GUGGENHEIM AERONAUTICAL LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

STRESS DISTRIBUTION IN TWO

INTRRSECTITG CYLINDERS UNDER PRRSSURE
Thesis by
Lt. Cmdr. Vernon E. Teig, USN

STRESS DISTAIBUTION IN TWO INTHRSECTING CYINARAS UNDE ERESSURE

Theals by Leutenant Commender Vernon E. Teig, U. S. Navy

Libraxy
U. S. Rencel Postgraduate Schoo Amapons, Md.

In Partial Rulfillment of the Requirements
 For the Degree of Aeronautioal Magineer

ACKNONLEDGBGATS

The author is indebted to Dr. Irnest If. Sechler, Professor of Aeronautics, California Institute of Technology, for his valuable cuidence in the fommation of this thesis, and to kr. milliam H. Bowen, Superintendent, Quggenheim Aeronautical Laboratory, California Institute of Technology, for his able assistance and edvice in the procurement and preparation of the test specimens and teatine equipment. He also wishes to thenk the other members of hie supervising cormittee, Profesaors Housner and Fung for their comments and criticisms on the work.

Further indebtedness is acknowledged to Commander Leonard E. Harmon, U. S. Navy, who collaborated in conducting the experimente and in the preparation of all teblea and grephs presented herein.

The experimental studies presented here were undertaisen in an effort to determine the stress distribution in two circular cylinders intersectine at right angles and under internel pressure. The investigation was limited to tests of two speoimens in the thick-walled cylinder rence.

The experimentel analysis led to the following conclusions:

1. The hicheat stress concentrations are located at an ancle of about 14.5 decrees fron the crotch oenterline, measured in the plane of the intersection.
2. The critical stress causing rupture is the tangential atrese in the planc of the ellipse.
3. For the R / t ratios tested, the strensth reduction as compered with a straicht clozed cylinder is aproximately 50%.
4. It appears probable that bending offects for these thickwell d cjlinders ore of relatively minor importance.

$11 i$

TABLE OR CONTENTS

Part Title Page
Introduction 1
I Equipment and procedure 3
II Results and Discuseion 7
III Conclusions 34
IV
Recomendetions 15
V
Poforences and Bibliorraphy 16
VI Porraulas and Semple Calculations 17
Tables A-1
Tizures E-1

LIST OT 里ABESS

		Page
Tables I through IX	Varistion of Tangential and Axial Strains with Variation of Internal yrescure. Test NO. 1.	A-1
Tables ${ }_{\text {S }}$ through XYIII	Variation of Tengential and Axial Strains with Veriation of Intemal Pressure. Test NO. II	A-10
mable XIX	Relation of Load to P. $\frac{\text { R }}{\text { t }}$	A-19

mplanation os minols

```
    E. Young's inodulus of Masticity (assmod = 30 < 106 psi)
    R Strain gago reading
    b Strain eago constant (-200)
    p Internal pressure - 1bg./0q.in.
    \epsilon { Axial strain - in./in.
    \epsilonr Radial strain - ino/in.
    \epsilont Tangential strain - in./in.
    \epsilon
    \sigmaa Axial stress - lbs./8q.in.
    \sigmar Radial stress - Ibs./sq.in.
    \sigma
    \sigma 1,2 Principal stresses - 1bs./sq.in.
    M Polsson's ratio - (assumed = 0.3)
```


INIRODOCTION

This investigation wes prompted by certaln problens wioh have exisen in systems employing high pressure piping. The construction of ductine for high speed wind tunnels involvee cylindrical intersections of large aiameter and aindiar probleme, though on amaller ceale, may be found in various indugtricl applications. For pipine which is highly atressed tangentially it has been the practice to furnish heary ribs or other devices to take the bending atresses of the olliptical intersection. This procedure ignores bending stiffness of the pipe itself and sane doubt has arlsen as to the actuel necessity for such ribs. Further, in some cases there was evidence that the reinforoing might in reality be harmful to the strencth of the joint.

The tests presented here are stops toward a complete investigation of the proilen. Some tests of this nature were rade proliminary to the design and construction of the 20-1nch supersonic wind tunnel of the Jet Propulsion Laboratory (CIT) (Ref. 1). The speoimens tested in that project were of various shapes, materials, and radius/thickness ratioa. For the present approaoh to the problem it was deoided to reduce the nuber of variable parameters to just one-the wall thiokness. The steel to be used, the internal diamstor, and other spocifications were held constant. For this series it was originally planned to make tests on 90-degree elbows of at least four wall thicknesses, but difficulties in the manufecture of suitable specimens and time limitations forced a reduction in scope to only two specimons.

A search mas made both in applicable textbooks and in the many engineering publications for previous work, either theoreticel or experimental, on this subject. Considarable information was found on pipe bends, pipe elbows, and the like, but nothing on stresses to be found at or near a melded cylindrical intersection. Thia problem is of a type possessing mixed boundary conditions and as such is very difficult to solve from a purely theoreticel approach.

The tests whose results are preaented horein wore conducted in the Struotures Laboratory of the Gugcenheim Graduate 3chool of Reroneutics. California Institute of Technology.

MOUFMENT AND PROCEDUEX

The test specimens were made of oleht-inoh National Bxtra Strong welded ateel pipe. ATHA Spec. 53-47. This steel has a yield point of 30,000 psi. and ultimate strength of 48,000 pei. The pipe was first machined inside and out to remove any eacentriolty and to obtain a uniform wall thiokness. Inside diameter was held constant for both specimens and was 7.68 inches. The wall thickness of the first speoimen was 0.4 inch and the second wes 0.3 inch.

After machining, the pipe was out and welded 80 as to form a 90dagree elbow as shown in Fig. 6. Care was teken in machining off excess weld metal in the joint in order to heve smooth fillets of emall redius so that the Pinished product would approximate as closely as possible a oylindrical intersoction machinod from a single billet. Standard eight-inch pipe caps were welded on the ends and threaded studs weldod in these saps. The studs were drilled and tapped to provide pressure connections and were threaded to receive lugs intenced for use in applying of ther tension or oorapreasion across the onds by means of a turnbuckle. The turnbuckle was not used, homovar. Complete details of manufacture and asaembly are ahown in Figs. 5 and 6.

Fressure was applied by means of Blackhamk hand-operated hydraulle pump. Pressure was measured by a standard high prossure gage. The varLable reaistance wire strain gages used were Baldwin-Southwark A-8 rectancrular gages and AR-7 reotangular rosettes. The location and orientation of these gaees is shown in Figs. 7. 8, and 9. Other equipment included a potentiometer and wheatstone bridge oirouit, a switoh
panel. 6-rolt battery, and the necessary wiring and plumbing. The specimen was placed on wooden block supports spaced approximately 6 and 16 inches from each ond.

The same prooedure wes followod in both tests. within the elastic 11mit the following procedure was observed:
(1) zero readines were taken on all gages.
(2) Load was applied and lood readines taken.
(3) Load was removed and second zero reading taken.
(4) Inoreased load was applied, readings taken, followed again by zero readings, etc.

After the elastic lindt had bean exceeded, zero reaninge were taken only aftor tho load reodines. Tho reason for this can be neen by considering the curve below.

iasume that under the applied load, the metal at some given position reaches point "a" on the stress-atrain diacram. This is below the elastic linit and when the load is removed both the atress and the
strain ($\epsilon_{\text {, }}$) return to zero. Now if a sufficiently high load to cause yielding is applied, same point "b" on the curve will be reached. Fhen the load is now removed, the line bo' will be followed ending at zero stress but with a permanent set $0-0$ '. This permanent set can be computed by conparine strain gage reading at 0 and at o^{\prime}. The strain at point "b" cannot now be referred airedtly to the zero strain at o but must be referred to the new "zero" at 0^{\prime}. Doine this gives the value of $\Delta \epsilon$ and addint this atrain increment to the permanent set omo' gives the total strein ϵ at point "b".

Theoretioally the line bo of the preceding diagram is parallel to oe. In order to sheck on the reliability of etrain gage readinge beyond the apecimen olastic limit, this parallelism was utillzed by taking readings at points d and e on the way un to point c.

the next hicher load readine above b. Since stress was not measured direotly, a stress versus strain curve could not be plotted. Points
d and e were plotted on the load versus strain curves where the seme reasoning as above applies. Therefore it was assumed that if points $0^{\prime}, d, \theta$, and b on the load-strain ourves plotted a straight ilne parallel to 0 , the strain gages were giving useful readings.

Funch marks were mede in the stud in each ond cap and a tramel ber and points used to measure the distance between the punch marks both in the unloaded condition and for each loading applied. At the higher loadinge where considerable yielding oceurred it was neoessary to maintain presaure constant for some time until a oondition of equilibrium was reached and readinge held substantially constant.

RESULTS AND DISCUSSION

The resulte of the two series of tests have been plotted on curves of loading versus tangential strain and axial strain for the several strain gege lociations. The exial and tangential components were plotted since these were the etrain components actually measured and also to facilitate omparison with the ourves applying to a straight tube and the curves derived from previous tests on apecirions having larger a / t ratios than those used in the present investigation. The principal atrains and the principal axis orientation were computed Within the elastic limit and are included in the tables. The maximm pressure held by the first specimen (0.4"wall) was 3350. psi. The maximm pressure held by the second specimen wes 2950. psi.

The results of the two tests as shown in Tables I - XVIII and Figs. 22 and 27 show that the axial strains at position if are only very slightly maller then the tangential strains at position for all loadings under the olastic limit. Above the elastic limit, however, the tangential strains in the orotoh inorease much more rapidiy than do those at any other point measured. For the locations investigated in those terta then, the oritical strains oocur in the oroteh and are the tengential etraina.

The type end location of ruptures obtained in the two testa were almost exactly identical as can be seen in Fics. 2. 4, and 50. In each case the failure was a crack perpendicular to the line of the wold at a distance of lid" $^{\prime \prime}$ up from the crotch centerline. In both casos audible aracks and snaps were heard at irregular intervala as
the internal pressure was increased. In the first test these noisea atarted at a pressure of about 2600 pai and were accompanied by the appearance of fine, heir-line cracks in the weld and perpendicular to the line of the weld ae shom in Pig. 50. In the second test no auch oracks appeared, but roughoned stress lines approximately parallel to the wold appeared in the parent netal near the weld. In specimen ${ }^{\prime}$, oracks between tine parent notal and the wold metal started midening porceptibly at loads below the elastio limit. As in spocimon ing hozover, when ripture finally occurred, the break was in the weld and at right ancleo to both the line of tho meld and the initial araciss. Since the two breaks were so exactly similer, it seems quite possible that e point of stress concentration existed between positions 46 and $/ 49$. This possibility should be investigated in any further tests of this nature. Further evidence of this high stress area was given by the extremely high atrains measured at poaition 保. The tengential gage in the crotch failed fairly aariy, but up to the time of Pailure indicated strains even higher than those at position

Rosettes 1, 2, and 4 all were located some distance from the veld. ($\mathrm{Pl} \mathrm{C} \cdot \mathrm{T}$) The test results fran both specimons as plotted in Fica. 10 and 12 show that the tancential strains did not becom larce until high loadings wero applied. Then these strains did begin to increase, the magnitudes of the strains and the rates of incresse at these three locations remained quite close to each other. The axial strains show no such uniformity but all remained relatively small as
compared with the tangential strains. A comparison of strains at these three locations with the theoretical strains in a straight pipe follows : $p=1.000$. pal.

I: $\epsilon_{a_{i h}}=.0608 \times 10^{-3} \quad \epsilon_{a_{1}}=.0865 \times 10^{-3} \quad \epsilon_{a_{2}}=.0318 \times 10^{-3} \quad \epsilon_{a_{4}}=.0764 \times 10^{-3}$

$$
\epsilon_{\tau_{T h}}=.2506 \times 10^{-3} \quad \epsilon_{\tau_{1}}=.1896 \times 10^{-3} \quad \epsilon_{\tau_{2}}=.2694 \times 10^{-3} \quad \epsilon_{\tau_{4}}=.3274 \times 10^{-4}
$$

II: $\epsilon_{a_{t} \bar{h}}=.0822 \times 10^{-3} \quad \epsilon_{a_{1}}=.1392 \times 10^{-3}$

$$
\epsilon_{a_{2}}=.0299 \times 10^{-3} \quad \epsilon_{a_{4}}=.0946 \times 10^{-3}
$$

$$
\epsilon_{\tau_{\tau} \bar{h}} \cdot 3490 \times 10^{-3} \quad \epsilon_{\tau_{1}}=\cdot 3305 \times 10^{-3} \quad \epsilon_{\tau_{2}}=\cdot 3048 \times 10^{-3} \quad \epsilon_{\tau_{4}}=.4313 \times 10^{-3}
$$

Previous testing and experience had indicated an appreciable bending effect in this type of joint as evidenced by an opening of the origAnal ninety-degree angle. For both specimens tested in this investigation no measurable amount of bending was found until the rupture point was reached. This would seem to indicate, at least for k / t ratios close to those, that the bending offeots are much less important than had been believed and that for a properly welded joint there is sufficient interont stiffness to eliminate the necessity for stiffening webs.

In maine these tests it was desirable to get strain readings insofar as possible right up to the point of rupture. It was not known to what extent the strain gage readings would prove reliable once the yield point of the steel was passed. As a reault of these tests it appears that the gage readings gave reliable qualitative results throughout the range of readings. Since the physical properties of the strain ages themselves are not known, it is impossible to state definitely at whet total strain the gage accuracy underwent a -change. quantitatively, therefore, the
results are of an unknom decroo of acouracy. It is probablo that the clone arrement of the surven for the two test speoimons at each location mould not havo been obtainod if the gages had become unroliable at the high loadinge. In order to cheak the gace action at the hifher loads, intermediate readings were tacen between the unloaded condition and the high losds as proviously explained in proCDMJREN. These points as plotted in rigs. 16. 29. 22. 23. 25. 27. 28, and 31 give a straight line parallel to that obtaingd within the elastic region and the gages were therefore assumed to be giving useful readines. At saxe loations gages were broken under high loadings. This fact was immediately apparent due to the inability to obtain a balance in the bridge oircuit.

Trou the strain reodings taisen, stresses at the various looations wore computed within the elagtic region and recordod in Tables I-KVIII. Since the strain gages can measure only two-dimensional strains, stresses mere conputed usine two-dimenaional theory. The thirs-dimensional strains mile known to be present could not be accounted for in these tests. When yielding first occurred anywhers in the specimen, the resiltant permanent deformation imposed residual streases throughout the specimen when the loed was removed. This was shown by an apparent permenent set indicated by all gagas at approximetely the sane loadine even though loogl load streeses had not risen sufficiently to reach the yield stress of the metal. This is the reason why all the load-strain curves deviate fror a linear reletion at about the same loadine. Above the alastic limit the atraina masured cannot be
transformed to other axas since the usual transformation equations are invalid outside the olastio range. Considerable work is now boing done toward developing atress and atrain relations for use in the plastic region (Raf. 2), but no attempt was made to apply, any of those theories here.

The ourves plotted from the results of the tests on the two apec. imens agree quite closely with three exceptions. The tangential strain curves at position $/ 8$ diverge, and the axial strain ourves for poaitions 7 and 3 also diverge. The reason for this divergence is not known but may be due to the chance in thickness ratio. Further teats on specimens of various i / t ratios wold indicate whether the divergence is a trend established by the change in wall thiokness.

For the wall thiomesses used in these testa it is believed that gravity effects were of very minor importance. In any further testa using thin-welled apecimens of similar dimensions it would be better to provide supports which distribute the load uniformly along the length of the specimen rather than supportine it at four points as wes done here.

Considering the fact that first yielding occurred at approximately 54% of maximum load in the irst tost and at ebout 42% of maximum load In the second test, use of the theory of limit design in ectual oonstruction is indicated. At the same time the large difference in yield loads obscrved comparod with the theoretical yield load for a atraight pipe should be considered.

$$
\begin{aligned}
& \text { Specimen I: } \begin{aligned}
P_{\text {yield-str.pipe }} & =3288 . \text { psi } . \\
P_{\text {yield }} \text {-actual } & =1800 . \text { psi }
\end{aligned} \\
& \text { Specimen II: } \begin{aligned}
& P_{\text {yield-str.pipe }}
\end{aligned}=2435 . \text { psi } \\
& P_{\text {yield-actual }}
\end{aligned}=1200 . \text { psi. }
$$

This shows a reduction in strength of 45 for the first specimen, and 51 for the second.

A measurement of the intersection cross section shape was made after rupture in the tests described in Res. 2. The original ellipticel cross section mes found to have been deformed into an ene shape with the greatest outward deviation located approximately midway between the crotch and the 90 degree point of the intersection. This contour is typical of deformations suffered by such intersections and was observed in the present testa.

Figs. 32 to 49 were plotted to show the measured strain distribution both along the cylinder axis and along the elliptical intersection. lamination of these figures (for instance Fig. 39 and FiE. 40) shows that axial strains are highest at position its and tangential strains are Richest in the crotch. All strains are relatively low at the outside of the elbow for all loadings. There are relatively high
-13-
tangential and axial strains in the region between positions 6 and 9 so that the principal strains will be highest in that region.

CONCLUSLONS

1. The results of this investigation indicate that the higheat atress concentration in a right angle cylindrical intersection under Internal pressure occurs at an angle of about 14.5 degrees fron the crotch osnteriln moasured in the plane of the ellipse.
2. The oritical stress causing rupture is the tencential stresa in the plane of the ellipse.
3. For the R / t ratios tested, the stroneth reduction as compared with a straight closed cylinder is approximately 50\%
4. It appears probable that bending effects for these thiok malled cylinders are of relatively minor importance.

$$
-25-
$$

REDORMETMATIONS

1. An analysis of the tengential stresses in the plane of the elliptical intersection should be mede.
2. A study should be made of the variation of these tangential atresses through the wall thicknesa.
3. Analytical studies of bending effects and shearing atresses should be made.
4. In any further experimental work, the oritioal area as deternined in this investigation should be thoroughly exemined by strain geees or other means.
5. Further experimental moris ahould check on the aiffering exial strains observed in the two apecimens on the outside of the elbow.
6. Sandberc, ifillian A.; "Tests of Nelded Pipe Mitings", Progress Report No. 1l-2. Jet Propulsion Laboratory, California Institute of Technology, October 6, 1943.
7. Onsted, Herold and Serrurier, Merk, "Stress Analysis of Southern Callfornia Cooperative Find Tunnel", CWT Report T-22, So. Callf. OUT. Pasadena, Galifornia.
8. Articles on the Thoory of Plesticity by H. F. Bohnenblust and Pol Dumez; Tilliam Prager; J. Z. Dorn and A. J. Lattor; E. A. Davis; and by A. H. Mhlippidis in Journal of Applied mechenice, Vol. 15. No. 3. September 1948.
9. Sechler. J. ".. "Blastioity in Facineerinc", California Institute of Teohnolosy, Pesadena, California. (Class notes)

RMDOTION OF STRAIT GAGE DATA

The test gage mounted on the specimen and a dummy gage mounted on identical, unstrained material are included in a wheatstone bridge

circuit. The opposite sides of the circuit are two precision resistances of magnitude Qu Under load the potentiometer is varied so the no cur rent hows between points A and 3 . We wish to determine
the relation between the voltage V, across $A B$ and the unit strain, G. in the test specimen.

From the circuit diagram, se determine that

$$
I_{2}(2 Q)=\Sigma \quad I_{2}(2 R+\Delta R)=B \quad V=I_{1} Q-I_{2} R
$$

Fence

$$
V=\frac{E}{2}-\frac{R R}{2 R+\Delta R}=\frac{B}{4} \frac{\Delta R}{R}\left[1+\frac{\Delta R}{2 R}\right]^{-2} \approx \frac{R}{4} \frac{\Delta R}{R}
$$

To eliminate the ratio $\Delta \mathrm{F} / \mathrm{F}$, the following relation for resistivity of a conductor is employed.

$$
R=K \frac{L}{A}
$$

where I is a resistivity constant, I the length of the conductor, and A its cross-sectional area. Then

$$
\ln \mathrm{E}=\ln \mathrm{E}+\ln \mathrm{L}-\ln \mathrm{A}
$$

Hence

$$
\frac{\Delta R}{R}=\frac{\Delta I}{I}-\frac{\Delta A}{A}
$$

For a cylindrical conductor

$$
\frac{\Delta A}{A}=2 \frac{\Delta r}{r}=-2 \mu \frac{\Delta I}{I}=-2 \nu E \quad \begin{aligned}
& r \text { is the radius } \\
& \text { of tho crose section }
\end{aligned}
$$

Therefore

$$
\frac{\Delta R}{A}=(I+2 \nu) \epsilon
$$

V is the Poisson's ratio for the strain gage meterial. Substituting directly into the equation for the voltege reading V,

Hence

$$
\begin{aligned}
\nabla & =\frac{3}{4}(1+2 V) \epsilon \\
\epsilon & =\frac{4 \nabla}{(1+2 V)}
\end{aligned}
$$

This equetion is usuelly employed in the form

$$
\epsilon=\frac{4(\text { milli volts })}{(\text { gage lactor })(\text { battery reading })}
$$

shere \in is obteined in inches princh times 10^{-3}.
within the elastic region the average of zero readings taken before and after loading was used in getting the gage readings. Application of ease factor and battery reading gave apparent strains in the case of the rosettes, so these readince were further corrected as follows

$$
\begin{aligned}
& \Delta \epsilon_{1}=R_{1}-\frac{1}{R_{3}} \\
& \Delta \epsilon_{2}=1.02 \frac{R_{2}}{}-\frac{1}{b}\left(R_{1}+R_{3}\right) \\
& \Delta \epsilon_{3}=R_{3}-\frac{1}{b} R_{1}
\end{aligned}
$$

$b=-200$ where b is a factor furnished by the manufacturer for each gage lot.

Having the strains at given point, the axial and tangential stresses were computed from the usual two -dimensional equations:

$$
\sigma_{a}=\frac{E}{1-\mu^{2}}\left[\epsilon_{a}+\mu \epsilon_{t}\right] \quad \sigma_{t}=\frac{\epsilon}{1-\mu^{2}}\left[\epsilon_{t}+\mu \epsilon_{a}\right]
$$

These stresses could be computed only up to the load where yielding first occurred at any point in the specimen.

To compute principal stresses the following equations were used

$$
\sigma_{1,2}=\frac{E}{2(1-\mu)(1+b)}\left[\left(R_{1}+R_{3}\right) \pm \frac{(1-\mu)(1+b)}{(1+\mu)(1-b)} \cdot r\right]
$$

where

$$
r=\left|\frac{R_{1}+R_{3}-2 R_{2}}{\sin 2 \theta}\right|
$$

$\tan 2 \theta=-\frac{R_{1}+R_{3}-2 R_{2}}{R_{1}-R_{3}}$
inving the principal atresses, principal strains could then be computed.

$$
\epsilon_{1}=\frac{1}{E}\left(\sigma_{1}-\mu \sigma_{2}\right)
$$

Principal stresses and strains were computed only within the elastic region.

For test number one it was nocessary to transform the measured strains at positions 5 and 7 to get the tancential strains due to the orientation of those two gages. (Iig. 8). This was done by using Hohr's oircle. The trensformation was performed only within the elastic region.
TABLE I
Variation of thugential ami axial strains mity yartation of imternal precisure

Axial	Tang.
.04.36	.1135
. 0652	. 1419
. 0865	. 1896
. 1080	. 2386
. 1298	. 2896
.1340	. 3070
.1414	. 3167
. 1460	. 7388
. 1704	. 7403
. 2075	. 7209
. 2227	. 7092
. 2449	. 7873
. 1239	. 4540
. 2053	. 6401
. 2581	.7481
. 2861	. 7438
. 2938	. 8333
. 2953	. 9880
. 3602	2.2024
. 9139	4.1237
1.1340	5.5106
1.3111	6.8218

111111111111111111111

$\underset{\text { axial Tang. Princ. }}{\longleftrightarrow} \Delta \epsilon \longrightarrow$$\begin{array}{ll}.0436 & .1135 \\ .0652 & .1419 \\ .0865 & .1896 \\ .1080 & .2386 \\ .1298 & .2896 \\ .1340 & .3010 \\ .1414 & .3167 \\ .1485 & .3342 \\ .1564 & .3560 \\ .1646 & .3864 \\ .1693 & .3907 \\ .1833 & .4816 \\ .0623 & .1483 \\ .1437 & .3344 \\ .1871 & .4356 \\ .1963 & .4434 \\ .2018 & .4932 \\ .2159 & .4812 \\ .0824 & .3955 \\ .2126 & .6003 \\ .2161 & .6937 \\ .2451 & .7932\end{array}$
Press. 500
750
1000
1250
1500
1600
1700
1800
1900
2000
2050
2150
750
1700
2200
2300
2400
2500
2600
2800
3000
3250 MABI
VARIATION OF TAWGENTIAL AMTD AXIAL STRAINS WTH YGRTATION OF INTERRAL PRESGURE
Test I
Press.

.0430	.1133
.0645	.1416
.0856	.1892
.1068	.2381
.1284	.2890
.1325	.3003
.1378	.3160
.1460	.3335
.1546	.3552
.1627	.3856
.1674	.3899
.1809	.4807
.0616	.1480
.1420	.3337
.1850	.4263
.1941	.4474
.1843	.4922
.2135	.4301
.0804	.3915
.2096	.5993
.2146	.6726
.2411	.7570

Pressurea and
TABLE II
Oages 4.5.6

个总	

 position

$\uparrow \underset{\stackrel{\leftrightarrow}{\Delta}}{\dot{8}}$	
o 監	
ひ్త్	

Test I

Press.
500
750
1000
1250
1500
1600
1700
1800
1900
2000
2050
2150
750
1700
2200
2300
2400
2500
2600
2800
3000
3250

$$
A-4
$$

$\downarrow \underset{\text { é }}{\stackrel{\text { E }}{E}}$	

111111111111111111

4 ※
 111 111 11 11 11 11 11 111 Position $\$ 5$

Axial	Along Meld	Normel to Weld
0.2150	0.1288	0.2170
0.3265	0.1955	0.3286
0.4380	0.2633	0.4440
0.5324	0.3163	0.5420
0.6515	0.385	0.6590
0.7020	0.415	0.7140
0.7370	0.4330	0.7580
0.7797	0.4558	0.7959
0.8272	0.4849	0.8493
0.8738	0.5068	0.8907
0.884	0.5203	0.9001
0.9243	0.5438	0.9376
0.3123	0.1795	0.3096
0.7164	0.4250	0.7269
0.9250	0.5356	0.9381
0.9648	0.5649	1.0095
1.0026	0.5841	1.0292
1.0108	0.5920	1.0229
1.0683	0.6175	1.0510
1.0585	0.6775	1.0585
1.0871	0.7703	1.0629
1.1626	0.9040	1.0636

Press.

Than VII

b 我

$$
\Phi 0000000111111111111111
$$

111111111111111

Preso.

Test II
VARIATION OF INTERNAL PREGGURE

Test II	Position 41										Qages 2.3	
		-R			ΔE				σ	\rightarrow	\leftarrow	$\epsilon \longrightarrow$
Press.	Axial	Tang.	Diag.	Axial	Tang.	Princ.	θ	Princ.	Axial	Tang.	Axial	Tang.
400	. 0600	. 1385	-	. 0670	. 1388	-	-	-	3580	5239	. 0670	. 1388
600	. 0815	. 1970	-	. 0825	.1974	-	-	-	4672	7326	. 0825	. 1974
800	. 1142	. 2680	-	. 1155	. 2686	-	-	-	6465	9996	. 1155	. 2686
1000	. 1376	. 3298	-	. 1392	. 3305	-	-	-	7860	12275	. 1392	. 3305
1100	. 1535	. 3677	-	. 1553	. 3685	-	-	-	8767	13686	. 1553	. 3635
1200	.1657	. 4020	-	. 1677	. 4028	-	-	-	-	-	. 1795	. 3831
1250	. 1724	. 4182	-	. 1745	. 4191	-	-	-	-	-	. 1905	. 3906
1300	. 1848	. 4316	-	. 1870	. 4325	-	-	-	-	-	. 2070	. 3978
500	. 0705	. 1632	-	.0713	. 1636	-	-	-	-	-	. 0913	. 1289
900	. 1254	- 3019	-	. 1269	. 3025	-	-	-	-	-	. 1469	. 2678
1400	. 1940	. 4794	-	. 1964	. 4804	-	-	-	-	-	. 2531	. 3306
1600	. 2226	. 5814	-	. 2255	. 5825	-	-	-	-	-	. 3474	. 3389
600	. 0869	. 2171	-	. 0886	. 2175	-	-	-	-		. 2099	-. 0261
1200	. 1718	. 4422	-	. 1740	. 4430	-	-	-	-	-	. 2959	. 1994
1800	. 1989	. 6038	-	. 2019	. 6048	-	-	-	-	-	. 6174	1.7911
2000	. 2622	. 8185	-	. 2663	. 8198	-	-	-	-	-	1.1349	4.1168
2200	. 2623	. 9078	-	. 2668	. 9091	-	-	-	-	-	1.4475	6.6002
2400	. 2727	1.0532	-	. 2780	1.0546	-	-	-	-	-	1.7004	9.4359
2600	. 2848	1.1135	-	. 2904	1.1149	-	-	-	-	-	1.847	12.5249
2800	. 2852	ia	-	-	-	-	-	-	-	-	-	-

$\uparrow \text { 密 }$	
\downarrow	 iiiiliifi íqio
\uparrow	
$6 \frac{\pi}{4}$	
\downarrow 范	N些会运
（1）	
个曽	
$\checkmark \underset{G}{6}$	
$\downarrow \underset{~}{d}$	
$\begin{gathered} 1 \\ 1 \\ 1 \end{gathered}$	
\downarrow	
$\dot{8}$ 	

TABLE XIII

Princ.
Position $\$ 6$

Φ				1	1	1	1	1	1		1	1		1	1
$\uparrow \underset{\underset{E}{E}}{\stackrel{\text { E }}{E}}$				1	1	1	1	1	1	1	1	1	1	1	1

Axial	Tang.	Diag.
-. 0112	. 25.3	. 0228
-. 0327	. 3616	. 0356
-. 0234	. 4904	. 0492
-.0871	. 6189	. 0588
-.0267	. 681.3	. 0670
-. 0239	. 751.6	.0764
-. 0236	. 7700	.080)7
. 0156	. 8065	. 087
.. 0123	. 3002	. 0269
. 0200	. 5619	. 0592
. 0063	. 9016	. 1094
. 0498	1.1515	. 1934
. 0223	0.3495	. 0636
. 0383	0.7423	. 1262
. 1779	1.3328	. 2289
. 2632	1.4870	. 2820
3718	No	. 3126
.4696	Na	. 3324
. 5635	No	. 2928
6793	ma	. 1957

6感
\longleftarrow

111111111111111
ñす
0
$\stackrel{\Delta x}{\square}$

1
11

\longrightarrow
-R

Test II

 1111111111111111

1111111
11111111111111
1 1111
8\% Loty 500 C

TABLE XVII
position $\$ 8$
11 111 1 11

A-18

TABLZ NO. XIX

Relation of load to p. $\frac{\text { R }}{t}$
Test I: $\frac{R}{t}=\frac{3.84}{.4}=9.6$
Test II: $\frac{R}{t}=\frac{3.84}{.3}=12.8$

Test I
p

500
750
1000
1250
1500
1600
1700
1800
1900
2000
2050
2150
2300
2300
2400
2500
2600
2800
3000 3250
p. $\frac{\text { R }}{6}$

4800
7200
9600
12000
14400
15360
16320
17280
18240
19200
19680
20640
21120
22080
23040
24000
24960
26880
28800
31200

Test II
p
$400 \quad 5120$
$600 \quad 7680$
$800 \quad 10240$
100012800
110014080
$1200 \quad 15360$
125016000
130016640
$1400 \quad 17920$
160020480
$1800 \quad 23040$
$2000 \quad 25600$
220028160
$3400 \quad 30720$
260033280
2800 - 35640

$$
B-1
$$

Fig. 1 First specimen and test setup.

$$
B-2
$$

Fig. 2 Closeup view of first specimen showing rupture.

B-3

Fig. 3 Second specimen and test setup.

$$
B-4
$$

Fig. 4 Closeup view of second specimen showing rupture.

$$
\begin{aligned}
& 2 \angle A C H: \\
& t=0.400^{\circ} \\
& t=0.300^{\prime \prime}
\end{aligned}
$$

MACHINE INSIDE AND OUT TO GIVE UNIFORM WALL
THICKNESS WITH TOLERANCE
$\pm .002 "$
MAINTAIN I.D. AS SMALL
AS POSSIBLE

FIG.
LOCATION OF STRAIN GAGE
TESTS I AND II

FIG. 8
ORIENTATION OF STRAIN GAGES,TESTI

F/G. 9
ORIENTATION OF STRAIN GAGES, TEST II

]IT	[B.14			Γ			
	-												
	-												
										¢			
								*					
										है			
	(4)												
	4												
	©												
													+
											\square		
		\bigcirc											
									\cdots		\square		
		4									4		
	Ev			,									
					,	OTO	\%						
	है		\%		8		+			3			
						sod							

(1)
Al

(1)
促

保
A
A
任
保
A 1

B-33
(1)

[${ }^{8.377}$					
										\%	
										- 3	${ }^{3}$
											\%
										N	है ${ }^{\frac{1}{3}}$
									\%	1: 1	4
											है
										7.	
,				-							
			8		8						
			max	a 0	mpe						

A

B-46

B-50

\# II
FIG. 50
SKLTCALS OF BREAKS NN MLLLOS

32768002034324
DUDLEY KNOX LIBRARY

