byte CompleteByteSelEn Byte Complete

7 (
S3

)

Figure 4.14. Byte Select FSM Design

Finally, the last FSM in the FIFO Data Transfer function is the

Write Data FSM. This state machine is responsible for issuing the control signals

required to transfer data from the FPGA or FIFO to UART. This FSM was described in

the CUART Initialization section. After the selected byte is latched into the UART, the

Write Data FSM asserts the Byte Complete signal and returns to its Wait state, which

wraps up the design of the FIFO Data Transfer system.

e) TMR Mode Control

The last functionality to present in the System Controller is the TMR

Mode Control. The TMR Mode Control serves two purposes, it allows the user to

remotely reset the TMR system and to select between the TMR and Single Processor

Modes of operation. This section presents the design of the TMR Mode Control.

Although the TMR Mode Control performs two functions, it can be implemented in a

single 8-bit register with the outputs tied to the signals required to initiate the required

operations. Bit is used to select between the TMR and Single Processor Mode. Its

output is the FORCE signal. When this bit is a zero, the system operates in the TMR

Mode. When it is a one, the system operates in the Single Processor Mode. Bit 1

initiates a system-level reset by routing the inverted output of the register to the

93

SYS_RESET output of the FPGA. Bit 2 initiates a board-level reset by routing the

inverted output of the register to the BRD_RESET output of the FPGA. A diagram of the

TMR Mode Select Register is given in Figure 4.15.

Bit

7

Bit

6

Bit

5

Bit

4

Bit

5

Bit

2

Bit

1

Bit

V^

TMR Mode
1 Single Processor

1 X System Reset

1 X X Board Reset

Reserved For

Future Use

Figure 4.15. TMR Mode Select Register Design

C. DETAILED SYSTEM TIMING ANALYSIS

With all the hardware specified and the programmable devices designed, the next

step in the process is to conduct a detailed timing analysis of the system. The purpose of

the timing analysis is to determine if the system operates in the manner expected and to

ensure that no bus contentions exist. A bus contention occurs when multiple devices are

driving the same lines at the same time, which could lead to a destructive fault.

Since the processors can conduct three different types of bus transactions, the

timing analysis was performed on each type of bus transaction and is presented in the

same fashion: Single Word Read Cycles, Quad Word Read Cycles, and Single Word

Write Cycles. Additionally, each device that the processors can interact with for a

particular bus cycle had to be analyzed. The following sections present the results of the

timing analysis. A timing diagram has been generated using Timing Designer

94

Professional, a software tool developed by Chronology. Like transactions have been

combined where possible.

1. Single Word Read Cycles

Single word reads can be characterized by three phases: the processor initiates the

bus cycle, the Memory System responds to the request, and the processor terminates the

bus cycle. When the timing analysis was conducted for all the devices, it was found that

the SRAM, UART, Timer, and Interrupt all have the same timing diagram. Only the

EPROM had a different timing analysis for single word read cycles.

The processors initiate the bus cycle by asserting the appropriate control signals

on a rising edge of SYSCLK*. In this case, the RD* signal is asserted, A/D bus is driven

with the address, and ALE is asserted. BURST* is not asserted for single word reads.

The assertion of ALE causes the latches in the A/D demultiplexer to become transparent

and allow the address information to continue to the Address Voter FPGA. Near the next

falling edge of SYSCLK*, ALE is negated and the processors turn the A/D busses to

receive the data supplied by the Memory System. The negation of ALE latches the

address into the transparent latches. The processors will wait in this state for the data

indefinitely, unless the BUSERR* signal is asserted.

The address busses are voted and decoded by the Address Voter FPGA and passed

on to the Memory Systems address lines and chip selects. The Control Voter also votes

all the Control lines during this time, which supplies the signals required by the Memory

System to respond to the bus cycle. The assertion of VOTRD*, without VOTBURST*,

signals the Memory Control PLD that a single word read cycle has been initiated.

95

Regardless of which chip select signal is asserted, the Memory Control PLD asserts the

RDEN* and RDDATAEN* signals. This enables the output drivers of the device being

read from and directs the data to flow from the Memory System towards the processors in

the bus transceivers and Data Voter FPGA. The asserted chip select signal determines

how many wait states are generated by the Memory Control PLD. The EPROM was the

only device that required a single wait state, all the other devices could conduct zero wait

state reads. For the zero wait state devices, RDCEN* was asserted at the same time as

the RDEN* signal and one clock cycle later for the EPROM, which signaled the

processors that the Memory System had finished responding to the bus cycle.

The assertion of RDCEN* by the Memory Controller PLD must occur prior to the

rising edge of SYSCLK*. This requirement is easily attained because SYSCLK is used

to drive the PLDs state changes and it is very nearly exactly out of phase with SYSCLK*

due to the very small propagation delay of the inverting buffer. The processors then latch

the data off the A/D buses on the next falling edge of SYSCLK*, along with negating all

the control signals asserted for the bus cycle. The zero wait state read takes two

SYSCLK* cycles to complete and the single wait state read takes three clock cycles to

complete. The timing diagrams for the zero and single wait state timing analysis are

presented in Figures 4.16 and 4.17, repectively. The diagram indicate that no bus

contentions exist on any of the busses.

96

I Ons

I I I I

I 50ns

I I I

100ns

I I I

I 150ns

I I

I 200ns

I I I

SysClkN

SysClk

RdN

VolRdN

ALE _JJ

— RdN Valid

Voter Delay

V_

LjALE Asserted »j ALE Negated

T\

H

CPU.A/D

VDala

•j A/'D Driven

—UjA/D Tn-St

I »|Di

Slate

r Cont

Data

CSN/VotAddr

RdEnN/RdDataEnN

RdCEnN

—tiO'E. to Valid

OE to Valid

iCS' & AddrValic

^\
State Change

j
State Change

\ Read Setup L

U RdN Negated
f*|

RdN Valid

^7

__

ko
\ Voter Delay

zx
^Voter Del;

T^
I ALE Asserted

JT

i j
Dir Cont

wOD to Tn-State

~>

-•jOD toTri-State

D
JCS* & Adc

JT
•j State Change

7

J State Change

JT

Figure 4.16. Zero Wait State Read Timing Diagram

0ns 100ns

I ! I I I I

200ns

I I I I

j

300ns

I I

SysClkN

SysClk fK_

U. RdN Valid

RdN tt_

VotRdN

ALE _JJ

J

TV

Voter Delay

^ALE AsserteoVj ALE Negated

X
*jA/D Dnven JA/D Tn-State

CPUJVD

Data

CSN/VotAddr

T>

JCS* & Addr Valid

RdEnN/RdDataEnN

RdCEnN

JT

J—

TV \\

U- RdN V;

U|RdN Negated

l—»j Voter Delay
|

JJ ^

-Dir Cont-

X
~

l*|ALE As

*
I

OD to Tn-State

-*|OE to Valid

X

T>
-»jOD toTri-State

-H OE to Valid

L_>
*j OD to Tri-State

U State Change

1

>
-cs-

•State Change

State Change

\V

f
Estate Change

JJ

Figure 4. 17. Single Wait State Read Timing Diagram

97

2. Quad-Word Read Cycles

In order to reduce the latency involved in setting up read operations, the R3081

supports quad-word reads. The bus cycle is initiated in the same fashion as a single word

read, except the processors also assert the BURST* signal. When the Memory System

responds with the RDCEN* strobe, the processors latch the data off the bus and

increment the CPUADDR[3..2] bus from 00 to 01. The Memory System then responds

with another RDCEN* strobe and the process is repeated four times, which reads the

addresses corresponding to 00, 01, 10, and 11 on CPUADDR[3..2]. After the fourth

RDCEN*, the processors will terminate the read cycle. In order to provide better

response, the R3081 lets the designer apply the ACK* signal up to four clocks before the

last data word is latched in. This lets the processor core start processing the words that

have already been latched into the read buffer, as long as the last word is in the buffer by

the time the processor requires it.

When the timing analysis was conducted, it was determined that the only two

devices capable of performing quaded reads are the SRAM and EPROM. The other

devices do not have linear memory spaces or multiple registers that require successive

writes. When the SRAM's and EPROM's timing diagrams were compared, they were

very similar. As expected, the SRAM was able to conduct zero wait state reads for each

of the four reads. What was unexpected, was that the EPROM was able to conduct zero

wait state reads for the last three reads after an initial single wait state latency during the

first read operation. Because the SRAM can conduct four single-word reads or a single

quad-word read in eight cycles, there is no savings in doing this. The EPROM is able to

98

reduce the number of cycles required to read four words during the quad-word read due to

the added delay of waiting for the Memory Control PLD to toggle the RDCEN* signal.

This adds a complete clock cycle while the RDCEN* is taken high for the EPROM

address to be accessed. The EPROM quad-word read saves a total of three clock cycles

over four single-word reads. Because the timing diagrams for the quad-word reads were

so long, they were split into two parts for legibility. The timing diagram for the SRAM

Zero Wait State Quaded Word Read is given in Figures 4.18 and 4.19. The timing

diagram for the EPROM Single Wait State Quaded Word Read is given in Figures 4.20

and 4.21. As with the single-word read cycles, the quad-word read timing diagrams

indicate that no bus contentions exist.

i i i i

SysClkN

SysClk JT

VolRdWolBurjIN

RdN/BmtN "^

!-•) Volar Delay

» ALE Aliened

ALE U^~
Voter Delay

TV ST

ALE Negated

L^

i i i i

\

i i i i

TV a~ tv a~

VotAddrI3 2] 1—
(J^

«jAiDDiwn
•j Valid Hc-C T T-t)

CE to Valid

r—«-| CE to Valid

Ready

fl

X
*\ OE lo Val.d 3 Uii

-CS - & Add' Valid

RdErN/RdDolaEnN C_

Slato Change

* Slato Chango

^
-*j Stale Change W Slate Change

JT _^

DC2

* Slate Che

D
tv

Figure 4.18. Zero Wait State Quaded Word Read Timing Diagram (1
st

Half)

99

I 400ns

I I I I

|500ns

I I I I I I I I I

SysCI*l_/ \ / \ / \ / >

SysClk \\ l v\ 7 \\ / / ^ Q
RdNNegs

Voter

RdN/BurstN /

fl
votRoN/votaustN //

ALE

-]—^AddrCh

VotAddr[3 .21

1

X

OE to Valid T~
—*• Mold Time

p»| OE to Valid

-»-»-HoltiTr

-»OOlo
CPU_A/D|< :; <) >

1 i*
tpdXcvr -*-OOto'

voaal
. >

)

"•
Data X

CSN/VotAddr

StaieCh;

RdEnN/RdDataEnN
iR'

•j State Change •j State Change •) State Change

A
L StateCh;

RdCEnN

1

\ //

•j State Change

/,

AckN J

nd
Figure 4.19. Zero Wait State Quaded Word Read Timing Diagram (2

nc
Half)

i i i i

100ns
|

200ro

I I I I I I I I

300ro

I I I I I

SysCIIM_

SyaOk "S\

•jRdNValid

RdMBumtN "^_

Vi-.ihi)n/v itBumtN

-

j V

^ a ^

VoterM ay

Hale Assort od

K \
—j Volar Oalay

ALE NoQatod

•:.

? ^ 4 ^^

U—«jAddrai

Uj A/ODmwi
CPUJVD —

(

l-»jA/DTn5t

•j CE to tow

-State

Z «j Valid H 06 '

r-H CE to low Z

UjCS'&Addf valid

CSWVoiAd* <\

-i_i-

SutoOnrtg*

FWtnN/RdOllAEnN

1
^L

Stato Oanoo 1 1 ^ange -swawij.
U/ ~^_

Figure 4.20. Single Wait State Quaded Word Read Timing Diagram (1
st HalO

100

500ns 600ns

I I I I I

1600m

SysCIW ^

SysClk,

/ \ / N / \ / ^

V v\ / \\ . / / \\ 'J

UfldNN
RdN/BustfJ u

VotRdN/VotBirstN

Unvote

ALE

—»)AddrCh —»)AddrCh -HAddrC
VolAddr|3 2[cpc

«r«i OE lo Valid

r

Data[^

CSN/VotAddr

*jlpdXcvr

ZXZZZ

•—- OE to Valid

-. Hole

r-»|O0tt

A tpd Xcw -HOD to

RdEnN/RdDataEnN

•J Slate Change •j Stale Change •j State Change «4 Stale Change <•) State CI-

D
•(State Change •) State Change

AckM ^ //

,nd
Figure 4.21 . Single Wait State Quaded Word Read Timing Diagram (2 Half)

3. Write Cycles

The R3081 also conducts write cycles in three phases, which are very similar to

the phases of the read cycle. First, the processors initiate the bus cycle by asserting the

WR* control line, ALE, and the A/D bus with the address. After the processors negate

ALE, they drive the busses with data instead of waiting for the Memory System to

respond. After the processors have initiated the bus cycle, the Memory Controller

responds to the VOTWR* signal by asserting the WRDATAEN and ACK* signals. The

WRDATAEN signal sets the transceivers and Data Voter FPGA up to allow data to flow

from the processors to the Memory System. The ACK* signal is the signal the processors

101

are waiting for that indicates the Memory System has had sufficient time to process the

bus transaction. The processors then terminate the bus cycle.

Because EPROM is not written to, no timing analysis was required for this type of

bus cycle. The remaining devices were all able to perform zero wait state writes. Their

timing diagram is provided in Figure 4.22. As with the other timing diagrams, there are

no bus contentions during the write cycle either.

Although the detailed timing analysis brings together the hardware and software

designs and checks them for errors, nothing substitutes for performing tests on the actual

circuit boards to determine if they were designed correctly. The next chapter presents the

steps taken to turn the implementation design into an actual circuit board with integrated

circuits, switches, capacitors, and connectors.

i i i

50ns

III! 100ns

I I I

150ns

I I I I

SysClkN

SysClk

WrN

VotWrN

ALE

CPU_A/D

VOata

Data

CSN/VotAddr

WrEn/WrOalaEn

^X
-»| WrN Valid

Voter Delay

J

\\.

A ALE Asserted *j ALE Negated

I

UjA/0 Driven

r
-.

|
>|Data Driven

c

\ Data Valid

<~T
i Data Valid

iCS - & Addr valid

"^

State Change

-

1.

Slate Change

VX

Jj
WrN Negated

,200ns

I

5

Voter Oelay

JT

La
DO

IDtta va d

JOD to Trt-Stf

State Change

* State Change

J-T

Figure 4.22. Zero Wait State Write Timing Diagram

102

V. MANUFACTURING AND DESIGN REVIEW

Chapters II through IV presented a simulated design of the TMR R3081 system

and the hardware and programmable logic designs required in the implementation of the

design. This chapter presents what was done with those designs in order to produce a

printed circuit board (PCB) for use in follow-on research and testing.

A. PCB FABRICATION

One of the issues not discussed in the earlier chapters was the selection of a

software suite that could be used to draw the TMR system schematics, which ties in with

the PCB fabrication. The initial inclination was to use the Verilog Design Suite, since it

had been used for the simulated design. Unfortunately, the system had been recently

upgraded and all the bugs had not been worked out. After spending the better part of six

weeks trying to get the Verilog solution to work, it became apparent that it was not going

to be a viable option. When the search turned to PC based software, two schematic

capture software tools emerged as the front runners, OrCAD and Protel. After using both

of the software's demonstration programs and talking to the contractor that was going to

perform the PCB layout, the OrCAD software was chosen over the Protel. The two main

reasons the OrCAD software was selected was that it offered better parts libraries and it is

the same software that the contractor uses. Since the libraries could be checked prior to

starting the design, all the parts required in the TMR system were available in the OrCAD

software. Additionally, since the contractor also uses OrCAD, the designs could be

imported directly into the PCB layout portion of the OrCAD suite, which also saved time

in the manufacturing process.

103

Along with the OrCAD schematics, the contractor was given a list of

requirements concerning the layout of the system. There could be no traces under the

processors, the CPUCLK traces should be as close to the same length as possible, and the

IC chips used on the PCB should be socketed. The restriction on the traces under the

processors comes from Heavy Ion Testing. The traces could interfere with the test by

generating additional ions when impacted by the test beam. The new particles could then

cause errors in the processor, which would skew the test data. The CPUCLK traces need

to be as close to the same length as possible to reduce the skew between the signals. This

stipulation was included because the synchronization of the three processors was thought

to be the most critical aspect of the design. If there was too much skew between the

signals, the processors might not finish a bus cycle without a miss compare. Finally, the

socketed parts allow for quick and simple part exchanges for the programmable devices

or for upgrades to the other devices.

Once the OrCAD schematics were delivered to the contractor, he created a Net

List out of the project. The Net List was then used to create the PCB layout. Before

sending the board out to the fabricators, the contractor attempted to order the parts

specified in the schematics. It was during this time that the problem with the delivery

time on many of the parts selected in the design was discovered. The design was then

updated to reflect the changes that needed to be made because of the lack of part

availability and the layout was sent to the fabricators. When it returned, the contractor

soldered in all the sockets and the parts that were not put in sockets prior to returning the

104

finished board. Figure 5.1 shows a picture of the TMR R3081 PCB with the functional

blocks identified.

>-^ Bus Xcvrs

-

Dual UARTs

Figure 5.1. TMR R3081 PCB

B. WHITE WIRES

Although the hardware design was well thought out prior to sending it to the

contractor for manufacturing, the PLD and FPGA designs had not been completed. This

was done to streamline the design process in order to have a working prototype as early as

possible. Having the early prototype would allow the software development team time to

105

integrate the 0/S and HCI into the design. Unfortunately, the plan did not work as

expected and the design of the PLDs and FPGAs revealed additional routings that needed

to be made, which are called White Wires. This section presents the design changes that

were discovered during the PLD and FPGA designs, which are presented in Table 5.1 for

ease of reference.

Signal Name From To Change

TIMERCS* Address Voter

Pin 184

Memory Controller

Pin 4

White Wire

RESET* Memory Enable

Pin 23

Memory Controller

Pin 13

White Wire

RESET* Memory Enable

Pin 23

Memory Controller

Pin 14

Cut

RDDATAEN* Memory Enable

Pin 14

Data and Control

Voter Pin 185

White Wire

WRDATAEN Memory Enable

Pin 15

Data and Control

Voter Pin 186

White Wire

SYSCLK Buffer/Driver

Pin 11

Data and Control

Voter Pin 171

White Wire

RDCEN* Memory Controller

Pin 22

Data and Control

Voter Pin 172

White Wire

ACK* Memory Controller

Pin 21

Data and Control

Voter Pin 173

White Wire

RESET* Memory Enable

Pin 23

System Controller

Pin 144

White Wire

Table 5.1 . Table of White Wires and Cuts

When the Timer system was redesigned because the parts were no longer

manufactured, the TIMERCS* signal was removed from the design. It was discovered

during the Memory Controller PLD design that the "dummy writes" to the Timer required

a chip select signal to be generated so the Memory System would generate the proper

signals to acknowledge the write, even though nothing was actually being written to the

timer.

106

Another issue discovered during the Memory Controller PUD design required the

moving of the RESET* signal. The original PLD design used pin 13 of the PLD as part

of the Wait State Counter. Since pin 13 is an input only pin, it could not be used for the

feedback options that were required of the counter. The easiest way to remedy this

problem was to move the RESET* signal input from pin 14 to pin 13 of the Memory

Controller PLD and cut the trace leading to pin 14.

During the detailed timing analysis, a bus contention was discovered on the

processors' A/D busses. The VOTRD* and VOTWR* signals were being used to control

the direction of data flow through the Data Voter/Transceiver. Because they were driven

so early in the bus cycle, the Data Voter/Transceiver would drive the A/D buses while the

processors were still driving them with the address values. In order to prevent the bus

contention, the RDDATAEN* and WRDATAEN signals were supplied to the Data

Voter/Transceiver to perform the direction control function. Since these signals are

synchronized to SYSCLK, they provide an additional half cycle of delay before the

busses are driven, which prevents the bus contention.

During the design of the SYNC signal in the Data and Control Voter, it was

discovered that the control signals supplied to the FPGA were not adequate to generate

the SYNC signal. When the timing requirements presented in Chapter IV were analyzed,

it was determined that the SYSCLK, RDCEN*, and ACK* signals were required by the

Data and Control Voter FPGA to generate the SYNC signal.

The last White Wire needed was discovered during the design of the System

Controller FPGA, which was originally going to use the SYS_RESET* signal to signal

107

the assertion of the INTEN* signal. Because the processors are using the synchronous

RESET* signal for their reset function, this signal also had to be added to the System

Controller FPGA for the INTEN* signal. If the SYS_RESET* signal was used, the

INTEN* signal would be asserted too early, which could cause the processors to initialize

in the wrong mode.

Once the White Wires and cuts are added to the TMR R3081 system, it will be

ready to start the process of testing. The design of the PLDs, FPGAs, and the detailed

timing analysis were conducted in conjunction with LT Damen Hofheinz, USN, who will

be conducting the testing and follow on research. This was done to provide as seamless a

transition as possible. The following chapter concludes this portion of the project and

discusses possible areas for follow on research.

108

VI. CONCLUSIONS AND FOLLOW-ON RESEARCH

The previous chapters have introduced the concept, provided background

material, and presented the work completed on this project to date. This chapter will

present the conclusions drawn from the project and possible areas for follow-on research.

A. CONCLUSIONS

The high prices and declining availability of radiation hardened devices has

caused system designers to turn to using COTS devices in radiation environments.

Although the COTS devices offer reduced design-to-orbit time, lower cost, and use of

cutting edge technology in the design, they are also much more susceptible to SEUs.

The TMR system implemented during this research provides a tool to reduce the

risk posed by the SEUs in two different ways: by testing software algorithms or by

masking out the fault. First, the TMR Software Testbed allows testing of fault-tolerant

software in a radiation environment without having the expense of placing a test case in

orbit. This allows the reactions of the software to be monitored when an SEU is

encountered. When the TMR system is used as a hybrid fault-tolerant computer system,

the hardware will mask out the error, reset the faulty processor to match the state of the

other two processors, and continue processing from the point the error occurred.

During this portion of the project, the simulated design model was expanded,

upgraded, and implemented. The system was expanded by the addition of the support

elements that were not required in the simulation phase. The addition of the System

Controller to the design and its requirement to handle the data transfers between the HCI

and the TMR System improve the processors availability for user programs. During the

109

implementation, the integrated circuit chips in the system, with exception of the

microprocessor, were selected, the schematic designs were drawn, and the programmable

logic devices were designed. Finally, a detailed timing analysis of the complete system

design was performed, during which it was determined that there were no bus contentions

and all the devices' setup and hold times were met during all modes of operation.

The simulated model of this system from Ref [9] and the hardware

implementation presented in this research both prove the TMR concept to be a valid

method of dealing with the effects of SEUs on COTS devices. This research advanced

the project by implementing the system in hardware, which required the design of the

system support elements, I/O space, memory space, FIFO interface, and the System

Controller. Although the System Controller implementation was not completed and no

developmental testing was conducted, the detailed timing analysis presented in Chapter

IV supports the claim that the design will work as intended.

B. FOLLOW-ON RESEARCH

Because of the relatively short time students get to actually conduct research.

projects as large as this one are not normally completed by one student. The projects are

segmented and each student in the progression will advance the project. This section

explains some of the areas where follow-on research can be conducted, such as

completion of the TMR Testbed. Radiation Testing, conversion to a space flight board, or

applying the TMR design to a state-of-the-art (SOTA) processor.

110

1. Completion of TMR Implementation

This thesis presented a partially functional TMR R3081 system. The hardware

implementation, along with the programming for the Memory Controller PLDs and the

Voter FPGAs allow the system to function as a stand alone computer system with the

added function of detecting and correcting single bit errors occurring in any of the

processors. In order to provide the full capability of the system, the System Controller

FPGA needs to be programmed and operationally tested. This will allow the system to

store and transmit data collected from each of the processors during a Voter Interrupt to

the HCI for analysis. This will also complete the hardware design phase for this system.

Once the hardware is completed, the system will be ready for the software

integration, which consists of two parts, the O/S and the HCI, which are detailed in Ref.

[12]. The VxWorks O/S is installed on the hardware by loading it onto the EPROMs. It

then needs to be tested to ensure the device drivers and the interrupt handlers are

configured correctly. The HCI is incorporated into the overall system by connecting its

Data and Control Ports to the Data and Control Ports of the TMR system, since they are

both stand-alone systems that communicate via two serial cables. The HCI and hardware

need to be tested to ensure the communication paths are operating correctly and the data

format being transmitted by the hardware matches the format expected by the HCI. When

these items are completed, the system will be a fully functional TMR system that is able

to detect and correct single errors in any of the processors and provide the data

corresponding to that error to the HCI for analysis. The system is then ready for radiation

testing and modifications for other uses.

Ill

2. Radiation Testing

When the hardware and software integration is completed, the TMR R3081

system will be ready for its operational testing. Because this system is designed to detect

and correct radiation induced SEUs, its final operational testing must be done in the

presence of radiation. Regional test facilities include the particle accelerators at the

University of California, Davis and University of California, Berkeley. These facilities

generate beams of high-energy particles that radiate devices placed in their path. By

placing one of the processors in the radiation beam, SEUs can be induced in the device

and the reaction of the system can be captured and analyzed by the HCI.

The data captured by the HCI during the radiation testing can be used for two

different purposes. First, it will validate the concept of a hybrid TMR fault tolerant

system. Previous versions of TMR processor systems rebooted the system when an SEU

was detected in one of the processors. This system uses the two valid processors, the

Voters, and the memory system to reconfigure the faulty processor to match the two valid

processors. This technique saves all the time and data that is lost when the recovery plan

from an SEU is a complete reboot of the system.

Since the TMR system can be operated in the TMR mode or single processor

mode, a test can be conducted to compare the efficiency of TMR hardware fault tolerance

to software fault tolerance. One possible test could be to have the system count to a

specified value while being subjected to the radiation beam. One test would use fault

tolerant software in the single processor mode, while the other test would use software

112

without fault tolerance in the TMR mode. The time that was required to complete the

two operations could then be compared.

3. Conversion to Space Flight Board

Once the system has been integrated and tested, the next logical step in its

evolution would be to convert it into a space flight board. The new board could then be

used to conduct further testing or as a computing node on the satellite. Some of the main

topics that would need to be investigated for the conversion are listed below.

• Determination of parts to be replaced with commercially available radhard

models.

• Addition of an error detecting and correcting memory space.

• Addition of circuitry to detect SELs and reset the system.

• Weight and power analysis.

• Detailed timing analysis due to changes in system timing.

4. Application to a State-of-the-Art (SOTA) Processor

Although the R3081 microprocessor provides sufficient computational power to

analyze fault tolerant techniques, its performance is far behind SOTA processors

available today. One possible topic for future research on this project would be to

basically start fresh with one of today's SOTA processors. One of the limiting factors of

TMR designs in the past has been the additional delay placed in the communication paths

by the logic needed to perform the voting. Because the processor cores have gotten so

much faster than the memory devices that support them, the additional delay of the voters

should be lost in the noise, but that will be left for someone else to prove.

113

THIS PAGE INTENTIONALLY LEFT BLANK

114

APPENDIX A. TMR IMPLEMENTATION ORCAD SCHEMATICS

This appendix contains the schematic for the TMR R308 1 System. Figure A. 1 is

the top-level schematic and each block contained in it refers to one or more other figures.

Table A. 1 lists the figures in this appendix and the page they appear on.

Figure Number and Description Page Number
Figure A. 1 . TMR R308 1 Top Level Schematic 116

Figure A. 2. System Support Elements Schematic 117

Figure A. 3. CPU A Microprocessor and Latch_Schematic 118

Figure A.4. CPU B Microprocessor and Latch Schematic 119

Figure A.5. CPU C Microprocessor and Latch Schematic 120

Figure A. 6. Address Voter FPGA Schematic 121

Figure A.7. Data and Control Voter FPGA Schematic 122

Figure A. 8. PROM Array Schematic 123

Figure A.9. KRAM Array Schematic 124

Figure A. 10. URAMO Array Schematic 125

Figure A. 1 1 . URAM1 Array Schematic 126

Figure A. 12. URAM2 Array Schematic 127

Figure A. 13. URAM3 Array Schematic 128

Figure A. 14. Data UART Schematic 129

Figure A. 15. CPU A FIFO Array Schematic 130

Figure A. 16. CPU B FIFO Array Schematic 131

Figure A. 17. CPU C FIFO Array Schematic 132

Figure A. 18. System Control FPGA Schematic 133

Figure A. 19. Control UART Schematic 134

Table A.l. TMR R3081 System Schematics By Page Number

1 15

6f

116

9-

5 $

5 *

l\

r*

di b II

II

WM

vlvi

s

i*

s

Eii

ffiU!

MfU

??

•J-

g
4^

!

I

55:

rih->

esi

l!

I

b lei

117

118

33SSSSSS 9339SS3S 11
§2

1:5 -f

1

1

JSS993SS llilifii it ills £1* £5 5,8,111 I
E5SS3SSJ

3 5

O D D d a
222 2222222

ss

si
I?
Hi

Niki.

M\

a aaoaa

Shi

Still

2222)

at

1 3 . I B Sr 5 x <JS w yr a. u 5 uj a
3 u -1 a a ce

119

120

2;<iSS5£s2 222222228 228228253 32££82£x$ g^BC^^t^^ £J2st^2Sxl^ 235222252 222222252 222222252 222222228 SfiCBsl

1? ul

rrno firoOMDD

mmimm am mmmh a attf

Is!

Sis

11

ei 3

!i

2 2 2 2 epp

das #JftMM*i
i&z7izz i22tfi?.?. sssssssgg! 22ejs»SJ2es 25555peejs g*« sss

121

l!"

i!

Si

JfcJ

-I if I
Sjese?ss« smszsi2 8isss«ssj22essess! s ttBgtgaa BftliOTMB :?::"f ;:2 S2*c2ess? 222222222 222222222 sjssfis

f <t <r

Mi
122

WWWVs

11112 r.

3 3 3 3 3 3 3 2

isjiJif iss;:;;;:;

*S
£-

gi

II.

33;

ii

, 5;s;;;s;5;;;;;;;;

82S2* 2£

£T

§*

e h "

S\\SSVsS
uinm
appppp 3

S

l2§2§i§s Sg

SSSSJSS IIJ;;;;,-;;

ag|£S.

-3

2 E i x

Si

3*

hh

Q H

123

\\\s\\s\

s*

3*

HI-

e c < E c < 5
n i 3 a 3 3 :

SsliiSSS 8?

SSSSSSSS

Hit!
apppp s

IS

§2§£§S§2

M

5 S 3 33 S 5 5
< c I < _
O 3 3 3 3

§££§£§$£

ta*tsa«8taSi3Ii33 & 88

a a »
v »;t-.^-S «;

, ...

isg

II ss

H B

6 fl Q Q 6 Q
f *

i 5

124

35

5-

§5

LL

e li

125

3*

-II-

5* ISS9

s;v;;ss:5Jii;;i;; S

88
9 £ Elckrkrkrkrltrlckr

!U.

JC_E

A A AAAA
I i I ! i I

126

127

s*

8*

HI-

2*

ILJLI

DO ODAA

128

1

« -.
uuuuy -

112kL
Hi

I a

13:_

<i £-- £5

JcSl

85?

Vs\ss\w

!!!!!

3

1

Ml"

8c32328g SglS^

: * S

tr!« tiCK*

Pistil

!§£ a<« 1= 1 IHI OSgw ¥

ghU

U

' i A ioQ A

I a I I

8? 3

-I Uc

«
HH

129

A Q

J 5

B i

e it: I

130

J

VsSSWW
mis

til
S533535S 23 ::-

S3SSJS2S 2$ *Sl

^Z
03023033

* 3

Z.

wssww
<S? lis;

85SS5SS3 aft Be

3.5
8SSS3SSS £2 S*2

////// n
SSSSSSSS

3JJ8S!

111
35S33S8S Si fift

i£3S5££S §1 Esl

VsVsWW
S<J

£*<

:::;

ttttt

£7-
5

Ji
S5SS3S83 Sff* !X

El I

II g2

////////

o-.

Hi-

ss
or

HH

\\

sssvssss
18!

5S JO
35S83383 i*!* Ui

3*
S5SS3S8S £g is^li

A AD A A

;8^
I

8 Is* B

131

II

-

132

M.

II Si

gggg

ka i

mmmm m

-i is

COCO

i

'I

LL

B
6 : .
tt KSs

Zj

|£222?2*2 2222222*2 222S2? JS-iCSeeS 22
|f|F

22 S5fB?«|jpp
S5

Is g| 1 Mi | i{
2;2SSt;SJ2 522S2S2S2 S22S222S2 222222252 22222225' 52«52SSS 222225S52 222222S22 222S222S2 2222222S2 2222&S

ffiffli BBB SSI SSS SSS

IB
El

133

Sii.
2E3i

I -

.....J

uuuuu -

i
3 3 B

»sy=

2 9
* *
G 5

o|g ESSJS

£S=J£ i

sJ=Si

832

SSSSVVS

:i

—

ssssssss ggg pg
i

§111 a-'*! Sb i IfiH Sgj g
-r- r-. ,—

,

. - - - , r- s

r <s

3-1-1

H d h m a

i

3*

HP

134

APPENDIX B. WINCUPL FILES

When using programmable devices, such as Programmable Logic Devices (PLDs)

and Field Programmable Gate Arrays (FPGAs), files must be written that instruct the

device how to function when signals are applied to it. For the TMR R3081 design, a

software program known as WinCUPL was used to write and compile the design files for

the PLDs. WinCUPL also offers a simulation tool that allows the designer to test the

programming files before the device is actually programmed in order to determine a

specified set of test vectors produce the expected outputs. Sections A and B of this

appendix contain the program file and the simulation file, respectively, for the Memory

Control PLD that was presented in Chapter IV. Sections C and D contain the program

and simulation file for the Memory Enable PLD that was also presented in Chapter IV.

1. MEMORY CONTROL PLD PROGRAM FILE

Name MemCont ;

PartNo ATF22V10C-7PC ;

Date 4/30/00 ;

Revision 01 ;

Designer David Summers ;

Company NPS ;

Assembly TMR R3081 ;

Location U54 ;

Device p22vl0 ;

/* ****************** CONSTANT DEFINITIONS ******************* */

$DEFINE LOW 'B'O
SDEFINE HIGH 'B'l

/* *********************** INPUT PINS *********************** */

PIN 1 = SYSCLK; /* SYSCLK FR CPUA */

PIN 2 = INTCSN; /* INTERRUPT CHIP SELECT */

PIN 3 = RAMCSN; /* SRAM CHIP SELECT */

PIN 4 = TIMERCSN; /* TIMER CHIP SELECT */

PIN 5 = UARTCSN; /* UART CHIP SELECT */

PIN 6 = EPROMCSN; /* EPROM CHIP SELECT */

PIN 7 = VOTBURSTN; /* VOTED BURST READ
|
WRITE NEAR */

PIN 8 = VOTRDN; /* VOTED READ */

PIN 9 = VOTWRN; /* VOTED WRITE */

PIN 10 = CVOTERR; /* CONTROL VOTER ERROR */

PIN 11 = DVOTERR; /* DATA VOTER ERROR */

PIN 13 = RESETN; /* SYNCHRONOUS SYSTEM RESET */

PIN 19 = AVOTERR; /* ADDRESS VOTER ERROR */

135

/* *********************** OUTPUT PINS *********************** *

PIN [14,15,16,17] = [COUNT3. .0] ; /* WAIT STATE GENERATOR */

PIN 18 = CYCENDN; /* CYCLE END SIGNAL */

PIN 20 = BUSERRN; /* BUS ERROR SIGNAL TO CPU */

PIN 21 = ACKN; /* ACK SIGNAL TO CPU */

PIN 22 = RDCENN; /* READ CLOCK ENABLE TO CPU */

PIN 23 = VOTINTN; /* VOTER INTERRUPT TO CPU */

/* *********************** LOGIC EQUATIONS *********************** */

/* ** */

/* */
/* WAIT STATE COUNTER COUNT [3.. 0] */
/* */

/* THE PURPOSE OF THE WAIT STATE COUNTER IS TO PROVIDE TIMING */
/* REFERENCE FOR THE MEMORY CONTROLLER SIGNALS. IT STARTS COUNTING */

/* WHEN A READ OR WRITE CYCLE IS INITIATED AND RESETS WHEN THERE IS A */

/* RESET OR CYCLE ENDSIGNAL. THE COUNTER USES THE SYSCLK AS ITS */

/* REFERENCE CLOCK. */
/* ** */

COUNT0.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &

(COUNT0 $ HIGH)

;

COUNT1.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &

(COUNT1 $ COUNT0)

;

COUNT2.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &

(COUNT2 $ (COUNT1 & COUNT0));
COUNT3.D = RESETN & CYCENDN & (IVOTRDN # IVOTWRN) &

(COUNT3 $ (COUNT2 & COUNT1 & COUNT0));

COUNTO.OE=HIGH;
COUNTl.OE = HIGH
COUNT2 . OE = HIGH
COUNT3 . OE = HIGH

COUNTO.AR = LOW
COUNTl.AR = LOW
COUNT2.AR = LOW
COUNT3. AR = LOW

COUNT0.SP = LOW
COUNT1.SP = LOW
COUNT2.SP = LOW
COUNT3 . SP = LOW

FIELD CNTR = [COUNT3 , COUNT2 , COUNT 1 , COUNT0];

/* ** */

/* */
/* VOTER INTERRUPT SIGNAL */
/* */
/* THE VOTER INTERRUPT SIGNAL INFORMS THE CPU WHEN A MISCOMPARE */

/* HAPPENS IN ONE OF THE FPGAS . THE SIGNAL IS HELD UNTIL A INTCSN */

/* IS GENERATED BY THE ADDRESS DECODER. */
/* ** */

VOTINTN. D = I ((AVOTERR # CVOTERR # DVOTERR # ! VOTINTN) & INTCSN);
VOTINTN.AR = LOW;
VOTINTN. SP = LOW;

136

/ * ** * /

/* V
/* CYCLE END SIGNAL */

/* */

/* THE PURPOSE OF THE CYCLE END SIGNAL IS TO SIGNAL THE END OF THE */

/* OF THE CURRENT BUS CYCLE IN ORDER TO RESET THE COUNTER. THIS */

/* RESETS ITSELF BY INCLUDING A REFERENCE TO ITSELF IN THE EQUATIONS. */
/ * ** */

CYCENDN.D = ! (RESETN & CYCENDN & (

(IRAMCSN &. (CNTR
(IRAMCSN & (CNTR
(IRAMCSN & (CNTR
(1EPROMCSN St (CNTR
(1EPROMCSN & (CNTR
(IUARTCSN & (CNTR
(ITIMERCSN & (CNTR

'H'O) & IVOTRDN & VOTBURSTN)
'H'6) & IVOTRDN & ! VOTBURSTN)
'H'O) & IVOTWRN)
: 'H'l) & IVOTRDN & VOTBURSTN)
: 'H'7) & IVOTRDN & ! VOTBURSTN)
'H'O) & VOTBURSTN)

: 'H'O) Sc VOTBURSTN)

(IINTCSN & (CNTR
(CNTR : 'H'F)

)) ;

CYCENDN. AR = LOW;
CYCENDN. SP = LOW;

'H'O) & VOTBURSTN)

/* ** */

/* */
/* READ CLOCK ENABLE */
/* */

/* THE READ CLOCK ENABLE SIGNAL IS USED BY THE CPU TO STROBE DATA */
/* OFF THE DATA BUS INTO ITS READ BUFFER. THIS SIGNAL IS STROBED ONE */

/* TIME FOR SINGLE READS AND FOUR TIMES FOR QUAD READS. ONLY RAM AND */

/* EPROM MEMORY USE THE QUAD WORD READS. */
/* ** */

RDCENN.D = ! (RESETN & CYCENDN & ! VOTRDN & (

(! RAMCSN & (

(CNTR :

(! VOTBURSTN & (CNTR
(! VOTBURSTN & (CNTR
(! VOTBURSTN & (CNTR

'H'O)
'H'2)

)

'H'4)

)

'H'6))

)

(! EPROMCSN & (

(CNTR
(! VOTBURSTN & (CNTR
(! VOTBURSTN & (CNTR
(! VOTBURSTN & (CNTR
)

)

(IUARTCSN & (CNTR : 'H'O))
(1TIMERCSN & (CNTR : 'H'O))
(! INTCSN & (CNTR : 'H'O))

'H'l)
'H'3))
'H'5))
'H'7))

)) ;

RDCENN.AR = LOW;
RDCENN.SP = LOW;

137

/ * ** * /

/* */
/

*

ACKNOWLEDGE *

/

/* */
/* THE ACKNOWLEDGE SIGNAL IS USED BY THE MEMORY SYSTEM TO LET THE */
/* CPU KNOW THAT IT HAS PROCESSED THE WRITE CYCLE SUFFICIENTLY AND */
/* THE CPU MAY MOVE ON TO THE NEXT CYCLE. THIS SIGNAL IS GENERATED */
/* IMPLICITLY ON SINGLE DATUM READS AND NO SOONER THAN FOUR CLOCKS */
/* BEFORE THE END OF THE LAST READ FOR BURSTS. */
/* ** */

ACKN.D = i (RESETN & CYCENDN & {

(1RAMCSN & IVOTWRN & (CNTR : 'H'O))
(IRAMCSN & IVOTRDN & I VOTBURSTN & (CNTR : 'H'3))
(IEPROMCSN & IVOTRDN & ! VOTBURSTN & (CNTR : 'H'4))
(IUARTCSN & IVOTWRN & VOTBURSTN & (CNTR : 'H'O))
(1TIMERCSN & iVOTWRN & (CNTR : 'H'O))
(1INTCSN & IVOTWRN & (CNTR : 'H'O))

)

);

ACKN.AR = LOW;
ACKN.SP = LOW;

/* ** */

/* */
/* BUS ERROR */
/* */

/* THE BUS ERROR SIGNAL IS USED BY THE PROCESSOR TO END A BUS CYCLE */

/* THAT TRIES TO ACCESS AN ADDRESS THAT IS NOT POPULATED IN THE */

/* MEMORY SPACE. */
/* ** */

BUSERRN.D =
! (RESETN & CYCENDN & (CNTR : 'H'F));

BUSERRN.AR = LOW;
BUSERRN.SP = LOW;

END;

i ;s

2. MEMORY CONTROL PLD SIMULATION OUTPUT FILE

CSIM(WM) : CUPL Simulation Program
Version 5.0a Serial* 10000000
Copyright (c) 1983, 1998 Logical Devices, Inc.
CREATED Sat May 27 09:01:57 2000

LISTING FOR SIMULATION FILE: MEMCONT.si

1

:

Name MEMCONT

;

2: PartNo ATF22V10C-7PC;
3: Date 5/26/00;
4: Revision 01;
5: Designer DAVID SUMMERS;
6

:

Company NPS

;

7: Assembly TMR R3 081;
8 : Location U54;
9: Device p22vl0;

10:
ii . /***•**•*******/

12: /* This device generates the memory control and interrupt */

13: /* signals required for memory reads and writes. It also */

14: /* generates the voter error interrupt signal. */

16: /* Allowable Target Device Types: PLD22V10 */
17. /**************•*********************************•*******•*******/

18:
19: FIELD CNTR = [COUNT3 , COUNT2 , COUNT1 , COUNT0]

;

20:
21: ORDER: SYSCLK, INTCSN, RAMCSN, TIMERCSN, UARTCSN, EPROMCSN,

VOTBURSTN, VOTRDN, VOTWRN, CVOTERR, DVOTERR, RESETN, AVOTERR, %2,
COUNT3 . . COUNT0 , CYCENDN, BUSERRN, ACKN, RDCENN, VOTINTN;

22:
23:

V
T EO
IUPT CD A CB V

SIRMARBWWRV CCCCYU RO
YNAEROUOOOOEO OOOOCS DT
STMRTMRTTTTST UUUUEEACI
CCCCCCSRWEEEE NNNNNRCEN
LSSSSSTDRRRTR TTTTDRKNT
KNNNNNNNNRRNR 3210NNNNN

0001:
0002:
0003:
0004:
0005:
0006:
0007:
0008:
0009:
0010:
0011:
0012:
0013:

Cllll
coin
com
cion
C1011
cnoi
cnoi
cino
cino
com
com
cion
C1011

11110000
11100010
11110010
11100010
11110010
11100010
11110010
11100010
11110010
11010010
11110010
11010010
11110010

LLLLHHHHH
LLLHLHLHH
LLLLHHHHH
LLLHLHLHH
LLLLHHHHH
LLLHLHLHH
LLLLHHHHH
LLLHLHLHH
LLLLHHHHH
LLLHLHHLH
LLLLHHHHH
LLLHLHHLH
LLLLHHHHH

139

V
T EO
IUPT CD A

SIRMARBVWVRV
YNAEROUOOOOEO
STMRTMRTTTTST
CCCCCCSRWEEEE
LSSSSSTDRRRTR
KNNNNNNNNRRNR

CB V
CCCCYU RO
OOOOCS DT
UUUUEEACI
NNNNNRCEN
TTTTDRKNT
3210NNNNN

0014:
0015:
0016:
0017:
0018:
0019:
0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
0028:
0029:
0030:
0031:
0032:
0033:
0034:
0035:
0036:
0037:
0038:
0039:
0040:
0041:
0042:
0043 :

0044:
0045:
0046:
0047:
0048:
0049:
0050:
0051:
0052:
0053:
0054:
0055:
0056:
0057:
0058:
0059:
0060:
0061:
0062:
0063:

CHOI
CHOI
C1110
C1110
Cllll
Cllll
Cllll
C1011
C1011
C1011
C1011
C1011
C1011
C1011
C1011
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
Cllll
coin
com
Cllll
com
com
Cllll
com

11010010
11110010
11010010
11110010
01010010
01010010
01110010
10010010
10010010
10010010
10010010
10010010
10010010
10010010
10010010
00010010
00010010
00010010
00010010
00010010
00010010
00010010
00010010
00010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11010010
11110000
11111010
11100010
11110010
11110110
11010010
11110010
11110011
11110010

LLLHLHHLH
LLLLHHHHH
LLLHLHHLH
LLLLHHHHH
LLLHHHHHH
LLHLLHHLH
LLLLHHHHH
LLLHHHHLH
LLHLHHHHH
LLHHHHHLH
LHLLHHLHH
LHLHHHHLH
LHHLHHHHH
LHHHLHHLH
LLLLHHHHH
LLLHHHHHH
LLHLHHHLH
LLHHHHHHH
LHLLHHHLH
LHLHHHLHH
LHHLHHHLH
LHHHHHHHH
HLLLLHHLH
LLLLHHHHH
LLLHHHHHH
LLHLHHHHH
LLHHHHHHH
LHLLHHHHH
LHLHHHHHH
LHHLHHHHH
LHHHHHHHH
HLLLHHHHH
HLLHHHHHH
HLHLHHHHH
HLHHHHHHH
HHLLHHHHH
HHLHHHHHH
HHHLHHHHH
HHHHHHHHH
LLLLLLHHH
LLLLHHHHH
LLLLHHHHH
LLLLHHHHL
LLLHLHLHH
LLLLHHHHH
LLLLHHHHL
LLLHLHHLH
LLLLHHHHH
LLLLHHHHL
LLLLLHHHH

140

3. MEMORY ENABLE PLD PROGRAM FILE

Name MemEn ;

PartNo ATF22V10C- 7 PC-
Date 4/30/00;
Revision 01;
Designer David Summers;
Company NPS

;

Assembly TMR R3 081;
Location U55;
Device p22vl0;

/
* ***********************

PIN 1 = SYSCLK;
PIN 2 = VOTRDN;
PIN 3 = VOTWRN;
PIN 4 = CYCENDN
PIN 6 = VOTBE0N
PIN 7 = VOTBE1N
PIN 8 = VOTBE2N
PIN 9 = VOTBE3N
PIN 13 = SYS_RESICTN

INPUT PINS ***********nt *

/* SYSCLK FR CPUA
/* VOTED READ
/* VOTED WRITE
/* CYCLE END SIGNAL
/* VOTED BYTE ENABLE
/ *
i VOTED BYTE ENABLE 1

/* VOTED BYTE ENABLE 2
/* VOTED BYTE ENABLE 3

/* SYSTEM RESET

*/
*/

*/
*/
*/

*/

*/
*/

*/

/
* *********************** OUTPUT PINS *********************** *

PIN 14 = RDDATAENN;
PIN 15 = WRDATAEN;
PIN 16 = RDENN;
PIN 17 = WRENDN;
PIN 18 = WRENCN;
PIN 19 = WRENBN;
PIN 20 = WRENAN;
PIN 22 = RESETPOS;
PIN 23 = RESETN;

/* READ DATA ENABLE FOR XCEIVER ENABLE
/* WRITE DATA ENABLE FOR XCEIVER ENABLE
/* READ ENABLE
/* WRITE ENABLE FOR BYTE 3

/* WRITE ENABLE FOR BYTE 2

/* WRITE ENABLE FOR BYTE 1

/* WRITE ENABLE FOR BYTE
/* SYNCHRONOUS SYSTEM RESET FOR UART
/* SYNCHRONOUS SYSTEM RESET

*/

*/
*/
*/
*/
*/
*/
*/

*/

/
* ****************** CONSTANT DEFINITIONS ******************* *

$DEFINE LOW 'B'O
$DEFINE HIGH 'B'l

/* *********************** LOGIC EQUATIONS *********************** */

/* ** */

/* */
/* READ ENABLE STROBE */
/* */
/* THE READ ENABLE STROBE IS USED TO ACTIVATE THE OUTPUT ENABLES ON */
/* THE MEMORY AND I/O DEVICES. SINCE ALL READS ARE DONE 32 BITS WIDE */
/* THERE IS NO NEED TO DIFFERENTIATE BETWEEN THE BYTES ON THE BUS. */
/* THE SIGNAL IS INITIATED BY THE VOTED READ AND DISABLED BY THE */
/* CYCLE END SIGNAL. */
/* ** */

RDENN. D =! (SYS_RESETN & ! VOTRDN & CYCENDN)

;

RDENN. AR = LOW;
RDENN. SP = LOW;

Ml

/ * ** * /

/* */
/* WRITE ENABLE STROBES */
/* */

/* THE WRITE ENABLE STROBES DETERMINE WHICH BYTES OF THE 32 BIT DATA */

/* BUS WILL BE INVOLVED IN THE WRITE CYCLE, SINCE THE R3 081 CAN */

/* PERFORM PARTIAL WORD WRITES. THE WRITE ENABLE STROBES CORRESPOND */

/* TO THE BYTES ON THE DATA BUS AS FOLLOWS: */

/* WRENAN -> DATA(7..0) */

/* WRENBN -> DATA(15..8) */
/* WRENCN -> DATA(23..16) */
/* WRENDN -> DATA(31..24) */

/* THE ! VOTWRN AND !VOTBE_N SIGNALS INITIATES THE STROBE AND THE */
/* CYCENDN SIGNAL DEACTIVATES THEM. ONE TO ALL OF THE STROBES CAN BE */

/* ACTIVE DURING THE WRITE CYCLE. */
/* ** */

WRENAN. D = ! (SYS_RESETN & (! VOTWRN & 1VOTBE0N & CYCENDN))
WRENBN. D =

! (SYS_RESETN & (! VOTWRN & ! VOTBE1N & CYCENDN))
WRENCN. D = ! (SYS_RESETN & (! VOTWRN & !VOTBE2N & CYCENDN))
WRENDN. D = ! (SYS_RESETN & (! VOTWRN & IVOTBE3N & CYCENDN))

WRENAN. AR = LOW
WRENBN. AR = LOW
WRENCN. AR = LOW
WRENDN. AR = LOW

WRENAN. SP = LOW
WRENBN. SP = LOW
WRENCN. SP = LOW
WRENDN. SP = LOW

/* ** */

/* */
/* READ DATA ENABLE AND WRITE DATA ENABLE STROBES */
/* */
/* THE READ DATA ENABLE AND WRITE DATA ENABLE STROBES DETERMINE THE */

/* DIRECTION DATA TRAVELS THROUGH THE DATA VOTER FPGA AND THE */
/* 74AHCT623 BUS TRANSCEIVER. THE READ AND WRITE SIGNALS COME ON TO */
/* EARLY IN THE CYCLE AND STAY ON TOO LATE IN THE CYCLE TO BE USED. */

/* THESE SIGNALS PREVENT BUS CONTENTION WHEN DEVICES WITH LONG TURN */

/* OFF TIMES DRIVE THE BUS JUST PRIOR TO IT BEING TURNED AROUND AND */
/* DRIVEN BY THE PROCESSOR. */
/* ** */

WRDATAEN.D = SYS_RESETN & ! VOTWRN & CYCENDN;
RDDATAENN.D = !(SYS_RESETN & ! VOTRDN & CYCENDN);

WRDATAEN.AR = LOW;
RDDATAENN.AR = LOW;

WRDATAEN.SP = LOW;
RDDATAENN.SP = LOW;

142

/ * ** * /

/* */

/* RESETPOS AND RESETN */

/* */

/* THESE TWO SIGNALS PROVIDE SYNCHRONOUS POSITIVE AND NEGATIVE LOGIC */
/* RESETS FOR THE SYSTEM. */
/* ** */

RESETPOS. D = !SYS_RESETN;
RESETN.D = SYS_RESETN;

RESETPOS. AR = LOW;
RESETN.AR = LOW;

RESETPOS. SP = LOW;
RESETN.SP = LOW;

END;

143

4. MEMORY ENABLE PLD SIMULATION FILE

CSIM(WM) : CUPL Simulation Program
Version 5.0a Serial#
Copyright (c) 1983, 1998 Logical Devices, Inc.
CREATED Fri May 26 13:19:41 2000

LISTING FOR SIMULATION FILE: MEMEN.si

1: Name MEMEN;
2: PartNo ATF22V10C-7PC;
3: Date 5/26/00;
4: Revision 01;

5: Designer DAVID SUMMERS;
6

:

Company NPS

;

7: Assembly TMR R3 081;
8: Location U55;
9: Device p22vl0;

10:
11 * /**/

12: /* This device generates the memory write byte enable signals */

13: /* and positive and negative logic synchronous reset signals. */

14: /* It also generates the read and write data enable strobes that*/
15: /* control the tri-state output buffers on the bus transceivers */

16: /* and FPGAs

.

*/
17. /**•********•****************************

18: /* Allowable Target Device Types: PLD22V10 */

20:
21: ORDER: SYSCLK, SYS_RESETN, VOTRDN, VOTWRN, CYCENDN, %1, VOTBE0N,

VOTBE1N, VOTBE2N, VOTBE3N. %1, WRDATAEN, RDDATAENN, %1, RDENN, %1,
WRENDN, WRENCN, WRENBN, WRENAN, %1, RESETPOS , RESETN;

21:
22:

S
Y R
S WD R

C WW RD E

SRWY OOOO DA wwww SR
YEOOC TTTT AT R RRRR EE
SSTTE BBBB TA D EEEE TS
CERWN EEEE AE E NNNN PE
LTDRD 0123 EN N DCBA OT
KNNNN NNNN NN N NNNN SN

0001: com 1111 LH H HHHH HL
0002: C1001 1111 HL L HHHH LH
0003: C1000 1111 LH H HHHH LH
0004: C1110 1111 LH H HHHH LH
0005: Cllll 1111 LH H HHHH LH
0006: CHOI 0000 HH H LLLL LH
0007: C1100 0000 LH H HHHH LH
0008: CHOI 0000 HH H LLLL LH
0009: CHOI 1111 HH H HHHH LH
0010: C0101 1111 LH H HHHH HL

144

APPENDIX C. XILINX FOUNDATION DESIGNS

Just as with the PLDs, the FPGAs have to be programmed. Although the

WinCUPL software had provisions for programming Xilinx FPGAs, it required the files

to be written in HDL or Verilog. An alternative offered by the Xilinx Foundation

software is schematic programming of the FPGA. The designer enters the design in a

schematic format and the software converts the file to a netlist, which is compiled into the

appropriate format for programming the FPGA. Section A of this appendix contains the

Foundation Schematics for the design of the Address Voter FPGA and Section B contains

the schematics for the Data and Control Voter FPGA. Each of these FPGA designs were

presented in Chapter rV.

1. ADDRESS VOTER FPGA

The Address Voter FPGA is responsible for performing a majority vote on the

three address busses, decoding the upper thirteen bits of the address bus into chip select

signals, and providing the system timer interrupt. The design of this FPGA is presented

in the following figures. Table C.l lists the figures presented in this section.

Figure Number and Description Page Number
Figure C.l. Address Voter FPGA Top Level Schematic 146

Figure C. 2. 18-Bit Counter 147

Figure C.3. 4-Bit Wide 3-Bit Majority Voter 148

Figure C.4. CPU A Address Bus Input Specification 149

Figure C.5. CPU B Address Bus Input Specification 150

Figure C.6. CPU C Address Bus Input Specification 151

Figure C.7. Voted Address Bus Output Specification 152

Table C. 1 . Address Voter Figures By Page Number

[45

146

Ill

lii
Hi

147

v «• »

J 9 &

s 1

if
<o o. S

lisc 2 C

148

L0C=P2

L0C=P5

L0C=P8

LOC=P11

L0C=P15

L0C=P18

LOC=P23

LOC=P26

L0C=P31

LOC=P34

LOC=P38

LOC=P42

LOC=P46

LOC=P49

LOC=P52

LOC=P55

LOC=P63

LOC=P66

LOC=P69

LOC=P72

LOC=P76

LOC=P79

LOC=P84
J

LOC=P87
|

LOC=P93

LOC=P96
|

LOC=P100

LOC=P104

LOC=P108
|

LOC=P1 1 1
|

IPAD) r\ inputs
<

hBUF
p\ INPUT3

HBUF
h\ INPUT4

Hbuf
r\ inputs

'"iBUF

|\, INPUT6

LiBUF
r\ INPUT7

HBUF
r\ INPUT8

^UF
|\ INPUT9

IPAD)

IPAD >

IPAD >

IPAD >

>IPAD

IPAD >

>IPAD
u1buf
f\ INPUT10

)

)

>

>

>

)

)

>

)

>

>

>

)

)

)

>

>

>

)

>

>

)

IPAD

HBUF
[\ INPUT11

IPAD L^1

*
HBUF
|~\ INPUT12

IPAD

HBUF
r\ INPUT13

IPAD

HBUF
f\ INPUT14

IPAD

nBUF
|\ INPUT15

IPAD

HBUF
|\ INPUT16

IPAD

HBUF
|\ INPUT17

IPAD

HBUF
l-V, INPUT18

IPAD

HBUF
|\ INPUT19

IPAD

HBUF
r\ INPUT20

IPAD

HBUF
[\, INPUT21

HBUF
|\ .

INPUT22

IPAD

IPAD

nBUF
|\ INPUT23

IPAD

HBUF
l\ INPUT24

HBUF
|\ INPUT25

HBUF
p\ INPUT26

hbuf
|\ INPUT27

HBUF
p\ INPUT28

HBUF
P^ INPUT29

HBUF
|\ INPUT30

HBUF
p^ INPUT31

HBUF

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

David Summers

Naval Postgraduate School

Project: ADDRVTR

Macro: INBUSA

TMR R308 1 Project Date: 05/27/100

149

L0C=P3

L0C=P6

L0C=P9

L0C=P12

L0C=P16

LOC=P20

LOC=P24

LOC=P27

LOC=P32

LOC=P35

LOC=P39

LOC=P43

LOC=P47

LOC=P50

LOC=P53

LOC=P56

LOC=P64

LOC=P67

LOC=P70

LOC=P73

L0C=P77

LOC=P81

LOC=P85

LOC=P88

LOC=P94

LOC=P97

LOC=P102

LOC=P105

LOC=P109

L0C=P112

>

)

>

>

>

>

>

>

>

)

>

)

)

)

>

>

)

>

>

—D>
nBUF—D>
HBUF—D>

—

HBUF—D>
nBUF—>
HBUF—[>

—

HBUF— —!

HBUF—D>
HBUF—
nBUF—>

—

^BUF—[>

—

HBUF—[>

—

HBUF—[>

—

nBUF—
[>
—

HBUF
|>
HBUF—

o

HBUF—I>

—

HBUF—>

—

HBUF—D>—
HBUF

JT[31 :2]

IPAD
NPLTT2 .

NPUT3

NPUT4 ^

NPUT5
<

NPUT6

NPITT7

NPUT8

NPITT9
<

NPIJTIO

NPUT11
<-

NPUT12

NPUT13 ^

NPITT14 ^

NPIJT15
c

NPUT16

NPLTT17 .

NPUT18
<

NPLTT19

NPITT20

NPUT21

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

)

)

>

IPAD

^IBUF—D>

—

HBUF—D>

—

HBUF

nBUF—1>

—

HBUF—[>

—

—D>

—

nBUF

HBUF

HBUF

NPUT22
<

NPUT23
<

NPUT24
<

NPUT2S
^

NPITT26
(

NPLTT27
c

NPUT28 ,.

NPCTT29
<

NPUT30

IPAD

IPAD

)

>

IPAD

IPAD

IPAD >

IPAD >

IPAD)

IPAD)

IPAD)
^Ibuf

NPUT31
IPAD)

^BUF

David Summers

Naval Postgraduate School

Project: ADDRVTR

Macro: INBUSB

TMRR3081 Project Date: 05/27/100

150

LOC=P4

L0C=P7

LOC=P10

L0C=P13

L0C=P17

L0C=P21

LOC=P25

LOC=P28

LOC=P33

LOC=P36

L0C=P41

LOC=P44

LOC=P48

LOC=P51

LOC=P54

LOC=P57

LOC=P65

LOC=P68

L0C=P71

LOC=P74

LOC=P78

LOC=P82

LOC=P86

LOC=P92

LOC=P95

LOC=P99

LOC=P103

LOC=P107

LOC=P110

L0C=P113

ipad y~

IPAD
^
>-

IPAD ^-

IPAD
^
>-

IPAD ^-

IPAD
^
>-

IPAD ^>-

IPAD >
IPAD

^
>-

IPAD
^
>-

IPAD
^
>-

ipad y~

IPAD
^
>—

ipad y—

IPAD ~)>—

ipad y-

IPAD)
>-

IPAD)
>-

IPAD ^
-

IPAD ^-

IPAD
^
>-

IPAD
^
>-

IPAD ^>-

IPAD)
>-

IPAD ^-

IPAD
^
>-

IPAD ^

_|\ INPUT2

'"ibuf
f\ INPUT3

HBUF
_|\ INPUT4

^iBUF
_|\ INPUTS

'-''Tri

'Ibuf
_J\j 1NPUT22

"hBUF
_TV, INPUT23

'IBUF
_[\ INPLTT24

'

'-"im"Ibuf
_(\ INPLTT25

'^IRIIIBUF
_T\ INPUT26

"hbuf
_T\ INPUT27

<

'Ibuf

py,
INPUT6 ,

~Hbuf
_pv

>
INPUT7

"hBUF
_j\, INPUT8

HBUF
_T\ INPUT9

HBUF
_T\ INPUT10

"Hbuf
_p^ INPUT!!

^IBUF
f^ INPUT12

"Mbuf
pS INPUT! 3

g
HBUF

_f\ INPUT14

IBUF
_T\, INPUT15

'"Ibuf

_p\, INPUT16

"hbuf
J\ INPUT! 7

'"Ibuf
_T\ INPUT! 8

<
-Ibuf

Dv,
INPUT! 9

<
IRIIBUF

_p\, INPUT20
<

HBUF
_T\ INPUT2!

'""JRI!

IBUF
[^ INPUT28

<
^Iri-"iiuF
_T^ INPUT29

<
-Ibuf

ipad > r>

—

input3° <' Tbuf
ipad > r> input31

g
HBUF

INPUT[31:2]

David Summers

Naval Postgraduate School

TMR R3081 Project

Project: ADDRVTR

Macro: INBUSC

Date: 05/27/100

151

OUTPUT[17:2]

>-

0UTPLTT2

0UTPUT3

0UTPLTT4

OUTPUTS

OUTPUT6

OUTPUT7

OUTPUT8

OUTPUT9

OUTPUT10

OUTPUT11

OUTPUT12

OUTPUT13

OUTPUT14

OUTPUT15

OUTPUT16

OUTPUT17

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

<

<
<

<

<
<
<
<

OPAJD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

LOC=P192

LOC=P193

LOC=P194

LOC=P197

LOC=P198

LOC=P199

LOC=P200

LOC=P202

LOC=P203

LOC=P205

LOC=P206

LOC=P207

LOC=P208

LOC=P209

LOC=P210

LOC=P213

David Summers

Naval Postgraduate School

TMR R3081 Project

Project: ADDRVTR

Macro: OUTVOT

Date: 05/27/100

152

2. DATA AND CONTROL VOTER FPGA

The Data and Control Voter FPGA performs a three bit majority vote on the Data

and Control Busses of the three microprocessors. The Data Bus is a 32-bit wide bus and

the Control Bus is an 8-bit wide bus. Because the Data Bus is bidirectional, the FPGA

must be able to vote processor data to memory on writes and pass memory data back to

all three processors on reads. This FPGA incorporates both 4-bit wide voters and 8-bit

wide voters in its design. The design of this FPGA is presented in the following figures.

Table C.2 lists the figures presented in this section.

Figure Number and Description Page Number
Figure C.8. Data and Control Voter FPGA Top Level Schematic 154

Figure C.9. 4-Bit Wide 3-Bit Majority Voter 155

Figure CIO. 8-Bit Wide 3-Bit Majority Voter 156

Figure C. 1 1 . Control Bus Input Specification 157

Figure C. 12. Byte Enable Bus Input Specification 158

Figure C. 13. CPU A Data Bus Input Specification 159

Figure C. 14. CPU B Data Bus Input Specification 160

Figure C. 15. CPU C Data Bus Input Specification 161

Figure C. 16. Voted Data Bus Output Specification 162

Table C.2. Data and Control Voter Figures By Page Number

153

t s

ii

S :

INI

if

Hi IS sL J« !
ms

s iL

HE

I f

*J->
l » :

ii

ill
111

154

I?
I
ft

2. 5. 5-

? ? ?

155

I

I

ill
Ui

156

LOC=P127

LOC=P130

LOC=P133

LOC=P137

IPAD

IPAD

IPAD

IPAD

>
>
>

^
^
^
U

IBUF

IBUF

IBUF

IBUF

INPLfTCO

INPUTC1

INPUTC2

INPUTC3

INPUTC[3:0]

LOC=P126

LOC=P129

LOC=P132

LOC=P136

IPAD

IPAD

IPAD

IPAD

>
>
>

IBUF

IBUF

IBUF

IBUF

INPUTBO

INPLTTB1

INPUTB2

INPUTB3

-<

<

INPUTB[3:0]

LOC=P125

LOC=P128

LOC=P131

LOC=P134

IPAD >
ipad y~

>
IPAD

IPAD

IBUF

IBUF

IBUF

INPUTAO

J\ INPIHA1

INPm"A2

INPLTTA3

INPUTA[3:0]

David Summers

Naval Postgraduate School

TMR R3081 Project

Project: DCTRLVTR

Macro: CTRL IN

Date: 05/28/100

157

LOC=P147

LOC=P152

LOC=P155

LOC=P159

LOC=P146

LOC=P149

LOC=P154

LOC=P157

IPAD

IPAD

>

IPAD

IPAD >

ipad y~

IPAD

IPAD ^-

IPAD S-

IBUF

-Cfc

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

INPUTCO

INPLTTC1

INPUTC2

INPUTC3

INPUTBO

INPUTB1

INPLTTB2

INPUTB3

-<

INPUTC[3:0]

INPUTB[3:0]

LOC=P145

LOC=P148

LOC=P153

LOC=P156

IPAD

IPAD

IPAD

>
>
>
>

-Pb

INPLTTAO

IBUF

IBUF

IBUF

IBUF

inputa:

INPUTA2

INPUTA3 <

INPUTA[3:0]

David Summers

Naval Postgraduate School

TMR R3081 Project

Project: DCTRLVTR

Macro: BEN IN

Date: 05/28/100

158

DATAOUTPVOI *

DATAN? 1:0] •

y LOOP66

> LOOP69

David Summer*

Naval Poatgraduata School

TMRR3Q61 Ptoiacl

Projact DCTRLVTR

Macro: DATA_A_N

Oar 05/28/100

159

1

-^_1_
£*wwn»

^%E J < ** > LOC=P3
?p

—

"^f
j < * > LOOPS*

^ <] '

acBBM =5-n
^HF J (aa > IOOP6

«3*— "^ftP ^ SS i LOCPS7

^z
—

^

feTMni

=i-

=5—,
°%S J < So > LOOP9 C—

'

"W
j 1 «~ > LOCP70

%- ^—< ' cU

^5 J < «»- > LOCP12 Q*—

1

1? j (•*• > LOC=P73

%- —< '

OfjMsn

^^
***S 1 < ~ > LOOP16

'S'

—

'SF (" > L0CP77

%- <1 '

BAIMttl. .

^-
=^-,

CW
|

< "»"> > LOC-PM •

—

W j < "»« > L0C=PS11 < '

i-'rc

^^n
°%S J <«»"*> LOCP24 Q1

'

<W < »J > L0CP8S

%- <1 '

MtM«

^-
^Se^n

'

"HZ J (»* > LOCP27 °ft]F —^ aa > locpbs

*,-
<1 '

a*u**>

=^-n
°%K J < SS > IOOP32

"31—

1

•W j 1 — > L0CP94

t-
<1 '

-^_
*^S !__<; o. > LOCP3S

<*? L_< — > 10OPS7—1 O—'

^__
—

'

ci-

—i

—

&-—
i

tS 1 (—° > LOCP39 <&— t? U< ~ > LOCP102
1 '

t-
——<] '

Ct-

-Ffe
^S5 J—< — > locpu 1* I < — > LOCJMOS

1= <3—

'

=u
—i— 1

CW | («"• > IOOP47 V—

i

*** I—< «• > LOC>P10t

*.- <r—

'

M*Mt

=r-

<tff J < *•* > IOOPSO
rti

—

<3—

'

*- —

'

&.—•!

^r-

^B 1 i *» > L0OPS3 «>

—

"<Vj—(-=-> locpiis

- —^3 ' ^~SL_^ 1 ^ °~ > LOOPS
«9«

—

V 1 < ~ > LOOJMtid—

1

"£J
—

'

i

1

nd&mnan |P*t*ct OCTW.VTH

M ^«g»)j«i Stfwol Uacre OATt^l.M

W moil Pwi»ci |oa> OMfctoo

160

0ATAOUT13IK!]

DATAN(31:0] •

> LOCP68

Divid Summon i Pn»«ct DCTBLVTR

Naval Postgraduate School

TMR R3081 Projacl

Macro: DATA_C_IN

Data: 05/28/1 00

161

VOTDATAOUT|31:0] i-

VOTDATAIN[31:0) •-

—Sbdtt-

—» > L0C=P191

»
| < **" > L0C=PH8

ait | < -» > LOOP199

but tJZP LOCP200

** > LOCP20«

** > LOC«P20»

I^K=>

—-cWv I 1 «"» > IOCP213

^H=3 L0CP21S

~> LOOP218

"> LOCP220

~> L0CP233

^^-

* < "** ~> 10OP2M

'—
^?x= > IOCP2W

IObM St^nman

Pw^a \OmmOtntneo

162

LIST OF REFERENCES

1

.

Muolo, M. J., Space Handbook. An Analyst's Guide , vol 2, ch 1 , pp. 1-21, Maxwell

Air Force Base, AL, 1993.

2. National Semiconductor, Radiation Owner's Manual , National Semiconductor,

1999.

3. Weste, N. H. E. and Eshraghian, K., Principals of CMOS VLSI Design: A Systems

Perspective , 2
nd

Edition, Addison-Wesley. Menlo Park, CA, 1994.

4. Asenek, V., et al., "SEU Induced Errors Observed in Microprocessor Systems,"

IEEE Transactions on Nuclear Science , Vol. 45, No. 6, December 1998. pp 2876-

2883.

5. Underwood, C. I. and Oldfield, M. K., "Observed Radiation-Induced Degradation of

Commercial-Off-The-Shelf (COTS) Devices Operating in Low-Earth Orbit," IEEE

Transactions on Nuclear Science , Vol. 45, No. 6, December 1998. pp 2737-2744.

6. Johansson, R., "Two Error-Detecting and Correcting Circuits for Space

Applications," Proceedings of Annual Symposium on Fault Tolerant Computing ,

1996. pp 436-439.

7. Johnson, B. W., Design and Analysis of Fault Tolerant Digital Systems , Addison-

Wesley, New York, NY, 1989.

8. Storey, N., Safety-Critical Computer Systems , Addison-Wesley, New York, NY,
1996.

9. Payne, Jr., J. C, "Fault Tolerant Computing Testbed: A Tool for the Analysis of

Hardware and Software Fault Handling Techniques," Master's Thesis, Naval

Postgraduate School, Monterey, CA, December 1998.

10. Integrated Device Technology, Inc., The IDT79R3071, IDT79R3081 RISController

Hardware User's Manual. Revision 2 . Santa Clara, CA, 1994.

11. Ng, A., "AN-86, IDT79R3051 System Design Example," Online, Internet,

Available: http://www.idt.com/docs/79R305 l_AN_42226.pdf.

12. Groening, S. E., and Whitehouse. K. D., "Application of Fault-Tolerant Computing

for Spacecraft Using Commercial-Off-The-Shelf Microprocessors," Master's

Thesis, Naval Postgraduate School. Monterey, CA, June 2000.

.63

13. Integrated Device Technology, Inc., "IDT79R3081 RISController with FPA,"

Online, Internet, Available: http://www.idt.com/docs/79R3081_DS_3483.pdf

14. Texas Instruments, Inc., "SN54AHCT540. SN74AHCT540 Octal Buffers/Drivers

with 3-State Outputs," Online, Internet.

Available: http://www-s.ti.com/sc/psheets/scls268j/scls268j.pdf

15. Texas Instruments, Inc., "TL7702A, TL7705A, TL7709A, TL7712A, TL7715A
Supply-Voltage Supervisors," Online, Internet,

Available: http://www-s.ti.com/sc/psheets/slvs028e/slvs028e.pdf

16. Texas Instruments, Inc., "CY54/74FCT373T, CY54/74FCT573T 8-Bit Latches,"

Online, Internet, Available: http://www-s.ti.com/sc/psheets/sccs021/sccs021.pdf

17. Texas Instruments, Inc., "SN54AHCT573. SN74AHCT573 Octal Transparent D-

Type Latches with 3-State Outputs," Online, Internet,

Available: http://www-s.ti.com/sc/psheets/scls2431/scls2431.pdf

18. Advanced Micro Devices, Inc., "Am27C010 1 Megabit (128K x 8-Bit) CMOS
EPROM," Online, Internet,

Available: http://www.amd.com/products/nvd/techdocs/10205.pdf

19. Wind River Systems, Inc., Tornado User's Guide (Windows Version) . 1

st

ed., 1999.

20. Integrated Device Technologies, Inc.. "IDT71024: CMOS Static RAM 1 Meg
(128K x 8-Bit)," Online, Internet,

Available: http://www.idt.com/docs/71024_DS_10380.pdf

21. Texas Instruments, Inc., "Design Notes: Interface Circuits for TIA/EIA-232-F,"

Online, Internet, Available: http://www-s.ti.com/sc/psheets/slla037/slla037.pdf

22. Texas Instruments, Inc., "TL16C750 Asynchronous Communications Element with

64-Byte FIFOs and Autoflow Control." Online, Internet,

Available: http://www-s.ti.com/sc/psheets/sllsl91c/sllsl91c.pdf

23. Texas Instruments, Inc., "TL16C550A Asynchronous Communications Element."

Online, Internet, Available: http://www-s.ti.com/sc/psheets/slls057d/slls057d.pdf

24. Maxim Integrated Products, "MAXIM +5V-Powered. Multichannel RS-232

Drivers/Receivers," Online. Internet,

Available: http://pdfserv.maxim-ic.com/arpdf/1798.pdf

(.4

25. Integrated Device Technologies. Inc.. "EDT72420, EDT72200, IDT72210,

IDT72220, IDT72230, IDT72240: CMOS SyncFBFO 64 x 8, 256 x 8, 512 x 8, 1024

x 8, 2048 x 8, and 4096 x 8," Online, Internet,

Available: http://www.idt.com/docs/72240_DS_1319.pdf

26. Atmel Corporation, "High Performance EE PLD: ATF22V10C," Online, Internet,

Available: http://www.atmel.com/atmel/acrobat/doc0735.pdf

27. Logical Devices, Inc., CUPL: Universal Compiler for Programmable Logic User

Guide , 1991.

28. Wakerly, J. F., Digital Design: Principals and Practices , 3
rd

ed., Prentice Hall, Upper

Saddle River, NJ, 2000.

29. Xilinx, Foundation Series Users Guide , Foundation Series Software, CD-ROM,
Prentice Hall, Upper Saddle River, NJ, 2000.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

INITIAL DISTRIBUTION LIST

Defense Technical Information Center....

8725 John J. Kingman Road, Suite 0944

Ft. Bel voir, VA 22060-6218

Dudley Knox Library

Naval Postgraduate School

411 Dyer Road

Monterey, CA 93943-5101

Director, Training and Education

MCCDC, Code C46

1019 Elliot Road

Quantico, VA 22134-5027

Director, Marine Corps Research Center

MCCDC, Code C46

2040 Broadway Street

Quantico, VA 22134-5027

5. Marine Corps Representative

Naval Postgraduate School

Code 037, Bldg. 330 Ingersoll Hall, Room 1 16

555 Dyer Road

Monterey, CA 93943

6. Marine Corps Tactical Systems Support Activity

Technical Advisory Branch

Attn: Librarian

Box 555171

Camp Pendleton, CA 92055-5080

Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

Professor Herschel Loomis Code EC/Lm.

Naval Postgraduate School

Monterey, CA 93943-5121

167

9. Professor Alan Ross Code SP/Ra 2

Naval Postgraduate School

Monterey, CA 93943-51 10

10. Captain David C. Summers, USMC 2

300 Ammunition Avenue

Odenton,MD21113

11. LT John C. Payne, Jr., USN 1

6408 Chapel View Road

Clifton, VA 22024

12. Charlan Bonebright 1

5462 Mountainview Drive

Florence, MT 59833

68

G9 T?173 g

6/02 72527 200" i

