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,\BSTRACT 

DUDLEY KUOX LIBRARY 
NAVAL PC::YGRAOUATE SCHOOL 
MONT£kEY C,o\ ~tOI 

This the sis details the design of Ground Support Equipment (GSE) for the Naval 

Postgraduate Scheel's Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC) 

Ultravie k t Spectrograph. ISAAC is one of the several experiments to be flown en the Advanced 

ReSearch and Global Observatien Satell ite (ARGOS) in 1996. The GSE consists of several 

sofrware programs written in LabVIEW. These programs sim ulate the timing signals that 

ISAl\C will receive from the sate llite bus. In additien, the programs acquire serial data from 

ISAAC, perform a serial to parallel conversion and display the resulting spectra. The GSE will 

alia·..,· test ing of the spectrograph prior to the interface with the satdlite bus. Although the 

complete flight instrument is not yet avai lable fo r tes ting, this thesis describes how the 

GSE-to- ISAAC interface will be made and how it should be operated. Finally, some 

hardware/software incompatibilities are identified. 
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l. INTRODUCTlOI\ 

rhe atmo~phere is very imponam for the conditions of life on earth and for many 

physical ,1 pp1ications. Therefore, continuous study of the chemical structun: and the 

properties of the atmosphere is absolutely necessary. The atmosphere is mainly 

composed of N" OJ, and argon. In a very small percentage, about 0.1 %. c(lrbon dioxide 

(COl)' Olone (0,). and nitric oxide are present. Despite its small percentage, OJ is 

extremely important for life on earth. There is an Olone layer at an altitude of about 30 

km above th.e surface orlhe eanh thaI absorbs the solar radiation hetwecn wavelengths of 

2000-3000 A. This radiation is lethal and if it reached the earth it would not be tolerated 

by most forms of lil(:. The atmosphere also warms the earth's surface to an average 

temperature o f 300 K by being transparent to the 6000-K so lar blackbody radiation. In 

addition, the atmosphere is of great scientific interes\. The upper atmosphere contains 

free electrons in sufficient numbers to intluence the propagation of radio waves. This 

region. called the ionosphere. behaves like a diffuse mirror in the sky, and plays an 

important role in communications over very long distances on the earth's surface, and in 

over-the-horizon radar 

The Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC ) spectrograph 

was designed by the Naval Postgraduate School (NPS) in order to allow a greater 

scientific understanding of the upper atmosphere. ISAAC will be one of many 

experiments on the Advanced Research Global Observation Satellite (ARGOS) which is 

to he launched in 1996. The ARGOS experiments wi ll enhance our knowledge of the 

physics of the atmosphere. 

The ISAAC spectrograph will measure the intensities of the ultraviolet spectral 

emissions of several atomic and molecular constituents of the amlOsphere. I"hese 

measurements will give the opportunity to derive temperature profiles of the upper 

atmosphere and electron density profiles of the atmosphere. The temperature profiles 

will provide information essential for many military applications. The electron densit), 



profiles \Vii) improve satellite communications, long range conununications. 

over-the-horizon radar and navigational solutions 

A. THESIS OBJECTIVES 

This thesis develops a Ground Support Equipment (GSE) for the ISAAC 

spectrograph. The GSE will allow testing of the spectrograph prior to its comlcction with 

the satellite bus. The GSE includes a Macintosh Quadra 650 computer, the NB-TIO-IO 

tim ing board. the NB-D10-32F data acquisition board and software programs \\Tirten in 

LabVIEW 3} . The GSE simulates the signals that ISAAC will receive from the satellite 

and obtains and displays the data from the ISAAC spectrograph. This project also 

describes how a GSE box, which will interface the GSE to ISAAC, will be constructed. 

8. THESIS OUTLINE 

This thesis is divided into five chapters. Chapter Ii provides the physics 

background for the ionosphere in comlection with the objectives of thc ISAAC 

spectrograph. This chapter also includes a hriefpresentation of the ARGOS satellite DJ1d 

its eight experiments. In addition. Chapter II describes the ISAAC spectrograph. Chaptcr 

lIT details the software package that was used to write the programs and also presents the 

two GSE boards. Chapter IV discusses the ISAAC data acquisition box and presents thc 

GSE programs. Chapter IV also describes the construction of a GSE interface box that 

will link the GSE to ISAAC. Finally, Chaptcr V contains the results of the GSE, prescnts 

a summary of the dcvelopment of the GSE, discusses outstanding problems of the GSE 

operation and provides rccommendations for future work 



II. BACKGROUND-ARGOS SATELLITE-ISAAC 
SPECTROGRAPH 

T his chapter is divided into thn:e sc!.:tions. The first section contains the essential 

physics background as a motivation for the ISAAC experiment. The second and Ihl: third 

sections pre sent the ARGOS satellite and the ISAAC spectrograph. respectively 

A. PHYSICS BAC KGRO UND 

The classification of the atmosphere into dif[cn:nt regions according to 

temperature variations with alt itude is given. The atmospheric temperature strw.:lurc is 

discussed along with molecular spectroscopy. The \empcrarure orlhe uppermost region 

of the atmosphere, the thermosphere, is discussed. Finally, the photochemistry of the 

ionosphere is detailed. 

I. Review or Atmospheric Temperature Structure 

The atmosphere is the gaseous shell that surrounds the earth. The region of 

interest to this thesis starts at an altitude of 30 kIn and extends up to several thousand 

ki lometers. Thi s region is imponant as a satellite environment. The part of the upper 

atmosphere that is ionized is called the ionosphere and extends from 50 kIn to 1000 km 

alt itude. The atmosphere is divided into four regions ae(;ording to the temperature 

variat ions at different altitudes. These regions are the troposphere, the stratosphere, the 

mesosphere and the thennosphere. Figure 1 illustrates the temperature profi le in the 

atmosphere 

Tht: lowest region of the atmosphere is the troposphere where the tcmperarure 

decreases with altitude at a fairly unifonn rale of _6.5 0 C/km up to about 15 km. At this 

altitude is the tropopaust: and the lemperaturt: reaches a minimum of aboul _600 C. The 

next region of the atmosphere is the strato~phere which is 25 km thick at mill-latitudes. 

The stratosphere is thicker above the pole~ and thinner abuve the equator. Near the base 

of the stratosphere. the solar ultraviolet radiation is absorbed. Therefore, the tt:mperalure 

in the stratosphere increases with increasing altimde. 
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Figure I. Temperature Profile in the Atmosphere. 

This increase stops at the strntopause which is at about 50 kID altitude. Above the 

stratopause is the third region of the atmosphere, the mesosphere. The mesosphere 

extends up to 80-85 km altitude. Because heat is removed in the mesosphere through 

radiative cooling, the temperature profile decreases up to the mesopause. The coldest 

temperatures of the atmosphere (180 K) occur at the mesopause at an altitude of about 85 

km. 



[he rtgion of the atmosphere above the mesopaust is the thermosphere. Strong 

positive temperature gradients occur in the t!lennosphere. The gradients are caused by 

the healing of the atmosphere from the absorption of short wavtkngth solar radiation 

The temperature increases up to 300-400 km altitude. Ahove this altitude the temperature 

is near!)' constant. The high temperatures (lOOO-ISOOc K) are primaril), caused by the 

ineftlcient heat removal processes. The thennosphl:re absorbs only 10'" of the solar 

energy supplitd to tarlh. The rest is absorbed by the lower atmospherl: and the ground 

One of tht priorities of ISAAC is to measure temperature profiles in the 

thermo sphere. These profiles can be detennined from the molecular spectra. Below a 

brief presentation of diatomic molecular spectroscopy is given. 

2. Review Of Molecular Spectroscopy 

Diatomic molecules an:: important constituents of tht atmosphere. The diatomic 

molecule can be modeled by two spheres of mass m, and m" stparated by a distanct R 

and bound by an electrostatic attraction. Molecules can remain bound in thl: ground as 

well as in excited statts. "lht nuclei in a molecule can movt relative 10 one another. The 

nuclei can vibratt about the equilibrilUll separation and in addition, the wholc system can 

rotate about its ctnter of ma;;s. The enl:rgy in each of these motions in a molecule is 

quantized. More energy levels are expected in a molecule than in an atom. The energy of 

a molecule is made up of three principal parts: electronic, vibrational and rotational. The 

molecular enl:rgy levels are divided into groups which correspond to different electron 

states of the molecules, For each electronic state there arc groups of successivt 

vibrational states of the nuclei. Finally, within each vibrational state thtre are different 

rotational stales or the molecule. 

The rotational motion uf a diatomic molecule can be thought of as the rotation of 

a rigid hody about its center of mass. The center uf mass lies on tht axis connecting the 

nuclei rhl: energy of a ro tational state is given by 

Er=~r(r+l) (I) 



where r = 0, 1,2,. " is the rotational quantum number. h is Planck's constant and I is the 

rotat ional moment of inertia about the axis of rotation due to the nuclei I is given by 

l=flRo 2 (2) 

where ~ is the equilibrium separation of the nuclei and fl is the reduced mass of the 

system Successive rotational state~ will be separated in energy by 

( J) 

fbe allowed transitions hetween rotational state~ are given by the selection rule &=<±1. 

As mentioned above. the nudei in the lllolel:ule do not maintain a fixed separation 

but rather they vibrate about the equilibrium separation. This vibrational energy is 

quantized according to 

E" = (u + t)hvo (4) 

where u = 0, L 2 ... is the vibrational quantum number and Vu is the classical vibration 

frequency given by 

(5) 

where C is the force constant of the molel:ule 

From Equation 4 it can he seen that there is a zero point energy (y,)hvu and 

subsequent vibrational energy levels are equally spaced. Equation 4 is only an 

approximation since, as the energy increases and the pott:ntial energy curves become 

anhannonie, the levels are not equally spaced but get slightly closer to one another. If the 

molecule has a permanent electric dipole moment at the equilibrium internuclear 

separation, it will exhibit vibrational transitions due to oscillations in the dipole moment. 



The selection rule for these transitions is 6u '" ± I so that 6u '" hvo. In a vibrational 

transition the molecule may al so change its rotational state. This produces a 

vibration-rotation spectrum. Figure 2 shows the energy level diagram for vibrational and 

rotational transitions of a diatomic molecule. These transitions form a band of equally 

spaced lines. Note that the transitions 6 r-O, which would yield photons of the same 

frequency,.are ro rbidden and hence missing from the spectrum. 
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Figure 2. Energy Level Diagram for Vibrational and Rotationfll States of a Diatomic 
Molecule. (Eisberg and Resnick, 1985) 

In addition to rotational and vibrational states, molecules also have electronic 

states. Figure 3 shows the moleculflr energy versus the intemuclear separation fo r two 

electronic states 
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Figure 3. The MolcculOlr Energy versus lnlcrnuclC;Jr Srrnrali!lll Curves for two Electronic 
St,,(cs. (Eisbog and Resnick. 1985) 

As disl;u.%cU ahnv~, for ([lell electronic slnle ,...-, there arc l1l;my corresponding 

vibra tional statc~ E. amI fUf each vihration .. 1 slate there ~rc IIHllly ,;r>rresrondin g rotational 

slnles E,. Tile 101[11 tllolecular CIlCTllY <'::111 be wrilicil ns 



and the energy in all three modes may change in an electronic transition so that the total 

change in energy is given by 

M=M .• (E:-E: ) . (E:-l) (7) 

where M, is the electronic energy difference. In general many transitions are allowed 

and a complex spectrum of lines is produced. Figure 4 shows the transitions leading 10 

the formalion of an electronic band . 

. ::11'--- 1-,-1 - I IlTlli 1-

I! I II IIi:· 
I ! I I' , IU j 

___ 1-1 ++ 1 -++1 +-14"-*111: I-I~ " 

Figure 4. Energy Level diagram and Transitions Leading to the Formation of an 
Electronic Band. (Eisberg and Resnick., 1985). 



3. Measuring Temperatures in the Thermusphere 

As discussed above une of the priorities of ISAAC is to obtain temperature 

profiles of the thernlOsphere. The region of the atmosphere from 110-140 km altitude is 

very Lmportant for the temperature profile since there is a steep gradient in this region. 

Thermospherie temperature profiles are usually derived by models such as the \1a~s 

Spectrometer Incoherent Scatter or MSIS (Hedin. 1987) rather than from direct 

measurements. Barth and Epavier (1993) presented a method to measure temperatures in 

the lower thermosphere. Barth and Epavier use the rotational structure of the nitric oxide 

Ganlflla bands that are excited in the day airglow. This tcchnique involves comparison of 

synthetic spectra with observed spectra.. 

The nitric oxide Gamma hands are produced in the transitions bet',veen the ground 

x'n state and thl: excitl:d AIL- state. Each individual Gamma band corresponds to 

transitions bem'een a vibrational level u' in the excited electronic state A"L' and a 

vibrational level u" in the ground electronic state xln. Each band consists of hundreds of 

rotational lines in t',velve branches. The details of the rotational structure depend on the 

li ne strcngths of the rotational transitions in absorption and emission and on the 

population of the rotationallcvcls ofthl: ground statl: nitric oxide molecules. The latter is 

temperature dependl:nt 

8arth and Epavier (\993) developed an algorithm to calculate thl: ~ynthetic 

spectra of the NO Gamma bands. figure 5 shows thl: rotational strucrure of the (l.l) 

Gamma band for the temperatures of 280 K and 710 K. This figure clearly shows a 

temperature dependence on the rotational structure. 

Figure 6 shows plots of four spectra observed between the al titudes 110-140 km. 

Thc calculated spectra. derived from this analysis are overplotted with the experimental 

data. In all cases the fit is genera!!y good. The temperature data th:!t were dtrived from 

rocket spectra by llarth and Epavier have \)cen ploltl:d for comparison with the 

temperatures calculated by the MSIS. Figure 7 shows the results where the crosse~ 

represcnt thl: data from the rocket experiments and tht solid line is the temperature profile 

\0 



detennined by the MSIS model. The size of each cross indicates the uncertainty in the 

temperature measurements. Thus, it is possible to infer the thennospheric temperatures 

using the rotational structure of the (I , I ) Gamma bands of the nitric oxide. ISAAC v.ill 

enable us to perfonn such measurements continuously from a spaceborn platform . 

, 1 Gommo Bond 

,<, 

NO 1, Gemma Bond 

Figure 5. Rotational Structure of the (1,1) NO Gamma Band for 280 K and 710 K. (Barth 
and Epavier, 1993). 
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Figure 6. Comparison of synthetic and observed spectra for the (1,1) NO Gamma Band at 
four Altitudes: 110 km (280 K), 120 Km (390 K), 130 Km (570 K) and 140 Km (700 K). 
(Barth and Epavier, 1993). 
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T~mpeto\u'~ (IC) 

Figure 7. Comparison of Temperatures Detennined from the Rocket Observation 
(Crosses) and the MSIS Model (Solid Line). (Barth and Epavier. 1993). 

4. Pbotochemistry Of The Ionosphere 

The ionosphere is the region of the upper atmosphere that is partially ionized. 

The ionosphere extends from 50 km 10 1000 km altitude and reflects radio waves of 

frequencies up to several MHz. The charged particles are produced in part by the 

ionization of neutral gases by the solar ultraviolet and x-radiation. The ionosphere is not 

only composed of charged particles. Neutral particles are also present and in much 

greater numbers than the ions and electrons. A list of the important gases in the 

aunosphere and their respective ionization potc:ntials is given in Table 1 

13 



Gas Ionization Potential (eV) 

1\"2 1) ,58 I 
0, 12,1 

0 13.61 

NO 9,25 I 
H, 24,58 I 

lJj9 

lable I. Gases ot the Atmosphere and theIr IOrllLatlon Potentials 

The variation of electron density with altitUl.k led to the subdivision of the 

ionosphere into four regions. the D. E, FI and F2 region~. Figure 8 show~ the electron 

density a~ a function of altitude. The regions of the ionosphere are the following: 

I. The D-region extends from 50 kIn to 90 kIn altitude. The ekctron den~ities in this 

region are about 101_10' cm-l . The D-rcgion disappears at night due 10 the 

absence of the incident radiation. The principal ions in the D-region are the 

'water cluster' ion H)O- - H,D, the metal ions Mg+ and Na-, and NO-

2. r he E-region extends from 90 kIn to 140 kIn altitude. During daytime the 

maximum electron den~ity is about 10) cm,1 at an altitude of about 100 kIn. The 

E- layer usually disappears during the night. The dominant ions in the E-region 

are the 0/ and the NO'. 

J. rhe FI-region which extends from 140 kIn to 200 kIn altitude. It occurs only 

during daytime and has electron density lOl cm-l , The Fl -region is mo~t 

pronounced during summer and high solar activity levels, The dominant ions in 

this region are the 0-, NO+ and 0,-, 

4 The F2-region extends above 200 kIn al titude and has the highest electron 

densities that occur in the ionosphere, The electron density there is about 2 x 106 

cnt" and is greater during daytime. The important ions in the F2-layer are the 0 ' 

with some N' , Above the F2-layer is the topside ionosphere which is highly 

14 



ionized and merges inl:) radialiol! bel(s at 2000-3000 km a ltitude. The F I and the 

F2- lnyers form Ihe f.-reg ion whidl is the Illosi important of Ihe ionospheric 

regions since it is responsibic for high freqll c llCY wave reflection and 

Over- the-l!ori :w ll i{aJ,lr 

Figure !:!. Electron Density as Function of Altitude in the [ono~ph('"rl" . (Heinz and Olsen, 
1994). 

15 



As mentioned above. the po~itivl: ions ~O' and 0 /' are the dominants ion~ in the 

E and Fl-rl:gions while thl: f2-region is almost exclusively compo~ed of 0 ' . Thl: 

production of ions is balanced by losses due to chemical rl:aetions a..'ld transport out of the 

region (diffusion). Diffusion is more important at high al titudes whik at low altitudes 

losses are mostly caused by chemical rl:actions. Each of the ions obeys the Mass 

Continuity Equation. I!l one dimension this equation can be written as 

a;,==P-Ln-~ (8) 

where n is the number density of the ion, P is chemical production, L is the chemical loss 

and ¢I is the vertical flux. 

There arl: several models that calculate the density of ions in the ionosphere. One 

of thl:sl: is the Photochemical Model of the Ionosphere developed by Cleary (1986) , TIlis 

model allows the dl:tl:rmination oflhe densities ofNO-. 0 1', N1-, N+ and 0', This model 

requires the following inputs 

I The density profiles of N1• OJ and O. These profiles are currently provided by 

:..1S1S 

2. rile temperaturl: profile of the ionosphere. This is currently provided by MSIS 

Thl: solar flu:" spectrum The Hinteregger (1974) model currently provides the 

spectrum 

4 The photoelectron flux. Currently this is provided by a model developed by 

Anderson and Meier (1982) 

Photol:kctrons are generated in the following way. When a photon is absorbed by 

an atom it may ionize it if it has enl:rgy rugher than the ionization potential of the atom 

(see Table I). 'lben, an ion and an electron are produced. The amount of photon energy 

in excess of the atoms ionization potential is dividl:d between the ion and the electron 

The electron, having kss mass, takes most of this I:xcess energy. This energetic electron 

16 



is cai led a photoelectron, For example, consider the photoionization of an 0 atom Jf the: 

rhOlOn has energy above 13.61 eV then the following occurs 

where c· is a photock<.:tron 

The ISAAC spectrograph will contribute to lht: inputs required for the 

photochemical model of the ionosphere by measuring the density profiles ofN" 0, and 0 

:md the temperature profile of tr.c ionosphere . The model can then be constrained to 

predict the densities of ;,\0' and 0) ' which are the dominant ions in the important E and 

F I-regions. Thus, the second major objective of the ISAAC spectrograph will be to help 

dctcmlinc ionospheric densities. 

B. ARGOS SATELLITE 

The [SAA.C spectrograph will fly un the Advanced Research and Global 

Observation Satellite (ARGOS) which i~ to be launched in 1996. The satellite weighs 

6000 los and has a 44 ft span "cro~s the solar arrays. ARGOS will be placed in its orbit 

by a Delta II 7920-10 launch vehicle. The orbit will be at a relatively low altitude (4 50 

nm) and sun-synchronous with a 98.7° inclination. The l<lunch vehicle is shown in Figurc 

(} and the lalUlch profile is displaycd in Figure 10. 

ARGOS will have eight experiments onboard. These cxperiments inelude several 

subexperimcnts and a tot<ll of 3 1 sensors. Figure II shows the integr<ltcd space vehicle 

and the payload complement The eight experiments on ARGOS are the following : 

ESEX, elY, GlMI, USA, EUVIP, SPADUS, HTSSE II and HlRAAS. ISAAC is a 

subexperiment on the HTRAAS experiment. Below <I brief presentation of e"-Ch onc of 

the eight experiments is given 

17 



Figure 9. 7920-10 Delta II Launch Vehicle. 
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Figure 10. ARGOS P91-1 Launch AscC:nI Profile:. 
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Figure I L ARGOS Space Vehicle and Payload Configuration. 

1. Electric Propulsion Space Experiment (ESEX) 

ESEX is a 26 kW class ammonia arcjet that gi .... e~ a specific impulse of 800 

seconds (vacuum) at a thrust le .... el of 2 W. This arcjet will demonstrate electric 

propulsion technology n::quired for low cost access to space It will operate for ten 

15-minute firings while collecting performance data. 

2. Unconventional Stellar Aspect (USA) 

The USA experiment has two counter detector~. These detectors will measure 

x-rays in the 1- 15 KeV range. liSA will be used to study astronomical x-rays. The 
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information obtained will de termine whdher these x-rays can be l1sed for positional 

ir.formation of au;onomous military space sys:ems_ Finally, USA will conduct the first 

x-ray tomography survey of the mmosphere oflhc earth 

3. Space Oust Experiment (SPADLJS) 

['his experiment will measure the mass. velocity, flux, charge and trajectory of 

dust particles that all: 2-200 ~lm in size. In addition, SPADUS wil l measure :he radiation 

cnviroru!lml in the region of 0.2-20 MeV. The collection of the dust panicles will be 

carried oul using two parallel grids of 32 polyvinylidene fluoride sensors oriented in the 

velocity vector din:ction. The information acquirt:d from the dust particlt:s will provide 

mcasun:men!s of the orbital debris at an altitude of 450 run and will allow spatial 

mapping of the dust distribution.lhe radiation measurements will aid to the design of 

electronics and shielding that will provide resistance to this environment. 

4. Critical Ionization Velocity (Cly) 

[his experiment is a follow-on to a previous elV experiment and will provide the 

essential irloonation required to improve our ability to measure rocket and spacecraft 

pluml:s. elV will rekase xenon and carbon dioxide to observe the ioni711tion processes 

caused in the upper atmosphere by molecular collisions. Carbon dioxide will bl: released 

to study its reaction with the atmosphere. erv will ohserve Xenon ion formation. optical 

signatufl: and spatial distribution. 

5. Extreme Ultraviolet Imaging Photometer (EUVIP) 

['hc EUVIP photometer is mounted in the space vehicle with sa circular 

field-of-view. EUVIP will measure stellar and atmospheric spectra at three wavelengths: 

looA. J04A and &.14A. This experiment will study the ionosphere' s Fl and f2 regions, 

the aurora! oval and thl: ElN cekstial source 

6. High Tcmperature Superconductivity Space Experiment (HTSSE II) 

This experiment v.ill tl:st thl: High Temperature Superconductivity (HTS) 

technology. The HTS teehnolugy is digital and will provide ten times more speed than 

silicon or gallium arsenide technology 
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7. Global Imaging Monitor of the Ionosphere (GIMI) 

This experiml;.':nt will observl;.': the airglow and aurora along with HIR.'\AS and 

ISAAC. GIMI will obtain ultraviolet images to monitor the electron density and the 

ionospheric O' in the upper atmosphere. The eXlXriment's objectives include: 

observation of NO nightglow through which measurements of atomic nitrogen in 

the middle atmo~phl;.':~ may be inferred. 

ohservation of the occultation of bright UV stars by the atmosphere which will 

demonstrate the rcmote scnsing of the neutral atmosphere (0" NJ at night 

wide-field imaging of celestial sources (stars, nebulae and diffuse background) in 

the nO-II ooA and 131 0-1600A wavdength ranges. 

GIMI will obtain data of the ultraviolet emissions in the 750- 1050A and 

1310-1 liooA wavelength ranges. In particular, the experiment will allow ohservation of 

the S34A O' dayglow cmission and the 1356A 0 nightglow emission. The Sl;.':nsors 

required are placed on a two axis gimbal allowing observation of celestial targets and 

carth ionospheric emissions. 

8. High Resolution Airglow and Auroral Spectroscopy (lllRAAS) 

HIRAAS includes three lTV spectrographs. These spectrographs are the High 

Rcsolution Ionospheric Thermospheric Spectrograph (HITS), the Low Resolution 

Airglow/Aurora Spectrograph (LORAAS) and the ISAAC spectrograph. Figure 12 

shows HIRAAS with its three spectrographs. 

LORAAS has a fixed passband from 800-170oA v.ith a 12A resolution. [t is an 

optical copy of the D\-1SP special sensor tor lTV Limb Imaging (SSULJ) and it will 

provide the opportunity for calibration before the first flight of SSULI. HITS gives an 

80A selectable passband in thc soo-lsooA range with resolution less than o.sA ISAAC 

has a spectral range of ISOO-3300A with 2.5A resolution. 
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lilTS and ISAAC ;nc mounted on a scanning pl;JlrOrill tl\at will s(;an the earth's 

limb by performing a .'ilow downw<lrd ~C<ln <It 90 ~eco!Tds, Thi~ SCiln will observe tan!;enl 

altitudes between 0-750 km 

Objectives ofli1e ITlRAI\S illr<lY ofspectrngrilpi1s ,1IC 

Perform a high spt:ctrnl rcso lu1ilm ~t1J(ly or thcrmo,spherie <lnJ iUllospi1crie 

EIJV/FlJV/MUV;lirglow 

Measure verticul profiles or the mf1jor <lnd Illinor ntlllOlspileric constilUents to :;tudy 

pi1otoellcmislry, thcrlllOllynamies, and coupl ing between regions 

Oevelop and test il new techniqnc ror ~-T) ionospheric remllte sensing, 
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Use high resolution spectroscopy to study radiation transfer in optically thick lines 

in the earth's atmo~phere 

Measure the distribution of odd nitrogen in the lower thermosphere to help 

determine densitie~ in the E and Fl regions orlhe iono~phere 

/I.'leasure temperature profiles of the thermosphere 

Use high spectral resolUlion to determine Doppler widths and ~hift~ of precipitating 

Ions III proton auroras 

Study the effects of the buildup of greenhouse gases on the composition and 

thermal structure of the upper atmosphere 

C.ISAAC SPECTROGRAPH 

ISAAC was designed at the Naval Postgraduate School and fabrica ted by 

Research Support In~trurnent s, Inc. It consists of a li8-m Ebert-Fustie spectrograph with 

a moveable rellecting diffraction grating, a 1/8 -m off-a:-.;is parabolic telescope and an 

image intensifier connected to a linear CCD photorJetector. The diffraction grating may 

be rotated to one of four positions through a stepper-driver motOf. A mechanical dust 

cover door is located at the entrance of the telescope. The grating ~tepper motor and the 

dust cover door can be controlled by the RSI Model 480-229 Stepper motor driver. The 

latter driver provides an interface between the spacecraft bus and the ISAAC stcpper 

motor and dust cover door. 

1. Ebert-Fastie Spectrograpb 

ISAAC includes a 1/8-m off-axis parabolic telescope mirror, a 1/8-m Eben mirror 

and the diffraction grating which has 3600 grooves/nun. Figure 13 shows the light path 

in the spectrograph. As the light enters the telescope, it is reflected from the telescope 

mirror and then is focused at a 75 !!m wide 2.52 mm long entrance slit. After that light is 

reflected from the 1/8-m Ebert mirror and is collimated into the retlecting 

plane-diffraction grating. Light is dispersed from the grating back to the Ebert mirror 

which focuses light ooto an image intensifier. 
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Figure 13 . Light Path in the ISAAC Spectrograph. 
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2. Image lntensifier 

The intensifier used is an ITT f 4 l45 Proximity Foc llsed Channel Intensifier Tll~ 

with Dual Microchannel Plate~, It consist~ of a quartz input window, a (e~ium tclluride 

lCsTe) photocathodc. two microc hannel p late~. a phosphor·coated aluminum screen and a 

fiber optic output window. The intensifier ampl ifics and converts ultraviolet photons to 

visible photons at a wavelength near the peak of the CCD photodetector's sensitivity 

Thc UV photons at the cxit focal plane of the spectrograph strike the 

photocathode and produce photoelectrons. These electrons are accelerated to the first 

microchannel plate. A variable 400·2000 V voltage applied across the first plate provides 

morc acceleration to the incoming photoelectrons. For each electron that enters the first 

plate, approximately 300 exit. These electrons enter the second microchannel plate where 

they are again multiplied by 300. Approximately 10l elcctrons exit the second plate for 

each e lectron that enters the first one. These electrons are accelerated onto a 

phosphor-coated aluminum screen through an electric field induced by a voltage of about 

6000 V applied bet\.\'een the microchannel plate and the aluminum screen. Visible 

photons are produced as thc accelerated electrons strike the screen. 

3. CCO Photodetector 

The Hamamatsu 53 904 Linear Imagc Scnsor is a linear array of 1024 p·n junction 

photodiodcs that offer low dark currcnt and high sensitivity. The 1024 photodiodes are 

2.5 mm in height v.ith a 25 !-1m pitch. 'lbey convert the optical energy of incident 

photons into electrical energy which is stored as a (harge in a capacitor. The photodiodes 

arc scnsitive to light in the wavelength range 2oo0-1IoooA. The peak sensitivity is at 

60ooA. For this reason the image intensifier has a phosphor screen that (onverts 

ultraviolet light to visible light. 

rhe charge stored in eaeh photodiode is successively transferred by a shift 

rcgister. This shift rcgister uses three dock signals that are generated by the C4350 

Drivcr/Amplifier Circuit. This circuit provides the timing signals to drive the MOS 



SC!lsor and also provides a ch<lrge amplifier used to read out the video data, 

Sample-und-Hold and End-of-Scan. A IS-pin connector provides the interface for these 

signals (for the pinouts of this connector SIo:C Y1acQuarric, 1994). The Video-Data is the 

integrated . low noise video signal orthe MOS Image Sensor. A Sample-and-!lold is used 

for AiD conversion while the End-of-Scan line signals the ~nd-or-signal from the \10S 

shift register. This thesis devc!ops a GSE that will test the ISAAC spectrograph. The 

G SE, among utller functions, will receive the video data from the [SAAC detector and 

displays them on a graphic screen. 

4. ISAAC Stepper Motor and Dust Cover 

The stepper motor alluws sekction of one of the following lour wavelength 

ranges, determined by MacQuarrie (1994), for the diffraction grating 

Position I 

Position 2 

Position 3 

Position 4 

1817·2290 A 

2203·2656 A 

2609-3026 A 

2898-3290 A 

The in itial position of the grating is idemified by a fiducial signal A cable that 

terminates in a IS -pin female [(0 connector provides an interface between the motor and 

the motor controller. 

rhe mechanical dust cover door is located near the entrance to the telescope. The 

spring- loaded door is cuntrolled by a solenoid and protects the optics of ISAAC during 

launch and during the release of gases by ARGOS A 9-pin UO connector provides the 

interface bet\.veen the door and its controls 

5. Stepper Motor Driver 

The Stepper Motor Driver provides an interface between the spacecraft bus and 

the ISAAC stepper motor and dust cover door. The RS{ ~todel 480-229 Stepper Motor 

Driver has three interfaces 11, 12, and 13. J I is a male 32-pin connector that controb the 
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door position and stepper motor. 12 is a male 15-pin connector that links to the IS-pin 

Output from the stepper motor of ISA.A,.C while 13 is a male 9-pin connector that provides 

the link to the dust cover door of ISAAC. For the pinouts of J L 12, and 13 along with 

more technical data for the ISAAC spectrograph see Macquarrie (1994) 
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III. BACKGROUND FOR SOFI"WARE 

This chapter describes the software package and the data acquisition boards that 

are Clsetl in the ISAAC GSE. The GSE softwan: will be presented in the next chapler 

The program was written in LabVIEW 3.1, puhlished by National Instnunents 

The No'O dala acquisition boards used are the NB-TIO-IO and the l\I3-OIO-32F alse by 

l'\ational instruments. These boards can be used for data acquisition and interface with 

electronic components In the next sections LabVIEW J.l and the boards will he 

described 

A. LAllV[EWJ.t 

Labview is a program dcvdopment application using a graphical programming 

language calkd G to create programs in block diagram form. LabVIEW includes 

libraries of functions and development tools designed for dala acquisition and instrwnent 

control" LabVIEW programs are callcd virtual instruments ( VIs) and they arc analogou~ 

to functions and subroutines from other conventional languagcs. Vis are hierarchical. 

rhey can be uscd as programs or as subprograms ( subVIs ) within othcr programs 

Each VI has thrcc main parts: the front panel, the block diagram and the icon/connector. 

Each VI has !\ovo scparate but related windows. DIe panel window contains the front 

panel of the VI and the iconicolUlcctor. Thc diagram window contains the block diagram. 

I. Tbe Front Panel 

The front panel is thc user intcrface of a VI and it simulates the panel of a 

physical instnum:nt. It contains two I)"pes of objects: controls and indicators. Controls 

and indicators are the interactive input and output tcnninals of a VI. Controls represent 

the instrument's input devices and provide data to the block diagri1I!l of a VI. The 

indicators simulate instrument output devices that display data acquired or generated by 

the block diagram of a VT. 
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Controls and indicators can have several forms, i.e. numeric, Boolean, string and 

table, array and cluster, etc. For instance the numeric form is used for entering and 

displaying numeric quantities willIe the Boolean form is used for entering and displaying 

true/false quantities. 

As an example, Figure 14 illustrates the panel window of a VI that performs the 

Boolean NAND operation between two Boolean numbers. Two Boolean controls, 

control A and control B, and one indicator, QzA NAND B, are used. These controls and 

indicator will be 'wired' together in the block diagram as explained below. 

Generally, through the front panel the user has the ability to enter inputs, observe 

outputs, and control a program, i.e. run and stop it. 

IINDICATOR A NAND EI' 

D 
ICONmOLij • 
ITHIS IS THE FRONT PANEL OF THE VI NAND GATE} 

Figure 14. The Front Panel of the NAND GATE VI. 
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2. The Block Diagram 

The block diagram is the source code of the VI rerrcsmtcd in a pictorial format 

The language used 10 construct thl: block diagram is G. The block diagram is 

program:ned by 'wiring' together objects that send or receive data. \Vires arc paths 

through which data pass between source and destination terminals. The flow of execution 

of a VI is determined by the manner in which objects are 'wired' together on the block 

diagram. Figure 15 displays the block diagram of the sample VI descrihed above. 

Pictured there arc the block diagram rcpn:scntatiuns oflhe two controls and one indicator 

along with the VI that performs the Boolean NAND operation. The l\AND has two input 

terminals and one output. Notice that the block diagram representation of the two 

controls are 'wired' to thc input terminal of the NAND VI and that the output terminal is 

connected to the block diagram representation of the indicator. Now that the block 

diagram is built , thl: program is ready to run. Both the panel and the diagram windows 

contain a palettl: of command buttons and status indicators to control the VI. in Figure 14 

thc two controls were in the same 'on' state so that the NAND operation puts the 

indicator in the 'ofl' state. Every other state combination of the cootrol~ would result in 

the output '00' state 

·Ibe block diagram can also contain objects that are used to control the program 

flow. These objects are called structures. One of the LabView structure~ that control 

program t10w is the Sequence Srructure. It consists of one or morc frames that execute 

sequentially. The Sequence Structure is used when one ha~ parts of a program that must 

be exccuted in a specific order. The part of the diagram rcquired to be executed fir~t is 

put in frame 0 of the Sequence Struclure , the portion to be executed second in frame L 

and so on. Data can be passed to successive sequence strueMe frames using a sequence 

local. Data cannot be passed to a preceding frame. The data leave the strucMe only 

when the last frame is executed. A For Loop is another strucMe that may also be used. 

It has two terminals: the count terminal, N, and the iteration terminal. i. The For Loop 

executes its subdiagram count times. where the count equals the value contained in the 
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count terminal. The count can be set explicitly by 'wiring ' a value to the count terminal. 

rhe count may a lso be set implicitly with aUloindcxing. When an array o f any dimension 

is wired from an external node 10 an inpUllunnel of the loop border. Ihe value of count is 

automatically SCI to the number of e lements in the array. Components of thaI array enter 

Ihe loop one al a time slarting with tile firSI component. Data ( <In be obtained only after 

the diagram within the For /.001' is execuled for the last time. The iteration terminal 

contains the current number of completed iterations: 0 during the first one, I du ring the 

second <lnd so on up to N-t. Finnl ly. thcre :1H ... tWO Illorc 1.:1hVIF.W ~t nlcture.~; the While 

I. oop and th~. Case Slrllclllre . These structures :1re nOI used ill this work but thcy are 

analogous to the While and Case statements of other languages. 

lS!IRa.~ 
H - --I llNDICATOA A NAND ij 

ID---m 
m:f!_-_J 

THtS StMPLE EXAMPlE SHOWS THE BLOCK DIAGRAM OF THE VI 
NAND GATE. NOTE THE TWO INPUTS OF THE VI. THEY ARE WIRED 
TO THE BLOCK DIAGRAM REPRESENTATKJNS OF THE TWO CONTROLS 
THE OUTPUT IS THE INDICATOR 'NHICH CONTAINS THE RESULTS. 

Fi gure 15 . The Block Giagram of the NAND GATE VI. 

3, The Icon/Connector 

[n LabVI EW a VI ean be used as a subVI. A subVI is :1nalogous to a subroutine 

in other programming languages. When this subVI is called .. the controls receive data and 
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the indicators rerum data to the 'calling' VI. The connector is a set of terminals 

corresponding to specific conrrols and indicators of the subVL This means thaI data can 

be received at the connector'S input tenninals or sent out at the respective output 

terminals. LabVIEW gives the ability to select from a list of connector styles. The icon 

is simply a representation of the VI in the block diagram of another VI. In other words 

the icon represents the call to of a particular VI. In Figw-e 16 the icon and the connector 

for the sample VI is shown. The two controls are connected to the two left terminals of 

the connector while the indicator is cOMected to the right one. Should this VT, NAND 

GATE, be used as a subVI, the two controls would receive and the indicator would return 

dau. 

For mOTC infonnation about LahVIEW and the methods used the reader may refer 

to the LabVIEW Tutorial for MocinJosh,1994 and to the LabVlEW User Manual for 

Macintosh. 1994. 

cotmlOLA =ED-,,"D GATE INDICATOR ANAND B 
CONTroLS 

NAND OPERATION 

Figure 16. The Icon/Connector of the NAND GATE VI. 

B. NB-DIO-J2F 110 INTERFACE 

The NB-DlO-32F is a high speed 32-bit parallel digital 110 interface board for 

Macintosh computer and is supponed by the National Instruments LabVlEW software 
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systems. Specilicall y, the Labdriver VI library fm Labview inc ludes Vis thaI support the 

board 

The 50-pin assignment for the NB-010-32F digital connector is shown in Table 2 

The connector has 32 digital lines, 2 request lines, 2 acknowledge lines, 3 extra digital 

inputs <md 3 extra digital outputs . The 32 lines of digital I/O of the NB-DJO-.l2F 'Ire 

further divided into four 8-bit ports: Port 1\, Port 8, Port C and Port O. Tbese four pons 

are grouped into two groups. Ports A and B comprise group 1 while ports C and 0 form 

group 2. These groups can operate in h.mdshaking mode; that is, an input port latches the 

data at the input when a handshake signal is received and generates a handshake pulse 

when an output port is written to by the computer. The request and acknowledge lines of 

groups I and 2 are REQ I and ACK 1 and REQ 2 and ACK 2, respective ly. 

This board will be used to acquire data from the ISAAC detector. Recall that 

thesc data arc transferred in a serial format on a single wire, The data are acquired by the 

NO-D IO-32F board using line 0 of port A, 010AO ( pin 37 ). The input handshaking 

req uest line for group I, REQ I (pin 33 ), is given a gated clock of200 KHz 

As will be explained below, the NB-DJO-32F is configured for handshaking so 

that data is acquire when thc signal applied in REQ I shows a rising edge. The clock 

freq uency of 200 KHz was generated by the NB -TIO-IO which will be prescntcd in the 

following section 

The main purposc of the GSE is to acquire serial data from the ISAAC dete(; tor 

through the NB-DlO-32F board. Once the data are acquired, a serial-to-parallel 

conversion is performed. In particular, each group of 12 bits acquired serially forms a 

number. This number represents the intensity received from one photodiode of the 

ISAA.C detector. There are a total of 12288 bits that are (,;onverted to form 1024 12·bit 

numbers. These numbers represent a single spectrum from ISAAC. Once the spectrum is 

acquired it is displayed on a graphic screen. 
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lfD~ 2 101004 

) DlOD] 4 DlODO 

5 0[006 6 DlOD? 

7 0[OD2 8 DIDOS 

9 olOes [0010(7 

II 0 10C3 12 DIOCl 

I ) oroe2 14 DIOCD 

15 010(6 16 0I0C4 

17 GND 18 ACK2 

19 GND 20 rN2 

2 1 GND 22 DUT2 

2) GND 24 REQ2 

25 IN) 260un 

27 ACK I 28 GND 

29 IN I 30 GND , 

)1 OlJr l 32 GND 

)) REQI 34 GND 

)5 D10A4 36 D1OA6 

)7 OlOAD 38 DlOAl 

)9 0I0Al 40 DIOA3 

4 1 DIDA? 42 DIOA5 

43 DlOB5 44 01082 

45 OlOB7 46 01086 

47 01080 48 Dl083 

49 BIOB4 50 D[OB I 

Table 2. Pin Assignments lor the NB-DrO-32F Board. 
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C. NO-TlO-tO 1/0 INTERFACE 

The NB-TTO-IO is a timing ami digital I/O interface for Macintosh computers. It 

use~ two Am 9513A STC chips for the timing interface. This board can perfonn a wide 

range of timing and digital operations. For the purpose of this thesis it was used to 

generate several timing signals. The 50 pin connector assignment for the NB-TIO-IO is 

shown in Table 3 

There arc 16 digital lines and 30 connections for timing [10 signab. The 16 

digital lines are further divided into two 8-bit ports: Port A and Port B. The 30 timing 

signals include the GATE, SOURCE and OUT signals for the Am9513A counters I 

through 10 with the exception of counters 5 and 10 which do not have a SOURCE 

signal. FOUT I and FOUT 2, pins 29 and 30 respectively, are the frequency outputs of 

the two Am 9513A devices. As mentioned above each counter has three pinouts 

SOURCE, GATE and OUT. The SOURCE and GATE signals can be directly applierl to 

the counters from the I/O connector so that the counters may be programmed for several 

tasks. When a counkr is configured for square wave generation. ~everal parameters, like 

the duration of the positive and negative pulse of the wave, can be specified 

The 'count' of a given counter increments with each period of a selected timebase. 

A signal applied at the SOURCE input can be used as the timehase of any of the 

counter/timers and by the frequcncy division output FOUT. Furthermore, the Am9513A 

generates five internal timebase clocks, from the clock signal supplied by the N8-TIO-1 O. 

which may be used as counting sources. 

The GATE input may be used to gate counting operations. When a counter is 

configured for no gating, the counter starts at the first, rising or falling edge (depending 

on thc configuration) of the source/timebase. Once one of the gating modes is enabled. 

the GATE signal takes effect at the next sOUIce/timebase edge and can he used to start or 

stop counter operation 



Table 3. Pin Assignment fo r the NB-TIO-\O Board 
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Th e- program of this the-sis makes extensive use of the counters of the NB·TIO·10 

As will be explained in the following chapter, seven signals are generated for the purpose 

of obtaining four synchronized signals. The data acquisition box of the ISAAC 

spectrograph and the GSE communicate with these signals 

38 



IV. SOFTWARE DESIGN 

This chapter details the ISAAC data acquisition box and presents the GSE 

program. ACQI./IR.£ SPECTRA \Vith the use of this program, the ISAAC data 

acquisition box and the ~B -DIO-32F - NB-TIO-IO boards exchange infomlatiun . The 

combination of the Macintosh computer, the ),T8 -DlO_32F, and the NB-TIO- IO boards 

for the rest of this document will be referred to as the GSE. This chapler also describes 

how a test interface was built. Finally, lhis chapter explains how the GSE interface box 

will be constructed in the future. This box will connect the ISAAC data acquisition box 

and the GSE interface 

A.ISAAC DATA ACQ(J(SITIOI"I BOX 

Figure 17 shows a schematic representation of the ISAAC data acquisition box 

This box has five connectors: 1301, 1302, 1303, nl0, 1311. nO] is a 50-pin connector 

to the ARGOS Central Electronic (CE) Box. The pinouts for this connector are shown in 

r abk 4. n02 is a IS-pin connector that provides power to the ISAAC detector circuit 

and provides a connector to the thermal sensors on ISAAC. The pinouts for this 

connector arc ~ho\\'Il in Table 5. n03 is a IS-pin connector that provides timing signals 

to the ISAAC detector circuit. The pinouts for this connector are shown in Table 6. 1310 

is a 37-pin connector to the motor controller. The pinouts for this connector are shown in 

Table 7. nil is a 9-pin connector to the high voltage power supply. The pinouts for this 

connector are shown in Table 8. Figure 17 shows a schematic presentation of how the 

five COllnectors interface the ISSAC data acquisition box, the ISAAC spectrograph, the 

ARGOS CE box, the stepper motor controlIer and the voltage supply. This figure also 

shows the OSE intcrfacc which connects to 1301 in lieu of tht: ARGOS CE box. As 

explained below, the GSE interface serves as a simulation of the ARGOS CE box 

The ISAAC data acquisition box receives the analog data from the ISAAC 

detector board. Recall that ISAAC has a 1024 photodiode array detector. The analog 
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data contain the intt:nsity detected by thest: photodiodes. The data acquisition box­

pt:rforms an analog-to-digital conversion. The digital data are transmitted in a sl:rial 

format on the line IVID-DAT A (see Table 4). These data are transmittt:d at a rate of 200 

KHz. A single timing pulse_IVID-STB determines the beginning or each 1024*12 bit 

word framt:. During one period of IV ID-STB 12288 bits are passed to the ARGOS CE 

box- from the ISAAC data at.:quisition box. 

VOLTAGE SUPPLY 

ARGOSCEBOX 

ISAAC DAT." ACQUISITION BOX 
ISAAC 

STEPPER MOTOR CONTROLLER I 

figure \ 1 Scht:matic Diagram showing the Connections between (he ISAAC Data 
Acquisition Box, the ISAAC Spectrograph, the ARGOS CE Box, the Power Supply and 
the Stepper Motor Controller. 
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L ' I 26 ICTL-STB -,. ([''-IPUT) 

2 27 ICTL-STB-(L'IPUT) 

1 
3 IGMlR-PWR(INPUT) 28 ITLM-DATA.,.(OUTPUT) 

l 4 IGMTR-RET(lNPUT) 29 fTlM-DATA-(OUTPUT) 

1 5 THVPS-PWR(INPUT) 30 IRESET-STS .... (INPUT) 

6 IHVPS -RET(INPUT) .11 lRESET -STB-(INP UT) 

1 
7 IDET-P\\'R(INPUT) 32 IVID-DATA+(OUTPUT) 

~ 33 IVID-DATA-(OUTPUT) N ICTL-DATA .... (fNPUT) 34 

I OIJCTi,.DA TA-(DiPUT) 35 

1 
11 ITLM-STS .... (OUTPUT) 36 IGMTR-PWR(INPUT) 

12 ITLM-STB-(OUTPUT) 37 IGMTR-RET(INPUT) 

IJ 38 IHVPS-PWR(INPUT) 

I \4 IVID-START+(TNPUT) 39 IHVPS-RET(INPUT) 

I 15 IVID-START-(INPUT) 40 IDET-PWR(INPUT) 

16 IVID-STB-,.(fNPUT) 41 IDET-PWR-RET(INPUT) 

17 IVID-STB-(TNPUT) 42 PULSE-WIDTH+(INPUT) 

IS 43 PULSE.WlDTH-(INPUT) 

19 44 I lTLM-CLK-r(OUTPUT) 

I2oru:iMTR-PWR(INPIJT) 45 ITLM-CLK-(OUTPUT) 

L 
21 IGMTR-RET(lNPVT) 46 \VlD-EOS+(OUTPUT) 

I 22 lHVPS-PWR(INPUT) 47 !VID-EOS-(OUTPUT) 

n ~RET(INPljT) 48 GND(OUTPU-f) -

1 
24 JDET-PWR(INPUn 49 IVID-CLK-..(INPUT) 

1-
25 50 IVID-CLK-(fNPUT) 

Table 4. Pm ASSignment of the 1301 COllllcctor ofthc ISAAC Data Acqulsl1Ion Box. 
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Tablc 5. Pin Assignment of the 1302 Connector of the ISAAC Data Acquisition Box. 

Table 6. Pin Assignment of the 1303 Connector of the ISAAC Data Acquisition Box. 
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Table 7. Pin Assignment of the J310 Connector of the ISAAC Data Acquisition Box. 
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Table 8. Pin Assignment of the j) II Connector of the ISAAC Data Acquisition Box 

In order for the data acquisition box to correctly synchronize the transmission of 

the data. it needs several timing signals from the ARGOS CE box. These signals are 

1 IVJD-START. lltis is a positive pulse sent by the ARGOS CE box once per 
second that initiates transmission. 

2. IVJD-STB. This is a negative pulse sent by the ARGOS CE box for every 
ISAAC spectrum, 16 per second. 

3. IVJD-CLK. This is a 200 KHz clock corresponding 10 the serial data output 
rate. This signal is sent by the ARGOS CE box and is the master clock 
controlling the whole operation. 

The timing relationship between these three clocks is shown in Figure 18. 

This project develops a GSE to simulate the ARGOS CE box. The GSE includes 

a software program that generates the timing signals on the NB-TI O-IO board, acquires 

the data on the NB-D10-32F board with handshaking and perfonns a serial-to-parallel 

conversion. The interface of the NB-TIO-lO and the NB-D10-32F boards simulates the 

CE box connector. 
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~L __________ _ 

lVlD-CLK 

(200KHz) 

lVD-STB 

(16Hz) 

/V/D-START 

(1HZ) 

The/ailing edge 0/ /VID-STB contains/our periods 0/ /VID-CI.K 

Figure 18 . Timing Diagram for IVID-ClK. IVID-STB and IVID-START 

U. ACQlJIRE SPECTRA PROGKMI 

As mentioned in Chapter III. the ACQUIRE SPECTRA program was "''Titten using 

LabVIEW 3.1 by ;""ational Instruments. This program is comprised of tive frames of a 

sequcnce structure that are executed one after the other in numeri<:al order. [n order to 

gcnerate the three timing signals described above, the program configures four additional 

signals for internal use. One is the handshakc signal for the NB-D10 -32 and the rest help 

in the generation of the others. These clocks, along with al l the other imponant details of 

the program arc. discussed below. Thl;; program also configures pon A of the 

NB-DlO-32F board as an input pon. This port wi!! receivl;; the signallVlD-DATA from 

the ISAAC data acquisition box. Since thl;; data are in a serial fonnat, [VID-DATA is 

connected to the least signitkant bit of this port, pin DIOAO Fina!!y, the program strips 

out the 12288 serial bit~ and fonns I024-bit words. 
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1. Generation Of Cloeks 

This subsection describes frames 1,2 and 3 of (he ACQUIRE SPECTRA block 

diagram where the timing signals are generated. These frames are sho\\11. respectively in 

Figures 19, 20 and 21. A summary of these signals is given in Table 9 

Most of these signals are generated by the \iB-TIO-1O board in the subVI TIO 

CLOCK which is found in frame I of the ACQUIRE SPECTRA block diagram . In order 

to synchronize the timing between ISAAC data acquisition operat ion and the GSE, a 

spcrial gating technique is used in frames 2 and 3 as described below 

SIGNAL SOURCE 

IVID-TIM Intemal(IMHz) 

rVID-CLK li VID-TIM 

IV\D-STll liVID-eLK 

JVID-MASK IVID-CLK 

tVID-GATE IVto-\1ASK 

JVIO-REQ IV\D-TIM 

JVlO-ST ART(TEST) IVIO-CLK 

GATE 

None 

None 

LineAO 

Line AO 

None 

IV\D-GATE 

LineAO 

IDESCRIPTIO)l 

I MHz square wave that 
serves as the master dock 

200 KH;t square wave used 
by the ISAAC data 
acquisition box 

16 Hz square wave used by 
the ISAAC data acquisition 
box 

16 Hz square wave used as 
the timebase of 
JV IO-GATE 

Pulse that is used as the 
gate of IV\D-REQ 

200 KH;t square wave that 

lis the handshaking signal of 
the N8-DIO-32F board 

I Hz signal that is used by 
the ISAAC data acquisition 
box. Since this signal is not 
required to operate for the 
purpose of the GSE, it is 
tranfonned as IVID-TEST 
to test the data acquisition 

Table 9. Sununary of the Signals Generated by the ACQUIRE SPECTRA Program 
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Figure 19. Frame 1 of the ACQUIRE SPECTRA Program. 

47 



~ ~ ~ '" 

~t 1 
~ 

Figure 20. Frame 2 of the ACQUIRE SPECTJU Program. 
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r.1 r.1 Co' . 

Figure 21 . Frame 3 of the ACQUIRE SPECTRA Program. 
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The subVI TlO CLOCKS consists of a sequence structure of nine frames Framc 0 

sets line 0 of port A(AO) of the NB·T10·10 to a digital low state. This line is the gate of 

lVJD-STB, IVID·MAS K and IVID-START(TESI). Frame 0 of TID CLOCKS block 

diagram is shown in Figure 22. 

The signal IVID-TIM is generated in frame 1 of TiO CLOCKS hlock diagram 

which is shown in Figure 23. This signal has a frequency of IMHz and is generated on 

the FOUT I counter. The signal IVID-CLK has a frequency of200 KHz and is generated 

in frame 2 the of TID Cl.DCKS block diagram which is sho\'o'l"J in Figure 24. IVID-CLK 

is generated on counter FOUT 2 and uses lVID-TIM for its timebase. T'lTD-ClK is one 

of the signab used by the ISAAC dala acquisition box. The signal !VID-SIB is 

generated in frame 3 of TlO CLOCKS hlock diagram which is shown in Figure 25. 

IVID · STB is generated on Counter 2. It has l'lID-ClK for timebase and line AO for 

gate with high level gating mode. The gating mode implies that the counter counts when 

the gate is high hut not when it is low. IVID-STB is one of the signals used by the 

ISAAC data acquisition hox. 

Recall that the signal IVID-OATA carries the data from the ISAAC data 

acquisition box 10 the ARGOS CE box. The data transmission starts on the thirty-first 

rising edge of IVID·ClK after IVID-STB shows a leading edge. The 12288 hits of 

information are followed by a short pause which is tollowed by 12288 more bits, and so 

on. The form of JVID-OATA, in connection with the I'lID-CLK, is shown in Figure 26 

The boxes represent either digital low or high states. 

Since data are obtained through handshaking from the NB-DlO-32F, a signal 

applied at the REO I of this board is required. This signal will control the data 

acquisition rate. This signal, the J'lID-REO, has a frequency of 200 KHz and it is 

synchronized with· IVID-OA IA. Two other signals, the TVID-rvtASK and JVTO-GATE. 

arc used to generate IV!o-REO 
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Figure 22. Frame 0 of the SubVI TID CLOCKS. 
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Figure 23. Frame 1 of the SubVI TIOCLOCKS. 
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Figure 24. Frame 2 of the SubVI TIO CLOCKS 
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Figure 25. Frame 3 of the SubVI TID CLOCKS. 
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The boxes represent binary numbers, 0 or J 

fVJD-DATA (200 KH;) 

lVlD-CLK (200 KHz) 

This is the thirty-Jirst ri!>"ing edge after 

L~"· .... <m~" 
Figure 26. Timing Diagram for JVID-CLK and IVID-DATA 
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Thc 16 H7. clock IVID·MASK is generated in frame 4 of the no CLOCKS block 

die.gram which is shov.'Il in Figure 27 . IYID· MASK is generated on Counter 3. It uses 

IYID·CLK for its timebase and lint: AO as a gatt: with high kvd g<lting mode. 

IYID-MA SK is low for 30 timebase periods and high for 12470 periods. Tht: ~ignal 

[VID-GAT E is generated in frame 5 of the TIO CLOCKS" block diagram which is shov,n 

in Figure 28. IYID·GATE is genef<lted on Counter 4 and uscs IYID-MASK for its 

timebase. IYID-GATE is configured fo r pulse mode with no gating. This pulse is thc 

gate of IY ID-REO. In order to properly synchronize data acquisition. IYID-REO must 

start pulsing at the thirty-first rising edge of IYID-CLK after IYID-STB shows \cading 

edge. In order to initiate data acquisition, the counter for IYID-GATE is instructt:d to 

count four leading edges from IYID-MASK. At the tourth leading edge it gOt:s high. 

This enables IY ID-REQ which in tum instructs the NB·D10·32F board to begin 

acquiring thc data at the first data bittransmitled by the ISAAC data acquisition box . In 

order to give the computer sufficicnt time to configure all thcse cOlmters, IY LO-GAlE is 

nOI st:1 10 operate unti l frames 2 and 3 of the ACQUIRED SPECTRA diagram are 

executed. Thcsc framcs wt:rt: shown in Figures 20 and 21 respectively. In trame 2 

IYLO-GATE is set to an imtiallow state. In the next frame IYID-GATE is di rccted to 

commcnct: its operation as described above. Therefore, aftcr framc 3 of the ACQUIRED 

SPECTRA block diagram executes, IYID-MASK and IYLO·GATE are performing as 

shov.'Il in Figure 29. Note thai the transition of IYTD-GATE trom high to low is not 

synchronized with any clock but the transition from low to high is synchronized with 

IYID-MASK and IYID·DATA. In Figure 29 the duty cycle of IYTD·MASK has becn 

modified for clarity. This figure also shows when IYlD·REQ is enablcd. 
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Figure 27. Frame 4 oftbe SubVI TID CLOCKS. 
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Figure 28. Frame 5 of the SubVI TID CLOCKS. 
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I rrrrnnrun I 
IVlD-i'tASK (16 Ilz) 

: : : : : : 

/V/D-GATE 

IL-~~~_ 
i Transilinn /0 high ~·tale occurs at the 

fifth leading edge of IVID-MASK 

The counter is set to low state after the lV1D-GATE is !iet 10 low stale 

in Frame2 of ACQUIRE SPECTRA 

block Jiagram 

IVID-REQ 

C><IXIXIXI 
the filled squares indicate that 

IVID-REQ is enabled (there are 

12500 pu/us per square) 

~-------------~ 
Figure 29. Timing Diagram for IVlD-M.A.SK. [VID-GATE and ['lID-REO 

The 200 KHz clock [VID·REQ is configured in frame 6 of the subVI TID 

CLUCKS which is shown in Figure 30. [VlO-REO is generated on Counter 7 and uses 
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IVlO-TllI-l fOf a timebasl: and [VID-GATE for its gate. The initial state of [VID-REO is 

low for a duration of one timebase period followed by the high state that counts four 

timebase periods. Figure 31 displays the timing betwl:en [VID-REO, [VID-GATE and 

overall time base. i\s described above, when IVID-GATE undergoes a leading edge 

transition, [VID-REO begins counting rhis clock. [VID-REQ. is used for the 

handshaking of the NB -OIO-32F board. During each low-to-high transition the 

NB-DIO-31f will acquire one bit of data. This procedure is explained below along with 

the configuration and the operation of the digital VO interface. 

fhe last signal is thl: [VlO-STARI(TEST) which is generated in frame 7 

of [f0 CLOCKS hlock diagram which is shol!>'1l in Figure 32. Although this signal is 

required by the ISAAC data acquisition box, it is Ilot required for our testing. Therefore, 

it is fl:placed by the [VID·TEST which is a clock of variable frcquency. IVID-TEST 

simulatcs [VID-DATA giving the opportunity tu test Ihl: ACQUIRE SPECTRA program 

[VID-TEST is generated on Counter 9. It USI:S [VID-CLK for a timebase and line AD for 

its gate with high level gating mode. 

After all these signals are either configured or set tu run, the last frame of 

TID-CLOCKS, frame 9 shown in Figure 33, sets line AD in a digital high state. 111is 

initiates the operation of IVID-STll, rVID-/">.1ASK and IVID-TEST. Figure 34 shows 

these three signals in connection with their gate. line AD, and their timebase, IVID-CLK. 

[n this figure IVID-TEST is shov.n to have 1U0 KH:<: frequency. 

With the execution of the last frame of subVI TID CLOCKS, frame 1 of 

ACQUIRE SPECTRA block diagram is completed. Framl:s 2 and 3 follow. The 

operation of those two frames was described above in the generation of the signal 

lVID-GATE 

Frames 1,2 and 3 of ACQUIRE SPECTRA bluck diagram have so far been 

analyzed. As soon as frame 3 is executed, the counters count in the mode described 

above. Relow, the configuration of the NB-0I0-32F lIO board, frame O. and the data 

acquisition and \:onversion process, frame 5, are examined. 
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Figure 30. Frame 6 of the SubVI rIO CLOCKS. 
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JVID-TIM(J MHz) 

WID-GATE 

JVID-REQ(200 KHz) 

Figure 31. Timing Diagram for !'lID-TIM, I'llO-GATE and IVID-REQ . 
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Figure 33. Frame 8 of the SubVl TIO CLOCKS. 
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LineAO 

IVIJ)-CLK 

(200KHz) 

IVID-STH 
(16Hz) 

1V/D-!I.fASK 

(16Hz) 

IVID-TEST 

(lOOKH:) 

~ frame 9 nfTlO CLOCKS i.s execuled here 

nJlJUUUUlJlJUlJUUlJUUUUUl 
~ 

Ille Irailing pulse conlain.s 30 periods 

I of lVlD-elK 

I 

nS UlSUUUlJUl 
Figure 34. Timing Diagram for IVID-STB, JVID-MASK ami JVID-TEST in Relation to 
Line AU 

2. NB-DIO-J2F 110 Interface CODfiguratioD 

Figure 35 shows frame 0 of the ACQUIRE SPECTRA hlock diagram. rhis frame 

uses a simple VI to configun: port A of the N8-DIO-32F as an input port. The kast 

significant bit o f the port receiv.:s the signaI IVID-DATA. Port A is configured ior 

kading edge handshaking and active high acknowledges. With this configuration. the 

port acquires daLl on every rising edge of the signal applied at the R EQ I pin. Recall that 

this signal is the IVID-R EQ. Port A is configured to make 12288 reads. as many as the 

data bits carried by IVID-DATA for every pulse of IVlD-ST8. The VI of this frame also 

allocates a buffer to hold the scans as they are read. Finally, the VI produces a TASK 1D 

that is transferred through a sequence local tu frame S. 
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Figure 35. Frame 0 of the A.CQUIRE SPECTRA Program. 
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J. Data acquisilion·Transformation Procedure 

The last frame of thl: sequence strucrure of ACQUIRE SI'ECTRA hlock diagram. 

frame 5, is ~ho"''fI in Figure 36. This frame contains a subVI narn!:u BUF READ, which 

commellces the data acquisition operation, and afor loop that transforms the 12288 serial 

bits into an array of 1024 numbers. Each number has t 2 bils and rcpresellls the intt:nsity 

received from one of the 1024 photodiodes oflhe lSAAC detector 

a. SubV/ BUF READ 

This subVI receives the TASK ID from the VI used in frame 0 where the 

configuration" of the NB-DlO-32F took place, The block diagram of BUF HEAD is 

shown in Figure 37. 81/F HEAD Slart~ the data acquisit ion operation so that port A reads 

12288 scans. The dala are stored in an internal transfer buffer. W'hen the data acquisition 

operation is completed, the subVI returns an array of 112!!!! eiemt:n\s. Each element is an 

8-bit number and each one of thuse bits represents the value read from one of the eight 

lines of port A. A schematic ft:presentation of this array is shov.-n in Figure 38 

The signallVID-DAT A will he connected tu the line DIQAO which is the 

least significant bit of this port. The rest of the lines are not cunnected. Therefore, these 

st:ven most significant bits arc interpreted by the board as I ( digital high state). As a 

result, the 8-bit numbers are either 254 or 255 dept:nding on the value of the least 

significant bit 

The array in Figure 38 is processed in ordt:f to extract the least signiiicant 

bit of each clement. Next, these hits are ordered in groups of 12. There art: 1024 such 

groups. The first group oftv.·clve, namely the first twelve bits oflVJD-DATA, is the data 

from the first pixel, the second group from the second pixel and so on. When all this 

ordering is done,. the final output is an array of 1024 12-bit ekments. This so-called 

serial-ta-parallel conversion is explained next. 
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Figure )6. Frame 4 of the ACQUIRE SPECTRA Program. 
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Figw-e 37. The Block Diagram of the SubVI BUF READ. 
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12288 

ELEMENTS 

OUTPUT ARRA Y OF 

subV/ BUFF READ 

11I111lX 

fllJ IlJX 

JIlI/IlX 

X represent.~ the information carried on /VID-DA Til and received from 

the least significant bit o/port A of the NB-DIO-32F board. Tr is either, 

o or 1. 

Figure 38. Output Array of BUF READ 

h. Serial-to-parallel Conversion 

l 

The serial-to-paral1d conversion takes place in frame 5 of ACQUIRE 

SPECTRA block diagram as shown in Figure 36. The conversion consists of two nested 

loops . The array output of aUF READ is wired into the outer loop which is repeated 

1024 times. In this loop the array of 12288 elements is divided into groups of 12 

elements. Each group or array subset enters the inner loop. This second loop uses 

auto-indexing so that it loops as many times as the number of the elements of the array 

~ubsl;;t - in this case 12. In addition, a shift register is used as a local variable that feeds 

values from one it~ration to the next. The initial value of the shift register is 0 

The inner/or loop contains the subVI AND CATE. The block diagram of 

this subYI is shown in Figure 39. AND GATE pcrfonns the Boolean AND uperation on 

the 8 bit~ of the element wi th the number I. The Boolean AND operation is shov.TI in 

Figure 40. Each element of the array suhset has the form 1 I I I I I I X, as showl! in 
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rigure 36, where X is either 0 or}, The.A.ND operation of this number with number I 

yields the binary number X as illustrated in Figure 41. 

EI 

Figure 39. The Block Diagram of the SubVl AND GATE. 
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I !iiI 
AANDB 

Figure 40. Boolean AND Operation. 

J J J I J 11 X 

0000000/ 

OOOOOoOx/ 

BOOLEAN AND OPERATION 

Figure 4 1. First Array Subset Element A::-.ID the Number I 

This value, 0 0 0 0 0 00 XI , is added to the initial value of the shift register 

which is o. Then it is returned through the shift register 10 the beginning of the loop 

This nwnber is then multiplied by 2 giving the result 0000 00 X, o. 
Next, the second element ofthc array subset enters the/or loop where it 

goes into the subVI AND GATE which produces the number 0 0 0 0 000 XI This 

number is added to the local variahle 0 0 0 0 00 X, 0 The sum is 0 0 0 0 00 XI X: and 

this is shov.n graphically in Figure 42. 
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0000 oo,~o 

0000000X2 + 

0000 OOX;S 

Figure 42. Addition oflhe Second Output of AND GATE and the Shift Register Value. 

"I his number becomes the new value of the shift register with X, X: being the first 

two bits of information. This process is repeated a total of twelve time~, once for each 

element oflhe array subset. As soon as the last iteration i~ executed. the loop returns the 

data in the form X,X!XJX. X,X, X,X. X, XI. XI/Xu· The most significant bit is the 

very first piece of information carried by the IVID-OAT A signal. This process is repeated 

\024 times, once for each array subset that the outer loop produces. The final output will 

be an array of 1024 clements. Ea,h element wil! be a 12-bit number representing the 

infonnation received from the corresponding pixel of the ISAAC dl:tector. The form of 

this array is depicled in Figure 43. 
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IOU 

ELEMEi'¥TS 

FORM OF HNAL ARRA Y OF ACQUIRE 

SPECTRA PROGRAM 

first bit of data 

'.~xxx XXXX xxx x 
XXXX XXX X XXX X 

XXXX XXXX XXXXmu 

Ja~·t bit of dL 

Figure 43. Form afFinal Array of ACQUIRE SPECTRA Program. 

C. GSE INTERFACE-FUTURE CONSTRUCTION OF A GSE BOX 

In order to generate the above signals with the correct synchronization there arc 

several connections that must be made between the pinouts of the t\. .... o OSE boards. The 

connections on the NB-TIO-IO board arc shown in Table 10. The connections between 

the NB-TJO-IO board and the NB-D10-32F board are sho\\TI in Table II. Note that the 

output of pin 26 of the NB-TIO-I 0 board is the signaIIVID-TEST. Recall that this signal 

was used only as a test of the ACQUIRE SPECTRA progrdnl As explained below. this 

~ignal must be restored to IVID-START in the final OSE 

74 



l 29 (fO U [ I) 15 (SOlJRC E 6), 18 (SQURCE 7) 
---

30 (FOUT Z) 4 (SOURCE 2), 7 (SOURCE 3), 24 (SOURCE 9) 

35 (AO) 5( GATE 2), 8 (GATE 3), 25 (O.ATE 9) 

9 lO UT 1) 1O (SOURCE 4) 

~0u~4)rl-9 (-O-A-TE- 7-)-- - - - ---- --I 

Table 10. Connections beNlcen the Pinouts ufN8-TI0-10 board 

20(OLJT 7) 

26(OUT 9) 

33(REQ I) 

37(D10AO) 

'-'-3(-GN- D-) - - -- ----r13-O(-O-N-D)---------I 

--------------------------~ 
Table I I. Connections beN/cen the NB-T10- 10 and the NB-DlO-32F Boards 

The only remaining step is the construction of a GSE interface box:. This box will 

connect the 1301 connector of the ISAAC data acquisition box with the GSE data 

3!.:qui silion boards. By this means, the GSE interface will simulate the ARGOS CE box 

connedor, as sho'fV!1 in Figure 17, This will allow testing of the ISAAC spectrograph 

prior ils flight. A schematic representation of this GSE box is shown in Figure 44. It 

requires three 50-pin fema le connectors. tv,'O from one side and one from the other side 

As shuv,'Tl in Figure 44, the two GSE boards and the nOI connector will be connected to 

the three fema le pin connectors. Inside the GSE box several connections must bc made 

75 



bct\veen the tlucc connectors. Thc '1B-lTO-10 and the "NR-DlO-32f boards UUl be 

con:1C~tcd as descrihcd ahove in Tahlcs 10 and II. Thc only difference is lhat the output 

of Counter 9, which was the I'.-'IO-TEST during lesting, now be<.:Omes the l\ilD-ST ART 

Thi~ line (pin 26) should be conne~ted to the IVIO-START on the nO! connector The 

rest of lhe J301 con.nections an~ sho\\11 in Table 12 

GSE BOX 

1 ... ·B-TlO-JO 

1301 

NB-DIO-32F 

II'! THE BOX, CONNECTIONS SHOULD BE MADE BETWEEN 

THE THREE CONNECTORS AS SHOWlv- II'! TABLES 9, 10 AND 11 

figure 44. Schemalic Representalion of a FUMc GSE Box 
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E ", , ' .. !y' .~ ) , 
l~~ 

,I. '" 
14(1VIO-5T ART) 26(OUT 9) 

f------
16( IVIO-5TB) 6(OUT 2) 

32(lVID-DATA) 37(0I0AO) 

r-
148(0:\0) 32(GND) 

[49(MO-CLK) 30(FOUT 2) 

Tab!e 12. Connections betv.·cen tht: J301 Conn<:ctor and the GSE Boards. 
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V. RESULTS-SUMMARV OF THE GSE 

1\. RESULTS 

The actual flight instrument is not yet available for testing Neverthdcss, the 

operation of the GSE was tested. The timing signals that the ACQUIRE SPECTRA 

program generales were displayed on an oscilloscope. It was (;onfinned that the signals, 

especially tyro-elK. IVID-REQ and !VTD-STB, are synchronized as d<:sigm:d. 

As mentioned in Chapter IV, IVLD-START was not needed for testing purpo.~cs 

As a result this signal was used to simulate data from ISAAC. I,I/hcn used in this way 

this signal is referred to as !YID-TEST. This simulation provides the opporrunity to 

check the data acquisition process and the seri<ll-to-parallcl conversion. Recall thaI 

[VID-TEST is synchronized with the request signal of tht: NB-D10-32F board, 

IVlD-REQ. Several trials were made with different frequencies of IVID-REQ. 

rVID-TEST was given half the frequency ofIVID-REQ each time. The relation het\v!;.":en 

the tv.·o signals is shown in Figure 45. Recall that data arc acquired on every rising edge 

ofIVID-REQ so that the final arra>' that the ACQUIRE SPECTRA. program retum~ should 

have elements of the binary form I 0 I 0 10 [0 J 0 J O. For frequencies ofIV1D-REQ 

up to 40 KHz the tinal array of the program contains 1024 elements that are all the same 

number: 2730, which is the binary number J 010 1 01 0 10 J O. This indicates that 

the data acquisition process and the serial-to-parallel conversion are operating with 

satistYing results allow request line frequencies. 

Uniortunately, alxwe 40 KHz the GSE does not operate correctly . Thc required 

frequency of IVID-DATA is 200 KHz. In order to test this frequcncy , IVID-REQ was set 

to 200 KHz and JVID-TEST 10 100KHz frequency. The fonn of the final array at this 

frequency was not the J 01 0 pattern as expected. Instead the bit pattern appeared to be 

random. Since the conversion process performed well at low trequencies, we conclud!;.": 

that the Quadra 650 and the NB-OIO-32F may not be able to correctly acquire high 

frequency data. The GSE programs were sent to National Instruments, Inc. Data 
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acquisit ion personnel of the company ran the programs on their hardware and observed 

the same resul ts as above. The company's staff arc still trying to identi fy the reasons for 

the inability of the hardware to acquire high frequency data 

WID-REQ 

WID-TEST 

Figure 45 . Relation between lVID-REQ and IVID-TEST. 

B. SUMMARY 01. THE GSE 

Thls thesis presents the development of a GSE that aJlows testing of the ISAAC 

spectrograph prior to its fli ght. The objectives of the ISAAC spectrograph along with the 

relative physics background were discussed. The software package and the two GSE 

boards were presented. [n addition, the GSE programs were detailed. [n particular, the 

method by whlch .the GSE generates the signals, that simulate those that thc spectrograph 

will receive from the ARGOS salenite bus, was explained. The data acquisition process 

and the serial-to-parallel conversion were detailed. Moreover, a description ofa potential 

future construction of a GSE box was given. Finally, some incompatibilities between the 

hardware and the software were ident ified. 
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C. FUTURE WORK 

There is more work required (0 be done following the development of the GSE 

First and foremost, the incompatibilities mentioned above need to be resolved. One 

possib le solution is to use a different computer. Thesis opportunities will include 

construction of the GSE interface box. Upon completion of the ISAAC data acquisition 

box by NRL, this flight un it must be tes ted using the GSE. Finally, fo llowing the launch 

oflhe satellite there will be many opportunities for data analysis. 
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