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ABSTRACT 

The capture and reuse of design decisions and their rationale is increasingly 

being recognized as very important in increasing software development and 

maintenance productivity. By using these concepts, the DOD has recognized the 

ability to achieve a significant reduction in development and maintenance costs on all 

software development projects. The REMAP mouel provides the primitives and 

mechanisms for a structured representation of this infonnation . Our thesis 

implemenls a graphical user interface for the RHvlAP model to faci litate easy 

acquisition and reuse of process knowledge. Much ofthe "infonua1" components of 

design decision and rationale may be represented using multimedia documents. The 

ability to link such documents and search for "relevant" components of process 

knowledge from these is a key attribute of the HyperPKM model. HyperPKM 

provi des the capabi li ty to link and search multimedia documents distributed in the 

WWW to the REM..hJ> objects displayed in the h'Taph browser 
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1. lNTROOUCfION 

A. G EN ERAL 

r his thesis describes the development and implementation ofthe initial prototype of 

Hypermedia Process Knowledge Mapping (HyperPKM). The HyperPKrvl model is a 

structured methodology by which stakeholders of software design proje(;\s can achieve 

improved documentation of design rationale and decisions. This improved documentation 

is performed by anaching (or linking) hypemledia documents to the objects of a structured 

conceptual model (RE/IAAP), which captures design rationale and sofuvare design process 

knowledge. The implementation of this prototype ofHyperPKM is the culmination of an 

intensive development effort whieh includes the extension of the REMAP GBU and 

incorporation of a hypermedia search t:ngine for use via the \Vorld-Wide \Veb (WWW-­

http://sm.nps.navy .mil/webmaster/guide61 Iguidt:.O I .hunl). 

One of the major themes and driving forces of the use of hypemledia applications, 

is its ability to efTectively and expressively commwlicate infonnation to the user of the 

application lRef. I]. These complex hypermedia applications aTt: typically very costly to 

build, di ffi cult to debug, inconsistent, OT very slow to nm, depending UPOll the tools wi th 

which they are built. The Andrew Toolki t (A TK) helps the programmer avoid many ohhe 

pitfalls WId difficult problems in building such applicati ons, and indudes numerous helpful 

10015 for building hypemledia interfaces [Ref. 2]. ATK is a C language based util ity 

program wbich uses dynamk linking, preprocessing, and an inheritance mt:chanism to make 

this complex programming task easier. Ibe ATK and hypermedia application development 

will be discussed in Chapter ITI. 

Since ATK includes a vast hypennedia applications development toolkit, it is used 

as tht: basis of tbe implementati on of the ReprcsenUltion and Maintenance of Process 

knowledge (REMAP) Graph Browser Utility (GBU). REMAP GBU pro"ides support for 

the various stakeholders in software development projects by pemlitting the structuTt:d 

capmre ufthe history of design decisions and rationale dluing the early stages ofthc project 



life cycle [Rcf. 3]. Thc REMAP model, GB U and its benefits will be more thoroughly 

discussed in Chapter II 

B. THESIS OB.lECTIVES 

A primary objective ofthis research is to develop a mechanism to link hypermedia 

doemnent~ representing process knowledge io instances of REJvlAP objects. The REJvlAP 

modd, which is at the heart of HypcrPKM, is implemented in the ConceptBase, a knowledge 

base management system. The implementation of REMAP within HypcrPKM includes a 

hypermedia search engine, and mechanism to link. intemal (concept base) and external 

(WWW) hYpermedia search query results to the application. 

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE 

Therc is a drastic need within the Department of Defense (DOD) to significantly 

reduce development and maintenanec costs on all software development projects. 

HypcrPKM provides a vehicle hy which large scale sofhvare development and maintenance 

projects can be more economically and efficiently managed. Additionally, the HypcrPKM 

model is easily ported across a wide spectrum of workstations, enabling its use as a standard 

software development tool throughout DOD. 

O. SCOPE AND PREPARATION 

The scope of this thesis is limited to a detailed review of hypermedia concepts, the 

REMAP model mId hypermedia search engine capahili ties. The remainder is a description 

of the design and implemelllation of HyperPKM to include the incorporation of the Position 

Object, the WWW hypermedia documents search engine mId the use of hypermedia to 

capture and maintain process knowledge. 

Advanced knowledge of the PERL scripting language and the C programming 

languagc, as well as a basic understanding of the Andrew 'foolkitare required for Ihis work. 

Preparatory work included an intensive C progranuning course at the University of 

California at Smlla Cruz, international cooperation in learning and utilizing the PERL 

scripting language for use with the HypcrPKM model , an extensive e-mail dialog with the 



ConccptI3ase Development team at the University of Aachen, in Aachen, Gennany and a 

detailed review of literature about the l\ndrew Toolkit. 

E. ORG ANIZ.ATION OF THE STUDY 

As ide from the introduction and a final conclusions chapter, this thesis consists of 

fi ve major chapters. Chapter " elaborates on the REMAP model and its application. 

Chapter iii discusses the methodology used in thc development and incorporation of both 

the Position Object and the method that calls the hypermedia search engine. Chapter IV 

deals with docwncnt searching via the World-Wide \I,'eb. Chaptcr V presents an overview 

of the HyperPK.l\1 Indexing Gateway. Chapter VI illustrates the use of the HyperPK.M 

interface 





11. REMAP PROJECT ENVIRONl\IENT 

A. REMAP BACKGROUND 

The focus oflhe REMAP project is thl: structured capt urI: of design rationale and 

decisions, which arc an important component of the history or "process knowledge" of 

sofu.vare development projects. Recent researeh suggests that capturing the design rat ionale 

during the requirements engineering phase, early in the system development li fe cycle, can 

be very helpful and productive in ensuring the resulting system more a(;curateiy meet:; user 

requi rements. TItis design rationale is typically lost in the course of designing and changing 

a system (Ref. 3]. By providing a comprehensive picture of the sofrware development 

process however, the REMAP model increases the understanding of the design process and 

"offers a mechanism for propagating changes in the design decisions into changes in design 

solutions" [Ref. 4]. System designers, maintainers lUld users c:m use the process knowledge 

captured by the REMAP model to 

provide design support by facilitating inler-devclopment group communi­
cation and infonnation exchange regarding requirements, issues, decisions, 
constraints, elc. [Ref. Jl. 

reduce system maintcnmlce dforts by maintaining process knowledge at thl: 
level of requirements and design rationales [Ref. 3]. 

Heip t:Ild users in undersuUlding how exactly the design-deliberation prO(;t:ss 
addresses their requirements and sec how requested changes cause reper­
cussions at the design level [Ref. 3J 

"Ibe REMAP model incorporates the model primitives of the Issue Based inj"onnation 

System (IllIS). The IBIS modd, wa~ developed by Horst Rilld and is based upon the 

principle that the design process for complex problems is basically a conversation among the 

stakeholders of a project. In this process, the stakeholders use their collective l:Xpt:rtise and 

vicVlpoints to obtain resolution of the design issues. IBIS uses a set of three design 

primitives and the relationships among them in a rhetorical model to Tl:prescnt the 



"argumentation~ process [Ret: 5]. TlUs set of design plimitives includes Issues, Positions and 

Arguments (see area enelo~d by da~hed line in Figur.e 1). An Issue is a question or concern 

that must be answered before problem solving can continue. A Position is a possible answer 

or statement that responds to a particular Issue. An Argument is a rea"on for supporting or 

objecting to a particular Position. I\. specific Argument may either support or object to one 

or more Positions {Ref. 5). The il3IS model has been used at the Microelectronic Computer 

technology Center (MCC) in the Design Journal research project as a way ofreprescnting 

design deliberations in large design projects [Ref. 6]. 

The IBIS model wa:; meant to capture the con'lersations and deliberations among the 

stakeholders in complex problems. However, it 'does not recognize the context in which 

argumentations occur, nor the outcomes of the argumentations" [Ref. 3]. The REMAP 

model, therefore, incorporated additional primitives (see Figure I) to specifically address this 

deficiency. These arc: Requirement, Assumptiou, Decision, Constraint and Design 

Object. Since a system is typical1y designed to satisfy some end user's requirements, the 

Requirement primitive represcnts the needs/wants that the users \vant the system to satisfy 

Additionally, since user's requirements tend to change over the life of the design project, the 

REMAP model includes the flexibil ity to modify Requirements and begin the iterative 

design process. Assumptions are included in the model to provide a basis for evaluating the 

applicability or validity of an Argument represented in the model. Decisions represent the 

selection ofa given Position that then responds to an Issue and leads to the resolution of the 

given Issue System designers then establish criteria andior constraints that must be 

incorporated in the final design. The design solution is represented by the Design Object. 

B. REMAP CONCEI'TBASE IMPLEMENTATION 

TIle REMI\.P model is implemented in ConceplBase -- a deductive object manage­

ment system which Vias developed at the University of Pass au [Ref. 7]. Thc ConceptBase 

uses thc Telos knowledge representation language, which is a IUgh level object oriented 

modeling language. ConceplBase providcs a coordination mechanism that operates within 

a client server architecture and can be distributed ove], local or wide area networks llsing the 
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Figure 1. REMAP ConceptuaJ-"lodcJ 

b11t;:rnt;:! protocol. The REMAP GraphBrowser Utilif), program impkmented in the 

ConceptBuse is ""Titten in the C programming language using Andrew Toolkit. This utility 

is designed to pwyidc a readil y custominhle fwnt. end GUI for the kuowkdgeba~e of 

ConecptHase. 

TIle GraphBwwscr D ility (GHL J is a windows oriented interbce whi<.:h allows the 

properties and contents of any displayed object \0 be graphically viewed hy poin1ing and 

clicking on the ohject with the kft mouse button. These objects and their contents are 

displayed by the GHU as a directed acyclic graph. Variolls menu choices within the uti li t}' 

actuate queries that retrieve obJect instances and atlribules from the knowledge base. 





II I. EXTENDING THE R.EMAP GRAPHBROWSER UTILITY 
(REM AP GBU) IlORTlON OF HYPERPKM 

A. INTRO DUCTION 

rhe prinllHY focus of this chapter is to discuss the tools and methodology thal were 

used to creale the position object extension of REMAP GnU and develop search queries for 

(and links too) related hypermedia design rationale docrnnents \vhich may exist on the V./V/\V 

The Andrew ToolKit. which was used in the implementation of RE\.1AP GBl~. various 

modul es and class structures and hyper-link capabilities are discussed 

B. ANDREW TOOLKIT (ATK) OVER\;lRW 

1. In troduction 

ATK was init ially developed in .1982 as ajoim venture bet\veen thl;': Carnl;':gie .vlellon 

University and the TAM Corporation at the lnfonm-nion Technology Center ATK consists 

of three main components 

The Andrew Messagi ng System 

TIle Andrl;':w JIelp System 

The lI.TK and application pmgrams 

Our discussion will deal specifically with the AIK and the object oriented environment 

which it provides. 

2. Object Oriented P rogramming Environment 

As mentioned in Chapter I, the ATK is written in the C progr,lluuing langu3!lc and 

also provides a prl;':proces~ing environment thcl.t enables an object-oriented programming 

enviromnent and dynamic linking of code. AIK greatly simplifil;':s Ihl;': !.:rt:atiou of complex 

hypermedia applications through the subdivision of the program into manageable pariS 

Largl;': program~ are written as a large numher of components, cach of which ul;':s<.:riiJes ~ome 



behavior of some obje(;l. These objects interaellO create a Iluid and interactive program 

[Ref 8]. 

This behavior is accomplished in the ATK by use of the Andrew Class System. The 

Andrev," Class System was modded after the C->-+ object-oriented environment and pcmlits 

the definition of class procedures and class methods Cfunctions) [Ref 91. TIle Andrew Class 

System provides a library of standard Andrew classes and a prepro(;essor. Additional user­

defined Andrew classcs arc created by making w.'o additional files: illl: standard C file C"'-c) 

containing the class data and methods (functions), and a class hl:ader file ("' .ch) which 

contains thl: class specification. Upon cumpilation of the class data and hl:ader flIes using 

a Makefile , the Andrew prcprocessor gl:nemtl:s two additional fi les. Thcsl: files include the 

import headl:f file (*.ih) which is used whcn any other eomponcnt needs to usc the class 

(inherit behaviors), and thc export hcader file (*.eh) used when defining a class. 

C. REMAP MODULES AND CLASS STRUCTURES 

The following sections provide a brief introduction to the primary AIK and REMAP 

GBU application modules and classes that provide the requisite behaviors to REMAP GI3U: 

1. Rmaiu Module 

Thc rmain.e fi le provides the standard C mainO routine that pl:rfonns the basic 

initiali7.ations and creates the application object. It also perfonns a static load of all non­

A TK resident classes that are specified in the code. 

2. Mouul Header 

lbc header file modul contains macros and defines that may be used by any class or 

mudule when it is included in that class' defmition fi le. Addit iona!ly, it exports a pointer to 

thc application class appREA1AP, which allows easier access to the class methods and 

fun(;tions. Also, the primary macros that are included in modu\ provide for display of 

infonnation and error messages. 

3, Rapp Class 

This is an instantiation of the ATK resident application (parent) class. 1t provides 

for inhcritancc of the ParseArgs. Start, Run, Slop and Fork methods for usc as needed in the 

10 



application. The rapp class header, rapp.ch, holds (Xlinters to the parameters that stmi the 

program when called by rmain. They arc initialized by the method ParseArgs which is 

called in the rmain module. This class also ini tializes the Coneeptl3ase and the graph data 

object when rapp _SlarlO is called. 

4. R CB Class 

The reB class is the primary ConceptBase interface, and handles al l of the 

communications with the ConceptBa<>e server. It includes methods that allow connects and 

disconnects with the server and provide cOHunWlicatiOTlS via ask fi nd tell statements. 

S. Rgrapb,· Graphview Class 

rhe rgrap hv class is an instantiation of the ATK resident cl ass ~raphvielt'. It is a 

specialization of the graphview class since it over-rides the inherited methods, such as 

graphview _ HiIO, which performs speci fi c actions when an object is clicked on by the mousc. 

Addit ionally, it provides its 0 ..... '0 menus and a means for updating and maint.-uning its menus. 

Menu items within REtviAP GBU are not implemented as class methods, and are 

more s imilar to functions which could be located anywhere. Within this application, the 

functions are placed in class definition files to which they are logically related. For example, 

when developing the position object's issueobjCom _CreatePosilionFol"hmeO it is placed 

in the issue class file since it is logically related to issue 

6. Robject Class 

The robjec! class file is a generic super class detinition which provides basic class 

behaviors and methods as well as inheritance for all objects which are displayed in the 

graphvicw. In version 1.7 there are three object classes implemented: Requirements, Issues 

and Positions. These ohject instantiations require the super classes methods to, 

minimlUll, create, display and initialize each of the object insllmtiations 

7. RcquiremcntClass 

This class is a subclass of the robjecr class. It includes inherited methods which 

instantiate the requirement object, definit ions which specify its shape and appearance within 

the browser and other methods which define its interactions with the issue class 

I I 



8. Issue Class 

This dass is a subcla~s of the robject class. It includes inherited methods which 

instantiate the i~sue object, definitions which delineate its shape and appearance within the 

browser and other methods which defmt it~ interactions with the position class 

9. Position Class 

This class is a subclass of the robject cla,:s. It includes inherited methods which 

instantiate the position object, definitiuns whieh describe its shape and appearance Vvlthin the 

browser and other methods which define its interactions with the argllllent (not implemented 

yet) and issue classes. 

10. Sellist Selectionlist Class 

The seWst elass provides a ",indow for selecting a single choice from a list of 

displayed clements. II inherits its behavior from the ATK resident class suite. Selectionlisl 

uses a linked list of pointers which point to strings (char *) that you wish to display. 

D. REVISION CONTROL 

I. Purpose of Revision Control 

Software revision control pro\ldes a means of managing the configuration or change 

process of a software application over it~ life cycle. It is especially useful case of 

developing RE.V1AP GBU since it provides a means of recording the history, progress and 

milestones of the application's development. It also pcnnits a method by which older 

versions may be restored to regain a certain functionality or perfonn a demonstration ofa 

previous versions' capabi lities. 

2. The Revision Control System (RCS) 

fhc GNU RCS is available on the network and "isrl" workstation where all the 

primary work for REMAP OBD was done. Commands which were most frequently used 

while developing this prototype include co(I), ci(I), rcs(\) and rcsdiff(1). The "man" pages 

or any number ufUNlX programming references contain indepth descriptions on the usc of 

these commands. 

12 



3. Managiog REMAP GBU Revisions Using ReS 

The development project was begun hy cTl:ating the new version directory "v 1_7" and 

then checking out the code that was last logged in to the ReS databast: ]be sequence of 

commands to do this are as follows 

cd remap (change directory to where code exists) 
mkdir vl_ 7 (creates the new prototype directory) 
In ~S ../srdRCS (creates a son link to Res database 

path) 
co -r ReS/*.e· RCSI*.h* RCSIMakejile (checks out last version and releases 

the lock for all code files needed) 

To check in fi les to the ReS database while sti ll working Oil the current version, the 

fo llowing arc used: 

ci -rfld . 7 t,e *.ch ·.h (checks in ~_c, *.eh and ".h files \\ithout locking, 
fOfcing the chcckin even without changes to file and 
searches checking fi le fo r infonnation keywords 
containing author, change time, state, etc., to place in 
the ReS database) 

After entering this command, a shOl1login script that describes the version is entered. 

When version 1.7 \-vas completed, and no further modifications were to be made, the 

following command was used to check in the final version to the ReS database: 

ci -fl, 7 *.c *.ch *,h (checks in *.c, *.ch and *.h files with lock and 
removes the files from the working directory) 

E. CODING HYPER PKM (REMAI' Gn U EXTENSION) 

I . C reating the Position Class 

The following steps were taken to create the position class: 

Posj/ion.c 

This code for the position object included the basic methods required to 

irutiali7..e, destroy, create, display and rdum the group name of the position object. nus was 

11 



created by using the same methodology used in version 1.5 (vl.5) code of issue.c. The 

changes needed to tum the version 1.5 issue.c code into the ver;;ion 1.7 po;;ition.c code 

included the following: 

define the group name, which must be exactly as it will be detined it in 
rCRch: szGroupName = szPOS1TION; 

change the shape of the node to: #dejine szPosObjlJejaullShape "reetnode "; 

change all instances of the words Issue or Iss to Posit ion or Pos. 

h. Position. ell 

This class header file was created by re-using the methodology used for v 1.5 

issue.ch. rhe only changes required were to change all instances of the word Issue to 

Position 

lssue.c 

This file was modified to include the behaviors needed to make the position 

object fully functionaL The methods GetAllPosition.<;(), SelectOnePositionO, Loa.dPosition 

ForlssueO. LoadAllPositionsForIssu~ and CreatePositionforlssue were placed in the issue 

object since they were logically related to this object. Thc following werc nece;;sary to 

complete the modification ofissue.c 

Since the basic implementation melilOds would need to be accessed the 
position heackr file would have to be imported. rhc following conunand is 
placed in the import section of the source code: 

#inc1ude "position. ill " 
In the implementation section ofthe s:mrce code a character pointer variable 
must be assigned that determines the name of the edge bet\veen the issue and 
position objects. 111.is name must be exactly the same as .. .vill be defined in 
reB.ch: 

.~Jatic ellar* szPosiJionCatName = 

szPOS1TlON_respondsto_ISSUE 
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GctAllPositionsOand SelectOnePositionO were created by using a linked list 
structure. These two methods are needed to provide a selection mechanism 
to choose between a number of po~itions that may have been previously 
created and stored in the Conccptllase during a persistent session. 
GetAlll'ositiot1s creates the linked list lor a selected issue. The linked list of 
positions is called by SelectOncPosition which then creates a "se!cctionlist" 
which may be chosen from when rgraphv_MenusOn is called. It is extremely 
important to rememher when working with linked lis t structures that you 
must ensure the last clement oflhe list is assigned to "NULL". 

LoadPositionf"orissuc is used when an issue is selected which has a number 
of positions that may be displayed . This method takes the position chosen 
and displays along with its a~sociated edge in the graphview. If there are no 
positions from which to choose, a message is displayed stating "No Position" 

LoadAllPositionsForissuc is used when the user selects this choice from the 
G BU menu. The method calls GelAliPositions to create the linked list of 
stored positions, and once the list is created traverses dov>'ll the linked list 10 
display all posit ions and edges 

CrealePositionForIssue methodology is the same as that used for 
CreatcIssueForRequirement. One significant di fference is that the order of 
the arguments for rgraphv_InsertEdge must logically malch that of the node­
edge arrangement that is created. In this case since POSITION_ 
rcspondsto_ISSUE is being developed, the di rection of the edge's arrowhead 
should point from the position(source) to the issue(target). The appropriate 

command is: 

rgrapllv_InsertEdge(rapp_RetGrapllv((CRapp)appREMAP), s'l.CurTtem, 
st.LabelSellss, issueobLRetPositionsl~meCatNameO, 
is!;ueobLRetPositionsIssueCatGroupNameO); 

d. Issue.ell 

The only modifications required lor this source file are the addition oflhe new 

method and menu function protypes 

Retl'miitilmsIssueClltNameO returns char",· 
RetPo.~itionsIssueCatGrollpNameO retllrns char ·,. 
GetAllPositions(c/lQr" szlssuel D) returns CLList; 
SelectOllePositioll(cllar "!J'zIssueTD) returns chur*; 
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overr;de.~: 

RetGroupNameO return.~ char*j 
}; 

/** these procedure.~ will be called by mentl command~ **/ 

extern void ;s<~ueobjCOMj_oadPo~-;t;onFodn'ueO; 

extern void iuueobjCOM LoadAllPo.~itionsFor1smeOj 
extern void issueobjCOM= CreatePo~'itionForlnueOj 

Rmain.c 

Two additions were required for this source fill:. They include adding 

lIinclut!e po.dtion.ih to the import section and adding po.~itionobL StaticLoadO under the 

rStaticLoadO method 

f. RCB.ch 

Two defines had to be created for the Conceptl3ase. Recall from previous 

discussion in position.c that the new position object functionality (object and obj(:deategory 

names) had to be exactly as defined for the Coneepillase. This is needed since rCB provides 

interface definitions for the ConeeptBase that arc also exported to he used hy other sornee 

files. In this case 

#define szPOS1TlON "POSiTlON" 

aod 

IIdefine szPOSITIONJespondsto _ISSUE "re!>pond~to" 

wefC needed to define the functionality that creates Ibe position ohject and realted edge on 

the graphview . 

g. Rgraphv.c 

The following modifications were made to rgraphv.c to provide to menu items 

required for the }Xlsition object and the "Search Related Documents" function call: 

The following code \va" added after "remap-create-issue" to provide menu 
items to call the methods required to loar.! and create positions: 
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,._ --.,.- - --­
RG_MEt·lU_NOTHING. 

{ " fI!map-load-po5ilion ", 
N ULL, 
,VULL, 
", Load One Position ", 
NULL, 
RGjlfENU_MASK_ONE_ISSV£, 

?~~:O:~~~~~l;:;:::o;:'.::::;:::·::~~~ ", 
NULL}, 

r -----_ __ _ 
{ "remflp-load-alf-po,~ilions", 

NULL, 
NVU , 
",LOlld A ll Positions", 
NULL, 
RG_MENU_ MASK_ONEJSSUE, 
iuul!ubjCOM LoartAIIPosilionsFor/.uue, 
"Load all posiiionf for the uleCUd is,Yoe", 
NULL} , r _____ ____ _ 

{ ",emap-aeole_pMitiOIl ", 
l 'iULL, 
N ULL , 
",Crellte PoslJlnn H , 

NULL, 
H.6'--MI;f\lV _MASK_ONE jSS(jf:, 
iuueobjCOM_ CreatePosilion For/ssue, 
"Creale Il ne '" pUJililm/or selected issue", 
Nf}U }, 

The foll owing code was inserted after the "Show Contents" menu selection 
10 create to make the "Search Similar Docwncnts" menu selection: 

RG_Mt:NL'-lVOTIflNG, r ________ _ 

{ "rt'map-search-similaf-documenls", 
Nll LL. 
NULL , 
",search Similar DOClimenU", 
N ULL. 
RG MENU MASK ONE ORJECT, 
rob)ecICOM_Sho..;$imila--;Dacumenls, 
"Seurch WWWJor similar canlm Uofaselectedobject ", 
jV(JLL}. 

,.----------
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RG_MENUJ',OTHlNG, 
RG _ MENUJ"'OTIlING, 
/~---------- 'j 

Adding code to ereatc the additional menu functionality was simply a task of reusing 

segments oflhe current code. Once a similar segment was identified, the code was copied 

to the new menu list location and modified to suit the required task. 

In the RetSelectStateO method lines of code had to be added to account for 
various position object counters and variables. On all lines whcre iReq and 
ilss were initialized "iPos" had to be addcd. Additionally, a line had to be 
added to account for incrementing a eOlUlter when the RetClassNameO 
method did a string comparison for position objects. 

if(Slrcmp(szGroup, positionobLRerClIlS5NameO) - 0) 
iPos++; 

A "Menu_Mask" also had to be provided to accOlU1t for position objects, 

I~ only one position Sl!lected *I 
if (iReq=(l.t& ils.~ && iPos=l) 

INewM,uk 1- RG_MENU_MASK_ ONE_OBJECT I RG_ MENU_MASK ONE_ 
POSITION; 

h, Rgraplmch 

The only modification to rgmphv.ch needed was the addition ofa #define line 

to define the state of the menu "Mask_Om::_Position" item. 

2. Creating the Search Related Document ... Class Method 

This method is implemented as class method within q,'Taphv.c. It uses a method 

ShowSimilarDoeumentsO, which when activated by a mouse hit on the menu selection 

"Search Related Documents", will fork a new process and display the hypennedia search 

form . The ml;.':thod "Search Related Documents" is defined in robjeet.c sourcl;.': oode. To 

perfonn the coding oflhis method, the following were required' 
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[n the imp!cmmtation section define a pointer to a character variable v,rilh the 
proper Uniform Resource Locator CURL): _ .. talie char* szObject 
COlltents fJisplayURL '" "lIttp:II.\'m.np.\'.lIovy.m iVcg;-bi"licc:lorm.pl "; 

Change the hro"''SeT to Netscapc by changing the ObjectContentsDisplayTool 
variab le to: static char · .~zObjectCu"lent.\Di"playToul '" "neb'cape" 

Create the method by using the basic methodology of the rObj cctCOM_ 
ShowContents method. Required actions of the code were to fork a new 
process (create a window with the Nctscape browser application launched in 
it) and call the hypermedia search form's URL afte r the application was 
launched. The code required to perfonn this is: 

void robjectCOM_SllOwSimjlarDocument~"(CRGraphl' gv) 
{ 

intpid; 

/" fork IE /l ew proces.f */ 
if ((Pid = forkO) > 0) ( 

else { 

me.fsage_ Di~playStri/lg(rapp _ HetGraphv 
((Cropp)appREIl-L4P), 10, "Simi/ar Document.\' 
Search Form will be displayed .•• OJ): 
return,-

/* run called program */ 
execlp(fzObj ectContelltsDisplayTool, 
.fzObjectContentsDisplayTuul, 
~·zObjectContelltsDi.splayURL, (char *)0): 

Robject.ch needed to be modified to im.:l ude a menu eorrunand procedure 
prototype line to defi ne the function "Show Similar Documents" 

extern void robjectCO,""C ShowSimil.arDocunrent.~O: 

F. COl\1PILA1'lON OF HYPERPK.i\,l 

1. Setting Environment Variables 

The environment variables establish the paths which are necessary to complete the 

compilation of the source files and dynamic objects as well as establish the required 
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dependencies. 'l'hese variables are set in the .eshre file of the project directory and should 

bc set as shown below: 

selenv ANDREWDIR lusrllocallandrew51 
setenv PATH .:$ANDREWlJIR/bill:$PATII 
setenv CLASSPATH .:$ANDREWDIR 

2. Creating the Makefile 

The Makefile for this prototype was created by adding the required position object 

dependencies. These are the same dependencies as required for all REMAP model 

primitives, and help to define the basic pammeters and objects which are necessary to define 

the objt:ets. A few ofthe required statements include: 

posilion.o: posilion.elI .AncludeJclass.h lusrlincludl!/Sldio.h ",bjecl./h 
position.o: ..Iincludushape.ih ..Iincludl!/elc.h . ./includulypes-alk.h 
posifion.o: lusrllocuVundrewSllincfudeJatkirecth 
position.o: lusrllocaVundrewSllincluJeJatkipoinLh moduLh 
position.v; . ./inc/udeJuttrih.lh . ./lncfud<!Al$Llh 
position.o; lusrllocaVandrew51IincludeJulk//omdesc.ih 
po~·iti"n.o; lusrll(JcaVundl"('w511iIlcludeJalkigraphk.ih 
posilion.Q: /usrllocQVandrewSllincludl!/afk/obsel1!e.iJl 
posifion.(J:lusrllocuVundrewSlIincludeJatlr/pixefimg.ih . ./UlcJudl'lgilemih 
pm·ilion.o: .• lincludeJQl/rib.h sell/.st.Jh 
po.,·ition.o: lu .• rllocaVundrew5IimcludeJQlklimih 
po~·ition.o: lusrifocaVandrew51 imcfudeJalkiview.Jh 

['his process was simplified by using xedit or emacs to copy the issue dependencies and then 

subSlituting position for issue. 

3. Makefile Generation and Code Compilation 

When first compiling the code, making changes by adding dependencies (If. include 

statements) to the source files or any time after changes have been made in ·.h or * .ch file s, 

you must use the command: 

make header> depend rg 

For subsequent compilations, you just need to enter: 

make 
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IV. SEARCHIN G VIA THE WORLD-WIDE WEB 

A. EXISTING SEARCH OPTIONS 

Recently, the use oflhe World-Wide Weh has caught the f1ttcntion ofthe DOD, so 

much that, many organizations throughollt DOD now have their own Home Pages on the 

Web. This new method of providing and locating infonnation has led to cnomlOUS 3I11ount~ 

of traffic being generated on military networks. Much ofrhis traffic is generated hy ust':cs 

trying to located relevant informati on that is required for day to day operations. The DOD, 

has in the past, re lied heavily Oil Gopher (http://srn.I1ps.navy_mi l/wchmastcr/guide! 

eCLI 86.htmlilSEC I 87) and FTP (http://sm.nps.navy.miVwebmastcr/guiddcCL138.html) 

sites to store and retrieve data from its various organizations_ Users. would usc search 

engines such as Archie (http://sm.nps.navy.mil/webmasler/guiddeeg_139.html) and 

Veronica (http://sm.nps.navy . mil /wehmaster/guideleeg_187.html) to search these sites for 

relevant infonnation. In the way the Web is currently heing used, these search engines are 

obsolete. 

"Existing searching techniques on [the] WWW fall into two main categories 

hypertext browsing and keyword searching (ruld a combination of the two)" [Ref 101 . 

Browsing the Web involves "linking" or "surfing" from site to site. If the user is searching 

for infonnation in this fashion, ... "then the user must know the meaning of very broad tenns. 

and be able to j udge where the specific infomlation of interest falls under those tenns." [Ref. 

1 01 When \ltilizing hypertext browsing in order to locate information, users can become lost 

in hyperspace or experience ··infonnation overload" due the size of the Web 

Browsing is the common interaction paradigm for hypertext, when a user is 
gathering information . 11 is very useful for reading and comprehending the 
contents of a hypertext, but not suitable for locating a spccific piece of 
infonnalion [Ref. 11 ). 

Moreover, keyword searching allows the user to scarch fo r a word, part ial words, 

combination of words, phrases, or words with boolean teons such as AND, OR, or N OT. 
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"Keyword searches typically make uses of a pre-compiled index (inverted list) which 

contains an entry for each word that has pointers to all documents containing that word" 

[Ref. 10J. 

ll. INFORMATION INDEXING AND SEARCIIING 

Although the World-Wide Web provides a remarkably opulent foundation of 

information, it docs not support a consistent and efficient means of retrieving specific 

inionnation based on uscr-defincd queries [Ref. 11J. Insofar, many types of search engines 

have been developed for the World-Wide Web, such as. server-side indexers and "Robots" 

or "Spiders". A pre-compiled index or database is utilized by the search engine in order to 

answer the users queries. This index can either he site-specific or Web-specific. A Web­

specific index is generated through the use of"Rooots" or "Spiders". The "Rooot" automati­

cally travels the Web i.n search of new sites or infomlalion. When a new silt: or information 

is found , a site index is generated and returned to the originating host of the "Robot". This 

index is then compared to the master Web index on the host to see ifthis site already exists. 

If the site exisl~, then the master Web index is updated with whatever new infonnation the 

site might coniain. If not, then the site is added to the master Web index. ·lne problem with 

this approach is that it takes a very long time for the "Robot" to travel the Wl:b in sl:arch of 

new infonnation. Once fOWld and indexed, a site might not be revisi ted by the "Robot" in 

an acceptable amount of time. 111is leads to "dated"' and sometimes useless infonnation. 

fhe nature orthe WWW presents an tillUSUai problem for building indexes. 
Since there is no control over when and how documents are added to the 
syskms, there is no way to I:nsure that they arc added to an index. This 
problem if furthl:r complicated when the document is modified. This 
problem is addressed somewhat by the usc of robots and spiders such as 
Lycos [(http://lycos.cs.cmu.edul)] and WebCrawler [(http://webcrawlcr 
com!)] ... But such programs place a heavy burden on network resources, 
particularly since they must search the network repeatedly to find updated 
materials (both new and revised) lRef. 10]. 
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Furthennorc, many sites sit behind firewalJs or are unkno\\ll to the rest of the 'Web, therefore, 

a "Robot" wi ll not locate them 

On the otber hano, the concept of site-speci lic indc:-;cs is one in which an index is 

genemted by the site host. "By supplying a pre-computed index of keywords, a fully indcx:cd 

server eliminates the need for automatic indexers (such as web robots or spiders) to walk the 

entire server Iree, which is an unnecessary "'ask: of resources" [Ref. 12l The index is 

accessed via a gateway or interface over the World-Wide Web in which users can submit 

queries to the index or database 

Some World-Wide Web servers already implement keyword searches via an 
interface to [indexes such a51 WAISINVEX [(hltp:llsm.llPs.navy.mili 
wcbmaster/guide/CCL2I 2.hlml)]. However, this approach lacks many 
important features that free teX! search engines provide, and does not support 
remapping of physical directory structures tu virtual paths [Ref. 12]. 

I'he remapping of physical directory structures to virtual paths is necessary for 

hypertext to work via a World-Wide Web gateway, tilUS allowing the user to access, via 

hypertext links, whatever infonnation was indexed on a system. The index can he updated 

automaticaUy anytime new intormation is added to the hosts ' system . This is the approach 

that is taken by the HyperPKM model 

C. IMPRO VEMF.NTS TO KEYWORD SEARCH ENGINES 

B uilt into the HyperPKM model is the ability tu perform keyword searches hy 

incorporating and supporting suhstring matching, proximity searching and thesauri hased 

queries. Individually, these features an: not new to keyword searching, hut when all are used 

in conjunction with a si te-specific index and a specific technicalthesauTUs, a user would be 

able to locate all infonnation the site (Ontained that was relevant to the user's queries . 
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V. OVERVlEW OF THE HVPERPKM INDEXlNG GATEWA Y 

The usc of the HyperPKM model requires the use of site indexing hasl:d on certain 

criteri a. In order for an index to work efficiently and provide n::kvant data to the user, an 

index of the documents contained 011 the system must be generated. Tills index is a 

categorized listing ofaJllhe relevant words located within the documents. Limiting the size 

and relevance of lhc index and being ab!e to provide useful intormation to the user is an item 

of concern that is addressed. 

The HypcrPKM model also incorporates a specific technicul thesaurus that allows 

the user to access a database o f tenns that are related to the qucried kcyword(s). This feature 

allows for the broadening and narrowing ofrclated search tcmls, thus, providing the llser 

with an increased ability to lOCale desired documents. 

Accessing the HyperPKM model is dOlle through the use o f a graphical interface 

between the user and the server via thc World-Wide Weh. This provides for the abi lity of 

any computer system ut il izing any Web hrowser to access thc documents contained on the 

host system . 

A. SITE INDEXING 

Various considerations must be dealt v.ith in creUling an index ofa system and being 

able to perform searches on the index. i\. dalaba.;;e or archive may contain a myriad of 

documents that when indexc<l would create an index of suhstantial si7.t:. Thus, system 

resources and the time requi red 10 perfoml a search become factors. 

The considerations of site indexing and sean:hing that must be undertaken are: (1 ) 

stop \>''Ording, (2) word frequency, (3) ahbreviations and acronyms, (4) word stemming, and 

(5) boo leru"l searches 

Stop \Vonling 

One purpose of the HyperPKM indexing model is to allow users to differentiate 

between the differing documents returned as a resul t of a qUl;.":ry . Various documents that 

contain many of the same or "common" words are not useful for differentiation. Tlus 
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problem can be solved through the usc of Stop Wording. Stop Wording can be accompli~h~d 

automatically by the indexer in two different ways. The indexer can define a word as 

"common", that is, the word is contained in over a large ~rcentage of all ind~xcd files , or 

the indexer can acc~ss a Stop Wording list. A Stop Wording list is constmcted manually (Uld 

can be updated as thc m:'ed arises. The list would contain words that the systcm 

administrator felt were too common to be of use for search and retrieval . These words would 

not be indexed, nor would they show up as a result of a query for such words. 

2. Word Frequency 

Word frequency is the number of occurn:nces that a word is located in a document. 

Through the usc of an inverted indcx, each documents' word count is tabulated and stored 

in the index. Tllis feature gives the user some impression as to the relevance of the ke)'\'\'Ofd 

to the document itself. 

3. Abbreviations and Acronyms 

Throughout the DOD, terms that are abbreviations and acronyms of words are very 

prevalent. These terms have to be dealt with in a prede[med way. If a query is conducted 

for "11"', an abbreviation for "information Teclmology", thcn the indexing system must know 

the differ~nce between "IT" and "it". Otherwise, the user would be presented with an 

overwhelming number of documents that contain the term "it" (unle~s "it" is contained in 

the contmon or stop wording list), The HyperPKM model assumes that any abbreviation or 

acronym would be represented by all capital lctters. Ifa tcun with two or more capital letters 

is eneountcred while indexing, the tcrm is eonsidcred to be all capitals. For an abbreviated 

tenn or acronym to be located during a query, the user must enter the term in all capital 

letters. 

4. Word Stemming 

Word stemming (also known as substring matching or fdu lt to lerant retrieval) allows 

for the scarch and retrieval tCUll to be broadened. This feature allows the user to input a 

keyword and for the server to return all variances of the word (i.e., retrieve = retrieves ,.,., 

retrieved = retrieving) 'ille IIypcrPKM model accomplishes this through the use of the 

Levenshtein algorithm [Ref. 13] 
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5. Boolean Searches 

Boolean searches allow for the qucry to consist of mOTC than Qlle keyv.'ord. Through 

the use o f boolean operators (Le., and, or, not, near), the user can query the index to locate 

docwnents that (;Ontain certain combinations of words. Such operators would be uti lized as 

fo llows: 

Infomlation and technology (hoth lenns must be in document) . 

Information or tcclmology (either term must he in document). 

lnfonnation not tcclmology (only "infonnation" in document). 

lnfomlation near# teclmology ("information" must be within # words of 
"teclmology" -. also kno\,m as proximity searching). 

The HyperPKM model utilizes these boolean search operators and can he setup \0 

assume ei ther the "and" or "or" opemtor in the event two or more kcy\\·ords arc entered 

\vithout the usc of any boolean operators 

B. THESAURUS 

A thesaunls is oonsiderably more than a list of synonyms. ·'It is a semantic network 

containing concepts that are related to one another in various ways" lRef. 12]. The 

HypcrPKM model employs a specific tecilnicalthesaunls that utilizes the ANSI (Anwrican 

Nationa l Standards Institute -- htlp:!f\1/ww.ansi.org/) standard Thesaurus Image Format 

(TtF). In this manncr, a query is not only a search for a keyword, hut a conceptua l search 

for word meaning and topic arca. To uti lize this feature, a specific technical thesaurus that 

pl;.":rtains to the doculllents!keywords at hand must he created. 

One way to develop a specific technical thesaurus is 10 gcnerate onc automatically 

through the use of computcr programs and scripts lRefs. 14, 15 , 16, 17, and 18]. However, 

a thesaurus that is gcnerated automatically by computers produce low prccision levels in 

respcct to ones developed by people. A thesaurus developcd by humans realize a 77-98% 

concept precisionlcvci, whereas, thc onc·s gcncrated automatically by computers realize a 
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24-37% precision level [Refs. 14 and 15J. In the ca£e of the HyperPKlvI model, a specific 

teclmical thesaurus was created manually from all available ~ources of information 

C. WORLD-WIDE WEB INTERFACE 

The HyperPKM Indexing Gateway is a CGI (Common Gateway Interface -­

hnp:lfhoohoo.ncsa.u iuc.edulcgi/intro.html) compliant interface. "lbrough the usc of host 

server sofuvare, such as the HT1Pd public domain server software from the National Center 

for Super Computing Applications (NCSA -- htlp;lfhoohoo .ncsa.uiue.edu/does/Overview 

hlml), a gateway can he created to provide documents and files to Weh browsers such as the 

Netscape Navigator"" (http:IIwv.'W.mcom.comlcomprodlnelseape_nav.html)orMosaic™ 

(hnp;//ww\';".ncsa.ujuc.edulSDG/Soft,",~dIe/MosaicINCSi\MosaicHome.htmI) . This means 

that through the use of the HyperPKM Indexing Gateway, the responses tn users queries arc 

dynamically generated, created on the f1y and executed in real time. The user inputs what 

is required of the system wKI the system responds and generates a reply . A CGI prob'Tam 

such a~ the J.iyperPKM Indexing Gateway is in essence, a progmm that is open for al l to use. 

The CGI program provides for the utilization and access to the host HTTPd server 

via the World-Wide Web. Scripts written in a language called PERL (http://\\'Wwl.cis. 

ufl.edulperll) arc used to process the users inputs. These scripts are run a~ a hackground 

operation to the actual HyperPKM Gateway Interface. "Ine user inputs a query and then the 

PERL scripts are invoked. The user's queries are hroken down into subsections based on 

what the user selected on the gateway interface form. Keywords that arc entered are 

compared to the site-specific index. Search operators, if any, are identitied and used. 

Finally, if selected, the specific technical. thesaurus i~ interpreted for any reluted words to 

the queried keywords. Then thl: PERL scripts generate a HTML dOClUnent listing all 

documents that conform to the tl~ers queries. This generated document does not exist on the 

host system, but is created only for the current user. It contains the following infonnation 

ha.'>l:d on tht: users inputs: 
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The keyword(s) that the \!Se T entered. 

The context or document h ierarchy that was searched. 

Any search operators that were selected or entered by the user. 

Uti lization, if sclccted, oflhe thesaurus andlor suhstring matching 

The docwnent also contains items, based on what was rliscovcn::d in the site-specific index, 

tha t are relevant to the users query, such as: 

Titles of docmncnts that are related to the sean;h query 

Fill: date or last change date (for delcmlination of CIUTcntncss) 

The directory or subtree of hierarchy in which the docwnent is located 

Actual filenam e 

The keyword(s) or related words that were found . 

The number of OCCIUTcnces of each word found 

Since the documents are dynamically generated, virtual paths are c[l:uled in order for 

hypertext links to be utilized. The ti tle ofth<:: document b<::wmes the hypt:rtext link so that 

the user only has to select the desired document and then is "linked" 10 the dOClUnent of 

interest. Th<:: document is then displayed for the user to peruse 
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V1. EXAl\lPLE OF TH E HYPERl'KM INDF-XING GATEWA Y 

In this chapter, the usc of HyperPKJ\.l is illustrated as a scenario in which. a REMAP 

object is linked to the contents of a large volume of docwncnts governing the procurement 

of government systems. These documents are part ora DOl) acquisition manual which is 

used by the mili tary in fu lfilling the mission needs in terms of acquisition 

'Ibe DOD acquisition manuals consist of nllmerOUS documents that are related to the 

timc-consuming process oflhe procurement of mission essential components. In using these 

manuals, the lUldcrstanding of the interrelat ionship between uocmnents is essential to project 

completion and knowledge of numerous key tellils and acronyms is imperative. Being able 

to locate vi tal information is a necessity, yet, is often a vcry time intensive and futile process 

The need for a search and retrieval engine that can be t.1 ilorcd to the speci fic requirements 

of the acquisition process is dealt with by the HypcrPKM modeL During the development 

o f systems for the DOD, it is important for a designer to access information reI event 10 the 

project th!1 t may be contained in acquis ition documents. DOD acquisition manuals consist 

o f munefOus volumes of infonnat ion. Many projcct tasks arc conducted offsite, away from 

the project office. Laptop computers help to !',Crve as an intennediary way to alleviate the 

problem of transportability of the acquisition documents. However, they have limitations. 

Usually, due to capacity and search constraints, only the requi red documents dealing with 

the ta~k at hand arc loaded onto the laptop computers . .Many times, the need for additional 

doctunents is requireJ. However, due to time !.:Onstr!1ints and locality, the notion of rell.mung 

to the home office is not an option. Thus, the avenue for the utilization uf ihe World-Wide 

Weh. l brough the use o f the laptop computer, a phone line or a cellular phone, the project 
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member can contact the home or lice server via a dial-up acCO>ll1~, execute an X-Wincow 

session and by starting the REylAP GBU portion of the HyperPK?'vf model, continue work 

on an ongoing design project as well as searcD for and retrieve any pertinent info:mation. 

To begin this demonstration, let us assurne that a design proj~t indudes user Requirements. 

a generated issue and a Posilion. The Requirement of interest specifies that the design 

project must be \\ithin budget constraints. The related Issue concerns which budgeting and 

planning method should be used. Our Position relates that our organization must use the 

Planning, Programming and Budgeting System (PPBS) method. To start the on-li:1.e session. 

the user starts the RE\1A.P GBl.J and creates the Reqlliremcnt, Issue and Position as ShO\\11 

in Figure 2. To search for additional supporting infonnation for the Position !nat may exist 

on the \VWW, the user selects Ll)e position l.Jse_PPBS with the mouse and then selects the 

SearcD Related Documents option (shown on Figure 2). This selection activates the 

NetscapcTM browser a.11d accesses the HyperPKM lndexir.g Gateway. 

Figure 2. REMAP GBU Session 

The HyperPK1\1 InCexing Gateway is a user friendly interface between a client and 

server \ia the World-Wide Web. It allov·is for search and retrieval with the minimal of effort 

on the part of the user. An illustrated example is portrayed showing the search and retrieval 
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capabilities of L~e HyperPKM model and a DOD acquisition manual as the sou .. "cc of indexed 

information. Figure 3 depicts tr.e HyperPKyllne:cxing Gateway as seen with tb.e "\' e\;scape 

Navigutor™. The gateway is built upon a modified version of the ICE ~earch cr.gine 

designed by Christian ::-;; el.l~s of the F; aun..rlOfe;· :nstit"!.lte for Computer Graphics 

(http: //WVo.'w.igd.fhg.dc: 801). 

Datl. entry fields are made availahle to t:le user to enter the following data: 

Keyword(s) 

Boolean sca:ch operators (and, or, etc.) 

Date ~elevancy s::arches (check for revised documents). 

Thesauri bascd scarches 

Substring sel.rches (word stemming) 

Document bi erarchy 

Document hierarchy is an important feature in that it al!o ..... ·s the user to limit the 

search criteria to a predefmed subset of LiC total docume:J.t strJcture. This featu:e helps to 

narrow dO\\ll the search area ane: prevent~ infonnation overload by having too much 

infonnation presented to thc user 

The acquisition process hie:a.rchy is broken down into a total of six phases. As 

shown in Figurc 4, the user can select to search either the entire acquisitionmane.al docurncn: 

or any one orlhe individual pnases. 
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Type ~!heko}"WQrd« ~kcyv;."Ords .Q"'~c'..e<l . ...;m ':m<!"' i!.B<i'v,' 
En::-J,ple:'p=e-md.bi.la.7' 
I 

T= .". .... eoflhe~=usto~da .. ~chto.n"Y"<'''T-'''iofa=. ~.."o'' 

su::.~=thi!I& to ="dlt .... che~to .... O«!$wbict.~~Ihei">enterola$ ;o 
s~b~ 

OU$.the.aun:sQSI:botri::J&I!>*..~ 

ISeUch"lI,.cq ujs jtj .. n d Dcumen~ " 

Figure 3. HyperPKM Indexing Gateway 
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T\lI":I onusccft!:e$l·.:n::;loe.-m:!l<iasea.""cittQ3!lrynonymsofletm:.lUr.lon 
:ub~=bU:.o!Q=<i:",,",hollOW<>:"<i!"'hrlIc~tt:egpe.:=a: .. 
rub=:-,j 
O::r"e:ht;.a;)I"US O S>.:b~~ 

l.ilm:t<,.orr.hlO ... mc.of~ do=t::.n:rchy 

S •• rt:h~II."'luisitiQndocum.nt"S 

Pre-Con.cpt Explo r~tion IIA.qui~itioniPha"e.(I1 
CanceplExpl",.tionVAcqui: itionJPhue.l1 
Demonstration Dnd Vali dation UA<:<!uisi\ion]Phase.Z] 
Enginee~n g and Manuf8o:uring Developme"t IlAcquisilion/Pha ~e.31 
Produdinn .nd Deployment UAcqusition/l'tl8 5e.~J 
D eration~ .ndSu a" • uisilian/Plusc. 

Figure 4. Searcbable Document Hierarcby 
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['0 illustrate the example, the seareh term of "PPBS" (planning, Programming and 

Budgeting System) has been entered into the keywo,d search field (see Figure 5). The 

document hierarchy field has been set to "Pre-Concept Exploration" or Phase 0 on the notion 

that the user is searching for information dealing sole:y v.ith this area of the acc;:uisition 

process (sec Figure 5). This action \vill greatly reduce the amount of superfluous 

infonnation that is generated ar:d will keep the data mar.ageaole for the user. 

HyperPKM: Indexing G< • .deway 
-:Yge:neekeywwdor~keywor.!s=cted,,~ ·-r mG! "<x" 

b.."1lP1e; "p'.cll.« ""dbina:;". 
I?PBS 

"i"um 01:luseofme$II.. ....... IO~aJean:htoillfYllO(J}"1IlSof .. tcm.ru:nOll 
.ub.I:in,g=hi!!glOalend.oan:.."':l:lOword:$wh!cl: oO<llai:lthe iP= ~a< ~ 
$Ubstring" 
o u ... me.auru< 0 S1:b!tring",~ 

!.imitf lo=h!O a sclltree cfthe d"o~hi=hJ" 
jPre-Conccpt Explof~tion UAt<;uisition,/Ph8$C.O) 

;v~ 

Figure 5. ~eyword and Selected Hierarchy Data Field 
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Upon the selection o:~ the "Sta!1 S~areh" button by the user, the HyperPK.\1 Gate'.>.'aY 

Interface calls the associated PERL scripts to rerform the s~:u-ch of the site-specific index. 

Any related information that is contained in the index is retrieved and parsed , and then it is 

tmnsfonnoo into a dynamically generated HTML document COlllp:ete with virtual remapping 

of the documeJ>.ts' location (sec Figure 6). A search eO:lduct~d in this ma.TJIler for the 

key\vord "PPBS" under the Pre-Concert and Exploration phase !esulted in only two 

docu.lnents being found (sec Figur~ 6) 

HyperPKM Indexing Gateway 

• query ',o,'aS "PPES' 
• e=ta:"'"U>'et tof~'I.~e..O 

• PI"IrNk F.,='e! 'fp""grmcw o··?rorn: .... rru'cr.a¥l?"T"" 17 .~.!I? 
~ 
fAcqW::::.on/l>!W .. 0I05.b:m 
'PFBS"1 

• s,.J>mtI POMLrpytsDS&a'o/fdlZtw. cham,. """", l7 411£ 951 
1~~~.oro&3.1:t:n 

"PPBS'2 

!L1;B 

Figure 6. Document Resulting From Search Query 
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TIle llser could also enter the keywords "planning and vograrnming and budgeting" 

(see Figure 7) in which case the search would rctu.'"!l G total of three dOC'...!IIlents that are 

related to the query (see Figure 8) 

1\.. ..... on!'!:; c ofll'..e.aurus to enmd. fCan:!> to..r. synocyms ofa t=.:..-n on 
S\0otri::&mucbiDilOar:endleC'clleI!l;iWI)f<!;w!IIch~Ql!tinIbe~=u~ 

~~ ..... s= dS~malClq 

!Pr~anceptE><plc .. tionVAcqoi"ition,lPbase.OI 

Figure 7. Alternative Search Technique 
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file Edit J.(i ew .\iu !loukmD'ks Qptions Ili,edory !;lelp 

HyperPKM Indexing Gateway 

. qt.':I)'was ·p1a.~=.dF4"Q~ III" b~· 

• t~WlI."ett<> rAc~~~nfPbue.O. 

• ldMdN pz/Wrcym~!"t1.lit>r..o.I?ia,...s(~c;'.ar,IT 1I<u! ?AuR 9J) 
IAcquWiQ!llPhase .0I011.1m:D 
"b-~'1 
'~'S 

'prQ~' l 

• U,J".1i.fv r,,1Y<lI ?err" Si.ro<:~ &-aH"""'~m:: flagchai.?9 Tn" 17 k "g 
@ 
IAcqWitioclPlase.0I0' 21.!ltm 
~'1 
'~' 6 

'~o~' l 
• Sui>IPll1. POUlirpw.sas~di1.a#dun'H 7b !7 .A"R 9J) 

IAc,,";":i<>:ll1'hce.()/OHhIID. 
~DIl~'2 

'~'1 

'p'¢~'2 

Flgure 8. Output from Aiternatln Query 
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If the docu,'nents that are retrieved do not meet the needs of the use: and the lLscr is 

unable to provide supp:ementa··y re:ated key\ovo!ds to searchfof, then Lie option of selecting 

additional search mcthods is of great significance. The L1csaurus search and substring 

matching functions provide for greatcr versatility (scc Figure 9). Tne thesaurus scarch option 

utilizes L1e keyword(s) that \vas/were entcred by the llscr and then performs a search of Lie 

specific technical thesaurus data file for any related. terms These related terms are then 

HyperPK.~ Inde>:ing Gateway 

T"""""UI:~o£:he ...... tocn=dase<rdlto..t.~af <lte=. IU:llOll 
subztr=s~to=ndse~towor<l.l:...tt::chcomi:le.e ~ttml lS~ 

suO~ 
o tTse1;beuuruo 0 So.lbsttiQs!Mlcltir:rs 

lmI:ts ,e;m:h:oaSllbtreeo:me dot:l:mec:hi:rar:I!y 
IPre-CDnceptExplonllionVAcquisition,lPloase.Oj 

"' ... 
Figure 9. Selection of the Thesaurus Search Feature 

40 

". · 1 



matched against the site index for any additional docUI:1ents that are cO:1tained in the selected 

docwncnt hierarchy. 

For this proj ect, a specific technical thesaurus was developed ut:Ezing a DOD 

acquisition rnanua.l ar..d s:.Jpporting documents. l\umerous keywords wcre eva]t1ated for 

corresponding word meanings and relevant n:lationships to other key,vords. As in 6e cas<: 

of the keyword "PPBS," a total of 12 additional keyv,;orcs were four..d to be relevant. 1bree 

of these additional keywords (pJa!lIli..'1g, progran'Jning and budget:ng) would most likely be 

knov...n to the user a.'1d probably searched for. The remaining rune keywords are most Ekeiy 

unknown to the user, in the CO:ltext specified, ar..d therefore, wo'.l.ld present the user with 

additional information relating to the query. Figures 10 and 11 depict the documents that are 

generated as a result of searching for "prBS" with the thesatk.l.lS fu.'1Ctior: selected. As a 

result o f this type of search, a total o f 45 documents were found with 23 of them contairjng 

two or more distinct a."1d related keywords. With the theSalL'"llS feature, a search is conductcc 

by topic and not by query. Hence, documents will be retrieved whether or nol 6ey contain 

the keyword(s) that was/were being searched for (s~e Figure 11 ). 

Once a docum~nt is found to meet the usm' needs, the selection of the documents 

title , which is a hypencxt link, will take the user to the selected cocument (s~e Figure 12). 



HyperPK.l\f Indexing Gateway 

• ~".,. ",as"l'PBS" 
. <:<mW:l:....,.$elto/ru:qW:li:i~.O_ 

• .,.eoflhe$l,,:rus l>.ln:led<m 

• f?Iy-_D!ff".gffAAnp;gq.~o1m· " g~ThuI7.A!tg9S) 
1Ar:~eorolll.~ 
"'POM" 2 tpPBS) 
' fisel1"1 (PPBS) 
'pl="ng'25(PPBS) 

• SWmu?OUhz.=a;~Ast:d.m",, _r_ J7AugOS) 

l~t.OtO&31m> 
"PDM" 1 {pPBS) 
"?OM"6{?PBS) 
"PPBS"2 
'budgeq' 21;PPBS) 
'&=ciaI"l(PPBS) 
"5$c~' I(PPBS) 

"5In~'$(PPBS) 

'~'I(PPBS) 
·?«>Sf...,.,q'2(PPBS) 
·""f<>:l.-.;e'\ (PPBS) 

• Cone:.q!fb$lO,..O~a.wff4'!i&'!1T",!7r .... g9J) 
IAc~,0I0l:55.ht::i. 
'c<>~1 (PPBS) 

~~'8 (P?BS) 

Figure 10. Search \Vith Thesaurus Funetion Enahled 
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"PDM"l(pPBS) 
"P01G' 6(pP3S) 
'PPBS' 2 
"budJeting'2(pPBS) 
~1 (PPBS) 

'EluJ' 1 (pPBS) 
'fim<!int'3(p~ 
'pl~':(PTIlS) 
'pro~'2(l'PBS) 
' ,..",,,,,,,,e'! (PPES) 

• Ca . 1v.w;;toJU Q Royz£w~,,4·'f!rThu17""..lo'g~J) 
JAc~~ .. 0J(I155.btm 
'c~ l (PPBS) 

'fuc~' 8'(pP:aS) 
'fu,,~'7 (P?BS) 

• B.r.n. ... ~ ... A"' .. P!t:""'/b;J:,,"""'g~ r= 17 .... ..lo'£95) 
1.AcqWi!i<>rlll'ha.~oro:12_h!<:l 

'Mcq'l (pPBS) 
'p1..",;",g' 12(pP3S) 
" !;t~'l (PPBS) 

• AsSlt~ThcMc!azyA"'a&flimd_Hl~7'Io!i 17 Au$195 ' 
JA.quisiliocJPhue.0f(1123.hI::n 
'5:!~' l(PPBS) 

'5.:lcbg'l(2PBS) 
"5J:,.&'2(PPBS) 
'pb=Dg' 10 (PI'3$) 

• ;;x.,./ap .. ?ro<z?!Sxwitylft4g!tllos:"han.."r,... 17Aug95) 
fAcqWi:iontPho:&e.0f0.324_hl:n 
'POM' l (ppBS) 
'budgetil:.g'l (pI'B$) 

Figure 11. Thesaurus Sear ch By Topic Area 
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Figure 12 .. Documellt RetneHd Via Hyperte}O:t Link 
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VII. RECOMMENDATIONS AND CONCLUSIONS 

A. DEVELOPER REQUlREMENTS 

To continue development work with REMAP GRU, a developer should have a 

number of basic requisite skills. First, a good working knuwledge uflhe UNIX operating 

system is required. A general knowledge of III I;.': Andrew Toolkit is also necessary so that the 

programmer understands the tools available and the object oriented environment which it 

provides. Additionally, a thorough knowledge oflhe C progmmming language is essential 

Arrays, pointers and structures are used extensively in the application environment. The 

most invaluable knowledge was gained oflhe application environment by numerous hours 

of experimenting with the application and exploring the previous versions uf lhe code. 

Through the use of the PERL scripting language, the HyperPKM Indexing Gateway 

can be modified to provide grealer search functional ity for the user. Not only can the 

usefulness of the current search operators (boolean, thesauri, substring matching) he further 

enhanced, the abili ty to conduct proximity, wild card and conceptual searches can be 

implemented 

D, HELPFUL REFERENCES 

The only comprehensive reference book available for the Andrew Toolkit is 

NauJaniel Borenstein's book Multimedia Applicati(ms Development with the Andrew Toolkif 

fh is book is written for the advanced programmer with a solid base of C programming 

knowledge. The most helpful infonnation concerning the Andrew Toolkit and the REMA r 

GOU envirolllllent can be oblainctl from the ConceplBase design team at the University of 

Aachen, in Aachen Gennan},. Throughout this project an extensive e-mail exchange was 

eonductt:d with the team . 

C. RECOMMENDATIONS 

The Search Related Documents method could be improved to provide a better user 

interface. An improved interface might provide a dialog box to query the user as to what 

terms to search for, the appropriate boolean connectors to use, whether substring matching 
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or thesaurus searching is desired, etc. prior to pa3sing those arguments to the search 

mechanism. This improvement would provide a cleaner intcrface with a mech<lJ1ism to link 

and or save to the CunceptBase any additiunal infonnlltion which help document the current 

design project. 

D. F{)TURE WORK 

The HyperPKM model can be further modified to allow for "Smart Searches". That 

is, the ability to perfonn thematic content-oricnted searches of docwnents contained within 

a host server. In utilizing thcmatic searches, an analysis of me doclUnent content, instead of 

wurd frequency, is conducted. This concept allows tor documents to be retrieved that do not 

even contain any of the keywords queried or references to a thesaurus data fi le. Word 

connotations are understood by the indexing and search engine. The differences between 

"Computer monitor," "Health monitor" and "System monitor" are all understood. The 

"theme" ofa document is comprehended. A dOClUllent may contain discussiuns pertaining 

to "refresh rate," "screen size" or brand name, and would still be retrieved even if the tenn 

"computer monitor" was not in the doclUllent itself (Ref 19] . 

A program such a'> Oracle'sTM TextServer 3 [Ref. 19J with the use of Oracle's 

dat.1.base, can be incorporated into thc liyperPKMmodel, thus, allowing the expan:;ion of the 

search and retrieval capabilities of the HypcrPK1\ti se:Lfch enginc. Such an implementation 

is fcasible in the contcxt of the practicality and functionality uflhe HyperPKM model. 
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