
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-09

Hypermedia process knowledge mapping (HyperPKM)

Vance, Christopher L.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7593

Thesis
V15115

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

--.

THESIS

HYPERMEDIA PROCESS KNOWLEDGE
MAPPING (HYPERPKM)

by

Christopher L. Vance

and

Kevin P. SudhofT

September 1995

Principal Advisor: Balasubramaniam Ramesh

Approved fo r public release; distribution is unlimited.

• ';<.'i.V KNOX LlBRARV I,.. ;:>QS roRAOUATE SCHOOL
' !l" r'(CA 83043-51ill

REPORT DOCUMENTATION PAGE

4. TITLE #liND SUITllLE

H'YPERi'\lEDlA J'ROCESS KNOWLEDGE MAPPING (HYPERPIQf)

, . AUTHOfI(S)

Vance.ChrisiopherL
Sudhoff, Kevin P.

7. PERfORMING ORGAN IZATION "' '''MEIS) AND AOOIIESS(U)

NaV31 Postgrad ua te School
MOnlcrey, CA 93943-5000

i . SPONSORING/MONITORING AGENCY NAMf(Sl AND AODRESS(ES)

form ApPfO d

OM8 No. OlQ4·0lif8

•. PERFORMING OIIG"'''''1.-110N
REPORT NUMBER

10. SPONSO RING/ M ONITORING
AGE NCY III PORT NUMnR

The views expressed in this thesis are those of the author and do not reflect the official pol icy or po,ilion of the
De artment of Defen.~e or ttIC U.S. Government

Approved for public release; distribut ion is unlimited.

The capture and reuse of design decisions and the ir raTiona le is increasingly tlCing recognized as
very important io increasing software de~elopment and maintenanceprOOuclivity. By using IlIcse concepts,
tile DOD lias recognized the ability to achieve a significant reduction in developmelU i'IlId maintenance costs
on all software development projects_ The REMAP mood provides lhe primitives and mechanisms for a
structured representat ion of this infonnation, Our thesis implements a graphical user interface for the
REMAP model to facilitate easy acquisition and reuse of process knowledge. Much of the "infonnal"
components of design decision and rationale may be represented using multimedia doclUllenl', Th~ ability
to link such documents and search for "relevant" components of process knowledge from tbese is a key
attribute of the i-lyperPKM model. HyperPKM provide~ the capabi lity to link and search multimedia
documents distributed in the WWWIO the REMAP objects displayed in the graph m-owser

REMAP, HyperPKM. J-Iypennedia, Indexmg. Searcll . Retrieva l

17. UCURlr.v ClASSlfICATIO"l 1"_ SECURln n ... SSlft(... nON 1"- SECURltV Cl SStfICATION
Of RE PORT Of THIS P"'Gl Of ... BSTRACT

UnclasSIfied UnclaSSIfied UnclaSSIfied

15 . NUMSER Of 'AGH

6 0

St andard Form 298 (~~, 2.89)
~~ ,';';"" ", . ~" ",. ".-'.

Approved for public release; distribution is unlimited.

HYPERMEDIA PROCESS KNOWLEDGE MAPPING (HYPERPKM)

Chri stopher L. ~anee
Lieutenant Commander, Umted States Navy

B.S., U.S. Naval Aeadl:lllY, 1982

Kl:vin P. Sudhoff

Lieutenant, United States Navy

B.S., Aubum University, 1988

Submitted in partial fulfillment

of the fequirl:mellts fo r the degree of

J\.-I ASTER OF SCIENCE IN INFORMA nON

TECHNOLOGY .MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

A.,h"" _ ... ___ ~
U Christopher L. Vance

~--
Approved by:

Rl:uben T. Harris, Chairman. Department of Systems Management

iii

~,;

r'l.J7l'I
1'.1-

iv

ABSTRACT

The capture and reuse of design decisions and their rationale is increasingly

being recognized as very important in increasing software development and

maintenance productivity. By using these concepts, the DOD has recognized the

ability to achieve a significant reduction in development and maintenance costs on all

software development projects. The REMAP mouel provides the primitives and

mechanisms for a structured representation of this infonnation . Our thesis

implemenls a graphical user interface for the RHvlAP model to faci litate easy

acquisition and reuse of process knowledge. Much ofthe "infonua1" components of

design decision and rationale may be represented using multimedia documents. The

ability to link such documents and search for "relevant" components of process

knowledge from these is a key attribute of the HyperPKM model. HyperPKM

provi des the capabi li ty to link and search multimedia documents distributed in the

WWW to the REM..hJ> objects displayed in the h'Taph browser

TABLE OF CONTENTS

INTRODUCTION. . .. , 1

A. GENERAL 1

B. THESrS OBJECTIVES 2

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE 2

D. SCOPE AND PREPARATION 2

ORGANIZATION OF THE STIJDY . J

II. REMAP PROJECT ENVIRONMENT 5

A REMAP BACKGROUND 5

B REMAP CONCEPTBASE I1fPLEMENT A nON .6

111. EXTENDING THE REMAP GRAPHBROViSER UTILITY (REMAP
GBIl) PORTION OF HYPERPKM 9

A. INTRODOCTION .9

B. ANDREW TOOLKIT (ATK) OVERVIEW .. 9

Introduction . .. 9

2. Objcct Oriented Programming Environment. ..9

C. REMAP MODULES AND CLASS STRUCTURES ... 10

Rmain Module . to

2. Modul Header 10

3. Rapp Class . .. \0

4. RCB Class . . . 11

vii

IV .

v.

Rgraphv Graphvh::w Class .

6. Robject Class.

Requirement Class.

S. Issue Class.

9. Position Class.

10. Sellisl Selectionlist Class.

o REVISION CONTROL

. 11

II

.11

12

.. 12

. . 12

. 12

Purpose of Revision Control . 12

The Revision Control System (RCS) . . 12

Managing REMAP GBU Revisions Using RCS . . 13

E. CODING HYPERPKM (REMAP GBU EXTENSION) . 13

Creating the Position Cla~s . . . 13

Creating Ihe Search Related Documents Class Method. . . 1 R

F. CO\tlPILATION OF HYPERPKM .

Setting Environment Variables .

2. Creating the Makefile

Makefile Generation and Code Compilation.

SEARCHING VIA THE WORLD-WIDE WEB

A EXISTING SEARCH OPTIONS

. 19

. .. 19

. 19

. 20

21

.21

n. INFORMA nON INDEXING AND SEARCHING . 22

C. IMPROVEMENTS TO KEYWORD SEARCH ENGIN ES. 23

OV ERVIEW OF THE HYPERPKM INDEXING GATEWAY. 25

viii

!\ SITE INDEXING

Stop Wording .

2. Word Frequcncy .

Abbreviations and Acronyms

4. Word Slenuning

5. Boolean Scar1: hes

B. THESAURUS.

C. WORLD-W1DE WEB INTERFACE

VI. EXAMPLE OF THE lIYPERYKM INDEXING GATEWAY.

VII . RECOMMENDATIONS AND CONCLUSIONS

A. DEVELOPER REQtJlREMENTS

11 . HELPFUL REFERENCES .

C. RECOMMENDATIONS

D. FUTUR E WORK .

LIST OF REFERENCES

IN ITIAL DISTRIBUTION LIST .

ix

... 25

25

.. 26

.26

... 26

27

. .. 27

28

. 31

..... 45

45

. .. 45

... 45

.46

47

. 49

LIST OF FiGURES

Figure I. REMAP Conceptual Mode! .

Figure 2. REMAP GBU Session

Figure 3. IIyperPKM Indexing Gateway

Figure 4. Scarehable Document Hierarchy.

Figure 5. Keyword and Selected Hierarchy Data Field

Figure 6. Document Resulting prom Search Query .

. .. 7

32

.. 34

.. 35

. ... 36

. 37

Figure 7. Alternative Search Technique 38

Figure 8. Output From Alternative Query ..

Figure 9. Selection of the Thesaurus Search Feattue

Figurc 10. Search With Thesaurus Function Enabled .

Figure II. Thesaurus Search By Topic Area

Figure 12. Document Retrieved Via Hypertext Link .

. .. 39

. ... 40

.... . .. 42

. 43

44

1. lNTROOUCfION

A. G EN ERAL

r his thesis describes the development and implementation ofthe initial prototype of

Hypermedia Process Knowledge Mapping (HyperPKM). The HyperPKrvl model is a

structured methodology by which stakeholders of software design proje(;\s can achieve

improved documentation of design rationale and decisions. This improved documentation

is performed by anaching (or linking) hypemledia documents to the objects of a structured

conceptual model (RE/IAAP), which captures design rationale and sofuvare design process

knowledge. The implementation of this prototype ofHyperPKM is the culmination of an

intensive development effort whieh includes the extension of the REMAP GBU and

incorporation of a hypermedia search t:ngine for use via the \Vorld-Wide \Veb (WWW-­

http://sm.nps.navy .mil/webmaster/guide61 Iguidt:.O I .hunl).

One of the major themes and driving forces of the use of hypemledia applications,

is its ability to efTectively and expressively commwlicate infonnation to the user of the

application lRef. I]. These complex hypermedia applications aTt: typically very costly to

build, di ffi cult to debug, inconsistent, OT very slow to nm, depending UPOll the tools wi th

which they are built. The Andrew Toolki t (A TK) helps the programmer avoid many ohhe

pitfalls WId difficult problems in building such applicati ons, and indudes numerous helpful

10015 for building hypemledia interfaces [Ref. 2]. ATK is a C language based util ity

program wbich uses dynamk linking, preprocessing, and an inheritance mt:chanism to make

this complex programming task easier. Ibe ATK and hypermedia application development

will be discussed in Chapter ITI.

Since ATK includes a vast hypennedia applications development toolkit, it is used

as tht: basis of tbe implementati on of the ReprcsenUltion and Maintenance of Process

knowledge (REMAP) Graph Browser Utility (GBU). REMAP GBU pro"ides support for

the various stakeholders in software development projects by pemlitting the structuTt:d

capmre ufthe history of design decisions and rationale dluing the early stages ofthc project

life cycle [Rcf. 3]. Thc REMAP model, GB U and its benefits will be more thoroughly

discussed in Chapter II

B. THESIS OB.lECTIVES

A primary objective ofthis research is to develop a mechanism to link hypermedia

doemnent~ representing process knowledge io instances of REJvlAP objects. The REJvlAP

modd, which is at the heart of HypcrPKM, is implemented in the ConceptBase, a knowledge

base management system. The implementation of REMAP within HypcrPKM includes a

hypermedia search engine, and mechanism to link. intemal (concept base) and external

(WWW) hYpermedia search query results to the application.

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE

Therc is a drastic need within the Department of Defense (DOD) to significantly

reduce development and maintenanec costs on all software development projects.

HypcrPKM provides a vehicle hy which large scale sofhvare development and maintenance

projects can be more economically and efficiently managed. Additionally, the HypcrPKM

model is easily ported across a wide spectrum of workstations, enabling its use as a standard

software development tool throughout DOD.

O. SCOPE AND PREPARATION

The scope of this thesis is limited to a detailed review of hypermedia concepts, the

REMAP model mId hypermedia search engine capahili ties. The remainder is a description

of the design and implemelllation of HyperPKM to include the incorporation of the Position

Object, the WWW hypermedia documents search engine mId the use of hypermedia to

capture and maintain process knowledge.

Advanced knowledge of the PERL scripting language and the C programming

languagc, as well as a basic understanding of the Andrew 'foolkitare required for Ihis work.

Preparatory work included an intensive C progranuning course at the University of

California at Smlla Cruz, international cooperation in learning and utilizing the PERL

scripting language for use with the HypcrPKM model , an extensive e-mail dialog with the

ConccptI3ase Development team at the University of Aachen, in Aachen, Gennany and a

detailed review of literature about the l\ndrew Toolkit.

E. ORG ANIZ.ATION OF THE STUDY

As ide from the introduction and a final conclusions chapter, this thesis consists of

fi ve major chapters. Chapter " elaborates on the REMAP model and its application.

Chapter iii discusses the methodology used in thc development and incorporation of both

the Position Object and the method that calls the hypermedia search engine. Chapter IV

deals with docwncnt searching via the World-Wide \I,'eb. Chaptcr V presents an overview

of the HyperPK.l\1 Indexing Gateway. Chapter VI illustrates the use of the HyperPK.M

interface

11. REMAP PROJECT ENVIRONl\IENT

A. REMAP BACKGROUND

The focus oflhe REMAP project is thl: structured capt urI: of design rationale and

decisions, which arc an important component of the history or "process knowledge" of

sofu.vare development projects. Recent researeh suggests that capturing the design rat ionale

during the requirements engineering phase, early in the system development li fe cycle, can

be very helpful and productive in ensuring the resulting system more a(;curateiy meet:; user

requi rements. TItis design rationale is typically lost in the course of designing and changing

a system (Ref. 3]. By providing a comprehensive picture of the sofrware development

process however, the REMAP model increases the understanding of the design process and

"offers a mechanism for propagating changes in the design decisions into changes in design

solutions" [Ref. 4]. System designers, maintainers lUld users c:m use the process knowledge

captured by the REMAP model to

provide design support by facilitating inler-devclopment group communi­
cation and infonnation exchange regarding requirements, issues, decisions,
constraints, elc. [Ref. Jl.

reduce system maintcnmlce dforts by maintaining process knowledge at thl:
level of requirements and design rationales [Ref. 3].

Heip t:Ild users in undersuUlding how exactly the design-deliberation prO(;t:ss
addresses their requirements and sec how requested changes cause reper­
cussions at the design level [Ref. 3J

"Ibe REMAP model incorporates the model primitives of the Issue Based inj"onnation

System (IllIS). The IBIS modd, wa~ developed by Horst Rilld and is based upon the

principle that the design process for complex problems is basically a conversation among the

stakeholders of a project. In this process, the stakeholders use their collective l:Xpt:rtise and

vicVlpoints to obtain resolution of the design issues. IBIS uses a set of three design

primitives and the relationships among them in a rhetorical model to Tl:prescnt the

"argumentation~ process [Ret: 5]. TlUs set of design plimitives includes Issues, Positions and

Arguments (see area enelo~d by da~hed line in Figur.e 1). An Issue is a question or concern

that must be answered before problem solving can continue. A Position is a possible answer

or statement that responds to a particular Issue. An Argument is a rea"on for supporting or

objecting to a particular Position. I\. specific Argument may either support or object to one

or more Positions {Ref. 5). The il3IS model has been used at the Microelectronic Computer

technology Center (MCC) in the Design Journal research project as a way ofreprescnting

design deliberations in large design projects [Ref. 6].

The IBIS model wa:; meant to capture the con'lersations and deliberations among the

stakeholders in complex problems. However, it 'does not recognize the context in which

argumentations occur, nor the outcomes of the argumentations" [Ref. 3]. The REMAP

model, therefore, incorporated additional primitives (see Figure I) to specifically address this

deficiency. These arc: Requirement, Assumptiou, Decision, Constraint and Design

Object. Since a system is typical1y designed to satisfy some end user's requirements, the

Requirement primitive represcnts the needs/wants that the users \vant the system to satisfy

Additionally, since user's requirements tend to change over the life of the design project, the

REMAP model includes the flexibil ity to modify Requirements and begin the iterative

design process. Assumptions are included in the model to provide a basis for evaluating the

applicability or validity of an Argument represented in the model. Decisions represent the

selection ofa given Position that then responds to an Issue and leads to the resolution of the

given Issue System designers then establish criteria andior constraints that must be

incorporated in the final design. The design solution is represented by the Design Object.

B. REMAP CONCEI'TBASE IMPLEMENTATION

TIle REMI\.P model is implemented in ConceplBase -- a deductive object manage­

ment system which Vias developed at the University of Pass au [Ref. 7]. Thc ConceptBase

uses thc Telos knowledge representation language, which is a IUgh level object oriented

modeling language. ConceplBase providcs a coordination mechanism that operates within

a client server architecture and can be distributed ove], local or wide area networks llsing the

I G ... n.I .. £---_._--_._-----_.,...--. .. _ ... _--_._-_. __ ._- -----
, IBIS It' J L . !~~~~~"~~.n. !
I ~~.Ptmd, III I surpori<; "",,-II '''''&:: :::11., ,

L------;;,::s:---I ~;:::;;:-;>--y."":=:~1J
".~rn "'·_"' CJ D ,.,.M, ••

I I
er .. t .. "..,..".. .. "".O<lille. ! t V. pont, .. ,

I " 0"'... I

Figure 1. REMAP ConceptuaJ-"lodcJ

b11t;:rnt;:! protocol. The REMAP GraphBrowser Utilif), program impkmented in the

ConceptBuse is ""Titten in the C programming language using Andrew Toolkit. This utility

is designed to pwyidc a readil y custominhle fwnt. end GUI for the kuowkdgeba~e of

ConecptHase.

TIle GraphBwwscr D ility (GHL J is a windows oriented interbce whi<.:h allows the

properties and contents of any displayed object \0 be graphically viewed hy poin1ing and

clicking on the ohject with the kft mouse button. These objects and their contents are

displayed by the GHU as a directed acyclic graph. Variolls menu choices within the uti li t}'

actuate queries that retrieve obJect instances and atlribules from the knowledge base.

II I. EXTENDING THE R.EMAP GRAPHBROWSER UTILITY
(REM AP GBU) IlORTlON OF HYPERPKM

A. INTRO DUCTION

rhe prinllHY focus of this chapter is to discuss the tools and methodology thal were

used to creale the position object extension of REMAP GnU and develop search queries for

(and links too) related hypermedia design rationale docrnnents \vhich may exist on the V./V/\V

The Andrew ToolKit. which was used in the implementation of RE\.1AP GBl~. various

modul es and class structures and hyper-link capabilities are discussed

B. ANDREW TOOLKIT (ATK) OVER\;lRW

1. In troduction

ATK was init ially developed in .1982 as ajoim venture bet\veen thl;': Carnl;':gie .vlellon

University and the TAM Corporation at the lnfonm-nion Technology Center ATK consists

of three main components

The Andrew Messagi ng System

TIle Andrl;':w JIelp System

The lI.TK and application pmgrams

Our discussion will deal specifically with the AIK and the object oriented environment

which it provides.

2. Object Oriented P rogramming Environment

As mentioned in Chapter I, the ATK is written in the C progr,lluuing langu3!lc and

also provides a prl;':proces~ing environment thcl.t enables an object-oriented programming

enviromnent and dynamic linking of code. AIK greatly simplifil;':s Ihl;': !.:rt:atiou of complex

hypermedia applications through the subdivision of the program into manageable pariS

Largl;': program~ are written as a large numher of components, cach of which ul;':s<.:riiJes ~ome

behavior of some obje(;l. These objects interaellO create a Iluid and interactive program

[Ref 8].

This behavior is accomplished in the ATK by use of the Andrew Class System. The

Andrev," Class System was modded after the C->-+ object-oriented environment and pcmlits

the definition of class procedures and class methods Cfunctions) [Ref 91. TIle Andrew Class

System provides a library of standard Andrew classes and a prepro(;essor. Additional user­

defined Andrew classcs arc created by making w.'o additional files: illl: standard C file C"'-c)

containing the class data and methods (functions), and a class hl:ader file ("' .ch) which

contains thl: class specification. Upon cumpilation of the class data and hl:ader flIes using

a Makefile , the Andrew prcprocessor gl:nemtl:s two additional fi les. Thcsl: files include the

import headl:f file (*.ih) which is used whcn any other eomponcnt needs to usc the class

(inherit behaviors), and thc export hcader file (*.eh) used when defining a class.

C. REMAP MODULES AND CLASS STRUCTURES

The following sections provide a brief introduction to the primary AIK and REMAP

GBU application modules and classes that provide the requisite behaviors to REMAP GI3U:

1. Rmaiu Module

Thc rmain.e fi le provides the standard C mainO routine that pl:rfonns the basic

initiali7.ations and creates the application object. It also perfonns a static load of all non­

A TK resident classes that are specified in the code.

2. Mouul Header

lbc header file modul contains macros and defines that may be used by any class or

mudule when it is included in that class' defmition fi le. Addit iona!ly, it exports a pointer to

thc application class appREA1AP, which allows easier access to the class methods and

fun(;tions. Also, the primary macros that are included in modu\ provide for display of

infonnation and error messages.

3, Rapp Class

This is an instantiation of the ATK resident application (parent) class. 1t provides

for inhcritancc of the ParseArgs. Start, Run, Slop and Fork methods for usc as needed in the

10

application. The rapp class header, rapp.ch, holds (Xlinters to the parameters that stmi the

program when called by rmain. They arc initialized by the method ParseArgs which is

called in the rmain module. This class also ini tializes the Coneeptl3ase and the graph data

object when rapp _SlarlO is called.

4. R CB Class

The reB class is the primary ConceptBase interface, and handles al l of the

communications with the ConceptBa<>e server. It includes methods that allow connects and

disconnects with the server and provide cOHunWlicatiOTlS via ask fi nd tell statements.

S. Rgrapb,· Graphview Class

rhe rgrap hv class is an instantiation of the ATK resident cl ass ~raphvielt'. It is a

specialization of the graphview class since it over-rides the inherited methods, such as

graphview _ HiIO, which performs speci fi c actions when an object is clicked on by the mousc.

Addit ionally, it provides its 0 '0 menus and a means for updating and maint.-uning its menus.

Menu items within REtviAP GBU are not implemented as class methods, and are

more s imilar to functions which could be located anywhere. Within this application, the

functions are placed in class definition files to which they are logically related. For example,

when developing the position object's issueobjCom _CreatePosilionFol"hmeO it is placed

in the issue class file since it is logically related to issue

6. Robject Class

The robjec! class file is a generic super class detinition which provides basic class

behaviors and methods as well as inheritance for all objects which are displayed in the

graphvicw. In version 1.7 there are three object classes implemented: Requirements, Issues

and Positions. These ohject instantiations require the super classes methods to,

minimlUll, create, display and initialize each of the object insllmtiations

7. RcquiremcntClass

This class is a subclass of the robjecr class. It includes inherited methods which

instantiate the requirement object, definit ions which specify its shape and appearance within

the browser and other methods which define its interactions with the issue class

I I

8. Issue Class

This dass is a subcla~s of the robject class. It includes inherited methods which

instantiate the i~sue object, definitions which delineate its shape and appearance within the

browser and other methods which defmt it~ interactions with the position class

9. Position Class

This class is a subclass of the robject cla,:s. It includes inherited methods which

instantiate the position object, definitiuns whieh describe its shape and appearance Vvlthin the

browser and other methods which define its interactions with the argllllent (not implemented

yet) and issue classes.

10. Sellist Selectionlist Class

The seWst elass provides a ",indow for selecting a single choice from a list of

displayed clements. II inherits its behavior from the ATK resident class suite. Selectionlisl

uses a linked list of pointers which point to strings (char *) that you wish to display.

D. REVISION CONTROL

I. Purpose of Revision Control

Software revision control pro\ldes a means of managing the configuration or change

process of a software application over it~ life cycle. It is especially useful case of

developing RE.V1AP GBU since it provides a means of recording the history, progress and

milestones of the application's development. It also pcnnits a method by which older

versions may be restored to regain a certain functionality or perfonn a demonstration ofa

previous versions' capabi lities.

2. The Revision Control System (RCS)

fhc GNU RCS is available on the network and "isrl" workstation where all the

primary work for REMAP OBD was done. Commands which were most frequently used

while developing this prototype include co(I), ci(I), rcs(\) and rcsdiff(1). The "man" pages

or any number ufUNlX programming references contain indepth descriptions on the usc of

these commands.

12

3. Managiog REMAP GBU Revisions Using ReS

The development project was begun hy cTl:ating the new version directory "v 1_7" and

then checking out the code that was last logged in to the ReS databast:]be sequence of

commands to do this are as follows

cd remap (change directory to where code exists)
mkdir vl_ 7 (creates the new prototype directory)
In ~S ../srdRCS (creates a son link to Res database

path)
co -r ReS/*.e· RCSI*.h* RCSIMakejile (checks out last version and releases

the lock for all code files needed)

To check in fi les to the ReS database while sti ll working Oil the current version, the

fo llowing arc used:

ci -rfld . 7 t,e *.ch ·.h (checks in ~_c, *.eh and ".h files \\ithout locking,
fOfcing the chcckin even without changes to file and
searches checking fi le fo r infonnation keywords
containing author, change time, state, etc., to place in
the ReS database)

After entering this command, a shOl1login script that describes the version is entered.

When version 1.7 \-vas completed, and no further modifications were to be made, the

following command was used to check in the final version to the ReS database:

ci -fl, 7 *.c *.ch *,h (checks in *.c, *.ch and *.h files with lock and
removes the files from the working directory)

E. CODING HYPER PKM (REMAI' Gn U EXTENSION)

I . C reating the Position Class

The following steps were taken to create the position class:

Posj/ion.c

This code for the position object included the basic methods required to

irutiali7..e, destroy, create, display and rdum the group name of the position object. nus was

11

created by using the same methodology used in version 1.5 (vl.5) code of issue.c. The

changes needed to tum the version 1.5 issue.c code into the ver;;ion 1.7 po;;ition.c code

included the following:

define the group name, which must be exactly as it will be detined it in
rCRch: szGroupName = szPOS1TION;

change the shape of the node to: #dejine szPosObjlJejaullShape "reetnode ";

change all instances of the words Issue or Iss to Posit ion or Pos.

h. Position. ell

This class header file was created by re-using the methodology used for v 1.5

issue.ch. rhe only changes required were to change all instances of the word Issue to

Position

lssue.c

This file was modified to include the behaviors needed to make the position

object fully functionaL The methods GetAllPosition.<;(), SelectOnePositionO, Loa.dPosition

ForlssueO. LoadAllPositionsForIssu~ and CreatePositionforlssue were placed in the issue

object since they were logically related to this object. Thc following werc nece;;sary to

complete the modification ofissue.c

Since the basic implementation melilOds would need to be accessed the
position heackr file would have to be imported. rhc following conunand is
placed in the import section of the source code:

#inc1ude "position. ill "
In the implementation section ofthe s:mrce code a character pointer variable
must be assigned that determines the name of the edge bet\veen the issue and
position objects. 111.is name must be exactly the same as .. .vill be defined in
reB.ch:

.~Jatic ellar* szPosiJionCatName =

szPOS1TlON_respondsto_ISSUE

14

GctAllPositionsOand SelectOnePositionO were created by using a linked list
structure. These two methods are needed to provide a selection mechanism
to choose between a number of po~itions that may have been previously
created and stored in the Conccptllase during a persistent session.
GetAlll'ositiot1s creates the linked list lor a selected issue. The linked list of
positions is called by SelectOncPosition which then creates a "se!cctionlist"
which may be chosen from when rgraphv_MenusOn is called. It is extremely
important to rememher when working with linked lis t structures that you
must ensure the last clement oflhe list is assigned to "NULL".

LoadPositionf"orissuc is used when an issue is selected which has a number
of positions that may be displayed . This method takes the position chosen
and displays along with its a~sociated edge in the graphview. If there are no
positions from which to choose, a message is displayed stating "No Position"

LoadAllPositionsForissuc is used when the user selects this choice from the
G BU menu. The method calls GelAliPositions to create the linked list of
stored positions, and once the list is created traverses dov>'ll the linked list 10
display all posit ions and edges

CrealePositionForIssue methodology is the same as that used for
CreatcIssueForRequirement. One significant di fference is that the order of
the arguments for rgraphv_InsertEdge must logically malch that of the node­
edge arrangement that is created. In this case since POSITION_
rcspondsto_ISSUE is being developed, the di rection of the edge's arrowhead
should point from the position(source) to the issue(target). The appropriate

command is:

rgrapllv_InsertEdge(rapp_RetGrapllv((CRapp)appREMAP), s'l.CurTtem,
st.LabelSellss, issueobLRetPositionsl~meCatNameO,
is!;ueobLRetPositionsIssueCatGroupNameO);

d. Issue.ell

The only modifications required lor this source file are the addition oflhe new

method and menu function protypes

Retl'miitilmsIssueClltNameO returns char",·
RetPo.~itionsIssueCatGrollpNameO retllrns char ·,.
GetAllPositions(c/lQr" szlssuel D) returns CLList;
SelectOllePositioll(cllar "!J'zIssueTD) returns chur*;

15

overr;de.~:

RetGroupNameO return.~ char*j
};

/** these procedure.~ will be called by mentl command~ **/

extern void ;s<~ueobjCOMj_oadPo~-;t;onFodn'ueO;

extern void iuueobjCOM LoadAllPo.~itionsFor1smeOj
extern void issueobjCOM= CreatePo~'itionForlnueOj

Rmain.c

Two additions were required for this source fill:. They include adding

lIinclut!e po.dtion.ih to the import section and adding po.~itionobL StaticLoadO under the

rStaticLoadO method

f. RCB.ch

Two defines had to be created for the Conceptl3ase. Recall from previous

discussion in position.c that the new position object functionality (object and obj(:deategory

names) had to be exactly as defined for the Coneepillase. This is needed since rCB provides

interface definitions for the ConeeptBase that arc also exported to he used hy other sornee

files. In this case

#define szPOS1TlON "POSiTlON"

aod

IIdefine szPOSITIONJespondsto _ISSUE "re!>pond~to"

wefC needed to define the functionality that creates Ibe position ohject and realted edge on

the graphview .

g. Rgraphv.c

The following modifications were made to rgraphv.c to provide to menu items

required for the }Xlsition object and the "Search Related Documents" function call:

The following code \va" added after "remap-create-issue" to provide menu
items to call the methods required to loar.! and create positions:

16

,._ --.,.- - --­
RG_MEt·lU_NOTHING.

{ " fI!map-load-po5ilion ",
N ULL,
,VULL,
", Load One Position ",
NULL,
RGjlfENU_MASK_ONE_ISSV£,

?~~:O:~~~~~l;:;:::o;:'.::::;:::·::~~~ ",
NULL},

r -----_ __ _
{ "remflp-load-alf-po,~ilions",

NULL,
NVU ,
",LOlld A ll Positions",
NULL,
RG_MENU_ MASK_ONEJSSUE,
iuul!ubjCOM LoartAIIPosilionsFor/.uue,
"Load all posiiionf for the uleCUd is,Yoe",
NULL} , r _____ ____ _

{ ",emap-aeole_pMitiOIl ",
l 'iULL,
N ULL ,
",Crellte PoslJlnn H ,

NULL,
H.6'--MI;f\lV _MASK_ONE jSS(jf:,
iuueobjCOM_ CreatePosilion For/ssue,
"Creale Il ne '" pUJililm/or selected issue",
Nf}U },

The foll owing code was inserted after the "Show Contents" menu selection
10 create to make the "Search Similar Docwncnts" menu selection:

RG_Mt:NL'-lVOTIflNG, r ________ _

{ "rt'map-search-similaf-documenls",
Nll LL.
NULL ,
",search Similar DOClimenU",
N ULL.
RG MENU MASK ONE ORJECT,
rob)ecICOM_Sho..;$imila--;Dacumenls,
"Seurch WWWJor similar canlm Uofaselectedobject ",
jV(JLL}.

,.----------
17

RG_MENUJ',OTHlNG,
RG _ MENUJ"'OTIlING,
/~---------- 'j

Adding code to ereatc the additional menu functionality was simply a task of reusing

segments oflhe current code. Once a similar segment was identified, the code was copied

to the new menu list location and modified to suit the required task.

In the RetSelectStateO method lines of code had to be added to account for
various position object counters and variables. On all lines whcre iReq and
ilss were initialized "iPos" had to be addcd. Additionally, a line had to be
added to account for incrementing a eOlUlter when the RetClassNameO
method did a string comparison for position objects.

if(Slrcmp(szGroup, positionobLRerClIlS5NameO) - 0)
iPos++;

A "Menu_Mask" also had to be provided to accOlU1t for position objects,

I~ only one position Sl!lected *I
if (iReq=(l.t& ils.~ && iPos=l)

INewM,uk 1- RG_MENU_MASK_ ONE_OBJECT I RG_ MENU_MASK ONE_
POSITION;

h, Rgraplmch

The only modification to rgmphv.ch needed was the addition ofa #define line

to define the state of the menu "Mask_Om::_Position" item.

2. Creating the Search Related Document ... Class Method

This method is implemented as class method within q,'Taphv.c. It uses a method

ShowSimilarDoeumentsO, which when activated by a mouse hit on the menu selection

"Search Related Documents", will fork a new process and display the hypennedia search

form . The ml;.':thod "Search Related Documents" is defined in robjeet.c sourcl;.': oode. To

perfonn the coding oflhis method, the following were required'

18

[n the imp!cmmtation section define a pointer to a character variable v,rilh the
proper Uniform Resource Locator CURL): _ .. talie char* szObject
COlltents fJisplayURL '" "lIttp:II.\'m.np.\'.lIovy.m iVcg;-bi"licc:lorm.pl ";

Change the hro"''SeT to Netscapc by changing the ObjectContentsDisplayTool
variab le to: static char · .~zObjectCu"lent.\Di"playToul '" "neb'cape"

Create the method by using the basic methodology of the rObj cctCOM_
ShowContents method. Required actions of the code were to fork a new
process (create a window with the Nctscape browser application launched in
it) and call the hypermedia search form's URL afte r the application was
launched. The code required to perfonn this is:

void robjectCOM_SllOwSimjlarDocument~"(CRGraphl' gv)
{

intpid;

/" fork IE /l ew proces.f */
if ((Pid = forkO) > 0) (

else {

me.fsage_ Di~playStri/lg(rapp _ HetGraphv
((Cropp)appREIl-L4P), 10, "Simi/ar Document.\'
Search Form will be displayed .•• OJ):
return,-

/* run called program */
execlp(fzObj ectContelltsDisplayTool,
.fzObjectContentsDisplayTuul,
~·zObjectContelltsDi.splayURL, (char *)0):

Robject.ch needed to be modified to im.:l ude a menu eorrunand procedure
prototype line to defi ne the function "Show Similar Documents"

extern void robjectCO,""C ShowSimil.arDocunrent.~O:

F. COl\1PILA1'lON OF HYPERPK.i\,l

1. Setting Environment Variables

The environment variables establish the paths which are necessary to complete the

compilation of the source files and dynamic objects as well as establish the required

19

dependencies. 'l'hese variables are set in the .eshre file of the project directory and should

bc set as shown below:

selenv ANDREWDIR lusrllocallandrew51
setenv PATH .:$ANDREWlJIR/bill:$PATII
setenv CLASSPATH .:$ANDREWDIR

2. Creating the Makefile

The Makefile for this prototype was created by adding the required position object

dependencies. These are the same dependencies as required for all REMAP model

primitives, and help to define the basic pammeters and objects which are necessary to define

the objt:ets. A few ofthe required statements include:

posilion.o: posilion.elI .AncludeJclass.h lusrlincludl!/Sldio.h ",bjecl./h
position.o: ..Iincludushape.ih ..Iincludl!/elc.h . ./includulypes-alk.h
posifion.o: lusrllocuVundrewSllincfudeJatkirecth
position.o: lusrllocaVundrewSllincluJeJatkipoinLh moduLh
position.v; . ./inc/udeJuttrih.lh . ./lncfud<!Al$Llh
position.o; lusrllocaVandrew51IincludeJulk//omdesc.ih
po~·iti"n.o; lusrll(JcaVundl"('w511iIlcludeJalkigraphk.ih
posilion.Q: /usrllocQVandrewSllincludl!/afk/obsel1!e.iJl
posifion.(J:lusrllocuVundrewSlIincludeJatlr/pixefimg.ih . ./UlcJudl'lgilemih
pm·ilion.o: .• lincludeJQl/rib.h sell/.st.Jh
po.,·ition.o: lu .• rllocaVundrew5IimcludeJQlklimih
po~·ition.o: lusrifocaVandrew51 imcfudeJalkiview.Jh

['his process was simplified by using xedit or emacs to copy the issue dependencies and then

subSlituting position for issue.

3. Makefile Generation and Code Compilation

When first compiling the code, making changes by adding dependencies (If. include

statements) to the source files or any time after changes have been made in ·.h or * .ch file s,

you must use the command:

make header> depend rg

For subsequent compilations, you just need to enter:

make

20

IV. SEARCHIN G VIA THE WORLD-WIDE WEB

A. EXISTING SEARCH OPTIONS

Recently, the use oflhe World-Wide Weh has caught the f1ttcntion ofthe DOD, so

much that, many organizations throughollt DOD now have their own Home Pages on the

Web. This new method of providing and locating infonnation has led to cnomlOUS 3I11ount~

of traffic being generated on military networks. Much ofrhis traffic is generated hy ust':cs

trying to located relevant informati on that is required for day to day operations. The DOD,

has in the past, re lied heavily Oil Gopher (http://srn.I1ps.navy_mi l/wchmastcr/guide!

eCLI 86.htmlilSEC I 87) and FTP (http://sm.nps.navy.miVwebmastcr/guiddcCL138.html)

sites to store and retrieve data from its various organizations_ Users. would usc search

engines such as Archie (http://sm.nps.navy.mil/webmasler/guiddeeg_139.html) and

Veronica (http://sm.nps.navy . mil /wehmaster/guideleeg_187.html) to search these sites for

relevant infonnation. In the way the Web is currently heing used, these search engines are

obsolete.

"Existing searching techniques on [the] WWW fall into two main categories

hypertext browsing and keyword searching (ruld a combination of the two)" [Ref 101 .

Browsing the Web involves "linking" or "surfing" from site to site. If the user is searching

for infonnation in this fashion, ... "then the user must know the meaning of very broad tenns.

and be able to j udge where the specific infomlation of interest falls under those tenns." [Ref.

1 01 When \ltilizing hypertext browsing in order to locate information, users can become lost

in hyperspace or experience ··infonnation overload" due the size of the Web

Browsing is the common interaction paradigm for hypertext, when a user is
gathering information . 11 is very useful for reading and comprehending the
contents of a hypertext, but not suitable for locating a spccific piece of
infonnalion [Ref. 11).

Moreover, keyword searching allows the user to scarch fo r a word, part ial words,

combination of words, phrases, or words with boolean teons such as AND, OR, or N OT.

21

"Keyword searches typically make uses of a pre-compiled index (inverted list) which

contains an entry for each word that has pointers to all documents containing that word"

[Ref. 10J.

ll. INFORMATION INDEXING AND SEARCIIING

Although the World-Wide Web provides a remarkably opulent foundation of

information, it docs not support a consistent and efficient means of retrieving specific

inionnation based on uscr-defincd queries [Ref. 11J. Insofar, many types of search engines

have been developed for the World-Wide Web, such as. server-side indexers and "Robots"

or "Spiders". A pre-compiled index or database is utilized by the search engine in order to

answer the users queries. This index can either he site-specific or Web-specific. A Web­

specific index is generated through the use of"Rooots" or "Spiders". The "Rooot" automati­

cally travels the Web i.n search of new sites or infomlalion. When a new silt: or information

is found , a site index is generated and returned to the originating host of the "Robot". This

index is then compared to the master Web index on the host to see ifthis site already exists.

If the site exisl~, then the master Web index is updated with whatever new infonnation the

site might coniain. If not, then the site is added to the master Web index. ·lne problem with

this approach is that it takes a very long time for the "Robot" to travel the Wl:b in sl:arch of

new infonnation. Once fOWld and indexed, a site might not be revisi ted by the "Robot" in

an acceptable amount of time. 111is leads to "dated"' and sometimes useless infonnation.

fhe nature orthe WWW presents an tillUSUai problem for building indexes.
Since there is no control over when and how documents are added to the
syskms, there is no way to I:nsure that they arc added to an index. This
problem if furthl:r complicated when the document is modified. This
problem is addressed somewhat by the usc of robots and spiders such as
Lycos [(http://lycos.cs.cmu.edul)] and WebCrawler [(http://webcrawlcr
com!)] ... But such programs place a heavy burden on network resources,
particularly since they must search the network repeatedly to find updated
materials (both new and revised) lRef. 10].

22

Furthennorc, many sites sit behind firewalJs or are unkno\\ll to the rest of the 'Web, therefore,

a "Robot" wi ll not locate them

On the otber hano, the concept of site-speci lic indc:-;cs is one in which an index is

genemted by the site host. "By supplying a pre-computed index of keywords, a fully indcx:cd

server eliminates the need for automatic indexers (such as web robots or spiders) to walk the

entire server Iree, which is an unnecessary "'ask: of resources" [Ref. 12l The index is

accessed via a gateway or interface over the World-Wide Web in which users can submit

queries to the index or database

Some World-Wide Web servers already implement keyword searches via an
interface to [indexes such a51 WAISINVEX [(hltp:llsm.llPs.navy.mili
wcbmaster/guide/CCL2I 2.hlml)]. However, this approach lacks many
important features that free teX! search engines provide, and does not support
remapping of physical directory structures tu virtual paths [Ref. 12].

I'he remapping of physical directory structures to virtual paths is necessary for

hypertext to work via a World-Wide Web gateway, tilUS allowing the user to access, via

hypertext links, whatever infonnation was indexed on a system. The index can he updated

automaticaUy anytime new intormation is added to the hosts ' system . This is the approach

that is taken by the HyperPKM model

C. IMPRO VEMF.NTS TO KEYWORD SEARCH ENGINES

B uilt into the HyperPKM model is the ability tu perform keyword searches hy

incorporating and supporting suhstring matching, proximity searching and thesauri hased

queries. Individually, these features an: not new to keyword searching, hut when all are used

in conjunction with a si te-specific index and a specific technicalthesauTUs, a user would be

able to locate all infonnation the site (Ontained that was relevant to the user's queries .

23

24

V. OVERVlEW OF THE HVPERPKM INDEXlNG GATEWA Y

The usc of the HyperPKM model requires the use of site indexing hasl:d on certain

criteri a. In order for an index to work efficiently and provide n::kvant data to the user, an

index of the documents contained 011 the system must be generated. Tills index is a

categorized listing ofaJllhe relevant words located within the documents. Limiting the size

and relevance of lhc index and being ab!e to provide useful intormation to the user is an item

of concern that is addressed.

The HypcrPKM model also incorporates a specific technicul thesaurus that allows

the user to access a database o f tenns that are related to the qucried kcyword(s). This feature

allows for the broadening and narrowing ofrclated search tcmls, thus, providing the llser

with an increased ability to lOCale desired documents.

Accessing the HyperPKM model is dOlle through the use o f a graphical interface

between the user and the server via thc World-Wide Weh. This provides for the abi lity of

any computer system ut il izing any Web hrowser to access thc documents contained on the

host system .

A. SITE INDEXING

Various considerations must be dealt v.ith in creUling an index ofa system and being

able to perform searches on the index. i\. dalaba.;;e or archive may contain a myriad of

documents that when indexc<l would create an index of suhstantial si7.t:. Thus, system

resources and the time requi red 10 perfoml a search become factors.

The considerations of site indexing and sean:hing that must be undertaken are: (1)

stop \>''Ording, (2) word frequency, (3) ahbreviations and acronyms, (4) word stemming, and

(5) boo leru"l searches

Stop \Vonling

One purpose of the HyperPKM indexing model is to allow users to differentiate

between the differing documents returned as a resul t of a qUl;.":ry . Various documents that

contain many of the same or "common" words are not useful for differentiation. Tlus

25

problem can be solved through the usc of Stop Wording. Stop Wording can be accompli~h~d

automatically by the indexer in two different ways. The indexer can define a word as

"common", that is, the word is contained in over a large ~rcentage of all ind~xcd files , or

the indexer can acc~ss a Stop Wording list. A Stop Wording list is constmcted manually (Uld

can be updated as thc m:'ed arises. The list would contain words that the systcm

administrator felt were too common to be of use for search and retrieval . These words would

not be indexed, nor would they show up as a result of a query for such words.

2. Word Frequency

Word frequency is the number of occurn:nces that a word is located in a document.

Through the usc of an inverted indcx, each documents' word count is tabulated and stored

in the index. Tllis feature gives the user some impression as to the relevance of the ke)'\'\'Ofd

to the document itself.

3. Abbreviations and Acronyms

Throughout the DOD, terms that are abbreviations and acronyms of words are very

prevalent. These terms have to be dealt with in a prede[med way. If a query is conducted

for "11"', an abbreviation for "information Teclmology", thcn the indexing system must know

the differ~nce between "IT" and "it". Otherwise, the user would be presented with an

overwhelming number of documents that contain the term "it" (unle~s "it" is contained in

the contmon or stop wording list), The HyperPKM model assumes that any abbreviation or

acronym would be represented by all capital lctters. Ifa tcun with two or more capital letters

is eneountcred while indexing, the tcrm is eonsidcred to be all capitals. For an abbreviated

tenn or acronym to be located during a query, the user must enter the term in all capital

letters.

4. Word Stemming

Word stemming (also known as substring matching or fdu lt to lerant retrieval) allows

for the scarch and retrieval tCUll to be broadened. This feature allows the user to input a

keyword and for the server to return all variances of the word (i.e., retrieve = retrieves ,.,.,

retrieved = retrieving) 'ille IIypcrPKM model accomplishes this through the use of the

Levenshtein algorithm [Ref. 13]

26

5. Boolean Searches

Boolean searches allow for the qucry to consist of mOTC than Qlle keyv.'ord. Through

the use o f boolean operators (Le., and, or, not, near), the user can query the index to locate

docwnents that (;Ontain certain combinations of words. Such operators would be uti lized as

fo llows:

Infomlation and technology (hoth lenns must be in document) .

Information or tcclmology (either term must he in document).

lnfonnation not tcclmology (only "infonnation" in document).

lnfomlation near# teclmology ("information" must be within # words of
"teclmology" -. also kno\,m as proximity searching).

The HyperPKM model utilizes these boolean search operators and can he setup \0

assume ei ther the "and" or "or" opemtor in the event two or more kcy\\·ords arc entered

\vithout the usc of any boolean operators

B. THESAURUS

A thesaunls is oonsiderably more than a list of synonyms. ·'It is a semantic network

containing concepts that are related to one another in various ways" lRef. 12]. The

HypcrPKM model employs a specific tecilnicalthesaunls that utilizes the ANSI (Anwrican

Nationa l Standards Institute -- htlp:!f\1/ww.ansi.org/) standard Thesaurus Image Format

(TtF). In this manncr, a query is not only a search for a keyword, hut a conceptua l search

for word meaning and topic arca. To uti lize this feature, a specific technical thesaurus that

pl;.":rtains to the doculllents!keywords at hand must he created.

One way to develop a specific technical thesaurus is 10 gcnerate onc automatically

through the use of computcr programs and scripts lRefs. 14, 15 , 16, 17, and 18]. However,

a thesaurus that is gcnerated automatically by computers produce low prccision levels in

respcct to ones developed by people. A thesaurus developcd by humans realize a 77-98%

concept precisionlcvci, whereas, thc onc·s gcncrated automatically by computers realize a

27

24-37% precision level [Refs. 14 and 15J. In the ca£e of the HyperPKlvI model, a specific

teclmical thesaurus was created manually from all available ~ources of information

C. WORLD-WIDE WEB INTERFACE

The HyperPKM Indexing Gateway is a CGI (Common Gateway Interface -­

hnp:lfhoohoo.ncsa.u iuc.edulcgi/intro.html) compliant interface. "lbrough the usc of host

server sofuvare, such as the HT1Pd public domain server software from the National Center

for Super Computing Applications (NCSA -- htlp;lfhoohoo .ncsa.uiue.edu/does/Overview

hlml), a gateway can he created to provide documents and files to Weh browsers such as the

Netscape Navigator"" (http:IIwv.'W.mcom.comlcomprodlnelseape_nav.html)orMosaic™

(hnp;//ww\';".ncsa.ujuc.edulSDG/Soft,",~dIe/MosaicINCSi\MosaicHome.htmI) . This means

that through the use of the HyperPKM Indexing Gateway, the responses tn users queries arc

dynamically generated, created on the f1y and executed in real time. The user inputs what

is required of the system wKI the system responds and generates a reply . A CGI prob'Tam

such a~ the J.iyperPKM Indexing Gateway is in essence, a progmm that is open for al l to use.

The CGI program provides for the utilization and access to the host HTTPd server

via the World-Wide Web. Scripts written in a language called PERL (http://\\'Wwl.cis.

ufl.edulperll) arc used to process the users inputs. These scripts are run a~ a hackground

operation to the actual HyperPKM Gateway Interface. "Ine user inputs a query and then the

PERL scripts are invoked. The user's queries are hroken down into subsections based on

what the user selected on the gateway interface form. Keywords that arc entered are

compared to the site-specific index. Search operators, if any, are identitied and used.

Finally, if selected, the specific technical. thesaurus i~ interpreted for any reluted words to

the queried keywords. Then thl: PERL scripts generate a HTML dOClUnent listing all

documents that conform to the tl~ers queries. This generated document does not exist on the

host system, but is created only for the current user. It contains the following infonnation

ha.'>l:d on tht: users inputs:

2&

The keyword(s) that the \!Se T entered.

The context or document h ierarchy that was searched.

Any search operators that were selected or entered by the user.

Uti lization, if sclccted, oflhe thesaurus andlor suhstring matching

The docwnent also contains items, based on what was rliscovcn::d in the site-specific index,

tha t are relevant to the users query, such as:

Titles of docmncnts that are related to the sean;h query

Fill: date or last change date (for delcmlination of CIUTcntncss)

The directory or subtree of hierarchy in which the docwnent is located

Actual filenam e

The keyword(s) or related words that were found .

The number of OCCIUTcnces of each word found

Since the documents are dynamically generated, virtual paths are c[l:uled in order for

hypertext links to be utilized. The ti tle ofth<:: document b<::wmes the hypt:rtext link so that

the user only has to select the desired document and then is "linked" 10 the dOClUnent of

interest. Th<:: document is then displayed for the user to peruse

29

V1. EXAl\lPLE OF TH E HYPERl'KM INDF-XING GATEWA Y

In this chapter, the usc of HyperPKJ\.l is illustrated as a scenario in which. a REMAP

object is linked to the contents of a large volume of docwncnts governing the procurement

of government systems. These documents are part ora DOl) acquisition manual which is

used by the mili tary in fu lfilling the mission needs in terms of acquisition

'Ibe DOD acquisition manuals consist of nllmerOUS documents that are related to the

timc-consuming process oflhe procurement of mission essential components. In using these

manuals, the lUldcrstanding of the interrelat ionship between uocmnents is essential to project

completion and knowledge of numerous key tellils and acronyms is imperative. Being able

to locate vi tal information is a necessity, yet, is often a vcry time intensive and futile process

The need for a search and retrieval engine that can be t.1 ilorcd to the speci fic requirements

of the acquisition process is dealt with by the HypcrPKM modeL During the development

o f systems for the DOD, it is important for a designer to access information reI event 10 the

project th!1 t may be contained in acquis ition documents. DOD acquisition manuals consist

o f munefOus volumes of infonnat ion. Many projcct tasks arc conducted offsite, away from

the project office. Laptop computers help to !',Crve as an intennediary way to alleviate the

problem of transportability of the acquisition documents. However, they have limitations.

Usually, due to capacity and search constraints, only the requi red documents dealing with

the ta~k at hand arc loaded onto the laptop computers . .Many times, the need for additional

doctunents is requireJ. However, due to time !.:Onstr!1ints and locality, the notion of rell.mung

to the home office is not an option. Thus, the avenue for the utilization uf ihe World-Wide

Weh. l brough the use o f the laptop computer, a phone line or a cellular phone, the project

31

member can contact the home or lice server via a dial-up acCO>ll1~, execute an X-Wincow

session and by starting the REylAP GBU portion of the HyperPK?'vf model, continue work

on an ongoing design project as well as searcD for and retrieve any pertinent info:mation.

To begin this demonstration, let us assurne that a design proj~t indudes user Requirements.

a generated issue and a Posilion. The Requirement of interest specifies that the design

project must be \\ithin budget constraints. The related Issue concerns which budgeting and

planning method should be used. Our Position relates that our organization must use the

Planning, Programming and Budgeting System (PPBS) method. To start the on-li:1.e session.

the user starts the RE\1A.P GBl.J and creates the Reqlliremcnt, Issue and Position as ShO\\11

in Figure 2. To search for additional supporting infonnation for the Position !nat may exist

on the \VWW, the user selects Ll)e position l.Jse_PPBS with the mouse and then selects the

SearcD Related Documents option (shown on Figure 2). This selection activates the

NetscapcTM browser a.11d accesses the HyperPKM lndexir.g Gateway.

Figure 2. REMAP GBU Session

The HyperPK1\1 InCexing Gateway is a user friendly interface between a client and

server \ia the World-Wide Web. It allov·is for search and retrieval with the minimal of effort

on the part of the user. An illustrated example is portrayed showing the search and retrieval

32

capabilities of L~e HyperPKM model and a DOD acquisition manual as the sou .. "cc of indexed

information. Figure 3 depicts tr.e HyperPKyllne:cxing Gateway as seen with tb.e "\' e\;scape

Navigutor™. The gateway is built upon a modified version of the ICE ~earch cr.gine

designed by Christian ::-;; el.l~s of the F; aun..rlOfe;· :nstit"!.lte for Computer Graphics

(http: //WVo.'w.igd.fhg.dc: 801).

Datl. entry fields are made availahle to t:le user to enter the following data:

Keyword(s)

Boolean sca:ch operators (and, or, etc.)

Date ~elevancy s::arches (check for revised documents).

Thesauri bascd scarches

Substring sel.rches (word stemming)

Document bi erarchy

Document hierarchy is an important feature in that it al!o ·s the user to limit the

search criteria to a predefmed subset of LiC total docume:J.t strJcture. This featu:e helps to

narrow dO\\ll the search area ane: prevent~ infonnation overload by having too much

infonnation presented to thc user

The acquisition process hie:a.rchy is broken down into a total of six phases. As

shown in Figurc 4, the user can select to search either the entire acquisitionmane.al docurncn:

or any one orlhe individual pnases.

33

Type ~!heko}"WQrd« ~kcyv;."Ords .Q"'~c'..e<l;m ':m<!"' i!.B<i'v,'
En::-J,ple:'p=e-md.bi.la.7'
I

T= .". eoflhe~=usto~da .. ~chto.n"Y"<'''T-'''iofa=. ~.."o''

su::.~=thi!I& to ="dlt che~to O«!$wbict.~~Ihei">enterola$;o
s~b~

OU$.the.aun:sQSI:botri::J&I!>*..~

ISeUch"lI,.cq ujs jtj .. n d Dcumen~ "

Figure 3. HyperPKM Indexing Gateway

34

T\lI":I onusccft!:e$l·.:n::;loe.-m:!l<iasea.""cittQ3!lrynonymsofletm:.lUr.lon
:ub~=bU:.o!Q=<i:",,",hollOW<>:"<i!"'hrlIc~tt:egpe.:=a: ..
rub=:-,j
O::r"e:ht;.a;)I"US O S>.:b~~

l.ilm:t<,.orr.hlO ... mc.of~ do=t::.n:rchy

S •• rt:h~II."'luisitiQndocum.nt"S

Pre-Con.cpt Explo r~tion IIA.qui~itioniPha"e.(I1
CanceplExpl",.tionVAcqui: itionJPhue.l1
Demonstration Dnd Vali dation UA<:<!uisi\ion]Phase.Z]
Enginee~n g and Manuf8o:uring Developme"t IlAcquisilion/Pha ~e.31
Produdinn .nd Deployment UAcqusition/l'tl8 5e.~J
D eration~ .ndSu a" • uisilian/Plusc.

Figure 4. Searcbable Document Hierarcby

35

I'

['0 illustrate the example, the seareh term of "PPBS" (planning, Programming and

Budgeting System) has been entered into the keywo,d search field (see Figure 5). The

document hierarchy field has been set to "Pre-Concept Exploration" or Phase 0 on the notion

that the user is searching for information dealing sole:y v.ith this area of the acc;:uisition

process (sec Figure 5). This action \vill greatly reduce the amount of superfluous

infonnation that is generated ar:d will keep the data mar.ageaole for the user.

HyperPKM: Indexing G< • .deway
-:Yge:neekeywwdor~keywor.!s=cted,,~ ·-r mG! "<x"

b.."1lP1e; "p'.cll.« ""dbina:;".
I?PBS

"i"um 01:luseofme$II.. IO~aJean:htoillfYllO(J}"1IlSof .. tcm.ru:nOll
.ub.I:in,g=hi!!glOalend.oan:.."':l:lOword:$wh!cl: oO<llai:lthe iP= ~a< ~
$Ubstring"
o u ... me.auru< 0 S1:b!tring",~

!.imitf lo=h!O a sclltree cfthe d"o~hi=hJ"
jPre-Conccpt Explof~tion UAt<;uisition,/Ph8$C.O)

;v~

Figure 5. ~eyword and Selected Hierarchy Data Field

36

Upon the selection o:~ the "Sta!1 S~areh" button by the user, the HyperPK.\1 Gate'.>.'aY

Interface calls the associated PERL scripts to rerform the s~:u-ch of the site-specific index.

Any related information that is contained in the index is retrieved and parsed , and then it is

tmnsfonnoo into a dynamically generated HTML document COlllp:ete with virtual remapping

of the documeJ>.ts' location (sec Figure 6). A search eO:lduct~d in this ma.TJIler for the

key\vord "PPBS" under the Pre-Concert and Exploration phase !esulted in only two

docu.lnents being found (sec Figur~ 6)

HyperPKM Indexing Gateway

• query ',o,'aS "PPES'
• e=ta:"'"U>'et tof~'I.~e..O

• PI"IrNk F.,='e! 'fp""grmcw o··?rorn: rru'cr.a¥l?"T"" 17 .~.!I?
~
fAcqW::::.on/l>!W .. 0I05.b:m
'PFBS"1

• s,.J>mtI POMLrpytsDS&a'o/fdlZtw. cham,. """", l7 411£ 951
1~~~.oro&3.1:t:n

"PPBS'2

!L1;B

Figure 6. Document Resulting From Search Query

37

TIle llser could also enter the keywords "planning and vograrnming and budgeting"

(see Figure 7) in which case the search would rctu.'"!l G total of three dOC'...!IIlents that are

related to the query (see Figure 8)

1\.. on!'!:; c ofll'..e.aurus to enmd. fCan:!> to..r. synocyms ofa t=.:..-n on
S\0otri::&mucbiDilOar:endleC'clleI!l;iWI)f<!;w!IIch~Ql!tinIbe~=u~

~~ s= dS~malClq

!Pr~anceptE><plc .. tionVAcqoi"ition,lPbase.OI

Figure 7. Alternative Search Technique

38

Help

file Edit J.(i ew .\iu !loukmD'ks Qptions Ili,edory !;lelp

HyperPKM Indexing Gateway

. qt.':I)'was ·p1a.~=.dF4"Q~ III" b~·

• t~WlI."ett<> rAc~~~nfPbue.O.

• ldMdN pz/Wrcym~!"t1.lit>r..o.I?ia,...s(~c;'.ar,IT 1I<u! ?AuR 9J)
IAcquWiQ!llPhase .0I011.1m:D
"b-~'1
'~'S

'prQ~' l

• U,J".1i.fv r,,1Y<lI ?err" Si.ro<:~ &-aH"""'~m:: flagchai.?9 Tn" 17 k "g
@
IAcqWitioclPlase.0I0' 21.!ltm
~'1
'~' 6

'~o~' l
• Sui>IPll1. POUlirpw.sas~di1.a#dun'H 7b !7 .A"R 9J)

IAc,,";":i<>:ll1'hce.()/OHhIID.
~DIl~'2

'~'1

'p'¢~'2

Flgure 8. Output from Aiternatln Query

39

If the docu,'nents that are retrieved do not meet the needs of the use: and the lLscr is

unable to provide supp:ementa··y re:ated key\ovo!ds to searchfof, then Lie option of selecting

additional search mcthods is of great significance. The L1csaurus search and substring

matching functions provide for greatcr versatility (scc Figure 9). Tne thesaurus scarch option

utilizes L1e keyword(s) that \vas/were entcred by the llscr and then performs a search of Lie

specific technical thesaurus data file for any related. terms These related terms are then

HyperPK.~ Inde>:ing Gateway

T"""""UI:~o£:he tocn=dase<rdlto..t.~af <lte=. IU:llOll
subztr=s~to=ndse~towor<l.l:...tt::chcomi:le.e ~ttml lS~

suO~
o tTse1;beuuruo 0 So.lbsttiQs!Mlcltir:rs

lmI:ts ,e;m:h:oaSllbtreeo:me dot:l:mec:hi:rar:I!y
IPre-CDnceptExplonllionVAcquisition,lPloase.Oj

"' ...
Figure 9. Selection of the Thesaurus Search Feature

40

". · 1

matched against the site index for any additional docUI:1ents that are cO:1tained in the selected

docwncnt hierarchy.

For this proj ect, a specific technical thesaurus was developed ut:Ezing a DOD

acquisition rnanua.l ar..d s:.Jpporting documents. l\umerous keywords wcre eva]t1ated for

corresponding word meanings and relevant n:lationships to other key,vords. As in 6e cas<:

of the keyword "PPBS," a total of 12 additional keyv,;orcs were four..d to be relevant. 1bree

of these additional keywords (pJa!lIli..'1g, progran'Jning and budget:ng) would most likely be

knov...n to the user a.'1d probably searched for. The remaining rune keywords are most Ekeiy

unknown to the user, in the CO:ltext specified, ar..d therefore, wo'.l.ld present the user with

additional information relating to the query. Figures 10 and 11 depict the documents that are

generated as a result of searching for "prBS" with the thesatk.l.lS fu.'1Ctior: selected. As a

result o f this type of search, a total o f 45 documents were found with 23 of them contairjng

two or more distinct a."1d related keywords. With the theSalL'"llS feature, a search is conductcc

by topic and not by query. Hence, documents will be retrieved whether or nol 6ey contain

the keyword(s) that was/were being searched for (s~e Figure 11).

Once a docum~nt is found to meet the usm' needs, the selection of the documents

title , which is a hypencxt link, will take the user to the selected cocument (s~e Figure 12).

HyperPK.l\f Indexing Gateway

• ~".,. ",as"l'PBS"
. <:<mW:l:....,.$elto/ru:qW:li:i~.O_

• .,.eoflhe$l,,:rus l>.ln:led<m

• f?Iy-_D!ff".gffAAnp;gq.~o1m· " g~ThuI7.A!tg9S)
1Ar:~eorolll.~
"'POM" 2 tpPBS)
' fisel1"1 (PPBS)
'pl="ng'25(PPBS)

• SWmu?OUhz.=a;~Ast:d.m",, _r_ J7AugOS)

l~t.OtO&31m>
"PDM" 1 {pPBS)
"?OM"6{?PBS)
"PPBS"2
'budgeq' 21;PPBS)
'&=ciaI"l(PPBS)
"5$c~' I(PPBS)

"5In~'$(PPBS)

'~'I(PPBS)
·?«>Sf...,.,q'2(PPBS)
·""f<>:l.-.;e'\ (PPBS)

• Cone:.q!fb$lO,..O~a.wff4'!i&'!1T",!7r g9J)
IAc~,0I0l:55.ht::i.
'c<>~1 (PPBS)

~~'8 (P?BS)

Figure 10. Search \Vith Thesaurus Funetion Enahled

42

"PDM"l(pPBS)
"P01G' 6(pP3S)
'PPBS' 2
"budJeting'2(pPBS)
~1 (PPBS)

'EluJ' 1 (pPBS)
'fim<!int'3(p~
'pl~':(PTIlS)
'pro~'2(l'PBS)
' ,..",,,,,,,,e'! (PPES)

• Ca . 1v.w;;toJU Q Royz£w~,,4·'f!rThu17""..lo'g~J)
JAc~~ .. 0J(I155.btm
'c~ l (PPBS)

'fuc~' 8'(pP:aS)
'fu,,~'7 (P?BS)

• B.r.n. ... ~ ... A"' .. P!t:""'/b;J:,,"""'g~ r= 17lo'£95)
1.AcqWi!i<>rlll'ha.~oro:12_h!<:l

'Mcq'l (pPBS)
'p1..",;",g' 12(pP3S)
" !;t~'l (PPBS)

• AsSlt~ThcMc!azyA"'a&flimd_Hl~7'Io!i 17 Au$195 '
JA.quisiliocJPhue.0f(1123.hI::n
'5:!~' l(PPBS)

'5.:lcbg'l(2PBS)
"5J:,.&'2(PPBS)
'pb=Dg' 10 (PI'3$)

• ;;x.,./ap .. ?ro<z?!Sxwitylft4g!tllos:"han.."r,... 17Aug95)
fAcqWi:iontPho:&e.0f0.324_hl:n
'POM' l (ppBS)
'budgetil:.g'l (pI'B$)

Figure 11. Thesaurus Sear ch By Topic Area

43

-- I

no.. ~<~9r ' "," ~~e >.: ~~r ~ ... u< po 1<>t '0'OJ>< Pl.a= U'9, Pr"",r~" ..
"",.,., !ud..;eu lIq ~T-'<_ (fPU' ~roeeM _roo ~''''''.' "o'.nr. ,-=~ ="
_'c~.o. _llI:It r=ow:c" «quU'Glo~<s .. lbe Proqt-_ ct>Jece.V"­
"""", .&Dd_ (~) ll' ~u. .. ,.:to'e! .. to _~c:to ttle llal>l. dolle.r~ _.~<

t~ m>~< =.u~ ...,.,~.. n.. POll, -...t=~ by e"" :;> <oor-_ ~cb~o"

......,."""". (PI)I) .. ~c= a "..sel • .". ror tile "."". o~ "<I>< b".UU;

"""~C ..
The H""":1.<I>.1 l'Ol! ." to cas=,,- <booe =l=<M ~~ = ~=!_ io tl:..e
'PBS.. ..t ,1" s ;00"":, ."" ... t rOtCC <oJ"". : .., ~""".,,~ _.,<k:i ~
" _ .0,,101 5~1=~o" .,. r.~.",_-...! eo: eM :!<kl>:i~<e<l "",s.'= ne~ .. n..
~ ~ rcrt 8 < .lIu P""'" ct ttle pro,e<:t ~boou.l .. !o.o ,""~,,e em t~

~:~;1~~::1~~:~~;:=;IT:~1:~~:::~~~:::

ASC/flWlI
t~C/flW

'~/rD
OC-Utnlll
~"-HOnli

('I!l11 ''T7~2'1llS

(70J)oWS-:.I7S
1st]) tS7-Un
lUll Z57~Ol.
unl Z5S-USO
(6171i"-517l
(SU) ~n-"'~
(310) 1U-laa
!~05) 7)6-""
("':.0) ':S-1~30
(916) H3- 6 US
t9 l~) 9U-HIO

Figure 12 .. Documellt RetneHd Via Hyperte}O:t Link

44

VII. RECOMMENDATIONS AND CONCLUSIONS

A. DEVELOPER REQUlREMENTS

To continue development work with REMAP GRU, a developer should have a

number of basic requisite skills. First, a good working knuwledge uflhe UNIX operating

system is required. A general knowledge of III I;.': Andrew Toolkit is also necessary so that the

programmer understands the tools available and the object oriented environment which it

provides. Additionally, a thorough knowledge oflhe C progmmming language is essential

Arrays, pointers and structures are used extensively in the application environment. The

most invaluable knowledge was gained oflhe application environment by numerous hours

of experimenting with the application and exploring the previous versions uf lhe code.

Through the use of the PERL scripting language, the HyperPKM Indexing Gateway

can be modified to provide grealer search functional ity for the user. Not only can the

usefulness of the current search operators (boolean, thesauri, substring matching) he further

enhanced, the abili ty to conduct proximity, wild card and conceptual searches can be

implemented

D, HELPFUL REFERENCES

The only comprehensive reference book available for the Andrew Toolkit is

NauJaniel Borenstein's book Multimedia Applicati(ms Development with the Andrew Toolkif

fh is book is written for the advanced programmer with a solid base of C programming

knowledge. The most helpful infonnation concerning the Andrew Toolkit and the REMA r

GOU envirolllllent can be oblainctl from the ConceplBase design team at the University of

Aachen, in Aachen Gennan},. Throughout this project an extensive e-mail exchange was

eonductt:d with the team .

C. RECOMMENDATIONS

The Search Related Documents method could be improved to provide a better user

interface. An improved interface might provide a dialog box to query the user as to what

terms to search for, the appropriate boolean connectors to use, whether substring matching

45

or thesaurus searching is desired, etc. prior to pa3sing those arguments to the search

mechanism. This improvement would provide a cleaner intcrface with a mech<lJ1ism to link

and or save to the CunceptBase any additiunal infonnlltion which help document the current

design project.

D. F{)TURE WORK

The HyperPKM model can be further modified to allow for "Smart Searches". That

is, the ability to perfonn thematic content-oricnted searches of docwnents contained within

a host server. In utilizing thcmatic searches, an analysis of me doclUnent content, instead of

wurd frequency, is conducted. This concept allows tor documents to be retrieved that do not

even contain any of the keywords queried or references to a thesaurus data fi le. Word

connotations are understood by the indexing and search engine. The differences between

"Computer monitor," "Health monitor" and "System monitor" are all understood. The

"theme" ofa document is comprehended. A dOClUllent may contain discussiuns pertaining

to "refresh rate," "screen size" or brand name, and would still be retrieved even if the tenn

"computer monitor" was not in the doclUllent itself (Ref 19] .

A program such a'> Oracle'sTM TextServer 3 [Ref. 19J with the use of Oracle's

dat.1.base, can be incorporated into thc liyperPKMmodel, thus, allowing the expan:;ion of the

search and retrieval capabilities of the HypcrPK1\ti se:Lfch enginc. Such an implementation

is fcasible in the contcxt of the practicality and functionality uflhe HyperPKM model.

46

LIST OF REFERENCES

l. Blattner, Mecra, and Dannchcrg, Roger, Multimedia Interface Design, New
York: Addison-Wesley Publishing Company, p. xix, 1992.

2. Borenstein, Nathaniel, Multimedia Applications Development with the Andrew
Toolkit, Englewood Cliffs: Prentice HalL Inc., J 990 .

3. Ramesh, llaia<;ubramaniam, and Dhar, Vasant, Supporting .systems Develop­
ment By Capturing Deliberations During Requirements Engineering, iEEE
Expert, Vol. 18:6, pp. 498- 510, 6 June 1992.

4. Ramesh, Balasubramaniam, and Dhar, Va.~ant, Representing muJ Maintaining
Process Knowledge for Large-Scale Systems Development, JE},L Computer
Society Press, pp . 54-59, April 1994.

5. Conklin, Jeff, and Begeman, MichaeL gIJUS: A Hypertext Toolfor Explora­
tory Policy Discussion, ACM Transactions on Office Systems, October 1988.

6. RitteJ, Horst, Dilemmas in a General Theory of Planning, Policy SCiences ,
Vol. 4, 1973.

7. Jarke, Matthia~, ConcepfBase V3.2 User Manual, Unversity of Aachen, p. I,
1993 .

8. Borenstein, Nathaniel, Multimedia Applications Devciopment with the Andrew
Toolkit, Englewood Cli ffs: Prentice l-Ial1, Inc ., p. 13, 1990.

9. Palay, Andrew and others, The Andrew Toolkit.- An Overview, paper presented
at the UESNIX Association Winter Conference in Dallas, Texas, p.7, february
1988.

10. Beck, Howard W., AmirM. Mohini, and Viswanalh Kadambari, A Word is
Worth 1000 Pictures: Natural Language Access to Digital Lihraries, http ://
www.nesa .uiuc .cduJSDGIlT94/Proceedings/Searchingibeck/beckmain.html

47

II. De Bra, P.M.E., and R.DJ. Post, Searchingfor Arbitrary Information in the
mvw: The Fish-Searchfor Mosaic, http ://\\'\vw.ncsa.uiuc.edu/SDG/IT94/
ProceedingslScarching/dcbraiarticle.html.

12. Neuss, Christian, and Stefanie Hofling, Lost in Hyperspace? Free Text
Searches in the Web, http://www.igd.fhg.de/-neuss/w4-main.html.

13. Levenshtein, V.l., Binary Codes Capable of Correcting Deletions. Insertions
and Reversals, Soviet Physics Doklady, Vol. 10, 1965.

14. Chen, Esinchun, Bruce Schatz, Joanne Martinez, and Tobun Dorbin Ng,
Automat ic Thesauru~ Generation fur FlyBose, hltp://ai.bpa.arizona.cdulpapcrsl
sigir93/1 istoffigures3 _ 2.html.

15. Chen, I-Isinchun, Bmce Schatz, Tak Yim, and David Fyc, Automatic
Thesaurus Generation for an Electronic Community !::iystem, http://ai.bpa.
arizona.edulpapers/worm94llistoffigures3 _2 .html.

16. Chen, Hsinchun, and Kevin J. Lynch, Automatic Construction of Networks of
Concepts Characterizing Docwnent Databases, hrtp:llai.bpa.arizona.edul
papers/ieee9 1/1istoftables3 _ 2.html.

17. Chen, E., K. Basu, and T. Ng. An Afgorifhmic Approach to Concept Explora­
tion in a Large Knowledge Network (Automatic Thesaurw; Consultation):
Symbolic Branch-and-Bound Search vs. Connectionist Hopjield Net Activa­
t ion, http://ai.bpa .arizona.edu/papers/stlIlll92ilisto ffigures3 _ 2 .html.

J 8. Grcfenstette, Gregory, Automatic "Thesaurus Generationfrom Raw Text using
Knowledge-PoorTechniques,http://www.xerox.ti"/grcnoblc/mlttlreportslhome.
htm!.

19. Information Highway or information Ocean? Oracle Delivers Software to
Control the Flood of Text-Based Information, http://www.oracle.comiinfo/
ncws/textserver 3 .htmL

48

INITIAL DISTRIBUTION LIST

1. Defense Technical in fonnalion Center
Cameron Slation
Alexandria, VA 22304-6 145

2. Library, Code 013 .
Naval Postgraduate School
Monterey, CA 93943-5101

3. Prof. llalasubramaniam Ramesh (Code SMfRa)
Naval Postgraduate School
Monterey, CA 93943-5 103

4. Prof. Suresh Sridhar (Code SM/Sr)
Naval Postgraduate School
Monterey, CA 93943-5103

5. Christopher L. Vance .
c/o Mr. & Mrs. A.B. Vance
917 Dorsett Way
New Bern, NC 28562

6. Kevin P . Sudho ff .
clo CDR & Mrs . Herb Sudhoff
Route #2
Sparta, TN 38583

49

.2

. 2

DUDLEY KNOX LIBRARY
NAvAL POSTGRADUATE SCHOOL
MONTE.RE.Y CA 9394J.Sl01

~lfwlnli1illlrrmilll~J '
3 2766 00319752 6

