

Calhoun: The NPS Institutional Archive

Theses and Dissertations

Thesis Collection

1946

Some studies of expansion rings in rocket motors

Kleiss, Norman J.

Pasadena, California; California Institute of Technology

http://hdl.handle.net/10945/6541

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

SOME STUDIES OF EXPANSION RINGS IN ROCKET MOTORS

BY

NORMAN J. KLEISS STANLEY W. KERKERING

Thesis 1858

Library U. S. Naval Postgraduate School Annapolis, Md.

•

.

.

. .

SOME STUDIES OF EXPARIT HILGS

(

IN RCCKPT MOTORS

Thesis by Comdr. N. J. Kleiss, U.S.H. Lt. Comdr. S. W. Kerkering, U.S.H.

In Partial Fulfillment of the Requirements for the Professional Degree in Aeronautical Angineering

> California Institute of Technology Pasadena, California

ACT. L. DC" L.T

In presenting this thesis, the authors wish to express their appreciation and gratitude to fr. L. Sechler and Dr. L. G. Dunn of the Guggenheim Aeronautical Laboratory, California Institute of Technology for their supervision, helpful suggestions, and assistance in carrying out the research.

F. 31. 7 C . T .T.

SUBJECT		Pag-
	Sum ary	1
I	Introduction	2
II	Equipment and Test Procedure	4
III	Theoretical Analyses	7
	1. Two Dimonsional Bonding Analysis	8
	2. Empirical Three Dimensional Membrane Analysis	15
	3. Elastic Three Dimensionalembrane Analysis	19
IV	Discussion of Results	26
V	References	31
VI	Index to Tables	32
VII	Index to Figures	32
VIII	Index to Photographs	32

.

TABLE OF SYMBOLS

- F Total axial force, lbs/in., at any station defined by r. Positive downward.
- H Tensile force, lbs/in., tending to produce axial deformation. (Total H force on one end of specimen = 2 H(h + 1/2r)
- p Internal pressure, p.s.i.
- r Small radius of torus, inches. (r = 1" for cases tested.)
- R Large radius of torus, inches. (R = 6.3125" for cases tested.)
- r. Distance of point from axis of torus.
- r₁,r₂ Radii of curvature of a shell in the form of a surface of revolution in meridional plane and in the normal plane perpendicular to meridian, respectively.
- Ng, Ng Membrane forces per unit length of principal normal sections acting meridionally and perpendicular to the meridian, respectively.
- S 1/2 Sm
- S_r Total elongation of expansion joint
- \emptyset Angle defined by the intersection of r_2 with axis of revolution. (Three dimensional theory.)
- 94 Value of 9 after deformation. (Three dimensional theory.)
- Angle between perpendicular to axis and perpendicular to shell (Two dimensional theory.)
- M Moment at section mn (two dimensional theory)
- t Thickness of expansion ring
- U Energy (Two dimensional theory)

· ·

SUPPARY

The purpose of this investigation was to investigate the stresses encountered for a semicircular expansion joint for a rocket motor. Information was desired to rolate these stresses to the various parameters of the problem.

The stresses involved in this design were found to approximate those indicated by the exact membrane theory. The specimen having the lesser thickness was found to agree more closely with the exact membrane theory, and gave the lowest value of stresses.

An empirical method of membrane analysis, based on deformation profiles, was developed. This method is applicable for stresses slightly above the elastic limit and may be extrapolated for higher values.

The design tested was found to be inherently unsatisfactory on the basis of tests and theoretical considerations.

An alternative design was indicated which would have lower values of stress for a given value of deformation, and which could be designed strictly on the basis of theoretical calculations.

THE THE LA

The increasing interest in rocket meters has focused attention on the lack of data available in connection with the design of safe and efficient expansion joints for the rocket assembly. These expansion joints must withstand high fuel pressures and must allow large degrees of expansion and contraction due to temperature variation. The external radial dimensions of the expansion joint are limited by a rodynamic considerations and the internal dimensions are limited by fuel flow requirements. After fulfilling these physical requirements the design must then be governed by case of production, assembly, and maintainence.

In an effort to aid in finding the most suitable type, tests were made on two different expansion joint specimens.

Fig. 1 shows in a simplified form the combustion chamber, fuel chamber, and expansion joint of a typical rocket motor. The high temperature due to combustion causes an elongation of the inner chamber, which in turn causes the outer cylinder to elongate. High fuel prossures are present between the outer and inner walls. It is necessary for the expansion joint to withstand the stresses caused by both the elongation and internal fuel pressure. With the assumed temperature distribution as noted in Fig. 1, the elongation in ten inches due to temperature is approximately 0.155 inches.

Information desired from the tests included the relation, at various internal pressures, between elongation of the specimen and the

2.

stresses in the expansion ring, the loading which would give permanent set, an the amount of repeated loadings necessary to cause fatigue failure.

The two specimens tested differed only in the thickness of the expension joint shell. Time permitted carrying out of only a small part of the desired program.

In addition, three theories were developed: the first, a twodimensional theory based on bending and energy equations; the second, a three dimensional membrane theory, called the empirical membrane theory, based or the assumption that the expansion ring deforms into. an ellipse when elongated; and the third, a general three-dimensional membrane analysis, called the elastic re-brane theory. A comparison was made between the rationalized results and the actual test data.

On the lasis of these theories the inherent unsatisfactory nature of the expansion rings tested became apparent and a more suitable type was proposed. •

UIT' IT . I . P TOC TUT

Arillustration of the test specimen is shown in Fig. 2. The entire assumbly was constructed of 1020 steel. The expansion ring and the two end plates were welded in place. On the first specimen the expansion ring had a thickness of 0.05 inches, while on the second specimen the thickness was 0.04 inches. Internal pressure was obtained by the use of a Blackhawk hydraulic jack which forced oil into a 5/8" hole at the top of the specimen. Either two steel bars or two steel plugs were serived into the center of the top and bottom plates deponding whether it was necessary to place the specimen in tension or compression. This tension or compression was accomplished in a bouthwark 300,000 lb. testing machine. Control and accuracy allowable by this machine is excellent.

Provision was made for applying a centralized load without bending moments wherever possible. Spherical bearings were used in tonsion tests, and ball bearing pyramids were used in compression when applied loads were below 40,000 lbs. Boyond this point lead washers were used to centralize the load.

SH-4 strain gages, type A-8, manufactured by the Baldwin Locomotive Morks, were used. Five gages were located on the first specimen as illustrated. In order to obtain a better average stress eight gages were used on the second specimen. Their locations are likewise shown.

Specimen No. 1

\$ 5,6.7.8 Fil.2.3.

4.

Specimen No. 2

These strain wares were used in conjunction with a multiple channel wheatstone bridge designed and made at the California Institute of Technology. Voltage measurement was made by a Leeds and Northrop Potentiometer. This apparatus was capable of measuring the change in voltage in the strain gages to an accuracy of 0.001 millivolt. It normitted the determination of the change in voltage when the gages were in either tension or compression.

Two gapes, located 90° apart, were employed to measure the overall elemention of the specimens. The first was a vernier micrometer which was capable of measuring within 0.001" accuracy; and the second, a dial gage, was capable of measuring within 0.0005" accuracy. The mean of their readings was taken as standard.

Calibrations were first made on the UR-4 strain gages. A page was glued to each side of a standard 24ST test specimen. The specimen was placed in a testing machine and the strain gage voltages for various tensile forces were recorded as noted in Table ¹.

checked by Euggenberger stroin gages. From this data the stressmillivolt relation for steel was determined as shown in Fable 1. This relation is plotted in Fig. 3.

pecimen do. 1 was mounted in the Southward testing machine, as illustratéd in Photographs do. I and do. II, and elongated with internal processures varying from zero to 600 / per sq. in. The voltage across each strain gage was recorded for each combination of pressure and elongation, and the results tabulated in Table II. The stresses as determined from Table II and Fig. 5 are recorded in Table III.

5.

In most instances the specimen had to be placed under compression by the suthwar' testing machine in order to prevent the internal pressures from elongating the specimen past the elastic limit.

ith an internal pressure of 600, the specimen was then allowed to clongate until an overall charge in length of 0.2 inches was reached. This was well past the clastic limit of the material. The results are recorded in Tables II and III.

.'inally, with a constant pressure of COO _ the elongation was varied between zero and 0.2" until rupture occurred.

The procedure for testing the second specimen was similar to that of the above.

In Figs. 4 through 21 are plotted values from Table III. Two types of graphs were made: one of stress versus elongation with internal pressure as a parameter, and the other of stress versus pressure with elongation as a parameter.

d.

THFOLITIC L ALL LYS DS

Three theoretical approach ... re made to the problem and an attempt made to relate the results to the test data.

The first method was a two-dimensional analysis using the energy equation S. This method assumes that the energy goes into bending and hoop stresses.

The second method involved an empirical three dimensional membrane approach assuming that the pattern of the expansion ring takes the form of an ellipse when elongated. This method is designed to give greatest accuracy for comparatively large elongations and does not necessarily hold too well for small elongations.

The third method was an exact three dimensional membrane approach on the basis of theoretical membrane deflection and stresses. It holds only when all parts of the membrane are within the elastic limit.

The three methods are presented in detail on the following pages.

PITT T DED

T.O JI' WUL WIL I HOMY

As a first approach in rationalizing the problem, a two dimensional energy analysis was made. This method essentially followed the procedure outlined in Ref. 2, Page 79. It is assumed that the energy is absorbed by bending of the ring and by an increase in the ring diameter caused by "hoop" stresses. It neglects the fact that the specimen is considerably more rigid in the three dimensional case than in the two dimensional case.

MOMENT at STATION MA $M = M_0 - (H + p_m) (r - r \cos \theta) + p_m^2 \left[\frac{\sin^2 \theta}{2} + \frac{(1 - \cos \theta)^2}{2} \right]$ = Mo - Hr + Hr cost - pr + pr cost + pr ? (1-cost) = Mo - Hr + Hr cos O dH =1 $U = \int_{0}^{S} \frac{M^{2} ds}{2EI} \qquad \frac{dU}{dM} = 0$ $\int_{0}^{T/2} \frac{M^{2} ds}{2EI} \qquad \frac{dU}{dM} = 0$ $\int_{0}^{T/2} \frac{M^{2} r d\theta}{2EI} = \frac{1}{E} \int_{0}^{T/2} \frac{dM}{dM} r d\theta = \frac{1}{E} \int_{0}^{T/2} \frac{M r d\theta}{2EI} = \frac{1}{E} \int_{0}^{T/2} \frac{dM}{dM} r d\theta = \frac{1}{E} \int_{0}^{T/2} \frac{M r d\theta}{2EI} = \frac{1}{E} \int_{0}^{T/2} \frac{M r d\theta}{dM} = \frac{1}{E} \int_{0}^{T/2} \frac{M r d\theta}{dM} = \frac{1}{E} \int_{0}^{T/2} \frac{M r d\theta}{2EI} = \frac{1}{E} \int_{0}^{T/2} \frac{M r d\theta}{dM} = \frac{$ $=\frac{r}{ES}\int_{0}^{\frac{\pi}{2}} \left(M_{0}-H_{F}+H_{F}\cos\theta\right)d\theta$ = TEI [Mot - Hre + Hrsing] The = # Mot HATT + HAT Mo = HH - 2Hr = 0.36 5 HM $M = H^{n} \cos \theta - 0.635 H^{n} = H^{n} (\cos \theta - 0.635)$

 $\mathcal{U} = \frac{1}{2} \int_{0}^{\pi/2} \frac{M^2}{E_T} r d\theta = \frac{H^2 r^3}{2E_T} \int_{0}^{\pi/2} (\cos \theta - 1.27 \cos \theta \cdot .4 \cos) d\theta$ $= \frac{H^{2} n^{3}}{2 \epsilon_{s}} \begin{bmatrix} \theta \\ 2 \end{bmatrix} + \frac{\sin 2\theta}{4} - 1.27 \sin \theta + 0.404\theta \end{bmatrix} = \frac{\pi}{2}$ $= \frac{H^{2}r^{3}}{2E_{I}} \frac{\overline{T}}{4} - 1.27 + 0.404\overline{T}$ $=\frac{H^{2}\mu^{3}}{2ET}(0.150)$ $\frac{dU}{dR} = \delta_{,=} 0.150 \frac{Hm^3}{FT}$ The damage in diaMETER = $\delta_2 = \frac{e}{\pi} = \frac{2pr^2}{tE}$ Total Elongarions: 87: 28, + S2 = 2×0.15 H+ 2 + 2/1 2 $= 0.30 \frac{Hh^3}{ET} + \frac{2\phi h^2}{tE}$

10.

$$E = 30 \times 10^{6} \text{ for STEEL}$$

$$I = \frac{\xi 3}{12}$$

$$\int_{T} = \frac{0.30 \text{ H} \text{ H}^{3}}{30 \times 10^{6} \frac{\xi 3}{12}} + \frac{2}{30 \times 10^{6} \frac{\xi p \mu^{2}}{t}}$$

$$= 1.2 \times 10^{-7} \frac{Hr^{3}}{E^{3}} + 0.667 \times 10^{-7} \frac{4r^{2}}{E} \qquad (1)$$

For Second Speciment:
$$t = 04''$$
, $r=1''$
 $T_A = 25H + 25b - 1370H$
 $H = \frac{25b}{1345} + \frac{1}{(04)^3} + 0.667 \times 10^{-7} + \frac{1}{(04)^3}$
 $S_T = 1.2 \times 10^{-7} H + 0.667 \times 10^{-7} + \frac{1}{(04)^3}$
 $= 1.2 \times 10^{-7} \left[\frac{25b}{1345} + \frac{0}{(04)^3} \right] + 16.675 \times 10^{-7} + \frac{1}{5}$
 $= -13.92 \times 10^{-7} T_A + 3644 \times 7 \times 10^{-7} + \frac{1}{5}$
 $T_A = 26.2 + -718000 S_T$
Print "B": where $0 = 57.3^{\circ}$
 $H = HF(\cos 0 - 0.635)$
 $= -.09 SHM$
For IS Speciment: $t = 05^{-7}$; $r=1^{+6}$
 $T_B = \frac{bA}{2t} + \frac{H\cos 0}{t} - \frac{Mm}{2t}$
 $= \frac{bA}{2t} + \frac{1600}{t} - \frac{Mm}{2t}$
 $= 20 + 10.9 H + 228H$
 $H = \frac{0B-20F}{2709}$

S = 0.96 × 10-3H + 13.34 × 10-7 = 0.96 × 10-3 [JB-206] + 13.34 × 10" b = .402 ×10 5 - 8.05 ×10 + 13.34×10 b = .402 × 10-5 (8 - 7.917×10-5 / (B = 249000 d + 19.9 p 2nd SPECIMEN: ES.ON"; MEI" (B= \$+0.541 H +.095 Hx6 + +2 = 25 & + 13.5H + 356 H $H = \frac{\sigma_B - 25}{\sigma}$ $\delta_{7} = \frac{1.2 \times 10^{-7}}{(.04)^{3}} H + 0.667 \times 10^{-7} p$ = 1.2 H + 16.675 x10" p $= \frac{1.2}{640} \left[\frac{93 - 25}{369.5} \right] + 16.675 \times 10^{7} \phi$ = 5.07 × 10 - 12.7 × 10 5 + 16.675 × 10 8 (B= 197000 ST + 24.7p

 $\begin{aligned} \int U M MARY of TWU DIMENSIONAL THEORETICAL EQUATIONS \\ FIRST Specifical: (t=.05") \\ GA = 20.22 - 844000 & & \\ GB = 249000 & & + 19.72 \\ \\ \int B = 249000 & & & + 19.72 \\ \\ \int Second Specifical: (t=.04") \\ \\ GA = 26.22 - 718000 & & \\ \\ GB = 197000 & & & \\ \end{bmatrix} \end{aligned}$

THESE VALUES ARE PLOTIED IN FIGURES 22,23,24 and 25 and compared with the actual test VALUES It is NOTED that the Agreement is Not 4000 for POINT A and is ONLY APPROXIMATE AT POINT B.

STIFICL THRAT DITAGINAL MEDIAN DELLA

This theory assumes that bending stresses are small in relation to membrane stresses and that bending produces only local effects. Membrane stresses are concuted for the initial condition and for the observed deformation pattern at comparatively large values of elongation (i.e., in the vicinity of the

elastic limit), thereby providing a basis of empirical design if test data is compatible with membrane theory.

The observed deformation curve was found to resemble an ellipse with the minor axis shortened 0.035" and the major axis lengthened 0.035" for stresses slightly above the elastic region. Mear the weld, the ellipse was observed to be slightly distorted at large values of elongation.

This method assumes elliptical distortion in the manner noted above and derives equations which give stresses corrosponding to this distortion in terms of the various parameters. Assontially, this procedure is a variation of the method riven in art. 73 of Lef. 1.

"OF TH POINT : (See Fig. a)

 $2 r_0 \sqrt{\sin \phi} + F = 0$ But $-F = \prod p(\overline{1 + r - e^2} - 1^2) + n(1 + 1/2r) 2 \prod$ Substituting: $(\phi = 90^{\circ})$

 $2r_0 = p(r^2 + 2r_1 - 2or - oF) - 2H(P + 1/2r) = 0$ but $r_0 = I + r - S$

$$i g = \frac{p(r^2 + 2rL - 2\bar{c}r - L\bar{c}) + 2...(r + 1/2r)}{(2) (L + r - 1)}$$

(1)
$$T_m = \frac{1}{t} \frac{p(r^2 + 2rF - 2ir - 1i) + 2ii(ii + 1/24)}{(2)(F + r - S)}$$

for the case tested, $H_{g} = 0.933p (1 - 0.953r) + 0.933H$

$$N_{Q} = r_{2} \left(p - \frac{N \not q}{r_{1}} \right)$$

From the deformation pattern we know that the band at center contracts a distance of 22 if n = const. This corresponds to a N_G stress of value $\int 2 = E E = \frac{2}{E}$

$$\overline{\mathbf{U}_2} = \boldsymbol{\epsilon} \mathbf{E} = \frac{\boldsymbol{\epsilon}}{(\mathbf{p} + \mathbf{r})} \mathbf{F}$$

for the cases tested 0.2 = 4,100,0002 (within clastic limit)

This induces a tensile stress in the moridional direction \mathbb{N}_{p} equal to:

(2)
$$\sigma_1 = \int \epsilon E = \frac{E E}{E + r}$$

 O_1 for the cases tested = 1,230,000 G

The above correction does not include the effect of the original stress due to 4. This stress is a compressive stress of value

 $\overline{\text{U}}_{3}$ for the cases tested = - 0.3 $\frac{p}{t}(1-\epsilon)$

The total mortifical stress at "A" is the sup of spectrus (1), (2), and (3).

For the cases tested

$$\overline{J}_{I} = \frac{1}{t} \left[0.634p + 0.9.41 \right] + 615,00 \delta_{I} - 0.15 \frac{p}{t} \delta_{I}$$
** ***

for a second point B, located at $\beta^2 = 60^{\circ}$, the following equations were derived.

$$r_{1} = \left[\frac{r}{r} - \frac{1}{4} \frac{r}{r} + \left(\frac{r}{r} \right)^{2} \right]^{-3/2}$$
$$r - \left(\frac{c}{r} \right)^{2}$$
$$tan \phi' = \dots 1 \frac{r}{r} + \frac{c}{r}$$
$$r - \frac{1}{r}$$

By , r lie construction

$$r_2 = 15.03 r_1$$

The equation

$$\frac{n_{p}}{r_{1}} + \frac{\log \sin \phi}{10.05r_{1}} = p$$

can now be solved by assuming a value of $a_{Q} = p$ from equilibrium considerations. This gives the following stress at P due to lirect me brane stress.

$$(4) T = \frac{1}{t} \left\{ \frac{[r - .25 - \frac{s}{r} + (\frac{s}{r})]^{2/2}}{r - (\frac{s}{r})^{2}} - 0.0469p \right\} + \frac{+0.500H}{t}$$

It should be noted that the above equation holds only for a given value of the r/P ratio having the proportion 1 : 7.3215. (Calculations became too complex to retain this parameter.)

.

In computing the above meridional stress the value of He was assumed to be of magnitude p. The correction to the above moridional stress to allow for this is

$$(5) \qquad \qquad \overline{\Box_{i}} = - \int_{\overline{C}}^{p}$$

Mechanical construction further indicates that the point B suffers 1/4 the radial compression in comparison to the compression at point . The stress corresponding to the compression of the radial band at has the value

(6)
$$\sqrt{12} = 1/4 \frac{1}{14}$$

The total moridional stress at point 3 is the sum of equations (-), (5), and (3).

The plots of \mathbf{U}_{T} vs. \mathbf{h}_{T} for points \mathbf{h} and \mathbf{B} are given in Fig. 23 to 31, showing computed and experimental values.

It should be noted that the stress curve for point B will tend to become negative at large values of deformations due to the local bending in the region of the welc. or this reason the stress curves for point 5 are not continued for a value of $\hat{c}_{\rm T}$ exceeding 0.070°.

These strosses apply at relatively large deformations since the stresses fit the actual deformation pattern at large deformations. They do not apply for small deformations.

This theory applies where deflections are large in relation to thickness and all stresses are within the clastic limit. This method is based on Art. 73 and 76 of Ref. 1.

(1)
$$\frac{11_{0}}{r_{1}} + \frac{11_{0}}{r_{2}} = p$$

(2) $2 \prod r_0 \sqrt[n]{g} \sin g + F = 0$ where F is total downward force at any station defined by r_0

These two equations define all forces acting on a unit element. Solving (2) for M_{g} gives

(3)
$$N_{g} = \frac{F}{2 \pi r_{o} \sin \varphi}$$

Lliminating N_{g} from (1) gives

(4)
$$r_0 = r_2 p + \frac{r_2}{r_1} \left(\frac{F}{2 \pi r_0 \sin \phi} \right)$$

No TP No

Fig. a.

Total force measured in meridional direction by strain gage is

(5)
$$F_{T} = N_{g} - 3 N_{g}$$

(6)
$$F_{T} = -Jr_{2}p - J\frac{r_{2}}{r_{1}}\left(\frac{F}{2\pi r_{0}}\sin\phi\right) - \frac{F}{2\pi r_{0}}\sin\phi$$

$$F_{T} = -\left[\left(\frac{F}{2 \pi r_{0} \sin \phi}\right)\left(1 + \frac{1}{2}\frac{r_{2}}{r_{1}}\right) + \frac{1}{2}r_{2}p\right]$$

$$\Gamma = \left\{ \begin{array}{l} \text{total do award load} \\ \text{at sition } r_0 \end{array} \right\} = -424 - \Pi \left(\frac{2}{r_0} - F^2 \right) p$$

$$\frac{2}{r_0} = \frac{2}{1 + r_1} \sin \emptyset = F^2 + 2\Gamma r_1 \sin \emptyset + r_1^2 \sin^2 \emptyset$$

$$T = 424 - \Pi (2 - r_1 \sin \emptyset + r^2, \sin^2 \emptyset) p$$
repation (7) then 'econes

(3)
$$\mathbf{O}_{\Gamma} = -\frac{1}{t} \left[\left(\frac{-42i}{2\pi} - \frac{\pi(2rr, \sin \phi + r^2, \sin^2 \phi)p}{2\pi r_0 \sin \phi} \right) \left(1 + \frac{Jr_1}{r_2} \right) + Jr_{2P} \right]$$

By definition $r_0 = r_2 \sin \phi = 1 + r_1 \sin \phi$

(9)
$$\mathbf{J}_{T} = -\frac{1}{t} \left[\left(-\frac{42 \text{ H}}{2 \pi \sin \phi (\pi + r, \sin \phi)} - p \frac{2Fr_{1} + r_{1} \sin \phi}{2r + 2r, \sin \phi} \right) \right]$$
$$\left(\frac{1 + Jr_{2}}{r_{1}} + Jr_{0} \right]$$

Equation (9) permits determination of the best ratios for the parameters r and R in regard to meridional stress at any point.

We will make a study of the condition where

 $r = 1^{n}$

12 0

Pig. C

 $k = 6.3125^{\circ}$

$$r_{1} \approx r$$

$$(9)' \quad \int_{T} = \frac{1}{t} \left[\left(\frac{6.8125 \text{ H}}{\sin \phi (6.3125 + \sin \phi)} - \frac{p(12.625 + \sin \phi)}{12.625 + 2 \sin \phi} \right) \left[1 + \sqrt{\frac{2}{\sin \phi}} \right] \right]$$

$$\Im p \left(\frac{R}{\sin \phi} + 1 \right)$$

Consider stress at point A: ($\emptyset = 90^{\circ}$)

$$\mathbf{T} = -\frac{1}{2} \left[(-0.933H - 0.933p) \left[1 + \mathbf{i}(7.3125) \right] + \mathbf{i}_{P}(7.3125) \right]$$
assume $\mathbf{i} = 0.3$
(10) $\mathbf{T}_{T} = \frac{1}{2} \left[2.98H + 0.7865p \right]$

$$T_{\pi}$$
 (for t = 0.05) = 174.5 H + 15.9p

The deflection curve may now be computed by the method of 4rt. 76 of Mef. 1.

L study of the equation

V = Meridional elongation =
$$\sin \emptyset \cdot \left\{ \int \frac{f(\emptyset)}{Sin \emptyset} d\emptyset + C \right\}$$

readily shows that V gets very large at small values of 9' since f(9)is a function of $(\frac{1}{\sin(9)} + \frac{2}{\sin^2 9})$

The radial elongation acts in a similar manner.

In actual calculation of V showed that the membrane stress is far above the elastic limit for $S_{\pi} = 0.025^{\circ}$ at $\emptyset = 5^{\circ}$.

IXT SI I OT LASPIC "EMPL. . THEORY

From the above considerations in regard to the stresses in the membrane in the vicinity of the weld (bending moment assumed to be

zero) it is readily seen that the elastic subtraction by does not apply for $c_{n} = 0.020$ since the membran strates have exceeded the elastic limit in the region of the wold.

The elastic membrane theory relates the deformations with stresses. These stresses in turn are a function of radius of curvature at the given point. Conversely, if we know the radius of curvature (and all parts of the membrane are in the elastic region) the stress is determined.

If we can relate the non-elastic radius of curvature to the elastic radius of curvature and substitute this factor in equation (9) we can obtain an idea of the trend in the non-elastic region. This equation is repeated below.

$$(9) \int_{t} = \frac{1}{t} \left[\left(\frac{-4}{2 \pi \sin \phi} \left(\dots + r, \sin \phi \right) - p \frac{(2 \ln r + r, \sin \phi)}{2 \ln r + 2 r, \sin \phi} \right) \left(1 + \int_{\frac{r_2}{r_1}}^{r_2} \right) + \frac{1}{2 r_2} \right]$$

Now h is a constant, r₁ is very nearly unity and varies only slightly with large deformations. It will be seen, therefore, that the quantity

$$\left(\frac{-42 \text{ H}}{2 \text{ m} \sin \emptyset (1 + r_1 \sin \emptyset)} - p \frac{(2 \text{ R} r_1 + r_1 \sin \emptyset)}{2 \text{ R} + 2 r_1 \sin \emptyset}\right)$$

where R = 6.3125" and $r_1 = 1 \div 0.1$ (say)

is constant for a given value of \emptyset for all practical surposes. The major variables in equation (9) are the terms

$$\left(1 + \frac{1}{r_1} + \frac{r_2}{r_1}\right)$$
 and $\left(\frac{1}{r_2} + \frac{r_2}{r_2}\right)$

It is apparent from consideration of these two terms that a scaller value of $\frac{r_2}{r_1}$ will give a lower value for σ_T -on-plastic deformation does just this. The slope of the tangent (in the region of the wild) increases, thereby reducing the radius of curvature and lowering the stress, (see Fig. d.) At point A the effect is negligible. At point E the effect is considerable since the ratio $\frac{r_2}{r_1}$ may change by a factor of eight or nine (based on mechanical construction with $\sigma_T = 0.10^{"}$). This means that the stress at 1 will be lowered by a factor of ap roximately 3 for such local deformations. (This result is obtained from equation (9).)

The basis of the inflection point at B (See Fig. d.) comes from a study of the radial rigidity of the membrane.

The rigidity, as previously indicated, is a function of $\frac{1}{\sin \varphi} + \frac{1}{\sin^2 \varphi}$. Since $\sin \varphi$ is very small near the weld and the stresses are beyond the elastic limit, the radial resistance to deformation is very slight between point B and the weld. Between point E and point A the radial rigidity increases rapidly and the stresses are below the elastic limit. This makes possible the appearance of an infloction point, or at the very least a discontinuity in the radius of curvature.

DEFECT OF LOCAL BLUDLING

It should now be noted that local bending stresses at "B" will further decrease the stress at "B". From the change in curvature the bending stress at "B" may be greater than the membrane stress

when deformation becomes I rge at "B" as simm in li. c. This loc l

bending products a compressive stress. The measured stress at "S" may become very small or negative. A clue to the state where \checkmark_{T} at "S" may become negative is where the H vs. \sim_{2} curve becomes honlinear. This is at $S_{T} \ge 0.025^{\circ}$ where slight discontinuities were encountered for all pressures. It is certain that the preceding equations for stresses at "B" do

20 .

not apply for T> 0.028" as they would indicate too large a stress at "B" (as measured by a strain gage.)

At point "A" this bending effect is negligible since this region has the least bending. (The effect, however, would be a compressive stress.)

From considerations of the membrane stresses produced near the weld, it is clearly seen that the ratio $\frac{r_2}{r_1} \longrightarrow \infty$ for a small weld and that the membrane stresses become very large until relieved by deformation. In the weld the bending stresses are also tensile stresses at a point infinitely close to the weld. For elongations of the order $\delta_T = 0.20^n$ this analysis shows that the type of expansion joint tested is inherently unsatisfactory since stresses cannot possibly be kept below the elastic limit.

¢

.

In order to further understand the unsatisfactory nature of the original design, the schematic stress distribution at various points (due to both bending and membrane stresses) are shown for a large and a small \mathcal{E}_{p} . (See Fig. d)

8

2Ja.

LILCULI... , LT

By comparison of the calculations for the two dimensional banding theory and observed data, this met of whe found to be totally inapplicable. The stress distribution, according to this theory, would yield by compressive stresses in the region of point A (the maximum diameter of the expansion joint). Actually, these stresses are tensile stresses and have heree magnitudes. Moreover, the stresses at point B should increase with elongation. Actually, they reach a peak, diminish to practically zero, then increase slightly.

The elastic three dimensional membrane theory gives very good agreement, within the limits of experimental accuracy, to the elastic limit. Beyond this point the agreement was unsatisfactory since these equations do not consider the reduced modulus of elasticity. It will be noted that the specimen having the smaller thickness gave botter agreement and, incidently, gave lower values of stresses for a given elongation. This validates the applicability of the membrane theory. This theory is further justified by 100f. 1, 3, and 4. The applicability is particularly shown by int. 67, and 68 of hef. 1. It should be noted that this theory does not apply when any portion of the membrane exceeds the elastic limit and that this theory has been extended in this thesis to show the qualitative effect of non-elastic deformation. This difficulty eques from the fact that stresses in the original design exceed the elastic limit for infinitesimal deformations.

The empirical three dimensional membrane theory evaluates the membrane stresses for the measured beformations. Since the deformation pattern chosen was one for total elongation equal to 0.035", the agreement is better for large values than for small ones. This method is only as accurate as the measured deformation pattern. Considering this limitation, this method gave remarkably good agreement for values of total elongation equal to 0.200". As noted previously, neither test or computed values were corrected for reduced modulus. This empirical method should be employed only as a last resort where stresses cannot be computed on a strict theoretical basis.

On the basis of these tests and theoretical calculations the type of expansion joint tested was found to be inherently unsatisfactory for the following reasons:

1. This expansion joint experiences permanent deformation for very small elongations. These deformations become appreciable for a total elongation of 0.023", which is far below the requirement of 0.200".

2. The membrane and bending stresses are greatest in the vicinity of the weld. Cince the weld material has the weakest physical properties, this is undesirable.

3. The present design is theoretically not sound, and is, therefore, difficult of solution. With a slight modification in design, the expansion joint could be subjected to an exact enclysis with ease, and the stressus growthy reduced.

4. The specimen having the greater thickness sailes at the weld for one cycle of clongation (from zero to 0.200" elongation and block

.7.
to zero at 600 + pressure). The specimen having the lesser thickness failed after experiencing approximately two and one-half such cycles, the failure occurring at three places at the weld.

Lowreested expansion joint profile is shown in Fig. e. The proportion r_1 , r_a , r_b , R, may be determined analytically by means of Art. 76 of Hef. 1. The procedure would be to choose the average 6_T and p anticipated and solve for "." = zero at station Y. This means that the membrane will not deflect outward or inward at this point. Such a calculation would be very tedious but possible. An alternate colution would be to make several specimens and mount them in a manner similar to the method used in this test. Apply internal pressure by a suitable hydraulic pump, control elongation (\tilde{e}_T) by a screw device, and note the change in a dial gape mounted at etation 1. The specimen giving the least change in the dial reading at 7 over the required range of p and ϵ_T would be the best specimen. Bending stresses would be reduced to a minimum and the membrane theory would give great accuracy. Note that the design calls for a positive slope at all points. This avoids infinite values of $\frac{r_2}{r_1}$ or indeter-

minate stresses. (Theoretical analysis becomes very complex if slope at any point is zero.) Preliminary studies show that a slope of 0.5 is desirable for the minimum value of the slope.

It may, perhaps, be argued that the expansion joint designed in Fig. e is similar to a sylphon and is moverned primarily by bendinstresses. That is true to a point, but it is only because membrane stresses have been kept in the elastic region. Greever the bending

.

^{20 ...}

stresses may then be retained in the clastic relion. (note that the bonding theory gives stresses above the clastic limit for the point near the weld in original design for $\theta_{\rm p} = 0.20^{\circ}$).

It is not stated that the :...cool design will five all stresses below the elastic limit. To obtain such a condition it may be necessary to resort to several bands. However, the design offered should have greater resistance to fatigue and may be satisfactory if the number of cycles required is not too great.

In regard to the parameter t (thickness) the theoretical analysis shows that the perbrane stresses are inversely proportional to the thickness. This would indicate at first hand that a large value of t is desirable. Theory and the tests show, however, that large values of t set up large bending stresses for a given displacement in bending. This shows that there is an optimum value of t, probably only slightly above that required to keep the stresses in the elastic region.

The remaining parameters, r and I, are more or loss determined by rocket design.

Addition T. T. P. LTS

Both test and theory agree that stress is detormined by the magnitude of H, representing the force per unit length required to produce elongation of the expansion ring. It a low value of H, the stresses will be reduced to a reasonable magnitude.

The additional stress due to internal pressure was found to be practically constant over deformations in the elastic region.

Experimental results in contrast to theoretical views are shown in figs. 23 to 31. It will be noted that for the first speed on (t = 0.05") a large oproad of stresses is potched for various pressures. For the second specimen (t = 0.04") this variation with pressure was not clearly defined because fewer test points while obtained. In this regard, it is very difficult to obtain accurate readilies for small elongations when the specimen has many dents and dimples, as did the specimens tested. At larger elongations these local irregularities tend to be removed by the increased stresses.

It should be noted that the above difficulty would not be encountered with a properly designed and carefully manufactured specimen.

it is believed that the stress readings were obtained with a degree of accuracy consistent with the precision of the specimen but inherent inaccuracies are still sufficient to account for any differences between observed results and the exact membrane theory. It should be noted from Figs. 20 to 31 that the stress variation agrees with theory in respect to elongation, pressure, and location of station; and that the specimen of lesser thickness gives the slightly better agreement and has lower values of stresses than the thicker specimen.

The empirical method, based on radial displacements, was found to be applicable and gave surprisingly good results considering the crudeness of the deformation pattern. The deformation pattern should, of course, be obtained by measuring the radial displacements of numerous stations.

- 1. Theory of Plates and Sholls 1. Timoshenko
- 2. Strength of Materials, vol. II 1. Timoshenko
- 3. Theory of blastic Stability 7. Timoshenko
- 4. Theory of lasticity 5. Pimoshonko

I. . T TAPL 3

- T.BL. I Strain Gage Calibration
- L BLT II Observed fest fata: Fressure, longation and strain was badings
- T.B. III Observed Stresses

I. Y X TC FIGT E

PIDdF 1	hocket section
PT017 2	last Spocimen
721 2	Stress - Willivolt Jolation for steel
r 160 / 2 4 thra 21	Observed Stress, clon-ation and Pressure Curves
FINULDE 22 thru 25	Two limensional Theoretical Curves Versus Test curves
PIG(N =) 20 and 27	Curves of H versus J
71600. 0 28 thru 31	Three Dimensional Theoretical Carves versus lest Carve
	LIDTE TO ATCTOCHARKS

- PTOTOTE PH 1 General View of Post
- P O WOR PH 2 Test Specimen

STANDARD SPECIMEN - Z.H. ST $\begin{aligned} t &= c.0775 = THICKNESS (IN) \\ W &= v.5 &= WIDTH (IN) \\ A &= twl = v.03475 \Box'' = (ROSS SECTIONAL AREA (\Box')) \end{aligned}$ $E = \frac{107}{AE} = \frac{P}{.03375} \times 10^{-7} = 2.5.8 P \times 10^{-7} = 2.58 P \times 10^{-7}$

P	E X15"	GAYE 1		SP	1 DE	15,	AG.			
165	IN/IN	MV	Mr	165	×10-4 1~11~	NIV	NIV			
150	3. 87	.278	. 34/1	. 571	1.29	. 7 7 6'	2.00/			
200	5.16	.578	.655	50	1.29	.300	3/4			
250	645	. 878	.962	50	1.29	-300	517			
al'er	7.73	1.179	121	30	128	.301	304			
522	4.03	1.484	1.62	SE	130	. 310	352			
-100	1032	114.	1.813	sü	1.24	-301	253			
17-2	11.60	2102	2112	10	1.28	. 300	144			
51 12.40 2.412 2.413 20 1.30 .210 3.1										
· ····································										
17:2	1.5.60	3637	3.668	100	2.58	617	624			
1.0	10.00	7244	4.248	100	2.57	.605	530			
700	23.25	1 363	4863	150	2.60	614	4-			
1303	25.00	5.765	5 4-3	100	7,55	.602	570			
22 4 .	53.40	6,613	6.018	100	6.00	1.598				
			2		25.82	3.961	3.846			
				JE						
	FOR A	VERAGE	AP=	- 50	1.291	305	.2.96			
.296										
2[60]										
.300										
$1MV = \frac{1.291 \times 10}{0.3}$ in/in										
Gard: 1141 - 4 - 4 - 4										
< 3/ 125: 1		MV =	0.3	Q X3	0 × 10°=	: 1283	0 psc =			

TABLE I

to

SPELIMENT NO 1

LOAD	P	67	GA	GE RE-	12115 - 5	· +/ 11,V	- 7 6
165	PSI	ELONG. X 10-3	1	2	13	e f.	2
200	0	2.5	.022	.092	0.110	.067	No
800		5.5	.034	.213	0.258	.077	READING
1400		12.5	. 04 8	.339	.39x	.130	1
2000		15	- 0.54	. 4444	.533	,153	REPLASE.
3201		16.02	.057	.765	.774	.212	
4146		2.1.5	.073	1.017	1.040	. 2 . 7 %	
5600		240	- 384	1.250	1.291	47 -	
6800	Y	3.8-3	.10%	1-167	1.53	.822	
5000	1	33.5	123	1.76	1.745	1 42 3	
450	25	19	004	1 286	1.2.2	484	. 509
400		16	.000	1-248	1113	4 in U	.492
1200		16	.0.10	1.132	1.014	.437	.416
1900		12	. 161	1173	1.000	. 42.7	1404
1360		13	• 071	1.10 2	0115	1 4 8 63	1121
2100		167-	· 011	1.051	1 31	. 3.5	1103
\$100		1	. 15	.937	01.12	· 534	275
3300		7	1007	. 876	182	14 8 1	13/3
450	50		. 118	1885	1757	.670	154
900		2.0	.07	1.60	1.547	.651	632
1900		19	·012	1620	1.511	·las	.675
1300		18	. 02	1160	1.428	.600	. 6.11
2400		175	. 100	1243	1.398	· 564	4 -
2000		17	182.	143 8	1.243	- 57	.500
34.00		15	.097	1.241	1.187		.522
4200	Y	13.5	. 095	1.3.0	109	.457	6
1		-		5.5		* 4	
			S	2 3			
		1.		12ª			
				/	1		
			Ì				

TABLE II.

SPECIMEN NO. I

1040	P	ST	GAGE	PEAL	JINGS -	- Millivor	T'S
165	PSi	ELONG NO 3	1	2	Cu	4	i -
1500	75	28	. 117	2.355	2.271	. = 61	.136
2100		27	,115	2.244	2.165	.831	.827
2400		26	.110	2.165	2 (31	. 8:5	-792
2700		25	.110	2.1311	2.650	.737	.787
3000		24	,110	2.106	2.122	.175	. 770
3300		22	.108	2.03	1.9826	.745	.152
3600		2.1	.108	2.013	1924	. 738	.745
3900		20	.105	1.934	1.850	.712	-126
4500		19	.104	1.878	1.774	.674	.6:5
5100	Y	18	.104	1.174	1.640	.644	.6.58
3300	100	31	.122	0 80	-, 79:	942	.435
3900		29.5	.119	7.70	L. S. I.S.	894	-43-
4500		28	.///	2.5.2	2 5.74	872	.40.8
5100		27.5	.112	7.755	2.671	.956	. 81 -
5700		2.7	.111	7.575	2.491	.29	.376
6300	V	2.6	.105	2.462	2.378	.870	.857
5000	120	33	.146	3.422	3338	1230	1.122
6800		35	.134	3.265	3.181	1.1.52	1023
8000		33	.134	3.075	2.491	1.075	1.04:
9800		28	,122	: 77!	2-707	0450	C. 943
11000		25	.115	2.012	2:76	0.874	0.816
13500		19	.,08	- :20	2130	0720	0795
16000	V	11	. 6 89	1.790	1.710	0.563	0.652
16000	180	35	.140	3.61	3.576	1.229	1.190
20000		23	.115	3.113	2.5%	6. 1:0	0.97-
24000		11	.100	2.462	1.776	6.704	2.7:0
20000		36.5	(101)	2911	· · · · · · · · · · ·	1.327	134)
72000		31	20	2 180	5 5 5 7	1.217	1231
26000		20	. 111	2.017	2.571	0.976	1.028
30000	*	10	.040	2.379	1.402	0.701	0.77-
			1	1			

SPECIMEII 110.1

20.20	P	ST	GAGE	REAU	11.155-	A1.11 1	4-1
165	PSi	E1.6 A G K10-3	/	2	(ri	4	5
30000	300	36	0.147	4.050	3.800	1.454	1,523
32000		31.5	.135	3.773	3.425	1334	1.477
36000		21.0	.112	3 1%-	2.644	1.092	1.216
40000	V	10.5	. 492.	2 531	1.824	9.837.	0.421
143000	400	35.5	.140	4.257	35-7	1:540	1.643
45000		31	.125	3.925	3:291	1 4 3.1	151
44000		21	,110	3.431	2.635	1.190	1.362
54000	Y	6	.070	2718	1.400	1.912.	1.170
58000	570	-+6.5	.164	4.362	3.506	1. 112.	1.940
60000		42.5	,152	4.083	3.130	1.120	1292
64000		32.5	.130	3.476	7. 303	1.528	1.720
69000	T	14.5	.100	2.802	D. 347 4.	11-2	1343
83Ca	600	10	.100	2. 776		1.130	1.541
78000		23	,115	3.519	2137	1402	1.520
76000		28	.120	3.152	2. 57	1.520	1.689
72000		37	.132	4.379	3.363	1.075	2.110
7:000		afe f	.141	4.623	3703	1.130	2.720
67000		52	.150	-1 \$80	1.138	1.112	2 435
1-1900		65	.152	2.863	4.715	2.033	2.690
	•						

SPECIMEN NC.2

LOAL	2	C 7-		6.14	E Ma	10.11	1	1.11.1.	1-22	
165	PSi	11149	1	2	3	-+		~ .	1	8
14500	100	-1.5	-062	.,05	.135	- 11-12			-	
27500	200	-2.5	.32.0	1253	. 315	. 11 2		-03.7		
40250	300	-4.0	.477	. 3. 9	. 4173	.312	-	12		
53250	400	-4.5	.655	.555	-645	. 44 3	_	.125		-
66200	500	-6.5	.040	. 121	1.021	.752	~-	125		-
11450	100	de C. and	Sec. 1	=71	125	.462	192	211	- 42	2.
211550	200	73.5	-349	1 5 3	563	557	.152.	214	103	2
27(0)	300	3.0	. 600	.82.2	.718	154	,140	317	5470	200
5/600	400	6.2	412	.467	2861	765	1160	.400	24.1	-14
17.10	500	105	1.140	1.268	1.087	.912	1331	.676		.7.3
Carl Cos		10.0			//			0.0		
1750	100	18.5	. 57.1	. 733	.195	.442	. 502	.669	114	-631
21075	200	20.5	.638	882	.355	.550	.514	.738	.7-7	.6.7
34150	300	14.0		1.020	. 525	.666	.526	. 7.10	.76-	. 676
46400	400	17.5	.1:3	1155	.631	.770	.529	. 122	.150	. 64 4
54400	500	19.5	1-12.8	-336	.862	.701	.581	.917	510	.642
7200	100	28.5	- 5.4	. 615		. 014	. 115	1.001	.233	1.00 7
19250	200	28.0	- 438	. 151	.024	-197	.703	1.342	.257	1.2.
31400	300	28.5	-637	1891	-208	306	.719	1.105	211	1.022
44400	400	30.0	.77/	1.010	- 3/2	.434	. 73.	1.200	354	1.075
:21:0	500	30.0	. 877	1133	- 541	. 247	.196	1-252	342	14-6
69000	600	30.6	1.011	1.242	.700	. 61	.831	1.334	.:18	1073
			1	1	1		I	1		1
					6	ATES	5.6	7.8		
				$ \leq $	t	1	, , ,			
			1	1	1.	1- 198	5 1,	2 3,4	1	
	•	1			V					
		1		12						

SPECIMEN NO.2

10-10	6	8-	6	AGE.	REIUI	NSS-	- , ¹ ,	Pil-		
165	251	E. ~ 9 A, J-3								
5400	100	36.5	-	.134	united for		711	1.5	1.181	1.175
18000	2.00	51.5	0	-251			14/	13=2	1.111	1251
30900	300	42 2	.151	. 4/00		Bardon ang palakite	151	1.4:3	1112	1.722
42.800	100	40.15	.267	. 4 80	. 615	an and a state of the	9	1468	2. 31	1.245
55800	500	39.0	,400	.549	.251			1.495	200	1.205
67700	600	34,5	.531	.720	.415	.104	133	1.532	2. 2	1.118
5100	110	45.25	272	.005	470	471	1.042	1.263	2.174	1.465
17850	200	47.75	022	.300	275	2- 11	1.101	1.722	2320	1.51
29550	30	50.25	-180	.508	- 028	192	1.127	1.352	2.432	1667
41/00	400	51.25	.342	.66.2	.157	074	1.31)	112.1	1 20 1	1.01
54000	500	51	.550	130)	-316	+ Chi	13:1		2553	1.131
1.00	600	51,2	.115	1.002	12/3	+.205	1		· · · · ·	1110-
(4300	600	4 Jacob	053	- 321	31	- 108	1,13	2250	2915	1.011
14:0	11	74.75		/0)	1.438	- 2.19	1 111	3.13%	3720	1.2.2
:-2750	10	4000	993	-1613	2.583	124	7 6-1 60	5 4. 42)	4.332	1.55
61750	11	11300	-1422	-1.334	7 Julio	am 163	3,142	6.13	0,7,7	3715
- E-W		14 0.00	-1.780	1.863	5555	- 24X	4.7	f.se 2	-8818	6. 5. 2.
51,20		146.	1.050	-2,172	6400	26 2	6.2.1	10743	12.6-	1714
57000	11	t. & Elin	411	-2. 502	8.141	6 2 7	4.305	13354	12.7-2	7.17-1

SPECIMEN No.1.

2040	P	8-		STRES	rs - P.	si.	
165	831	ELENG XIU-3	1	2	3	4	-
200	0	2.5	282	1100	1300	860	
800		5.5	436	2700	3310	1245	
1403		12,5	615	4250	5110	1670	
2000		15.0	757	5600	6850	1162	•
3200		10.5	757	9800	10000	2720	
4400		21.5	936	13000	13300	3740	
5000		24.0	1130	16000	16580	550	
6 350		28.5	1372	18720	12030	1.6.0	
8000		33.5	1500	22600	22400	15000	
450	25	19	122	16500	15600	(10.)	6540
400		16	873	16000	14750	5800	1300
1200		16	898	15300	13700	5600	6120
1500		15	873	15000	13300	5300	5420
1800		13	786	4200	12100	5100	5640
2100		14	911	13400	11300	4800	540,
2700		12	886	12000	10250	4200	5:10
3300	¥	9	836	16800	8600	3500	4810
450	50	23	1515	2.3700	23500	5500	.12.7.)
900		22	1154	21200	22200	8300	8450
1500		20	1180	20800	14800	7600	8100
1800		19	1180	20500	14400	7600	3620
2100		12	. 245	19630	1:303	71.00	7.700
2400		17.5	1283	17250	17400	72.00	7600
3000		17	13/0	13302	16600	6600	7440
3600		15	1245	17250	15250	6300	1200
4200	T I	13.5	12201	16160	. 4400	5800	6630
			A	\$6			
4				1253	/		
		1		11/			
				/ É	7		
			k				
							and the second second

TABLE I

SPECIMEN NO.1

LOND	P	Sr	5	STRES	5 - 1	? S.1.	
165	PSI	E. UN4 × 10-3	1	2	3	14	5
1500	35	28	1510	30200	241.0	11000	10720
2100		27	1475	28850	27800	10610	10630
2400		26	1410	27800	26700	10250	10180
2.700		25	1412	27300	26300	10000	10100
3000		24	1710	27000	25:101	9400	4973
3300		22	139-	26000	25000	9500	9650
3600		21	1335	25800	24750	9400	9560
3400		20	1350	24/00	23750	9000	4310
- 500		14	1335	24.10	23000	8600	8790
5100	T T	18	.33.7	22750	21700	8200	8450
3300	100	31	1566	37000	35420	12070	12000
3400		29.5	1530	34710	33550	11470	12000
4500		28	1425	33500	32450	11200	11650
5100		27.5	1440	34100	34250	10800	11522
5700		27	1425	331:0	32000	10500	11251
6200	¥ I	26	1350	31000	30,500	47.80	11000
						1100	11000
5010	120	38	1875	439-0	434.	1551	14400
6800		35	1785	41900	40500	14800	13900
3000		33	1720	39450	38400	13800	134/00
9800		28	1566	35800	34750	12200	12/00
11000		25	1480	3350)	32420	1.200	11500
13500		19	1328	23:501	274.3	4241	10200
15000	V	11	1040	22950	21450	7730	8.750
16000	160	35	1795	48600	45400	15800	15350
20000		23	147-	39900	12200	12.500	
24003	V	11	12.82	31611	9040	10000	
-	2.2.4	3 -	10711 -		. 1.7	1.7	1 11
20000	220	36.5	1195	5050	There	17350	18720
2200	1	3/	12/10	42800	12600	12100	
46000		20	1150	33000	1253)	940	
20000		10		22200	1000	1150	

.

.

SPECIMEN NO. 1

10+0	P	1 57		STR	25	P.S.i.	
16s	PSI	ELON4 ×10-3	1	2	3	4	5
30000	300	36	1885	52100	115800	18650	19550
32000		31.5	:130	48350	14000	17100	18300
36000		21.0	1440	40600	34000	14000	15600
40000		13.5	1180	32400	23400	10680	12.660
113000	400	35.5	1300	54600	49500	191-0	21100
45000		31	1000	51200	43500	13400	19400
49000	•	21	1410	44000	33800	130	1750
54000	¥	6	899	348.50	22 500	11700	15000
58000	500	46.5	2/00	56000	45000	23250	24900
60000		42.5	1450	52400	10200	22200	24750
64000		32.5	1670	44550	29	19600	22100
64000	Y	14.5	1283	35%-0	100:2	14800	17500
83000	600	10	1283	35100		14500	19800
78000		23	1475	75200	27400	18000	20050
76000		28	1540	49500	33000	19500	21600
72000		31	1700	562.60	42405	21.00	:7100
70000		44	1310	59400	177533	23500	34900
67000		27	1925	62800	-3:62	25400	311.50
64000	*	6.	1950	62501	57400	24300	34500

SPECIMEN NO 2.

LOHD	2	ST			STRE	55 -	P.S.1.			
165	P.si.	21129 X10-3	1	2	3	4	5	6	7	8
14500	100	-1.5	796	1386	1990	1220	-			
27500	200	-2.5	4110	3250	4040	2720	_	474		
40250	300	-4.0	6120	5010	6080	4080		924		and which the
5325	400	-4.5	8410	1170	8280	5040	-	1603		-
66200	500	-6.5	13350	11800	13/00	9650	-	1603		-
11400	100	+8.5	6790	7330	5460	5420	2540	3940	3055	3359
24550	200	8.0	8580	8770	72.40	7150	1450	4100	3143	3148
37600	300	6.5	10580	10550	1230	8460	1870	4570	3110	3182
50250	400	5.0	12460	12400	11150	9830	2125	5130	31%-	3403
62.000	500	10.5	15780	16250	13/30	12500	4350	3040	542	5832
8750	100	18.5	6790	9400	3500	5670	6430	8540	9170	8100
21075	200	20.5	8840	11300	4560	7160	6060	4480	9720	8360
34150	300	14.0	10670	13100	6740	8560	6760	10120	9520	3345
46400	700	17.5	12600	.4812	8750	4880	1450	,0620	171-	8360
54400	500	14.5	144.70	17120	11050	11650	7450	11757	10423	9670
7200	100	28.5	4160	7843		450	4150	12850	15870	12442
19250	200	28.0	6270	9710	308	253)	9020	13380	16130	12860
31900	300	28.5	8170	11420	7670	3430	9220	14180	16430	13237
44400	400	30.0	9400	13040	5030	5570	10030	15500	173-0	14162
56800	500	30.0	11500	14660	7020	7070	107.03	10050	17200	.4733
69000	600	30.0	12480	15470	89.50	8440	10750	1710)	17668	12320
		1	ļ	1	1	j	1	1	1	I
					6	AGES	5 6	70		
				\bigwedge	N	1723	-, 0,	1, 0.		
			6			-GA9E	s 1, 2	2 3 4		
		/		/ /	1	,	- /	, - , .		

TABLE TT (CCNT.)

SPECIMEN NO 2

LOAD	P	5-			STRE	55-1	P. 5.1.			
Ibs	PSI	FION 9 XIO.3	1	2	3	4	5	6	7	8
5900	100	36.5		1783		-	10000	16:40	24150	15080
12000	200	34.5	0	3220			10370	17470	25620	16050
30900	300	40	2015	5140		-	11020	17950	25610	15070
42800	422	40.75	3430	6170	1090		11600	18800	26020	15970
55833	100	39	5140	7680	3220	Automatical Science	11620	14100	25650	15450
67700	600	39.5	6820	1250	5330	1400	,1470	19650	257:3	1-3-0
5900	100	45.25	-3490	64.2	-6030	- 60 30	13450	24:30	27900	18800
17850	200	47.75	-282	3850	-2882	- 3730	15000	22000	29800	20410
24550	300	50,25	2310	6520	- 359	-2210	14457	23800	31250	21410
41700	400	51.25	4260	8490	2018	- 950	16800	24650	31150	21620
54000	500	52.5	7060	1/050	4950	+ 873	17800	25900	37800	22300
66500	600	51.5	9160	12870	1350	+2630	18000	257-0	526 50	21520
64300	• /	62.5	-744	4110	8170	-1385	22000	28550	33400	21500
64000	//	74.75	-6780	-1283	18700	-3385	249:0	50 500	47700	17 500
67758	11	90.0	-12.730	-7840	33200	-2870	29400	67800	62000	170.00
61750	11	113	-20500	-17770	5=300	-2155	48900	85500	13200	47505
60200	1.	140.	-22810	-23400	71200	-3180	632a	11360	2113200	84000
	<i>d</i> •	166	-212.00	-27400	81200	-4720	8/200	1314.	136700	104000
57000	18	202	-12800	-32/50	104633	- 2000	120000	17/20:	0 149500	125-00

TABLE III (CUNT.)

XPANSION RING FUEL PRESSURE 0-600 PS1 > 17111111 COMBUSTION CHAMBER (TEMP. UP TO 4000°F) A CONTRACTOR OF TO 11111111111111111 ROCKET SECTION THE FOLLOWING TEMPERATURE DISTRIBUTION IS ASSUMED: OUTER CYLINDER -T=50°F T= 300 ° F FUEL T= 1000° F INNER CYLINDER T=4000°F F1G. 1

•

PS1

1

0001 X

- 5TRE 55 × 1000 (PS1)

- PS/ J-5772555 •

J-STRESS-PS1

Ν.

e.

1

. .

¢.

: :

•

FIG. 18 . S.PECIMEN NO.2 GAGEG . . 100(1951 odo ELONGATION-INCHES X 10-3
SPECIMEN NO.2 GAGET STREUS - PSI t Р . FOR ALL PRESSURES ELONGATION-INCHESX 10-3

			1	1 1-				
1	-		10 -					
	1	FIG. 20					1	
1	5	PECIMEN NO.2						
2		GAGE8	1 • •	1			In the second	
			**************************************	-	-		+ +	
					L			1 1 1 1
	1 2 2		and the second second second	P				
				1				· · · · · · · ·
+ •								
		a an	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
28000				t t			1	
				ł	•			4
					· · · · · · · · · · · · · · · · · · ·			
26000								
· · · · · ·		· · · · · · · · · · · · · · · · · · ·						1
24000	_							
							. /	
					•			·
22000							4	
20000								
	* *			i				
	-							;= = {
18000								
16000								
19000								
12000								
1				i i	:			
	1							
10000	-			nde senser - rendererse en serador à reformerente	for the standard rate succession of the standard			
			1					
8000			/	4				
1								
. 6000	e <u>unterenter</u> F			a and a second s				
			1	1				
:9000							a grand a grand de a series	- 111 Ve-
-				1				1 11
2000								
2000	- /	i en pro-	++					
6							FOR ALL	RRESSURES
	/							
. 0	2	10	20 3	0	90	50	8 1 1	50
	0		ELONGATION	-INCHES	X10-3	1.1.	80	
				1 1	-	1		I

STRESS PSI

· ·

.

·

.

· · ·

		N N N	33 (2030)
		16.27 MENNO	6 P 7. 02.
		Specili Specili	H = 2929
	p: 50 p: 50 p: 50 p: 50		Le Hes
			8.8 7 10 12
			P072-35
270 240 250 250 250 270 270 270 270	1000 1000 1000 1000 1000 1000 1000 100	2 8 8 2 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10- 10- 10- 10-

I FRICH PUST CO 1 145 WILLINGTERS 180 87 250 00

TECHNICHART

+

ECHNICAL PAPER NO 1000

·

·

FRUTUGILLH I.J. II

N.S.IY. A ? 89

junt

·

DATE DUE			
	-		
			and
	-		
			-
			-
		P	
			- Leve

