
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-06

Real-time compressed video transmission across

the common data link

Walker, Thaddeus Owens

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7522

Thesi s
\n222133

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

REAL-TIME COMPRESSED VIDEO
TRANSMISSION ACROSS THE COMMON

DATA LINK

by

Thaddeus Owens Walker III

June, 1995

Thesis Co-Advisors: Murali Tummala
Shridhar B. Shukla

Approved for pubhc release; distributIOn is unhmlted.

DUDLEY KNOX UBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

(I)

OJ

8 PERFORil.UNG
ORGAN[ZAT[ON
REPORT NUMBER

10 SP01\SOR1NGJMONITORING
AGENCY REPORT :';CMBER

11 SUPPLEr-tENT AR Y NOTES The views expressed in this thes is are those of the aUlhor and do not reflect
the official policy or position of the Depanment of Defense or the U.S. Government.

Common Data Link (CDL), Real-Time, Image CornprcssiOIl, Video Transmission 1-cc--;'",AG;;oE;-;' ~1,-,17---1 1

17 SECLRITY CLASS[FI,
CATION OF REPORT
Unclassified

[9 SECLRITY CLASSIF[· 20 UMITATION OF
CATIO N OF ABSTRACT ABSTRACT
Unclassified UL

Standard Form 298 (Re~. 2-89)
P,escnocdoyANsrs"d. 139· ·g,98 · HJ.'

Author:

Approved for public release ; distribution is unlimited,

REAL-TIME COMPRESSED VIDEO TRANSMISSION

ACROSS THE COI\'IMON DATA LINK

T. Owens '/:" alker 111

Lieutenant, Unifed States Navy

n.S., Cornell University, 1987

Subm itted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE Th' ELECTRICAL ENGINEERING
,nd

ELECTRICAL ENGINEER

from tbe

NAVAL POSTGRADUATE SCHOOL

T. Owens Walker III

Approved by: ----Mural i Tummala, Thesis Co-Advisor ----Shridhar B. Shukla, Thesis Co-Advisor

Michael A. Morgan, Ctlfunnan

Depanment of Electrical and Computer Engineering

ii i

ABSTRACT

OUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93Q4l-!i101

The advances in high speed computer networks and digital communication

techniques have enabled the rapid and extensive dissemination of information throughout

the modem defense infrastructure. One of the challenges in networking today is real-time

dissemination of informat ion_ This thesis proposes a solution for a specific aspect of this

challenge, namely, the transmission of real- time compressed video data across the

Common Data Link (COL), a high-speed military data link designed to operate in high

error environments_ Current research is primarily focused on the transmission of real-time

data acro~s low-error links

This thesis proposes, simulates, and anaJyzes a mechanism which guarantees that

(1) delay bounds are met for real -time flows despite network overload and (2) a minimum

acceptable image quality is maintained de~pite the presence of highly correlated errors

These highly correlated errors are characteristic of the type of e lectromagnetic jamming

likely 10 be em:ountered by the COL. This mechanism consists of four fundamen tal

requirements: (I) a hierarchical image compression scheme, (2) rate control at the source,

(3) bandwidth allocation within all encountered network nodes. lind (4) dynamic forward

error correcl1on The proposed solution is modeled in the OPNET simulation

environment, and the validity and fcasability of the mechanism arc verified. In addition.

the simulation is interfaced with a compression/decompression algorithm running in

MATLAB to enable the subjective analysis of actual images before and afler transmission

in various jamming scenarios. The results demonstrate the effectiveness of the proposed

solution in meeting delay guarantees and maintaining image quality .

TABLE OF CONTENTS

J INTRODUCnON
A. COMMON DATA LiNK OVERVIE W
B. OBJECTIVES
C. C01'.'TRlRUTION
D. ORGANIZA nON

II. REAL-TIME TRANSMISSION OF iMAGERY.
A. CO\'lMUNICATION REQUIREMENTS
B REAL-TIME CO.\1MUNICATION

I. Quality of Service Metrics .
a. Delay
b. Reliability .
c. Fidelity .

2 Real-Time Applications
3 Techniques for Real-Time Application Support

C. PROPOSED SOLUTION
I. Rate Control and Bandwidth Reservation
2. Forward Error Correction
3. Implementation Issues.

TIT. REQUIRED APPLICATION AND NETWORK SUPPORT
A. [MAGE COMPRESSION
B. LINK MONITORING
C. ERROR CORRECTION CODING

rv CDL MODEL OVERVIEW
A DATA FLOW
B CONTROL INFORMATION FLOW
C EXPLANATION OF PROCEDURES

I. Request to Establish a Real-Time Flow
2. Nomwi Transmission
3. D:lcction of Jamming.
4. Suspension of Jamming .

v. CDL MODEL DETAILS
A REAL-TI..ME FDD! STATION

I. Token/Leaky Bucket.

vii

" 10

11
11
14
15

17
17
19
21
21
23
24
25

27
27
29

a. Token Bucket
b. Leaky Bucket

2. Compressed Video Receiver
B COL NETWORK INTERFACE.

1. MAC
2. CDL Manager

a. Packet Arrivals
b. Transmitter Update
c. Completion of Packet Transmission

3. FEC Mechanism
4. Link Monitoring Mechanism
5. COL Physical Pipeline

a. cdl_pt_error .
b. cdLpt3cc .

C MATLAB INTERFACE
I . create_mask .
2. idwt2DEC.m modification .

VI. RESULTS
A. SIMULATION OVERVIEW.
B. TRANSMISSION WITHOUT JAMMING

I. Queue Sizes .
2. Image Data Transmission
3. Received Image Quality

c. TRANSMISSION WITH JAMMll\'G
1. Jamming.
2. Queue Sizes.
3. Image Data Transmission
4. Received Image Quality

VII CONCLUDING REMARKS .
t\. CONCLUSIONS .
B. FOLLOW-ON WORK

APPENDIX A. CDL MODEL USER'S GllIDE ,
A. SYSTEM REQUIREMENTS
B. CDL MODEL OPERATION.

I. Applications
2. COL Manager .
3. Jamming.
4. Simulation Execution

C. COL MODEL INTERFACES

viii

30
33
35
36
37
39
40
41
42
43
44
45
46
48
48
50
51

53
53
55
55
57
59
61
61
62
63
65

69
69
70

71
71
72
72
74
75
75
76

I. Listing of Simulation Attributcs .
2. Ellviwnmental file: cd1.cf .

D. CDL MODEL OUTPUT.
I. Statistical Output
2. Image Generation .
3. Dehugging .

E. CDL 1vlODEL MOOfr"ICATION
1 Additional Real-time FDOT Stations .
2. CDL Channel Reorganization
3 Admission Control
4. End-to-End User Feedback
S. Altcrnate High Level Protocol

APPENDIX B. PROGRAM LISTINGS
A. OPNET Model
B. ,\lATLAB

J create_mask.m.
2. eval_mask.m
3. idwt2DEC.m

LIST OF REFERENCES

INTTIAL DISTRIDUTTON LIST

ix

76
80
88
89
91
93
94
94
94
95
95
96

97
97
97
97
98
99

103

105

I. INTRODUCTION

A. COMMON DATA LINK OVERVIEW

The Common Data Link (CDL) is being developed as part of a multipurpose

network infrastructure by The Defense Airborne Reconnaissance Office (DARO). It is

designed as a full duplex, jam-resistant point-la-point microwave communication system

The CDL is intended to provide a real -time, as well as reliahle, data transfer facility

between an airborne data collection platfonn and a surface intelligence pJatfonn. The link

comprises a downlink, called the return link, and an uplink. called the (;ommand link

The command link is designed to transmit 3%et. link and sensor command and

control infomlation to lhe airborne platfonn and operates al 200 kbps. This link employs

binary phase shift keying spread spectrum modulation

The return link is designed to transmit sensor data, link status and airbome asset

reports to the surfael;.': platform. The rl;.':{um link employs offset quadrature phase shift

keying and can operate at 10.71 Mbps, 137.0R8 Mbps, or 274 .176 Mbps_ It can be

eonfigurl;.':d into a hierarchy of time division multiplexed channels depending on the

aggrl;.':gate bit rate selected [Ref. 1].

B. OBJECTIVE."'i

The main objective of this thl;.':sis is to develop and analyze a communication

mechanism to provide real-time eomprl;.':ssed vidl;.':o transmission across the CDL. This

ml;.':chauism must function eOTIc(;tly in thl;.': prl;.':senee of the high I;.':TIor rates associated with

jamming. In the process, a comprehensive CDL network modd. under development al

the Naval Postgraduate S(;hool and designed within Mil" 3, Inc."s Optimizl;.':d Network

Engineering Tool (OPNET), has been completed.

C. CONTRIBlJTlON

This thesis makes Lhc following contributions to the ongoing CDL research effort.

(1) proposes and analyzcs a solution to the problem of real-time constraints on

a packet-switched network in the presence of highly correlated errors,

(2) produces a CDL model in OPNET,

(3) provides a mechanism to subjectively evaluate the transmission of still

imagery across the CDL, and

(4) provides a user's guidc for the CDL model

D. ORGANIZA nON

This thesis is organized in the following manner. The problem addresscd and the

proposed solution are presented in Chaptcr II, along with a discussion of the real- time

communication theory behind the development of the proposed solution. Chapler III

presents the application and network. support required by the proposed solution. This

chapter describes the video compression algorithm utilized, an exploration of link

monitoring techniques, and a justification of the error correction model employed. The

overview of the nctwork model is provided in Chapter IV. Chapter V discusses the

model and its associated routines in detail. Sample results showing the capabilities of the

model are presented in Chapter VI. Chapter Vll presents our conclusions and proposes

possible follow-on areas of research. Appendix A contains a condensed user's guide to

the COL modeL detailing the step-by-step procedures for using the model. Appendix B

is a listing of all the programs for both the OPNET simulation models and the MATLAB

Image generation routmes

II. REAL· TIME TRANSMISSION OF IMAGERY

This chapter presents the theoretical basis upon which the work reported here has

heen developed. Spccifica!Jy, the first section poses the problem to be addressed while

the third section presents the proposed solution to this problem. The intervening section

discusses the current state of research in the field of real-time transmission and outlines

the specific issues that must be addressed by any real-time communication scheme

A. CO:\JI\WNICATION REQUIREMENTS

This thesis investigates how rcal-time video image data can be transferred across

the CDL The video images 10 be transmiHed are encoded using a five level hierarchical

coding scheme based on a discrete wavelet decomposition algorithm. The presence of a

fixed playhack point at the receiving application defines the need for a maximum real

time delay hound, which will be discussed in the next section. The playback point is

used by the receiving application to detennine how much data needs to be buffered prior

to forwarding it to the user_ This thesis proposes, implements, and analyzes a mechanism

which guarantees that

(1) delay bounds are met for real-time flows despite network overload and

(2) a minimum acceptable image quality is maintained despite the presence of

highly correlated errors

These highly correlated error.; are characteristic of the type of electromagnetic jamming

that is expected to be encountered by the CDL

B. REAL-Tl)\lE COMMUNICATION

1. Quality of Service l\-Ietrics

a. Delay

Delay is one of the primary metrics for measuring the quality of service

in a packet-switched network [Ref. 2]. It can be mcasured as the per-packet delay or thc

inter-packet delay. The fanner is known as the end-to-end delay while the latter is

referred to as the jitter. A maximum and minimum bound on the end-to-end packet delay

determines a maximum and minimum bound on the jitter [Ref. 3J. Therefore. this thesis

primarily deals with the end-to-end delay. The delay bounds provided by a network can

be either deterministic or statistical [Ref. 4]. A deterministic bound is one that is never

exceeded while a statistical hound provides a probability that the given bound will not be

exceeded. A deterministic bound can be thought of as a statistical bound where the

probability that the specified bound will not be exceeded is one. The mechanism

presented in this thesis enforces a deterministic end-ta-end delay bound. which represents

a firm upper (and lower) hound on the maximum delay any packet will encounter.

b. Reliability

Reliability is a measure of thc probability that a packet is received error

free. In a real- time environment, there is a trade-off between delay constraints and

reliability. As a result, current work in the field of real-time transmission typically

assumes an underlying error-free network or, alternately, assumes that the data is not error

sensitive. Error sensitive data transfers subjected to highly correlated errors in the

presence of tight real-time constraints have not been studied ex:tensively [Ref. 51, This

is exactly the scenario encountered by the CDL when operating under the influence of

hosti le jamming. The thesis addresses the highly correlated errors imposed by jamming

and incorporates a forv,:ard errOT (;orrection scheme to ensure that a minimum image

quality is maintained.

c. Fidelity

Fidelity is a measure of how faithfully the original image is reproduced at

the destination. It is the result of the above mentioned metrics and serves as a

comprehensive e,'aluation of the perfonnance of the cOTllmunication mechanism over a

given network. Typically, fidelity is mea,o;ured statistically by recording the number of

packet~ lost per image or by observing the signal-to-noise mtio of the reconstructed image

[Ref. 6J. While these metries are usefu l, a more effective measure of the quality of a

transmitted image is a subje(;tive evaluation of the reconstructed image itself. This is

particularly true when the end-user is a human, as in some of the CDL deployment

scenarios. Although both the packet loss rate and the Signal -tn-noise ratio will be

examined as in most existing studies, this thesis makes the additional contribution of

providing the reconstructed images for subjective evaluation by the user.

2. Real-Time Applications

We first define , for a packet-switched network, what is meant by real-t ime Lraffic.

In their paper, Shenker, Clark and Zhang [Ref. 2] divide applications into two general

service types: elastic and real-lime. Elastic applications always wait for late data to

arrive. As a result, no prior characterization of an elastic application's traffic is required

for it to function properly. Examples of elastic applications arc Telnet, E-mail, and FIT'.

A Teal-time application. on the other hand, is sensitive to delay. Late packets are

discarded

Real-time applications are further divided into two sUbtypes: tolerant and

intolerant. A tokranl application can vary its playback poim 10 allow for change~ in the

actual delays experienced by the packets. Not surprisingly, these applications are referred

to as adaptive playback application~ and require a predictive service, which provides a

statistical delay bound rather a detenninis tic one. An intokrant application requires a

fixed maximum delay because it makes u~e of a fixed playback point. Thus, this type

of application requircs a guarantecd maximum dclay bound. While the tolerant type is

more flexible, the intolerant type requires more stringent guarantees from the network

This thesis assumes intolerant applications with a fixed playback point. Additionally, it

assumcs that thc receiver has ample buffer spacc availability to accommociate the required

playback point.

3. Techniques for Real-Time Application Support

Presently, there arc two main approaches to support rcal-timc traffic. Both are

based on the fundamental idea of reserving rcsources and performing admission control

to ensure the quality of service. The two approaches diffcr in that one requires the

periociic "update" of the Teal-time flow [Ref. 7J while the other fixes the flow parameters

at thc rcal-time flow establishment [Ref. 8]. Several variations of the second approach

that offer some sort of feedback to control the output of the sender have also been

proposed [Ref. 6].

The idea of providing dday guarantees across a packet-switched network carrying

real-time as well as non-real-time traffic is hased on the work of Parekh and Gallager

[Ref. 3]. They have demonstrated that a form of weighted fair queuing [Ref. 9] at every

network node, wupled with rate control at the source, is both necessary and sufficient to

provide a maximum delay bound on the transmission of packets in a packet-switched

network. It is shown that this maximum bound is:

(1)

where ~ t is the application's tokcn bucket size, g; is the weighted rate assignerl to the

application, h, is the numocr of hops in the connection, I; is the application's maximum

packet size, I",., is the maximum packet size of the network, and fm is tile bandwidth

outbound on hop m. Thc token bucket size is the maximum number of tokens (described

in bits) that can be held by the tokenlleaky buck.et at any givcn time. The \veighted rate

is the transmission rate assigned by the network 10 the leaky/token bucket. The

bandwidth is a measure (in bps) of the transmission rate assigned to the flow at each node

along thc route. Tt is imponant 10 emphasize that this delay bound is valid whether or

not the source traffic is regulated (or shaped) for the other active applications attached to

the network

Five elemems are required 10 enforce the Parekh anrl Gallager delay bound and

arc present in all tile existing real-time communication schemes:

(1) A flow specification: The application must inform the network of the quality of

service it requires. This is in the foon of a rlescription of the traffic it intends to

generate. [Ref. 7]

(2) Admission comrol: Based on the flow specification, the network must decirle

whether or not it can provide the quality of service required by the application

Tf not, the network must deny the application access lO the network. [Ref. lO]

(3) A real-time flow establishment: To apply the resource reservation required lO

protect the real-time data from general data, the network must, in effect, serup a

cilanncJ for the real-time traffic to follow. [Ref. 8]

(4) Resource reservation: This real-time channel is set up by reserving various

resources along the chosen route. Thesc resources include bandwidth and buffe r

capacity.

(5) Packet scheduling: To make use of the resources reserved, a packet scheduling

mechanism must be in place at the network node to differentiate between the

various real-time and elastic data flows .

In the solution presented in this thesis, the admission control is done manually for

simulation purposes. In other words, an application is not allowed to retjuest to establish

a real-time flow unless the resources exist to accommodate it. It is assumed that follow

on work will include the implementation of an effective automatic admission control

strategy.

C. PROPOSED SOLUTION

The mechanism proposed in this thesis ensures that the Parekh and Gallager

maximum dclay bound calculated as above will be maintained in the presence of network

overload. This solution differs from the existing proposals in that it introduces the notion

of dynamic, network-controlled resource reservation and allocation. Although many of

the existing mechanisms seek to dynamically adapt the sending application's output, none

allows the network to dynamically alter it~ own resource allocations. An overview of the

proposed solution follows.

To fu lfi ll the requirement to maintain the guaranteed quali ty of service despite

errors highly correlated in time, the solution presented in th is thesis utilizes a link qual ity

monitoring mechanism to determine the status of the link. As link conditions deteriorate,

the network applies forward error correction to the real-time traffic. This adds bandwidth

to each of the flows and forces the network to reallocate its resources and inform the

sending applications of their new flow requirements. These new flow requirements imply

that the original flow specification must include both desired and minimum quality of

scrvice requirements to ensure the application can meet the new flow specifications. The

rcmainder of this section will outline the specific details of this solution.

1. Rate Control and Bandwidth Reservation

Rate control at the source is provided hy a token-le<lky bucket that is used to

regulatc the flow of imagc data from thc various compccssion levels . Weighted faic

queuing is <lchieved by implementing intelligent bandwidth allocation and reservation <It

the Common Data Link-Network Interfacc (CDL-NIJ. This invol,'cs dedicated buffers

assigned to the real-time application data, as wcll as a general queuc for non-real-time

applications. The rate out of these queues to the transmitter is controlled to guarantee a

certain handwidth to the real-time application. These rates are assigned individually and

will typically vary between the diffcrem queucs. The only constraint is that the sum of

the transmission rates of the real-time queues and the non-real-time queue must not

exceed the aggregate bandwidth of the anached CDL. It is assumed that the airborne and

surface LANs. modeled a'i FDDl rings, provide the bandwidth necessary over the LAN s

by proper selection of the synchronous allotments assigned to Ihe sending node and the

receiving network interface

2. Forward Error Correction

Forward eITor correction (FEC) is applied to the transmitted data whcn jamming

is reported by thl: link monitoring mcchanism. The application transmission rate is

reduced to the minimum acceptable data rate that is agreed upon in the flow specification

when the application requcsted to establish a real-time flow. In this thesis. Ihis

corresponds to sending only resolution level one image data_ To enforce this dynamic

response, a CDL manager at the network interface is required. This CDL manager informs

the Itaky bucket-token bucket mechanism of the need to send only the minimum

acceptable data flow and updates the COL bandwidth a!1ocation at the queue outputs to

reflect the addition of the forward elTor correction overhead. With the detection of the

end of jamming, the application is allowed LO return LO its desired transmission raLe with

the necessary coordination once again being performed by the COL manager. To ensure

timely response to the presence of jamming, the above control interactions consist entirely

of communications within the confines of the LAN contain ing the sending application

It is crucial to realize, that, in all scenarios, the max;imum dclay bound guaranteed by the

network to a particular flow docs not change.

3. Implementation Issues

The mechanism proposed above requires the implementation of the following

com{Xlnems in OPI\'ET: (I) a token~leaky bucket mechanism at the sourcc. (2) multiple

queues at the COL-Nl, (3) a COL manager, (4) forward error correction at the CDL-Nl,

and (5) real-time compressed video applications at each end. The real-time video

applications require the implementation of both the sending and the receiving entities

The sending application must make the five layers of coded information available to the

transmission mechanism while the n:ceiver must extract the data from the packets and

separate it for use in a reconstruction algorithm. The packets generated by these

applications must be in a standard fonnat with fields specifying the compression kvel and

sequence number of the information the packet contains.

Finally, it is essential that the simulation involve actual video data to allow

subjective, as well as, ohjective analysis of the received data. This requires integration

of the compression/decompression algorithm implemented in MATLAB and the OPNET

simulation env ironment. The data is analyzed in terms of visual image quality

(determined by the user) as well as packet/data loss rate and signal -to-noise ratio.

1<)

Ill. REQUIRED AI'PLlCATION AND NETWORK SUPPORT

This chapter provides the application and network suppon required by the solution

to the problem presented in Chapter II. Specifically, the first section addresses the

compression method applied to the image data to generate the data to be transmitted. The

second section looks at the method of link quality monitoring utilized by the simulation

model and presents somt: of the issues that need to be addressed when designing a link

monitoring mechanism. The third section describes the general error correction modd

employed by the simulation

A. IMAGE COl\'lPRESSION

This thesis treats a video session as the transmission of a series of individual

images. Although the work specifically deals with still images, it is a,sumed that

multiple Iransmissigns of these images constitute a single video session. The tenn video

is used throughout this work to emphasize this notion.

The image compression algorithm employed in this thesis has been proposed by

Crnvahlo [Ref. 111. 111is algorithm applies a multi-resolution coding schcme to the output

of a two-dimensional discrete wavelet transfonn. This transfoml is used to generate a

pyramidal decomposition of the original image data. This section discusses the suitability

of the compression scheme for the proposed real-time mechanism.

The continuous wavelet transform was developed as an improvement over the

short time Fourier transfom1 [Ref. 131. Both methods seek to transfonn a non-stationary

signal into the frequency domain by breaking the signal into blocks that me then assumed

to be stationary. The major drawback of the short t ime Fourier transfonn is that the

higher freq uencies suffer from poor time resolution while the lower frequencies suffer

from poor frequency resolution. This is due to the fixed size of the time windows applied

to the data The wavelet trdnsfonnation overcomes this difficulty by varying the size of

11

the time windows while still maintaining a fixed time-handwidth product. Thus, smaller

time windows in the higher frequencies provide beller time resolution, and larger time

windows (smaller frequency windows) provide better frequency resolution in the lower

freguencies . An illustration of this approach is provided in Figure I.

f---.--' --------" ____ ---l

Figure 1. Short Time Fourier Transform vs
Wavelet Transform

The continuous transform must be discretized to allow the digital processing of

signals. This is accomplished using a multi-!l:vcl pyramidal decomposition proposl:d by

Mallat (Ref. 12]. This method uses a series of orthogonal high-pass and low-pass filters

to generate the decomposition of the signal into a set of orthonormal basis functions [Ref.

13]. It turns out that better results can he achieved by relaxing the orthogonality

requirement in the filters. This allows the use of a set of linear phase filters known as

biorthogonal filters. The use of these linear phase filters allows for theoretically exact

reconstruction [Ref. 14] . In practice, both the quantization elTor and the need to extend

the image at the boundaries limit the actual performance of the decomposition [Ref. 15].

12

rhis wavelet decomposition can be e:-;tendcd into two dimensions by assuming that the

filters are separable and applying four separate filtering operations.

A multi-resolution sub-band coding method is utilized to achieve the dl:sirl:d

compression. The resultant wavelet decomposition is divided into five resolut ion levels

The resolution levels are based on the energy levels in the decomposition. one being the

lowest and five being the bighest. Experimental image data has shown that the lower

frequency components comprise the majority of the information in an image [Ref. 15].

As a result , the lowest resoLution level is always comprised of the low frequency

components. Level two adds the next three highest energy components to the transmitted

image while the remaining threl: levels each add four additional components. Figure 2

illustrates this compression scheml:. Thus, transmitting at resolution level one

corresponds to !hl: maximum compression (16:1) while transmitting at level five

represents zero compreSSiOn .

~ __ '
'---1-·---

L Re", lulionLcvel5

I '- Re,olulIonuwl2

Figure 2. Multi-Resol.ution Compression Scheme

1 3

B. LINK MONITORING

The success of (he solution proposed in Chapter II relies on a safe and effective

link monitoring mechanism to accurately report the stams of the COL. A safe mechanism

can be defined a~ a mechanism that ensures accepmble link quality by declaring the link

"down" before performance degrades helow guaranteed parameters An effective

mechanism is tolerant to short-term phenomena occurring on the link [Ref. 16]. There

are two fundamental problems that must be addressed in the design of a link monitoring

mechanism. The first is inaccuracy in the measurement of the metric used to determine

link quality while Ihe second is the occurrence of artificial and undesirable changes in the

link status. The link monitoring mechanism utilized in the COL model was originally

proposed by Eichclberger [Ref. 17J. The remainder of this section presents thise

mechanism. as well as how it addresses these issues.

The current link monitoring mechanism utilizes fixed length. pseudo·random

monitoring packets that are periodically transmitted across the link. The receiving COL

Manager checks the arriving monitoring packet and records the result in a fixed length

history. Using this history, in conjunction with a predetermined hysteresis plot, the

receiving CDL Manager determines the Slatus of the link and transmits it to the sending

COL Manager via a link quality report. This link quality report wntains information on

hoth the status and trend of the link quality.

The mon itoring packets are an attempt to address the measurement prohlem.

These monitoring packets provide a measurement of the bit error rate (BER) across the

link. Three parameters must be specified: the size. insertion rate, and pattern of insertion

for the packets. All three of these are adjustable at simulation sct·up time and

subsequently fixed during the simulation. The packet size can be chosen to be large to

give a better estimate of the BER at the expense of overhead across the CDL

Correspondingly, the packet insertion rate should be chosen to be just high enough to

detect jamming pulses of minimum width while minimizing overhead The pattern of

insertion is a by-product of the configuration of the CDL into a number of transmission

pipes. To be most effective, the monitoring packets should be inserted into the available

pipes based on an empty allocation scheme [Ret. 181

The history and hysteresis plot are used to tn.inimize undesired l:hanges in the link

Both. the ltngth of the history and the thresholds of the hysteresis plot, are

determined at simulation set-up time and subsequently fixed during the simulation. The

length of the history maintained detennines how "quickly" the mechanism responds to

changes in the quality of the link. For example, a history of one would cause the link

status to oscillatc between up and down with every good/bad packet received. Thus, the

length of the history must be balanced 10 prevent the status from changing too rapidly or

100 slowly in response to changes in the link qUality. The hysteresis provides a means

to fun her refine this response. In essence, it serves as a history of the history. Just as

in the history itself, the hysteresis thresholds affect the response time of the system. If

the thresholds arc too dose together, the status tends to oscillate unnecessarily and if the

thresholds arc too far apart, the tnel:hanism reacts too slowly.

I'here are two major deficiencies in the present version of the link quality

monitoring mechanism. The first is that the use of periodic monitoring packets does not

provide an exact mea~urement of the current BER across the link . The second eOllcems

the history, which does not completely eliminate undesired changes in the reported link

status. These need to be explored and are included ill the suggestions for follow-on work

provided in the last chapter

C. ERROR CORRECTION CODING

This section briefly describes the validity of the general error-correction model

chosen for the CDL network model. It is imponant to note that the validity of the

solution proposed in Chapter 11 itself is independent of the error-correction method

chosen For the purposes of the simulation. this thesis makes use of a general model that

15

corrects a number of errors proportional to the overhead of the error-correction

mechanism itself. In other words, the larger the overhead illlrodueed by the crrOf-

correcting mechanism, the more errors it will detect

The error-correction modd utilized can be viewed as a convolutional encoder. A

convolmional encoder has the property that for every k bits shifted into the encoder, n bits

(n > k) are shifted out. Thus, a 112 rate convolutional code adds one bit of overhead for

each information bit. This allows the overhead to be modeled as a percentage of the size

of the information packet. The COL simulation model uses a 213 rate convolutional code

Thus, a half bit of overhead is added for each information bit. It is assumed that the

resulting convolutional code is strong enough to correct any errors generated by the

imposed jamming. Given the extremely high link margin of the COL, a 213 convolutional

code should be able to produce a bit error rate less than 10.7• This makes the above

assumption reasonable given the sizes of the packets used in the simulation. At the

expense of increased delay, an interleaver should be added to the system to minimize the

impact of burst errors.

16

IV. CDL MODEL OVERVIEW

This chapter provides an overview of the model of an internetwork that uses the

eDL constructed in OPNET. Together with the user's guide in Appendix A, it provides

the reader with the infannation necessary to understand and utilize this modeL This

chapter also provides the background and motivation for the various decisions made

during the development of the modeL It is vital that the reader cover this material. as

well as the detailed explanations of the llext chapter. prior 10 making any modifications

to the model. The first section presents the flow of data in the model, which is a

presentation of the components and connectivity encountered in the actual image dala

transmission. The second section outlines thl: control infonnation flow, which is a

description of the components and connectivity rcquired to facilitate the estahlishment and

maintenance of the data flow. The third section dcscribes the critical network procedures

performed by the 1"!,lodel

Chapters IV and V make usc of italics and quotcs 10 diffcrentiate bet\\.'een the

different types of components within an OP~ET model. Processes and states will be

expressed in italics, while "packets", "fields", and '"attributes" will make use of quoted

italics. Throughout this chapter reference is made to specific components of the

simulation model which will be discussed in greater depth in the next chapter. The reader

should treat this chapter as an overview, setting the stage for the next chapter and. upon

completion, is encouraged to revisit this chapter.

A. DATA FLOW

The data flow for thc CDL model is iJiustrated in Figun::;; Without a loss of

generality, this figllre and the following discllssion assume the transmission of real-time

image data from a station on the collection platform \0 a station on the surface platform.

1 7

Figure 3. COL Data Flow Diagram

The image data is placed into the source queue located within the token-leaky

bucket of the sending real-time application. This queue is assumed to possess the

capacity to buffer the maximum amount of data contained within a single image. The

output from the decomposition/compression routine is loaded into this queue according

to resolution level. The level one resolution packets are placed at the head of the queue,

while the level five packets are placed at the tai l of the queue. The queue is flushed and

reloaded with the arrival of each new image. Upon transmission, the packets pass

through the token-leaky bucket and are presented to the logical link control (lie) and

medium access control (mac) layers. Tn the case of the COL model, a FDDI LAN resides

at this mac layer. The outgoing packets are encapsulated in FDOT frames and forwarded

to the local COL manager.

At the local CDL manager. incoming frames destined for the opposite LAN are

demultiplexed according to the source address. A real-time data packet is placed in the

queue reserved for the traffic from its sending application. Forward error correction is

18

applied to the packet if the forward error correction mechanism is activated. Finally, the

packet i~ assigned to a COL pipe based on an empty allocation scheme and transmitted

across the CDL according to the transmission rate for its particular queue.

At the rcceiving CDL manager, the packet is placed on tile attached LA.,'\J and sent

to the destination application. l'pon reaching the dest ination, the real-t ime data packet

is fOf\varded to the compressed video receiver where the appropriate statistics are gathered

and the packet is discarded.

B, CONTROL INFORJ\.lA nON FLOW

The control information flow for the CDL mode! is illustrated in f igure 4 This

figure and the subsequent discussioll outl ine the control information flow requi red to

transmit real-time data packets between two LANs across lhe COL.

I ·~
:Ae" !
'----'

Figure 4. Controllnforrnatlon Flow Diagram

The CDL manager exchanges control information with the sender's loken-leaky

bucket and the receiver's compressed video receiver through the use of control packets

transmitted across the LAN For the receiving application, the o:.:ontrol packets must be

19

transmitted across the CDL. This control packet specifies the maximum dclay bound that

is encountered by the real-time data packets that are transmitted through this flow

establishment. For the sending application, the token-leaky bucket sends a request for a

real-time data transfer to the local COL manager when the application generates image

data for transmission_ The COL manager replies with a control packet containing the

average and peak data rates assigned to the application. This control packet is also used

to dynamically alter these rates when required hy the COL manager. If these rates

represent a reduction in the bandwidth assigned to the application, the application must

respond with an acknowkdgement packet. This acknowledgement is only required for

a reduction in transmission rate because the CDL manager can increase its bandwidth

before the sender increases the transmission rate, but it cannot decrease its bandwidth

before the sender decreases the transmission rate.

The COL manager uses intenupts to exchange control information with the local

processes resident within the CDL manager. It enables/disables the forward error

correction algorithm by setting or clearing an FEe flag that is read by the forward error

correction mechanism. Similarly, the CDL manager controls the rates OUi of the

application queues by designating the transmission rate variables for the appropriate

queues

20

C. EXPLANATION OF PROCEDURES

This section presents the fou r essential procedures that must be e:\ecuted by this

network modeL They arc:

(1) The request for a real-time data transfer ini tiated by the sendi ng application.

(2) The nornlal tran sm ission of real-time image data across the CDL

(3) The network's response to the dctel:t ion of Jamming across the CDL.

(4) The network's response to the suspension of jamming across the CDL.

This sel:tion serves as an overvicw, laying out the steps the model gocs through without

going into the details of how they are al:wmplished. The details spel:ific to each module

are covered in the next chapter.

I. Request to Establish a Real-Time Flow

The follo wing is a description of the procedure undertaken when an application

seeks to establisb a rea l- time data flow across the CDL. The sending applicat ion sends

a request for a real-time data transfer to the CDL Manager responsible for the LAN . This

request is a control packet of the fOimat "compr _vdo~cntrl..pkt" that contains the source

and destination addresses for the flow, as well as the desired and minimum acceptable

data rates. For simulat ion purposes, the desired rate is calculated to allow the

transmission of all fivc layers of decomposed image data in lhe period betwecn image

anivals. The minimum acceptable rate represents the transmission of only level one in

this time frame. Upon reception of the request, the CDL Manager accepts or rejects the

request based on available bandwidth at the CDL in terface·. Presently, the admission

control algorithm is not implemented and, accordingly, the CDL Manager acce pts all

req uests. Ir is envisioned, as part of rhe required follow-on work, that a rejection will

trigger a renegotiation process

21

If the request is accepted, the COL Manager reserves the required bandwidth based

on the minimum data rate and the overhead associated with the implemcnted forward

error correction algorithm. The COL Manager stores the source and destination addresses

a~ wcll as the desired and minimum data rdtcs in a real-time application databa~e. It uses

this information and its knowledge of thc network topology to calculate a maximum delay

bound based on the work of Parekh and Gallager [Ref. 3]. This delay bound is

transmitted to the destination application, which uses it to set its playback point. The

COL Manager sets up a separate queue for the new application and initializes its

transmission fate based on the flow's average packet size combined with the overhead

added by the FOOl and PPP protocols. The leaky and tokcn bucket rates are calculated

and transmitted to the sending application within a "CDL_mgr_cntr(pkt"'. The lcaky

bucket rate is set to the maximum data rate supported by the attached LAN, while the

token bucket rate is set to the desired rate, or the minimum ratc in the presence of

januning. of the application. Upon receiving the data rates from the COL manager, the

token and leaky buckets convert them to token rates and begin transmission of data

packets. At this point, a real-time flow has been established betwee,n the appropriate

applications. A summary of the procedure for the estahlishment of a real-time flow is

shown in Figure S.

Figure 5 Request to Establish a Real-time Flow

22

2. Normal Transmission

The following is a description of the procedure for normal transmission of real

time compressed vidco packets across the CDL Initiall y. the MATLAB data files are

generated by the appropriate MATLAB video compression algorithm. These files consist

of a vector for each component generated by the decomposition routine. These

components arc ordered according to the resolution levels specified by the compression

routine . Packets are created from these files ba~ed on two parameters: (I) the image

number and (2) the sequence number of the packet within thc imagc. These paramcters

are placed in the hC:"lder of each fixed size packet and placed in the application queues

within the token bucker moduli:. The packets are then IO:"lded into the application queue

based upon resolution level. Thus. the number of levels transmitted is detennined by the

rate at which the queue is emptied. These queues arc flushed and reloaded at the arrival

of each [leW im:"lge. The packets are encapsulated into FDDI frames by the mac process

and transmitted to the COL network interface (cdl-ni) via the local FDOI ring. Upon

mrival at the cdl-ni. the packet is sent to the appropriate queue within the CDL Manager

basl:d on its source address. Upon departure from the CDL Manager, thc packet is

encapsulated into the PPP protocol and FEC is applied, if appropriate. As the individual

queue rate permits. the packet is allocated to a bit pipe and transmi tted across the COL

If the packet survives the transmission :"Icross thc CDL, the FDOT packet is removed from

the PPP protocol and forwarded to the destination node along the destination·sFDDI ring.

At the receiving :"Ipplication, the data pack.et is decapsulated and passed to the

cmp,_vdo_,o'r. The cmpr_vdo_,cvr logs the packct into its omput data file, gmhers the

appropriate statistics, :"Ind destroys the packet. This data file is subsequently used by the

MATLAB reconstruction TOutines to reproduce the transmitted images. A summary for

the procedure for nonnal transmission of a real -time application across the COL is shown

in Figure 6

23

Figure 6. Normal Transmission Across the COL

3. Detection of Jamming

The link monitoring mechanism emhedded within the CDL Manager anows it to

detect the presence of jamming on the CDL. When the link monitoring mechanism

reports that the link is "bad", the CDL manager activates the forward error correction

algorithm. This causes the manager to loop through the real-time application database

and send control messages to all the current real-time applications. These control packets

contain the new leaky and token bucket rates to account for the additional overhead of

the FEC hits . The leaky bucket rate typically remains the same, while the token bucket

mte is changed to the application's minimum acceptable rate. Upon reception of the lower

data rate, the token bucket converts this rate to a token rate by dividing by the size of a

token (in bits) and sends back an ack to the CDL Manager. The process flushes its

token bucket and application queue and subsequent token arrivals are ignored until the

24

next image arrives. This has the effect of resetting the application, allowing the new rate

lO take effect immediately upon the arrival of the next image

Upon reception of the ad from the real-time application, the COL Manager

implements the forward error correction at the COL interface. The appropriate queue

transmission rate is set to the minimum data rate plus the overhead corresponding to the

FOOl and PPP packets and the forward error correction scheme. The queue is flushed

to prevent the hacklog of old image data and a tlag is set within the real-time application

databa~e to denote the use of FEe for this particu lar application queue. Thus, as the

FOOT packet is transmitted, it is encapsulated in PPP and the size is adjusted to reflect

the FEe overhead. An "FEe" field attached 10 the packet is set 10 denote the level of

FEe protection. This level is expressed in terms of a ratio of acceptable errors per bit.

This "FEe" field would not exist in an acrual implementation, it is used in the simulation

envi ronment to art ificially provide error protection for the packet. A summary for the

procedure for the detection of jamming is shown in Figure 7.

Figure 7 Detection of Jamming

4. Suspension of Jamming

The COL Manager recognizes the suspension of jamming when the link

moni toring mechanism reports the link as "good." The CDL Manager then ini tiates the

termination of the FEe algorithm. The manager loops through the real-time application

database and sends control packets to the current real-time applications on its LAN

25

These packets contain the original desired token bucket rate for each application. No

acknowkdgement is required because the FODI ring is assumed error-free. Thus, tlie

CDL manager immediately temLinates FEC for the application queues and sets the queue

transmission rates to reflect the desired data rate without the overhead of forward error

correnion. Upon reception of the control packet, the token bucket convens the data rate

to a token rate and flushes the token bucket and application queues A summary for the

procedure for the suspension of jamming is shown in Figure 8

Figure 8. Detection of Suspension of Jamming

26

V. CDL MODEL DETAILS

This chapter provides detailed explanations of the various components of the

Common Data Link model in OrNEr. In addition, it looks at the programs required to

interface the OPNET output with the MATLAB compression/decompression algorithms

This thesis has completely overhauled the model as it existed [Ref 17, 19, 20J to make

it more efficient and logical. As a result, all aspects and components of the model arc

discussed and explained in detaiL The only major portion of the model that has not been

revamped is the underlying model of the FDDI network that serves as the local LA'J at

both ends of the physical link. In addition, although reorganized, most of the link

monitoring mechanism remains intact. For a detailed discussion of the fUDI network and

its underlying philosophy, the reader should refer to the OPNET Moocls Manual [Ref. 21]

aud the theses of Ni x. [Ref. 20] and Karayakaylar [Ref. 19]

rhe <:hapter is divided into three major sections corresponding to the major

divisions of the model. The first section addresses the reru -time FDOI station. This

module models the real-time compressed video application and its token-leaky bucket

inte rface to the FUOT ring. The next section investigates the CDL Network Interface

This module provides all the clements necessary to interface the local FDDI ring to the

Common Data Link. It is composed of an FDOI station with an attached COL Manager.

The final section deals with the MAlLAB code generated to allow the results of the

OPNcT simulations to be applied to the MATLAB reconstruction algorithms written by

Carvalho [Ref. 11] .

A. REAL-TIME FDDI STATION

For applications requiring real-time guarantees. a modification must be made to

the standard OPNET FDOI station. This new station is referred 10 as a real-time FDDI

station and includes a tokenlleaky bucket to shape the traffic flow at the FDDI network

27

interface. In this thesis, the real-time compressed video application resides within this

station. The mac (medium access control) serves as the interface to the FOOl network

1\ packet is generdtcd by an ideal source (a source with no associated delays or overhead)

and sent to the token hucket to mark the arrival of each new image. The token bucket

creates the application queues and initiates the Bow establishment procedure. Once the

connection has been established, the token bucket is responsible for enforcing the average

data rate. The token bucket transmits the application data packets to the leaky bucket,

where the peak data rate is enforced. The packet is then processed by llc_src, which acts

as a service access point for the application into the mac. The mac encapsulates the

packet in the FDDI protocol and is responsible for transmitting the packet along the FOOL

nng.

Upon the arrival of a packet from the FODI ring, the mac deeapsulates it and

sends it to the IIc_sink. The ilc_sink acts as a filter, fOf\ arding real-time packets to the

compressed video application. while recording statistics and destroying the remaining

general traffic packets. The cmpr_vdoJcIJr is responsible for the processing of all the

received real-time packets. This includes logging the image information needed to

reconstruct the image and recording the appropriate statistics 10 generate the required

throughput and delay data.

The (.:0ntrol path within this module is very similar to the data path. Control

packets are generated in the token hucket process, where they are designated as control

packets and filled with the appropriate infonnation. The packet proceeds to the mac,

where it is encapsulated and addressed to the local COL manager. The packet is

subsequently transmitted along the FDDI ring. Arriving control packets are routed

through the sink and the compressed video receiver. The compressed video receiver

sends them to the leaky and token bucket processes, where the information is extrdcted.

Figure 9 presents the rcal-time FDDI station module.

28

FIgure 9. Real-tIme FOOT Stallon

The processe~ llcsrc and llcsink are modifications of the corresponding

processes in the original OPNET FUDl model. The source has been modified to allow

the presentation of an independent application to the FDDT ring. In addition to being able

to generate non-real -time simulation packeL~, the ltc_src can also receive packets from a

higher layer and pass them onto the mac process. The sink process has been modified

to achieve the same goal in the reverse direc tion, passing designated packets to the higher

application, while processing and destroying the general simulation packets destined for

this station. The phy_lx and phy_rx are the point-to-point transmitter and receiver

processes, respectively, that represent the physical FDDT ring. The following sections will

d iscuss the tokenlleaky bucket processes and the compressed video receiver process in

detail. The mac process will be discussed in the following chapter as pan of the network

interface to the COL.

1. TokenlI.(!ak}' Bucket

The token/leaky bucket implementation is realized by two separate processes: (1)

rCbkCtow (the token bucket) and (2) ICbkl_std (the leaky hucket). Both of these

processes <lre nrcnsively modified versions of a ICbkl process originally designed by

29

Nishimura'. Combined, these processl;':s foml the token/leaky bucket traffic shaping

mechanism Essentially, this mechanism enforces a predetermined peak and average data

flow for the altached application.

a. Token Bucket

The token bucket process (lCbkl_10W) is tasked with three major functions:

(I) enforcing the mean data rate for the attached application, (2) maintai ning the

application data points , and (3) creating/destroying the applic ation's control packets

These functions are discussed in the context of the process state diagram, shown in Figure

\0

Figure 10. Token Bucket State DIagram

'This was designed as part of an EC4850 class project entitled "Traffic Shaping on a
TCPIlP Based lntemet Model" by LT Blyan Nishimura at the Naval Postgraduate School,
September 19, 1994.

30

Upon simulation ini t iation, the process moves from the illit state to the

sendJeqllest state. Tn this state, a control packet, "cmpr _vdo_cnlrCpkt" (Figure 11). is

generated and sent to the local CDL Manager as a request to establish a real- time data

transfer. Tile "desire{Crarr" and "min_acceptable_rate" parameters are user-defined. The

process then moves to thc awaiCreply state, where it sits idle. await ing the CDL

Manager's reply. The arrival of a control packet, "CDL_mallogerJntr'--pkl" (Figure 12),

forwarded from the leaky bucket process, triggers a transition to the replYJ cvd state. If

the "'join" fie ld is ~t to then the process rel:ords the "tokenJate" and transforms it

into a token rate by dividing it by the token size (in bits). This token rate is used to

schedule an inteffilpt for the arrival of the first token into the huckt:t. If the specified rate

is less than the current rate, the process sends an acknowledgement back to thl: COL

manager prior to lransitioning to the idle state. In addition, the token bucket and

application queue are flushed and subsequl:nt wkl:ll arrivals are masked unt il the arrival

of the next image in the arrival state, If the "join" attrihutl: is not set to "' 1 " then the

process retums to the send_request state, rl: ini tia lizing lhe joining procedures

~ I
11

The idle state is used to allow the process to await the arrival of the next interrupt.

The three possible interrupts are: (1) arrival of a control packet, (2) arrival of a packet

from the ideal source process , and (3) a self-interrupt. The control packet forces a

transition back to the repiYJcvd state which allows processing of the control packet from

the CDL Manager. A packet from the ideal source generator signifies the arrival of a

new image. while the self-interrupt could signal the arrival of a new token or the

completion of transmission of a particular packet.

I ~-. Emf.· "·· ..
Figure 13. "cmp'_vdoJr"

The arrival 9f a new image results in a transition to the arrival state. The arrival

state flu shes the current application queue and refil ls it with data packets of the fonn

"cmp,_vdoJ'" (Figure 13). The physical packet size is determined by the following

equatIOn:

pia size = (current pld 5ize) - (size of sgmt-.siu f/d) ... (value of sgmr-.size f/d) (2)

Once created, the packets arc inserted into the application queue in an order

corresponding to the applicable resolution level. The process then moves to the svcykt

state, which determines if there are enough tokens in the bucket to send the packet at the

head of the queue. If there are enough tokens, the process transitions to the process state,

otherwise it returns to the idle state. awaiting the arrival of more tokens. The process

also transitions directly to the idle state when svcykt is entered and there arc no packets

queued for transmission. The process state calculates the time of transmission for the

packet at the head of the queue based on the packet size and the user-defined "sendJate"

32

The state then ~ehedules a sdf-interrupt to mark the end of the transmission time and

transit ions back to the idle state

A. self-interrupt signifying the end of a packet transmission (;auses the process to

transition into the send state through the s_intpi state. The .~end state re moves the packet

at the head of the queue and fon'lards it to the leaky bucket process. Frorn th is state, the

process returns to the svc-pkt state to determine if another packet can be transmitted

A self-interrupt marking the arrival of a new token causes the process to transit ion

into the adlClkn state through the s_inipi state. Provided the user-defined maximum

buckecsize is not exceeded. the token is added 10 tht~ bucket. Prior to leaving this state.

an interrupt is scheduled fo r the next token arrival. This state also ex its to the svcpkt

stale.

b. Leaky Bucket

The leaky hucket process (ICbkCsldj is tasked with enforcing the peak data rate

This peak data rate is normally set to the maximum data rate supp0rled by the attached

LAl~ (100 Mhps for a fDDl ring) I"h is process will be discussed in the context of its

Slate diagram, shown in Figure 14

33

Figure 14. Leaky Bucket State Diagram

Upon simulation initiation, the process moves directly from the inil stale to the

idle state. In the idle state there are two possible events that l:an occur: (I) the arrival

of a packet or (2) a self-interrupt. The arriving packet can be a control packet from the

local CDL Manager or a data packet from the token bucket process. The self-interrupt

can signify the completion of the transmission of a packet or the arrival of a new token.

The arrival of a control packet results in transition to the (;01/lrol state where, if the 'join"

field is set to ''j"', the "leaky_rate" is extrJ.Cted and transformed into a token rate

(explained in the previous section). This token rale is used to schedule the arrival of thc

first token. in addition, the control packet is then forwarded to the token bucket process

The leaky bucket process handles arriving data packets and tokens in the same manner

as the token bucket process (described above). The only exception is that an arriving

token clears any previous tokens in the bucket. As a result, the lcaky bucket will never

contain mme than alit: token This allows the mechanism to enforce a peak data rate.

34

2. Compressed Vidoo Receiver

The (;ompressed video receiver process (cmpr vdoJcvr) is tasked with the

functions of (I) gathering the desired compressed video packet statistics and (2) creating

a file that can be used by MATLAB to re(;OnStfU(;t the transmitted images The process

consists of three states a<; illustrated in Figure 15.

I<lgure 15 Compressed Vldco Receiver
State Diagram

The discard state serves as the central state within the compressed video receiver

This state is re-entered with the arrival of each new (;ompresscd video packet, unti l the

"end_o/_simulation·· sih'11al causes a transition to the SlatS state. The discard stale records

the creation time and the image and sequence numbers contained within each packet.

Using the creation time, coupled with the current time. the mean and instantaneous delays

are calculated and re(;orded for future analysis. The mean throughput is also calculated

and recorded. The image and sequence numbers for ea(;h packet are recorded in an

output file specific to each compressed video applicatiou and specified by the user a!

nmUme. This file is in a vector fonnat suitable for integration into the MATLAB

recomposition routines. It is opened in thc illit state and closed in the stats state.

35

B. CDL NETWORK INTERFACE

The Common Data Link Network Interface (CDL-NI) serves as the interface

between the local LAN and the Common Data Link_ The module is essentially composed

of an FDDI station connected to the CDL through a process called the CDL Manager

The phY_lx. phYJx. mac, llc_src, and llc jink make up the FDDI station_ The ml./C and

IIc_sink have been modified to allow connection to the CDL Manager. The CDL

Manager is responsible for handling all traffic coming from and going to the CDL. which

is modeled by the pr _# and pef processes.

Figure 16. CDL Network Interface for the
Collecting Platform

Thc lIesink has been modified to allow it to send control packets to the CDL

Mwwger a~ required. This is achieved bya filtering operation that detects comrol packets

and forwards them to the CDL Manager via the data path between the two processes .

36

Other general traffic packets destintd for this station arc processed by the sink. The mac

is discussed in a subsequent subsection

The physical data link is modeled by the point-to-point transmitters and receivers

(prj and pell. respectively). The single receiver in the collection platfonn cdl_ni

(shown in Figure 16) represents the command link from the surface to the collecting

platform. This is a 10.71 Mhps link that has forward error correction applied to it. The

four transmitters represent the 274 Mbps return link. Thcse different receivers are used

to model a fcw of the channels. or pipes, available in the retum link. The sum of the

bandwidth of the four receivtrs is equal to the total bandwidth of the link. The

transmitter queue processes (tx_q_#) arc used to qucue up PPP packets scheduled for the

respective transmitters. The queues receive a statistic from the attached transmitter

notifying them that the transmitter is either busy or idle. When the transmitter is idle, the

queue will send the packet at its head. In addition, the queue sends a statistic to the CDL

Manager infonning it of the number of bit~ currently buffered in the queue. 'lbe number

of transmitters can be altered by placing the appropriate number of point-lo-point

transmitters and transmitter queues in the edLni module and entering the number of

transmitters in the ·'number_of_xmtrs'· attribute of the CDL Manager process. A

corresponding number of receivers must be added to the cdl_ni at the other end of the

link. Tbe CDL Manager is discussed in a subsequent subsection.

1. MAC

The mac process serves as the interface 10 the local FDDT ring AJI FDDT packets

that arrive at the cdl_ni, whether from the local ring or the CDL, are processed by the

mac. The mac at this interface is a modified version of the mac present at a standard

PDDI station. The fundamtntal dirterence is that the mac resident at the edl_ni has the

additional capability to handle packets destined for, or arriving from, the CDL. The

following discussion hriefly covers the basic functionality that is common to all mac

37

processes and then expand upon the items that have been added hy this thesis Figure 17

presents the mac process state diagram

Figure 17. MAC Process State Diagram

The functions directly related to the FOOl ring are discussed in the OP~ET

Models Manual LRef. 21J and elaborated 011 in the thesis of Karayakaylar [Ref. 19].

Essentially, the process, if designated as a spawn_station, spawns a tokel1 and the token

is circulated around the ring. When the token arrives at the current station, it is captured

and the station begins transmitting its synchronous and asynchronous data in accordance

with the specifications of a FDDI ring. The synchronous bandwidth is a user-defined

attribute, "macsyncbandwidlh. ". Upon completion of transmission, the station forwards

the token to the next station on the ring. The mac is responsible for maintaining all

counters a~sociated with the FDDI ring. Whcn a packet destined for this station arrives

on the ring, it is removed, decapsulated, and forwarded to the lIcsink. When a packet

arrives from the Ilc_src , it is encapsulated and queued up for transmission on the ring.

38

Each packet contains a tlag specifying whether it represents synchronous or asynchrouous

data

The mac process has been modified to allow it to process packets associated with

the COL. The moe treats the COL as another physical transmission medium much like

the attached FOOl ring. FDDJ packets arriving over the COL arc forwarded to the mac

process, where the destination address is exarnilled. If the packet is destined for a station

on the local LAN. the packet is queued for transmission over the local FDDI ring

Otherwise, it is retumed to the CDL Manager An identical filtcring process is applied

to packets arriving from the local FDDI ring.

2. COL Manager

The CDL Manager is the heart of the CDL network interface. This process serves

as the manager for both the CDL and the attached local LAl"\' , by providing the bandwidth

allocation for the CDL and the attached FDDI ring. In addition, the CDL Manager

contains the link monitoring and forward error correction mechanisms. These two

mechanisms are discussed in greater detail in the following sections. This section

discusses the details of the CDL ,'I-!anager itself. The process ~tate diagram (Figure 1 S)

was designed to pennit easy extensions to facilitate follow-on work. It was also designed

to be symmetric in the sense that the CDL Manager is identical at both surface platfonn

and the collection platfonn interfaces.

39

Figure 18. CDL Manager State Diagrdm

Upon simulation initiation, the process moves from the inir state into the idle state.

There are three events that cause a transition out of this state: (I) the arrival of a packet,

(2) an update from the transmitter queues, and (3) a self-interrupt to mark the completed

transmission of a previous packet.

a. Packet Arrhals

An arriving packet can come from one of three possible sources: the mac.

the sink, or the CDL. Each arrival forces a transition into a correspondingly named state.

In the mac state, the arriving packet is filtered by source address to determine if it is a

real-time application packet. If the source address is contained in the real-time database,

the packet is added to the appropriate real, time queue. Otherwise. the packet is placed

in the general application queue (subqueue[Ol within the process). If the queue was

40

previously empty and no packets are presently being transmitted, a self-interrupt is

generated to trigger the transmission cycle. In the sink state, the arriving packet is

assumed to be a (antral packet. This packet can either be a request for real-time data

transfer from a real-time application or an acknowledgement of a reduction in allowed

transmission rate from an existing real-time application. In the fanner case, thc source

and destination addresses, the desired and minimum acceptable data Tates and the packet

size are removed from the "cmpr _vdo_cntr'-pkt" and stored in the real-time application

database. The CDL Manager creates a "CDL_managerJ nlr{ykt" and sets the "join"

field to one to signify that a real-time connection will be established for the application

in question. The "tokenJate" field is set to the desired data rate, while the "[eakyJate"

is set to the maximum data rate provided by the local LA N, in this case; 100 Mbps. TIle

control packet is encapsulated in a FOOl frame and fonvarded to the mac process. A

real -t ime queue is set up for the applicable application, its data rate is calculated using

the ovcrhead of the FDDI ring and the PPP protocol, coupled with the packet size

infonnation stored in the database. The general application queuc data rate is reduced by

a corresponding amount. If the arriving control packet is an acknowledgement of the

reduced transmission rate, the CDL Manager applies the forward error correction scheme

to all subsequent packets from that real-time application prior to transmission.

A packet arriving from the CDL forces a transition into one of two different states

based on the type of packet data packet vs link monitoring packet. A data packet causes

a transition to the data state, which dccapsulates thc FDOI packet and forwards it to the

mac process. A link monitoring packet causes a transition into the monilor state, wh ich

will he explained in greater detail in the next section

b. Transmitter Update

An transmitter queue update is triggered by a change in the queue

statistics supplied by the transmitters. This causes a transition into the xmlr_upda/e

state. In this state. a buffer is maintained that has an entry for each transmitter queue.

The received statistic informs the CDL Manager of the number of bi ts currently

contained in the applicable transmitter queue and is stored in the appropriate buffer

entry. This infonnation is utilized by the empty allocation transmission scheme

discussed in the next paragraph.

c. Completion of Packet Transmission

A self-interrupt is generated whenever the CDL Manager is capable of

transmitting another packet to the transmitter queues. This interrupt causes a transition

into the xmit state followed hy a transition into either the xmicdata or the

xmicmonitor state. The former is the default transition. while the latter is entered

when the interrupt signals the periodic transmission of a link monitoring packet, which

is initialized in the inil state. In the xmiCmonitor state, a "ppp" packet is generated

and the fields "pid_h" and "pid~l" arc set to indicate a link quality monitoring packet

This packet is placed at the head of the general application subqueue to force earliest

possible transmission and guarantee that the link monitoring mechanism receives the

required bandwidth dictated by its transmission rate. If no packets are presently in

awaiting transmission, a transmit interrupt is generated prior to transitioning back to

the idle state. In the xmjcdata state, the interrupt code number is used to determine

which subqueue is available for transmission_ The packet at the head of the applicable

subqueue is removed and encapsulated in a ··ppp~ml" packet for tran~mission on the

CDL. Forward error correction is applied based on a FEC flag maintained for each

subqueue within the real-time application database. (The J-""EC mechanism is discussed

in greater detail in the next section.) Two load balancing algorithms are available to

dctennine the destination transmitter queue. The first uses a round robin scheme.

while the second, called the empty allocation scheme, chooses the transmitter queue

currently buffering the smallest number of bits To effectively make use of the

42

concept of bandwidth allocation, the second algorithm is utilized. An interrupt is set

for the applicable suhquelle to signal the end of the transmission. This transmission

time is based on the si7.e of the packet and the subqueue transmission rate (contained

in the real-time application database). A flag is used to mark this panicular suhqueue

a, busy. This flag is cleared when the xmil_data state is entered and no packets are

contained in the applicable subqueue for transmission.

3. FEC Mcchanism

The forward error correction mechanism is embedded within the CDL Manager.

When the CDL Manager is informed that the link has gone "bad" via a link quality

report, the CDL Manager initiates the forward error correction algorithm. The CDL

Manager cycles through its real-time application database, sending each application a

control message updating its transmission data rate to the minimum acccptable ratc

advertised by that particular application. This rate is provided at connection establishment

and stored in the real-time application database by the CDL Manager when it accepted

the request. Upon reception, the leaky bucket and token bucket modules record updated

transmission rates aTld convert them to token rates. In its role as the control module for

the token-leaky bucket, the token bucket module returns an acknowledgement to the CDl.

''''fanager. This is a "compr _vdo_cntrCpkt" with the "ack" field set to one. The token

bucket process flushes its token bucket and application queue, allow ing the revised data

rate to take effcct immediately. Upon reception of the acknowledgemeTlt, the CDL

Mar/ager cycles through its real-time application database to locate the appropriate

application. The corresponding subqueue is flushed and its transmission rate is set to this

minimum data ratc. The FEe flag is set for this subqueue, which allows the forward

error correction scheme to be applied to all subsequent packets from this subqueue.

The forwanl error corrcction scheme is modeled by increasing the size of the PPP

packet by a ratio appropriate to the type of FEC utilized. An "FEe' field (integer, of size

43

zero, for simulation only) is set to denote the level of FEC protection. This field contains

the acceptance threshold, expressed in correctable number of errors per bit, and is used

by the error correction communication pipeline stage to determine whether or not the

packet should he accepted. If the threshold is exceeded, the packet is discarded at the

4. Link Monitoring Mechanism

The link monitoring mechanism of [Ref. 17) has been redesigned to make it

symmetric at both ends of the COL and has been placed within the CDL Managu for

consistency of functional organization. A link quality monitoring packet is sent at a user

defined rate across the CDL. The CDL Manager at the receiving end detemlines the

number of errors within the packet and records the value in its history database. A ratio

is calculated that detem1ines the number of packets in error over the length of the

maintained history~ When the ratio exceeds a user-defined threshold, the status is

declared as BAD. When the change in this ratio exceeds some user-defined threshold,

a link quality report is transmitted back across the CDL to the sending CDL Manager_

This link quality report provides the status of the link. This status is reported as either

GOOD or BAD with a packet error ratio trend that is either going UP or DOWN. In

addition to the mentioned parameters, the history length and reporting criteria are also

user-defined. For a more detailed discussion of the theory behind the implemented

method of link monitoring, refer to Eichelberger (Ref. 17J,

This link monitoring mechanism is embedded in the mOllitvr state of the CDL

Manager process. This state is entered when a monitoring packet or a link quality report

arrives at the CDL Manager, Upon the arrival of a link monitoring packet, the number

of errors are detennined and stored in the history database. This value is determined in

the CDL pipeline (discussed in the next section) and maintained by OPNET in the

constant OPC_TDA_!\:1JM_ERRORS. In an aemal implementation, this value would be

44

detemlined by comparing the received packet to a packetiled pseudo-random bit stream

maintained by each CDL IHanager. The packet error ratio is calculated and if the value

differs from the previous ratio by a user-defined threshold. a link quality report is

generated. This is accomplished by creating a "ppp" packet with the appropriate values

in the "pidJ' and "pidjr" fields. The "LQR_info" field is set to the current link status

and trend. The status is set to GOOD or BAD based on a user-defined hysteresis. An

UP trend signifies an increa<;ing packet crror ratio, while a DOWN trend signifies a

decreasing trend. This packet is placed at the head of the general application subqueue

for transmission.

When a link quality report arrives at the CDL Managa. the link status infonnation

is retrieved from the "LQR_info" field. As required, this information is used to initiate

or suspend the forward error correction algorithm

5. COL Physical Pipeline

The physical Common Data Link is modeled in OP~ET through the use of a

point-to-point transmitter and receiver connection. In OPNET, a point-to-point link is

realized as a four stage pipeline designed to reOect the chardcteristics of a physical link

rhe pipeline is composed of four separate C routines that are integrated into the OPNET

simulation environment. The four stages are as fo llows

(1) TrammissiolZ Delay - This stage models the transmission delay

encountered by each packet. The default C routine, dptJtdel,

implements this delay hy making use of the channel attribute "data

rate" and the length of each packet. This routine has not been

modified in the CDL implementation

(2) Propagation Delay - This stage models the propagation delay

experienced hy a packet travelling aeross the link. The default C

4S

routine, dpcpropdel, makes use of the channel attribute

"delay" to apply a constant delay to all the packets. Once

again. this routine has not been modified in the CDL

implementation .

(3) Error Allocation - This stage detennines the number of errors

generated in each of the packets. The default C routine, dptjrror.

makes use of the channel attribute "ber" to detennine the fixed hit

error rate used in the stochastic error generation process. Coupled

with the length of the packet, the routine is able 10 calculate a

number of errors to apply to each packet. This routine has been

replaced by the C routine cdl.JJCerror which contains the jamming

mechanism.

(4) Error Detection and Correction - This stage detemlines whether or

not the packet will be accepted by the receiver. The default C

routine, dpcecc, uses the "ecc" attrihute of the receiver as a

threshold to determine the acceptable percentage of bits in error per

packet. This routine has been replaced hy the routine cdl""pC ecc,

which implements the forward error correction scheme

The modified routines are discussed in detail in the following paragraphs.

a. cdCpcerror

The cdl.JJl_error was originally created as part of the thesis work of

Karayakaylar [Ref. 19]. Unfortunately, the model of jamming presented in the original

thesis is cumbersome and difficult to work with. As a result. the jamming model has

been completely overhauled. The new model is presented in the state diagram of Figure

19 Essentially, the jamming model consists of two states, ON and Off', representing the

status of the mode!l:d jammer. Each state has a user-defiued bit error rate, "nojam_ber"

and "jam_ber", associated with it. This bit error rate is applied uniformly to all channels

modeled within the CDL stmeture, Thus. the jamming can be seen as an over-all

reduction in the total signal-to-noise ratio of the system which causes a corresponding

increase in the bit error rate. The states are linked by the user ·defined probabili ty

transitions. "no.Jam_lrans' and ''jam_trans''

ON OFF

Figure 19. Jammmg State Dmgram

The cdl-pCerror routine begins by detemli ning if a change in jarruner status has

occurrcd. This is accomplished by randomly generating a number based on a uniform

distribution from zero to one, inclusive. If the number is less than or cqual to the

probability of a state transition, then the j ammer is switched to the new state, otherwise

the jammcr remains in the currell! state. The global variable ''jamming'' is set to one to

signify ON and zero to signify OfF The appropriate bit error rate is used to compute

the number of errors based on the size of tbe packet. The OPNET constant

OPC_TDA_PT_::-'WM_ERRORS is set to th is value and assigned to the packet. It is this

value that is used in the lie ... , stage to detenn ine whether or not the packet should be

accepted.

4 7

The final stage of the pi~line, the C routine cdCpcecr:, uses a threshold

to detennine if the ratio of bits in error to packet length exceeds an acceptable value. The

default model has been modified to alter the manner in which the threshold is acquired

An incoming packet is checked to determine if the forward error correction field, "lTC'·.

has becn sct. If the field has becn set, the value stored in it is used as the error ratio

threshold. If the field has not heen set, the "erc" attribute of the receiver is used as the

threshold. The ratio of bits in error to packet length is computed, and, if the applicable

threshold has been exceeded, the packet is discarded. This is accomplished by setting the

OPNET packet constant OPC_TDA...PT]K_ACCEPT to OPC_TRUE if the packet is to

be accepted, or OPC_FALSE if the packet is to be rejccted. Thc poinHo-point receiver

will handle the packet accordingly. Thc value in thc "FEC" field is set by the CDL

Manager prior to transmission of the packet across the CDL. Its value comes from the

eDL Manager attribute, "FEC Protection".

C. MATLAR INTERFACE

This section describes in detail the MATLAB 4.1 routines used for Ihe

compression and decompression of the transmitted Images The

compression/decompression algorithms are based on a five level hierarchical compression

scheme utilizing a 15 th order biorthogonal filter. The original compression/decompression

code was written by CaJ'vahlo as pari of his thesis [Ref. 11J . This section focuses on the

code generated to implement the interface between the OPNET simulation and the

MATLAB image processing code. It is divided into two parts, a broad overview of the

interface between OPNET and MATLAB. followed by a detailed discussion of the code

generated to implement this interface

48

The network simulation takes place within the OPN'ET simulation cnvironment,

which is not optimally dcsigned to send actual data through the resultant modeL In

OPNET. the packet information and appropriate packet parameters are maintained in a

global database. Only the pointer to the database entry is passed around the simulation.

This thesis takes that idea one step further, maintaining a separate database external to

OPNET for the transmitted image data. Thus, the OPNET simulation needs only to

transmit the pointers within this external da tabase. Each compressed video packet

contains a pointer to one hundred data valucs within the image database. Since each

image value is representable by eight bits, th is corrcsponds to a packet length of 800 bits

plus the "'cmpr_vdo-JIkt" header, for a IOtal of 840 bits. The pointers contained ill each

rcceived packet an~ logged into an output file that is eventually be read by MATLAH .

The output file contains the image number, the level number, and the sequence number

within each level for the data contained within the packet. A MATLAB routine sorts

through this file and breaks it into separatc image files . Thcse image files are further

sorted and missing pointers cause their corresponding data values to be zeroed OUL Thus,

the end product is a database representing the data that was successfully transmitted and

zeros for the data that was 10s\ in the transmission process. This database serves as the

input \0 the reconstruction routine.

The compression and decompression routines make use of the fo llowing MATLAB

routines wri tten by Carvahlo:

(1) Compression:

decamp.m - the main decomposition routine, calls the other routines

dIVt2rDEC.m . the Quadrant Pyramidal 2D discrete wavelet transfonn used

to compute the wavelet seguence for transmission

(2) Decompression

recomp.m - the main fCcomposj[jon routine, calls the other routines

49

res_scale_DECm - discards wavelet coefficients by comparing

their energies to a relative threshold based on the resolution desired

idwt2DEC.m - 20 inverse discrete wavelet transfoml, returns the

reconstructed image

Two MATLAR routines were written to interface these algorithms with the results

generated by the OPNET simulation. The first, ereate_mask.m, is the routine used to

create an image mask from the data supplied by OPNET. The second, which is

embedded in the function idwt20EC.m, is used to apply the generated mask to the image

data.

The above decomposition routines generate sixteen blocks of data, each of which

is 163R4 values long. These blocks are the result of bandpass filtering, and, therefore,

represent various frequency levels within the image. The number and size of the blocks

are a byproduct of the number and size of the filters used in the decomposition. Each

value is representaWe by eight bits. These sixteen blocks are grouped into five resolution

levels, based on energy content. Level one always contains the lowest frequency block

and serves as a foundation upon which the Olher levels can build. Each complete image

represents (16 x 16384 =) 262144 bytes to be transmitted. These arc queued up and

transmitted, as explained earlier, and an output file of image, level, and sequence numbers

is generated.

The fUlletion ereate _mask.m reads this output file into MATLAB as a matrix

called "mask_data". The rows of this matrix represent the pointers correctly received by

the receiver and have three columns: image, level, and sequence number. This matrix

is then broken into separate files, namcd "image#.-mask.mat", based on the image number

The files are MATLAB workspaces that consist of a matrix, denoted "mask" , that

50

represents the mask to be applied to generate that particular transmitted image. ·'Mask"

is a 16x16384 matti)\. of ones and lCroS. Each row corresponds to a particular frequency

block. A one represents a data vallie that was successfully reccived, while a two

rcprescnts a data valuc that was lost. Crcalc_mask .m cal ls a routi ne, evaLmask.m, to

cvaluatc each mask and return the number of values and packets lost in that particular

image. Create_mask uses this infonnation to gcneratc plots of the number of vallles and

packets lost per image for all the images transmitted in that session.

2. idwt2DEC.m modification

The resultant mask is applied to the image data during the recomposition

algori thm. Specifically. it is applied just prior to the image reconstruction in the function

idwt2DEC.m. The modified code requeStS the user to input thc numbcr of the particular

image to be generated and uses this to load the appropriate mask workspace file, of thc

form "imagC#_mask.mat" This loads the "mask" applicable to this image into :'viATLAB.

rhc embedded code perfonns an clcment by clemcnt multiplication between the image

data and thc received mask. As a result, data values corrcsponding to zeros in the mask

arc erased. This multiplication is done on a block by block basis, with each row of the

mask matrix representing a block. A matrix containing the sorted encrgy levels of the

original blocks is uscd to ensurc that thc frequency blocks are masked according to their

order of transmission. In other words, it is crucial to know which blocks were transmitted

with which levels . Thc sixteen blocks resulting from this element by element

multiplication are subsequently used by the reconstruction algorithm to generate the

transmitted image.

5l

52

VI. RESULTS

This chapter prescnts the analysis of representative results that can be produced

using the work presented in the previous chaplers. The results provided pemlit both

quantitative and subjective evaluation of the effectiwness of n:al-timc transmission across

the COL using the proposed approach. Specifically, the simulation data shows the ut ility

of the proposed solution by providing plots of the various critical indicators in a network

environmt:nt. The MATLAB algorithms provide a visual display of lhe resultant images

transmitted [ilTough the network model, allowing the uscr to subjectively evaluate the

effectiveness of the solution.

The firsl section provides a broad overview of the simulations, including lhe

justification for the choice of indicators. The sccond scction illustrates the success of the

transmission scheme without the presencc of errors. The final section introduces januning

to the simulation and demonstrates the success of the mechanism under high bit error

A. SIMULATION OVERVIEW

Two simulations are presented in this chapter. The first one demonstrates the

operatjon of thc mechanism in the presence of overloaded network conditions, but no

imposcd jallull.ing. Thesc rcsults validate the ability of the mechanism to guarantee real

time constraints. The second simulation imposes jamming on the link. The results

demonstrate the effectiveness of the mechanism to reproduce the minimum acceptable

image quality and still maintain the real-time constraints.

Numerous perfommnce metrics are evaluated to ensure the validity of the results.

The instantaneous delay for the received compressed video packets is recorded to ensure

that the real-time bounds on max.imum and minimum end-la-end delay are not eJ(ceedcd

The sizes of the queues along the nodes establishing the real-time flow arc ex.amined to

53

verify the realistic nature of the solution. In addition, the size of the general application

queue at the CDL Manager is provided to verify that the network was subjected to an

overload condition. For completeness, the throughput as well as a record of the arrival

of the time of the various real-lime packets are presented

Three metries are utilized to evaluate the received image. The first is a plot of

the number of paeket~ lost per image for the real-time flow. The second is a quantitative

measure of the signal-to-noise ratio of the reconstructed image. Finally, the reconstructed

image itself is presented to allow a subjective evaluation of the transmission scheme.

v,'hcre applicable, a display of the missing comJXlnents in the reconstructed image is also

provided. Figure 20 displays the original image as it is presented to the compressed video

application at the transmitting end of the connection.

Figure 20. Original Image of an F-16

54

B. TRANSMISSION WITHOUT JAMMiNG

The first simulation demonstrates the operation of the real -t ime transmission

mechani sm in the absence of jamming. The objective is to demon strate that the

mechanism realistically maintains the real-time transmission constraints. The fo llowing

is a listing of the vital parameters of this simulation:

simulation duration :

sending application:

receiving application:

image interarrival tiUle

Image sIze:

I second

station 0 on the airborne LAN (nooe 0)

station 0 on the surface LAN (nooe 10)

0.1 seconds

262.144 values

2,097. 152 bits

26,215 packets (100 values/packet)

desired tran~ssion rate 22.021 Mbps

minimum acceptable rate : 1.3763 Mbps (represents only level one)

1. Queue Siles

Figures 21 through 23 present the size of the queues located at the transmitting

station. Figure 21 is a plot of the size of the queue in the token bucket process. The

image arrival time of 0.1 seconds can clearly be seen in the plot. The initial massive

transmission that occurs with the arrival of each new image is caused by the tokens

accumulated during the idle time between the transmission of one image and the arrival

of the next image. After this burst. the image data gets sent at the rate corresponding to

the sloping porTions of the curve in Figure 21. In Figure 22. the leaky bucket

transmission rate is only limited by the maximum rate supported by the FDDl ring, 100

Mbps ['be transmission rate of the mac process (Figure 23) is limited by the availability

55

of the FDOT ring. Figure 24 is a plot of the real-time application subqueue assigned 10

the flow at the CDL Manager. Together, these four queue plots demonstrate that the

queue requirements for the reserved resources along the real-time flow never exceed the

size of a single image

'1 . - i l '·.'liB : I l! i , . ' - -

.. . . -- _. +. ----i ~~ l \1 ;•.
FIgure 21. Token Bucket Queue SIze FIgure 22. Leaky Bucket Queue SIze

Figure 23. Mac Queue SIze

-- H+-+
I< 19ure 24. COL Manager Real tIme

Application Subqueue Size

The next figure, Figure 25, is a plot of the size of the general application subqueue

at the COL Manager. The monotonic nature of this piot verifies the overloaded condition

of the COL. The subqueue is backing up linearly over time with the arrival of excess

56

packe-rs. In an actual implementation, this queue size would be limited and excess

packets would be discarded. It should be noted that this overloaded condition was

artificially imposed on the network hy forcing the non-real-time stations to generate a

load that exceeded the CDL capacity lIsed in the simulation.

= ~- . ' . ./'
=-7--- •.. ~ ~
,~ -- - .

" .--~----.

- -~

.. / , ,' .. '" ,

hguce 25. CDL Manager General Subqueue
Size - Tllustrating Overload Condition

2. Image Data Tnmsmission

The next three figures relate to the statistics gathered from the wmpresscd video

receiver at the dl;.':stination station. Figure 26 is a record of the image and sequence

numbers of the packets received by the process. It shows that eigi)t complete resolut ion

(including all five levels) images were reccived. These are considered complete because

the images were received at the destination prior to the eltpiration of the simulation time

The mean and instantaneous end-ta-end delay values for the received packets are plotted

in Figure 27. The plots clearly illustrate the maximum and minimum hound on this

delay, validatiIlg the effectiveness of the proposed mechanism. The delay is at a

minimum value for the first packet received and rises to a maximum value for the final

packet received from an image This is because the delay is measured from the time the

57

entire imagc arrives at the sender, which is the same for all packets within a given image.

Thc throughput is shown in Figure 28 for completeness. As expected, this average

throughput approachcs the desired transmission rate of the sending application, 22.021

Mops

Figure 26. Image and Sequence l'Oumbers of
Received Compressed Video Packets

Figure 27. Instantaneous and Mean Delay Figure 28. Throughput for Received
Values for Received Compressed Video Compressed Video Packets

Packets

58

3. Received Image Qualil),

The final two figures preselll the reconstructed image and it~ perfonnance metries

Figure 29 shows that the eight transmitted images (images 0 to 7) were received without

packet loss. This is not surprising because of the large link margin of the CDL when

jamming is not present. Tf\e ninth and final image (image 8) suffered packet loss due to

the termination of the simulation. Finally, the reconstructed image is displayed in Figure

]0. As expected, the reconstructed image is identical to the transmined image. The

signal-tn-noise ratio of 48.8] dB is also incl uded in the graphic.

}<'igure 29. Number of Packets
Not Received at Destination

59

60

C. TRANSMISSION WITH JAMMING

The second simulation run is designed to validate the effectiveness of the real · time

mechanism in the presence of jamming. I"he paramclers of concern for the second run

simulation duration:

sending application:

reed \ling application

iIIl<lge interarrival time

Image SIze:

1 second

station 0 on the airborne LA!\" (node 0)

station 0 on the surface LAN (node 10)

0.1 second

262,144 values

2,097,152 bits

26,215 packets (100 values/packet)

desired transmission rate: 22 .021 Mbps

minimum acceptable ratc: 1.3763 Mbps (represents onl y level one)

probability of bit error

III Jammlllg state: 10"

1. Jamming

Figures 31 and 32 display the state of both the jamming and the CDL Manager's

forward error correction mechanism. Jamming is experienced by the COL at 0.25 seconds

into the simulation and the CDL Manager responds by initiating the forward error

correction mechanism just prior to 0.5 seconds. This lag is a result of the history and the

hysteresis built into the link monitoring mechanism. By adjusting these. the COL

Manager's speed of response to the commencement of the jamming C<lll be adjusted. The

combincd plots show that from simu lation startup to 0.25 seo:.:onds, no jamming is

experienced by the COL. From 0.25 to 0.5 seconds jamming is present, but the CDr..

61

Manager has not responded. After 0.5 seconds, the COL Manager has initiated the

forward error correction mechanism.

Figure 31 . Plot of Jamming:
o corrcsponds 10 OfF
1 corresponds to ON

2. Queue Sizes

I< Igure 32. Plot of the COL Manager
Forward Error Correction Mechanism:

o corresponds to OFF
I corresponds to ON

The next thre~ figures are an indication of the queue requi rements along the path

of the flow. Once again, the queue requirements at any resource never exceed the amount

of data contained in a single image. At the COL Manager, this is achieved by adding the

overhead of the forward error correction just prior to transmission of the packet. The

token bucket queue (Figure 33) is seen not 10 completely empty with each transmission

once the forw ard error correction has been activated. This is because the buckefs average

transmission rate has been reduced to the minimum acceptable rate by the CDL Manager

corresponding to the transmission of resolution level one. In addition, the tokens no

longer have a period where they can accumulate in the token bucket- Thus, the token

bucket no longer experiences the bursts seeD in the earlier case. This removes the

backlog caused by this burst at thc qucucs in the leaky bucket, mac, and COL Manager

processes This can be elearly scen in Figures 34, 35, and 36, where the queues are

62

reduced to the size of a single packet because the rate out of the queue is greall:f than or

equal to the rate into the queue

Figur e 33 Token Bucket Queue Sil.e
(Packets)

Figure 35 . Mac Queue Sizl: (Pac kets)

3. Image Data Tra nsmission

Figure 34. Leaky Bucket Queue Size
(Packets)

"'.". '" -'- - - - -' - -", -~'--~, - - - , ~-+----- ,
::: .. - I __ ~~
M. _ . ___ --+--

:, ', ,,T , , :~,

F igure 36 COL Manager Real-tnne
Subqueue Size (Packets)

The ne.'-t set of three figures presents the statist ics gathered from the received

compressed video packets. The fi rst figu re. Figure 37. plots the image and sequence

numbers of the received packets Once the forward eITor cOlTection mechanism is

63

activated and the sender's Ifansmission rate is reduced. only level one packets are

received. The mean and instantaneous end-to-end delay values are plotted in Figure 38

The instantaneous delay is bounded and it is this bound that is used by thl: receiver for

its playback point. It should be noted that the results from the previous section conform

to these maximum and minimum delay bounds. Thus. the real-time constraints on both

the end-to-end deJay and jitter are satisfied. Finally. the averagl: throughput is plotted in

Figure 39. As expectcd, this value approaches the minimum acceptable rate of 1.3763

Mbps cOlTesponding to the transmission of only level one data.

Figure 37. Plot of Image and Sequence
Number of Received Compressed Video

Packets (x]ct)

Figure 38. Mean and Instantaneous
~lay of Compressl:d Video Packets

(sees)

Figure 39. Compressed Video Throughput
(;.; 107)

64

4. Received Image Quality

The final five figures present the reconstructed images with and without the

forward error correction mechanism in operation. Figure 40 displays the number of

packets lost per image during the transmission session. The first image (image 0). prior

to the jamming, suffers no packet losses and corrcsponds to the example of the previous

section (f igurc 29). The next three imagcs (images I, 2, 3) are exposcd to jamming

prior to the activalion of thc error correction mechanism. From the fifth image onwards.

the mechanism is activated and the remaining imagcs represent the correct transmission

of the complete set of level one packets for each of the images. It should be noted that

more packets of the original image are lost once thc FEe mechanism is activated;

howevcr. all level one packets are received correctly.

Figure 40. Number of Packets
Not Reed ved at Destination

65

Figures 41 and 42 display the reconstructed images received by the destination

application for images 2 and 6. Image 2 was suhjeet to jamming, hut di d not make use

of the error correction mechanism. All five resolution levels continue to he sent with

packet losses occurring randomly throughout the transmission. The result is that packeLS

arc lost from all frequency components within the spectrum. The dark black areas

correspond to lost packets that contained the low frequency components of the image.

These omissions make it difficult to analyze or identify the target. The next figure.

Figure 42, demonstrates the effectiveness of the communication mechanism. The

transmission rate of the sender is reduced and the CDL bandwidth is reallocated to allow

the addition of forward error correction to the transmission across the CDL. Thus, while

the transmission consists only of the low frequency components in the image. they all are

received correctly. This results in a complete and identifiable, although fuzzy, image at

the receiver. This is funher confirmed by the last two figures, which display the

information that was contained in the packeLS that failed to arrive at the receiver. The

fonner case contains in formation throughout the entire spectrum, while the latter case

contains only the high frequency components. By trading volume fo r correctness, the

mechanism has sacrificed the "sharpness" of the high frequency components for the

content of the complete image. The signal-to-noise of the second image is much higher

than that of the first, thus quantitatively verifying the qualitative analysis. It is interesting

to note that image 2 suffers less packet loss than image 6, but produces an "inferior"

result This underscores the difficulty in relying exclusively on the traditional

performance metrics.

66

Figure 41 Received Image: Jamming
without Proposed Mechani sm

Figure 42. Received Image Received: Jam mi ng
with Proposed Mechanism

67

68

VU. CONCLUDING REMARKS

A. CONCLUSIONS

In this thesis, we have presented and analyzed a mechanism to transmit rcal-time

compressed video data across a packet-switched network in the presence of high ly

correlated errOIS. A modd of the Common Data Link was completed in OPNET and

served as the simulation testbed for the proposed mechanism. Results were examined

quantitatively and qualitatively to verify the effectiveness of the mechanism.

The specific contributions of Ihis thesis are as follows'

(1) A successful real-time transmission scheme is presented and analyzed to

allow the Common Data Link 10 operate effectively and re liab ly in the

presence of jamming. The mechanism to enforce this transmission scheme

guarantees that (I) delay bounds are met for real-time flows despite

network overload and (2) a minimum acceptable image quality is

maintained despite the presence of highly correlated errors This

mechanism is composed of the following elements: (1) a hierarchical

image compression schemc, (2) rate control at the source, (3) bandwidth

allocation within all cncountered network nodes. and (4) dynamic forward

(2) A complete and operat ional model of two FDDT tANs interconnected by

the CDL is produced in OP}'TET. TIlis model serves as an expandable test

bed for fUlther CDL dl:vclopml:nt.

(3) An inte rface octween OPNET and MATLAB is designl:d and implemented

to allow the reconstruction and suhjective evaluation of transmitled images

simu lated in OPNET. Unique in the study of real-time transmission

scheml:s, this ability to view the images received during the simulation is

I:ssential to the effective evaluation of the proposed mechanism

69

(5) A user's guide fo r the CDL network model in OPNET is produced_ This

user's guide facilitates the effective and efficient use of the model for

follow-on research and development

n_ FOLLOW-ON WORK

The breadth and diversity of the material covered by this thesis leads to numerous

possibilities for follow-on research_ Among these are:

(I) A comprehensive review of the current link monitoring mechanism. This

review would seek to improve the measurement of the bit error rate and

eliminate undesirable changes in the link status

(2) A close examination of the required error correction scheme leading to a

more realistic model of hoth the overhead and the delay associated with

the chosen scheme.

(3) An implementation of the developed real-time transmission scheme over

a multi-hop CDL network.

(4) An implementation of multiple LAN connections to a single CDL network

interface.

(5) An implementation of alternate higher level protocols, specifically TCPIIP,

used to encapsulate real-time data over the CDL.

70

APPENDIX A, COL MODEL USER'S GUIDE

This appendix is designed to serve as 11 guide to the effective and efficient use of

the Common Data Link simulation model in OPNET. It is broken into four sections

standard model operation, the model inte rfaces. the model output options, and model

modifications. A thorough understanding of this appendix is essential to the productive

utilization of the CDL simulation.

The best way to approach this appendix is to use Section B as a guidebook in

setting up the simulation to generate the specific environment 10 be analyzed. Section C

is used in conjunction with Section B to specifically recognize the attributes that are of

importance in a particular scenario and 10 provide guidelines in choosing the appropriate

values. The desired outputs can be generated as given in Section D. Section E is

applicable when changes \0 the basic architecture of the existing model are attempted

T his appendix assumes a working knowledgc b~e for both OPNET ami

MATLAB. In addition to the OPNET Manuals, Nix's thesis [Ref. 20] provides an

excellent tutorial for those unfamiliar with OPNET. A similar tu torial section is available

in the basic MATLAB manual

Upon completion of this thesis, the working CDL mooel will he compressed and

stored on the Naval Postgraduate School's Electrical and Computer Engineering network

and will he made available for follow-on development upon request Inquiries should he

directed to the author (walke r@ece.nps.navy.mil) or Shridhar Shukla

(shukla@ece.nps.navy.mil)

A. SYSTEM REQUlREl\1..ENTS

Two licensed simulation operating environments are required to fully utilize the

CDL model. The first is MIL 3, lnc.'s Optimized Network Engineering Tool (version

2.4 or later) and the second is the MathWork's MArLAR (version 4.0 or later) , Together,

these software packages detennine the system requirements for running the CDL model.

In addition, it is recommended that, at a minimum, 50 Mbytes be reserved on the hard

drivc to facilitatc the storage of the large temporary files gencrated by OPNET during

simulation, The simulations reported here were run on a Sun Sparestation 5 running

SunOS4,1.3,

B. CDL MODEL OPERATION

To configure the CDL model simulation, there are four areas that need to he

addressed: (1) application parameters, (2) network parameters, (3) CDL Manager

parameters, and (4) link parameters, This section discusses these areas and providcs

guidance in setting thc appropriate parameters, In addi tion, the simulation execution is

presented in detaiL Parameters that need not he altered are not discussed_ These include

the netwurk and link attrihutes which nced not be changed unless the user desires to

change the underlying modeL

L Applications

The application and its token-leaky bucket interface to the FDOI ring must be set

up to model the desired application performance. The major factors are the frequency of

image generation and thc average image size in bits. In addition, the minimum and

desired level of image resolution should be implemented. The frequency of image

generation is detennined by the "src.imerarrival {lrgs" attribute. This should be set to the

interval between image arrivals in seconds. The average image size is used to set the

appropriate data rates and data packet and token sizes. The data packet size reflects the

size of the information field and is mostefficicnt if it is an integral number of bytes

Eaeh byte is used to represent a single value of the compression output data. The

"tku_bhdu.w segment size' should be set to the desired number of bits in the information

72

field. The "Ikn_bkt.desired rme" and '·tlm_hkt.min_acceplablcrale" should be calculated

ba~ed on the amount of data required to produce the desired image resolution and the

minimum acceptable image resolution, respectively These are set according to the

following equation:

numba of Wllues jor usowrion
() • (segmenrsize + header size)

fIJImba of WlLtes per packet (3)

image update inurval

The segment size and header arc both in bils and the update interval is in seconds The

header size is 40 bits, while the segment size is the value chosen for ·'tkn_bkt.data

segment size". The number of values for the appl icable resolution can be detemIined hy

multiplyi ng the number of values per level by the number of resolutions levels desired

The '·token_size" for both the token and leaky buckets should be set to a value greater

than or equal 10 the segment size plus the header size. To guarantee that the FDDT ring

wi ll support the applicat ion, the "mac. sync hmulwitith·' should be set to a value greater

than or equal to the bandwidth determined by the followin g equation

"tbsired rate"
"(,,=gm=,=m=size:::"C,-;C"''') • (segme'll size - 80) (4)

10"

This equation sets the applicat ion·s synchronous al lotment based on the desired data rate,

taking into aCCOUnI the overhead of both the compressed video packet and the FDOl

packet. The destination address needs to be set and must be another real-t ime FDOT

station. Finally. the "cmpr_wloJcvr.DataJile" attribute should be set to the name of the

output file to record the alTival of compressed video packets at tlds station

To simulate the addi tional load of general traffic on the Common Data Link,

mUltiple non-real-t ime FDDI stations can be setup on the attached FOOT rings. The

stations generate traffi c based on a random message generation rout ine A station is set

73

up by specifying the parameters for this message generation routine. The packet

generation is based on an exponential pdf with a mean data rate set by the attribute

"I/esre.arrival rate", The packet lengths arc also set by an exponential pdf with a mean

packet length detennined hy "llc __ .m.:.mean pk length". Thc range of valid destination

addresses is specificd by selling the attributes "llc_src.low dest address" and

''llc_.I"rc.high dest address". The percentage of synchronous and asynchronous packct

gencration is determined by the "llcjrc.async_mix" Finally, the range of the FDDT

packet priorities is detemuned by the attribmes "l!cjrc.!ow pkr priority' and "lIesrc.high

ph priority".

2. COL Manager

The CDL Managcr must be tailored to the individual simulation to achieve the

desired operation. The major components are the link monitoring attributes and the

forward crror correction attributes. The link monitoring must be set up for both ends of

the data link. The monitoring packets are generated based on the attributes "CDI.

Manager.link_moniloring_tranSJale" and "CDL Manager. moniroring pkt size". In

addition, thc transmission criteria and hysteresis plot must be defined for the link

monitoring reports. The "CDL Manager.LQR transmissiun delta" is used to set the

change in monitoring ratio (bad packets/total packets) that will trigger the transmission

of a link quality report. The "CDL Manager.histary length" sets the length of the link

monitoring history to be maintained by the CDL Manager. This history is the record of

gCX>d and bad link monitoring packets received by this CDL Manager. The link

monitoring hysteresis plot is defined hy the attributes "CDL Manager. lower hysteresis

threshold"' and "CVL MmUlger.Upper hysteresis threshold", which are the thresholds for

the GOOD and BAD link status determined a~ ratios of the number of bad packets in the

history divided by the number of packets in the history length, respectively.

74

3_ Jamming

The jamming must be set up as is appropriate for the desired simulation, The bit

error rates for the ~tates of jamming and no jamming are set by the attributes

"ls_#.jam_ber" and "ls_#.rw.Jam_ber". respectively. The probability that jamming is

initiated and suspended is determim:d by t.he "ls_#.jam_lrans" and "ls_#.noJam_trans"

attributes. It is important to note that these attrihutes must be set for cach channel

modeled in the CDL link

4. Simulation Execution

The CDL model simulation is executed through the use of the OPNET simulation

tooL Figure 45 presents the simulation tool configuration file, cd I, used in conjunc tion

wi th thc CDL model.

Figure 45. Simulation Tool Configuration File for the COL Model

The simulation file created by the COL model is cdl.sim and is entered in the first

block There are two probe files available with the COL modeL The first , cdl_basic.ph,

probes almost aU of the output statistics produced by the COL modeL This file is used

as a template to create the actual probe files used in the simulations. The probe file

referred to in Figure 45, edLpb, is a subset of cdl_basic.pb. The vector and scalar files

are used to gathcr the output statistics generated by the simulation. The environmental

-/5

file used in the simulations is cdl.ef, as presented in Section C. It should be noted that

the debugging feature is turned on within cdLef and. thus, the command COllf must be

entered on the command line to run the simulation. For more details on the debugging

facility. refer to the OPNET Manual.

As shown in Figure 45, the CDL simulation provides updates every 0.1 seconds.

(This is adjustable.) Upon simulation termination, the results can be observed through

use of the OPNET Analysis Tool on the output file cdl.ov.

C. CDL MODEL INTERFACES

This section provides a detailed list outlining the parameters that are used as inputs

to the CDL model. These parameters are normally recorded in the environment file. of

the format "*.ef". A sample of the environment file used in these simulations can be

found at the end of Ihis section. The best approach to setting up a specific simulation is

to use this list as a reference, in conjunction with the steps outli ned in the previous

section, to determine what parameters must he altered. The user is encouraged to make

usc of the sample environmental file as a template. making only the changes nccessary

for the specific simulation.

1. Listing of Simulation Attributes

The fol!owing list furnishes the atlribute along with a brief description of its

meaning and its effect on the model. The standard form for these attributes is '

lnet].[subnetJ.lnodellmodule}. [process}.lattribute}. for our simulation the net is "top" and

the suhnet is either "'ringO" (the collection platform) or "ring)" (the surface platform)

TIle node is [(node #j, ie. ''f0'' for node O. Thus, '"top.ringO.fS.mac.station_address" would

correspond to the station_address, an attribute of the mac process, for the 5th station on

lingO In the environment file, an asterisk is placed at a position that applies to all

76

particular values for that position in the modeL For example, an "*" in the second

position would force this parameter value to he applied to both ringO and ri Tlg !. The list

contains only the fields in the attribute namc that arc specific to that part icular attrihute

In the environmelltal file, quotes are used to enclose attrib utes whose names contain

spaces_ These quotes are dropped for convenience in the following list. Finally, the data

type fo r thc attribute is included in parenthesis follow ing the attrihute name. The

following abhreviations are used: fl oating point (fp) and integer (int) ,

General Model Attributes

(1) starinn address (int) - address of the particular station

(2) mac.ring_id (int) - Thi s identifies the subnet this station belongs to

(3) llc_src.CDL_NL addr (int) - This is set to the station address of thc local

FDDI Ring Constants :

(1) spawn starinn (int) - addrcss of station designatcd to spawn the FDDI token

(2) station latency (fp) - dclay cncountered at each station along the ring (scconds)

(3) prop_delay (fp) - delay encountcred between stations (seconds)

General Station Attributes (Both real- time and non-real-time):

(1) mac.sync handwidth (fp) - fraction of total sy nchronous bandwidth that is

guaranteed to this station

(2) mac.T_Req (fp) - token ro tation time requested by this station (seconds)

Real-time Compressed Video Attributes:

(1) src.interarrival pdf (type) - type of probability distribution function for image

generation

(2) srcinterarrival args (type) - average interval between image generations (sees)

77

(3) tkn_bkt. data segment size (int) - size of information field in each cmpr_vdo_pkt

(bits) This is uSl:d to calculate number of image dccomJXlsition values per packet

=' (segment size)/8

(4) tkll_hkt. desired rate (int) - desired data transmission rate for compressed video

application (bps). This is set to permit the transmission of lhe entire image

between image arrivals

rate = «imagl: size)/(values per pkt» .. (sgmnt size + header size)/(imagc intvl)

The header size used in this equation is 40.

(5) tkn_bkt.mirl_acceptableJate (int) - minimum acceptable data transmission rate

(bps). This is set for transmission of levd one data only (desired ratell6)

(6) cmpr_vdoJcvr.DataJile - name of file 10 store list of received compressed video

packets This file provides the data to MArLAR Its name must be of the form

*.data.

Real-time Station Attributes:

(I) tkn_bkt. lokenJize (int) - size of token bucket tokens (bits). This should be set

to maximum packet size = data_sgmt_size + header (The size of the header is 40

bits)

(2) Ik,,_hkr. buckeCsize (int) - maximum size of token bucket (bits)

(3) tkll_bkt. sendJale (im) - transmission time for packets departing the token bucket

(bps)

(4) tkn_bkt. ma:cqueucsize (inl) - maximum size of token bucket transmission queue

(bits). This needs to be bigger than maximum size of image data.

(5) Iky_bkt. token_size (int) - size of leaky bucket tokens (bils)

should be set to maximum packet size = data_sgmcsize + header (40 bits)

(6) lk)·_bkl. budecsize (int) - maximum size of token bucket (biIS)

(7) Ik}'_bkt. sendJate (int) - transmission time for packets departing the leaky bucket

(bps)

78

(8) lky_hkr. max_1ueue_size (int) - maximum size of queue (bi ts). This needs to be

bigger than maximum size of image data

Non·Real-time Station Parameters

(I) lic_src.low dest address (inl) - smallest address for this station to send to

(2) llc_src.high dest address (im) - largest address for Ihis station to send to

(3) llc_src.high ph priority (inl) - ma}timum FDDI packet priority for th is station

(4) llcsrc.low pkt priority (int) - minimum FDDI packet priority for this station

(5) lIc_src.arrival rate (int) - average FDDI packet generation rate for this stat ion

(6) licsrc.mean pk length (int) - average FDDJ packet length for this stat ion

(7) lic_src.async_mix (fp) asynchronous/synchronous mix fo r FDDI packet

generation at this station (1.0 == all asynchronous traffic)

CDL Manager Attributes:

(1) CDL Manager.load halancing algorithm (int) - load balancing algorithm

(0 == circular. 1 == empty allocation)

(2) CDL Manager.FEC_level (rp) - Bit Error Rate threshold (eITors/bit) the imposed

FEC will protect under (ie. the packet in question will be accepted if it has less

thaJl this ratio of errors per bit)

(3) CDL Mallager.FEC.'--o~·erhead (fp) - Overhead to be applied to packets when FEC

is appl ied to them (expressed in tenns of a rat io to multiply packet size by)

Link Monitoring Attributes:

(I) CDL Manager.link_monilor_IHmSJare (fp) - rate to transmit link monitoring

packets (seconds/packet) from this CDL Manager

(2) CDL Manager.monitoring pkr size (int) - size of link monitoring packets

transmitted from this CDL Manager

79

(3) CDL Mam>ger.LQR lransmission delta (fp) - changc in ratio (bad packets/lOtal

packets) to trigger transmission of LQR

(4) CDL Manager.upper hysteresis threshold (fp) - ratio to trigger link status BAD

(5) CDL Manager.lower hysteresis threshold (fp) - ratio to triggcr link status GOOD

(6) CDL lv!llTlager.history length (int) - size of link monitoring history (number of

packcts)

Jamming Attributes

(1) l.~_#.jam_ber (fp) - Bit Error Rate when jamming is present on channel -It

(2) 1s_#.no.Jam_ber (fp) - Bit Error Rate whcn jamming is not prescnt on channel -It

(3) ls_#.jamjrans (fp) - probability that jamming will commence for channel #

(4) Is_#.no.Jam_trans (fr) - probability that jamming will stop for channel #

Note: Despite the separate channel designations, once commenced, jamming is applied

to all channels simultancous]y. Upon suspension, jamming is stopped in all channels

simultaneously

eDL Attributes'

(l) ls_#.delay (fp) - dday encountered in channd #

(2) pc#{O/.data rale (int) - data ratc for channel -It

(3) ecc threshold (fp) - thrcshold to be used for packct acceptance (eITorslbit)

2. Em'jronmental file: cdl.ef

The following is the version of the environmental file ut ilized to generate the

results of the second simulation in the body of this thesis. It is provided as a template

for the model user.

80

~ # P ~ ¥ • • if ., ¥Ii # #4#'1I1i1i4# II Ii il- il Ii illi i' ifl! #Ii ¥ , ~ !!~ ~ ~ # ¥ ~ ¥. ~; • • , .
11 cd l .ef - E!ivi r arlIt1C;1t.il l F i l e :Oar CDL Mode l • , .
~ ~ ~ ~ <t~ P Ii ¥ I< II Ii ¥!l li il-i' ~ #~4i1-4#~4# ~ Ii ¥ t ~ ~ t ~~ ~ # ~ # ~# ¥Ii, ~ I ~ # 1'1

Last :1odified:
By·

Simu l ation Set- up ·

Set- up to rU:-1 a real - time f Low bet· .. een t o 0:1 ringO
and :0 on tingl in the ;>rese:-1ce of janm ;.n g

l' I ncludes re" l - t illie flow cst"bl i~h."nen,:; be':ween
iI to on ringO " nel £0 on r i ng l

" ~HUU4~ 4~1'iIU i'4~ i'Hif ;i"f H# . .
!! General l10del Attribut es ~ . .
if ' if~ 4 ~if# iI # #1I ~ 4 1i~ 4 Iiil-i'# 4#~ i''' ~## #

81

' . ringll . • . IT.ac. ri"'g_i d
*. :- ~ng l . * . mac _ ri::lg_id

• . rin"O . '. llc_sre .CDL_ Nl _ addr : ~

*. ring l _*_llc_src .CDL_.NI _add, , 19

H~~~H~UHU~~~jf~~UU~U~~HU # ~U" , ,
~ Non-Real-Time Station Att:::: i butes ~
Ji 11
HH#i'UU# i'# ~~1tHHh ~Ji"HiU#I'#I'~"Ufl

Jr"_* . lle_sre.low dest add:ress' 9
t· · . ~ . 11c_5:rC . high dest add,ess', 9
t"top.rin<;;O.£O. l lc_ s:::c.low dest .. dd:ress"
."top.:ringO. t O. llc_src"h~ah dest a cid:::ess·

t rang e of pt'ic::: ity values that can be
, standards allow for 8 p::-ior i ti es of
It- o:rigina l :!lodel is LTodi£ieci to allow
*' p :::iorities . wi ~hi:1 " specilieci :range .

• ~.'. llc_src. h igh pkt priority'
··. · . llc_s rc . l ow pkt p:::ior i ty'

to packets.
tra[fic.

• arrival rate l tra:r,es/sec), and message size (bi ";:s) f or random messa ge
j! generati o r. at each st a t i on on the :ring

~· · " · .* .arr ival r a te"
#" · . * . *.mean pk length" :
'top _r i",gO. · . ' .arriva l rate · :
" t<lp_r i ngO. · , nei).!"l pk l ength " ,
·to.,.rin<;;l.·. · .arr~val ::: a te ":
·top .:::i:c:gl . * . · .mean pk l e:1gth" "
~·ringl . f9.'.arriva l r at .. • ·
~"ringl.f9 .· "mean pk length",

82

, ~ ¥ H H'U 4~ ##H~H # UHH~ ~ U-H . · . # !..ink ~:oni torinq Attributes ~ · . ###~#~ #f ~,~ ~ ~jj#H# HU~H# ~ H ~H

~ #~#~# ¥ #¥U 4~HiiH##"HH4
~ 4
~ FDDI Ring Attribute", 4 · . ######V ~~HU #H#* ## ¥ H#!i~

set the proportion of a syr.chronou s traffic
~ a value of 1 _0 i"d i cates ill1 async:,:::onous crafE i c

53

~ " ';Cop. ringO . f9 . 11,,_"rc .a"ync_ffi~>:· 1
"top. ringO. to . ll c_src. async_ mix 0.0

fl. ••• R:[ng configura t i on attribu:::es u sed ":>y . fddi_ ffiiJ.C "

Gl!'EB94: this F.l""st be l ess them 1 ; see equil:::ion below

"' To deterrdne correRpo,.,ding cata rate
"' l1ax Data Rate for Station = (sync ba,.,d,,'idth) * 100Mbps

• Targ"'t Token Ro::: a :::ion Till".e (o,., e hi'llf of ma.x i m·J I'\ s ynchronous response
::ir:''<»

~ SL"M(Sl,i) - D_Max - F_Max .. Tok en_Ti'ne <~ TTRT
! B~~:;:s g ive s T'J"RT = 1 0 ms as n",cessary for voice tra nsmissio,., ;

>t D_M .. x + F_Max + Tokcn...Tirne '" 1 . 97888 ll".5 .

'spawn st:a:..i("")n ' ·

UU~it"H ~It~ U~~HU8Ut , .
• CDL Att:::ih.1t",s ~ · , ~HH~8~it"~HH8 ~ j! ~",HH

84

a st:lition ' s :::ing i nterface
(Po wers gives luser:,

Dykema ;"! " Rux)

I' Jamming At : r ibu :;e,;

Re<;;un: and corrma r::d link propagil.<;;i.on delays "re specified a s 60

(z ero) - > c i rculilr 10ao balaro<::ing al g orithm {defau lt)
(one) - - -:> emp ty allooation algorithm

85

" top_:::i::1gJ.f9.CDL Manager. l oad balancing ulgo:::ithm·· :
"top _ ring l _ f9 .CDL M"-::1"-ge::c . l oa d buluIlcing a l go:·ithl"r. " :

~ determine ::he filat io:]. Add:es s o f the b:::idge node i"
jI both ri"qs.

, t o.,. :::i:].gO. £9. * . stationj,C-.dre>;s". 9
"top . ::: i ng l . f9. * . sta~ ion_adciress·' · 1 9

ft# fft 4l *iF;lt ff;ltiF f jl jijllfft # it # jI-ji-ji;ltiF;ltili' . .
~ Simulatio:1 A~tribute>; II , ,
HH# ftHHf~ ftjl ~jl ffUU#HUH#

" Opnet Deb,,-g>ler locb) enabl ing ilttribute
deb",g:

#jI;It#;It##~" t " f 4lff ;i'jl lf"t#;ltUIf-ji;lt# " # jllf#" , .
~ Rea i - Ti.r:.e Sta-::ion At: -::rir:ut:es ; , .
UUUit #j!#~ ; HU#;H*H~ ;~U ,,~~ jlU

~ r ':' ::1g0 _ f() p"ru:neters

" t op . :::ingO. fO.l l c _src . dest address':

86

for most: situations
"etwor).; t his (lag

" rinq1 . fO Pd~amcters

"top . rinq 1. t o .1 1"_5ro. des ,=- a ddress";

~ r ingO. t1 pararr.erers

. top.'" inyO. fl . l lc_src . dest address " :

87

constant
(1 1

UHUII~~~~UHUHHlljlUIr Il *II~ , .
: CDL Mana ger A:tributes :

~!f lljl~II!f"!fIl!ftjjjl"'jI #j!jj jl"'lI flo" jljj''''!f

~ Forward Error Cor rection

• top. ringO. f9. CDL 11",nager. FEC_level' :
• top. ringO . f9. CDr, . Manager . FEC_ove::bead " :

ringO_fl.dar:a

' top.ring i .£9.CDL Managcr.?EC_l eve1". 1.0
"top. r i ng l.£9. CDL Mana ge r .F:O:C_overnea d": 1 .0

D. CDL MODEL OUTPUT

The COL model is capable of generating a variety of outputs designed to evaluate

the perfonnance of the simulation under a myriad of different criteria. This section

describes the outputs available within the model and describes how to access them. It is

divided into the three logical forms of output generated by the simulation: (I) statistical

(or traditional) data, (2) transmitted image reconstruction, and (3) output designed to a;;sist

in debugging simulations.

88

This section assumes a basic knowledge of the forms of output provided by

OPNET as well as a general knowledge of the debugging facili ty avai lable within the

simulation environment On(;1;: again, the reader is directed to the OPNET \-fartuals, if

req uired

1. Statistical Output

The statistical information provided by the CDL model falJ s into two major

groups: the resource usage statistics and the transmission statistics_ Resouf(;c statist ics

arc utilized to delennine system requirements and the feasihili ty of implementation

Transmiss ion statistics lend to relate di rectly to the transmitted packets rather than the

sys tem resources

The resource statistics arc gathered through existing OPNET output variables

associated with the ditferent processes. The most common ones uti lized within the COL

model arc those associated with the multiple buffers th roughout the system. The output

stat ist ics for these queues include the queue size, availability, and delay times experienced

by packets passing through the queue. These can be accessed by attaching a probe to tht

dcsirtd statistic within the appropriate mOOule. More information about these standard

OPNET output stat istics can be fo und in the OrNET Manual.

The statistics that arc gathered to describe the transmission through the COL

model are, for the most part, specific 10 the COL model. These user-defined output

variables, known as OUTSTATS, are assigned within the proctss mOOules and arc

accessed using the probe faci lity in a manner identical to that for acccssing OPNEr's

standard output statist ics. A dtscript ive list of the COL model specific statistics, grouped

by process, follows. The list provides the number of the OUTST AT foll owed by a brief

description. For example, 10 gathcr statistics 10 display the instantaneous throughput into

the token bucket, the user would assign a probe 10 OurST AT 0 of the tLhkljOw process

89

Token Bucket (tCbkuow):

instantaneous throughput into token bucket

instantaneous throughput out of token buckct

average throughput into token bucket

average throughput out of token bucket

number of packets dropped by the token bucket

Leaky Bucket (tCbk,-std):

instantaneous throughput into leaky bucket

instantaneous throughput out of leaky bucket

average throughput into leaky bucket

average throughput out of leaky bucket

number of packets dropped by the leaky bucket

cumulative delay experienced by a packet upon arrival to leaky bucket

cumulative delay experienced by a packet upon processing by leaky bucket

cumulative delay experienced by a packet upon departure from leaky bucket

Real-time LLC Source (jddCsender)"

cumulative delay experienced by a packet UpOIl arrival to Ilc source

Real-time LLC Sink (jddCrcvr):

creation time of packets received at llc sink

Compressed Video Receiver (cmpr _vdoJcvr):

image numbers of packets received at compressed video receiver

level numhers of packets received "at compressed video receiver

sequence numbers of packets received at compressed video receiver

creation time of packets received at compressed video receiver

90

instantaneous cnd-Ie-end delay of packets received al compressed video receiver

mean end-la-eud dday of packets received at compressed video receiver

average throughput of packets received at compressed video receiver

total number of packets received at compressed video receiver

CDL Managt!r (CDL_,mmag er)"

rario of bad packets in the hi story to history length currently maintained in link

monitori ng history

current link status (0 == GOOD, 1 = BAD)

In addition to the statistics listed above, there arc a number of user-defined global

output statistics specific to the CDL model. These arc automatically generated (without

the need of probes) and are available in the analysis tool of OPNET. They are referenced

by name and are not associated with a particular process.

Jamming state of jamming (0 = OFF. 1 = ON)

Error Ratio per Packet errors per bit of current packet (in CDL pipe)

2. Image Generation

This CDL simulation set-up diffc:rs from many of the existing set-ups utilized in

the study of real-time transmission scheml:s in that a facility to reeollstmct the transmitted

image has bel:n provided. This is achieved by a set of MAlLAB programs that interface

the OPNET model output data files with thl: MArLAR rcconstmction routines. Thi s

section descrihes the procedure to produce thl: recl:ivl:d image.

The CDL simulation produces an output data filt: for each individual compressed

video receiver. The name of this file is assigned in the environment file (see Section B)

This fiie is used as an input to the MATLAB routine create_mask:

create_mask(filelwme', numher of images)

91

The filename must be in quotes and does not include the suffix ".dara". The number of

images is the number of images transmitted during the session and can be detennined by

examining the image number of the last few entries in the data fik. Create_mask creates

a series of MATLAB workspaces associated with the transmission session. There is onc

workspace per transrnitted image, each containing a variable, ··mask," used to reconstruct

that image. The workspace files arc namcd image#_mask.mat and are used by the routine

rccomp. Crcate_mask calls a romine eval_mask to produce plot~ of the number of

packet~ and values lost per image in the transmission session. These can be saved using

the MATlAB command print

Rewmp is called without argumcnts and prompts the user for the following

information:

(\) filename to be reconstructed - This is the name of the original imagc file

to be used by the routine. The original imagc uscd in thc body of the

thesis is 'airplane'. The entry should be in single quotes and contain no

(2) jmage nllmher to be generated - This is the number of thc transmitted

image to be reconstructed and is mapped to thc appropriate workspace fik

This file produces three images. The first is the original image transmitted by the sender

the second is the received image and includes the received signal-to-noise ratio. Finally,

an image is generated reflecting the errors in the received image. Tn essence, this image

represenl~ the difference between the transmitted image and the received image.

Encapsulatcd postscript files of thcse images are created if the user requests hard copy

images when prompted by the routine The files are originaUmage.eps, run_imagc.eps,

and run_image_error.eps, respectively.

92

3. Debugging

1t is often beneficial to be able to view tbe progress of a simulation whiJe it is

running. This is accomplished through the debugging facility provided by OPNET.

Specifically, a trace can be requested for the desired objttt. Numerous user-defined

label traces were neated to be used in conjunction with lhe CDL model. The se traces

arc called in the format:

fhis section describes these CDL specific traces and, in general, assumes a basil:

knowledge of the debugging facility in OPI'ffi'"r. It is wurth noting that the debug mode

must be active to make ust': of these traces.

(l) rmes - traces the process of reaJ-t ime now establishment and update in the

presence of Jamming

(2) FEe - traces the establishment of the forward eITor correction ml:chanism

in the presence of jamming

(3) mntr - traces tile link monitoring mechanism

(4) tracl:s the uti lization of the various bit pipes in the COL

implcmtntatioll

(5) bkl - traces thl: actions of the token and leaky hucket modules

(6) rcpkr - traces the transmission of real-time packe ts throughom the

simulation (It is marl: efficil:nt to use the dehug conunand pkmap to

identify a specifil: packet by number and use the debug command pktracc

to trace it.)

(7) img - records tbe arrival of each nl:w imagc

The fi rst three traces are tbe most useful and provide insight into tbe proposed real-time

transmi ssion mechanism.

93

E. CDL MODEL MODlFlCA TION

This section discusses the procedures and issues involved in making the following

foreseeable changes to the existing COL model.

(I) The addition of extra real-time roOT stations to the model

(2) The reorganization of the channel structure of the COL

(3) The implementation of an admission control algorithm.

(4) The implementation of end-to-end user feedback.

(5) The implementation of an alternate high level protocol

The first two can be thought of as extensions to the existing modd. while the last three

can be thought of as additions to the existing model

I. Additional Real-time FOOl Stations

Additional real-time FDDI stations may he added to the existing modd by

replacing the standard FDOI module with the real-time module, fddi_statiofl_ts. The

attributes discussed in Sel:tions Band C will need to he initial i7..cd and a real-time station

must be chosen for the destination. Additional stations may also be added by adding

additional nodes to the local FOOl ring. This would necessitate the adjustment of the

FOOL attributes as well a~ the initialization of the new station attributes . The added

station could be made a real-time or a non-real-time station by choosing the appropriate

module.

2. COL Channel Reorganization

The CDL is logically organized as a collection of channels, or bit-pipes. The

existing CDL model breaks the link into four channels. This can be altered to more

94

realisticall)' model the actual link by adding the appropriate number of transmitters and

receivers at the CDL network interfaces. Each transmitter and receiver pair must be

connected by a channel and the appropriate channel attributes must be initialized_ In

addition, the "number_o/-xmtn" attribute of the transmil1ing CDL_manager must be

adjusted to reflect the updated configuration .

3. Admission Control

The admission control algorithm is essential for an effective network-wide

cmploymcm of any real-time transmission scheme. This algorithm would typicaJly reside

within the COL_manager for the CDL model. Specifically, the sink slale would be

modified to conduct a screening process prior to establishing a real-time flow. This

screening process would requirt that the process examine available bandwidth on both the

attached LAN and the attached CDL If the bandwidth is not available for the requested

flow, the CDL-,nanager would send the requesting application

"CDL_managerJnlrlykt' with the "join" attribute set to zero to signify a rejection of

the request.

4. End-to-End User Fe£dbac.k

End-to-end user feedback can be used to adjust the minimum required image

quality at the receiver. To implement this, the receiving application TIlUS! send a control

packet back to the sending application requesting an increase (or decrease) in the number

of resolution levels being transmjtted. This would trigger a renegotiation between the

sending application and the CDL Manager for the new flow parameters. This

renegotiation can be modeled as a retum to the existing real-time flow establishment

procedures using the updated transmission rates.

9S

S. Alternate High Level Protocol

Thl: impleml:ntation of an alternate high level protocol, such as TCPIlP, n:ljuirl:s

I:xtensive additions to the existing model. This alternate protocol would have direct

contact with the COL Manager and lie source/sink in the same manner as the existing

FOOl LANs. Such a modification must carefully consider whether the COL_NI must

function as a router or a bridge or both. The issues related to this arc discussed in [Ref.

22J. Thus, in the ea~e of TCP([P, an IP module would have access to the CDL Manager

and would provide many of the same services to the COL Manager as the current mac

process. All TCPfIp traffic received over the COL would pass through this IP module

to detemline whether or not the packet is destined for a station on the attached LAN

Thus, the CDL_manager process must be modified to perform a filtering operation based

on a protocol field. In addition, because IP resides at a higher level than the FDDI mac,

addit ional issues specific to a network layer protocol must be addressed.

96

APPENDIX B. PROGRAM LISTINGS

A. OPNET Modd

The source code for the CDL simulation model in OPNET is not indudcd in this

appendix rlue to its sheer bulk. In addition, the source code is presented in a more

readable fannat when the u~r prints the hard-copy of the code from within OPi'.'ET itself.

This is accomplished by selecting the appropriate process and generating an OPNET

report. The interested reader is encouraged to generate reports concerning the processes

and modules discussed in this thesis.

B. MATLAB

Writ tc!1 by T . O'.-JeCls Walker II I
Spri,.,g 1 995

Load data file i nto milsk_dil::il matrix

97

t\~%% 3",eak mask_da ta apa ", :: i:1 to sepa ::::ate i=gcs

= rr.ask_data(row .31 + I:
~ ma s k .• dat:a (row ,)) .. TI ,-,m_va l".lcs-pcr -pkc :

eva l ([' image ' ,num2str (;na sk_ Cat:a I ro '"", 1 I I . ,1 s p::::int:f I ' td ' st:ar";C_ valuel,
e;'d' ~print~(' 'lid ' ,end_va l'",e),)" oncs(l,nuTI_valu e s -per -pk t l;' 1);

"'%% 'i< 1\ Sto::::e mas k s in the prc>per ~ _ F..at files

barI O: (1eng tr.ILos s esl l, II - l),Lo(;sesll , :)I :
x l abell ' Imilge Number '): y l ahel{'Number o f Va l ues Los!..');

:)) - 1) ,Losses 12 . :));
ylabe11 ' Number of I'ac '<e<:s Lost ');

fU:1ct i on [va l ues_ l ost, packets_lost_) = eval _ l'"lask l ma(;kl :

inpJ.;t i s a ma s:< natrix
out.put_s vectors of ., .. eket s ami v alJ.;es lost

\'Jr it t en by r. O ' en~ \~alker I II
Spr ing 1 995

98

3. idwt20EC.m

function im=idwt20EC (file. HH, HV,GH, GV .1>'11. Nv. Ll. L2 . lowest • Gt ,qq)
%; IDWT2 Two- dimensional i nverse disc tete wavelet transform
%: IDWT2 (FILE) re tu rns the reconstructed i ma ge 1M by
%: taking the inverse wavelet transform of wavelet coefficients
%: stored in F I LE_D~."r.

" Version 1 .3 by R.M. Carvalho 24 September 1994

%: Load the "".:>velet coefficients and construct the filter matrices
\------ --- ---- ----- ------------- --- ---- ----- ---------
eval(l'load . file,'_test '))

%: Reconstruction routine

whos
[lr .lcJ=si~e(dll) ;

:nin_ val =d l1(1,1) ;
:nax_val.,dll(1,2) ;

if size(eval(['d ,num2str(index). ' 1 ']))> = [1.4 J

eval ((' mv = (d' ,nurnlstr(index). ' I (1,1);' I)
eval ([' Mv=(d ' • num2str (index) • '1 (1,2));' I)
eval «('d ' ,num2str (index) , 'l"d' ,num2str (index) , '1 (3: Ie) ; , J)

eval «('d' ,num2str (index) , ' l"reshape Id ,num2s tr (index) , ' 1 , N1, N2) ; , J)

eval (('d ' ,nu:n2str (index) , '1 a n2mbi t2 (d ' ,num2str (index) , ' 1 , S, S,mv, Mv, 0) ; , I)

else
m
m
dll"dll(1,3:le) ;
size(dll)
d11 a resha pe(dll, NL N2) ;
dU .. n2mbit2 (d1L S, S, min_val,max_ val , 0) ;

i f si ze (eval(I'd ' ,nu:n2 str(index) , '2 ' J) » = {L4]

eval ((' mV= (d ' ,nu:n2str (index) , '2 (L 1)) ; , I)
eval({'Mv= (d' ,nu:n2str(index), '2 IL2)); 'J)
eval ([' d ' ,num2s tr I index), 2: d ', num2str (index) , ' 2 (3: Ie); I)

eval « (' d ' ,num2str (index) , 2=reshape (d' , num2str (i ndex) , '2 ,N!. N2) ; , I)

99

eval ([' d ' ,nur2str (ir.d(:x) , ' 2 =n2mb i. L2 (d ' ,num2scr (ir.dexl, 2,8,8 , mv, Mv, 01 ; , I)

if si z e (ev",l (I' d ' ,nUI:l2st::- (ind .. x), ' 3 ' J 1 »= [1 ,4]

I>

eva l (['d' ,nun2st r (index) , ' 3 .. n2mbit 2 (d' • nUIT.2str I index) , '-',8,8, mv, Mv, 0) ; '])

if s i zelevil.l (['d' ,nurr,2str (index). '4 ']) » =[1 ,4]

- ' I)

cv"l (['d ,num2str(indt!x), ' o1= n2mbit2 (d ' ,num2s:r (imocx) , ' 4, ~,8, mv, Mv, 0) ;

Apply Results of TranSf:lission S::'mu1il.t ion

Wr itter. b y ~~e~~~n~o~'~lker III

Spring 19 95

'11%%%'1\ Load masK worKs;;:>"",e

image_numbe r _ input (' Enter Image Number to b e Gcr.t!rated·
eval ([' l o ad inage ' _ num2st r (image_r.urober) , 'In,'lSK' I) ;

App l y !':ask

100

't check for zero matrices, rebu il d to s I ze
for ccef =l : <I,

if sizeieva1 i [' d' ,ntln, 2 ~tr(coef), ' l ' I) j '" r" , f;.]

' I) ;

if si.ze(eva l l [':1' ,num2str(coefi.· 2 ']))< [4 . 4]

I I ;

if siz('(evd11[' d , :-lum2str (cocf) , '3 '])j<[4,t,]

] 1;

if dze(evall [' d ,nu:n2 s ~r(cCleE J, '4 '1))< [4 , 4 1

'I);

f or coef- 1 : 4
[HI1, P.V , GH, GV ,tn,. Nv] fi 1 ':Cs2 (1,1/1 vl, L2!lvl , fl t, qq, 1 I ;

eval(['cwrk=rctver2(d ' ,num2str(cClef) 'l,EV,Nv) ,]1
evall r 'dw..-k l =rc(:ve..-2Id' m.m25~r (coeE) , ' 2 . GV, Nv); I I

r r. c] =size (dwrkl1

101

dath2"rc t hor2ldatv2 ,GH,Nh) ;
evali (' dO' ,nwn2str i coef) , '",dathl"'da::h2; J)

% Ivl I r .. r.:onst ruct ion
I vl""!..

(HH, HV, GH , GV, Nh, Nv] .. fi l ts2 (Li/ivl, L2/Ivl, £lt,qq, l I ;

coef . O,
d01=d Ol' ;
d02 =d02' ;
d03 =d03 ' ,
d04 .. d 0 4' ,

evali ['cwrk=rc t ver2id' ,num2str icoefl , ' 1 ,BV, Nv) ' J)
eva li (' cr..rr k1 z rctver2id' ,num2s tr (coe!) , '2 , GV ,Nv); I)

[r,cJ =siza(dwrkl) ;

d a tvl =cwrk il:r , 1 : c) "'"wrkl ;
evall ('dwrk2"'rctver2(d' ,num2str (coef), 'J,IN,Nv);])
evall ('dwrk3=rctver2 (d' ,nwn2str (coef) , '4,GV, Nv) ;])
ua::v2 .. d ,,'rk2-+d,,'rk3 ;
dath1"'rc t hor2 (datvl , tlH,Nh) ;
dath2 =rcthor2 (d atv2 ,GH,Nh) ;
im",dath1 .. dnth2 ;
im=rot9 0 (im) ;
im",flipud (im) ,
(Lv Lh] =size(im) ;

102

LIST OF REFERENCES

[I] Defense Support Project Office, CDL Sysrem Description Document/or Common
Dara Link (CDL), Specification Number 7681996, 1993

[2] S. Shenker, D. Clark. and L
lntemet," Intcrnet Draft, October

"A Service Model for an Integrated Services

(3) A. K. Parekh and R. G. Gallager, "A Generalizcd Processor Sharing Approach to
Flow Control in Integrated Services Networks : The Single-Node Casc, "
IEEEIACM transactions on Networking, Vol. I. No.3, June 1993

[4] D. Ferrari, "Client Requirements for Real-Time Communication Services," 'EEE
Communications Magazine, Vol. 28, No. II , pp. 65-72 , November 1990.

[5] B. A. CoaTi and D. Heyman, "Reliable Software and Communication ru
Congestion Control and Network Reliability." IEEE l Ol/n UlI on Selected .4reas in
Communications, Vol. 12, No. 1. January 1994.

[6] H. Kanakia, P. P. Mishra, and A. Reibman, "An Adaptive Congestion Control
Scheme for Real-Time Packet Video Transport," Proceedings 0/ ACM SIGCO,'vIM.
pp. 20-31, October 1993

[7] L Zhang, S. Decring. D. Estrin, S. Shenker. and D. Zappala, '"RSVP: A New
Resource ReScrVation Protocol," l tT.E Network, September 1993.

(8] D. Ferrari, A. Banerjea, and II. Zhang, '"l'\etwork Support for Multimcdia: A
Discussion of \he Tenet Approach," Computer Networks and 'SD,"'" Systems, Vol.
26, pp. 1267- 1280, 1994.

(9] A. Demers, S. Keshav, and S. Shenker. "Analysis and Simulation of a Fair
Queueing Algorithm." Proceedings 0/ ACM SIGCOMM, pp. 13-12 , 1989.

[10) D. D. Clark, S. Shenker, and L Zhang, "Supporting Real ·Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism," Proceedings
of ACM SIGCOMM, pp. 14-27. August 1992

(11] R. M. Carvahl0, "Multi-Resolution Image Compression Using Sub-Rand Coding
and Wavelet Decomposition," Master's rhesis, Naval Postgraduate School,
Montcrey. California, December 1994.

103

[12] S. G, MaHat, "A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation," IEEE Transactions on Pal/ern Analysis and Machine Intelligence,
VoL I L No.7, pp. 674-693, 1989.

[13] 0. Rioul and Martin Vetterli, "Wavelets and Signal Processing," IEEE Signal
Processing Magazine, pp. 14-28, October 1991.

1I4] A. Erdemir, "'Data Compression by Using Wavelet Transfonns and Vcctor
Quantization,"' Master's Thesis, Kava! Postgraduate School, Monterey , California,
June 1993.

[1 5] H. J. Barnard, Image and Video Coding Using a Wa velet Decomposition, Ph.D
Dissertation, Delft University, Netherlands, 1994.

[16] D. C. Schmidt, "Safe and Effective Error Rate Monitors for SS7 Signaling Links,"
IEEE Journal on Selected Areas in Communications, Vol. 12, No.3, April 1994.

[17] J. W. Eichelberger, "Ocsign and Modelling of a Link Monitoring Mechanism for
the Common Data Link (COL);' Master's Thesis, Naval Postgraduate School.
.\1onterey, California, September \994.

[18] A. Takeshi" '"Distributed Multilink System for Very-High-Speed Data Link
Control;' IEEE Journal on Selected Areas in Communications , Vol. 11, No.4, pp.
540-549, May 1993.

fl9] S. Karayakaylar, "Data Link Level Interconnection of Remote Fiber Distributed
Data Interface Local Area Networks (FDDI LANs) Through the Critical Data Link
(CDL).'· Master's Thesis, Naval Postgraduate School , Monterey. California, June
1994

[201 E. E. Ni x, "Modeling and Simulation of a Fiber Distributed Data Interface Local
Area Network (l-l)Dl LA.N) Using OPNE~ for Interfacing Through the Common
Data Link (CDL)," Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1994.

[21] MIL 3, Inc., OPNET Modeler , user's manual in 11 volumes, 3400 International
Drive NW, Washington, D.C. 20008, 1993.

[22] S_ Shukla, Design Requirements for the Common Data Link's Nl!lw{Jrk Inleiface,
Technical Report NPS-EC-94-011, Naval Postgraduate School, September 1994

104

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

3. Chainnan, Code EC
Department of Electrical and Computer Engineering
NavaJ Postgraduate School
Monterey, CaJifornia 93943-5121

Professor Murali Tummala, Code ECffu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

Professor Shridhar Shukla, Code EOSh
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CaJifornia 93943-5121

Professor Loomis, Code EClLm
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CaJifornia 93943-5121

7. Professor Paul Moose, Code EOMe
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CaJifornia 93943-5121

105

No. Copies

8, Professo r Gilbert Lundy, Code CSlLn
J)epartment of Computer Science
Naval Postgraduate School
Monterey, California 93943-5118

9. Professor Van Emden Henson, Code MAfHv
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943-5216

[0. CDR K. Webb, Code SPAWAR 72
Space and Naval Warfare Systems Command
Crystal Park #5, 2451 Crystal Dr.
Arlington, VA 22202-5100

11. CDR D. Gear, Officer in Charge
NISE EAST Detachment Washi ngton
3801 !\-ebraska Ave N.W.
Washington, D .C. 20393

\2. LCDR Skinner
Advanced Maritime Projects Office
Building 659, Box 51
NAS Jacksonvilk, FL 32212

13. LT T. Owens Walker III
peu John C. Stennis
Supervisor of Shipbuilding, Conversion and Repair, USN
Newport News, VA 23607-2787

14 Mr. Marc Russon. LORAL
Mail Station Fl-G 14
640 North 2200 West
Salt Lake City, UT 84116-2988

15. Program Manager, Common Data Link
Defense Airborne Reconnaissance Office
Washington, D .C. 2033(}..]OOO

106

(

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93~3-51Q1

Imlljl t il l !lilllliililll~ IIIJ
3 2768 00317480 6

