

Calhoun: The NPS Institutional Archive

Some studies of expansion rings in rocket motors

Kleiss, Norman J.
Pasadena, California; California Institute of Technology

http://hdl.handle.net/10945/6541

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

SOME STUDIES OF
 EXPANSION RINGS
 IN ROCKET MOTORS

BY
NORMAN J. KLEISS STANLEY W. KERKERING

Library
U. S. Naval Postgraduate Schoal

Annapolis. Md.

OORE STUDIES OF LXPA ANT FFI:CS

I. RCEX'T MO'RON'

Thesis by
Comdr. N. J. Kloiss, U. U....
Lt. Comar. S. W. Kerkering, U.S....

In Partial Fulfillment of the Requirements
for the Professional Degree in horonautical ingincering

California Institute of Technology
Pasadena, California

Thesis

$$
K 58
$$

ACH.... L DCMCLT

In prescnting this thesis, the authors wish to oxpress their appreciation and gratitude to 'r. .. . Sechlor and Dr. L. G. Dunn of the Gugrenhoim heronautical Laboratory, California Institute of Tochnology for thoir supervision, heloful sugrestions, and assistunco in carrying out the research.

SUBJCI 103
Suma ary 1
I Introdiuction 2
II Equipnent and Test Procedure 1
III Theoreticel Analyses 7

1. Two Dimonsional Bonding Nmalysie 8
2. Vmnirical Throo Ilimonsional itembrano Analyeis 15
3. Tlastic Throo Dimonsional Hombrano analysis 19
Iv Discussion of nosults 26
\checkmark Fieferences 31
VI Index to Tables 32
VII Index to Figures 32
VIII Index to Photographs 32
$F \quad$ Total axial forco, lbs/in. at any station defined by $r_{0}{ }^{\circ}$ Positive downerd.

H Tensilo force, $l \mathrm{bs} / \mathrm{hn}$., tending to produce axial doformation. (Total Hf force on one ond of specimen $=2 \mathrm{H}\left(\mathrm{h}+\mathrm{l} / \mathrm{R}_{\mathrm{r}}\right.$)
p Internal prossure, p.s.i.
r Small radius of torus, inches. ($r=I^{\prime \prime}$ for cases tested.)
R Largo radius of torus, inches. ($R_{1}=6.3125^{\prime \prime}$ for cases tostod.)
ro Distance of point from axis of torus.
r_{1}, r_{2} Radil of ourvature of a sholl in the form of a surface of revolution in meridional plane and in tho normal plane perpendicular to meridian, rospeotivoly.

N ${ }^{2 l i} \theta$ Membrane forces por unit leacth of principal normal soctions acting meridionally and perpendicular to the meridian, respoctively.

S $\quad 1 / 2 S_{T}$
$S_{T} \quad$ Total elongation of expansion joint
$\varnothing \quad$ inglo defined by the intersection of r_{2} with axis of revolution. (Three dimensional theory.)
ϕ Value of \varnothing after deformation. (Three dimensional theory.)
θ Angle between porpondicular to axis and porpendicular to sholl (Two dimensional theory.)
M. moment at soction mn (two dimensional thoory)
t Thickness of expension ring
U Finergy (Two dimonsional theory)

The purpose of this investigation wes to investigate, the strosses encountered for a semicircular expansion joint for a rockot motor. Information was desired to rolate these stresses to the various parametors of the problem.

The stressos involved in this design were found to approximate those indicated by the exact membrane thoory. Tho specimon having the lesser thickness was found to agree more closely wi th the exact membrane theory, and gave the lowest value of stresses.
in empirical mothod of membrane analysis, besed on defomation profiles, was developed. This method is applicable for stresses slightly above the elastic limit and may be extrapolated for higher values.

The design tosted was found to be inherently unsatisfactory on the basis of tests and theoretical considerations.

An altermative design was indionted which would have lower values of stress for a given value of deformation, and which could be dosigned strictly on the basis of thooretical calculations.

$1475 \cdot 16720$

The ineroncine interost in rocket motors has focused attention 0.7 the lack of data available in connection with the design of safe und efricient exurilsion joints for the rocket asseribly. These expansion joints met withstand hich fuel prossures and must allow lurgo dorreos of expensien and contraction due to semperature variation. The oxternal radial dimensions on tho oxpmenion joint are limitod by a rodynaric considerations and the internal dimensions are limited by fuel flovi ronuiroments. iftor fulfilline those physical require ments the cesi m must then be poverned by onse of prociuction, assembly, and mainterinonce.

In an effort to aid in findine tho most suitablo type, tests were made on two differcnt expansion foint specimens.

He. I stowe in a simblified form the combustion chamber, fuel chamber, and expansion joint of a tynical rocket motor. The hi ch temperetnre due to combustion cuuses an elongation of the inner chamber, Wi.ich in tum causes the outer cyling to olongate. Hich flol rossures are presont botween the outer and innor welle. It is necessary for the expansion joint to withstanc the stresses caused by both tho elongation and internal fucl pressure. "ith the assumed temperature distribution as noted in "if. I, the elongation in ten inches due to temperature is anoroximately 0.155 irches.

Information desired from the tests included the rolation, at varinus internal pressures, betweon elonpation of the specimen and the
gtressos in the expansion ring, the loading which would givo permanent set, N. 1 thu krount of rupastod loadings necossary to cousc fatigue failure.

The tro soesimors tested diffored only in the thickness of tho uransi- josit sholl. Time parmitted carryine out of only a stall Jart in the dosirod nroerrat.

In esilition, three theurios wero ieveloped: the firet, a twodimensiunl treary based un bending end onerey oquatians; the second, \&. Ghrie dimideianal momorane thoory, called the enoirickl membrane tinor", buse ne the assumption the the expansion rine ceforms into. an eilipec witn eloneated; and the third, a gonmal throe-dinensional
 was made betwen the ravionalizei results aid the actual tost data.

In the !asis of these t!norics the inhoront unsatisfuctory nature of the oxjaision rings tosted becance an aroat and a more suitablo tyje was jrososed.

1-iliustration of the tast specinea is shom in ile. 2. She antire asstably was constructed of 1020 stcol. The expansion rine and the zivo end flates vore wolles in place. On the firet spooimen the exon isicn ring hala a thickess of 0.05 inches, whilc on the socond socimon the thicinoss was 0.04 inches. Internal prossure was obtained by the uso of a Blackawle hydraulic jack which forced oil into a $5 / 8^{\prime \prime}$ hole at the top of the specimen. Lither two stool bars or two stoel plups were scrived into tho contur of tho top und bottom plates depondin whethor it was nucossary to place the spocimon in tension or compression. Tais tonsion or compression was accomplished in a wouthWirt: $300,000 \mathrm{lb}$. tosting machino. Control and accuracy allowable by this machine is excellont.

Provision wes made for applying a centrulizod load without bending moments wherever possible. sphoricul bearings wero usod in tonsion tests, and ball bearinf, pyramids wers used in compression whon applied londs ware below 40,000 lbs. Boyond this point lead washers were useci to ountralize the load.

EK=4 strain gages, typo s-8, menufactured by the Baldwin Locomotive . . orks, were used. Five gaces were locatod on the first sjecimen as illustrated. In order to obtain a botter averaco stress eipht ga, os were usod on the second specinen. Their locations are lixewiso shown.

Spocimen ilo. 1

Snecimen Nio. 2

Thoso strain eavos ware as9d it conjurnction of th a multiplo chamel whantstono bridre dosifned and madc at the Califormia In－ stivuto of Technolory．Voltago measuroment vus made uy a Leeds and worthro iotontiomotur．This ap aratas was capable of moasuring tho chance in voltage in the strain sa，θ g to an accuracy of 0.001 millim volt．It nomitted the determination of the chare in roltace when the remes ware in eithor tonsion or compression．

Two rames，locivod 90° apart，were employed to measure the overall 0l0nration of the sjocimens．The first was a vernior micromotor which was capeble of measuring within 0.001^{11} accuracy；and the second，a dial race，vas cenable of mensurin？mithin $0.0005^{\prime \prime}$ accuracy．The mean of their reajings was taken as stindard．

Calibrations were first made on the u fol strain gages．A gage was flued to cach sido of a standard 24St test specimen．The spocimon wás ylaced in a tostinm ma chine wnd the strain gage voltages for varibus tensile forces were fecarciod as motod in Table 1.

Honfations woro calculatod by tho usuel theoretical methods and dıekec by Lugganboreer struin どas゙es．Tron this data the atress－ millivolt relation for stegl was otermined as shown in fable 1 ． sisis ralation is plotten ir ing． 3.
－）ecimen vo． 1 was mounted in the fouthnerd testing machine， as illustratéd in thotorabhs ．．O．I anc＂o．II，and elongated with intomal orossures valying from zoro to 000 ，per sq．in．The voltage across each strain gare was recorded for oach combination of pressure anil olonation，anc tho rosults tabulqtod in Table II．The stressos as leverinod from Table II and Fi＂． 3 are recordod in Tablo III．

In nost ind ances the spocinen had to wo placed undor compression by tho 5 uthmale tosting machino in ordor to provent the internal pressures frot olareating the spocimen sast the elastio limit.

Iith an intumal pressure of 600 , tho spocinen was then allowod to cionfato until an overall cherge in lengtr. of 0.2 inches was renched. Th's whes woll just the elastic limit of the material. The results are recorded in Tables II ana III.

Anally, with a constant prossiru of coo the olonqation was Varies betweon zero ard $0.2^{\prime \prime}$ until ruoture occurred.

The procodure for testing the second specimea wes similar to that of the a bovo.

In lies. \& through 21 are plottod values from Table III. Two types of grayhs were mado: ono of stress versus olongation with intomal pressure as a parametor, and the other of stress versus prossure wh th elongation as a parameter.

MT:OT.TIC L L... LYSLS

Three theoretical approachas are made to the problem and an attempt made to relato the results to the test data.

The first method was a two-dimensional analysis using the onergy equation S. This mothod assumes that tho onerag goos into bendint and hoop stressos.

The second metiod involvod an empirical three dimensional menbruno aporoach assuming that the pattorn of the oxpansion ring takes the form of an ellipse when elongated. This motiod is dosignod to give preatest accuracy for comparatively large olongations and doos not necessarily hold too well for small olaneations.

The third metliod wes an exact throe dimonsional membrane approach on the onsis of theoretical mombrane derlection and stresses. It holds only when all parts of the membranc are within the elastio limit.

The thrac methods are prosented in dutail on the following pafos.

11. I 気

As a first aporoach in rationalizinm tho problum, a tro dironsional enerry analysis was made. This nothod essentially followed the procedure mutl ned in fiof. 2. Page 79. It is assumed that the onerey is absorbed by bondinf. of the rine und by an increase in the ring diametor caused by "hoop" stressus. it neflocts the fact that the spocimen is considerably more rigid in the threo dimensional case than in the two dimensional caso.

Mománt at Station mn

$$
\begin{aligned}
& M=M_{0}-(H+p n)(r-r \cos \theta)+p r^{2}\left[\frac{\sin ^{2} \theta}{2}+\frac{(1-\cos \theta)^{2}}{2}\right] \\
& =M \cdot-H \mu+H n \cos \theta-\delta r^{2}+\delta r^{2} \cos \theta+\phi \mu^{2}(1-\cos \theta) \\
& =M_{0}-H n+H r \cos \theta \\
& \frac{d y}{d y_{0}}=1 \\
& U=\int_{0}^{s} \frac{M^{2} d s}{2 E Z} \quad \frac{d U}{d r M_{0}}=0 \\
& 0=\frac{d}{\pi / M_{0}} \int_{0}^{\pi / 2} \frac{M^{2} r d \theta}{2 E I}=\frac{1}{E 5} \int_{0}^{\pi / 2} M \frac{d M}{d M_{0}} n d \theta=\frac{1}{E C} \int_{0}^{\pi / 2} M r d \theta \\
& =\frac{r}{E I} \int_{0}^{\pi / 2}\left(\mu_{0}-H \mu+A r \cos \theta\right) d \theta \\
& =\frac{r}{E I}\left[M_{0} \theta-H \mu \theta+H \mu \sin \theta\right]_{0}^{\pi / 2} \\
& =\frac{\mu}{E I}\left[\frac{M_{0} \pi}{2}-\frac{H \mu \pi}{2}+H r\right] \\
& H_{0}=A N-\frac{2 A N}{\pi}=0.365 \mathrm{Hr} \\
& M=H^{n} \cos \theta-0.635 A n=A_{n}(\cos \theta-0.635)
\end{aligned}
$$

$$
\begin{aligned}
U & =\frac{1}{2} \int_{0}^{\pi / 2} \frac{M^{2}}{E I} r d \theta=\frac{H^{2} \mu^{3}}{2 E I} \int_{0}^{\pi / 2}\left(\cos ^{2} \theta-1.27 \cos \theta \pi \cdot 4 \cos \right) d \theta \\
& =\frac{H^{2} \mu^{3}}{2 E I}\left[\frac{\theta}{2}+\frac{\sin 2 \theta}{4}-1.27 \sin \theta+0.4 \theta \theta \theta\right]_{0}^{\pi / 2} \\
& =\frac{H^{2} r^{3}}{2 E I}\left[\frac{\pi}{4}-1.27+\frac{0.404 \pi}{2}\right] \\
& =\frac{H^{2} \mu^{3}}{2 E T}(0.150) \\
\frac{d U}{d H} & =\delta_{1}=0.150 \frac{H H^{3}}{E I}
\end{aligned}
$$

The contriburron of oo to the defiection:

$$
\text { Cipcurferentia/ } \beta \text { RESs }=\sigma=\frac{d d}{2 t}
$$

$$
\text { Elompation }=e=\frac{\sigma}{E} L=\frac{\gamma d}{2 t_{E}} \pi d \text { (ff isincurfenenes) }
$$

The change in dinmeicie $=\delta_{z}=\frac{e}{\pi}=\frac{2 d \mu^{2}}{t E}$
Toital Eloug arion:

$$
\begin{aligned}
\delta_{T} & =2 \delta_{1}+\delta_{2}=2 \times 0.15 \frac{H H^{3}}{E I}+\frac{2 \sigma r^{2}}{Z E} \\
& =0.30 \frac{H N^{3}}{E Z}+\frac{26 r^{2}}{t E}
\end{aligned}
$$

$$
\begin{align*}
E & =30 \times 10^{6} \text { for STEEL } \\
I & =\frac{t^{3}}{12} \\
S_{T} & =\frac{0.30 H r^{3}}{30 \times 10^{6} \frac{t^{3}}{12}}+\frac{2}{30 \times 10^{6}} \times \frac{\phi r^{2}}{t} \\
& =1.2 \times 10^{-1} \frac{\mathrm{Rr}^{3}}{t^{3}} \times 0.661 \times 60^{-1} \frac{\mathrm{tr}^{2}}{t} \tag{c}
\end{align*}
$$

FOR Point "A"

$$
\begin{align*}
& \sigma_{A}=\frac{H+\phi r}{t}-\frac{1 M_{0} y}{I} \\
& M_{0}=.365 H r \\
& y=t / 2 \\
& I=\frac{t^{3}}{12} \\
& \sigma_{A}=\frac{H+\phi n}{2}-6\left(. \frac{365 H n}{t^{2}}\right) \tag{2}
\end{align*}
$$

Fon Fiasr specracien: $t=0 s^{\prime \prime} ; r=1 "$

$$
\begin{equation*}
\sigma_{A}=20 H+20 \gamma-876 \mathrm{H} ; \operatorname{ORH}=\frac{20 \gamma-\sigma G}{856} \tag{3}
\end{equation*}
$$

and $\delta_{T}=1.2 \times 10 \frac{-1 \mathrm{~A}}{(.05)^{3}}+0.661 \times 10 \frac{-1}{.05}$

$$
=0.86 \times 10^{-3} \mathrm{H} \times 13.34 \times 10^{-1} 6
$$

subst (3)

$$
\begin{aligned}
& \delta_{T}=0.86 \times 10^{.3}\left(\frac{20 \beta-\sigma_{6}}{8 \sqrt{6}}\right)+.1334 \times 10^{-5} \alpha \\
& \sigma_{A}=20.2 \alpha-814000 \delta_{T}
\end{aligned}
$$

FOR Second Specimen: $t=.04^{\prime \prime}, r=1$ "

$$
\begin{aligned}
\sigma_{A} & =25 H+25 \phi-1310 H \\
H & =\frac{25 \phi-\sigma_{A}}{134} \\
\delta_{T} & =1.2 \times 10^{-9} \frac{H}{(.04)^{3}}+0.667 \times 10^{-1} \frac{\phi}{04} \\
& =1.2 \times 10^{-9}\left[\frac{25 \phi-\sigma_{A}}{1345(.04)^{3}}\right]+16.675 \times 10^{-1} \phi \\
& =-13.12 \times 10^{-9} \sigma_{A}+36467 \times 10^{-7} \phi \\
\sigma_{A} & =26.2 \phi-718000 \int_{T}
\end{aligned}
$$

Pivis "B": where $\theta=5 \% 3^{\circ}$

$$
\begin{aligned}
14 & =\operatorname{Hr}(\cos \theta-0.635) \\
& =-.0954 r
\end{aligned}
$$

FRP IS SPECMMEN: t=.05"; $r=r$ "

$$
\begin{aligned}
\sigma_{B} & =\frac{d \alpha}{2 t}+\frac{H \cos \theta}{t}-\frac{M \mu}{2} \\
& =\frac{\phi+0.54 H}{t}+\frac{095 H \times / 2}{t^{3}} \cdot \frac{t}{2} \\
& =20 \phi+10.8 H+228 H \\
H & =\frac{\sigma B-20 \phi}{238.8}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{T} & =0.96 \times 10^{-3} H+13.34 \times 10^{-3} \phi \\
& =0.96 \times 10^{-3}\left[\frac{\sigma_{B}-206}{238.8}\right]+13.34 \times 10^{-9} \phi \\
& =.402 \times 10^{-5} \sigma_{B}-8.05 \times 10^{-5} \phi+13.34 \times 10^{-1} \phi \\
& =.402 \times 10^{-5} \sigma_{B}-7.917 \times 10^{-5} \phi \\
\sigma_{B} & =249000 \delta_{T}^{1}+19.7 \beta
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{B} & =\frac{\phi+0.541 H}{t} \times \frac{.095 H \times 6}{t^{2}} \\
& =25 \phi+13.54+356 \mathrm{H} \\
H & =\frac{\sigma_{B}-25 \phi}{369.5} \\
\delta_{T} & =\frac{1.2 \times 10^{-9}}{(.04)^{3}} H+0.661 \times 10^{-1} \frac{\phi}{.08} \\
& =\frac{1.2}{640^{8}}+16.675 \times 10^{-1} \phi \\
& =\frac{1.2}{640}\left[\frac{\sigma_{\beta}^{3}-25 \phi}{369.5}\right]+16.685 \times 10^{-1} \phi \\
& =5.07 \times 10^{-6} \sigma_{B}-12.7 \times 10^{\circ} \delta_{\phi}+16.625 \times 10^{-7} \phi \\
\sigma_{B} & =197000 \delta_{T}+24.7 \phi
\end{aligned}
$$

Summary of thu dimensional Theoretic equations FIRSt Spiciaizan: ($\left.t=.05^{\circ}\right)$

$$
\begin{aligned}
& \sigma_{A}=20.2 \delta-844000 \delta_{T} \\
& \sigma_{B}=249000 \delta_{T}+19.7 \delta
\end{aligned}
$$

Secund Specirien: ($t=.0 \%^{*}$)

$$
\begin{aligned}
& \sigma_{A}=26.2 \delta-718000 \delta_{T} \\
& \sigma_{3}=197000 \delta_{T}+247 \%
\end{aligned}
$$

Trass valued are plots in Figures $22,23,24$ and 25 and cOMPARED wow the scheat tess values It is noted that the Agreement is nor your for Point A and is only Hpppoxraiane ar Point $B 3$.

4cm:

ir a

This theory assumes thr bending strosses are small in rolsibion to morbranc strossos anz thut beqding nroliaces only local offects. : 'mbrane stresses are con utec for the initial concition and for the oustrved defornation pattern at comparatively lare velucs of elongations (i.c., in tho vicinity of the clastic linit), theroby providia: a basis of erpiricel desien if tost data is compatiole with morbrano theory.

The observed deformation chrve was found to rusemble an ellipse with tho minor axis shortencd $0.035^{\prime \prime}$ anc the iajor axis lonctrenod $0.03 E^{\prime \prime}$ for stresses slichtly above the elastic roaion. sear the wold, the ellipse was obstrvod to be sliphtly ii stortoci at lare values of elongation.

This mothod assumos ellintical distortion in tho mannor noted above find derives equations which five stress: 3 enrrosjording to this distortion in terns of tho various prametiors. s3ontially, this procodure is a variation of the mothod riven in sri. $730 \mathrm{I}^{2}$.en. 1.

MOE T: 'OITT i (SOO ǐif. a)

$$
2 r_{0} \sin ^{\sin } \boldsymbol{g}^{\prime}+\vec{r}=0
$$

Hut $-F=\pi p\left(\overline{i_{i}+r-i^{2}}-i^{2}\right)+n(I+I / 2 r) 2 \pi$
Substitutinc: $\quad\left(\varnothing=90^{\circ}\right)$
$2 r_{0}+\phi-p\left(r^{2}+2 r r-2 \mu r-01\right)-211(11+1 / 2 r)=0$
but io $=++r-S$

$$
i \phi=\frac{p\left(r^{2}+2 r-2 r-1 r\right)+2 \cdot(1+1 / 2 r)}{(2)(r+r-1)}
$$

(1) $\sigma_{M}=\frac{1}{t} \frac{2\left(r^{2}+2 r F-2 x-1 c\right)+21(11+1 / 24)}{(2)(F+r-S)}$ for tio case tosteci. ${ }^{\prime} \phi=0.933 p(1-0.353 n)+0.93317$

$$
i_{\theta}=r_{2}\left(p-\frac{N_{\emptyset}}{r_{1}}\right)
$$

Prom tho deforation pattorn me fnow that the band at centar contracts \therefore distance of $2 i$ if $n=$ const. This corresjonis to a hes stross of value

$$
\sigma_{2}=\epsilon E=\frac{\vec{i}}{(P+r)}
$$

Sor the casos tested $\sigma \sqrt{2}=1,100,000$ (within olastic linit)

$$
\text { This induces a tonsilo stress in the misidional direction if } \phi
$$ equal to:

(2)

$$
\sigma_{I}=J \epsilon=\frac{\varepsilon E}{i+g}
$$

σ_{1} for the casos tested $=1,230,000 \mathrm{e}$
Tho \&bove corraction dons not include the cffect of the oricinal strossi duc to jo "his stress is a comprossive stress of value

$$
\sigma_{3}=-\int \frac{p}{\tau}(x-c)
$$

O3 for the cas s tosted $=-0.3 \frac{p}{t}(1-6)$
 (2) , aid (0).
"or tine crases tuisticul
$\sigma_{i}=\frac{1}{t}[\% .6310+0.01 .21]+615,00 i_{2}-0.15 \frac{2}{t} i=$
'or a secom point B, locatod at $x^{2}=00^{n}$, tho follown on Etibth wure derived.

$$
\begin{aligned}
& r_{1}=\frac{\left[r-\frac{1}{4} \frac{r}{r}+\left(\frac{k}{r}\right]^{3 / 2}\right.}{r-\left(\frac{c}{r}\right)^{\frac{2}{2}}} \\
& \tan \sigma=\ldots 1 \frac{r+\frac{b}{r}}{r-\frac{b}{r}}
\end{aligned}
$$

By ir ilic zonctriction

$$
r_{2}=15.05 r_{1}
$$

The equation

$$
\frac{16}{r_{1}}+\frac{x \sin \varphi}{15.05 r_{1}}=
$$

can now be solved by assumiag a velate of we p crom oquilibriun cone sidurutions. Fis rives the followi... itress ut r tue to diruct n: branc suress.
(s) $\sigma=\frac{p}{t}\left\{\frac{\left[r-.25 \frac{\delta}{r}+\left(\frac{\delta}{r}\right)^{2}\right]^{3 / 2}}{r-\left(\frac{\delta}{r}\right)^{2}}-0.04690\right\}+\frac{0.5005}{t}$

It sforld 'o notod the the above equetion hol is only for a given valuc of tin r /: rntio havin the pronortion 1 : 7.32l5. (ualcllatimes tocane too corplex to retain tis ourameter.)

In confuting the above meridional stress the value of the was assumed to be of magnitude p. Tho correction to the above meridional stress to allow for this is

$$
\begin{equation*}
\sigma_{1}=-\nu \frac{p}{t} \tag{5}
\end{equation*}
$$

mechanical construction furthor indicates the the point B buffers 1/4 the racial compression in comparison to the compression at point. The stress corrosbondine to the co pression of the radial bend at A has the value

$$
\begin{equation*}
\sigma_{2}=1 / 4 \quad \frac{J}{4} \tag{0}
\end{equation*}
$$

Ire total woridionki stress at point 3 is the sura of equations ($)$) (5) , Rn: (3).

The plots of $\sigma_{T} V 3$. ir for points and B are given in Fife. 23 to 31, showing computed and oxperinutal values.

It should bo noted that tho stress carve for nat B will tend to become negative at lara values of deformations duo to tho local bending in the ropion of the wive. of this reason the stress curves for point 5 are not continued of in value of \hat{c}_{2} excecedirr $0.070^{\prime \prime}$.

These strusses apply at relatively lame deformations since the stresses fit the actual deformation pattern at large deformations. They do not apply for small deformations.

TiLED $\cdot 1, T$
 LLA\&PIC THY DI

This theory applies where deflections are large ia relation to thickness and ell stresses are within tho clastic limit. This rotiod is breed on int. 73 and 76 of Ref. 2.
(1) $\frac{i_{0}}{r_{1}}+\frac{i_{\theta}}{r_{2}}=p$
(2) $2 \pi r_{0} \phi \sin \phi+F=0$

There F is total downward force at any station defined by r_{0}

These two equations define all forces acting on unit ole cent.
Solving (2) for ϕ gives
(3) ${ }^{16} \phi=-\frac{1}{2 \pi r_{0} \sin \varnothing}$

Niminatine " ϕ from (1) gives
(4) $N_{0}=r_{2} p+\frac{r_{2}}{r_{I}}\left(\frac{F}{2 \pi r_{0} \sin \phi}\right)$

Fit. b.

Fig. ${ }^{d}$

Total force measured in meridional direction by strain cage is
(5) $F_{T}=N_{\phi} \phi-J V$
(0) $F_{T}=-J r_{2} p-J \frac{r_{2}}{r_{1}}\left(\frac{F}{2 \pi r_{0} \sin \phi}\right)-\frac{F}{2 \pi r_{0} \sin \phi}$

$$
F_{I}=-\left[\left(\frac{r}{2 \pi r_{0} \sin \phi}\right)\left(1+J \frac{r_{2}}{r_{1}}\right)+\nu r_{2}^{0}\right]
$$

(7) $\sigma_{T}=-\frac{1}{t}\left[\frac{F}{2 \pi r_{0} \sin \varnothing}\left(1+J \frac{r_{2}}{r_{1}}\right)+J r_{2} p\right]$

$$
\begin{aligned}
& \bar{r}_{0}^{2}=\frac{2+1 \operatorname{lin}^{2} \sin \phi}{2}=\rho^{2}+2 \operatorname{Ir} \sin \phi+\min _{1}^{2} \cdot \sin \operatorname{c}^{2} \phi \\
& =421-\pi\left(\alpha-\sin \phi+r^{2}, \sin ^{2} \phi\right) p
\end{aligned}
$$

=quation (7) then soco.03
(3) $\sigma_{r}=-\frac{1}{t}\left[\left(-2 \pi=\frac{\pi\left(2 r, \sin \psi+2^{2} \sin ^{2} \phi\right)}{2 \pi r_{0} \sin \phi}\right)\left(1+\frac{r_{1}}{r_{2}}\right)+\lambda^{2} 2^{2}\right]$

B-, dorivion $r_{0}=r_{2} \sin \phi=\therefore+r_{1} \sin \phi$
(9) $\Pi_{I}=-\frac{1}{t}\left[\left(-\frac{42 i}{2 \pi \sin \gamma(r+r, \sin \phi)}-p \frac{2 r_{2}+r \sin \phi}{2 r+2 r \sin \phi}\right)\right.$

$$
\left.\left(1+\frac{r_{2}}{r_{2}}\right)+V r_{2}\right]
$$

Hquation (0) permits cosemination of the best ratios for the paraneters r uid I in reecard to ineridional stress at any point.
is will mal:e a study of the condition where

$$
\begin{aligned}
& r=1^{\prime \prime} \\
& I=0.3125^{\circ} \\
& r_{1} \approx r \\
& \text { (9)' } \Pi_{I}=\frac{1}{t}\left[\left(-\frac{6.81251}{\sin \phi(0.3125+\sin \phi)}-\frac{0(12.325+\sin \phi)}{12.325+2 \sin \phi}\right)\left[1+J\left(\frac{1}{\sin \beta} 1\right)\right]+\right. \\
& \left.\eta_{p}\left(\frac{R}{\sin \phi}+1\right)\right]
\end{aligned}
$$

Considar stress at point $\Lambda:\left(\phi=90^{\circ}\right)$

$$
\begin{aligned}
& \Pi_{I}=-\frac{1}{i}[(-0.9331 i-0.933 . ?)[1+\mathcal{J}(7.3125)]+J p(7.0 .125)] \\
& \text { assume } J=0.3
\end{aligned}
$$

(10) $\sigma_{I}=\frac{1}{t}[2.98 H+0.7203 p]$

Por the two anses testod, stressus nt ",!" have valu,s:
$\sigma_{T}($ for $t=0.04)=72 H+19.580$
$\sigma_{T}($ for $t=0.05)=59.6 H+15.726 p$

At point $B: \quad\left(\varnothing=32.7^{\circ}\right)$
Substituting in (9), $\quad \sin \phi=0.54$
$\sigma_{T}=-\frac{1}{t}\left[\left(-\frac{6.8125 H}{3.75}-\frac{13.1500}{13.700}\right)(1+J(12.7))+J(12.7)_{p}\right]$
(11) $\sigma_{T}=\frac{1}{t} \cdot[8.7251+0.795 p]$
for the two cases tested, stresses at po"nt "13" have valuos:
$\sigma_{T}\left(\right.$ for $\left.t=0.04^{n}\right)=210 n+19.0 n$
$\sigma_{T}\left(\right.$ for $\left.t=0.05^{*}\right)=174.5 \mathrm{Hi}+15.9 p$

The deflection curve may now bo computed by the method of 1 rt. 76 of Rios. 1.
i. stury of the equation

$$
V=\text { Heridional elongation }=\sin \phi \cdot\left\{\int \frac{f(\phi)}{\sin \phi} d \phi+C\right)
$$

r mily shows that V e日ets very large at small vulues of ϕ since $f(\phi)$
is a function of $\left(\frac{1}{\sin (\eta)}+\frac{2}{\sin ^{2} \phi}\right)$
The radial oloneation acts in a similar manncr.
in actial calculation of V showed that the mombrane stsoss is far above the elastic limit for $S_{T}=0.023^{\prime \prime}$ at $\phi=5^{\circ}$.

From the ahore ensiderations in rerard to the stresses in the membrane in the vicinity of the weld (bendine monent assumod to bo
moro) it is rimills sech that the ala vic - arming theory dow s not
 olastic limit in the re lon of the wold.
 miso stresses in tarn are a functici of radius of curvature at the given obit. Ciouvaresly, if we lav ting radius of curvature (an? all parts of the membrane are in the elastic rofion) tho stress is determined.

If can relate tho non-clastic radius of curvature to the elastic radius of curvature ad substitute this factor in equation (9) wo can obtain an idea of the trad in tho non-alastic region. Fin equation is r rooted bel on.
(9) $\sigma_{t}=\frac{1}{t}\left[\left(\frac{\pi \sin \phi}{-i}+r, \sin \phi\right)-\frac{\left(2 r_{2}+r_{2} \sin \phi\right)}{2 F_{1}+2 r_{\operatorname{s}} \sin \phi}\right)\left(1+J \frac{r_{2}}{r_{1}}\right)$

$$
\left.+J_{2^{p}}\right]
$$

dow is a constant, r_{I} is very nearly unity and varies only slightly with lares dofomations. It will be seen, therefore, that the cuantity

$$
\left(\frac{-42 H}{2 \pi \sin \phi\left(\pi+r_{1} \sin \phi\right)} \quad-p \quad \frac{\left(2 \Gamma_{1}+r_{1} \sin \phi\right)}{2 \pi+2 r_{1} \sin \phi}\right)
$$

where $R=0.3125^{\prime \prime}$ and $r_{1}=1 \pm 0.1$ (say)
is efferent for a given value of α for all practical supposes. The ma, or rariables in equation:" (9) are the tiers

$$
\left(1+J \frac{r_{2}}{r_{I}}\right) \text { and }\left(J r_{2}\right)
$$

It is aparent from considoration of thoue tro tome what a sitllor value of $\frac{r_{2}}{T_{1}}$ will ive a lower value for σ_{T}-on-olastic deformation does just t'is. Tho sloye of the tannent (in the region of the widd ircerrases, thoroby reducins the radius of curvature and lowerinj tho stross. (vec lig. d.) At poirt A the effect is nerligible. At point E the offoct is considurable since the ratio $\frac{r_{2}}{r_{1}}$ may chanre by a factor of eirht or nine (baser on mechanionl construntion with $\hat{o}_{T}=0.10^{\prime \prime}$). This mans thet the itrass at i will we lowered by a factor of ay rozinately 3 for such local doformations. (ihis rosult is obteinad from equation (9).)

The basis of tho inflection point at B (éec iif. d.) comes from a study of the raial rinidity of the mombrane.

The rigidity, as proviously incicatod, is a function of $\frac{1}{\sin \phi^{\prime}}+\frac{1}{\sin ^{2} \phi} \cdot \operatorname{Sinco} \sin \phi$ is vary small noar the weld ind the stresses are beyond the clastic limit, the radial rosistance to deFomation is vary slight betwon point 3 and the wold. Betwoen poi it P. and point at the racia? ricidity ancreases rasidly ani the stresseis are below the clastic limit. mis makes possible the apparanon of ar. inilection joint, or at the very least a discontinuity in the radius of carvature.

MENGT OF LOCNL Bundin
It should now noted that loca? boudine, strosses at " 3 " will furthor docr:aso the stress at "z". Fron the chenco in curvature the bendin" stress at "D" may be greater then the nembrane stress

Deromation Pattom at vory large doformations
stress. lin mocsured stross at ":3" max beonee mey 3mall or no,"ative. \therefore clie to the state where $\sqrt{?}$ at "nn man becone ne atiio is iv's $r 0$ the H vs. , curve becomes monlinoar. This is at $i_{T}>0.025^{17}$ where slisht discontinuitios wore enconncured for all preasurns. It is certain that the precedine oquations for stresses at "3" do not anrlur for $\delta_{T}>0.020^{\prime \prime}$ as they would indicate too larco a stress at "E" (as neasmed by a strain race.)

At noint "H" this bendin" efrect is nerlisible since this rejion has the loast berding. (the efrect, however, would be a conpressive stross.)

From considerations of the membrane stresses proluced near the weld, it is clenrly seen thet the ratio $\frac{r_{2}}{r_{1}} \longrightarrow \infty$ for a small wold and that the membrane etresses income vary large until reliovod by doformation. .t the weld the bencine strasses are also tensile stresses at a noint infinitely close to the meld. For oloncatiors of the order $\delta_{T}=0.20^{n}$ this enalysis shows that the true of expension ioint testod is inherently unsatisfactory si 100 stressos cannot possibly be kert below the olastic linit.

In order to furtier understand the unsatiofactory naturo of the orifinal desim, the schematic strose distributio. at various points (auo to both bencince wald membrene stresses) are show for a larec and a small en (iee ric. d)

$$
F / G \cdot d_{1}
$$

Sy chmarison of the calculat:ons for the two dimensional beroling theory asu observod dota, thie mot oc we round to te totally inapplicable. The stress cistribution, uccordire to this theory, would yield bri compressive strosses in the rosion of point A (the raximum diumetor of the cxpansion joint). ..ctually, these stresses are tansilc stressics and have lry"o mamitudos. ioreovor, the strocses it point B should incrous with eloncation. ictually, they roach a peak, diminish to practically zoro, then increase slichtly.

Flo elastic throo dimonsinnt membrone theory fives very food agreoment, within tirg limits of axperimentul sccuracy to the elastic Iimit. Bevond this noint tho arroument was unsetisfactory since theso equations do not consider tiee recuced mozulus of olasticity. It will be inted thet the spocinen hewin thes zrallor tricknoss fave bottor awremert enc, incicontly. favo lowar vulues of stresses for a trivonelumation. This validates the a oolicability of the membrane thoorr. Inis theory is murtior justifi=c by lois. 1, 3, and 4 . Ihe applicabilitog is particularly shown by rt. 37 , and 50 of leen. I. It should be soted that t'ris theory dons ot inply tiner any vortiol of
 exterded in this thesis to show tho yualitatio offact of ron-elastic deformation. Tiis uifficuly comos from tric foct thut stressus an tho orif in d dusirn oxcood tho elastic linit fo: i.2initesimal deformations.

The empirical throe dimonsional mombrane t!eory evaluatos the membrano stresses for tise moasured loformtions. vinco tho ieformation pattern chosen was ono for iotal slon zation equal to $0.035^{\prime \prime}$. the arrement is bottor for lurse valus than for small oves. fhis method is only as accurate as tho measured defornation pattorn. Considering this limitation, this method fave remarkebly eood agroement for values of total olonration uqual to $0.200^{\prime \prime}$. Ls noted previously, nolther test or computed values wrere correctec for reduced moiulus. This eroirical method should be omployed only as a last resort where strosses cannot be computod on e strict theoretical bisis.

Un the basis of theso tests and thooretical calculutions the type of expansion joint tested was found to be inhorontly unsutis "actory for the following reasone:

1. I'his oxpansion joint experiances purmanont deformation for very small eloneations. theso defomations beconc an reciablo for a total elongation of $0.0 "^{\prime \prime}$ " wich is far below the recuirement of $0.200^{\prime \prime}$.
2. Tho merbrenc and bo ding stressos are groatost in the vicinity of tho weld. Fince tio wld matrial has the wakost hysical proporties, this is mocesirabla.
3. Tho present desich is theoretically not sound, end is, thorofore, Ifricult of solution, itii a slirlt modiflest-on in desinn, the expansion joint could be subjector 50 an exnet in:iysis wis oase, anci tho suressus mut tly reducod.
4. The specinha havidg the pruet.r tifchect failou at the weld for one eycle of clonmation (from zro to $0.200^{\circ \prime}$ elouration and be cl-
to zero nt 900 t, prossure). The suocimen havine the lesser thicenosis failed aftor experioncing approximatoly two and one-half such ayclos, the failuro occurrinf ot throo places at the wold.
.. supfestod expansion joint profilo is shown in r'ic.e. Sho proportion r_{1}, r_{a}, r_{b}, R, may be dotominod analytically by moans or Art. 76 of her. 1. The procedure would bo to choose the avorage E_{T} and ? anticinatod and solve for $": "=$ fero at suation Y. Thic moans that the mombrane will rot deflect outmard or inward at this point. Such a calculation would bo vory tedious but poseible. an alternate colution would be to make sovaral specinens and mount them in a manner similar to the method usci in this test. iapply internal nressure by a suitable hydraulic punn, control olongation (u_{P}) by a scrow device, and note the change in a dial care mounted at station :. Tho specimen eivinc the least chanco in the dial reedjar, at 2 over the required range of p and " T would be the best specimen. Bendine stresses would be reduced to a ninimum and the merbreno thoory would five great accuracy. Note thet the resion calls for a positive slope at all points. This avoids infinite velues of $\frac{r_{2}}{r_{1}}$ or indeterminate stresses. (Theorotical analysis becomes very complex if sloje at any point is zero.) Proliminary studies ahow that a slono of 0 . is desirable for the rinimum value of tho sione.

It may, porhans, be argued that the oxpinsion joint desimed in FiE. θ is similar to a sylphon and is moverned orimarily by baniinstresses. That is true to a point, "ut it is only boceuse membrano stresses have been kept in the elastic region. Horeover tho berint.

stresses fixy tion on retaineci in the cinstic rolior. (woto thut tho bo idine ticeory fives stresses above tho olastic linit for the poist near tho wald in orierinal dosien for $\delta_{I}=0.20^{\prime \prime}$).

It is rot stited then the : wosed lesimn rili rivo all stresses bulow the olestic limit. To obtain whch a coidition it may bo necossary to resort' th several bands. Howover, the dessifn offerod shouli have creater resistance to ratiene air may bo satisfactory if the mumber of cycles ranuired is tot too rout.

In rogard to tho Deranotort (thichness) the theurotical antivsis ehova that tho per brauc strosses are inverseiy proportional to the thirkress. Ithis woule indioute at firet iand that o large value of t is rosirable. Phoory und tho tosts show, however, thit luree valuos of t set dn lare bondin." strosses for a fiven dirnlacement in bendin. This show t? t thane is an oft nam aluo of t, probehly only sli pi,tly above thet racinced to knsp the stresses in tho alestic rogion.

Pre renaininu peraroturs, x and 7 , ase sore or luss cotomined by rocret desim.

```
ANLYELD & T. I \therefore, LTO
```

Soth tout and theory eqroo thut atross is detornined by the magnitude of ii, romesenting the force per unit lonoth requirec to produce eloneation of the expansion rine. ith a low value of H, the stresses will be reduced to a reasorablo macritude.

The additional stross due to intornal ressure was found to be practically constant over dofornations in the olastic region.
 in r'ies. 2j to 31. 1t will be woua thet for tive iirst axul a. $\left(t=0.05^{\prime \prime}\right)$ a large erpad o bresuos is jotalazi for vurioles wessures. for the socond specimen $\left(t=0.01^{\prime \prime}\right)$ tilis turinsion wit. prossume wad sot cleerly derineà vocalisu femor te: z pointe wiru obtuined. in tíls reford, it is vory difficult to obcain accureto readilgs for small elonations whon the specimer has many delts, shi dimplos, as did the Gjecimens tuston. ft larger elonations these local irrefularities tend to be rerrovod by the incroasod strusses.
it should bo notod that the above ainizeulty would not bo oncountered with a properly desi ned and curefully mailulacturod spocinon.
it is bulieved thet the struss rerdings were obtained with a degree of accurucy consistont with the recision of the spocimen but i.therent inaccuracies are still sufficio. $2 t$ to account for any uiffcrences between ousurved results and the exact membrane theory. It should be moted from Fifs. 20 to 31 then tho stress variauion arrees sith theory in ruspect to olorgation, pressure, and locktion of station; and that tho syecimen of lesser thickness cires the slithtly bottor agroement and has lower values of stressos than the thicker specimon.

The embirical method, besed on racial displacements, was foula to be applicablo anc gave surprisingly good results considerine the crudeness of the defomation jattiorn. The deformation patiturn sinnild, of course, be obtoined by neasurine the redial displacements of numerous stetions.

1. Theory of latos orc Sholls .. Timoshonko
2. Vtrencth of arateriuls, kol. II - i. innoshoni:o
3. Thenry of liastic itability - Timochenco
4. Theory of lastioity - S. I'roshonizo

Mint 1 locket uection
Froit 2 lest "pocimen
n in tress -illivolt inli.tion for steel
rial 1 Obsemed Stress, lonation and 2ressure Curves
thrid 2?
Pİulive 22 Two imensional Theoretioul Curres icrsas lest wrves
thru 25
and 20 Murves of it varsus $Z_{\text {I }}$
and 27
TIGi Ö 28 Ihree Iimensionel Thooretical Carves vissus lost Expos
thru 31

?NoMasi 1 General View of Tost
-0, inf jil 2 Test specimen

Srrain Galqe Cacibration
STHAOHRD SFEEIMEN - 2.NST
$t=C .0775=$ THICKNESS (IN)
$W=0.5=$ W,ISH ${ }^{(1 N)}$

$E=107$
$\varepsilon=\frac{p}{A E}=\frac{p}{.03375}+1 .{ }^{2} 7=25.8 P \times 10^{-9}=2.581 \times 15^{-6}$

FOR AVERAGE $\triangle P=50^{-7} \quad 1.291$
$1 M V=\frac{1.291 \times 10^{-4}}{0.3} \mathrm{~N} / \mathrm{in}$
For Star: : $\quad 1 \mathrm{MV}=\frac{1.291 \times 10^{-4}}{0.3} \times 30 \times 10^{6}=12830 \mathrm{psc}=\sigma$

SHE゙CMAKHJNOI

SPECIMEN NO. 1

TABLE II (CONT.)

SPECIMEN 110. I

$$
T A H \angle \therefore \text { i! (CONT.) }
$$

SHECIMEN NO. 2

$\int P E C$ MEN N ND.

TABLE IT (CoNT)

SPECIMEN No. 1

TABLE III

SPECIMEN NO. 1

TABLE II (CONT.)

SPECIMEN NOM

SPECIMEN NO 2

TABLE III (c\&ny)

SPECIMENNO 2

TABLE III (CCNT.)

ROCKET SECTION

> THE FOLLOWING TEMPERATURE DISTRIBUTION IS ASSUMED:

OUTER CYLINDER,

$$
\text { UTIII约云T}=500^{\circ} \mathrm{F}
$$

FUEL
INNER CYLINDER

FIG. 1

$$
\begin{array}{r}
\text { H.S.IV.A. } \\
89
\end{array}
$$

Thesis
15463
K58 Kleiss

Some studies of expansion rings in rocket motors.

