“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-09

Hypermedia process knowledge mapping (HyperPKM)

Vance, Christopher L.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7593

goals of open government and government transparency. All information contained

m“ KN D}(herein has been approved for release by the NP5 Public Affairs Officer.

LIBRARY Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

ﬂ‘“‘: D U DLEY Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and

hitp://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

HYPERMEDIA PROCESS KNOWLEDGE
MAPPING (HYPERPKM)

by
Christopher L. Vance
and

Kevin P. Sudhoff

September 1995

Thesis
V15175 Principal Advisor: Balasubramaniam Ramesh

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

= - e T
e gt s e (s Aapor 31 eenn
g ?L’:.‘:‘??;-':..J.L"‘E!'}:mmz Paperwors (704 0188) washington. OC 30501
7. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

eptember 1995

@ TITLE AND SUBTITLE 5. FUNDING NUMBERS
HYPERMEDIA PROCESS KNOWLEDGE MAPPING (HYPERPKM)

6. AUTHOR(S)
Vance, Christopher L.
Sudhoff, Kevin P.

——
z RMING ORGANIZATION NAME(S) AND 8. PERFORMING ORGANIZATION
i °) REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

| SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 0. SPONSORING / MONITORING.
[: AGENCY REPORT NUMBER

T1. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the

Department of Defense or the U.S_Government.

2a. msw-unomAvAumnv STATEMENT 2b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

3. ABSTRACT (Maximum 200 words)

The capture and reuse of design decisions and their rationale is increasingly being recognized as
very important in increasing softv and ivity. By using these concepts,
the DOD has recognizedthe ability to achievea significant reduction in development and maintenance costs
on all software development projects. The REMAP mode! provides the primitives and mechanisms for a

structured of this Our thesis a graphical user interface for the
REMAP model to facilitate easy acquisition and reuse of process knowledge. Much of the "informal”
of design d d rationale may be documents. The ability

to link such documents and search for "relevant” components of process knowledge from these is a key
attribute of the HyperPKM model. HyperPKM provides the capability to link and search multimedia
documents distributed in the WWW to the REMAP objects displayed in the graph browser.

4. SUBJECT TERMS. 5. NUMBER OF PAGES
60
REMAP, HyperPKM, Hypermedia, Indexing, Search, Retrieval 6. PRICE CODE

7. SECURITY CLASSIFICATION | 18 SECURITY CLASSIFICATION |19, SECURITY CL 20 LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclas UL
NSN 7540-01-280-5500 Standard Form 98 Wev 2:89)

i recriond by ANS| $13. 2391

reth

Approved for public release; distribution is unlimited.
HYPERMEDIA PROCESS KNOWLEDGE MAPPING (HYPERPKM)
Christopher L. Vance
Lieutenant Commander, United States Navy
B.S., U.S. Naval Academy, 1982
Kevin P. Sudhoff
Lieutenant, United States Navy

B.S., Auburn University, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION
TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 1995

Christopher L. Vance

Kevin P. Sudhoff

Approved by:
sh, Principal Advisor

Reuben T. Harris, Chairman, Department of Systems Management

iii

7 Ko
Vi
e

BubLEY kKNOX LiBRARY
HAVAL PO TGRADUATE SCHOOL
930435101

MoNTerEY ca

ABSTRACT

The capture and reuse of design decisions and their rationale is increasingly
being recognized as very important in increasing software development and

maintenance productivity. By using these concepts, the DOD has recognized the

ability to achieve a signi duction in devel and mai costs on all
software development projects. The REMAP model provides the primitives and

mechanisms for a structured rep ion of this i i Our thesis

implements a graphical user interface for the REMAP model to facilitate easy
acquisition and reuse of process knowledge. Much of the “informal” components of

design decision and rationale may be using multi i The

ability to link such documents and search for “relevant” components of process
knowledge from these is a key attribute of the HyperPKM model. HyperPKM
provides the capability to link and search multimedia documents distributed in the

WWW to the REMAP objects displayed in the graph browser.

TABLE OF CONTENTS

INTRODUCTION
A, GENBBAL » s o5 sunim e e moas s s wrassnssies s s misies waa 1

B. THESIS OBJECTIVES ..

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE 2
D. SCOPEANDPREPARATION 2
E: 'ORGANIZATION OF THE STUDY:.cccucivesasonsomsans 3
REMAP PROJECT ENVIRONMENToooioa... B
A. REMAPBACKGROUND..................................... 5
B. REMAP CONCEPTBASE IMPLEMENTATION 6
EXTENDING THE REMAP GRAPHBROWSER UTILITY (REMAP
GBUYPORTION OF HYPERPEMccvvivnninnrnmrosniv s 9
A. INTRODUCTIONiiiiiiiiiiiiiiiiiiiiaiaaannne, 9
B. ANDREW TOOLKIT (ATK) OVERVIEW 9
1. ITOAOEHVIN 3wz woie 55 4 S5 00 63 2amrs e swssioenis 21 593 9
2. Object Oriented Programming Environment . .
C. REMAP MODULES AND CLASS STRUCTURES 10
L RBmain Modulle « su s s oo masnimom sz a o s wwvs s 458 weares. o 10
2. MoQULBERHRE cos s v 51805 i o5 Bhienss 955 BT 2 20 AT £ w0 Ton 3 10
3. RAPPCIASS .ot 10
4. ROBICIASE: 15 wr wtizaivn 55 57 4510 it ok w1 oiesh0 904 o83 b 05 7% 005 11

5. Reraphv Graphview Class Rt

6. Robject Class .. 1
7. Requirement Class 11

8. ISSUSClESS cvsusonimssnssiminimsnessne cs smimenvsesms 12

9. PoSitON ClASS. ... oo prvsusasvsnrs sammsvanemsnemss son 12

10. Sellist Selectionlist Class . 12

D. REVISIONCONTROLt 12

1. Purpose of Revision Control 12

2. The Revision Control System (RCS) 12

3. Managing REMAP GBU Revisions Using RCS13

E. CODING HYPERPKM (REMAP GBU EXTENSION) 13

1 Cresting the Position/Class «.;c:zisesinirrcimsninsminiss 13

2. Creating the Search Related Documents Class Method 18

F. COMPILATION OF HYPERPKM 19

1. Setting Environment Variables19

2. Creating the Makefile 19

3. Makefile Generation and Code Compilation 20

Iv. SEARCHING VIA THE WORLD-WIDEWEB 21
A. EXISTING SEARCHOPTIONScooviiiniinaninnn, 21

B. INFORMATION INDEXING AND SEARCHING 22

C. IMPROVEMENTS TO KEYWORD SEARCH ENGINES 23

V. OVERVIEW OF THE HYPERPKM INDEXING GATEWAY25

viii

A STTEINBDEXING .. c5 misaoenevrwnmevnvnnsoman se e

1. Stop Wording

2. Word Frequency 26

3. Abbreviations and Acronymsoi.i... 26

4. WOrdiStERMING « . oo arc v s oz momemennems o= Ky g 26

B.. Boolean Searcheso i 27

B.: WHESAURUS: womems o% o 56205805 8 0 0.5 50 51ma 50525 o qomig 65 2,200 568 27

C. WORLD-WIDE WEB INTERFACEcc0unnsonscesssnsrms 28

VL EXAMPLE OF THE HYPERPKM INDEXING GATEWAY 31

VIL RECOMMENDATIONS AND CONCLUSIONS

A. DEVELOPERREQUIREMENTSc.oiiiinne.. 45
B. HELPFULREFERENCESo« o osoms o s powe oo sow ov s atiin 45
€. RECOMMENDATIONSccciineeinivinnseivessionssnnens 45
Ty BHUTUREWORK : ».50 00 5554058 4 5553255 51 A s Moo i .. 46

LIST OF REFERENCES

INITIAL DISTRIBUTION LISTot 49

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Figure 12.

LIST OF FIGURES

REMAP Conceptual Model 7
REMAP GBU SeS8i0Ml «: < scx=soz sussnssns 25 sams smsvms oo 32
HyperPKM Indexing Gateway 34
Searchable Document Hierarchy 35
Keyword and Selected Hierarchy Data Field 36
Document Resulting From Search Query 37
Alternative Search Technique 38
Output From Alternative Query 39
Selection of the Thesaurus Search Feature 40
Search With Thesaurus Function Enabled 42
Thesaurus Search By Topic Area 43
Document Retrieved Via Hypertext Link 44

1. INTRODUCTION

A. GENERAL
This thesis describes the development and implementation of the initial prototype of

Hypermedia Process Knowledge Mapping (HyperPKM). The HyperPKM model is a

d methodology by which of software design projects can achieve
improved documentation of design rationale and decisions. This improved documentation
is performed by attaching (or linking) hypermedia documents to the objects of a structured
conceptual model (REMAP), which captures design rationale and software design process
knowledge. The implementation of this prototype of HyperPKM is the culmination of an
intensive development effort which includes the extension of the REMAP GBU and
incorporation of a hypermedia search engine for use via the World-Wide Web (WWW--
http://sm.nps.navy.mil/webmaster/guide61/guide.01.html).

One of the major themes and driving forces of the use of hypermedia applications,

is its ability to effectively and expressi i i ion to the user of the

application [Ref. 1]. These complex hypermedia applications are typically very costly to
build, difficult to debug, inconsistent, or very siow to run, depending upon the tools with
which they are built. The Andrew Toolkit (ATK) helps the programmer avoid many of the
pitfalls and difficult problems in building such applications, and includes numerous helpful
tools for building hypermedia interfaces [Ref. 2]. ATK is a C language based utility

program which uses dynamic linking, ing, and an inheri ism to make

this complex programming task easier. The ATK and hypermedia application development
will be discussed in Chapter III.

Since ATK includes a vast hypermedia applications development toolkit, it is used
as the basis of the i ion of the ion and Mai of Process

knowledge (REMAP) Graph Browser Utility (GBU). REMAP GBU provides support for

the various holders in software projects by itting the

capture of the history of design decisions and rationale during the carly stages of the project

life cycle [Ref. 3]. The REMAP model, GBU and its benefits will be more thoroughly
discussed in Chapter II.
B. THESIS OBJECTIVES

A primary objective of this research is to develop a mechanism to link hypermedia

process k ige to instances of REMAP objects. The REMAP

model, which is at the heart of HyperPKM, is i in the C a

base management system. The implementation of REMAP within HyperPKM includes a
hypermedia search engine, and mechanism to link internal (concept base) and external

(WWW) hypermedia search query results to the application.

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE

There is a drastic need within the Department of Defense (DOD) to significantly
reduce development and maintenance costs on all software development projects.
HyperPKM provides a vehicle by which large scale software development and maintenance

projects can be more 11}

and i managed. Additi , the HyperPKM
model is easily ported across a wide spectrum of workstations, enabling its use as a standard

software development tool throughout DOD.

D. SCOPE AND PREPARATION
The scope of this thesis is limited to a detailed review of hypermedia concepts, the

REMAP model and hypermedia search engine ities. The i isa

of the design and implementation of HyperPKM to include the incorporation of the Position
Object, the WWW hypermedia documents search engine and the use of hypermedia to
capture and maintain process knowledge.

Advanced knowledge of the PERL scripting language and the C programming
language, as well as a basic understanding of the Andrew Toolkit are required for this work.
Preparatory work included an intensive C programming course at the University of
California at Santa Cruz, international cooperation in learning and utilizing the PERL

scripting language for use with the HyperPKM model, an extensive e-mail dialog with the

ConceptBase Development team at the University of Aachen, in Aachen, Germany and a

detailed review of literature about the Andrew Toolkit.

E. ORGANIZATION OF THE STUDY

Aside from the introduction and a final conclusions chapter, this thesis consists of
five major chapters. Chapter 11 elaborates on the REMAP model and its application.
Chapter 111 discusses the methodology used in the development and incorporation of both
the Position Object and the method that calls the hypermedia search engine. Chapter [V
deals with document searching via the World-Wide Web. Chapter V presents an overview
of the HyperPKM Indexing Gateway. Chapter VI illustrates the use of the HyperPKM

interface.

II. REMAP PROJECT ENVIRONMENT

A, REMAP BACKGROUND

The focus of the REMAP project is the structured capture of design rationale and
decisions, which are an important component of the history or "process knowledge” of
software development projects. Recent research suggests that capturing the design rationale
during the requirements engineering phase, early in the system development life cycle, can
be very helpful and productive in ensuring the resulting system more accurately meets user
requirements. This design rationale is typically lost in the course of designing and changing
a system [Ref. 3]. By providing a comprehensive picture of the software development
process however, the REMAP model increases the understanding of the design process and
"offers a mechanism for propagating changes in the design decisions into changes in design
solutions" [Ref. 4]. System designers, maintainers and users can use the process knowledge
captured by the REMAP model to:

cation and information exchange regarding requirements, issues, decisions,
constraints, etc. [Ref. 3].

o provide design support by facilitating int group

. reduce system mai efforts by maintaining process k ge at the
level of requirements and design rationales [Ref. 3].

L Help end users in understanding how exactly the design-deliberation process
addresses their requirements and see how requested changes cause reper-
cussions at the design level [Ref. 3].

The REMAP model incorporates the model primitives of the Issue Based Information
System (IBIS). The IBIS model, was developed by Horst Rittel and is based upon the
principle that the design process for complex problems is basically a conversation among the
stakeholders of a project. In this process, the stakeholders use their collective expertise and
viewpoints to obtain resolution of the design issues. IBIS uses a set of three design

primitives and the relationships among them in a rhetorical model to represent the

"argumentation” process [Ref. 5]. This set of design primitives includes Issues, Positions and
Arguments (see area enclosed by dashed line in Figure 1). An Issue is a question or concern
that must be answered before problem solving can continue. A Position is a possible answer
or statement that responds to a particular Issue. An Argument is a reason for supporting or
objecting to a particular Position. A specific Argument may either support or object to one
or more Positions [Ref. 5]. The IBIS model has been used at the Microelectronic Computer
technology Center (MCC) in the Design Journal research project as a way of representing
design deliberations in large design projects [Ref. 6].

The IBIS model was meant to capture the conversations and deliberations among the
stakeholders in complex problems. However, it "does not recognize the context in which
argumentations occur, nor the outcomes of the argumentations" [Ref. 3]. The REMAP

model, therefore, incorporated additional primitives (see Figure 1) to specifically address this

These are: qui L A ion, Decision, Ci int and Design

Object. Since a system is typically designed to satisfy some end user's requirements, the

primitive the ne ants that the users want the system to satisfy.
Additionally, since user's requirements tend to change over the life of the design project, the
REMAP model includes the flexibility to modify Requirements and begin the iterative
design process. Assumptions are included in the model to provide a basis for evaluating the
applicability or validity of an Argument represented in the model. Decisions represent the
selection of a given Position that then responds to an Issue and leads to the resolution of the
given Issue System designers then establish criteria and/or constraints that must be

incorporated in the final design. The design solution is represented by the Design Object.

B. REMAP CONCEPTBASE IMPLEMENTATION
The REMAP model is i in Ca -- a deductive object manage-

ment system which was developed at the University of Passau [Ref. 7). The ConceptBase
uses the Telos knowledge representation language, which is a high level object oriented

modeling language. Ct provides a inati ism that operates within

a client server architecture and can be distributed over local or wide area networks using the

Generslizesispecializes

oojects to

Depends on| § Qualifies

Selects’ Is resolved by

Createsiremovesimadifies | ' Depends on
1

Figure 1. REMAP Conceptual Modcl

Internet protocol. The REMAP GraphBrowser Utility program implemented in the
ConceptBase is written in the C programming language using Andrew Toolkit. This utility
is designed to provide a readily customizable front end GUI for the knowledgebase of
ConceptBase.

The GraphBrowser Utility (GBU) is a windows oriented interface which allows the
properties and contents of any displayed object to be graphically viewed by pointing and
clicking on the object with the left mouse button. These objects and their contents are
displayed by the GBU as a directed acyclic graph. Various menu choices within the utility

actuate queries that retrieve object instances and attributes from the knowledge base.

1II. EXTENDING THE REMAP GRAPHBROWSER UTILITY
(REMAP GBU) PORTION OF HYPERPKM

A, INTRODUCTION

The primary focus of this chapter is to discuss the tools and methodology that were
used to create the position object extension of REMAP GBU and develop search queries for
(and links to) related hypermedia design rationale documents which may exist on the WWW.
The Andrew ToolKit, which was used in the implementation of REMAP GBU, various

modules and class structures and hyper-link capabilities are discussed.

B. ANDREW TOOLKIT (ATK) OVERVIEW

3 Introduction

ATK was initially developed in 1982 as a joint venture between the Carnegie Mellon
University and the IBM C ion at the ion Technology Center. ATK consists

of three main components:

® The Andrew Messaging System.
® The Andrew Help System.

. The ATK and application programs.

Our discussion will deal specifically with the ATK and the object oriented environment
which it provides.

2. Object Oriented Programming Environment

As mentioned in Chapter I, the ATK is written in the C programming language and
also provides a preprocessing environment that cnables an object-oriented programming
environment and dynamic linking of code. ATK greatly simplifies the creation of complex
hypermedia applications through the subdivision of the program into manageable parts.

Large programs are written as a large number of components, cach of which describes some

behavior of some object. These objects interact to create a fluid and interactive program
[Ref. 8].

This behavior is accomplished in the ATK by use of the Andrew Class System. The
Andrew Class System was modeled after the C++ object-oriented environment and permits
the definition of class procedures and class methods (functions) [Ref. 9]. The Andrew Class
System provides a library of standard Andrew classes and a preprocessor. Additional user-
defined Andrew classes are created by making two additional files: the standard C file (*.c)
containing the class data and methods (functions), and a class header file (*.ch) which
contains the class specification. Upon compilation of the class data and header files using
a Makefile, the Andrew preprocessor generates two additional files. These files include the
import header file (*.ih) which is used when any other component needs to use the class

(inherit behaviors), and the export header file (*.ch) used when defining a class.

C. REMAP MODULES AND CLASS STRUCTURES

The following sections provide a brief introduction to the primary ATK and REMAP
GBU application modules and classes that provide the requisite behaviors to REMAP GBU:

1. Rmain Module

The rmain.c file provides the standard C main() routine that performs the basic
initializations and creates the application object. It also performs a static load of all non-
ATK resident classes that are specified in the code.

2. Modul Header

The header file modul contains macros and defines that may be used by any class or
module when it is included in that class' definition file. Additionally, it exports a pointer to
the application class appREMAP, which allows easier access to the class methods and
functions. Also, the primary macros that are included in modul provide for display of
information and error messages.

3. Rapp Class

This is an instantiation of the ATK resident application (parent) class. It provides

for inheritance of the ParseArgs, Start, Run, Stop and Fork methods for use as needed in the

10

application. The rapp class header, rapp.ch, holds pointers to the parameters that start the
program when called by rmain. They are initialized by the method Parsedrgs which is
called in the rmain module. This class also initializes the ConceptBase and the graph data
object when rapp_Start() is called.

4. RCB Class

The rCB class is the primary ConceptBase interface, and handles all of the

with the C server. It includes methods that allow connects and

disconnects with the server and provide communications via ask and tell statements.

5. Rgraphv Graphview Class

The rgraphv class is an instantiation of the ATK resident class graphview. It is a
specialization of the graphview class since it over-rides the inherited methods, such as
graphview_Hit(), which performs specific actions when an object is clicked on by the mouse.
Additionally, it provides its own menus and a means for updating and maintaining its menus.

Menu items within REMAP GBU are not implemented as class methods, and are
more similar to functions which could be located anywhere. Within this application, the
functions are placed in class definition files to which they are logically related. For example,
when developing the position object's issueobjCom_CreatePositionForlssue() it is placed
in the issue class file since it is logically related to issue.

6. Robject Class

The robject class file is a generic super class definition which provides basic class
behaviors and methods as well as inheritance for all objects which are displayed in the
graphview. In version 1.7 there are three object classes implemented: Requirements, Issues
and Positions. These object instantiations require the super classes methods to, at a
minimum, create, display and initialize each of the object instantiations.

7. Requirement Class

This class is a subclass of the robject class. It includes inherited methods which

the requi object, definitions which specify its shape and appearance within

the browser and other methods which define its interactions with the issue class.

8. Issue Class

This class is a subclass of the robject class. It includes inherited methods which
instantiate the issue object, definitions which delineate its shape and appearance within the
browser and other methods which define its interactions with the position class.

9. Position Class

This class is a subclass of the robject class. It includes inherited methods which
instantiate the position object, definitions which describe its shape and appearance within the
browser and other methods which define its interactions with the argument (not implemented
yet) and issue classes.

10. Sellist Selectionlist Class

The sellist class provides a window for selecting a single choice from a list of
displayed elements. It inherits its behavior from the ATK resident class suite. Selectionlist

uses a linked list of pointers which point to strings (char *) that you wish to display.

D. REVISION CONTROL
1. Purpose of Revision Control
Software revision control provides a means of managing the configuration or change
process of a software application over its life cycle. It is especially useful case of
developing REMAP GBU since it provides a means of recording the history, progress and
of the ication's

It also permits a method by which older

versions may be restored to regain a certain functionality or perform a d ofa
previous versions' capabilities.

2 The Revision Control System (RCS)

The GNU RCS is available on the network and "isr1" workstation where all the
primary work for REMAP GBU was done. Commands which were most frequently used
while developing this prototype include co(1), ci(l), res(l) and resdiff(l). The "man" pages

or any number of UNIX i contain indepth descriptions on the use of

these commands.

3. Managing REMAP GBU Revisions Using RCS

The development project was begun by creating the new version directory "v1_7" and

then checking out the code that was last logged in to the RCS database. The sequence of

commands to do this are as follows:

cd remap (change directory to where code exists)
mkdir vl_7 (creates the new prototype directory)
In -s ../sre/RCS (creates a soft link to RCS database

path)
co -r RCS/*.c* RCS/*.h* RCS/Makefile (checks out last version and releases
the lock for all code files needed)

To check in files to the RCS database while still working on the current version, the

following are used:

ci-rfkl.7 *.¢ *.ch *h (checks in *.c, *.ch and *.h files without locking,
forcing the checkin even without changes to file and
searches checking file for information keywords
containing author, change time, state, etc., to place in
the RCS database)

After entering this command, a short login script that describes the version is entered.

When version 1.7 was and no further i ions were to be made, the

following command was used to check in the final version to the RCS database:

ciof1.7 %c *ch*h (checks in *.c, *.ch and *h files with lock and
removes the files from the working directory)
CODING HYPER PKM (REMAP GBU EXTENSION)
1. Creating the Position Class
The following steps were taken to create the position class:
a Position.c

This code for the position object included the basic methods required to

initialize, destroy, create, display and return the group name of the position object. This was

13

created by using the same methodology used in version 1.5 (v1.5) code of issue.c. The
changes needed to turn the version 1.5 issue.c code into the version 1.7 position.c code

included the following:

e define the group name, which must be exactly as it will be defined it in
rCB.ch: szGroupName = szPOSITION;

® change the shape of the node to: #define szPosObjDefaultShape "rectnode";

L] change all instances of the words Issue or Iss to Position or Pos.

b. Position.ch

‘This class header file was created by re-using the methodology used for v1.5
issue.ch. The only changes required were to change all instances of the word Issue to
Position.

c Issue.c

This file was modified to include the behaviors needed to make the position
object fully functional. The methods GetAllPositions(), SelectOnePosition(), LoadPosition

Forlssue(), LoadAllPositionsForlssue() and Creat itionForlssue were placed in the issue
object since they were logically related to this object. The following were necessary to

complete the modification of issue.c:

. Since the basic implementation methods would need to be accessed the
position header file would have to be imported. The following command is
placed in the import section of the source code:

#include "position.ih"

. In the implementation section of the source code a character pointer variable
must be assigned that determines the name of the edge between the issue and
position objects. This name must be exactly the same as will be defined in
rCB.ch:

static char* szPositionCatName =
szPOSITION _respondsto_ISSUE

. GetAllPositions()and SelectOnePosition() were created by using a linked list
structure. These two methods are needed to provide a selection mechanism
to choose between a number of positions that may have been previously
created and stored in the ConceptBase during a persistent session.
GetAllPositions creates the linked list for a selected issue. The linked list of
positions is called by SelectOnePosition which then creates a "selectionlist"
which may be chosen from when rgraphv_MenusOn s called. It is extremely
important to remember when working with linked list structures that you
must ensure the last element of the list is assigned to "NULL".

e LoadPositionForlssue is used when an issue is selected which has a number
of positions that may be displayed. This method takes the position chosen
and displays along with its associated edge in the graphview. If there are no
positions from which to choose, a message is displayed stating "No Position’".

. LoadAllPositionsForlssue is used when the user selects this choice from the
GBU menu. The method calls GetAllPositions to create the linked list of
stored positions, and once the list is created traverses down the linked list to
display all positions and edges.

. CreatePositionForlssue methodology is the same as that used for
C F i One signi: i is that the order of
the arguments for rgraphv_InsertEdge must logically match that of the node-
edge arrangement that is created. In this case since POSITION_
respondsto_ISSUE is being developed, the direction of the edge's arrowhead
should point from the position(source) to the issue(target). The appropriate

command is:

rgraphy_) R EMAP), szCurltem,
szl issueobj_RetPositic 0,
issueobj_RetPositionsIssueCatGroupName());

d. Issue.ch

The only modifications required for this source file are the addition of the new

method and menu function protypes:

RetPositionsIssueCatName() returns char*;
RetPositionsIssueCatGroupName() returns char*;
GetAllPositions(char* szIssuelD) returns CLList;
SelectOnePosition(char *szIssuelD) returns char*;

15

overrides:
RetGroupName() returns char*;

5
/** these procedures will be called by menu commands ~ **/

extern void issueobjCOM_LoadPositionForIssue();
extern void issueobjCOM_LoadAllPositionsForlssue();
extern void issueobjCOM_CreatePositionForlssue();

e. Rmain.c

Two additions were required for this source file. They include adding
#include position.ih to the import section and adding positionobj_StaticLoad() under the
rStaticLoad() method.

A RCB.ch

Two defines had to be created for the ConceptBase. Recall from previous

discussion in position.c that the new position object functionality (object and obj y
names) had to be exactly as defined for the ConceptBase. This is needed since rCB provides
interface definitions for the ConceptBase that are also exported to be used by other source

files. In this case

#define szPOSITION "POSITION"
and
#define szPOSITION _respondsto_ISSUE "respondsto”
were needed to define the functionality that creates the position object and realted edge on
the graphview .
g Rgraphv.c
‘The following modifications were made to rgraphv.c to provide to menu items
required for the position object and the "Search Related Documents” function call:

. The following code was added after "remap-create-issue" to provide menu
items to call the methods required to load and create positions:

16

o *
RG_MENU_NOTHING,
. o
{ "remap-load-position”,
NULL,
", Load One Position",
NULL,
RG_MENU_MASK_ONE_ISSUE,
issueobjCOM_LoadPositionForlssue,
"Load a position for the selected issue”,
NULL},
™

{ "remap-load-all-positions",
NULL,

NULL,
*,Load All Positions",
NULL,
RG_MENU_MASK_ONE_ISSUE,
issueobjCOM_LoadAllPositions Forlssue,
“Load all positions for the selected issue”,
NULL},
~ £
{ "remap-create-position”,
NULL,
NULL,
",Create Position",

LL,
RG_MENU_MASK_ONE_ISSUE,
issueobjCOM_CreatePosition Forlssue,
"Create a new position for selected issue",
NULL},

The following code was inserted after the "Show Contents” menu selection
to create to make the "Search Similar Documents" menu selection:

P
RG_MENU_NOTHING,
Sr—
{ "remap-search-similar-documents",
NULL,
NULL,
"Search Similar Documents",
N

ULL,
RG_MENU_MASK_ONE_OBJECT,
robjectCOM_ShowSimilarDocuments,

“Search WWW for similar contents of a selected object”,

NULL},
— v

RG_MENU_NOTHING,
RG_MENU_NOTHING,
e —

Adding code to create the additional menu functionality was simply a task of reusing
segments of the current code. Once a similar segment was identified, the code was copied

to the new menu list location and modified to suit the required task.

. In the RetSelectState() method lines of code had to be added to account for
various position object counters and variables. On all lines where iReg and
ilss were initialized "iPos" had to be added. Additionally, a line had to be
added to account for incrementing a counter when the RetClassName()
method did a string comparison for position objects.

if positionobj RetCl 0)=0)
iPos++;

A "Menu_Mask" also had to be provided to account for position objects.

/* only one position selected */

if (iReq—0 && ilss—0 && iPos=—1)
INewMask |= RG_MENU_MASK_ONE_OBJECT | RG_MENU_MASK_ONE_
POSITION;

h. Rgraphv.ch
The only modification to rgraphv.ch needed was the addition of a #define line

to define the state of the menu "Mask_One_Position" item.

#define RG_MENU_MASK_ONE_POSITION (1<<4)

2. Creating the Search Related Documents Class Method

This method is implemented as class method within rgraphv.c. It uses a method
ShowSimilarDocuments(), which when activated by a mouse hit on the menu selection
"Search Related Documents", will fork a new process and display the hypermedia search
form. The method "Search Related Documents” is defined in robject.c source code. To

perform the coding of this method, the following were required:

. In the implementation section define a pointer to a character variable with the
proper Uniform Resource Locator (URL): static char* szObject
C s

splayURL = nps.navy.mil/cgi-bin/ice-form.pl";

. Change the browser to Netscape by changing the ObjectContentsDisplayTool
variable to: static char* szObjectContentsDisplayTool = "netscape"

. Create the method by using the basic methodology of the rObjectCOM _
ShowContents method. Required actions of the code were to fork a new
process (create a window with the Netscape browser application launched in
it) and call the hypermedia search form's URL afler the application was
launched. The code required to perform this is:

void robjectCOM_ShowSimilarDocuments(CRGraphv gv)
int pid;

/* fork a new process */

if ((pid = fork() > 0) {
message_DisplayString(rapp_RetGraphy
«c AP), 10, "Similar D
Search Form will be displayed...");
return;

}

else {
/* run called program */
execlp(sz0bjectContentsDisplayTool,
sz0bjectContentsDisplayTool,
szObjectContentsDisplayURL, (char *)0);

}

e Robject.ch needed to be modified to include a menu command procedure
prototype line to define the function "Show Similar Documents."

extern void robjectCOM_ShowSimilarDocuments();
F. COMPILATION OF HYPERPKM
1. Setting Environment Variables

The environment variables establish the paths which are necessary to complete the

compilation of the source files and dynamic objects as well as establish the required

i1}

dependencies. These variables are set in the .cshre file of the project directory and should

be set as shown below:

setenv ANDREWDIR /usr/local/andrew51
setenv PATH .:SANDREWDIR/bin:SPATH
setenv CLASSPATH .:SANDREWDIR

2. Creating the Makefile

The Makefile for this prototype was created by adding the required position object
dependencies. These are the same dependencies as required for all REMAP model
primitives, and help to define the basic parameters and objects which are necessary to define

the objects. A few of the required statements include:

position.o: position.ch ﬁncluddclmh /uxr/includz/sldlo I robject.ih
position.o:
position. uxr/lacal/nndrewsl/‘ndude/alk/lecth
position. uxr/locnl/nndrewSl/intludc/all:/pamLhmaduLlr
position.o: ../include/attrib.ih ./includ

position.o: u:r/locnl/anduwsmnclude/a:k//anmm.m
position.o: /ust/local/andrewS l/include/atk/graphic.ih
position.o: ust/locallandrewS1/include/atk/observe.ih
position.o. ixelimg. ih
position.o: ../include/attrib.h sellist.ih

position.o: /ust/localandrewS 1/include/atk/im.ih
position.o: /ust/local/andrewS1/include/atk/view.ih

This process was simplified by using xedit or emacs to copy the issue dependencies and then
substituting position for issue.

3. Makefile Generation and Code Compilation

When first compiling the code, making changes by adding dependencies (# include
statements) to the source files or any time after changes have been made in *.h or *.ch files,

you must use the command:

make headers depend rg
For subsequent compilations, you just need to enter
make

20

IV. SEARCHING VIA THE WORLD-WIDE WEB

A, EXISTING SEARCH OPTIONS

Recently, the use of the World-Wide Web has caught the attention of the DOD, so
much that, many organizations throughout DOD now have their own Home Pages on the
Web. This new method of providing and locating information has led to enormous amounts
of traffic being generated on military networks. Much of this traffic is generated by users
trying to located relevant information that s required for day to day operations. The DOD,
has in the past, relied heavily on Gopher (http:/sm.nps.navy.mil/webmaster/guide/
eeg_186 htmI#SEC187) and FTP (http://sm.nps.navy.mil/webmaster/guide/eeg_138.html)
sites to store and retrieve data from its various organizations. Users, would use search
engines such as Archie (http:/sm.nps.navy.mil/webmaster/guide/eeg 139 html) and
Veronica (http://sm.nps.navy. mil/webmaster/guide/eeg_187.html) to search these sites for
relevant information. In the way the Web is currently being used, these search engines are
obsolete.

“Existing searching techniques on [the] WWW fall into two main categories:
hypertext browsing and keyword searching (and a combination of the two)” [Ref. 10].
Browsing the Web involves “linking” or “surfing” from site to site. If the user is searching
for information in this fashion, ...“then the user must know the meaning of very broad terms,
and be able to judge where the specific information of interest falls under those terms.” [Ref.

10] When utilizing hypertext browsing in order to locate information, users can become lost

in hyperspace or overload” due the size of the Web.

Browsing is the common interaction paradigm for hypertext, when a user is
gathering information. It is very useful for reading and comprehending the
contents of a hypertext, but not suitable for locating a specific piece of
information [Ref. 11].

Moreover, keyword searching allows the user to search for a word, partial words,

combination of words, phrases, or words with boolean terms such as AND, OR, or NOT.

21

“Keyword searches typically make uses of a pre-compiled index (inverted list) which
contains an entry for each word that has pointers to all documents containing that word™
[Ref. 10].

B. INFORMATION INDEXING AND SEARCHING

Although the World-Wide Web provides a remarkably opulent foundation of
information, it does not support a consistent and efficient means of retrieving specific
information based on user-defined queries [Ref. 11]. Insofar, many types of search engines
have been developed for the World-Wide Web, such as, server-side indexers and “Robots”
or “Spiders”. A pre-compiled index or database is utilized by the search engine in order to
answer the users queries. This index can either be site-specific or Web-specific. A Web-
specific index is generated through the use of “Robots” or “Spiders”. The “Robot” automati-
cally travels the Web in search of new sites or information. When a new site or information
is found, a site index is generated and returned to the originating host of the “Robot”. This
index is then compared to the master Web index on the host to see if this site already exists.
If the site exists, then the master Web index is updated with whatever new information the
site might contain. If not, then the site is added to the master Web index. The problem with
this approach is that it takes a very long time for the “Robot” to travel the Web in search of
new information. Once found and indexed, a site might not be revisited by the “Robot” in

an acceptable amount of time. This leads to “dated” and sometimes useless information.

The nature of the WWW presents an unusual problem for building indexes.
Since there is no control over when and how documents are added to the
systems, there is no way to ensure that they are added to an index. This
problem if further complicated when the document is modified. This
problem is addressed somewhat by the use of robots and spiders such as
Lycos [(http://lycos.cs.cmu.edw/)] and WebCrawler [(http://webcrawler.
com/)]...But such programs place a heavy burden on network resources,
particularly since they must search the network repeatedly to find updated
materials (both new and revised) [Ref. 10].

22

Furthermore, many sites sit behind firewalls or are unknown to the rest of the Web, therefore,
a “Robot” will not locate them.

On the other hand, the concept of site-specific indexes is one in which an index is
generated by the site host. “By supplying a pre-computed index of keywords, a fully indexed
server eliminates the need for automatic indexers (such as web robots or spiders) to walk the
entire server tree, which is an unnecessary waste of resources” [Ref. 12]. The index is
accessed via a gateway or interface over the World-Wide Web in which users can submit

queries to the index or database.

Some World-Wide Web servers already implement keyword searches via an
interface to [indexes such as] WAISINDEX [(http://sm.nps.navy.mil/
webmaster/guide/eeg 212 himl)]. However, this approach lacks many
important features that free text search engines provide, and does not support
remapping of physical directory structures to virtual paths [Ref. 12].

The remapping of physical directory structures to virtual paths is necessary for
hypertext to work via a World-Wide Web gateway, thus allowing the user to access, via

hypertext links, whatever information was indexed on a system. The index can be updated

y anytime new i ion is added to the hosts” system. This is the approach
that is taken by the HyperPKM model.

C. IMPROVEMENTS TO KEYWORD SEARCH ENGINES

Built into the HyperPKM model is the ability to perform keyword searches by
incorporating and supporting substring matching, proximity searching and thesauri based
queries. Individually, these features are not new to keyword searching, but when all are used
in conjunction with a site-specific index and a specific technical thesaurus, a user would be

able to locate all information the site contained that was relevant to the user’s queries.

23

24

V. OVERVIEW OF THE HYPERPKM INDEXING GATEWAY

The use of the HyperPKM model requires the use of site indexing based on certain
criteria. In order for an index to work efficiently and provide relevant data to the user, an
index of the documents contained on the system must be generated. This index is a
categorized listing of all the relevant words located within the documents. Limiting the size
and relevance of the index and being able to provide useful information to the user is an item
of concern that is addressed.

The HyperPKM model also incorporates a specific technical thesaurus that allows
the user to access a database of terms that are related to the queried keyword(s). This feature
allows for the broadening and narrowing of related search terms, thus, providing the user
with an increased ability to locate desired documents.

Accessing the HyperPKM model is done through the use of a graphical interface
between the user and the server via the World-Wide Web. This provides for the ability of
any computer system utilizing any Web browser to access the documents contained on the

host system.

A. SITE INDEXING

Various considerations must be dealt with in creating an index of a system and being
able to perform searches on the index. A database or archive may contain a myriad of
documents that when indexed would create an index of substantial size. Thus, system
resources and the time required to perform a search become factors.

‘The considerations of site indexing and searching that must be undertaken are: (1)
stop wording, (2) word frequency, (3) abbreviations and acronyms, (4) word stemming, and
(5) boolean searches

1. Stop Wording

One purpose of the HyperPKM indexing model is to allow users to differentiate
between the differing documents returned as a result of a query. Various documents that

contain many of the same or “common” words are not useful for differentiation. This

25

problem can be solved through the use of Stop Wording. Stop Wording can be accomplished
automatically by the indexer in two different ways. The indexer can define a word as
“common”, that is, the word is contained in over a large percentage of all indexed files, or
the indexer can access a Stop Wording list. A Stop Wording list is constructed manually and
can be updated as the need arises. The list would contain words that the system
administrator felt were too common to be of use for search and retrieval. These words would
not be indexed, nor would they show up as a result of a query for such words.

2. Word Frequency

‘Word frequency is the number of occurrences that a word is located in a document.
Through the use of an inverted index, each documents” word count is tabulated and stored
in the index. This feature gives the user some impression as to the relevance of the keyword
to the document itself.

3. Abbreviations and Acronyms

Throughout the DOD, terms that are abbreviations and acronyms of words are very

prevalent. These terms have to be dealt with in a predefined way. If a query is conducted

for “IT”, an iation for ion T ””, then the indexing system must know
the difference between “IT” and “it”. Otherwise, the user would be presented with an
overwhelming number of documents that contain the term “it” (unless “it” is contained in
the common or stop wording list). The HyperPKM model assumes that any abbreviation or
acronym would be represented by all capital letters. Ifa term with two or more capital letters
is encountered while indexing, the term is considered to be all capitals. For an abbreviated
term or acronym to be located during a query, the user must enter the term in all capital
letters.

4. ‘Word Stemming

Word stemming (also known as substring matching or fault tolerant retrieval) allows
for the search and retrieval term to be broadened. This feature allows the user to input a
keyword and for the server to return all variances of the word (i.e., retrieve = retrieves =
retrieved = retrieving) The HyperPKM model accomplishes this through the use of the
Levenshtein algorithm [Ref. 13].

26

S Boolean Searches
Boolean searches allow for the query to consist of more than one keyword. Through
the use of boolean operators (i.c., and, or, not, near), the user can query the index to locate

documents that contain certain combinations of words. Such operators would be utilized as

follows:
e Information and technology (both terms must be in document).
. Information or technology (either term must be in document).
. ion not (only “infc ” in document).
. ion near# technology (“inf¢ ion” must be within # words of

“technology” - also known as proximity scarching).

The HyperPKM model utilizes these boolean search operators and can be setup to
assume either the “and” or “or” operator in the event two or more keywords are entered

without the use of any boolean operators.

B. THESAURUS

A thesaurus is considerably more than a list of synonyms. “It is a semantic network
containing concepts that are related to one another in various ways” [Ref. 12]. The
HyperPKM model employs a specific technical thesaurus that utilizes the ANSI (American
National Standards Institute -- http://www.ansi.org/) standard Thesaurus Image Format
(TIF). In this manner, a query is not only a search for a keyword, but a conceptual search
for word meaning and topic area. To utilize this feature, a specific technical thesaurus that
pertains to the documents/keywords at hand must be created.

One way to develop a specific technical thesaurus is to generate one automatically
through the use of computer programs and scripts [Refs. 14, 15, 16, 17, and 18]. However,
a thesaurus that is generated automatically by computers produce low precision levels in
respect to ones developed by people. A thesaurus developed by humans realize a 77-98%

concept precision level, whereas, the one’s generated automatically by computers realize a

27

24-37% precision level [Refs. 14 and 15]. In the case of the HyperPKM model, a specific

technical thesaurus was created manually from all available sources of information.

C. ‘WORLD-WIDE WEB INTERFACE
The HyperPKM Indexing Gateway is a CGl (Common Gateway Interface --

http://hoot ncsa.uiuc. gi/i ‘html) li

server software, such as the HTTPd public domain server software from the National Center

interface. Through the use of host

for Super C i lications (NCSA -- http:/h; nesa.uiuc.edw/docs/Overview.

html), a gateway can be created to provide documents and files to Web browsers such as the

Netscape Navig: (http://www.mcom. p ape_nav.html) or Mosaic™

(http:/www.ncsa.uiuc.edw/SDG i 'SAMosaicHome.html). This means

that through the use of the HyperPKM Indexing Gateway, the responses to users queries are
dynamically generated, created on the fly and executed in real time. The user inputs what
is required of the system and the system responds and generates a reply. A CGI program
such as the HyperPKM Indexing Gateway is in essence, a program that is open for all to use.

The CGI program provides for the utilization and access to the host HTTPd server
via the World-Wide Web. Scripts written in a language called PERL (http:/www1.cis.
ufl.edwperl/) are used to process the users inputs. These scripts are run as a background
operation to the actual HyperPKM Gateway Interface. The user inputs a query and then the
PERL scripts are invoked. The user’s queries are broken down into subsections based on
what the user selected on the gateway interface form. Keywords that are entered are
compared to the site-specific index. Search operators, if any, are identified and used.
Finally, if selected, the specific technical thesaurus is interpreted for any related words to
the queried keywords. Then the PERL scripts generate a HTML document listing all
documents that conform to the users queries. This generated document does not exist on the
host system, but is created only for the current user. It contains the following information

based on the users inputs:

28

. The keyword(s) that the user entered.

. The context or document hierarchy that was searched.
° Any search operators that were selected or entered by the user.
. Utilization, if selected, of the thesaurus and/or substring matching.

The document also contains items, based on what was discovered in the site-specific index,

that are relevant to the users query, such as:

L Titles of documents that are related to the search query.

° File date or last change date (for determination of currentness).

° The directory or subtree of hierarchy in which the document is located.
. Actual filename.

. The keyword(s) or related words that were found.

. The number of occurrences of each word found.

Since the documents are dynamically generated, virtual paths are created in order for
hypertext links to be utilized. The title of the document becomes the hypertext link so that
the user only has to select the desired document and then is “linked” to the document of

interest. The document is then displayed for the user to peruse.

29

ur

VI. EXAMPLE OF THE HYPERPKM INDEXING GATEWAY

In this chapter, the use of HyperPKM is illustrated as a scenario in which a REMAP

object is linked to the contents of a large volume of g ing the

of g systems. These d are part of a DOD acquisition manual which is
used by the military in fulfilling the mission needs in terms of acquisition.

The DOD acquisition manuals consist of numerous documents that are related to the

ti ing process of the of mission essential components. In using these

manuals, the ing of the i ip between is essential to project
completion and knowledge of numerous key terms and acronyms is imperative. Being able
to locate vital information is a necessity, yet, is often a very time intensive and futile process.
The need for a search and retrieval engine that can be tailored to the specific requirements
of the acquisition process is dealt with by the HyperPKM model. During the development
of systems for the DOD, it is important for a designer to access information relevent to the

project that may be contained in acquisiti DOD acquisition manuals consist

of numerous volumes of information. Many project tasks are conducted offsite, away from
the project office. Laptop computers help to serve as an intermediary way to alleviate the

problem of bility of the isition d: However, they have limitations.

Usually, due to capacity and search constraints, only the required documents dealing with
the task at hand are loaded onto the laptop computers. Many times, the need for additional
documents is required. However, due to time constraints and locality, the notion of returning
to the home office is not an option. Thus, the avenue for the utilization of the World-Wide

‘Web. Through the use of the laptop computer, a phone line or a cellular phone, the project

31

member can contact the home office server via a dial-up account, execute an X-Window
session and by starting the REMAP GBU portion of the HyperPKM model, continue work
on an ongoing design project as well as search for and retrieve any pertinent information.
To begin this demonstration, let us assume that a design project includes user Requirements,
a generated Issue and a Position. The Requirement of interest specifies that the design
project must be within budget constraints. The related Issue concerns which budgeting and
planning method should be used. Our Position relates that our organization must use the
Planning, Programming and Budgeting System (PPBS) method. To start the on-line session,
the user starts the REMAP GBU and creates the Requirement, Issue and Position as shown
in Figure 2. To search for additional supporting information for the Position that may exist
on the WWW, the user selects the position Use_PPBS with the mouse and then selects the
Search Related Documents option (shown on Figure 2). This selection activates the

Netscape™ browser and accesses the HyperPKM Indexing Gateway.

Lottt
e

i
{
|
|
|

= ——— - ===

Figure 2. REMAP GBU Session

The HyperPKM Indexing Gateway is 2 user friendly interface between a client and
server via the World-Wide Web. It allows for search and retrieval with the minimal of effort
on the part of the user. An illustrated example is portrayed showing the search and retrieval

32

capabilities of the HyperPKM model and 2 DOD acquisition manual as the source of indexed
information. Figure 3 depicts the HyperPKM Indexing Gateway as seen with the Netscape
Navigator™. The gateway is built upon a modified version of the ICE search engine
designed by Christian Neuss of the Fraunhofer Institute for Computer Graphics
(httpr//www.igd.fhg.de:80/).

Data entry fields are made available to the user to enter the following data:

o Keyword(s).

. Boolean search operators (and, or, etc.).

. Date relevancy searches (check for revised documents).
. Thesauri based searches.

® Substring searches (word stemming).

. Document hierarchy.

Document hierarchy is an important feature in that it allows the user to limit the
search criteria to a predefined subset of the total document structure. This feature helps to
narrow down the search area and prevents information overload by having too much
information presented to the user.

The acquisition process hierarchy is broken down into 2 total of six phases. As
shown in Figure 4, the user can select to search either the entire acquisition manual document

or any one of the individual phases.

w
b}

File Edit View Go Bookmarks Options Directory. — Hel

Figure 3. HyperPKM Indexing Gateway

34

Netscape - [HyperPKM Indexing Gateway] [~

[File_Edit View Go Bookmarks Options _Directory Help

n
Engineering and Manutacturing Developrmcot vmusiwmas: 3
Prinction 1nd Decleymest [AcquehiiPlss.

Figure 4. Searchable Document Hierarchy _

To illustrate the example, the search term of “PPBS” (Planning, Programming and
Budgeting System) has been entered into the keyword search field (see Figure 5). The
document hierarchy field has been set to “Pre-Concept Exploration” or Phase 0 on the notion
that the user is searching for information dealing solely with this area of the acquisition
process (see Figure 5). This action will greatly reduce the amount of superfluous
information that is generated and will keep the data manageable for the user.

e Edit _View ‘Bookm: Qptio; irectory

Figure 5. Keyword and Selected Hierarchy Data Field

36

Upon the selection of the “Start Search” button by the user, the HyperPKM Gateway
Interface calls the associated PERL scripts to perform the search of the site-specific index.
Any related information that is contained in the index is retrieved and parsed, and then it is
transformed into a dynamically generated HTML document complete with virtual remapping
of the documents’ location (see Figure 6). A search conducted in this manner for the
keyword “PPBS” under the Pre-Concept and Exploration phase resulted in only two
documents being found (see Figure 6).

Figure 6. Document Resulting From Search Query

37

The user could also enter the keywords “planning and programming and budgeting”™
(see Figure 7) in which case the search would return 2 total of three documents that are

related to the query (see Figure 8).

planning and progzamaizg and budgetizg

Figure 7. Alternative Search Technique

arch of HyperPKM Indexing Gatewayl Il

B N ape
File Edit View Go Bookmarks Options Directory Help

Figure 8. Output From Alternative Query

If the documents that are retrieved do not meet the needs of the user and the user is
unable to provide supplementary related keywords to search for, then the option of selecting
additional search methods is of great significance. The thesaurus search and substring
matching functions provide for greater versatility (see Figure 9). The thesaurus search option
utilizes the keyword(s) that was/were entered by the user and then performs a search of the
specific technical thesaurus data file for any related terms. These related terms are then

Netscape - [HyperPKM Indexing Gateway]
[File_Edit_View Go Bookmarks i

Figure 9. Selection of the Thesaurus Search Feature

40

matched against the site index for any additional documents that are contained in the selected
document hierarchy.

For this project, a specific technical thesaurus was developed utilizing 2 DOD

manual and ing N1 keywords were evaluated for
corresponding word meanings and relevant relationships to other keywords. As in the case
of the keyword “PPBS,” a total of 12 additional keywords were found to be relevant. Three
of these additional keywords (planning, programming and budgeting) would most likely be
known to the user and probably searched for. The remaining nine keywords are most likely
unknown to the user, in the context specified, and therefore, would present the user with
additional information relating to the query. Figures 10 and 11 depict the documents that are
generated as a result of searching for “PPBS” with the thesaurus function selected. As a
result of this type of search, 2 total of 45 documents were found with 23 of them containing
two or more distinct and related keywords. With the thesaurus feature, a search is conducted
by topic and not by query. Hence, documents will be retrieved whether or not they contain

the keyword(s) that was/were being searched for (see Figure 11).
Once a document is found to meet the users’ needs, the selection of the documents

title, which is a hypertext link, will take the user to the selected document (see Figure 12).

41

Figure 10. Search With Thesaurus Function Enabled

42

-ape - [Search of =1=]

Edit Vi §nﬂnh1\:lh jons_Directory elp

Figure 11. Thesaurus Search By Topic Area

Figure 12. Document Retrieved Via Hypertext Link

VII. RECOMMENDATIONS AND CONCLUSIONS

A. DEVELOPER REQUIREMENTS

To continue development work with REMAP GBU, a developer should have a
number of basic requisite skills. First, a good working knowledge of the UNIX operating
system is required. A general knowledge of the Andrew Toolkit is also necessary so that the

programmer understands the tools available and the object oriented environment which it

provides. it , a thorough ge of the C ing language is essential.

Arrays, pointers and are used ively in the applicati i . The

most invaluable knowledge was gained of the application environment by numerous hours
of experimenting with the application and exploring the previous versions of the code.
Through the use of the PERL scripting language, the HyperPKM Indexing Gateway
can be modified to provide greater search functionality for the user. Not only can the
usefulness of the current search operators (boolean, thesauri, substring matching) be further
enhanced, the ability to conduct proximity, wild card and conceptual searches can be

implemented.
B. HELPFUL REFERENCES

The only comprehensive reference book available for the Andrew Toolkit is

Nathaniel in's book imedi ications D with the Andrew Toolkit.

This book is written for the advanced programmer with a solid base of C programming
knowledge. The most helpful information conceming the Andrew Toolkit and the REMAP
GBU environment can be obtained from the ConceptBase design team at the University of
Aachen, in Aachen Germany. Throughout this project an extensive e-mail exchange was
conducted with the team.
C. RECOMMENDATIONS

The Search Related Documents method could be improved to provide a better user
interface. An improved interface might provide a dialog box to query the user as to what

terms to search for, the appropriate boolean connectors to use, whether substring matching

45

or thesaurus searching is desired, etc. prior to passing those arguments to the search
mechanism. This improvement would provide a cleaner interface with a mechanism to link

and or save to the C any additi i ion which help d the current

design project.
D. FUTURE WORK

The HyperPKM model can be further modified to allow for “Smart Searches”. That
is, the ability to perform thematic content-oriented searches of documents contained within
ahost server. In utilizing thematic searches, an analysis of the document content, instead of
word frequency, is conducted. This concept allows for documents to be retrieved that do not
even contain any of the keywords queried or references to a thesaurus data file. Word
connotations are understood by the indexing and search engine. The differences between
“Computer monitor,” “Health monitor” and “System monitor” are all understood. The

“theme” of a d is ded. A d may contain di:

to “refresh rate,” “screen size” or brand name, and would still be retrieved even if the term
“computer monitor” was not in the document itself [Ref. 19].

A program such as Oracle’s™ TextServer 3 [Ref. 19] with the use of Oracle’s
database, can be incorporated into the HyperPKM model, thus, allowing the expansion of the
search and retrieval capabilities of the HyperPKM search engine. Such an implementation

is feasible in the context of the practicality and functionality of the HyperPKM model.

46

LIST OF REFERENCES

Blattner, Meera, and Danneberg, Roger, Multimedia Interface Design, New
York: Addison-Wesley Publishing Company, p. xix , 1992.

Multimedia Avpli

5 ions De
Toolkit, Englewood Cliffs: Prentice Hall, Inc., 1990 .

)2 with the Andrew

Ramesh, Balasubramaniam, and Dhar, Vasant, Supporting Systems Develop-
ment By Capturing Deliberations During Requirements Engineering, IEEE
Expert, Vol. 18:6, pp. 498- 510, 6 June 1992.

Ramesh, Balasubramaniam, and Dhar, Vasant, Representing and Maintaining
Process Knowledge for Large-Scale Systems Development, IEEE Computer
Society Press, pp. 54-59, April 1994.

Conklin, Jeff, and Begeman, Michael, gIBIS: 4 Hypertext Tool for Explora-
tory Policy Discussion, ACM Transactions on Office Systems, October 1988.

Rittel, Horst, Dilemmas in a General Theory of Planning, Policy Sciences,
Vol. 4, 1973.

Jarke, Matthias, ConceptBase V3.2 User Manual, Unversity of Aachen, p. 1,
1993.

B , Multimedi ications Develop with the Andrew
Toolkit, Englewood Cliffs: Prentice Hall, Inc., p. 13, 1990.

Palay, Andrew and others, The Andrew Toolkit: An Overview, paper presented
at the UESNIX Association Winter Conference in Dallas, Texas, p.7, February
1988.

Beck, Howard W., Amir M. Mobini, and Viswanath Kadambari, 4 Word is
Worth 1000 Pictures: Natural Language Access lo Dlgllﬂ[Libraries, http:/
www.ncsa.uiuc.edw/SDG/IT94/P di in.html

47

De Bra, PM.E., and R.D.J. Post, Searching for Arbitrary Information in the
WWW: The Fish- Search for Mosaic, http://www.ncsa.uiuc.edw/SDG/IT94/

P di d icle.html

Neuss, Christian, and Stefanie Hofling, Lost in Hyperspace? Free Text
Searches in the Web, http://www.igd.fhg.de/~neuss/w4-main.html.

Levenshtein, V.I., Binary Codes Capable of Correcting Deletions, Insertions
and Reversals, Soviet Physics Doklady, Vol. 10, 1965.

Chen, Hsinchun, Bruce Schatz, Joanne Martinez, and Tobun Dorbin Ng,
Automatic Thesaurus Generation for FlyBase, http://ai.bpa.arizona.edu/papers/
sigir93/listoffigures3_2.html.

Chen, Hsinchun, Bruce Schatz, Tak Yim, and David Fye, Automatic
Thesaurus Generation for an Electronic Community System, http://ai.bpa.
arizona.edu/papers/worm94/listoffigures3_2.html.

Chen, Hsinchun, and Kevin J. Lynch, 4utomatic Construction of Networks of
Concepts Characterizing Document Databases. http:/ai.bpa.arizona.edu/
papers/ieee91/listoftables3_2.html.

Chen, H., K. Basu, and T. Ng. An Algorithmic Approach to Concept Explora-

tion in a Large Knowledge Network (; ic Thesaurus Ca

Symbolic Branch-and-Bound Search vs. C ionist Hopfield Net Activa-
tion, http://ai.bpa.arizona.edu/papers/snnn92/listoffigures3_2.html.

G Gregory, ic Thesaurus G ion from Raw Text using
Knowledge-PoorTe i WWW.XErox. ports/home.
html.

Information Highway or Information Ocean? Oracle Delivers Software to
Control the Flood of Text-Based Information, http://www.oracle.com/info/
news/textserver3.html.

48

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 013 2
Naval Postgraduate School
Monterey, CA 93943-5101

Prof. Balasubramaniam Ramesh (Code SM/Ra)
Naval Postgraduate School
Monterey, CA 93943-5103

Prof. Suresh Sridhar (Code SM/Sr)
Naval Postgraduate School
Monterey, CA 93943-5103

ChristopherL. VANCE cirs a6 siare ssre 9516 5 550 sV s e §anu s wniasane 2
¢/o Mr. & Mrs. A.B. Vance

917 Dorsett Way

New Bern, NC 28562

Kevin PoSUANOFE . crore w55 5 w10 1w 1 05 51386 €10 78018 90609 01006 96,5 55 5 850 000 e we 2
¢/o CDR & Mrs. Herb Sudhoff

Route #2

Sparta, TN 38583

49

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93043-5101

! £ KnOX LiBRARY

T
3 2768 00319752

8 6

