
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2012-03

Utilizing Android and the Cloud Computing

Environment to Increase Situational Awareness for a

Mobile Distributed Response

Asche, Michael

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/6763

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UTILIZING ANDROID AND THE CLOUD COMPUTING
ENVIRONMENT TO INCREASE SITUATIONAL

AWARENESS FOR A MOBILE DISTRIBUTED RESPONSE

by

Michael Asche
Monique Crewes

March 2012

 Thesis Advisor: Gurminder Singh
 Second Reader: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Utilizing Android and the Cloud
Computing Environment to Increase Situational
Awareness for a Mobile Distributed Response

6. AUTHOR(S) Michael Asche, Monique Crewes

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number: N/A.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Maintaining an accurate Common Operational Picture (COP) is a strategic
requirement for efficient and successful missions in both disaster response
and battlefield scenarios. Past practices include utilizing cellular, radio,
and computer based communication methods and updating individual maps
accordingly. A drawback of these practices has been interoperability of these
devices as well as accurate reporting and documentation among different
entities of the effort.

Recent advances in technology have led to the utilization of collaborative
maps for maintaining a COP amongst command centers. Despite the advantages
this technique offers, it does not address the difficulties surrounding
receiving reports from field entities as well as ensuring these entities also
have good situational awareness. The goal of this research is to explore
smartphone capabilities in conjunction with cloud computing to determine how
they can extend the benefits of collaborative maps to mobile users while
simultaneously ensuring command centers are receiving accurate, up-to-date
reports from the field.

15. NUMBER OF
PAGES

129

14. SUBJECT TERMS Android Programming, Cloud Computing, Common
Operating Picture, Web Programing

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UTILIZING ANDROID AND THE CLOUD COMPUTING ENVIRONMENT TO
INCREASE SITUATIONAL AWARENESS FOR A MOBILE DISTRIBUTED

RESPONSE

Michael Asche
Lieutenant, United States Navy

B.S., United States Naval Academy, 2006

Monique Crewes
Lieutenant, United States Navy

B.S., United States Naval Academy, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2012

Authors: Michael Asche
 Monique Crewes

Approved by: Gurminder Singh
Thesis Advisor

John Gibson
Second Reader

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Maintaining an accurate Common Operational Picture (COP) is

a strategic requirement for efficient and successful

missions in both disaster response and battlefield

scenarios. Past practices include utilizing cellular,

radio, and computer based communication methods and

updating individual maps accordingly. A drawback of these

practices has been interoperability of these devices as

well as accurate reporting and documentation among

different entities of the effort.

Recent advances in technology have led to the

utilization of collaborative maps for maintaining a COP

amongst command centers. Despite the advantages this

technique offers, it does not address the difficulties

surrounding receiving reports from field entities as well

as ensuring these entities also have good situational

awareness. The goal of this research is to explore

smartphone capabilities in conjunction with cloud computing

to determine how they can extend the benefits of

collaborative maps to mobile users while simultaneously

ensuring command centers are receiving accurate, up-to-date

reports from the field.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. BACKGROUND ...1

1. Situational Awareness1
a. Definition1
b. Importance2

2. Common Operating Picture2
a. Difficulties2
b. Solutions4

B. FOCUS ..5
2. Organization5

a. Chapter II (Evolution of Command and
Control Systems)5

b. Chapter III (Infrastructure Background) ..6
c. Chapter IV (SPARCCS Implementation)6
d. Chapter V (Conclusions and Future Work) ..6

II. EVOLUTION OF COMMAND AND CONTROL SYSTEMS7
A. WORLDWIDE MILITARY COMMAND AND CONTROL SYSTEM7
B. GLOBAL COMMAND AND CONTROL SYSTEM8
C. BLUE FORCE TRACKING9
D. GOOGLE MAPS11
E. NEXT GENERATION INCIDENT COMMAND SYSTEM12
F. ADVANCED GROUND INFORMATION SYSTEMS LIFERING13
G. CONCLUSION ..14

III. INFRASTRUCTURE BACKGROUND15
A. CLOUD COMPUTING15

1. Definition15
2. Cloud Service Models15
3. Implementation16
4. Benefits of Cloud Computing17
5. Cloud Computing Conclusion19

B. DATABASES ...19
1. History20
2. Problems with Relational Databases within

the Cloud Environment21
a. Scalability21
b. Mapping22

3. Not-so-Relational Databases: A Solution for
Cloud Computing22

4. Key Differences between Relational and Not-
so-Relational Databases23
a. Definition23
b. Data Access25

 viii

c. Application Interface26
5. Google Big Table and Datastore27

a. Benefits of the Datastore28
C. GOOGLE APP ENGINE AND GOOGLE WEB TOOLKIT29

1. Google App Engine29
2. Google Web Toolkit30

a. Software Development Kit30
b. Speed Tracer32
c. Eclipse Plug-in34
d. User Interface Designer34
e. Conclusion35

D. ANDROID OPERATING SYSTEM35
E. WEB SERVICES37
F. SUMMARY ...39

IV. SPARCCS IMPLEMENTATION41
A. OVERVIEW ..41

1. A Sample Scenario41
2. Key Features42
3. Architecture43

B. CLIENT IMPLEMENTATION FLOWS47
1. Cloud Application47

a. Login Screen47
b. Initial Screen48
c. Missions Panel50
d. Add/Mission Options Panel53
e. Points of Interest Panel55
f. Add/Point of Interest Options Panel59
g. Responders Panel61
h. Responder Options Panel65
i. Photos Panel66
j. Map Options Panel72
k. Map Pane73

2. Android Client74
a. Login Screen74
b. Main Screen77
c. Menu Button78
d. Missions80
e. Points of Interest84
f. Images87
g. Users92
h. List Views93
i. SQLite Database95
j. Syncing96

C. CONCLUSIONS98
V. CONCLUSIONS AND FUTURE WORK99

 ix

A. CONCLUSIONS99
B. FUTURE WORK100

LIST OF REFERENCES ...107
INITIAL DISTRIBUTION LIST111

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Relational Database.............................24
Figure 2. Not So Relational Database......................25
Figure 3. Google Speed Tracer.............................33
Figure 4. Web Services....................................38
Figure 5. Android System Architecture.....................45
Figure 6. Web Client System Architecture..................46
Figure 7. System Architecture.............................46
Figure 8. Login Screen....................................47
Figure 9. Main Interaction Screen.........................48
Figure 10. Responder information...........................49
Figure 11. Display Mission Sequence........................51
Figure 12. Initial Mission on Map..........................52
Figure 13. Expanded Mission Information....................52
Figure 14. Mission Associations on Map.....................53
Figure 15. Add/Mission Options Panel.......................53
Figure 16. Create New Mission Panel........................54
Figure 17. Point of Interest Flow..........................56
Figure 18. Point of Interest on Map........................57
Figure 19. Expanded Point of Interest Information..........58
Figure 20. Point of Interest Associations on Map...........58
Figure 21. Add/Point of Interest Options Panel.............59
Figure 22. Create New Point of Interest Panel..............60
Figure 23. Responder Information Flow......................62
Figure 24. Responder on Map................................63
Figure 25. Expanded Responder Information on Map...........63
Figure 26. Responder Associations on Map...................64
Figure 27. Responder Options Panel.........................65
Figure 28. Photos Panel....................................66
Figure 29. Create Image Flow...............................67
Figure 30. Pictures From Mission...........................68
Figure 31. Individual Mission Picture......................68
Figure 32. Picture on Map..................................69
Figure 33. Expanded Image Information......................70
Figure 34. Photo Gallery of All Mission Pictures...........70
Figure 35. Photo Slideshow.................................71
Figure 36. Map Options Panel...............................72
Figure 37. Current Position Information....................73
Figure 38. Position on Map.................................74
Figure 39. Create Account Form.............................76
Figure 40. No Mission Dialog...............................77
Figure 41. Main Interaction Screen.........................78
Figure 42. Main Screen With Options Menu...................79
Figure 43. User Submenu Options............................80

 xii

Figure 44. Point of Interest Submenu Options...............80
Figure 45. Mission Submenu Options.........................80
Figure 46. Image Submenu Options...........................80
Figure 47. Mission Form....................................81
Figure 48. Mission Save Options............................82
Figure 49. View Mission Form...............................84
Figure 50. Point of Interest Form..........................85
Figure 51. Point of Interest Save Options..................86
Figure 52. View POI Form...................................87
Figure 53. Android Native Camera...........................88
Figure 54. Android Photo Gallery...........................89
Figure 55. Image Form......................................90
Figure 56. Image Save Options..............................90
Figure 57. View Image Form.................................91
Figure 58. View User Form..................................92
Figure 59. Mission List View...............................93
Figure 60. Point of Interest List View.....................94
Figure 61. User List View..................................94

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

Advanced Ground Information Systems (AGIS)

Application Programming Interface (API)

Blue Force Tracking (BFT)

California Department of Forestry and Fire Protection (CAL
FIRE)

Commercial-Off-The-Shelf (COTS)

Global Command and Control System (GCCS)

Global Positioning System (GPS)

Google App Engine (GAE)

Google Web Toolkit (GWT)

Infrastructure as a Service (IaaS)

Next Generation Incident Command System (NICS)

Not-so-Relational (NSR)

Operating System (OS)

Platform as a Service (PaaS)

Point of Interest (POI)

Smartphone Assisted Readiness, Command, and Control System
(SPARCCS)

Software Development Kit (SDK)

Structured Query Language (SQL)

User Interface Designer (UID)

Worldwide Military Command and Control System (WMCCS)

XMLHttpRequests (XHR)

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Dr. Gurminder Singh and Professor John H. Gibson for

their guidance and support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

1. Situational Awareness

a. Definition

Over the past several decades the use of the term

situational awareness has been expanded to apply to crisis

situations both military and civilian. A widely used

definition of this term developed by Endsley, a leading

researcher at the U.S. Army Research Institute, is

the perception of the elements in the environment
within a volume of space and time, the
comprehension of their meaning, and the
projection of their status in the near future.
(Endsley 1995, 36)

Following this definition, Endsley expanded her definition

into a model of situational awareness consisting of three

levels. The first level is the perception of the elements

of the current situation. This is an understanding of the

physical environment in which the situation is occurring.

The second level is an understanding of the situation. Here

the dynamics of the physical elements and the people

involved in the situation must be comprehended, in terms of

both their movement and purpose. The third level is the

projection of future status of the situation. Since

situational awareness develops over time, the effect of

current events has an impact on what occurs in the near

future.

 2

b. Importance

Maintaining situational awareness is critical to

decision makers as it allows them to understand the current

operating environment and make critical, real-time

decisions based on what is occurring at the present time

and what could occur in the future. In addition it gives

them the ability to get immediate feedback on past

decisions enabling them to make better choices in the

future.

2. Common Operating Picture

Situational awareness is enhanced through the use of a

common operating picture. Usually when a disaster,

emergency, and/or military response is needed, multiple

agencies, often times both local and national, must keep

track of what is happening and where it is happening. The

cooperating agencies must come together to get a shared

situational awareness, or what is known as a common

operating picture. With this common operating picture it

becomes easier for agencies to communicate and resolve the

issues they are facing more effectively, saving both lives

and resources in the process.

a. Difficulties

However, gaining an accurate common operating

picture can be very difficult. This is because with the

introduction of multiple agencies into a crisis situation

interoperability becomes the single overwhelming issue

preventing interagency cooperation. The Chairman of the

Joint Chiefs of Staff Instruction 3152.01A, which pertains

 3

to the Global Command and Control System Common Operating

Picture Reporting Requirements, defines common operating

picture as

a distributed data processing and exchange
environment for developing a dynamic database of
objects, allowing each user to filter and
contribute to this database, according to the
user’s area of responsibility and command role.
The common operational picture provides the
integrated capability to receive, correlate, and
display a common tactical picture, including
planning applications and theater-generated
overlays and projections. (Department of Defense,
2008)

Using this definition each agency has developed its own

respective methodology and corresponding systems for

achieving a common operating picture. These corresponding

systems and databases are often unable to communicate with

each other. As a consequence, information dissemination

across agencies becomes almost impossible in real time,

leaving decision makers in a precarious position of having

to make decisions with untimely, and possibly inaccurate

information. This can be seen in efforts during the

response to bombings in New York on September 11, 2001,

when police, fire and emergency personnel struggled to

communicate with one another regarding where to go and

which agency was in charge of doing what aspect of relief.

This was not only relevant across the respective responder

communities, but also within individual responder

communities. For example, fire departments from different

counties had trouble communicating using the same radios

due to the inability to construct a cohesive communications

plan. On a larger scale, during Hurricane Katrina this

became even more evident as local and state disaster

 4

response teams were completely overwhelmed and national

level response was needed. It was difficult for a common

operating picture to be constructed between all three tiers

of governmental responders (Copeland 2008, 1).

b. Solutions

In an effort to relieve interagency

interoperability, a system should be adopted using

commercial-off-the-shelf (COTS) smartphones in conjunction

with a cloud-computing server. With the recent upgrades in

smartphone technology, many pieces of data needed to craft

a common operating picture can be gathered using this

widespread, relatively cheap technology. Using the

smartphones’ global positioning features, locations of

points of interest relevant to decision can be gathered.

Likewise, pictures and video can be passed with ease and

without the need to carry multiple devices. Furthermore, by

using a common communication technology there is no need to

develop a complicated communications plan and generate an

ad-hoc communications infrastructure that spans across all

agencies.

Using smartphones in conjunction with a cloud

computing platform can further aid in the creation of an

effective common operating picture and the improvement of

overall situational awareness. By utilizing a web-based

cloud computing infrastructure, information can be made

easily available, as the only thing needed to look at and

update information would be access to the Internet: not a

particular computer, place or command post. Another benefit

of cloud computing is reduced costs, as it pools computing

resources that can be distributed to applications as

 5

needed. Deployment of the application will be faster, as

there is no need to update all networking hardware and

software within a given network infrastructure. Likewise

the technology is easily scalable, so if demand for

information increases then the infrastructure will be able

to handle the demand without needing to update the

architecture of the system. Most importantly, it has

redundancy so that, in the case the crisis arises in the

area of the cloud service provider, disaster recovery

services can bring up a separate server immediately.

B. FOCUS

 In this thesis we will develop and demonstrate the

feasibility of a cloud-based system, known herein as the

Smartphone Assisted Readiness, Command, and Control System

(SPARCCS), to advance the SA capability of rapid response

personnel. This system will allow for Android smartphones

and a central web-based cloud application to communicate.

We will use our web-based cloud application as the command

center to effectively display information and communicate

with Android smartphones to create a common operating

picture thereby improving situational awareness.

2. Organization

a. Chapter II (Evolution of Command and Control
Systems)

The second chapter of this thesis will highlight

past and existing Command and Control technologies. It will

touch on their strengths and weakness, further

 6

demonstrating a need for the SPARCCS program. It will

additionally put into context related work within the SA

development community.

b. Chapter III (Infrastructure Background)

The third chapter of this thesis will describe

cloud computing and its database storage component. It will

further delve into the Google App Engine, the cloud

platform by which the web-based application is supported.

It will likewise describe the Android operating system used

by the smartphones in the SPARCCS infrastructure. The

chapter will conclude with details about the current state

of web services used by the SPARCCS environment.

c. Chapter IV (SPARCCS Implementation)

The fourth chapter of this thesis will describe

the application proposed and demonstrated by this thesis.

It will define the software methodology behind the Android

mobile application and the supporting web-based cloud

application. It will also outline the server communication

structure that these applications use to communicate.

d. Chapter V (Conclusions and Future Work)

The fifth chapter of this thesis will begin with

an overall summary of the SPARCCS system. It will highlight

strengths and weakness of the infrastructure and provide

guidance for future work within the SPARCCS framework. The

thesis will then conclude with an overarching look at the

current state of Common Operating Picture programs and will

detail how the SPARCCS program attempts to alleviate some

of the pitfalls in the existing technology.

 7

II. EVOLUTION OF COMMAND AND CONTROL SYSTEMS

Ten years ago a mobile enabled Common Operating

Picture wouldn’t have been possible. Five years ago, it was

possible but not practical. This section covers the

evolution of Command and Control systems that were the

basis for the foundation of our thesis.

A. WORLDWIDE MILITARY COMMAND AND CONTROL SYSTEM

 Following the events of the Cuban Missile Crisis, the

government saw a need for a system that would allow

authorities to exercise command and control over U.S.

forces dispersed throughout the world. The resulting system

was the Worldwide Military Command and Control System

(WMCCS). Its primary mission was to provide:

A means by which the President and the Secretary
of Defense can: receive warning and intelligence
upon which accurate and timely decisions can be
made; apply the resources of the Military
Departments; and assign military missions and
provide direction to the Unified and Specified
Commands. (DoD, 1971)

The program required that all Department of Defense

systems be configured to support the umbrella system. The

final system consisted of computers, software, and

communications lines forming an international network.

The use of the system, however, experienced several

failures. One of the most notable occurred in June 1967

during the hostilities between Israel and Egypt. The Joint

Chiefs of Staff utilized WMCCS to order the USS Liberty to

move further away from Egyptian and Israeli coastline where

it was performing reconnaissance. The five high-priority

 8

messages that were sent over the system didn’t arrive for

thirteen hours. As a result, 34 American sailors were

killed by an Israeli attack on the ship.

Most of the problems WMCCS experienced were blamed on

the system’s attempt to force existing technology to meet

its specifications. Additionally, a 1979 report stated that

the:

WWMCCS ADP program was not responsive to national
or local level requirements, was not reliable,
lacked economical and effective growth potential,
could not transfer data and information
efficiently, made it extremely difficult and
costly to exploit ADP technology, impaired each
command’s operational backup capability, and
encouraged independent and decentralized software
development efforts. (World Wide Military, 1979)

The report demanded either a major overhaul of the system

or a complete replacement.

 In the early 1980s, WWMCCS was modernized and, despite

its track record, demonstrated excellent performance in

Desert Storm. Shortly following the conflict the technology

the system was founded on was deemed too outdated and the

decision was made to replace the system rather than try to

modernize.

B. GLOBAL COMMAND AND CONTROL SYSTEM

 The follow on system to WWMCCS was the Global Command

and Control System (GCCS). Upon the release of GCCS in 1996

the Department of Defense boasted the introduction of

modern day client-server computer architecture to replace

the mainframe computers WWMCCS had been using since the

1970s. They also stated that commanders could now

effectively:

 9

Coordinate widely dispersed units, receive
accurate feedback, and execute more demanding,
higher precision requirements in fast moving
operations. (Global Command, 1996)

In addition, GCCS was built with the humanitarian, as

well as the military, missions in mind.

GCCS has evolved over the years and several versions

now exist specialized for Army, Air, Naval and Joint

forces. Parallel capabilities are operated on the Non-

classified Internet Protocol Routing Network, the Secret

Internet Protocol Routing Network, and the Joint Worldwide

Intelligence Communications System enabling collaboration

between U.S. forces and our NATO allies.

Looking at GCCS today, it does not seem like a very

impressive system. The maps are of poor quality and, in our

experience, the system often fails to update for several

days. Despite its contribution to the U.S. Military, it is

once again time to upgrade to new technology.

C. BLUE FORCE TRACKING

Blue Force Tracking (BFT) is a crucial element to

situational awareness. It enables leaders to track where

their forces are deployed. Furthermore, it enables field

entities to know their current location and the location of

friendly entities in their vicinity. Historically this has

been done in the field with a compass and a map. The

entities’ location would then be relayed back to command

centers where they would be tracked on a separate map.

Unfortunately this system was prone to error. Not only was

it difficult to determine one’s exact location using only a

 10

compass and map, but there were often reporting errors as

well as mistakes made when mapping reported locations in

the command centers.

The advent of the Global Positioning System (GPS)

removed a great deal of error from the equation. GPS

enabled field entities to constantly know their exact

location. GPS, however, did not remove the possibility of

error in reporting or in command center mapping. In

addition, even with GPS, command centers would only know

the last reported location of field entities.

Wireless data transfer removed the remaining

possibilities for error. The combination of GPS and

wireless data transfer enabled units to retrieve their

location and autonomously pass that location to command

centers. Not only did this eliminate reporting and mapping

errors, but also provided near real time tracking of

entities.

Force XXI Battle Command Brigade and Below was one of

the first systems to take advantage of these capabilities.

The system, which initially surfaced in the late 1990s, was

comprised of application software connected to GPS

satellite Receivers. It utilized tactical Internet to

exchange positioning data between field units and command

cells (Ebbutt, 2008).

Current technology has nullified the requirement to

carry a device solely for BFT needs. Most modern

smartphones are enabled with both GPS and wireless data

transfer capabilities. These devices are smaller, easier to

use, and provide more functionality

 11

D. GOOGLE MAPS

Google Maps is a recent mapping technology created by

Where 2 Technologies, Sydney, Australia, and purchased by

Google in October of 2004. It is a web-based mapping system

that provides high-resolution aerial imagery over most of

the world. It is primarily Javascript-based, which quickly

lead to reverse-engineering to provide client-side scripts.

These scripts allowed users to modify the maps with

overlays, such as markers and pictures.

The development of the server side-scripts prompted

Google to launch Google Map Application Programming

Interface (API). The Google Map API allows web developers

to embed Google Maps in their own websites. The API also

provides standard Javascript procedures to allow users to

customize the maps. Customizations include overlays of

markers, pictures, pop-ups, drawings, and many more.

Google Map API, combined with dynamic server-side web

programming, makes collaborative maps possible. After

saving overlay information to a server database, other

users are able to retrieve the information via the web and

display the overlays locally. In order to maintain an

accurate real-time display of markers, external users must

repetitively access the server database to check for any

changes.

SPARCCS, like most current common operational picture

services, utilizes Google Maps as the application’s home-

screen. Using Google Map API, users are able to place

markers on the map. These markers represent missions, other

users, points of interest, and pictures taken (Google,

2011).

 12

E. NEXT GENERATION INCIDENT COMMAND SYSTEM

While a number of systems have utilized collaborative

maps, one that has been getting attention lately is the

Next Generation Incident Command System (NICS). Formally

the Lincoln Distributed Disaster Response System, NICS is

being developed by the Massachusetts Institute of

Technology’s Lincoln Laboratories in conjunction with

California Department of Forestry and Fire Protection (CAL

FIRE) and the Department of Homeland Security. NICS prides

itself on being an integrated, sensing, command and control

system. The system enables collaborative disaster response

and interoperability to improve situational awareness.

While the system is still in development, CAL FIRE began

employing it in Southern California for the 2010 fire

season and successfully used it in over 85% of Riverside

and San Diego wildfires that season (Lincoln Laboratory,

2011).

NICS is a Google Map-based system that allows

collaboration among users. In addition to user input, NICS

receives sensor input from a number of deployed entities.

GPS devices report location data for vehicles and personnel

for display in NICS. Airborne mounted sensors relay Real-

time video, images and weather to the system. The system

can currently be accessed by mobile devices that employ the

Firefox web-browser and is primarily accessed in the field

by laptops, and tough-books with Wi-Fi or SATCOM

capability. Though it can be accessed from a smartphone

with Firefox, the system was not formatted for a small

screen size, rendering it relatively impractical for these

devices. Lincoln Laboratories has expressed interest in

 13

developing a mobile application, but as the system itself

is still in development, the mobile application is not a

current priority (Next Generation, 2011).

NICS provides a good example of a PC, server-based

COP. The amount of investment received by NICS, coupled

with the fact that it has been utilized in both testing and

actual disaster relief scenarios, suggests that it is a

good case study. The NICS functionality provides a solid

benchmark of necessary functionality for a successful COP

tool.

F. ADVANCED GROUND INFORMATION SYSTEMS LIFERING

Advanced Ground Information Systems (AGIS) currently

offers a first responder mobile application for peer-to-

peer communications in the field, called LifeRing. The

application offers many useful capabilities for information

distribution, communication, location and GeoIntel to

provide a COP amongst users. LifeRing was originally only

available on Windows Mobile-based devices but has recently

been extended to include most mobile operating systems.

LifeRing’s key functionality includes the ability to

exchange images and video, Blue Force Tracker, and

collaboration between multiple devices utilizing different

operating systems.

While LifeRing is a useful system for mobile devices,

it has some issues that SPARCCS aims to address. The first

issue is the maps on the mobile devices. While the PC

version of LifeRing can access and utilize Google Maps, the

mobile version cannot. The maps on the mobile devices are

preloaded which use critically limited storage space. In

addition, the maps on the mobile devices are poor quality

 14

and do not have satellite capability. SPARCCS intends to

use Google Maps on both its mobile and headquarters version

of the application.

Another issue is the way devices are connected to each

other. LifeRing is server-based while SPARCCS aims to take

advantage of distributed computing combined with cloud

computing for its server and database needs. By doing this

SPARCCS takes advantage of all the capabilities cloud

computing has to offer, especially that of disbursed data

locations. This insures that an incident or disaster at a

server location is unable to bring down the system. In

addition, SPARCCS will have the ability to turn a mobile

device into a server for a unit or team. This should not

only decrease bandwidth usage but also insure that if the

server should fail, the unit or team will be able to

continue using the system (AGIS, 2010).

G. CONCLUSION

In conclusion this chapter summarizes the evolution of

predominant Command and Control Systems and how their

evolution has made it possible to design current Common

Operating Picture programs. The next chapter will discuss

existing technology that we used to make Common Operating

Picture system SPARCCS.

 15

III. INFRASTRUCTURE BACKGROUND

This chapter will discuss prevailing technology that

makes the SPARCCS Common Operating Picture system different

from other systems on the market today. This will include

cloud computing, not so relational databases, Google App

Engine, and Web Services.

A. CLOUD COMPUTING

1. Definition

Cloud Computing can be defined as a model for enabling

convenient, on-demand network access to a shared pool of

dynamically scalable, and often abstracted, computing

resources. Though the basic concept of this form of

computing may not be groundbreaking, its re-emergence since

2008 has introduced new possibilities to satisfy a nearly

insatiable need for computing power and memory. For

example, a Cloud deployment model can offer users and

developers the option of utilizing multiple servers or

storage devices that appear as one logical resource. This

dramatically increases the amount of physical drive space

and sheer computing power available without the need to

invest in a local hardware infrastructure. Solving larger

and more complex problems in shorter amounts of time, while

spending ultimately less money to do so, is a possibility

that has greatly piqued the interest of international

corporations and government agencies alike.

2. Cloud Service Models

Cloud computing has been utilized in very concrete

forms already. A well-known example of this application

 16

comes in the form of SaaS, or Software as a Service, model.

In this case, on-demand software is made available to users

remotely via the Cloud, typically through a web application

or thin client application. Very popular forms of this

software delivery system, such as Google Docs or the Zoho

Office Suite, offer users the ability to collaborate and

complete projects with greater ease and efficiency.

Another well-developed Cloud service model is known as

IaaS, or Infrastructure as a Service, in which consumers

are able to provision fundamental computing resources to

run arbitrary software. For example, if the owners of a

small business didn’t have the infrastructure necessary to

run a batch job in an acceptable time frame, they could

utilize Amazon EC2’s elastic computing capacity to get it

done for a relatively small price.

Finally, there exists a third model, known as PaaS, or

Platform as a Service. In this case, developers can upload

web apps they create specifically for a Cloud environment.

The most prominent example of this is the Google App

Engine, in which developers upload web apps published via

the Google App Toolkit. The Google App Engine and Toolkit

will be further explained, as this is the backbone for the

thesis work (Tech Target Sites, 2007).

3. Implementation

For a developer trying to make full use of the Cloud’s

offerings, a clear implementation decision needs to be made

between a thin client application and a web-browser

application. Thin client architecture implies an operating

system exists locally, but it is allowed very few

independencies from the Cloud. The application must connect

 17

to the Cloud and relies heavily upon the Cloud services for

computing and storage. On the other hand, web-browser

applications can also be used to interact with the Cloud

environment; the difference being that a web-browser

application in a Cloud environment simply uses the web-

browser as the front-end layer where the user interaction

takes place. The resulting interaction accesses the back-

end layer of the application where the hardware and

software architecture exist on the Cloud. For this reason,

a web-browser Cloud application is inherently operating

system agnostic, which allows potential users to be free of

certain system restrictions. This is typically how a

popular Cloud program, like Google Docs and Apple MobileMe,

functions. Certainly, both implementations offer their own

benefits and drawbacks. This thesis will focus on the web-

browser based application due to its operating system

independence.

4. Benefits of Cloud Computing

Cloud computing offers several potential benefits over

more traditional host-oriented or client-server computing

approaches. Some of these are identified below.

• Cost Reduction

• “Federal agencies could eventually save 85

percent of their yearly information technology

infrastructure budgets by moving operations to

either a public, private or hybrid cloud.” (Booze

Allen Hamilton, 2010)

• “An agency would spend about $77.3 million to run

1,000 servers annually in-house, but it would

 18

cost only $22.5 million to run them virtually in

public cloud environment, $28.8 million in a

hybrid cloud—a mixture of public and private

cloud-based services—or $31.1 million in a

private, agency-run cloud.” (Booze Allen

Hamilton, 2010)

• Flexibility

• “Adjust cloud-based resources up and down to meet

real-time needs, or offload onsite data to the

cloud as needed to improve operational

efficiencies. And since the cloud is Internet-

based, you can access these resources from

anywhere, supporting remote work and continuity

of operations.” (Microsoft, 2011)

• Collaboration

• “With both the application and the data stored in

the cloud, it becomes easy for multiple users—

located anywhere in the world—to work together on

the same project.” (Microsoft, 2011)

• Disaster Recovery/Continuity of Operations

• “Centralized data storage, management, and

backups, data recovery in response to local

business disruptions can be faster and easier.”

(Microsoft, 2011)

• Applications and content

• “Rather than waiting in the software procurement

line, hosted software, datasets, and services are

 19

available as they are released” so the mission

can be the focus instead of the infrastructure

(Microsoft, 2011).

• Creative IT

• “Since cloud services can be centrally managed,

IT workers are freed from a “keep-the-lights-on”

approach, providing more time to foster creative

problem solving.” (Microsoft, 2011)

5. Cloud Computing Conclusion

By utilizing a web-based cloud application,

information can be easily accessed when needed. The user

only needs have access to the Internet to retrieve and

update information. Other benefits of the cloud include

lowering costs as it pools computing resources that can be

distributed to applications as needed, responsive

deployment of the application as there is no need to update

all networking hardware and software within a given network

infrastructure, and scalability. Most importantly, it has

redundancy in the case that the crisis arises in the area

of the cloud disaster recovery services can bring up a

separate server immediately.

B. DATABASES

In order to understand the full service of cloud

computing an understanding of databases must be gained to

appreciate the intrinsic utility of working within a cloud

environment.

 20

1. History

With computer use finally entering the corporate world

in the 1960s, large amounts of data needed to be stored and

organized. Companies typically had many concurrent end-

users all dealing with a large amount of diverse data.

Databases were formed to help ease the increasing

difficulties in designing, building, and maintaining

complex information systems. The formation of databases

coincided with the availability of direct-access storage.

This was in stark contrast with tape-based storage systems

used up until that point. Databases allowed for share d

interactive usage of data for multiple users (“Databases,”

n.d.).

In the earliest database systems, accessing data

efficiently was the primary concern. In order to do so the

key aim was to make data independent of the software logic

of the applications. This made it so that the same data

could be made available to different applications at the

same time. The first generation of the databases sought to

address these issues. It was known as a navigational

database. Applications using these kinds of databases had

information linked together through a series of pointers

that lead from one series of records to another

(“Databases,” n.d.).

The Relational model, first proposed in 1970, departed

from this tradition by requiring that applications should

search for data based on the content of the data. This was

considered necessary to allow the content of the database

to evolve without constant rewriting of the applications to

deal with evolutions in the data model. The relational

 21

database holds data in tables with a fixed structure of

rows and columns (“Databases,” n.d.).

The relational database, still the most popular

database, too, has its limitations. The rigidity in its

structure alone has been seen as weakness where all data

must fit into a pre-determined schema of tables allowing

for little flexibility to change on the fly. Relational

databases also have a weak ability to handle information

that is more varied in structure. For example, document

databases, engineering databases, multimedia databases or

databases used to store information for molecular sciences

all have trouble when forced to fit into the classical

model (“Databases,” n.d.).

2. Problems with Relational Databases within the
Cloud Environment

a. Scalability

One of the big pushes in today’s computing

environment is to move information to the cloud. The cloud

has distinct advantages in information storage and cost.

However, moving the relational database to the cloud has

its share of difficulties and drawbacks.

Relational databases do have the ability to scale

well; nonetheless, this scalability is normally planned and

done over considerable time. Yet, for cloud storage

purposes, the ability to provision and decommission servers

on demand, referred to as dynamic scalability, is needed.

This is because workloads can triple overnight and then

decrease to half the storage needed from where the

applications started. Classic relational databases are

simply not designed for this sort of environment, as there

 22

must already be the hardware infrastructure in place to

handle the maximum capacity of users or data, even if it

means the hardware goes unused for a majority of the time

(Howard, 2011).

b. Mapping

The second issue that relational databases face

with respect to moving to the cloud is that they are a poor

fit for most software development. Current computer

programming has changed over the past fifty years from that

of “spaghetti code” to a much more organized, object-

oriented approach. In this new approach, object-to-

relational mapping (and vice versa) needs to take place

between the interface, the database and the software logic.

This mapping adds complexity and cost while decreasing

performance if a traditional database is used (Howard,

2011).

3. Not-so-Relational Databases: A Solution for Cloud
Computing

Not-so-Relational (NSR) Databases have emerged to

bridge the gap between cloud data storage and object-

oriented programming. They do not suffer from the same

complexity and cost issues because they store information

in a more object-oriented fashion, using key/value pairs

(Howard, 2011).

Key/value items store all related information about a

single item or object as a single entity, as opposed to

having multiple tables in relation database linked by

primary/foreign key relationships. This eliminates the

joins necessary in conventional database environments. The

 23

items themselves are stored in a table, also known as a

domain. Completely different types of items can all be

stored in the same domain. To inter-relate different items,

keys are used. If two distinct items have the same value

for a particular key then they are related (Howard, 2011).

4. Key Differences between Relational and Not-so-
Relational Databases

a. Definition

Relational databases contain tables, tables

contain columns and rows, and rows are made up of column

values. Rows within a table all have the same schema. The

data model is well defined in advance. A schema is strongly

typed and it has constraints and relationships that enforce

data integrity. The data model is based on a “natural”

representation of the data it contains and not on

application functionality. The data model is normalized to

remove data duplication. This normalization establishes

table relationships, and these relationships associate data

between tables (Bain, 2009). Figure 1 displays a simple

relational database.

 24

Figure 1. Relational Database

In NSR databases, domains can initially be

thought of like a table; but unlike a table, you do not

have to define any schema for a domain. A domain is

basically a bucket that you put items into. Items within a

single domain can have differing schemas. Keys identify

items, and a given item can have a dynamic set of

attributes attached to it. In some implementations,

attributes are all of a string type. In other

implementations, attributed have simple types that reflect

code types, such as integers, string arrays, and lists. No

relationships are explicitly defined between domains or

within a given domain. Figure 2 shows the same information

in a much simpler NSR database. (Bain, 2009)

 25

Figure 2. Not-so-Relational Database

b. Data Access

In relational databases data is updated, created,

deleted, and retrieved using Structured Query Language

(SQL). SQL queries can access data from a single table or

multiple tables, the latter through table “joins.” SQL

queries include functions for aggregation and complex

filtering. They usually contain a means of embedding logic

close to data storage, such as triggers, stored procedures,

and functions (Bain, 2009).

In NSR databases data is created, updated,

deleted and retrieved using API method calls. Some

implementations provide basic SQL-like syntax for filtering

 26

criteria, and basic filter predicates can often only be

applied. All application and data integrity logic is

contained in the application code (Bain, 2009).

c. Application Interface

Relational databases tend to have their own APIs,

or make use of generic API, such as OLE-DB or ODBC. Data is

stored in a format that represents it natural structure, so

it must be mapped between the application code structure

and the relational structure. This can be seen from the

Figure 1. In this example, there is a complicated mapping

and joining between tables for information about the cars

in the database. This would in turn require helper classes

within the program code to get all of the information out

of the database required for a specific car then store it

as application data (classes) to be manipulated in the

program (Bain, 2009).

NSR databases tend to provide Simple Object

Access Protocol, Web, and/or Representational State

Transfer API’s over which data-access calls can be made.

Data can be more effectively stored in application code.

Entire classes and their components can be sent between the

database and the application, instead of merely strings

that have to be parsed and then refactored as the

application code dictates. This allows for database

programming and management that is compatible with it the

application’s object oriented structure. With this new

scheme, only communicative relational “plumbing” code is

needed for database application interaction. This is

demonstrated in Figure 2. In this example, the structure of

the database resembles that of a class with simple data

 27

member objects that can easily be mapped to the application

code to a car class. Note the difference from Figure 1 in

simplicity (Bain, 2009).

5. Google Big Table and Datastore

“Google’s BigTable is a distributed storage system for

managing structured data that is designed to scale to a

very large size: petabytes of data across thousands of

commodity servers. Many projects at Google store data in

the BigTable, including web indexing, Google Earth, Google

Finance and Google App Engine… The BigTable is a sparse,

distributed, persistent, multidimensional stored map (Fay

Chang, 2006).” A row key, column key, and a time stamp form

the index to the map.

The piece of the BigTable used for comparison will be

the Google Datastore, Google’s response to Amazon Simple

DB. The Datastore is built on top of the BigTable, and acts

as an internal storage system for handling structured data.

In and of itself, the Datastore is not a direct access

mechanism to the BigTable, but can be thought of as a

simplified interface on top of the BigTable. It “gives

clients dynamic control over data layout and format (Fay

Chang, 2006).”

The Google Datastore focuses on flexibility of data.

In the Datastore objects are known as entities. And an

entity can have one or more properties. A distinguishing

feature from traditional databases is that these properties

can be more than only simple data of Strings, Integers, and

Booleans, but they can also be classes and even references

to other entities or classes. So if their needs to be a

 28

change in the data model no changes to rows or columns need

to be made only a change to the entity (Google, Datastore

Overview, 2011).

a. Benefits of the Datastore

The Datastore can perform numerous processes in a

solitary atomic operation. Within the Datastore model, an

operation cannot be considered successful unless every

process is completed. If any singular process fails or is

disrupted then the operation is terminated. In order to

deal with race conditions the Datastore uses an “optimistic

concurrency” model. Within this archetype, the first

application instance to modify an entity has control over

that entity’s data. All subsequent application instances

trying to manipulate said entity’s data will fail to submit

their changes until the initial application instance has

completed its transaction. This feature is especially

helpful when operating within a distributed network

architecture with multiple users trying to use or access

the same data. Likewise, the Datastore uses a distributed

architecture to automatically manage the scaling of large

amounts of data, known as the BigTable, described above.

Further, by using the Datastore or in effect any large

company’s computing resources, a client understands that

they are receiving a reputable, secure, and reliable

product. This is especially important in the information

technology world where it is important to deal with

trustworthy companies for data storage (Google, Why App

Engine, 2011).

 29

Now with an understanding of databases, Google

App Engine and Google Web Toolkit can be presented to show

how we took advantage of cloud computing with Not-So-

Relational Databases.

C. GOOGLE APP ENGINE AND GOOGLE WEB TOOLKIT

1. Google App Engine

As previously mentioned, the Google App Engine (GAE)

is a platform for developing and hosting web applications

in Google managed data centers. First released in April

2008, GAE uses Cloud computing technology to virtualize

applications across multiple servers. The backend piece is

the Google BigTable entitling users to the advantages of

the Google Cloud. The app engine is a free service for

users requiring less than 1 GB of storage and less than 5

million page views per month. The App Engine provides

dynamic web serving, persistent storage, automatic scaling,

APIs, and task queues for performing work outside of a web

request. It also supports common web technology and has a

development environment that simulates the Google App

Engine on a developer’s computer.

Applications running in Google App Engine run in a

secure environment, referred to as “The Sandbox,” which

controls access to the underlying Operating System. In

order to maintain the environment as secure, The Sandbox

places a few limitations on the application. The first

limitation is that an application can only access other

computers through URL and e-mail. Conversely, other

computers can only connect to the application through HTTP

requests. Secondly, applications cannot write to the file

system in any of the runtime environments. The only files

 30

an application can read are those uploaded with the

application code. Finally, an application’s code can only

be run when a web request is made, or as a queued or

scheduled task.

The App Engine features a Java runtime environment

enabling users to build applications using standard Java

technologies, such as the Java programming language. The

App Engine also provides a distributed data storage

service. This service is utilized to store SPARCCS data.

The cloud-based application manages HTTP requests from

mobile devices (Google, Why App Engine, 2011).

2. Google Web Toolkit

Google Web Toolkit (GWT) provides a developer

environment for common object-oriented code to be

repurposed and optimized into web-browser-independent

applications (Google, 2012). The toolkit is composed of

four elements: the software development kit (SDK), speed

tracer, Eclipse plug-in, and the interface designer.

Exploring each one individually will give an overview of

the application development process using GWT.

a. Software Development Kit

The GWT SDK is the backbone for writing web based

cloud applications. Most of the time spent developing

software is not the actual programming of the code but in

debugging and maintenance. This becomes exasperated when

developing cloud web applications, as each individual

workstation can run multiple operating systems and multiple

web browsers, leaving the developer spending a majority of

time modifying code to work in different environments. The

 31

GWT SDK affords the user the ability to use high level

programming languages, such as Java or Python, which are

compiled into JavaScript in such a manner as to increase

the computing speed of the program, in order to create

applications that can be run on any browser, on any

operating system. The developer no longer has to worry

about converting code to work under the variety of

different operating systems, which is a circumstance that

readily occurs in a network centric system.

Furthermore, the SDK is as intuitive as using the

normal software development process for any desktop-based

application, as you can use the same “edit-refresh-view”

cycle to see how the application is running on a

development server. This process is normally not allowable

with most web-based application building, since the program

has to be compiled then sent to the server before it can be

viewed in its entirety. Using the process enabled by GWT,

errors can be caught during development instead of at run

time. Coupled with J-Unit testing integrated from normal

Java code testing, developers save time throughout the

writing and debugging process. GWT’s intuitiveness comes

from a complier, which accomplishes a complete examination

of the Java source code, eliminating dead code and trimming

classes that are not used. As a result, the compiled code

is smaller and runs faster than if run from straight

JavaScript. The SDK also allows developers to abstract

themselves from low-level networking protocols. This makes

cloud application programming easier and more accessible to

the average programmer. Being well versed in

XMLHttpRequests (XHR) calls used for client server

 32

communication are no longer an issue because the GWT

innately handles the client-server communications (Google,

2012).

b. Speed Tracer

GWT’s Speed Tracer is the next step in

optimization for applications running in a cloud computing

system. Speed tracer is a development tool to aid in the

recognition and resolution of performance issues in

applications. It uses visual standards that are taken from

low-level points of the browser and analyzes them. The

information is displayed on a browser page using visual

charts and graphs as well as tabled statistical data that

is easy to understand and compare. By using the Speed

Tracer the developer can get an enhanced look at what the

application is doing during run time. With this information

an overall picture can be developed on how much time the

application spends doing each operation, allowing the

developer to delve into optimized programming methods for

speedup across platforms. “Problems caused by JavaScript

parsing, layout, CSS style recalculation and selector

matching, DOM event handling, network resource loading,

timer fires, XMLHttpRequest callbacks and painting” can

easily be found and rectified enriching the overall cloud

computing experience (Google, 2012).

 33

Figure 3. Google Speed Tracer

 Figure 3 is a screen capture of the speed tracer in

progress. The important portions are noted with the labels.

The toolbar allows the user to record reset and save

information, as well as view and manipulate the graph data.

The timeline graph allows the user to see information as it

happens in real time as well as analyze network and program

data from the past. The overview graph displays all of the

network information about the program since its last post

to the cloud. The details panel is the most helpful, as it

goes into detail about specific events happening in the

program. Most notably is the hints section, which helps

 34

recognize common errors in the application and helps

provide common software engineering solutions if possible

(Google, 2012).

c. Eclipse Plug-in

 GWT is simply packaged in an easy to install and

use Eclipse plug-in. This allows the developer to use all

the tools of the toolbox bundled in an IDE instead of hand-

writing code, terminal compiling, loading the code to a

separate server, then accessing the server to run the

application. By using the IDE, the developer is already in

an intuitive programming environment that has been well

established with technical support. Now code can be quickly

designed in an IDE instead of working in tedious terminal

windows and text editors with no specific code hierarchy.

This allows the developer to focus on application soundness

and more efficient code generation (Google, 2012).

d. User Interface Designer

The final piece of the GWT tool kit is the User

Interface Designer (UID). It allows for bi-directional Java

user interface design, meaning that the program’s user

interface can be created and source code populated or

source code can be written then viewed in the designer.

This drastically reduces the time expended creating user

interfaces, since the developer can use “drag-and-drop”

techniques to place design items exactly where the designer

wants without having to hardcode all of the elements.

Moreover, all code, not just special portions of code, can

be edited in the source code if desired. The UID also

allows for the custom creation of panels and composites

 35

that can be packaged and reused in future projects, instead

of being restricted to predesigned modules (Google, 2012).

Although this capability of the GWT UID is available to all

GWT users as a separate plug-in, it was not used in this

thesis.

e. Conclusion

We believe that PaaS is the future of Cloud

Computing. As a developer trying to make full use of the

Cloud’s offerings in a competitive environment, we think

that the Google App Engine is a suitable development

environment because it is robust, affordable, and highly

scalable platform for implementing the cloud based web

application for our thesis.

Android is the next piece of the system

architecture; it runs on the smartphones used in the

SPARCC’s environment.

D. ANDROID OPERATING SYSTEM

Android is a Mobile Operating System (OS) developed by

the Open Handset Alliance and purchased by Google in 2005.

It has grown in popularity in recent years, reaching a

36% market share of smartphones at the end of the first

quarter in 2011 (Meyer, 2011). The popularity of the device

is of extreme significance because it means many responders

will already have them and are familiar with its user

interface and functionality. Furthermore, U.S. officials,

and the military as a whole, have plans to receive Android

devices capable of handling classified material this year

(Milian, 2012).

 36

There are many key components of Android with relation

to developing a collaborative-map mobile application. For

instance, a camera and microphone, coupled with media

support for common audio, video, and still-image formats,

provide a variety of methods for information input. In

addition, GPS and accelerometer hardware can provide

important data concerning the location and current action

of the user carrying the device. Depending on the device

and location, Android supports Bluetooth, EDGE, 3G, 4G,

GSM, and Wi-Fi, providing a variety of means for sharing

collected information in the field. Likewise, it is multi-

channeled and on multiple carriers. This allows for a

greater range of use depending on the cell towers in the

area in which the devices are being used.

The Android OS comes with an embedded database called

SQLite. SQLite distinguishes itself from other databases in

the sense that it does not have a separate server process;

it reads and writes directly to disk files, where a

complete database is stored in a single disk file. Using

SQLite we are able to sync SPARCCS information on the phone

with information uploaded to the cloud.

Compared to other operating systems, Android offers

the most user-friendly development process. As evidenced by

Angelos Stavrou, “the government chose to work on Android

first because Google already allows people to tinker freely

with its code” (Milian, 2012). Mr. Stvrou is the

information-security director at George Mason University

who is working on the government project to bring Android

smartphones to the U.S. military. He is further quoted

saying “Android was more cooperative in supporting some of

 37

the capabilities that we wanted to support in the operating

system, whereas Apple was more averse” (Milian, 2012).

Likewise, all Android applications are programmed in the

Java programming language and developers are able to use

device hardware, access location information, run

background services, set alarms, add notifications, and

more. Developers have access to all the APIs used by the

core applications. In addition to Java, Android includes a

set of C/C++ libraries used by various components of the

system. Programming takes place in the Eclipse IDE, while

code-execution can take place on either a device emulator

or an actual device. Unlike iPhone, Android does not

require developers to pay an annual fee.

All in all, Android Operating System is a very capable

smartphone system, which allows for the customization and

security considerations that fit military smartphone

application development. The smartphones using the Android

Operating System and the web-based cloud application

communication communicate via HTTP Web Services, described

in the following section.

E. WEB SERVICES

The latest definition of Web Services, as defined by

W3C Working Group, is “a software system designed to

support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine—

processable format (specifically WSDL—expand WSDL). Other

systems interact with the Web service in a manner

prescribed by its description using SOAP messages,

typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards” (W3C Working

 38

Group, 2004). In simple terms, it is how two different

software applications may communicate with each other

across the Internet. Web Services are not concrete pieces

of software; instead, they are abstractions or agents, the

actual pieces of hardware and software and the acting

forces behind web services. In order for two agents to be

able to communicate they must agree upon a web service

description or WSD, and web service semantics. “They define

the message formats, data types, transport protocols, and

transport serialization formats that should be used between

the requester agent and the provider agent…[as well as] the

shared expectation about the behavior of the service” (W3C

Working Group, 2004). The engagement between a web service

provider and a web service requester is detailed in Figure

2. When both parties become known to each other they can

agree on web semantics and definition. Then, through a

request and provider agents, the two parties are able to

communicate with each other across the Internet.

Figure 4. Web Services

 39

For the purposes of the SPARCCS project we chose to

implement the semantics and definitions followed under

simple HTTPPosts and HTTPRequests using HTTP Servlets for

Android to server communications and Remote Procedure Calls

for web-client to server communications. This is because

these methods were proven services that would be able to

transfer both text and media to and from the database on

the server.

F. SUMMARY

This chapter details the role of cloud computing and

Not-So-Relational Databases as the backbone structure for

the SPARCCS infrastructure. It shows how this new

technology is more flexible and versatile than the old

client-server model using traditional relational databases.

Furthermore, using the cloud model allows for a sounder

software engineering approach to our system of systems.

Within the architected model we take advantage of, the

openness and versatility of the Android operating system,

the reliability and robustness of the Google App Engine,

and the simplicity and consistency of HTTP web services to

create the SPARCCS system. The next chapter will detail our

system, with an overview of key features and software

engineering highlights to fully show the development

process.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. SPARCCS IMPLEMENTATION

Having discussed the history of Common Operational

Picture systems, as well as the technology utilized in our

Smartphone Assisted Readiness, Command, and Control System,

we will now explain the functionality of the system and

proper use. The first section of this chapter will describe

a sample scenario, followed by key features of SPARCCS and

then the overall system architecture. The following

chapters will go into detail of both the web browser based,

and Android based systems, respectively. For visualization

convenience we have provided several screen shots of the

various screens a user will encounter using either system.

A. OVERVIEW

1. A Sample Scenario

The implementation of SPARCCS focuses on creating a

COP that can be used by those in a central command post as

well as members responding to circumstances in the field. A

sample scenario for SPARCCS is as follows:

A crisis situation or military mission has arisen and

several teams have been sent into the field at once to

respond. Each member of the corresponding teams has an

Android smartphone running the SPARCCS mobile application.

The team members are capturing information relevant to

their situation and sending their information from their

smartphones to their team leaders’ phone. The leaders of

these teams gather the information and send relevant

information back to the team members, if needed, and to the

SPARCCS command center cloud application. This information

 42

feed forms the basis of situational awareness in the

command center. The command center assembles the feeds from

the numerous group leaders and displays them for the

decision makers to see what is going on in the field, and

sends back relative information to the team leaders to

disseminate to their teams. In doing this, the central

command as well as the operational teams can be more time-

efficient and better coordinate limited resources.

2. Key Features

SPARCCS implements several key features making it a

robust, practical system. These features are as follows:

• Login requirement to prevent unauthorized access

to the system.

• The ability to create, join, edit, and view

missions.

• The ability to create, edit, view, and delete

points of interest.

• The ability to capture, edit, view, and delete

images.

• The ability to view all missions, points of

interest, and images on a map.

• The ability to view all mission, points of

interest, and responder information in a list

format.

• The ability to retrieve smartphone GPS location

for the placement of missions, points of

interest, and images.

 43

• The ability to store all relevant information in

the Android’s local SQLite database, or the cloud

database.

• Syncing between the Android and cloud databases.

These functionalities will be discussed in depth in

the following sections of this chapter.

3. Architecture

The SPARCCS program consists of over fifty classes and

over 75,000 lines of code. Although it is a large program

it is a fairly simple architecture in implementation. The

system centers around four main entity classes: Responders,

Missions, Points of Interest and Images.

• The Responder class contains information about

individuals reacting to operations around the

world, as well as those operators working within

the central command. The Responder class consist

of the following notable data members: Id, First

Name, Last Name, Middle Initial, Login, Password,

Type (Military, Fire, Medical, Humanitarian

Assistance or Law Enforcement), Unit, Phone

Number, Email Address, IP Address, Associated

Mission, Latitude and Longitude.

• The Mission class contains information about an

operation responders are reacting to around the

world. The Mission class consists of the

following notable data members: Id, Name,

Description, Start Date, End Date, Latitude,

Longitude, Mission Leader, Mission Creator, and

Miscellaneous Information.

 44

• The Point of Interest class contains information

about a particular place, person or item of

significance that corresponds with an associated

mission. The Point of Interest class consists of

the following notable data members: Id, Name,

Description, Time, Creator, Correlating Mission,

Location Notes, Latitude and Longitude.

• The Image class contains a picture and

corresponding information for that picture. The

Image class consists of the following notable

data members: Id, Name, Description, Creator,

Time, Correlating Mission, Correlating Point of

Interest, Location Notes, Latitude and Longitude.

Theses classes can be viewed individually in a list

format or can be plotted on a Google Map. Instances of

these classes are saved on a Google Cloud Database that is

accessed from both the cloud application, and the Android

mobile application. Using CRUD (Create, Read, Update and

Delete) operations through HTTP Servlets on the Android

client and Remote Procedure Calls on the web client,

instances of these classes can be manipulated.

 45

Figure 5. Android System Architecture

Figure 5 represents the overall system architecture

from the Android perspective. The client is the Android

mobile application. The client can request/send class

information via an HTTP Request. (1) The HTTP request

interacts with the HTTP servlets using HttpServlet

Requests. (2) These servlets form Java components in our

case Objectified Data objects (3) to perform CRUD

operations with cloud database also known as the Google

Datastore explained in Chapter III. (4) The servlets then

create the appropriate HTTP Servlet Response (5) back to

the requesting client. (6) The information is then

displayed in the client.

 46

Figure 6. Web Client System Architecture

Figure 6 represents the overall system architecture

for the web client perspective. The only difference being

remote procedure calls are used instead of the HTTP posts

and requests to retrieve and send information from the

Cloud Database.

Figure 7. System Architecture

 47

Figure 7 represents the full system architecture. It

demonstrates the flow between both client applications and

how they interact with the server to retrieve and send

information in the entity classes.

The following sections of this chapter will further

detail the workings of each client application as it

interacts within the overall SPARCCS architecture.

B. CLIENT IMPLEMENTATION FLOWS

1. Cloud Application

a. Login Screen

The cloud application begins on the login screen

shown in Figure 8. From here the user can log into the

application or register as a new SPARCCS user. If the user

decides to register as a new user they must put in all of

their responder information and they will be given a user

name consisting of their first initial, middle initial and

last name. If there are matching names the login string is

extended by a number based on when they registered.

Figure 8. Login Screen

 48

b. Initial Screen

Once the user is logged-in they are taken to the

main interaction screen shown in Figure 9. On the large

right hand panel of the screen is the user map. It is

centered on the user’s current location. Also displayed on

the map are all the current missions, points of interest,

responders, and images. On the left panel of the screen is

a navigation panel that opens to a list of all of the

missions. The navigation panel also contains other panels

for further information that we will detail later in this

section.

Figure 9. Main Interaction Screen

On the top of the screen is an anchor that has

the user login. If this anchor is clicked information about

the current logged-in user is displayed, as shown in Figure

10. From this panel the user can edit their information as

 49

well as logout of the program. At the bottom of the screen

is another anchor containing a timestamp for the last time

the client was updated. If this anchor is clicked the

application will update itself and the timestamp will

change accordingly.

Figure 10. Responder information

From the main screen the user can choose to

interact with the map directly or interact with each of the

navigation panes. Interacting with either the map or the

navigation panes will update the opposite interaction tool

so the user does not have to worry about inputting

information twice. Next we will go through all the panels

within the navigation pane and describe how each pane

interacts with the map and how the map interacts with the

navigation panes.

 50

c. Missions Panel

The Missions panel contains a list of all of the

missions contained in the application. The initial

information that can be seen is the name, creator, start

date and end date. The creator of the mission is the

responder’s login to keep the names short for the display.

However, if the creator’s login is “moused-over” then the

full name of the mission creator will be displayed in a

small pop-up panel. The mission name is an anchor. If this

anchor is clicked then the mission’s description will show

up below the mission’s information along with a second

anchor that says “more…” If this anchor is clicked then all

the mission information will be displayed along with an

option to edit or remove the mission if the currently

logged-in user is the creator of the mission. This sequence

is displayed in Figure 11.

 51

Figure 11. Display Mission Sequence

There is also a globe button associated with each mission

in the list. If this button is pressed then the mission

along with essential mission information will be displayed

on the map, as depicted in Figure 12. If the bubble on the

map is expanded then all of the mission information will be

displayed, as shown in Figure 13. Within this expanded

bubble are links to see corresponding responders, points of

interests, and pictures on the map at the same time. Once

these associations are displayed on the map the user can

click on them to get their corresponding information, as

seen in Figure 14.

 52

Figure 12. Initial Mission on Map

Figure 13. Expanded Mission Information

 53

Figure 14. Mission Associations on Map

d. Add/Mission Options Panel

Figure 15. Add/Mission Options Panel

 54

The Add/Mission Options Panel shown in Figure 15

allows the user to manually add a mission to the list,

provides mission list display options, shows all missions

on the map, and shows mission statistics. From this panel

the first option is a button for the user to add a mission.

Clicking this button brings up a mission form for the user

to input mission information, as displayed in Figure 16.

The mission must have a name, valid location, and start

date (the end date does not have to be known at the time of

creating the mission).

Figure 16. Create New Mission Panel

The next option for the user changes the way the

missions are sorted in the Missions Panel. The user can

choose to sort missions by order created, mission creator

 55

login, mission start date, and mission end date. The next

option the user has from this panel is to display all the

missions on the map at once. This will clear the map of any

overlays and display all of the current missions on the

map. These missions are all clickable to see the mission

information as shown in the figures above.

After the mission options are the mission

statistics. The mission statistics show the current number

of missions (this is the number of missions whose end date

is after the current date), the number of finished missions

(this is the number of missions whose end date has passed

the current date), the total number of missions, and the

number of missions created by the user who is logged in.

e. Points of Interest Panel

The Points of Interest Panel is much like the

Missions Panel. It displays a list of all the Points of

Interests. The list contains an anchor for the Point of

Interest name, the time when the Point of Interest was

created, the Mission with which the Point of Interest is

associated, the creator, and a button that will show the

Point of Interest on the map. Since the creator name is

actually the creator login, for ease of identification the

user name can be moused over to see the creator’s full

name. Like the mission panel if the Point of Interest’s

name anchor is clicked then the Point of Interest’s

description is displayed in the list with a second anchor

that says “more…” If this anchor is clicked then a panel is

displayed with all the Point of Interest’s information. If

the creator of the Point of Interest has clicked on the

 56

anchor then he/she has the option to edit or remove the

Point of Interest. This flow is demonstrated in Figure 17.

Figure 17. Point of Interest Flow

The globe button allows the user to see the Point

of Interest on the map as shown in Figure 18. If this

button is pressed then the Point of Interest along with its

essential information will be displayed on the map, as

 57

demonstrated in Figure 19. If the bubble on the map is

expanded then all of the Point of Interest’s information

will be displayed. Within this expanded bubble are links to

see corresponding responders, missions, and pictures on the

map at the same time. Once these associations are displayed

on the map the user can click on them to get their

corresponding information, as displayed in Figure 20.

Figure 18. Point of Interest on Map

 58

Figure 19. Expanded Point of Interest Information

Figure 20. Point of Interest Associations on Map

 59

f. Add/Point of Interest Options Panel

Figure 21. Add/Point of Interest Options Panel

The Add/Point of Interest Options Panel shown in

Figure 21 allows the user to add a Point of Interest to the

list, access Point of Interest list display options, show

all Points of Interests on the map, and show Point of

Interest statistics. From this panel the first option is a

button for the user to create a Point of Interest. Clicking

this button brings up a Point of Interest form displayed in

Figure 22 for the user to input Point of Interest

information. The Point of Interest must have a name, valid

location, and a correlating mission.

 60

Figure 22. Create New Point of Interest Panel

The next option is for the user to change the way

Points of Interests are sorted in the Point of Interest

Panel. The user can choose to sort Points of Interests by

order created, creator, time of interest, and correlating

mission. The next option the user has from this panel is to

display all the Points of Interest on the map at once. This

will clear the map of any overlays and display all of the

current Points of Interest on the map. These Points of

Interest are all clickable to view their information as

shown in the figures above.

After the Point of Interest options are the Point

of Interest statistics. The statistics show the current

number of Points of Interests created on the current day,

past Points of Interest (this is the number of Points of

 61

Interest whose time stamp is before the current date), the

number of future missions (this is the number of Points of

Interest whose time stamp is ahead of the current date),

the total number of Points of Interests, and the number of

Points of Interests created by the user who is logged in.

g. Responders Panel

The Responders Panel contains a list of all the

Responders in the SPARCCS system. The list contains the

Responder’s login anchor, type, unit, associated mission,

and a graphic to indicate if the responder is logged into

the system. Since only the Responder’s login is shown if

the login is moused over then the user is able to see the

Responder’s full name. Like the Mission and Point of

Interest Panels, if the login anchor is clicked-on then the

Responder’s unit and e-mail is displayed along with an

anchor that says “more…” If this anchor is clicked-on then

a panel containing all of the Responder’s information is

shown. This flow of information is illustrated in Figure

23.

 62

Figure 23. Responder Information Flow

Likewise, there is a globe button associated with

each Responder. If clicked, the Responder will display on

the map with a bubble containing the Responder’s essential

information, as shown in Figure 24. If the bubble on the

map is expanded then all of the Responder’s information

will be displayed as displayed in Figure 25. Within this

expanded bubble are links to see corresponding missions and

pictures on the map at the same time. Once these

associations are displayed on the map the user can click on

 63

them to get their corresponding information, as

demonstrated in Figure 26.

Figure 24. Responder on Map

Figure 25. Expanded Responder Information on Map

 64

Figure 26. Responder Associations on Map

 65

h. Responder Options Panel

Figure 27. Responder Options Panel

The Responder Options Panel in Figure 27 provides

the user the option to sort the Responders list, show all

the Responders on the map, and show Responder statistics.

From this panel the first option is to sort the Responders.

Responders can be sorted by order created, login, type or

associated mission. The next option is to display all the

Responders on the map at once. This will clear the map of

any overlays and display all of the current Responders on

the map. All of these Responders are clickable, enabling

the user to see their information as shown in the figures

above.

 66

i. Photos Panel

The Photos Panel in Figure 28 consists of three

main sections: the Missions section, the Point of Interest

section, and the Responders section.

Figure 28. Photos Panel

The Mission section contains three radio buttons

and a list box. The radio buttons enable the user to add an

Image to a selected Mission from the list box, see an Image

from a selected Mission from the list box, or to see all

Images from all Missions.

To add an image to a selected mission the user

must select a mission from the list box then select the

 67

radio button that says “Add Image to a Mission.” This will

bring up a photo form to be filled in by the user. In order

to create an Image the user must enter a title,

description, valid location, and valid picture type. Once

the picture is uploaded the picture will display in the

bottom portion of the form with a label containing the

Mission name to which the Image was associated. This flow

is illustrated in Figure 29.

Figure 29. Create Image Flow

To see Images from a mission the process is

similar. The user must select a Mission from the list box

then select the radio button that says “See Images From a

Mission.” This will bring up a photo gallery with

 68

thumbnails of all the images from the mission as shown in

Figure 30. If an Image in the photo gallery is moused-over

then a small popup will display the Image’s description. If

the thumbnail of the Image is clicked-on then a second

window will display with the Image in its full size with

all its corresponding information, as displayed in Figure

31. If the current user created the mission then the user

will have the option to delete the Image.

Figure 30. Pictures From Mission

Figure 31. Individual Mission Picture

 69

There is also a globe button on this panel that

will allow the user to show the Image’s location on the map

with a bubble containing all the Photo’s essential

information as seen in Figure 32. If this bubble is

expanded the user will again be able to see all the Image’s

information, with anchors to see links to the Image’s

associations on the map as shown in Figure 33.

Figure 32. Picture on Map

 70

Figure 33. Expanded Image Information

To see all Images from all Missions the user

simply clicks on the radio button “See all Mission Images.”

This will bring up a photo gallery containing thumbnails of

all the Images associated with all missions as seen in

Figure 34. The same actions from within the photo gallery

apply.

Figure 34. Photo Gallery of All Mission Pictures

For all photo galleries there is an anchor for a

slideshow in the top right corner. This will allow the user

 71

to see the Images from the photo gallery in a larger

slideshow with all of the Images’ information displayed at

once as demonstrated in Figure 35.

Figure 35. Photo Slideshow

The Point of Interest Photo section operates in

the exact same way as the Mission section. The user is able

to add Images to Points of Interest, see Images from a

selected Point of Interest, and see all Images associated

with a Point of Interest in the same manner as described

above. The Responder section also operates in the same

manner, with the exception that the user cannot add photos

in this section. The user can only view Images from a

selected Responder by selecting the Responder’s login from

the list box.

 72

j. Map Options Panel

Figure 36. Map Options Panel

The Map Options Panel, shown in Figure 36, is the

final panel available for selection. This panel contains

options for operating within the map portion of the

application. The panel is split into three sections. The

first Section allows the user to see all Missions, Points

of Interest, Responders and Images on the map at one time

in the same manner as when the application opens. The

second portion of the panel contains three buttons that

allow the user to create a Mission, Point of Interest or

Image from a position the user has selected on the map. If

any one of these buttons is clicked the corresponding

 73

creation form, as shown earlier, will be displayed with the

latitude and longitude boxes already filled in with the

coordinates of the position the user clicked on the map.

The third portion of the screen, as shown in Figure 37,

displays a detailed geo-location as well as the latitude

and longitude from a position selected on the map. Also if

the user would like to clear the map of all overlays the

user can click the clear button at the bottom portion of

this section.

Figure 37. Current Position Information

k. Map Pane

The Map Pane is consists of the right hand potion

of the application taken up by a Google Map. There is a

division between the map and the navigation panel on the

left that can be adjusted to see more or less of the map as

the user requires. The right hand navigation pane will

adjust to these increases and decreases in width to remain

readable. The user may have the map take up the whole

screen. The map contains large controls both on the top

right and the top left. The controls on the top right

enable to user to zoom in and out on a current position as

well as drag the map to a particular location. The controls

on the top right enable the user to select the type of map

 74

to use. There are four options: the standard map containing

roads and landmarks, the satellite map produced from

satellite imagery, the terrain map showing basic

topographic features, and the hybrid view overlaying street

names on the satellite view. If the map is clicked in any

view at any time the map will provide an overlay at the

location clicked with latitude and longitude and, if

available, further geocoded information of the position

selected. In addition to the information on the positions,

anchors are provided that allow the user to create

Missions, Points of Interest, or Images, as displayed in

Figure 38. The same respective forms will show up as shown

in the Figures above, the only difference being that the

latitude and longitude text fields will be filled in from

the position clicked on the map.

Figure 38. Position on Map

2. Android Client

a. Login Screen

Like the cloud application, the Android

application begins on the login screen shown in Figure 39.

To prevent the operation of the application in non-logged-

 75

in mode, the login screen cannot be closed without either

logging in, or exiting the program.

The Login screen contains two fields and three

buttons. One field is for the user name and the other is

for the password. The three buttons are marked “login,”

“create account,” and “cancel.” The login button sends the

username and password to the cloud server. A successful

combination of the two prompts the cloud server to send

back all of the user information associated with the login

name. The cancel button simply exits the program. The

create account button opens another form, as shown in

Figure 40. The form contains fields for first, middle, and

last name, unit, phone number, e-mail, and a spinner for

responder type. The create user form has two buttons on the

bottom, a save button and an exit. Both buttons cause a

return to the previous screen, but pressing the save button

sends all the entered data to the server. If an account is

successfully created the user’s new username will be

 76

visible in the username field of the login screen. The

username consists of the user’s first and middle initial,

their last name and a number if a similar username alread

exists. Currently this process is done autonomously at the

cloud server but future versions of SPARCCS should include

some sort of authentication to prevent unauthorized access

to the system.

Figure 39. Create Account Form

Upon logging in and receiving the user data back

from the server, the application checks the user

information to make sure the user is part of a mission and

that the user’s mission still exists. If so, the user is

taken to the main screen. If not, a dialog box opens

informing the user that they are not part of a mission

shown in Figure 41. The dialog box contains two buttons,

one allowing the user to create a new mission, and one

allowing the user to join an existing mission.

 77

Figure 40. No Mission Dialog

b. Main Screen

 Once the user is logged-in and it is verified

that they are part of a mission, they are taken to the main

interaction screen, shown in Figure 42. The screen is

simply a Google Map view with a radio button in the top

right corner for toggling between map and satellite mode.

Users have the ability to change the map center by placing

one finger anywhere on the map and dragging it in any

direction. Users are able to zoom in on an area of the map

by placing two fingers on the map and dragging them apart

from one another. Conversely, placing two fingers on the

map and dragging them together zooms out.

 78

Figure 41. Main Interaction Screen

c. Menu Button

Unlike the web application, screen space is very

limited on the mobile application. For this reason, apart

from the map/satellite radio button, there are no specific

function buttons on the screen. Pressing the Android menu

button accesses all other functionality. Pressing this

opens a menu at the bottom of the screen with four options:

users, points of interest, missions, and images. This

options menu is displayed in Figure 43.

 79

Figure 42. Main Screen With Options Menu

Pressing any of these four buttons will open a

submenu. The submenu items available after pressing the

responder button, shown in Figure 44, are “My Info,” which

opens a responder form, and “List,” which opens a list view

of all users. After pressing the point of interest or the

mission button, shown in Figure 45 and 46, the options are

“New,” which opens either a new point of interest or

mission form, and “List,” which opens a new list view. The

camera button sub items, shown in Figure 47, are “From

Gallery,” which takes users to their picture gallery, and

“Take,” which opens the device’s camera.

 80

Figure 43. User Submenu Options

Figure 44. Point of Interest Submenu Options

Figure 45. Mission Submenu Options

Figure 46. Image Submenu Options

d. Missions

Missions can be created, joined, viewed or edited

by a user; but only a system administrator can delete a

 81

mission. Creating a mission can be done one of two ways:

either by pressing the create mission button on the dialog

that opens when a user without a mission logs-on, or by

pressing the menu button, followed by the mission menu

button, and then the new button.

The new mission form, shown in Figure 48, has

three fields: the mission title, the mission description,

and any miscellaneous mission information. In addition,

there are buttons, labeled “Start date” and “End date.”

Pressing either of these buttons opens a date picker dialog

that allows users to select a date.

Figure 47. Mission Form

At the bottom of the form, under the label

“Location:,” there are three additional buttons labeled

“Current Location,” “Choose Location,” and “Cancel.”

Pushing any of these buttons returns the user to the

initial screen. If the “Current Location” button is pressed

the system places a blue shield marker at the current

location of the device. It also opens a menu asking the

 82

user if they would like to save the mission, choose a new

location, or cancel. If the user had pressed the “Choose

Location” button the system starts an “on-tap-listener” and

will place a marker at the location of the next tap on the

map. Following the marker placement, the menu opens asking

if the user would like to save the mission, move the

mission location, or cancel mission creation. This menu can

be seen in Figure 49. Had the user pressed the “Cancel”

button from the mission form all mission information would

be discarded.

Figure 48. Mission Save Options

Once a mission is created it can be viewed in two

ways. The first, and usually the simplest, is to tap on the

mission icon from the map. Mission information can also be

viewed by pressing the menu button, followed by the mission

menu item, followed by the list submenu item and finding

the mission title. A screen shot of this is shown in Figure

50. Performing either of these actions will reopen the

mission form with the mission’s information filled-in. The

 83

mission form has two additional entities: a spinner

containing the mission members with the mission leader

selected, and a field indicating the mission creator.

If the user viewing the mission is the mission

leader the user has the ability to edit the mission

description, dates, or miscellaneous data fields, or switch

the mission leader to another member in the mission. In

this case, there are two buttons on the bottom, one to save

changes and one to cancel any changes that may have been

made. If the user is not the mission leader but a member of

the mission, there is only one button at the bottom to take

the user back to the initial screen. Finally, if the user

viewing the mission is not a member of the mission there

are three buttons at the bottom. The first, “Show Entities

On Map,” will result in the system displaying all

associated points of interest and image markers on the map.

The second button, “Join Mission,” switches the user’s

current mission to the one being viewed. The final button,

“Back,” returns the user to the initial screen with no

changes being made.

 84

Figure 49. View Mission Form

e. Points of Interest

Pressing the menu button, followed by the POI

button, and the new button creates Points of Interest. Once

this has been done the application calls a new activity

containing the Point of Interest form, shown in Figure 51.

The Point of Interest form has three fields: POI Title, POI

Description, and Location Notes. On the bottom of the form,

under the text “location,” there are three buttons:

“Current,” “Choose,” and “Cancel.” Pressing “Cancel”

discards the point of interest and returns to the main

screen. Pressing “Current” retrieves the user’s location

and returns to the main screen where the map is centered on

a flag placed at the device’s current location. Pressing

the “Choose” button also returns to the main screen,

 85

however, the next time the screen is tapped a flag will be

dropped at the location of the tap.

Figure 50. Point of Interest Form

Once a flag is dropped, either from pressing

current location or tapping the screen, a new menu opens at

the bottom of the screen. The menu, shown in Figure 52,

give’s users the opportunity to save the POI, move its

location, or cancel the action. Pressing “save” adds the

point of interest information into the phone’s local

database, as well as adding it to a queue of information to

be sent the next time the phone connects with the server.

 86

Figure 51. Point of Interest Save Options

The Point of Interest information form, shown in

Figure 53, can be called in two ways. The first is by

finding the point of interest on the map and clicking on

its icon. The second is by finding the point of interest in

the list view. Either way, the device presents the point of

interest form filled in with the point of interest’s

information. The form additionally has fields for time

created, creator, and associated mission. There is also a

list view containing the name of any image associated with

the point of interest. Clicking on any of these items will

open an image form.

If the user viewing the point of interest is the

user that created it he will have the ability to edit the

 87

point of interest’s description and location notes or

delete the point altogether.

Figure 52. View POI Form

f. Images

Images can be entered into the system in two way:

either by capturing an image with the device’s native

camera, as seen in Figure 54, or by selecting a previously

captured image from the photo gallery, shown in Figure 55.

This option is presented to users by pressing the menu

button followed by the image menu item. When an image is

captured it is saved as a .tmp file in the applications

folder. The path to the image is saved in ImageClient class

and will be used to access the picture until it is uploaded

to the server. Once the image is successfully uploaded it

 88

is assigned a URL for accessing the picture and the .tmp

file is deleted.

Figure 53. Android Native Camera

 89

Figure 54. Android Photo Gallery

 Immediately following either capturing a picture or

choosing one from the gallery, the image form is opened,

shown in Figure 56. The image form displays the image at

the top of the form, and beneath it there are forms for

entering the image name, description, and location notes.

There are, additionally, three buttons for indicating the

image location. Users have the choice of placing the image

at their current location, choosing a location on the map,

or associating the image with a point of interest. The

first two options will place a camera icon on the map at

the location designated. The third option does not place an

icon on the map. Either of the first two options will open

an image “save option” menu giving the user the choice to

save the image, move the image’s location, or cancel the

image creation. This menu option is shown in Figure 55.

 90

Figure 55. Image Form

Figure 56. Image Save Options

 91

Images can be viewed by either tapping on the

image’s icon, or if associated with a point of interest, by

opening the point of interest form and clicking on the

image title under the label “Associated Images.” Viewing an

image reopens the image form, shown in Figure 58, with

additional fields for the image’s associated mission, point

of interest, and the image creator. If the user viewing the

image is the image creator she has the ability to edit the

image description and location notes or to delete the

image. Images are not stored locally on the device for

memory constraint reasons. Instead, each image is assigned

a URL when it is uploaded to the server and the local .tmp

file is deleted, however locally generated images remain in

the user’s gallery. When a user opens an image form for

viewing an image the system downloads the image from the

server then displays it on the form.

Figure 57. View Image Form

 92

g. Users

User information can be viewed by pressing the

menu button, followed by the user menu item, followed by

the list sub-item then selecting a user. Once this is done,

the user form is opened filled-in with the user’s

information. The form has fields for first, middle, last,

and user name; as well as unit, current mission,

classification (military, fire protection, law enforcement,

medical corps, or humanitarian assistance), e-mail, and

phone number. Clicking the done button at the bottom of the

form returns the user to the list view.

By pressing the menu button, followed by the user

menu item, and the “my info” submenu item, a user can view

and edit their own information, as shown in Figure 59.

Editable fields include the user’s unit, e-mail, and phone

number.

Figure 58. View User Form

 93

h. List Views

List views are available for Responders, Points

of Interest, and Missions. Pressing the menu button,

followed by the desired menu option, and then the “list”

submenu item, accesses these lists views. Initially, each

list view starts by sorting the items alphabetically by

name. However, each list view has different options for

sorting items. The options for sorting missions, shown in

Figure 60, include by name, by start date, by end date, and

by leader. In the “point of interest” list view, shown in

Figure 61, options include by name, by mission, by creator

and by creation time. Finally, the options for sorting

users, shown in Figure 62, are by name, by mission, by

unit, and by type.

Figure 59. Mission List View

 94

Figure 60. Point of Interest List View

Figure 61. User List View

 95

i. SQLite Database

All information, aside from images, is stored

locally on the phone’s native database. When the

application is run for the first time on any device, the

system creates a database with 15 tables. The tables are as

follows:

• responder – stores the list of all

responders in the system.

• pointOfInterest – Stores the list of all

points of interest in the system.

• sendPointOfInterest – Stores the list of

locally created points of interest that have

yet to be uploaded to the Server.

• editPointOfInterest – Stores the list of

locally edited points of interest that have

yet to be modified in the server.

• mission – Stores the list of all missions in

the system.

• sendMission – Stores the list of locally

created missions that have yet to be

uploaded to the server.

• editMission – Stores the list of locally

edited missions that have yet to be modified

in the server.

• image – Stores the list of all images in the

system.

 96

• sendImage – Stores the list of all locally

created images that have yet to be uploaded

to the server.

• editImage – Stores the list of all locally

edited images that have yet to be modified

in the server.

• myInfo – The same setup as the responder

table, but only holds the information for

the current user.

• deletePointOfInterest – Stores the point of

interest identifiers for locally deleted

points of interest that have yet to be

deleted from the server.

• deleteImage – Stores the image identifiers

and associated blob keys (URLs) of locally

deleted images that have yet to be deleted

from the server.

• viewMission – Stores a list of mission

identifiers whose entities the user would

like displayed on the map.

• lastLogin – Stores the username of the last

user logged-in so they don’t have to reenter

their username each time they log in.

j. Syncing

Upon successful login to the system, a

synchronization thread is created. The constructor of the

thread does an initial pull from the server retrieving all

users, missions, images, and points of interest and

 97

inserting them into the database. Once this is done, a run

function is called that starts a loop that will continue

until the program is exited. The first operation of this

loop is to update the responder information. While

currently this would only be required if the user

information has changed, having it done every time will be

helpful when blue force tracking is integrated into the

system.

After updating the user information, the loop

pulls the list of missions to be sent from the database.

Each time a mission is successfully uploaded to the server

it is removed from the sendMission table of the database.

If there are no new missions to be sent this section is

skipped. This process is then repeated for Points of

Interest to be sent, Images to be sent, Points of Interest

to be deleted, Images to be deleted, Points of Interest to

be edited, Images to be edited, and Missions to be edited.

Following the upload of all new information the

system does another pull for all Responders, Missions,

Images, and Points of Interest. Their corresponding tables

are cleared in the database and the new information is

added. To prevent new entities from disappearing in the

unlikely event that they were added between upload and

download, the system checks the send tables and adds their

information to the regular tables as well.

Once the sync is complete and the new information

is entered into the database, the thread sends a message to

the application, via a message handler. The message simply

indicates that synchronization has been completed,

prompting the application to update the map overlays.

 98

Finally, the thread enters a sleep period. For testing

purposes this sleep has been set to thirty seconds. Through

field test, an appropriate sleep period should be

determined to maximize battery life while minimizing lag

time.

C. CONCLUSIONS

In conclusion, the web based cloud application and the

Android application take relevant information and present

it in an easy to use visual manner. The user can glance at

a map or get a more detailed list view of any pertinent

information for the operational picture. In the end, the

commander and his staff at the headquarters station needs

only to bring up a web browser to have a common operational

picture for all the operations in their command. For

soldiers operating in the field, they only need an Android

phone to maintain situational awareness.

 99

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

The Smartphone Assisted Readiness, Command, and

Control System provides an excellent tool for creating a

common operational picture. Users are not only able to

constantly view a map of their operating environment, but

they are given the ability to modify and share the map,

thereby increasing the situational awareness of all parties

involved. This thesis shows that not only is it possible to

utilize cloud computing in conjunction with smartphone

technology (Android-based smartphones in our case), but

that it is extremely useful.

By moving the server to the cloud, we have

dramatically increased the availability of the server, as

it is operated and managed as a dedicated service for a

multitude of services. In addition, we have made the

application easily accessible, as the only requirement for

access is an Internet connection. By utilizing the cloud we

have dramatically reduced the cost of operation as it pools

computing resources. Finally, we believe deployment of the

application will be faster as there is no need to build out

the network infrastructure for the server.

By developing the corresponding mobile application, we

have extended the common operational picture to the field.

Field operatives no longer have to rely on command centers

to relay pertinent information to them as they now have the

same information the command center has. Likewise, command

centers do not need to worry about receiving reports,

mapping points of interest and entity locations, or

 100

relaying that information to all other entities.

Furthermore, we have taken advantage of a COTS product and

its capabilities. Using a COTS product increases the speed

of deployment of the application as many responders will

already have the devices and just require the application.

It also further cuts cost, as a specific device does not

need to be designed for the sole purpose of running

SPARCCS.

While SPARCCS is not a complete, fully robust system

yet, we have provided the framework for a very useful tool

for enhancing situational awareness in disaster relief and

military scenarios. We built the server, mobile

application, and headquarters application, enhanced them

with useful functionality, and specified the communication

protocols. With some additional functionality and proper

field-testing, the SPARCCS program will be ready for

deployment.

B. FUTURE WORK

This thesis provides the foundation for building a

robust common operational picture tool. While our goal was

to make the system as operational as possible, time and

manpower limitations prevented us from providing a fully

functional system. As such, we provided a list of

recommendations to make SPARCCS a field-worthy application.

• Blue Force Tracking—The current SPARCC system

utilizes GPS for placement of missions, points of

interest, and images at the current location of

the user’s device. GPS functionality should be

extended to report the location of the device

 101

every time synchronization between the device and

the cloud service occurs. Furthermore, the

reported location should be forwarded to all

other devices and the locations of users should

be displayed on the map.

• Phone-to-phone syncing—In the unlikely event that

the cloud service goes down, or if devices lose

the ability to communicate with the cloud, users

should be able to continue utilizing the system

by communicating device-to-device rather than

through the service. In order for this to be

possible, the SPARCCS application needs increased

functionality that would enable a particular

device to act as an HTTP server. It is our

recommendation that each mission leader’s device

act the HTTP server. All other members of the

mission will perform their syncs with the mission

leader’s device, and when possible, the mission

leader’s device will sync all mission information

with the cloud service.

• Improved mapping capability—Currently, the SPARCCS

system can only display points of interests as a

single point on the map. This functionality should

be extended to accommodate for areas of interest.

Future versions of SPARCCS should incorporate

polygons, circles, and white boarding in order to

highlight larger regions on the map. This

functionality will be useful for pointing areas of

interest such as fires, floods, radioactive

fallout, etc.

 102

• User communications—Current user information

includes the user’s phone number and e-mail. With

this information users have the ability to

contact each other using the device’s native e-

mail and cellular capabilities. Future versions

of SPARCCS should make communication between

users easier by incorporating group and

individual chat capabilities as well as push-to-

talk capabilities using either Voice Over IP or

existing cellular protocols.

• Commands—an additional form of communication

between users should be commands. Often times it

will be crucial for command centers to issue

commands to mission leaders, and mission leaders

to mission members. When a command is received it

should demand the system’s focus. The system’s

focus should remain on the command until the

receiving user either acknowledges or declines

it. Declining a command should require that the

user provide a reason for being unable to comply.

• Routes—While SPARCCS mapping capabilities are

extremely useful for location-awareness; it is

often helpful to see the route to an intended

destination. Future versions of SPARCCS should

take advantage of Google Map routing capabilities

to enable users to retrieve and display routes on

the map. This functionality could further extend

the command functionality by enabling users to

send routes as a part of a command that includes

a destination.

 103

• Video—While the ability to exchange pictures is a

key functionality of SPARCCS, users should not be

limited to only still images. Most current

smartphones have video capabilities. As such,

SPARCCS should allow users to capture and share

videos.

• Picture editing—In order to further extend the

usefulness of sharing images, users should have

the ability to edit the pictures they capture.

The merit of this functionality is that it would

allow users to highlight certain parts of an

image by drawing circles or arrows on the

captured image.

• Mobile alerts—Unlike a command center based

terminal that is constantly monitored, mobile

devices will spend most of their time in the

pockets of their users, resulting in the user

possibly missing critical updates to the COP. As

such, users need the ability to notify mobile

users of pertinent updates through alerts. To

decrease the number of irrelevant notifications,

alerts should be specific to users, missions,

responder types, or geographical location.

• Links to external programs—Most smartphones are

equipped with many useful programs such as

calendars, e-mail, text messaging, phone, etc. To

further enhance user interface, SPARCCS should

include links to these programs in places that

they are deemed beneficial.

 104

• Communication with similar systems—As mentioned

in Chapter 2, other common operational picture

systems exist. Homeland Security is backing the

development of the Next Generation Incident

Command System. AGIS markets their LifeRing©

system that also uses smartphones. The Navy is

developing the Command and Control Rapid

Prototyping Continuum. While the existence of

separate systems is inevitable, there is no

reason that these systems shouldn’t have the

ability to exchange data to enhance the

situational awareness provided by each.

• System administrator—Functionality to the web

application should be added to allow for a system

administrator login. System administrator

privileges should include the ability to grant or

deny access to applications rather than the

autonomous method SPARCCS currently utilizes.

Furthermore, system administrators should have

the capability to delete missions, points of

interest, and images regardless of ownership.

And, to ease the process of deleting material,

deleting a mission should automatically result in

the deletion of all associated points of interest

and images.

• Security—Currently, SPARCCS requires a username

and password to utilize the application. However,

a malicious entity could still externally

duplicate HTTP posts and gets. To fix this all

HTTP posts and gets should require an autonomous

 105

resubmission of username and password. Another

means of security implementation could be a

challenge and response method could be

implemented in which the response is sent hashed

with the user’s private key. Furthermore, the

current method for storing images is as a

separate webpage. While helpful for the

application in that this method reduces the

amount of data being transferred, it means the

images can be viewed from any web browser by

entering the image URL. It is important that

future developers implement a method to ensure

that only registered users have access to images.

Finally, SPARCCS needs to implement some form of

encryption when transferring data to ensure third

parties cannot eavesdrop on sensitive

communications.

• HTML 5—The mobile side of SPARCCs was written for

the Android operating system due to its user-

friendly development process. For SPARCCs to be

useful for everyone, the mobile application would

need to be rewritten to encompass several makes

and models of smartphones. An alternative to this

would be to write the application in HTML5. By

developing SPARCCS as an HTML5 web application it

could be run on any device as long as its browser

is HTML5-capable. HTML5 is still in production

and is not yet capable of accommodating all of

SPARCCS’s functionality. However, as it continues

 106

to advance, research should be done to explore

the possibility converting SPARCCs to an HTML5

application.

Testing—The only way to truly determine whether

the SPARCCS infrastructure meets the requirements

needs of users is to conduct field-testing. Mock

disaster relief and military scenarios should be

performed with responders utilizing SPARCCS. In

so doing, key, as well as unneeded or absent,

functionality can be identified and built upon.

In addition to functionality purposes, battery

life testing should also be performed. Key things

to consider concerning battery life include sync

rates and screen dimming/sleeping times.

The aim of the SPARCCS architecture is to provide a

complete Common Operating Picture for those responders

working in the field as well as the operators who oversee

their missions. Currently implemented in SPARCCS is a solid

backbone for a distributed system, utilizing cloud

computing in conjunction with mobile devices to enhance

situational awareness. The future of the SPARCCS program

resides in further implementing current and future mobile

and distributed networking technologies to provide a robust

platform for users to gain the complete perspective of

field operations.

 107

LIST OF REFERENCES

Advanced Ground Information Systems (2010). “AGIS LifeRing
Operators Manual.” Retrieved from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=6&ved=0CEAQjBAwBQ&url=http%3A%2F%2Fwww.agisinc.
com%2FAGIS_Operators_manual.pdf&ei=qENNT6S5IYzYiQKQxci
aDw&usg=AFQjCNFpgOBznHyUz8SRu_29J62ZsD3iQA&sig2=nvUdf9
q5X4lTdqVTK59FuA

Amazon Web Services. “Amazon Simple DB.” 2011. Retrived

from http://aws.amazon.com/simpledb/

Bain, T. (2009, February 12). Is the Relational Database

Doomed? Retrieved September 16, 2011, from
http://www.readwriteweb.com/enterprise/2009/02/is-the-
relational-database-doomed.php

Booze Allen Hamilton. (2010, December 04). The Economics of

Cloud Computing. Retrieved September 24, 2011, from
Addressing the Benifits of Infrastructure in the
Cloud: http://www.boozallen.com/media/file/Economics-
of-Cloud-Computing.pdf

Comptroller General. (1979 December 14). The World Wide
Military Command And Control System—Major Changes
Needed In Its Automated Data Processing Management And
Direction (LCD-80–22). Washington, DC: Author.
Retrieved from
http://www.gao.gov/assets/130/128411.pdf.

Copeland, J. (2008, March 25). Emergency Response: Unity of

Effort Through A Common Operational Picture. (Master’s
thesis, U.S. Army War College). Retrieved from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.hsdl.org%2
F%3Fview%26did=11020&ei=H-
RLT5moBpLZiAKH1rm3BA&usg=AFQjCNHnAGmA1zPJ6Bd3wvGmeTqQ4
ZMDXg&sig2=xldeA9EyGwIRgTfInVtTKA

Databases. (n.d.). Retrieved September 16, 2011, from

Wikipedia: http://en.wikipedia.org/wiki/Database

 108

Fay Chang, J. D. (2006). Bigtable: A Distributed Storage
System for Structured Data. Retrieved September 16,
2011, from
http://static.googleusercontent.com/external_content/u
ntrusted_dlcp/labs.google.com/en/us/papers/bigtable-
osdi06.pdf

Department of Defense News Release. (1996 September 26).
Global Command and Control System Adopted. Washington,
DC: Author. Retrieved from
http://www.defense.gov/releases/release.aspx?
releaseid=1049

Deputy Secretary of Defense (AT&L). (1971 December 2).

World-Wide Military Command and Control System (DoD
Directive 5100.30). Washington, DC: Author. Retrieved
from
http://www.fas.org/spp/military/docops/defense/d5100_3
0.htm

Duling, J. M. (2009). THE COMPONENTS NECESSARY FOR
SUCCESSFUL INFORMATION SHARING. (Masters thesis, Naval
Post Graduate School). Retrieved from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=1&ved=0CCQQFjAA&url=http%3A%2F%2Fwww.dtic.mil%2
Fcgi-
bin%2FGetTRDoc%3FAD=ADA496711&ei=mYY8T8qPJYmqiQKo7OGlA
Q&usg=AFQjCNHqBEKgpn_uQMtkjtLV8JQIbWm0-
w&sig2=1yq5Qo8zG7xr8Ny61dC1Bw

Ebbutt, G. (2008). Blue-force tracking evolves for the
modern battlefield. HIS Jane’s: Defense & Security
Intelligence and Analysis. Retrieved from
http://www.janes.com/products/janes/defence-security-
report.aspx?id=1065926194

Endsley, M. R. (1995b). Toward a theory of situation
awareness in dynamic systems. Human Factors, 37, 32–
64.

 109

Google. (2011). Why App Engine. Retrieved September 16,
2011, from
http://code.google.com/appengine/whyappengine.html

Google. (2011). Datastore Overview. Retrieved September 16,

2011, from
http://code.google.com/appengine/docs/java/datastore/o
verview.html

Google. (2011). Google Maps API Family. Retrieved September
9, 2011, from
http://code.google.com/apis/maps/index.html

Google. (2012). GWT SDK. Retrieved January 20, 2012, from

http://code.google.com/webtoolkit/learnmore-sdk.html

Google. (2012). Google Web Toolkit Overview. Retrieved

January 20, 2012, from
http://code.google.com/webtoolkit/overview.html

Google. (2012). Speed Tracer. Retrieved January 20, 2012,

from
http://code.google.com/webtoolkit/speedtracer/index.ht
ml

Howard, P. (2011, May 17). When is a Database Not So

Relational. Retrieved September 23, 2011, from
http://www.theregister.co.uk/2011/05/17/cloud_database
s1/

Lincoln Laboratory. (2011). Next Generation Incident

Command System. Retrieved September 29, 2011, from
http://www.ll.mit.edu/publications/technotes/TechNote_
NICS.pdf

Meyer, D. (2011, May 19). Android shoots past iPhone OS in

market share. Retrieved January 23, 2012, from ZDNet
UK / News and Analysis / Mobile IT / Mobile Devices:
http://www.zdnet.co.uk/news/mobile-
devices/2011/05/19/android-shoots-past-iphone-os-in-
market-share-40092829/

 110

Microsoft. (2011). Cloud Computing. Retrieved September 24,
2011, from Cloud Basics Government Benfits in the
Cloud:
http://www.microsoft.com/industry/government/guides/cl
oud_computing/2-benefits.aspx

Milian, M. (2012, February 03). CNN . Retrieved February

03, 2012, from U.S. government, military to get secure
Android phones:
http://edition.cnn.com/2012/02/03/tech/mobile/governme
nt-android-phones/index.html

National Commission on Terrorist Attacks Upon the United
States (2004). The 9/11 Commission Report. New York:
W.W. Norton & Company. Retrieved from
http://www.gpoaccess.gov/911/

Tech Target Sites. (2007, December). Definition Cloud

Computing. Retrieved September 24, 2011, from Search
Cloud Computing:
http://searchcloudcomputing.techtarget.com/definition/
cloud-computing

Tourtelotte, D. R. (2010). X3D-EARTH: FULL GLOBE COVERAGE
UTILIZING MULTIPLE DATASETS. (Masters thesis, Naval
Post Graduate School). Retrieved from:
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=1&ved=0CCQQFjAA&url=http%3A%2F%2Fedocs.nps.edu%
2Fnpspubs%2Fscholarly%2Ftheses%2F2010%2FSep%2F10Sep_To
urtelotte.pdf&ei=VIU8T6HBKOmjiQLpjJWnAQ&usg=AFQjCNHUNm
pKNxkGKRMoBQPwFOZcEnpJuw&sig2=Ynf10-Qzw

Vidan, Andy and Gregory Hogan. (2010). “Integrated Sensing
and Command and Control System for Disaster Response.”
IEEE, December 3, 2010. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05
655066

W3C Working Group. (2004, February 2004). W3C Working Group
Note 11 February 2004. Retrieved February 10, 2012,
from Web Services Architecture:
http://www.w3.org/TR/ws-arch/

 111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Head, Information Operations and Space Integration

Branch
PLI/PP&O/HQMC
Washington, D.C.

