
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2000-06

Demonstration of a concurrently programmed

tactical level control software for autonomous

vehicles and the interface to the execution level code

Carroll, William D.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7663

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DEMONSTRATION OF A CONCURRENTLY
PROGRAMMED TACTICAL LEVEL CONTROL

SOFTWARE FOR AUTONOMOUS VEHICLES AND THE
INTERFACE TO THE EXECUTION LEVEL CODE

by

William D. Carroll

June 2000

Thesis Advisor:

Second Reader:

Man-Tak Shing

Michael J. Holden

Approved for public release; distribution is unlimited

MOQL

REPORT DOCUMENTATION PAGE
| ^^^^ ^^^^^^^^ ^^^ ^^ ^,^,_,^^^

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 2000

3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE :

DEMONSTRATION OF A CONCURRENTLY PROGRAMMED TACTICAL
LEVEL CONTROL SOFTWARE FOR AUTONOMOUS VEHICLES AND THE
INTERFACE TO THE EXECUTION LEVEL CODE

5. FUNDING NUMBERS

6. AUTHOR(S)

Carroll, William D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed m this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The desire for use of autonomous robotic vehicles has undergone tremendous growth in the past decade. One of the greatest

challenges to the successful development of truly autonomous vehicles is the ability to link logically based high-level mission

planning with low-level vehicle control software, without a labor intensive programming effort for each mission.

This challenge can be effectively achieved through the use of tri-level control software architecture, as described in the Rational

Behavior Model. The control software (in the tactical level) must de-couple the high-level mission planning from the low-level

vehicle control software to reduce the programming effort for each mission. This report describes an object-oriented, modular

architecture for the middle (tactical) level that uses concurrent programming techniques and multi-language interfacing. This design

enables the control software to handle the intense data management effort required to operate in an autonomous fashion and interface

with code aheady perfected for use in the strategic (top) and execution (bottom) levels.

The design was evaluated by providing the tactical level with a simple execute order statement that was then used to drive the

actions of the vehicle. The software package demonstrates the validity of the design and provides the framework for fiill

implementation on an actual vehicle.

14. SUBJECT TERMS
Autonomous vehicle, robot, AUV, Rational Behavior Model, RBM, concurrency, Ada 95, control

software

15. NUMBER OF PAGES

82

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLAI^

11

Approved for public release; distribution is unlimited

DEMONSTRATION OF A CONCURRENTLY PROGRAMMED TACTICAL
LEVEL CONTROL SOFTWARE FOR AUTONOMOUS VEHICLES AND THE

INTERFACE TO THE EXECUTION LEVEL CODE

William D. Carroll

Lieutenant, United States Navy
B.S., Oregon State University, 1993

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

firom the

NAVAL POSTGRADUATE SCHOOL
June 2000

\ -> r^^Tj^

av

THIS PAGE INTENTIONALLY LEFT BLANK

30t

ABSTRACT

The desire for use of autonomous robotic vehicles has undergone tremendous

growth in the past decade. One of the greatest challenges to the successful development

of truly autonomous vehicles is the ability to link logically based high-level mission

planning with low-level vehicle control software, without a labor intensive programming

effort for each mission.

This challenge can be effectively achieved through the use of tri-level control

software architecture, as described in the Rational Behavior Model. The control software

(in the tactical level) must de-couple the high-level mission planning from the low-level

vehicle control software to reduce the programming effort for each mission. This report

describes an object-oriented, modular architecture for the middle (tactical) level that uses

concurrent programming techniques and multi-language interfacing. This design enables

the control software to handle the intense data management effort required to operate in

an autonomous fashion and interface with code already perfected for use in the strategic

(top) and execution (bottom) levels.

The design was evaluated by providing the tactical level with a simple execute

order statement that was then used to drive the actions of the vehicle. The software

package demonstrates the validity of the design and provides the framework for fiill

implementation on an actual vehicle

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. APPROACH 3

C. SCOPE 3

D. THESIS ORGANIZATION 4

II. BACKGROUND 7

A. US NAVY UNMANNED UNDERWATER VEHICLE PROGRAM ...7

B. RATIONAL BEHAVIOR MODEL (RBM) 8

1. Strategic Level 9

2. Tactical Level 9

3. Execution Level 9

C. SOFTWARE ENGINEERING 10

D. CONCURRENT PROGRAMMING 11

1. Single processors 11

2. Multiple processors 12

E. NPS A.R.I.E.S AUV 12

III. SOFTWARE ARCHITECTURE 15

A. INTRODUCTION 15

B. APPROACH 16

1. Tactical Level Application Components 17

2. Interface to the Execution Level 18

IV. IMPLEMENTATION 21

A. STRATEGIC LEVEL IMPLEMENTATION 21

B. TACTICAL LEVEL IMPLEMENTATION 21

1. OOD Task Manager Package 21

a. Ada Tasks 22

2. OOD Function Package 23

3. Mission Control Package 24

4. Expert Systems Package 24

5. C Code interface 24

6. Utilities Package 25

C. EXECUTION LEVEL IMPLEMENTATION 25

D. CODE TEST SCENARIO 26

V. CONCLUSIONS AND RECOMMENDATIONS 29

A. CONCLUSION 29

B. IMPROVEMENTS OVER PREVIOUS DESIGNS 29

C. RECOMMENDATIONS 30

D. FUTURE WORK 30

1. Full implementation using a software simulated vehicle 30

2. Expert systems within the Tactical Level 31

vii

3. Porting to Multiprocessor Platform 31

APPENDIX A. CODE 33

1. STRATEGIC LEVEL CODE 33

2. TACTICAL LEVEL CODE 34

3. EXECUTION LEVEL CODE 54

APPENDIX B. OUTPUT 59

1. OUTPUT 59

LIST OF REFERENCES 63

INITIAL DISTRIBUTION LIST 65

Vlll

LIST OF FIGURES

Figure 1. Rational Behavior Model 8

Figure 2. NFS A.R.I.E.S. Autonomous Underwater Vehicle 13

Figure 3. Autonomous Vehicle Software Architecture 15

Figure 4. Tactical Level Components 16

IX

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

Most importantly, I would like to thank my wife, Sheilah, for her love, support,

and encouragement through this work. Also, many thanks to Mike Holden and Professor

Shing for without their effort and guidance this project would not have been possible.

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

I. INTRODUCTION

A. MOTIVATION

Reliable robot vehicles, capable of safely performing complex actions without the

need to place a human in harm's way, have become a top priority in today's world. To

realize the greatest benefit, these robot vehicles must be able to operate autonomously in

a rational manner in performance of their tasks. Autonomous vehicles are generally

defined as vehicles that are capable of reasonably "intelligent" motion and action without

requiring either a guide to follow or an operator to control them in real time [1].

Of particular interest to our naval forces is the deployment of such devices to

reduce or eliminate the catastrophic effect that mine warfare has in today's littoral

warfare. The following quote taken from the Naval Mine Warfare Vision 2010

emphasizes this point:

Naval Mine Warfare comprises a critical part of our future

warfighting capability. The proliferation of mines throughout the world as

cheap means of sea control and the downsizing of our Naval forces dictate

that mine countermeasures . . . become an integral part of our National

Military Strategy. Naval Mine Warfare will perform an enabling role for

Joint and Coalition forces [2].

That same document goes on to state that United States Naval forces must possess

Autonomous Underwater Vehicles (AUVs) to facilitate rapid and thorough clearance of

any mined sea lanes [2].

One of the greatest challenges to the successful development of truly autonomous

mine hunting vehicles is the ability to link logically based high-level mission planning

1

software with low-level vehicle control software. Control software for these systems

exists at the highly abstract "logical" level and at the extremely low "hardware

operations" level [3]. The implementation of these two levels results in specific top-to-

bottom software interaction that are hard-coded for a particular application and task. A

change in implementation, and even the simple addition of a new capability, results in a

need to re-work the code at both ends. This code rework invites the introduction of new

errors into the code as well as increasing the overall code complexity.

What is required is an intermediate level, a generic framework that can be both

mission and platform independent. This intermediate level would provide standard

Application Programming Interfaces (API's) for low level components while having the

ability to accept a wide range of high-level mission commands and tasking. An API is the

software that is used to support system-level integration of software products or newly

developed software into existing or new applications. APIs provide for interoperability

across different platforms; this is an important feature when developing new or upgrading

existing [distributed] systems [4].

An approach to implement this intermediate level is to utilize a Rational Behavior

Model (RBM), developed in detail by Byrnes [5] and implemented by Kwak [6], Holden

[3], and Leonhardt [7] for the Naval Postgraduate School (NPS) Phoenix AUV. The

RBM is a three-level software architecture consisting of Strategic, Tactical and Execution

levels with respective emphasis on mission planning, programmed vehicle responses

labeled "behaviors," and efficient real-time execution of vehicle hardware control

programming. The RBM is described in Chapter II.

B. APPROACH

This work builds on those completed by Kwak, Holden and Leonhardt by

continuing to enhance the design of a Tactical level control software package for an

autonomous robotic vehicle. This enhancement of the Tactical level is accomplished by

incorporating object oriented software design and implementing it using concurrent

tasking techniques and the multilanguage interfacing capabilities available using the Ada

95 programming language [8]. The design was demonstrated on a single processor

Personal Computer highlighting the benefits of concurrent tasking and the advantages of

multiple processes "sharing" a single Central Processing Unit (CPU). These design

enhancements move the promise of rationally-behaving autonomous vehicles fiirther

toward the goal of rapidly deployable vehicle control software, without a labor intensive

programming effort for each mission.

C. SCOPE

A representative Tactical level software package for an Autonomous Underwater

Vehicle was developed using the Ada 95 programming language. Use of Ada 95 enabled

the design to incorporate multiple tasks (processes) and a multilanguage interface to the

execution level software. The Execution level software used for this work was taken from

the A.R.I.E.S. AUV developed by the Center for AUV Research at the Naval

Postgraduate School [9]. The A.R.I.E.S. is described in Chapter II.

Within the Tactical level software individual Ada tasks were used to modularize

code into separate concurrently operating processes synonyms with the delegation of

responsibility performed by a human submarine crew [3]. For the scope of this thesis the

main controlling process is referred to as the Officer of the Deck (OOD). The OOD

process and its related function packages will perform the mission planing and coordinate

the efforts of the entire vehicle. Navigator, Engineer, and Deck Log processes were

incorporated to perform the individual tasks of vehicle navigation, propeller motor and

control surface actuation, and event recorder respectively.

This thesis will demonstrate the validity of the design by providing the Tactical

level software package with a simple high-level execute order statement. That order will

then be used to initiate the required actions to perform the mission. The interface package

will enable the Tactical level to make calls to the Execution level code to drive the

propeller motors and to position the control surfaces of the autonomous vehicle. This

software package demonstrates asynchronous control transfer between tasks running

concurrently, interaction (communication) between tasks, and function calls to existing

Execution level software. This provides the framework for fiill implementation on an

actual vehicle.

D. THESIS ORGANIZATION

Chapter I: Introduction. This chapter gives a general outline of the work,

including motivation, approach, scope of the work, and the thesis organization.

Chapter II: Background. This chapter contains pertinent background information

on Unmanned Underwater Vehicle (UUV) programs, the Rational Behavior Model

4

(RBM), Software Engineering, Concurrent Programming, and the NPS A.R.I.E.S.

Underwater Autonomous Vehicle.

Chapter III: Software Architecture. This chapter describes the Tactical level

software architecture and the interface to the Execution level.

Chapter FV: Implementation. This chapter describes the implementation and

execution of the code. It provides necessary information and program code to conduct the

experiment.

Chapter V: Conclusions and Recommendations. Includes theoretical

improvements and ftiture work.

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND

A. US NAVY UNMANNED UNDERWATER VEHICLE PROGRAM

To meet the requirement for developing Autonomous Underwater Vehicles

(AUVs) for mine reconnaissance the Director of the Navy's Expeditionary Warfare

Division (N85) has been given the responsibility for establishing the Navy's Unmanned

Underwater Vehicle (UUV) Program. The Navy's first priority in its UUV plan is rapid

development of a covert mine reconnaissance capability [11]. A two tiered approach was

implemented to develop the systems needed to provide both near term and long term

systems to meet the requirements set forth in the UUV Program Plan [10].

The first was understandably labeled the Near Term Mine Reconnaissance System

(NMRS) program. This program capitalizes on existing technologies for rapid

deployment of a mine reconnaissance system. The NMRS will utilize a vehicle controlled

via fiber-optic cable connected to the launch platform [12]. This approach highlighted the

fact that true autonomy was not yet achievable for the deployment of the NMRS. The

second program labeled the Long Term Mine Recormaissance System (LMRS), was

directed to develop the system that would eventually replace the NMRS. This program

concentrated on investigating emerging technologies and developing new ones that would

provide significantly improved capability over the NMRS, namely autonomous

operations endurance of more than 40 hours [11]. This thesis seeks to further the

development of truly autonomous vehicles by providing a framework for a robust

software architecture capable of controlling an Autonomous Underwater Vehicle (AUV).

B. RATIONAL BEHAVIOR MODEL (RBM)

The Rational Behavior Model (RBM) develops an approach to linking high level

logical mission planning for autonomous vehicles with low-level vehicle control

programming. The result is a three-level software architecture consisting of the Strategic,

Tactical and Execution levels, each to be implemented in a way perfected or better suited

for use at that level. The Strategic level is programmed with emphasis on mission

planning, the Tactical level is programmed for vehicle responses ("behaviors"), and the

Execution level uses efficient real-time execution of vehicle hardware control

programming [3]. Figure 1 illustrates the relationships between the three levels of the

RBM.

Strategic Level

Tactical Level

strategic Level

High-level mission pi anning.

Tactical Level

Asynchrcjnous coordnation between the Strategic

Level and the Execution.

Execution Levd
Responsible for hardware control. Ensures basic

vehicle stability, maintaining navigation, po'opulsion,

and similar systems.

Figure 1

.

Rational Behavior Model

1. Strategic Level

The Strategic level is comprised of essential mission planning sofhvare. It uses

high-level mission logic and provides for the deterministic sequencing of the underlying

behaviors implemented for that particular autonomous vehicle [5].

2. Tactical Level

The Tactical level includes programmed vehicle responses and implements the

behaviors capable of satisfying the goals assigned by the Strategic level. It acts as the

intermediary under the Strategic level direction and provides an interface for issuing the

commands necessary to direct the performance of the Execution level. The Tactical level

must also interact with the Strategic level either explicitly, as answers to specific queries,

or to simply respond upon the completion of a commanded behavior [5].

Behaviors contained within this level are non-logic-based executed processes

being performed by one or more entities within the Tactical level. The use of more than

one entity will enable asynchronous control of necessary functions to enable the vehicle

to operate in an autonomous fashion [3].

3. Execution Level

The Execution level provides efficient real-time execution of vehicle hardware

control programming. Responsible for all of the physical actions of the vehicle, this is the

software intermediary between the Tactical level and the actual hardware of the vehicle,

and must meet all the hard real-time scheduling requirements to ensure basic vehicle

stability, maintaining navigation, propulsion, and similar systems [5].

C. SOFTWARE ENGINEERING

The Software Engineering approach to developing software apphcations or

systems is one of forethought rather than afterthought. Traditional engineering practices

such as requirement documentation, analysis of design, modeling, component testing, and

incremental inspections are common place in electrical, mechanical and civil engineering

projects. All of these practices serve to prevent design changes during construction

(which are often physically impossible to do), or failure of the completed project during

its useftil life span. All too often software projects are kicked off before any of these

critical issues are considered.

hi addition to the use of the engineering design philosophies mentioned above

during the development phase of designing software systems, the following principles are

also considered when taking a Software Engineering approach:

Maintainability: the ease with which a software system or component can be

modified to correct faults, improve performance, or other attributes, or adapt to a change.

Reusability: the degree to which a software module or other work product can be

used in more than one computing program or software system.

Flexibility: the ease with which a system or component can be modified for use in

applications or environments other than those for which it was specifically designed.

Scalability: the ease with which a system or component can be modified to fit the

problem area [13].

10

The software package for control of an autonomous vehicle described in this

thesis was developed with these Software Engineering principles in mind. It incorporates

object oriented software design for modeling the application domain. The model used is

based on human operators in a manned submarine for modularity. It is implemented using

concurrent tasking techniques for performance, flexibility, and scalability, and it uses

multilanguage interfacing capabilities to take advantage ofcode reuse.

D. CONCURRENT PROGRAMMING

Traditional programming techniques involve a sequence of actions performed one

after another. Concurrent programming entails two or more traditional sequences of

actions to be performed concurrently within the same program. Concurrent programming

enables asynchronous control transfer, meaning a process can initiate the task to perform

some other action and then can continue its own sequence while the other process (task)

is busy ftilfiUing the request [14].

1. Single processors

The multitask program that is running on a single central processor unit (CPU)

computer will share that computer's CPU between tasks. This is called interleaved

concurrency. The benefit to multitask programs running on a single CPU computer are

realized when a wait, on some external event such as the completion of an input

operation, or delay occurs in a task that is accessing the CPU. While a task is delayed the

other task(s) can access the CPU. Very short, 1/100 sec, delays can be preprogrammed

into the sequence of tasks to force time sharing of the CPU by the various tasks.

11

2. Multiple processors

If the multitask program is compiled to run on a multiple processor computer then

different processors will actually execute different tasks at the same time. This is called

overlapped concurrency. The compiler handles the scheduling of multitasked programs,

enabling the same program that is implemented on a single CPU computer to be re-

compiled for use on a multiple CPU machine.

Concurrent programming techniques are used for many different reasons.

Programs designed to monitor or control several devices are most easily written with one

task managing each individual activity. The use of tasks can allow programs to finish

more quickly by sharing the CPU or through the use of multple CPU's. Simulation

programming can benefit by using tasks designed to run within the rules of each entity

modeled for the simulation [14].

E. NPS A.R.I.E.S AUV

The Center for Autonomous Underwater Vehicle (AUV) Research at the Naval

Postgraduate School (NPS) designed and built the Acoustic Radio hiteroperative

Exploratory Server (A.R.I.E.S.) AUV for research and development of AUV systems.

The A.R.I.E.S. is the replacement vehicle for the NPS Phoenix AUV described in the

work done by Kwak [6], Holden [3], and Leonhardt [7]. The Phoenix has been

decommissioned and now sits as a display in the NPS research museum. The A.R.I.E.S.

is shown in figure 2.

12

7

.
' t** I ^r-\

L ' .5

""(S»!,S??'*

"i "

Figure 2. NPS A.R.I.E.S. Autonomous Underwater Vehicle

The term "Server," used in the acronym describing the latest NPS AUV comes

from research in the use of multi-vehicle fleets ofAUVs linked to a supervisor vehicle, or

server, for minesweeping operations [15]. The A.RT.E.S. design incorporates an acoustic

modem to facilitate data links between AUVs while under water. The A.R.I.E.S. uses

dual computer architecture with each computer dedicated to perform specific vehicle

software and hardware fiinctions. It uses a modular multi-rate, multi-process

configuration for semi-autonomous and autonomous underwater vehicle operation. The

two computers communicate over standard TCP/IP network sockets. Other computers

can be logged into the vehicles network either by cable or wireless connection. The dual

computer implementation uses one system for data gathering and running navigation

filters, while the second computer uses the output from the first computer to operate the

13

various auto-pilots for servo level control. The A.R.I.E.S. performs its mission in

accordance with a sequential mission script file that is preloaded onto the vehicle, or can

be downloaded/modified via an external computer logged into the vehicle's network [9].

The only relation between A.R.I.E.S. and this thesis was the partial use of

A.R.I.E.S. execution level software code that drives the propeller motors and positions

the control surfaces of the vehicle in response to the auto-pilots direction.

The file named Execf.c, for execution functions, was written in C programming

language by Dr. Dave Marco, Dept. of Mechanical Engineering, Naval Postgraduate

School, Monterey California. Only the ftmctions related to driving the propeller motors

and positioning the control surfaces were adopted from Dr. Marco's original code. Other

lines of code within the borrowed functions that were not pertinent to this work were

deleted. The shell of the actual code used onboard an operating AUV was used to

highlight the capability of the design. The functions that were selected to interact with the

Tactical level code were used to simulate control of the following hardware components

onboard the A.R.I.E.S. AUV: left propeller, right propeller, left bow plane, right bow

plane, left stem plane, right stem plane bow mdder, and a stem mdder. The A.R.I.E.S.

AUV also incorporates bow and stem lateral thrusters and bow and stem vertical

thrusters [9]. The control of these last four components was not addressed in this thesis.

14

III. SOFTWARE ARCHITECTURE

A. INTRODUCTION

This chapter describes the Software Architecture apphed to the design of the

representative tactical level software package for an Autonomous Underwater Vehicle.

The architecture was designed for the Ada 95 programming language and includes the

components required for the interface to the Execution level software. Figure 3 illustrates

how the Tactical level architecture fits within the fi-amework of the RBM.

Software Architecture

Application

- (Strategic Level)

': Logical Based

Application

Multitasks -Object Oriented

Tactical level needs to handle the coordination of

multiple tasks and the intense data management

effort required to operate in an autonomous fashion

Interface Specification, Import/Export Rincticais

Multilangua^e Interface

Interface package enables calls to be made to

the execution level code.
Import Library

(object file)

resolves calls to| (Tocticol Lcvelj

Application

(ExeciUkm Level)

As Implemented

Figure 3. Autonomous Vehicle Software Architecture

15

B. APPROACH

This work's ultimate goal was to provide a robust software architecture capable of

performing the intense data management required for a robot vehicle to operate

autonomously in the performance of its mission. To accomplish this, Ada tasks were used

to provide concurrency among functions modeled after human submarine operators. This

approach also served to modularize fimctions in a logical manner. Figure 4 illustrates the

major components within the Tactical level software architecture.

Tactical Level

Expert_System s_Pfcg OODJkg Mjsa on_Coatrol.Pkg

xz: . ^i.* » O. ^'J*.i\

TASK; Navigator

OOD_Task_Mana8cr_PKg

TASK DeckLog TASK; Engineer

Provides access to Execution level functions by any Ada application code

Wr»p_ATJV_C_Code_Pk«

Ada ^plicaticai code

Object (.o) file provides access to functions within the Execution level

Figure 4. Tactical Level Components

16

1. Tactical Level Application Components

The main controlling process for the Tactical level is referred to as the Officer of

the Deck (OOD) analogous to the human watch stander in charge of all operations aboard

a naval vessel. The OOD will perform the mission planing and coordinate the efforts of

the Ada Tasks utilized within this Tactical level software architecture. Ada Tasks are

spawned, concurrently, to perform specific actions or for continuos control of critical

parts of the robot vehicle to maintain stable operation. The Navigator, Engineer, and

Deck Log tasks were incorporated in this demonstration to perform the individual tasks

of vehicle navigation, propeller motors and control surface actuation, and event recorder

respectively. The use of Ada tasks enables the tasks' sequential procedures to be

performed independent of the operation of the OOD, or any other task unless specifically

programmed rendezvous are required by the software design [14]. The major packages

and procedures utilized for the demonstration of this software architecture are described

below. A more detailed description is found in chapter IV, Implementation.

The OOD Task Manager package receives the simple high-level execute order

statement from the Strategic level via its Receive Orders procedure. That order will then

be used to invoke the Officer Of The Deck procedure in the body of the OOD Task

Manager package to control the rest of the required actions to perform the mission. When

the Officer Of The Deck procedure is finished, the Tactical level is exited and control is

returned back to the Strategic level. The Officer Of The Deck procedure calls the Mission

Planner procedure to carryout the orders received. The Mission Plarmer contains the

sequential mini-missions, which make up the complete operation directed by the simple

high-level execute order statement sent from the Strategic level. The mini-missions are

17

accessed with the appropriate call to the Mission Control package. The Mission Control

Package contains the detailed sequence of events for performing the mini-missions. This

method provides for rapid modification or addition of new missions on a robotic vehicle

by simply modifying the existing functions or adding new ones.

The Officer Of The Deck procedure and the procedures within the Mission

Control package all utilize the OOD package to perform their respective mission

sequences. The OOD package modularizes the repeatable actions performed by the OOD.

Removing these functions from the OOD Task Manager package reduces complexity and

enhances the readability of the code.

The Expert Systems package contains functions that would utilize specialized

algorithms, access to database information, and input sources necessary to return the

appropriate information/data back to the requesting Tactical level entity. They can be

used by the Officer of the Deck procedure itself or any of the tasks as required to

complete their function. This method supports upgrades and expandability by providing

standard interfacing specifications at the time of design. This implementation simulates

two expert system functions. The first is called to determine the next course to station.

The second is called to determine a course for which to begin the mine-hunting mission.

2. Interface to the Execution Level

The Wrap AUV C Code package contains the wrapper functions required for the

Tactical level to make calls to and receive calls back fi^om the Execution level. A wrapper

function in Ada contains the standard Ada function interfaces to interact with the rest of

the Ada program code. For each of these functions an import or export pragma is used to

18

provide the required interface information for access to/by the other language fiinction

[14]. The use of this package enables the Tactical level to link to the vehicles Execution

level functions which control the hardware, input/output devices, and sensors.

The Execution level code is written in a language decided on by the vehicle

hardware developers, and is platform specific. An Ada interface can be provided for a

variety of software languages and could support many different platforms [8].

In order to interface the Execution level code an object file (.o) must be included

in the linker options when the Ada code is compiled. An object file is created when

compiling the execution level code. The object file (.o) enables the Ada code to be linked

to the Execution level functions during the compilation of the main Tactical level

application. An interface package using wrapper functions as described above is then

written in Ada to handle the code interaction between the Ada application and the other

programming language functions.

A concern, which is not addressed in this thesis, is the requirement to account for

compiler, code, and operating system compatibility. There are many combinations that

will work and many new methods and compilers are becoming available on a continuing

basis.

The architecture utilized for this thesis contains both import and export pragma

functions. These functions enable two way interactions between the Ada application

program and the execution level code written in C programming language and are

described in detail in Chapter FV.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

IV. IMPLEMENTATION

A. STRATEGIC LEVEL IMPLEMENTATION

The Strategic level was interfaced as a "black box" for the purpose of this thesis.

A single Ada program with a procedure named CO_Strategic_Level was used. This

procedure initiates the high level command that would be given by a logic based Strategic

level program. For this demonstration the direction given to the Tactical level was simply

what to do and where to do it. The complete code can be found in Appendix A, Section 1

.

B. TACTICAL LEVEL IMPLEMENTATION

The Tactical level is comprised of six Ada software packages. Each Ada package

is comprised of a specification file and a like named body file. The specification file

contains the interface descriptions for the procedures and functions that are implemented

in the package body. The packages used in this demonstration are described below. The

complete code can be found in Appendix A, Section 2.

1. OOD Task Manager Package

The OOD_Task_Manager_Pkg controls and directs the actions of the AUV to

meet the assigned mission. The Officer_Of_The_Deck procedure within the

OOD_Task_Manager_Pkg is the sequential series of statements and function calls that

culminate in the completion of the assigned mission. The procedure begins when the

order is sent from the Strategic level code to the Tactical level via a call to the procedure

Receive_Orders. With the call to this procedure comes the pertinent information on what

21

to do and where to do it. The Receive_Orders procedure is the only connection from the

Strategic to the Tactical level. Subsequent interaction back to a Strategic level is not

addressed in this demonstration.

The MissionPlanner procedure, when invoked by the Officer_Of_The_Deck

procedure, makes the call to the appropriate procedure within the Mission_Control_Pkg.

This enables the OOD to call various Mission Control procedures multiple times in order

to complete a larger mission goal.

The OOD_Task_Manager_Pkg also contains several Ada Tasks to concurrently

perform specific actions or for continuous control of critical parts of the AUV to maintain

stable operation. The Navigator (NAV), Engineer (ENG), and Deck Log (LOG) tasks

will immediately be spawned upon initialization of the main program. These tasks will be

blocked at their accept entry point and become available to act as directed by the

Officer_Of_The_Deck procedure and also by procedues from within the

Mission_Control_Pkg. The Navigator, Engineer, and Deck Log tasks were incorporated

in this demonstration to perform the individual tasks of vehicle navigation, propeller

motor and control surface actuation, and event recorder respectively.

a. Ada Tasks

Both the Navigator (NAV) and the Engineer (ENG) tasks utilize three Ada

task accept statements as entry points. The three accept statements are Taking_Action,

Making_Report, and NAV_Aye or ENGAye. The accept statements Taking_Action and

MakingReport facilitate communication among procedures and tasks. The

NAV/ENG_Aye allows for an action order to be sent to the appropriate task.

22

The Navigator (NAV) task provides for functions regarding ship's position

and course to station. A case selection is used based on an order type sent to the accept

statement NAV_Aye. The order types CourseToStation and GivePosition perform the

function as the names apply

The Engineer (ENG) task interacts with the Execution level code to drive

the propeller motors and position the control surfaces. A case selection is used based on

an order type sent to the accept statement ENG_Aye. The order types AllStop, AllAhead,

PortStop, PortAhead, PortBack, StbdStop, StbdAhead, and StbdBack provide for

propeller motor control. The order types RightRudder, LeftRudder, UpPlanes, and

DownPlanes provide for positioning the control surfaces. The order type

EmergencySurface is the abort mission call and sets the propeller motors and control

surfaces to return the AUV to the surface of the ocean.

The Data Logger (LOG) takes all communications that utilize the

communicate procedure within the utilities package and logs them in a text file.

2. OOD Function Package

The OOD_Pkg provides for modularization of OOD actions. The procedures

Taking_Action and Roger_Out facilitate communication among procedures and tasks.

The procedure Give_Order allows for an action order to be sent to the appropriate task

using the case selection described above.

-4,

23

3. Mission Control Package

The Mission_Control_Pkg contains detailed sequences for performing specific

mini-missions. The mini-missions are pieced together to complete the requirements of the

high-level mission order statement.

4. Expert Systems Package

The Expert_Systems_Pkg contains functions that would utilize specialized

algorithms, access to database information, and input sources necessary to return the

appropriate information/data back to the requesting Tactical level entity.

5. C Code interface

The Wrap_AUV_C_Code_Pkg provides access to Execution level functions. This

interface package enables the Tactical level to make calls to the Execution level code

and, in this case, simulate driving the propeller motors and positioning the control

surfaces of the AUV.

The key to the interface is the object file created when compiling the Execution

level code. The Object File (.o) enables the Ada code to be linked to the Execution level

functions during the compilation of the main Tactical level Application.

Three procedures, Text_From_C_Function, End_Text_From_C_Function, and

Double_From_C_Function utilize the pragma Export to enable the Execution level to

communicate back to the Ada program for simulated response by the vehicle propellers

and control surfaces.

The remaining procedures all utilize pragma hnport to give the Tactical level code

access to the Execution level fimctions. They are: Stop_Screw_Motors, Rudder_Angle,

24

Planes_Angle, Zero_Fins, Abort_Mission, Left_Screw_Speed_Control, and

Right_Screw_Speed_Control. They all give Execution level control access to the Tactical

level as each procedure name applies.

6. Utilities Package

The Utilities_Pkg provides for screen output formatting and system clock

functions. A Communicate procedure is used to provide a way for all information

exchanges to be logged in the vehicle deck log and to provide the screen output for use in

code development and debugging efforts.

C. EXECUTION LEVEL IMPLEMENTATION

The Execution level code used for this thesis was written in C programming

language. The code used is based on program functions written by Dr. Dave Marco [19]

for the NPS A.R.I.E.S. AUV and was modified by the author as indicated within the

code. The complete code can be found in Appendix A, Section 3.

The functions used for this thesis are used to drive the propeller motors and

position the control surfaces of A.R.I.E.S. The NPS A.R.I.E.S. AUV has a left and right

propeller motor and the following control surfaces: left bow plane, right bow plane, left

stem plane, right stem plane, bow mdder, and a stem mdder. The NPS A.R.I.E.S. AUV

also incorporates bow and stem lateral thmsters and bow and stem vertical thrusters. The

control of these components was not included in this thesis. The interface to the propeller

motors and the control surfaces functions are:

StopScrewMotors() - sets motor control voltage to zero for both motors.

25

ScrewMotor(iiit Motor, double ControlVolt) - sets the indicated motor control

voltage to the designated voltage.

ControlSurface(int Surface, double Angle) - sets the indicated control surface to

the desired angle.

Rudder(double Angle) - sets the rudders to the desired angle.

Planes(double BowAngle, double StemAngle) - sets the planes to the desired

angle.

ZeroFins() - sets all control surfaces to zero angle.

Abort() - sets the motor control voltage for both the left and the right propeller to

ahead propulsion, and sets the control surfaces to bring the vehicle to the surface of the

water.

LeftScrewSpeedControl(double n-com) - sets the control voltage sent to the left

propeller motor to the desired level.

RightScrewSpeedControl(double n-com) - sets the control voUage sent to the right

propeller motor to the desired level.

D. CODE TEST SCENARIO

The text in Appendix B is from the screen output during code execution. The

high-level order statement from the Strategic level directs the AUV to hunt for mines at a

specific Latitude and Longitude. The first step in completing this mission is to transit to

the indicated position. The NAV task is accessed to give a course to station. The NAV

26

task accesses the appropriate Expert System function, which will compute the course

station. When the NAV task returns the course to station to the OOD, the OOD then gives

the order to the ENG task to make way and gives a rudder order to come to that course.

When on the appropriate course the order is given for rudders amidships. A full

implementation can have the NAV task and the ENG task interact to maintain on track as

current and sea state act on the vehicle. When on course the OOD gives the order to the

ENG task to dive the Vehicle underwater. When at the desired depth the OOD orders

zero planes. The OOD queries the NAV task for the current location and is informed that

they are at the directed position to begin hunting for mines. The OOD orders the ENG

task to come to all stop. At this point the transit operations are complete and control

transfers to the Hunt Mines procedure. The OOD requests a course to hunt mines for the

NAV task. The NAV task accesses the appropriate Expert System function to compute

the course to hunt mines. When the NAV task returns the course to hunt mines, the OOD

then gives the order to the ENG task to make way and gives a rudder order to come to

that course. When on the appropriate course the order is given for rudders amidships. The

report then comes saying that they have completed the Mine-Hunt operation. The OOD

gives the ENG task the order to surface and the AUV is recovered.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

The Tactical level software architecture design described in this thesis has been

implemented and was successfully demonstrated on a personal computer running under

Windows NT 4.0 service pack 5. The success of this partial implementation of a

concurrent Tactical level working within the proven design of the Rational Behavior

Model provides the framework needed for full implementation and testing of the design

on an actual robotic vehicle.

B. IMPROVEMENTS OVER PREVIOUS DESIGNS

This design provides the flexibility required for a robotic vehicle to perform

multiple missions without the need to re-work the code at both ends. This is

accomplished through the use of the Mission Control Package. Multiple mission profiles

can be preprogrammed into the vehicle and accessed as required to perform a specific

mission.

The robustness required for a robot vehicle to handle the intense data management

needed to operate autonomously is gained through the use of Ada tasks. These tasks

allow for concurrent program sequences to perform specific actions independent of each

other.

29

The design enables the use of the Tactical level program to be portable to other

platforms. Only the Interface Package needs to be modified to facilitate a new vehicles

Execution level code interface.

C. RECOMMENDATIONS

The results of this research are promising. Full development of this software

design would improve existing AUV operational capabilities and provide a valuable

source of research in the field of mobile robotics. Effort should be made to incorporate

this design in building a Tactical level software module that would address all the

required procedures and functions needed for a robotic vehicle to autonomously complete

a mission.

D. FUTURE WORK

This work shows the framework of a Tactical level using Ada tasks and the

interface to the Execution level code written in a different programming language. There

is more work required to develop the complete design and incorporate all the necessary

functions and procedures required for autonomous operation of a robotic vehicle. A few

specific areas of further research needed are listed below:

1. Full implementation using a software simulated vehicle

Develop the complete design and incorporate all the necessary fimctions,

procedures, and tasks required for autonomous operation of an AUV. This development

should proceed using a software simulation of an actual operating AUV. This would

30

enable the Tactical level software development to occur concurrently with the

development of the vehicle and its Execution level software.

2. Expert systems within the Tactical Level

The key to total robot vehicle autonomy lies in the ability to relate experienced-

based knowledge to vehicle control software.

Expert systems will be required to enhance the operational capability of the robot

vehicle, hiterfaces can be established even if a particular Expert System technology has

yet to mature. When the system matures and becomes available it can easily be

incorporated into the desired vehicle.

3. Porting to Multiprocessor Platform

This thesis incorporated the use of a single CPU computer. Further research into

using multitasked control software on multiple CPU computers promises some distinct

advantages. With the addition of multiple processors the compiler will be able to

distribute the load evenly between tasks and enhance system performance.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

APPENDIX A. CODE

1. STRATEGIC LEVEL CODE

FileName
Author
Date
Course
Project
Compiler
Description

CO_Strategic_Level . ada
LT William D. Carroll, USN
June 2000
N/A
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
This program provides the Tactical level with a simple
order statement: what to do and where to do it.

WITH Ada.Text_IO;
WITH Utilities;
WITH OOD_Task_Manager_Pkg;

PROCEDURE CO_Strategic_Level IS

BEGIN

--North latitudes, and WEST longitudes are entered as positive
--numbers, but it is not necessary to use a "+" sign.
--For example, 45.00° North would be entered as 45.00
--South latitudes and EAST longitudes are entered as negative
--numbers using a "-" sign.
--For example, -125.00 represents 125.00° East Longitude.

OOD_Task_Manager_Pkg.Receive_Orders (Orders => "Hunt mines",
Latitude => 36.7,
Longitude => 121.85);

END CO_Strategic_Level;

33

2. TACTICAL LEVEL CODE

FileName
Author
Date
Project
Compiler
Description

OOD_Task_Manager_Pkg . ads
LT William D. Carroll, USN
June 2000
Thesis
Aonix ObjectAda 7.1.2.2 05 (Professional)
This Package receives the direction from the Stratigic
level through the Receive_Orders procedure. The code
for the NAV, ENG, & LOG tasks are located here.

PACKAGE OOD_Task_Manager_Pkg IS

SUBTYPE Name_String_Type IS String {1..10);
SUBTYPE Order_String_TYpe IS String (1..10);
SUBTYPE Report_String_Type IS String (1..20);
SUBTYPE Course_String_Type IS String (1..3);
TYPE Name_Type IS (Of f icerOfTheDeck, Navigator, Engineer)

;

TYPE Order_Type IS (HuntMines, MineHuntCourse,
CourseToStation, GivePosition,
AllStop, AllAhead,
PortStop, PortAhead, PortBack,
StbdStop, StbdAhead, StbdBack,
EmergencySurface

,

RudderAmidship

,

RightRudder, LeftRudder,
ZeroPlanes,
UpPlanes, DownPlanes, None)

;

TASK NAV (Navigaton Officer)

TASK NAV IS

ENTRY Taking_Action;
ENTRY Making_Report (Name

Report
ENTRY NAV_Aye (Name

NavOrder
Latitude
Longitude

END; --NAV

IN Name_Type;
Report_String_Type)

;

IN OUT Name_String_Type;
Order_Type;
Float := 0.0;
Float := 0.0)

;

TASK ENG (Engineering Officer)

TASK ENG IS

ENTRY Taking_Action;
ENTRY Making_Report (Name : IN Name_Type)

;

ENTRY ENG_Aye (Name : IN OUT Name_String_Type

;

EngOrder : Order_Type)

;

34

END; -ENG

TASK LOG (Deck Log Entries]

TASK LOG IS

ENTRY Log_It(Item
Hour
Minute
Seconds

ENTRY Close_Log;
END; --LOG

IN String;
IN Integer;
IN Integer;
IN Float)

;

PROCEDURE Receive Orders

PROCEDURE Receive_Orders (Orders
Latitude
Longitude

: Order_Type,
: Float;
Float)

;

END OOD Task Manager_Pkg;

Filename
Author
Date
Project
Compiler
Description

OOD_Pkg . ads
LT William D. Carroll, USN
30 May 2000
Thesis
Aonix ObjectAda 7.1.2.205 (Professional]
OOD Procedures

WITH OOD_Task_Manager_Pkg;

PACKAGE OOD Pkg IS

PROCEDURE Give Order

PROCEDURE Give_Order (Name : IN OOD_Task_Manager_Pkg.Name_Type,
Order : OOD_Task_Manager_Pkg . Order_Type

;

Latitude : Float := 0.0;
Longitude : Float := 0.0);

--| PROCEDURE Taking_Action

PROCEDURE Taking_Action;

PROCEDURE Roger_Out

35

PROCEDURE Roger_Out (Name : IN OUT
OOD_Task_Manager_Pkg .Name_String_Type)

;

END OOD_Pkg;

FileName
Author
Date
Project
Compiler
Description

Mission_Control_Pkg . ads
LT William D. Carroll, USN
June 2 00

Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
This package provides Mission Procedures

PACKAGE Mission Control Pkg IS

PROCEDURE Transit To Location

PROCEDURE Transit_To_Location (Latitude : Float;
Longitude : Float)

;

--| PROCEDURE Hunt_For_Mines

PROCEDURE Hunt_For_Mines

;

END Mission Control_Pkg;

FileName
Author
Date
Project
Compiler
Description

Expert_Systems_Pkg . ads
LT William D. Carroll, USN
June 2

Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
Expert Systems functions

WITH OOD_Task_Manager_Pkg;

PACKAGE Expert_Systems_Pkg IS

FUNCTION Get Course To Station

FUNCTION Get_Course_To_Station (Latitude : Float;
Longitude : Float) RETURN Integer;

FUNCTION Get Mine Hunt Course

36

FUNCTION Get_Mine_Hunt_Course (Latitude
Longitude

Float;
Float) RETURN Integer;

END Expert_Systems_Pkg;

Filename
Author
Date
Course
Compiler
Description

Wrap_AUV_C_Code_Pkg . ads
LT William D. Carroll, USN
3 May 2 00

Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
Provides for the interfacing to auv_c functions.

c

WITH Interfaces;
USE Interfaces;
WITH Interfaces.C;
USE Interfaces.C;
WITH Interfaces . C. Strings;
USE Interfaces . C. Strings;

PACKAGE Wrap_AUV_C_Code_PKG IS

PROCEDURE Text From C Function

PROCEDURE Text_From_C_Function(A_String : chars_ptr)

;

pragma Export (Convention => C,

Entity => Text_From_C_Funct.ion,
External_Name => "CStringBack")

;

PROCEDURE End Text From C Function

PROCEDURE End_Text_From_C_Funct ion (A_String : chars_ptr)

;

pragma Export (Convention => C,

Entity => End_Text_From_C_Function,
External_Name => "EndCStringBack")

;

PROCEDURE Double From C Function

PROCEDURE Double_From_C_Function (C_Double : C. double);
pragma Export (Convention => C,

Entity => Double_From_C_Function,
External Name => "CDoubleBack")

;

PROCEDURE Stop_Screw_Motors

37

PROCEDURE Stop_Screw_Motors;

--| PROCEDURE Rudder_Angle

PROCEDURE Rudder Angle (Angle : double]

--| PROCEDURE Planes_Angle

PROCEDURE Planes_Angle (BowAngle : double; SternAngle : double);

-- I PROCEDURE Zero_Fins

PROCEDURE Zero Fins;

--| PROCEDURE Abort_Mission

PROCEDURE Abort Mission;

--| PROCEDURE Lef t_Screw_Speed_Control

PROCEDURE Left_Screw_Speed_Control (n_com : double)

;

--| PROCEDURE Right_Screw_Speed_Control

PROCEDURE Right_Screw_Speed_Control (n_com : Double);

END Wrap_AUV_C_Code_PKG;

FileName
Author
Date
Project
Compiler
Description

Utilities . ads
Michael J. Holden, modified by William D. Carroll
July 1999 - May 2000
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
Package Specification for Utilities.

WITH Ada.Text_IO;
WITH Ada. Calendar;

PACKAGE Utilities IS

PROCEDURE Get Current Time

PROCEDURE Get_Current_Time (Hour
Minute

OUT Integer;
OUT Integer;

38

Seconds : OUT Float)

;

--| PROCEDURE Communicate

PROCEDURE Communicate (Item: IN String)

;

--| PROCEDURE Display_Message

PROCEDURE D i sp 1ay_Me ssage (Message_Text : IN String);

--| PROCEDURE Print_Symbol
--| Post: Displays a symbol on the same line a number of times
--| Symbol is the character to be repeated
--| HowMany is the number of times to repeat the character

PROCEDURE Print_Symbol (Symbol : IN Character;
HowMany : IN Natural)

;

END Utilities;

FileName
Author
Date
Project
Compiler
Description

OOD_Task_Manager_Pkg . adb
LT William D. Carroll, USN
09 NOV 1999 - June 2000
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
This Package receives the direction from the Stratigic
level through the Receive_Orders procedure. The code
for the NAV, ENG, & LOG tasks are located here.

WITH Ada.Text_IO;
WITH Ada. Integer_Text_IO;
WITH Ada.Float_Text_IO;
WITH Utilities;
WITH Mission_Control_Pkg;
WITH Expert_Systems_Pkg;
WITH Wrap_AUV_C_Code_Pkg

;

WITH OOD_Pkg;
use Ada;

PACKAGE BODY OOD_Task_Manager_Pkg IS

Task NAV, ENG, LOG, will start executing as soon as the project
program is started.

Each task will block on its ACCEPT until the entry is called.
The tasks will end when this program is no longer active.

39

--| TASK NAV (Navigator)

TASK BODY NAV IS

NavName : Name_String_Type := "Navigator ";

Course : Course_String_Type := "0 00";

Recomended_Course : Integer := 0;

BEGIN -- NAV

Utilities . Communicate ("Navigator: ""Standing by""
") ;

LOOP
SELECT
ACCEPT Taking_Action;

Utilities . Communicate ("Navigator: ""Taking action""");
OR
ACCEPT Making_Report (Name : IN Name_Type;

Report : Report_String_Type)DO
CASE Name IS

WHEN Navigator => NULL;
WHEN Engineer =>

Utilities . Communicate ("Navigator makes report to Engineer
")

")

ENG.ENG_Aye (Name => NavName, EngOrder => None);
WHEN OfficerOfTheDeck =>

Utilities . Communicate ("Navigator makes report to OOD

OOD_Pkg.Roger_Out (Name => NavName);
END CASE;

END Making Report;

IN OUT Name_String_Type;
Order_Type

;

Float := 0.0;
Float := 0.0) DO

OR
ACCEPT NAV_Aye (Name

NavOrder
Latitude
Longitude

CASE NavOrder IS

WHEN None =>

Utilities. Communicate ("NAV: ""Navigator Aye"": Ack. " &

Name & " ")

;

WHEN CourseToStation =>

Utilities .Communicate ("NAV: ""Get Course Aye"": Ack. "
i

Name & " "
)

;

Recomended_Course :

=

Expert_Systems_Pkg . Get_Course_To_Station (Latitude => Latitude,

Longitude => Longitude)

;

Course := Integer ' Image (Recomended_Course)

;

Utilities . Communicate ("Navigator Recommends Course of "

Course & " to OOD ")

;

OOD_Pkg.Roger_Out (Name => NavName);

40

WHEN MineHuntCourse =>

Utilities . Communicate ("NAV: ""Mine Hunt Course Aye"": Ack,
" Sc Name & " "

) ;

Recomended_Course :

=

Expert_Systems_Pkg .Get_Mine_Hunt_Course (Latitude => Latitude,

Longitude => Longitude)

;

Course := Integer ' Image (Recomended_Course)

;

Utilities . Communicate ("Navigator Recomends Course of " &

Course & " to ODD ")

;

OOD_Pkg.Roger_Out (Name => NavName)

;

WHEN GivePosition =>

Utilities .Communicate ("NAV: ""Give Position Aye"": Ack. "

& Name & " ")

;

Utilities . Communicate ("Current position: 36.70 Deg North
Latitude "

)

;

Utilities .Communicate (" 121.85 Deg West
Longitude "

)

;

WHEN others => NULL;
END CASE;

END NAV_Aye

;

OR
TERMINATE;

END SELECT;
END LOOP;

END NAV;

--| TASK ENG (Engineering Officer)

TASK BODY ENG IS

EngName : Name_String_Type := "Engineer ";

BEGIN -- ENG

Utilities .Communicate ("Engineer: ""Standing by""
"

) ;

LOOP
SELECT
ACCEPT Taking_Action;

Utilities .Communicate ("Engineer: ""Taking action""");
OR
ACCEPT Making_Report (Name : IN Name_Type) DO

CASE Name IS
WHEN Navigator =>

Utilities . Communicate ("Engineer makes report to Navigator
")

NAV. NAV_Aye (Name => EngName, NavOrder => None);
WHEN Engineer => NULL;
WHEN OfficerOfTheDeck =>

41

utilities . Communicate ("Engineer makes report to OOD
");

OOD_Pkg . Roger_Out (Name => EngName)

;

END CASE;
END Making_Report

;

OR
ACCEPT ENG_Aye (Name : IN OUT Name_String_Type;

EngOrder : Order_Type) DO
CASE EngOrder IS
WHEN None =>

Utilities .Communicate ("ENG: ""Engineer Aye"": Ack. " &

Name & " "
)

;

WHEN AllStop =>

Utilities .Communicate ("ENG: ""All Engines Stop Aye"": Ack.
" Sc Name & " ") ;

Wrap_AUV_C_Code_PKG . Stop_Screw_Motors

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN AllAhead =>

Utilities. Communicate ("ENG: ""All Engines Ahead Aye"":
Ack. " & Name & " ")

;

Wrap_AUV_C_Code_PKG . Left_Screw_Speed_Control (5.0)

;

Wrap_AUV_C_Code_PKG.Right_Screw_Speed_Control (5.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN Portstop =>

Utilities .Communicate ("ENG: ""Port Engine Stop Aye"": Ack,
" & Name & " ")

;

Wrap_AUV_C_Code_PKG.Left_Screw_Speed_Control (0.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN PortAhead =>

Utilities .Communicate ("ENG: ""Port Engine Ahead Aye"":
Ack. " & Name & " ")

;

Wrap_AUV_C_Code_PKG.Left_Screw_Speed_Control (5.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN PortBack =>

Utilities. Communicate ("ENG: ""Port Engine Back Aye"": Ack.
" Sc Name & " ") ;

Wrap_AUV_C_Code_PKG.Left_Screw_Speed_Control (5.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN StbdStop =>

Utilities .Communicate ("ENG: ""Starboard Engine Stop Aye"";
Ack .

" & Name & " "
)

;

Wrap_AUV_C_Code_PKG.Right_Screw_Speed_Control (0.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN StbdAhead =>

Utilities. Communicate ("ENG: ""Starboard Engine Ahead
Aye" " : Ack. " & Name)

;

Wrap_AUV_C_Code_PKG . Right_Screw_Speed_Control (5.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN StbdBack =>

Utilities .Communicate ("ENG: ""Starboard Engine Back Aye"":
Ack. " & Name & " ")

;

Wrap_AUV_C_Code_PKG.Right_Screw_Speed_Control (5.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN EmergencySurface =>

42

utilities -Communicate ("ENG: ""Emergency Surface Aye"":
Ack .

" & Name & " "
)

;

Wrap_AUV_C_Code_PKG.Abort_Mission;
NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN RudderAmidship =>

Utilities .Communicate ("ENG: ""Rudder Amidship Aye"": Ack.
" & Name & " "

)

;

Wrap_AUV_C_Code_PKG . Rudder_Angle (0.0)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN RightRudder =>

Utilities. Communicate ("ENG: ""Right Rudder Aye"": Ack. " &

Name &

Name &

Name & "

Name)

Wrap_AUV_C_Code_PKG . Rudder_Angle (0.4)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN LeftRudder =>

Utilities. Communicate ("ENG: ""Left Rudder Aye"": Ack. " &

")
;

Wrap_AUV_C_Code_PKG . Rudder_Angle (0.4)

;

NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN ZeroPlanes =>

Utilities .Communicate ("ENG: ""Zero Planes Aye"": Ack " &

')
;

Wrap_AUV_C_Code_PKG . Planes_Angle (0.0, 0.0);
NAV.NAV_Aye (Name => EngName, NavOrder => None)

;

WHEN UpPlanes =>

Utilities. Communicate ("ENG: ""Up Planes Aye"": Ack " &

Wrap_AUV_C_Code_PKG . Planes_Angle (0.4, 0.4);
NAV.NAV_Aye (Name => EngName, NavOrder => None);

WHEN DownPlanes =>

Utilities .Communicate ("ENG: ""Down Planes Aye"": Ack. " &

Name & "

Wrap_AUV_C_Code_PKG . Planes_Angle (0.4, 0.4);
NAV.NAV_Aye (Name => EngName, NavOrder => None);

WHEN others => NULL;
END CASE;

END ENG_Aye

;

OR
TERMINATE;

END SELECT;
END LOOP;

END ENG;

--| TASK LOG (Deck Log Entries)

TASK BODY LOG IS

DeckLogName : Name_String_Type := "Deck Log ";

Deck_Log : Ada.Text_IO. File_Type;
FileName : String := "DeckLog.txt";

BEGIN -- LOG

Ada. Text_IO. Create (File => Deck_Log,

43

Mode => Ada.Text_IO.Out_File,
Name => FileName)

;

Utilities .Display_Message (Message_Text => "Deck Log is open .

")

;

LOOP
SELECT
ACCEPT Log_It(Item

Hour
Minute
Seconds

IN String;
IN Integer;
IN Integer;
IN Float) DO

= > 2)

= > 2]

0);

Ada. Text_IO. Put (File => Deck_Log,
Item => Item & "At: ")

;

Ada. Integer_Text_IO. Put (File => Deck_Log, Item => Hour, Width

Ada. Text_IO. Put (File => Deck_Log, Item => ":");

Ada . Integer_Text_IO. Put (File => Deck_Log, Item => Minute, Width

Ada. Text_IO. Put (File => Deck_Log, Item => ":");

Ada. Float_Text_IO. Put (File => Deck_Log,
Item => Seconds, Fore => 2, Aft =>10, Exp =>

Ada. Text_IO. Put_Line (File => Deck_Log,
Item => " ")

;

END Log_It;
OR
ACCEPT Close_Log;

Ada. Text_IO. Close (File => Deck_Log)

;

Utilities .Display_Message (Message_Text => "Deck Log is

closed. ")

;

OR
TERMINATE;

END SELECT;
END LOOP;

END LOG;

END of TASKS

PROCEDURE Mission Planner

PROCEDURE Mission_Planner (Orders : Order_Type;
Latitude : Float;
Longitude : Float) IS

BEGIN
CASE Orders IS

WHEN None =>

Utilities . Communicate ("No Mission received");
WHEN HuntMines =>

Utilities . Communicate ("Commence Mine Hunt Mission
")

;

44

Mission_Control_Pkg.Transit_To_Location (Latitude, Longitude)

;

Mission_Control_Pkg.Hunt_For_Mines;
WHEN others => NULL;

END CASE;

END Mission Planner;

PROCEDURE Officer Of The Deck

PROCEDURE Officer_Of_The_Deck (Orders
Latitude
Longitude

Order_Type;
Float

;

Float) IS

BEGIN -- Officer_Of_The_Deck

Utilities .Communicate ("OOD: ""I have the Deck""
") ;

Mission_Planner (Orders, Latitude, Longitude);

Utilities .Communicate ("Surface the AUV for recovery
") ;

OOD_Pkg.Give_Order (Name => Engineer, Order => EmergencySurface)

;

LOG.Close_Log;

END Of ficer_Of_The_Deck;

--I PROCEDURE Receive Orders

PROCEDURE Receive_Orders (Orders
Latitude
Longitude

Order_Type

;

Float;
Float) IS

BEGIN
Of ficer_Of_The_Deck (Orders , Latitude, Longitude);

END Receive Orders;

END OOD Task Manager Pkg;

FileName
Author
Date
Project
Compiler
Description

OOD_Pkg . adb
LT William D. Carroll, USN
June 2 000
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
OOD Procedures

WITH Utilities;

45

PACKAGE BODY OOD_Pkg IS

OodName : OOD_Task_Manager_Pkg .Name_String_Type := "OOD "

;

- -
I

PROCEDURE Give_Order

PROCEDURE Give_Order (Name : IN OOD_Task_Manager_Pkg.Name_Type;
Order : OOD_Task_Manager_Pkg . Order_Type

;

Latitude : Float := 0.0;
Longitude : Float := 0.0) IS

BEGIN
CASE Name IS

WHEN OOD_Task_Manager_Pkg. Navigator =>

Utilities .Communicate ("OOD gives order to Navigator
") ;

OOD_Task_Manager_Pkg . NAV . NAV_Aye (Name = > OodName

,

NavOrder => Order,
Latitude => Latitude,
Longitude => Longitude)

;

WHEN OOD_Task_Manager_Pkg. Engineer =>

Utilities . Communicate ("OOD gives order to Engineer
") ;

OOD_Task_Manager_Pkg . ENG . ENG_Aye (Name = > OodName

,

EngOrder => Order)

;

WHEN OOD_Task_Manager_Pkg.Of f icerOfTheDeck => NULL;
END CASE;

END Give_Order;

--| PROCEDURE Taking_Action

PROCEDURE Taking_Action IS

BEGIN
Utilities .Communicate ("OOD: ""Taking action""

")
;

DELAY 0.1; -- lets another task have the CPU
END Taking_Action;

- -
I

PROCEDURE Roger_Out

PROCEDURE Roger_Out (Name : IN OUT
OOD_Task_Manager_Pkg .Name_String_Type) IS

BEGIN
Utilities .Communicate ("OOD: ""Roger Out"": Acknowledge " & Name

Sc " ") ;

END Roger_Out;

END OOD_Pkg;

46

FileName
Author
Date
Project
Compiler
Description

Mission_Control_Pkg . adb
LT William D. Carroll, USN
June 2 000
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
This package provides Mission Procedures

WITH OOD_Task_Manager_Pkg;
USE OOD_Task_Manager_Pkg;
WITH OOD_Pkg;
WITH Utilities;

PACKAGE BODY Mission_Control_Pkg IS

PROCEDURE Transit To Location

PROCEDURE Transit_To_Location (Latitude : Float;
Longitude : Float) IS

BEGIN
Utilities . Communicate ("Commence Transit To Location Mission

");

OOD_Pkg.Give_Order (Name => Navigator, Order
Latitude => Latitude, Long

OOD_Pkg . Give_Order (Name =>

OOD_Pkg . Give_Order (Name =>

OOD_Pkg.Give_Order (Name =>

OOD_Pkg.Give_Order (Name =>

OOD_Pkg.Give_Order (Name =>

OOD_Pkg.Give_Order (Name =>

OOD_Pkg.Give_Order (Name =>

Uti

Engineer, Order
Engineer, Order
Engineer, Order
Engineer, Order
Engineer, Order
Navigator, Order
Engineer, Order

lities .Communicate ("Transit To Location

=> CourseToStation,
itude => Longitude)

;

=> AllAhead)

;

=> RightRudder)

;

=> RudderAmidship)

;

=> DownPlanes)

;

=> ZeroPlanes)

;

=> GivePosition)

;

=> AllStop)

;

Mission Complete

END Transit To Location;

--| PROCEDURE Hunt_For_Mines

PROCEDURE Hunt_For_Mines IS

BEGIN
Utilities . Communicate ("Commence Hunt For Mines Mission

");

OOD_Pkg.Give_Order (Name => Navigator, Order => MineHuntCourse)

;

OOD_Pkg.Give_Order (Name => Engineer, Order => AllAhead)

;

OOD_Pkg.Give_Order (Name => Engineer, Order => RightRudder);
OOD_Pkg.Give_Order (Name => Engineer, Order => RudderAmidship);
Utilities . Communicate ("Hunt_For_Mines Mission Complete

")
;

END Hunt For Mines;

47

END Mission Control Pkg;

FileName
Author
Date
Project
Compiler
Description

Expert_Systems_Pkg . adb
LT William D. Carroll, USN
June 200
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
Expert Systems functions

PACKAGE BODY Expert_Systems_Pkg IS

FUNCTION Get Course To Station

FUNCTION Get_Course_To_Station (Latitude
Longitude

Recomended_Course : Integer := 90;
BEGIN
RETURN Recomended_Course;

END Get Course To Station;

Float;
Float) RETURN Integer IS

FUNCTION Get Mine Hunt Course

FUNCTION Get_Mine_Hunt_Course (Latitude
Longitude

Recomended_Course : Integer := 95;
BEGIN

RETURN Recomended_Course;
END Get Mine Hunt Course;

Float;
Float) RETURN Integer IS

END Expert_Systems_Pkg;

Filename
Author
Date
Course
Compiler
Description

Wrap_AUV_C_Code_Pkg . adb
LT William D. Carroll, USN
30 May 2000
Thesis
Aonix ObjectAda 7.1.2.205 (Professional)
Provides for the interfacing to auv_c_functions .

c

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Ada.Float_Text_IO;
WITH Utilities;

48

PACKAGE BODY Wrap_AUV_C_Code_Pkg IS

--| FUNCTION Value_Without_Exception
--j Lovelace Ada tutorial - David A. Wheeler

FUNCTION Value_Without_Exception(S : chars_ptr) RETURN String IS

pragma Inline (Value_Without_Exception)

;

-- Translate S from a C-style char* into an Ada String.
-- If S is Null_Ptr, return "", does raise an exception.
BEGIN

IF S = Null_Ptr THEN RETURN "Null Ptr";
ELSE RETURN Value (S);

END IF;

END Value_Without_Exception;

--| PROCEDURE Text_From_C_Function

PROCEDURE Text_From_C_Function (A_String : chars_ptr) IS

-- Convert the sent C charsjptr to an Ada String value without
getting an exception if the returned is a Null_ptr.

Report : String := Value_Without_Exception (A_String)

;

BEGIN
Ada.Text_IO. Put (Item => Report & " ");

END Text From C Function;

--| PROCEDURE End_Text_From_C_Function

PROCEDURE End_Text_From_C_Funct ion (A_String : chars_ptr) IS

-- Convert the sent C chars_ptr to an Ada String value without
getting

an exception if the returned is a Null_ptr.
Report : String := Value_Without_Exception (A_String)

;

BEGIN
Ada . Text_IO . Put_Line (Report)

;

END End Text From C Function;

--| PROCEDURE Double_From_C_Function

PROCEDURE Double From C Function (C Double : C. double) IS

-- Cast to a Ada Float value for manipulation within Ada
Ada_Float : Float := Float (C_Double)

;

BEGIN

49

-- Output to the screen followed by a space
Ada.Float_Text_IO.Put (Ada_Float, 2, 4, 0);

Ada. Text_IO. Put (Item => " ");

END Double From C Function;

--| PROCEDURE Stop_Screw_Motors
--| The function is called "StopScrewMotors" in C.

--| The function is found in the object file "auv_c_functions .
o"

procedure StopScrewMotors

;

pragma Import (Convention => C,

Entity => StopScrewMotors,
External_Name => "StopScrewMotors");

-- Wrapper function
PROCEDURE Stop_Screw_Motors IS

BEGIN
StopScrewMotors

;

- -Ada. Text_IO. Put_Line (Item => "Inside - Stop_Screw_Motors")

;

END Stop_Screw_Motors;

--| PROCEDURE Rudder_Angle
--| The function is called "Rudder" in C.

--| The function is found in the object file "auv_c_functions .
o"

procedure Rudder(Angle : C. double)

;

pragma Import (Convention => C,

Entity => Rudder,
External_Name => "Rudder");

-- Wrapper function
PROCEDURE Rudder_Angle (Angle : double) IS

BEGIN
Rudder (Angle)

;

END Rudder_Angle;

--| PROCEDURE Planes_Angle
--| The function is called "Planes" in C.

--| The function is found in the object file "auv_c_functions .

o"

procedure Planes (BowAngle : C. double; SternAngle: C. double);
pragma Import (Convention => C,

Entity => Planes,
External_Name => "Planes");

-- Wrapper function
PROCEDURE PIanes_Angle (BowAngle : double; SternAngle : double) IS

BEGIN
Planes (BowAngle, SternAngle)

;

END Planes_Angle;

50

--| PROCEDURE Zero_Fins
--| The function is called "ZeroFins" in C.

--j The function is found in the object file "auv_c_functions .o"

procedure ZeroFins

;

pragma Import (Convention => C,

Entity => ZeroFins,
External_Name => "ZeroFins");

-- Wrapper function
PROCEDURE Zero_Fins IS

BEGIN
ZeroFins;

END Zero Fins;

--| PROCEDURE Abort_Mission
--| The function is called "AbortMission" in C.

--j The function is found in the object file "auv_c_functions .o'

procedure AbortMission;
pragma Import (Convention => C,

Entity => AbortMission,
External_Name => "Abort");

-- Wrapper function
PROCEDURE Abort_Mission IS

BEGIN
AbortMission;
- -Ada. Text_IO.Put_Line (Item => "Inside - Abort_Mission")

;

END Abort Mission;

--| PROCEDURE Left_Screw_Speed_Control
--| The function is called "LeftScrewSpeedControl " in C.

--| This function is found in the object file "auv_c_functions .o"

procedure LeftScrewSpeedControl (n_com : C. double);
pragma Import (Convention => C,

Entity => LeftScrewSpeedControl

,

External_Name => "LeftScrewSpeedControl ")

;

-- Wrapper function
PROCEDURE Left_Screw_Speed_Control (n_com : double) IS

BEGIN
LeftScrewSpeedControl (n_com)

;

END Left_Screw_Speed_Control;

PROCEDURE Right_Screw_Speed_Control

I

The function is called "RightScrewSpeedControl" in C.

j

This function is found in the object file "auv_c_functions .o"

procedure RightScrewSpeedControl (n_com : C. double);
pragma Import (Convention => C,

Entity => RightScrewSpeedControl,
External_Name => "RightScrewSpeedControl");

Wrapper function

51

PROCEDURE Right_Screw_Speed_Control (n_com
BEGIN

RightScrewSpeedControl (n_com) ;

END Right_Screw_Speed_Control;

END Wrap_AUV_C_Code_Pkg

;

double) IS

FileName
Author
Date
Project
Compiler
Description

Utilities. adb
Michael J. Holden, modified by William D.

July 1999 - May 2000
THesis
Aonix ObjectAda 7.1.2.205 (Professional)
Package Body for Utilities.

Carroll

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
WITH Ada . Integer_Text_IO

;

WITH Ada. IO_Except ions;
WITH OOD_Task_Manager_Pkg;

PACKAGE BODY Utilities IS

PROCEDURE Get Current Time (Hour OUT Integer;

Now
- - Hour

Minute
Seconds

Second
FloatSecond
FloatMinute
FloatHour

Minute : OUT Integer;
Seconds : OUT Float) IS

Ada . Calendar . Time : = Ada . Calendar . Clock;
Integer;
Integer;
Float;

Ada . Calendar .Day_Durat ion;
Float,
Float
Float

BEGIN -- Display_Current_Time
Second := Ada . Calendar . Seconds (Now)

;

FloatSecond
FloatMinute
FloatHour

:= Float (Second)

;

:= FloatSecond/60 . 0;
:= FloatMinute/60 . 0;

Hour := Integer (FloatHour - 0.5)

Minute := Integer (((FloatHour -

Seconds := (FloatSecond- ((Float (Minute
3600.0)))

;

Ada. Integer_Text_IO. Put (Item => Hour,
Ada.Text_IO. Put (Item => ":");

Ada. Integer_Text_IO. Put (Item => Minute, Width => 2);
Ada.Text_IO. Put (Item => ":");

--Ada. Integer_Text_IO. Put (Item => Seconds, Width => 2

Ada. Float Text 10. Put (Item => Seconds, Fore => 2

Float (Hour))
* 60.0) - 0.5

* 60.0) + (Float (Hour) *

Width => 2)

;

Aft =>4, Exp =>

0)

Ada. Text 10. New Line;

52

END Get Current Time;

--| PROCEDURE Communicate

PROCEDURE Communicate (Item: String) IS

Log_String
Hour
Minute
Seconds

String := Item;
Integer;
Integer;
Float;

BEGIN -- Communicate
Ada . Text_IO . New_Line

;

Ada.Text_IO. Put (Item => Item & " At: ");

Get_Current_Time (Hour, Minute, Seconds);
Ada . Text_IO . New_Line

;

OOD_Task_Manager_Pkg. LOG. Log_It (Item => Log_String,
Hour => Hour,
Minute => Minute ,

Seconds => Seconds)

;

END Communicate;

PROCEDURE Display_Message

PROCEDURE Display_Message (Message_Text : IN String) IS

LineWidth : Natural .= 10;

BEGIN -- Display_Message
Ada. Text_IO.New_Line (Spacing =>2) ;

Print_Symbol (Symbol => ' - '

,

HowMany => (LineWidth-Message_Text ' Length) /2 - 1)

;

IF Message_Text = "" OR ELSE Message_Text = " " THEN
Ada. Text_IO. Put (Item => '-' & '-');

ELSE
Ada.Text_IO. Put (Item => " " & Message_Text & " ");

END IF;

Print_Symbol (Symbol => ' -
• ,

HowMany => (LineWidth-Message_Text ' Length) /2 - 1);
Ada. Text_IO.New_Line (spacing =>2) ;

END Display_Message;

PROCEDURE Print_Symbol
Pre : None
Post: Displays a symbol on the same line a number of times
Exceptions Raised: None.
Parameters

:

Symbol is the character to be repeated

53

HowMany is the number of times to repeat the character
Complexity: 0()

PROCEDURE Print_Symbol (Symbol : IN Character;
HowMany : IN Natural) IS

BEGIN -- Print_Symbol
FOR Count IN 1 . . HowMany LOOP

Ada. Text_IO. Put (Item => Symbol);
END LOOP;

END Print_Symbol

;

END Utilities;

EXECUTION LEVEL CODE

//

//

//

//

//

//

//

//

//

//

//

//

//

//

FileName
Author
Date
Project
Compiler
Description

auv_c_functions .

c

Dr Dave Marco - NPS, modified by William D. Carroll
May 2000
Thesis
GNAT Version 3.12p, used gcc for .o file output
Modified from "Execf.c" C code written by Dr. D. Marco
for the Naval Postgraduate School A.R.I.E.S.
Autonomous Underwater Vehicle (AUV) . Changes made by
LT are denoted by //** in the right margin. Code
by Dr. Marco that is not required for this
demonstration has been either commented out but
retained for clarity or has been deleted.

#include <stdio.h>
#include <string.h>

#define LEFT_BOW_PLANE 1

#define RIGHT_BOW_PLANE 2

#define LEFT_STERN_PLANE 3

#define RIGHT_STERN_PLANE 4

#define BOW_RUDDER 5

#define STERN RUDDER 6

//

// NAME
//

StopScrewMotors

StopScrewMotors ()

{

CStringBack ("Screw Motors Stoped");
EndCStringBack ("

") ;

//RubyDac (0, .0) ; /* Left Screw */

//**
//**

54

//RubyDac (1, . 0) ; /* Right Screw */

} // end StopScrewMotors (

)

//
// NAME ScrewMotor
//
ScrewMotor (int Motor, double ControlVolt)

{

char* retchar = "No Action ScrewMotor";

* *

* *

* *

if (Motor == 0)

{

//

CStringBack ("From ScrewMotor: Left Screw at:"); //**

CDoubleBack (ControlVolt)

;

//**

EndCStringBack("VDC")

;

//**

} //
if (Motor == 1)

{

//
CStringBack ("From ScrewMotor: Right Screw at:"); //**
CDoubleBack (ControlVolt)

;

//**

EndCStringBack("VDC")

;

//**

}

/* Motor = Motor number, Left Screw Ch = , Pin 2 and BO 2

1 Right Screw Ch = 1 , Pin 4 and BO 4

Volt = Control Voltage Sent to Servo Amplifier +-5 VDC
*/

}//end ScrewMotor

//
// NAME ControlSurface
//
void ControlSurface (int Surface, double Angle)

{

/* This function sends the desired ANGLE (radians) to the specified
control SURFACE */

switch (Surface)

{

case 1

:

CStringBack ("Left Bow Plane set to:"); //**
CDoubleBack (Angle)

;

//**
EndCStringBack(" radians")

;

//**

// code deleted
break;

case 2

:

CStringBack ("Right Bow Plane set to:"); //**
CDoubleBack (Angle)

;

//**
EndCStringBack(" radians")

;

//**

// code deleted
break;

case 3 :

CStringBack ("Left Stern Plane set to:"); //**

55

* *

* *

CDoubleBack (Angle)

;

//**

EndCStringBack("radians")

;

//**

// code deleted
break;

case 4 :

CStringBack("Right Stern Plane set to:"); //**
CDoubleBack (Angle)

;

//**
EndCStringBack(" radians")

;

//**

// code deleted
break;

case 5 :

CStringBack("Bow Rudder set to:"); //**
CDoubleBack (Angle)

;

//
EndCStringBack ("radians")

;

//

// code deleted
break;

case 6: /* This Uses the Second 9513 Chip */

CStringBack("Stern Rudder set to:"); //**
CDoubleBack (Angle)

;

//**
EndCStringBack (

" radians ")

;

/
/ * *

// code deleted
break;

default

:

CStringBack ("No Action to ControlSurface")

;

//**
EndCStringBack("")

;

//**
//printf ("Invalid surface code\n");
break;

}

} // end ControlSurface

//

// NAME Rudder
//
Rudder (double Angle)

{

/* Send Angular Deflection (RADIANS) to Rudders.
Convention: (+) Angle Right-Hand Rule about z-axis */

ControlSurface (BOW_RUDDER, -Angle)

;

ControlSurface (STERN_RUDDER, Angle)

;

} /* Rudder */

//

// NAME Planes
//
Planes (double BowAngle, double SternAngle)

{

/* Send Angular Deflection (RADIANS) to Planes.
Convention: (+) angle Right-Hand Rule about y-axis */

56

ControlSurface (LEFT_BOW_PLANE, -BowAngle)

;

ControlSurface (RIGHT_BOW_PLANE, BowAngle) ;

ControlSurface (LEFT_STERN_PLANE, SternAngle)

;

ControlSurface (RIGHT_STERN_PLANE, -SternAngle)

;

} /* Planes */

//

// NAME ZeroFins

//
ZeroFins ()

{

CStringBack ("Fins at zero"); //
EndCStringBack("")

;

//

* *

* *

Rudder (0.0)

;

Planes (0.0,0.0) ;

}

//

// NAME Abort
//
Abort

{

CStringBack ("*** Inside Abort *** EMERGENCY SURFACE!!!!!"); //**
EndCS tringBack ("

") ; / / * *

//printf ("Inside Abort\n");
Rudder (-0.4)

;

Planes (0.4,-0.4);
ScrewMotor (0,5.0) ;

ScrewMotor (1,5.0) ;

}

//

// NAME LeftScrewSpeedControl
//
LeftScrewSpeedControl (double n_com)

{

double Limit; // parameter required for the algorithm in the
double e_^n,v_spc; // original code.

//code deleted, v_spc is not made equal to n_com in the original
code

.

v_spc = n_com;

ScrewMotor (0 , v_spc)

;

}

//

// NAME RightScrewSpeedControl
//
RightScrewSpeedControl (double n_com)

{

double Limit; // parameter required for the algorithm in the
double e_n,v_spc; // original code.

57

//code deleted, v_spc is not made equal to n_com in the original

code

.

V spc = n_com;

ScrewMotor (1 , v_spc)

;

}

58

APPENDIX B. OUTPUT

1. OUTPUT

Navigator: "Standing by" At: 1:51:28.0771

Engineer: "Standing by" At: 1:51:28.0771

OOD: "I have the Deck" At: 1:51:2 8.0771

Deck Log is open.

Commence Mine Hunt Mission At: 1:51:28.0869

Commence Transit_To_Location Mission At: 1:51:28.0869

OOD gives order to Navigator At: 1:51:28.0869

NAV: "Get Course Aye": Ack. OOD At: 1:51:28.0869

Navigator Recommends Course of 90 to OOD At: 1:51:2 8.0869

OOD: "Roger Out": Acknowledge Navigator At: 1:51:28.0972

OOD gives order to Engineer At: 1:51:28.0972

ENG: "All Engines Ahead Aye": Ack. OOD At: 1:51:28.0972
From ScrewMotor: Left Screw at: 5.0000 VDC
From ScrewMotor: Right Screw at: 5.0000 VDC

NAV: "Navigator Aye": Ack. Engineer At: 1:51:28.0972

OOD gives order to Engineer At: 1:51:28.0972

ENG: "Right Rudder Aye": Ack. OOD At: 1:51:28.0972
Bow Rudder set to: -0.4000 radians
Stern Rudder set to: 0.4000 radians

NAV: "Navigator Aye": Ack. Engineer At: 1:51:28.1069

OOD gives order to Engineer At: 1:51:28.1069

ENG: "Rudder Amidship Aye": Ack. OOD At: 1:51:28.1069
Bow Rudder set to: 0.0000 radians
Stern Rudder set to: 0.0000 radians

NAV: "Navigator Aye": Ack. Engineer At: 1:51:28.1069

OOD gives order to Engineer At: 1:51:28.1069

59

ENG: "Down Planes Aye": Ack. OOD At: 1:51:28.1069
Left Bow Plane set to: -0.4000 radians
Right Bow Plane set to: 0.4000 radians
Left Stern Plane set to: 0.4000 radians
Right Stern Plane set to: -0.4000 radians

NAV: "Navigator Aye": Ack. Engineer At: 1:51:28.1968

OOD gives order to Engineer At: 1:51:28.2368

ENG: "Zero Planes Aye": Ack OOD At: 1:51:28.2 671
Left Bow Plane set to: 0.0000 radians
Right Bow Plane set to: 0.0000 radians
Left Stern Plane set to: 0.0000 radians
Right Stern Plane set to: 0.0000 radians

NAV: "Navigator Aye": Ack. Engineer

OOD gives order to Navigator

NAV: "Give Position Aye": Ack. OOD

Current position: 36.70 Deg North Latitude

121.85 Deg West Longitude

OOD gives order to Engineer

ENG: "All Engines Stop Aye": Ack. OOD
Screw Motors Stoped

NAV: "Navigator Aye": Ack. Engineer

Transit_To_Location Mission Complete

Commence Hunt_For_Mines Mission

OOD gives order to Navigator

NAV: "Mine Hunt Course Aye": Ack. OOD

Navigator Recomends Course of 95 to OOD

OOD: "Roger Out": Acknowledge Navigator

OOD gives order to Engineer

ENG: "All Engines Ahead Aye": Ack. OOD
From ScrewMotor: Left Screw at: 5.0000 VDC
From ScrewMotor: Right Screw at: 5.0000 VDC

NAV: "Navigator Aye" : Ack. Engineer At: 6:19:32.7363

OOD gives order to Engineer At: 6:19:32.7656

60

At: 1 :51 :28 .3579

At: 1::51 :28 .3877

At: 1::51 :28 .4180

At: 1::51 :28 .4482

At: 1::51 :28 .4780

At: 1::51 :28 .5078

At: 1::51 :28,.5381

At: 1::51 :28,.5781

At: 1:;51 :28,.6079

At: 1;:51::28..6377

At: 1::51::28..6680

At: 1:;51;:28..6982

At: 1::51;:28..7280

At: 6;:19;;32,.6055

At: 6::19::32.,6465

At: 6::19::32..6758

ENG: "Right Rudder Aye": Ack. OOD At: 6:19:32.7969
Bow Rudder set to: -0.4000 radians
Stern Rudder set to: 0.4000 radians

NAV: "Navigator Aye": Ack. Engineer At: 6:19:32.8555

OOD gives order to Engineer At: 6:19:32.8867

ENG: "Rudder Amidship Aye": Ack. OOD At: 6:19:32.9160
Bow Rudder set to: 0.0000 radians
Stern Rudder set to: 0.0000 radians

NAV: "Navigator Aye": Ack. Engineer At: 6:19:32.9766

Hunt_For_Mines Mission Complete At: 6:19:33.0059

Surface the AUV for recovery At: 6:19:33.0352

OOD gives order to Engineer At: 6:19:33.0664

ENG: "Emergency Surface Aye": Ack. OOD At: 6:19:33.0957
*** Inside Abort *** EMERGENCY SURFACE!!!!!
Bow Rudder set to: 0.4000 radians
Stern Rudder set to: -0.4000 radians
Left Bow Plane set to: -0.4000 radians
Right Bow Plane set to: 0.4000 radians
Left Stern Plane set to: -0.4000 radians
Right Stern Plane set to: 0.4000 radians
From ScrewMotor: Left Screw at: 5.0000 VDC
From ScrewMotor: Right Screw at: 5.0000 VDC

NAV: "Navigator Aye": Ack. Engineer At: 6:19:33.2559

Deck Log is closed.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

LIST OF REFERENCES

1. Autonomous Robot Vehicles, I. J. Cox and G.T. Wilfong, eds., Spring-Verlang, New
York, 1990.

2. Crute, Danial A., Naval Mine Warfare Vision 2010 A View Toward the Future,

[http://www.ncsc.navy.mil/CCS/papers/vision.htm]. May 2000.

3. Holden, Michael J., Ada Implementation ofConcurrent Executionfor Multiple Tasks

in the Strategic and Tactical Levels ofthe Rational Behavior Modelfor the NFS A UV,
Masters Thesis, Naval Postgraduate School, Monterey, CA, September 1995.

4. Krechmer, K. "Interface APIs for Wide Area Networks." Business Communications

Review 22, pp.72-4, November 1992.

5. Byms, R.B., The Rational Behavior Model: A multi-Faradigm, Tri-Level Software

Architecturefor the Control ofAutonomous Vehicles, PH.D. Dissertation, Naval

Postgraduate School, Monterey, CA, March 1993.

6. Kwak, Se-Hung, Thornton, F.P.B., Jr., "A concurrent, object-oriented implementation

for the tactical level of the rational behavior model software architecture for UUV
control," Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle

Technology, AUV '94, pp. 54-60, 1994.,

7. Leonhardt, Bradley J., Mission Flanning and Mission Control Softwarefor the

Fhoenix Autonomous Underwater Vehicle (AUV): Implementation and Experimental

Study, Masters Thesis, Naval Postgraduate School, Monterey, CA, March 1996.

8. Ada Reference Manual, International Standard ANSI/ISO/IEC 8652: 1995(E), January

1995.

9. Interview between Dr. Dave Marco, Dept. of Mechanical Engineering, Naval

Postgraduate School, Monterey California, and the author, 17 May 2000.

10. "Unmanned Underwater Vehicle (UUV) Program Plan."

[http://www.contracts.hq.navsea.navy.mil/pms403/lmrs/uuvprogu.doc]. Aug 1996.

11. Navy Expeditionary Warfare Division (N85), Web Site. Mine Warfare (N852),

"UUVs Unmanned Underwater Vehicles."

[http://www.exwar.org/What'snew/uuvs.htm]. May 2000.

12. Navy Expeditionary Warfare Division (N85), Web Site. Mine Warfare (N852), "U.S.

Naval Mine Warfare Plan." [http://www.exwar.org/What'snew/mwp/contents.htm].

May 2000.

63

13. IEEE standard glossary of software engineering terminology, IEEE Std 610.12-1990,

10 Dec 1990.

14. Cohen, Norman H., Ada as a Second Language, Second Edition, 979-998. McGraw-
Hill Companies, Inc., 1996.

15. Ludwig, Peter M., Formation Controlfor Multi-Vehicle Robotic Minesweeping,

Masters Thesis, Naval Postgraduate School, Monterey, CA, June 2000.

64

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Road, Suite 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library

Naval Postgraduate School

411 Dyer Road

Monterey, CA 93943-5101

3. Dr. Teresa McMullen

Office of Naval Research

800 N. Quincy St. Tower 1

Arlington, VA 22217-5660

4. Dr. Dan Boger

Chairman, Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943-51 18

5. Dr. Man-Tak Shing

Computer Science Department, Code CS/Sh

Naval Postgraduate School

Monterey, CA 93943-51 18

6. Dr. Dave Marco

Mechanical Engineering Department, Code ME/Hy
Naval Postgraduate School

Monterey, CA 93943-5146

CDR Michael J. Holden, USN(Ret).

1004 P.O. Lane #7

Pacific Grove, CA 93950

8. LT William D. Carroll, USN
PCS 476 Box 1213

FPOAP 96322-1213

65

G0 "^ri^v
G/02 99Fi?7-200 "Lf

