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ABSTRACT 
 
 

Transient analysis of large structural systems is a computationally demanding 

process, which in the past has prevented dynamic redesign and optimization.  Large 

structures, such as buildings or ships subjected to random base motions, use isolators to 

minimize strain energies, which may cause damage or structural failure. 

This research focuses on the optimization of isolator parameters in order for 

structural systems to withstand potentially catastrophic transient vibrations.  Many non-

linear hysteretic, viscoelastic, and sliding friction isolators were numerically modeled 

using the scientific programming language, MATLAB.  The existing programs used to 

solve the Voltera integral formulation for Transient Structural Synthesis (TSS) and the 

Recursive Block-by-Block (RBB) algorithm were investigated and enhanced to yield 

greater accuracy and increased computational speed.  The final product is a user-friendly 

Decision Support System (DSS) for use with both civil and military applications.  Based 

on different types of base motions and the inherent dynamics of the structure, this DSS is 

capable of optimizing isolator parameters to meet a user specific objective. 
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EXECUTIVE SUMMARY 
 
 

On average, there are about 500,000 detectable earthquakes in the world per year.  

Only about 100,000 of these can be felt and about 100 of them have caused moderate to 

severe damage.  Earthquakes strike without warning and can cause wide-spread damage 

in populated areas, particularly in third world countries where building codes are poorly 

enforced or non-existent. 

Shear failure is the predominant failure mechanism of most structural systems 

experiencing a seismic event.  Passive isolators have proved successful in absorbing the 

shear energy delivered by strong motion earthquakes.  However, selection of the correct 

type of isolator that will respond best to the inherent dynamic characteristics of a specific 

structural system poses the greatest challenge.  Traditional methods of transient analysis, 

i.e. Finite Element Analysis (FEA), for complex structural systems are computationally 

demanding and make it impracticable for use with existing optimization techniques. 

This research focuses on the optimization of isolator parameters in order for 

structural systems to withstand potentially catastrophic transient vibrations.  Many non-

linear hysteretic, viscoelastic, and sliding friction isolators were numerically modeled 

using the scientific programming language, MATLAB.  The existing programs used to 

solve the Voltera integral formulation for Transient Structural Synthesis (TSS) and the 

Recursive Block-by-Block (RBB) algorithm were investigated and enhanced to yield 

greater accuracy and increased computational speed.  The final product is a user-friendly 

Decision Support System (DSS) for use with both civil and military applications.  Based 

on different types of base motions and the inherent dynamics of the structure, this DSS is 

capable of optimizing isolator parameters to meet a user specific objective. 
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I. INTRODUCTION  

The U.S. Geological Survey estimates an average of 500,000 detectable 

earthquakes in the world per year [Ref. 1].  Only about 100,000 of these can be felt and 

about 100 of them have caused moderate to severe damage.  Earthquakes strike without 

warning and can cause wide-spread damage in populated areas, particularly in third world 

countries where building codes are poorly enforced or non-existent. 

Over the past century, scientists and engineers have investigated methods to 

isolate large structural systems from strong-base motion.  The large lateral displacements 

associated with strong motion flood structural systems with high-magnitude shear forces.  

Shear failure is the predominant failure mechanism of most structural system undergoing 

an earthquake event.  Passive isolators have been proven successful in absorbing the 

shear energy delivered by earthquakes [Ref. 2]. 

Even though passive structural isolators present solutions to the problem of 

partially decoupling structural systems from ground motion, selection of the correct type 

of isolators that respond best to the inherent dynamic characteristics of distinct structural 

systems poses the greatest challenge.  This type of problem is clearly one of optimization 

– choose the best set of parameters to minimize or maximize an objective. Traditional 

methods of transient analysis, i.e. Finite Element Analysis (FEA), for complex structural 

systems are computationally demanding.  They are impracticable for use with existing 

optimization techniques due to the computational demand placed by nonlinear isolators. 

Transient Structural Synthesis (TSS) is a newer transient analysis method that 

uses normalized mode shapes, natural frequencies, and an integral equation formulation 

to solve the response of complex structural systems with localized nonlinearities [Ref. 3].  

This time-domain synthesis method uses the Voltera Integral equation, which relies on 

the exact solution to the governing equations of motion.  This method greatly decreases 

processing speed by allowing implicit model reduction and exploiting the contractive 

nature of the Voltera Integral equation. 

Further improvements in processing speed can be achieved with the use of a 

Recursive Block-by-Block algorithm [Ref. 14].  This method divides the simulation time 
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and the impulse response function solutions into equally-sized blocks.  The blocks are 

individually solved by convolution and retained.  The solutions to the proceeding blocks 

are dependent on the retained solutions of previously processed blocks.  This method 

does not degrade the solution’s accuracy when compared with non-blocked solutions 

These methods present excellent savings in computation speed, but they were not 

without fault.  The existing MATLAB programs that executed the TSS and RBB 

algorithms had programming redundancies that decreased processing time.  They also 

yielded less accurate results since they employed MATLAB’s conv command, which 

uses a rectangular integration rule.  The non-linear isolator models developed from a 

previous thesis research did not execute correctly with the RBB algorithm, which 

introduced errors into the final synthesized solutions. 

Presented here is a thorough investigation of the existing MATLAB programs, 

which led to optimized program logic, corrected non-linear isolator models, and a method 

that transforms MATLAB’s rectangular integration rule convolution into any integration 

rule with higher-order error.  Also presented are numerical models for sliding-friction 

isolators, and a user friendly Decision Support System (DSS) tool for transient response 

and analysis.  This program gives a user the ability to quickly change isolator parameters 

for TSS / RBB, change types of base motions, and optimize the isolator parameters to 

meet user defined objectives. 
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II. BACKGROUND 

A. EARTHQUAKES 
Earthquakes are one of the most terrifying natural phenomena known.  They 

indiscriminately strike without warning, are felt thousands of miles away, and can cause 

widespread damage.  The largest earthquake to strike in the twentieth century was in 

1960 off the coast of Chile – 9.5 on the Richter scale.  It ruptured an area 525 miles long 

and 80 miles wide, which devastated numerous Chilean cities, caused hundred of large 

landslides, and may have aggravated the Puyehue Volcano that erupted two days later 

[Ref. 4].  This earthquake created a deadly tsunami of more than 30 feet that completely 

eliminated entire villages along the Chilean coast.  The tsunami continued across the 

Pacific Ocean where it killed 61 people in Hawaii and hundreds more in Japan, more than 

8000 miles from the earthquake source. 

The causes of earthquakes are explained with the theory of plate tectonics.  The 

basic theory is that the lithosphere, the surface layer of the earth, is made up of many 

plates that slide over the asthenoshpere, the layer that behaves as a lubricant.  Along the 

boundaries of the plates they will move apart, push together, or slide against each other.  

When two plates move apart from each other, molten lava rises from beneath the 

lithosphere.  The lava fills the gap created from the separating plates and hardens.  This 

divergent plate boundary is commonly seen at the bottom of an ocean.   

Along convergent plate boundaries, one of the plates is usually pushed under the 

other.  The subducted plate will sink into the lower mantel layers and melt.  When neither 

of the plates yields to subduction, the colliding plates form mountain ranges.  The peak of 

Mt. Everest, part of the Himalaya mountain range, increases an average of three inches 

per year due to the pressure created from the Asian Plate and the Indian Plate [Ref. 5].  

Plates that slide against each other do so along transform boundaries and can create 

tension.  The sudden decrease in tension or compression between moving plates releases 

large amounts of shear energy that propagate through the Earth’s crust.  Earthquakes are 
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more common along fault lines – areas where plates meet and move in different 

directions.  The plate-boundary diagram presented in Figure 1 further explains these 

phenomena.  

 

 

Figure 1.   Plate-Boundary Diagram (From Ref. 1) 
 
1. Fault Lines 
Geologists have identified four types of fault systems, normal, reverse, thrust, and 

strike-slip faults.  They are characterized by orientation of the fault plane, the break in the 

rock, and the resulting movement of the two blocks of rock.  The normal fault has a 

nearly vertical fault plane with a hanging wall, the rock above the plane, and a foot wall, 

the rock below the plane.  The hanging wall pushes down against the foot wall, which in 

turn pushes up against the hanging wall.  This separation of the Earth’s crust is a result of 

the pull from a divergent plate boundary.  The reverse fault also has a nearly vertical fault 

plane but the compressed rock causes the hanging wall to push up and the footwall to 

push down.  A thrust fault behaves similar to the reverse fault except that the fault plane 

is nearly horizontal.  As a result, the hanging wall is pushed on top of the foot wall – a 
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common occurrence in a convergent plate boundary.  The strike-slip fault commonly 

occurs in transform plate boundaries where the plates move in opposing horizontal 

directions. 

 

 
Figure 2.   Normal Fault (From Ref. 6) 

 

 
Figure 3.   Reverse Fault (From Ref. 6) 
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Figure 4.   Strike-Slip Fault (From Ref. 6) 

 

The movement of the plates along fault lines creates friction. When the moving 

rocks become locked, the restricted motion causes the build up of potential energy – the 

stress in the rock increases.  When the rock finally yields due to the enormous stresses, 

the sudden release of kinetic energy propagates through the Earth’s lithosphere. 

2. Seismic Waves 
The seismic energy wave propagates through the Earth in the same manner as 

disturbance in a body of water.  Seismic waves are categorized into body waves and 

surface waves.  Body waves are those that travel through the inner part of the Earth and 

cause primary waves (p-waves) and secondary waves (s-waves) [Ref. 6].  P-waves are 

compression waves that travel through to the Earth’s surface the fastest and can penetrate 

solids, liquids, and gasses.  S-waves are shear waves that travel perpendicular to the 

direction of the body waves.  They only propagate through solid material and are thus 

stopped by the Earth’s liquid asthenosphere. 
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Figure 5.   Body Wave Propagation (From Ref. 6) 

 

Surface waves are caused by the body waves that reach the surface. They are also 

known are long waves (l-waves) due to their low frequency.  L-waves produce the most 

intense ground displacement and are responsible for the most damage associated with 

earthquakes. 

B. BASE MOTION ISOLATION 
Base motion isolation has become an increasing requirement for structural designs 

in earthquake prone areas.  The two types of isolation that have gained acceptance are 

elastomeric bearings and sliding systems.  Elastomeric bearings are made of either 

natural rubber or neoprene and serve the purpose of decoupling a structural system from 

the horizontal component of strong-ground motion.  The low horizontal stiffness of the 

elastomer gives the structural system a natural frequency that is much lower than its 

fixed-base frequency and lower than the larger ground motion frequencies [Ref. 2].  

Since the first non-rigid body mode of a structural system relates to structural 

deformations, the system can be viewed as a rigid body. 

Sliding systems limit the transfer of shear across the isolation interface.  The 

sliding interface is typically made of two dissimilar metals with a low friction coefficient 

aided by a restoring device.  The use of restoring devices with sliding systems helps 

reduce the diameter of the bearing plates and the support system. 
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Non-linear base isolation is of special interest since, unlike linear isolators that 

deflect earthquake energy; non-linear isolators dissipate the energy through plastic 

deformation of the isolator materials or with the use of viscous or coulomb damping. 

1. Elastomeric and Hysteretic Isolators 
Elastomeric isolators usually include high-damping rubber bearings (HDR), low-

damping rubber bearings (RB) or low-damping rubber bearings with a lead core (LRB).  

These isolators consist of thin layers or natural rubber that are vulcanized and bonded to 

steel plates.  Natural rubber exhibits both hysteretic and viscoelastic behavior.  In 

particular, low-damping natural rubber exhibits an almost linear elastic and linear viscous 

behavior.  HDR and RB isolators are practically linear since their dynamic shear modulus 

remains almost constant over a wide range of temperature and frequencies [Ref. 2].  Their 

dynamic damping coefficients remain comparatively constant at frequencies lower than 

50 Hz – a desirable characteristic since strong motion frequencies are much lower. 

For isolators with different types of rubber, the stiffness characteristics will 

change as the shear loading changes.  For small displacements, the isolator stiffness is 

large – this is desirable to minimize the effects of wind loading.  When the isolator 

experiences large shear strains, the stiffness is very low and effectively deflects seismic 

energy. 

 

 
Figure 6.   Idealized Hysteretic Force-Displacement Relation of a LRB (From Ref. 7) 
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Figure 7.   Bilinear Hysteretic Numerical Model of a LBR 

 

A LRB is categorized as a hysteretic isolator because of its lead core.  A 

hysteretic material is one that will remain permanently deformed when the disturbing 

force is removed.  Viscoelastic and elastomeric materials do not exhibit hysteretic 

behavior since they return to their original position once the disturbing force is removed.  

LRB isolators are typically constructed of low-damping natural rubber with a press fitted 

lead core.  During strong lateral motion, the lead core yields at low stresses, deforms in 

nearly pure shear, and produces stable hysteretic behavior.  Repeated yielding will not 

cause fatigue failure since lead self-anneals at standard temperature [Ref. 7].  The 

behavior of LRB isolators can be represented by a bilinear hysteretic numerical model, 

such as the one presented in Figure 7.  Equation (1) relates the characteristic strength, Q, 

of an LRB isolator to the lead core area, Ap, and the shear yield stress of lead, Qyl. 

 p ylQ A σ=  (1) 

Even though a bilinear numerical model will yield acceptable results for non-

linear isolators, the Wen model, Figure 8, will more closely represent the hysteretic 

curve. 
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Figure 8.   Wen Hysteretic Numerial Model of a LRB 

 

2. Sliding Isolators with Restoring Force Mechanisms 
Sliding bearings will limit the transmission of lateral forces to the isolated 

structure, but require large sliding surfaces and usually result in permanent offset 

displacements.  To reduce the diameter of the sliding surface and prevent unwanted 

displacements, a restoring force mechanism is typically used.  The three types of sliding 

isolators are shown in Figure 9. 

 
Figure 9.   Idealized Force Displacement Loops of Sliding Bearings (From Ref. 7) 
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The lateral force developed from a sliding bearing can be calculated with 

Equation (2).  The effects due to vertical ground acceleration and overturning moments 

on the normal load used to calculate the lateral force is calculated with Equation (3) [Ref. 

7]. 

 sgn( )s
NF U N U
R

µ= + �  (2) 

where 

U = Displacement 

Udot = Sliding velocity 

R = Radius of curvature of the sliding surface 

µs = Coefficient of sliding friction 

N = Normal load on the bearing 

 

 1 v sU PN W
g W

 
= + + 

 

��
 (3) 

Flat sliding bearings have an infinite radius of curvature and require a restoring 

mechanism.  This is not the case with spherical and conical sliding surfaces since self-

centering is inherent to their design.  Sliding bearings are commonly made from PTFE or 

PTFE based composites in contact with a polished stainless steel surface. 

3. Viscoelastic Isolators 
Viscoelastic isolators can be either frequency dependent or frequency 

independent.  Such isolators that resemble a parallel spring-damper configuration are 

frequency dependent and poorly dissipate displacement energy.  In turn, if the 

configuration resembles a spring-damper in series, such as the Maxwell model, it is 

considered frequency independent.  Frequency independent isolators retain their 

characteristic force-displacement loop over a broad range of frequencies [Ref. 8]. 

C. RELEVANT RESEARCH  
The final analysis / optimization program is a combination of the proper use of the 

Voltera Integral Equation, Transient Structural Synthesis (TSS), and the Recursive 
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Block-by-Block (RBB) algorithm.  These topics are well researched and discussed in 

their respective references.  The following sub-sections broadly discuss these topics in 

order for the reader to have the general knowledge need to understand the following 

chapters. 

1. Governing Equations of Motion 
Mechanical or structural systems undergo forced vibrations when external energy 

is applied.  External energy can be applied by an external / internal force or by a change 

in displacement.  Forces and displacements can be harmonic, non-harmonic and periodic, 

non-periodic, or random in nature.  Harmonic excitation usually results in a harmonic 

system response, while suddenly applied non-periodic excitation results in a transient 

system response.  However, suddenly applied harmonic excitation will also produce a 

transient response. 

The basic equation of motion for a forced single degree-of-freedom (DOF) system 

is derived from Newton’s second law of motion. 

 ( ) ( , , )NLmx cx kx F t F x x t+ + = +�� � �  (4) 

The solution to this 2nd order ordinary differential equation is a homogeneous and 

particular one.  When the initial conditions are zero, such as a structural system awaiting 

a seismic event, the homogeneous solution will also be zero.  What remains is the 

particular solution to the forced system.  Linear systems can be solved with the correct 

Laplace transform, while nonlinear systems may require more advanced numerical 

methods. 

A common method for solving linear-multi DOF systems is with eigenvector and 

eigenvalue solutions.  For an undamped 2-DOF system, Figure 10, the equations of 

motion are stated here in matrix form. 

 1 1 11 1 2 2

2 2 22 2 2

0
0

x x Fm k k k
m k kx x F

+ −        
+ =        −        

��
��

 (5) 
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Figure 10.   Forced, 2-DOF Undamped System 

 

The mass and stiffness matrices are needed in order to solve for the eigenvalues 

and eigenvectors.  The square root of the eigenvalues yields the natural frequencies and 

the eigenvectors contain the system modes.  Systems with n-DOF will have n-modes and 

n-natural frequencies.  The modes and natural frequencies are needed to later calculate 

the impulse response functions that will be used to solve the particular solution using the 

Voltera integral equation. 

 
2. Voltera Integral Equation 

This convolution integral is generally found in most college-level vibrations 

textbooks and is based on the idea that any force is the equivalent to a superposition of 

impulses of discrete duration time, τ.  

 
0

( ) ( ) ( )
t

x t f h t dτ τ τ= −∫  (6) 

Here, h are the impulse response functions (IRF) that were calculated with the 

modes and natural frequencies.  The equation used to calculate the IRFs for a 1-DOF 

system is: 

 2

2
( ) sin 1

1

nt

n

n

eh t t
ζω

ω ζ
ω ζ

− 
 = −
 − 

 (7) 

where 

ωn = Natural frequency 

ζ = Damping ratio 

In order to solve the convolution integral numerically, an integration rule is 

applied in matrix form.  The following matrix equation was developed with the trapezoid 
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integration rule and solves for the particular solution of a system with zeros for the initial 

conditions. 

 

0

1

0

1

1 (0 ) 0 0
2
1 1(1 ) 0 0
2 2

1 1( ) (( 1) ) (0 )
2 2

m

iso

iso
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x

x

h t
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h t h t F

F
h m t h m t h t
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 
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 
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 
 
 
 
  

 ∆ 
  
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    
 ∆ − ∆ ∆
  

= ∆#
#

"

"
## # " #
## # " #

"

 (8) 

The forcing vector Fiso represents the isolator force due to the base motion 

excitation.  Reference [8] presents a detailed discussion of the Voltera Integral Equation 

in modal space. 

3. Transient Structural Synthesis 
Transient Structural Synthesis (TSS) is a topic that is thoroughly discussed in 

[Ref. 3] and broadly presented here since it is the core of the program developed for this 

thesis.  In a time domain, TSS is used to calculate the dynamic response of coupled 

substructures and allows for model reduction to only the coordinates of interest.  System 

modifications can quickly be calculated with pre-modification transient response data.  

The object is to solve for the nonlinear isolator forces, which are retained to later solve 

for the response of other coordinates of interest.  This is an iterative process that requires 

an initial guess for fiso, the vector of isolator forces – usually a vector of ones.  Chapter 

III, Section C presents a method of improving the initial guess for accuracy by modifying 

fiso with a vector of integration rule weightings.  The following flowchart explains this 

iterative method. 
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Figure 11.   Iterative method used to solve for the isolator forces 

 

The converged solution for the vector of isolator forces is used to calculate the 

dynamic response of other coordinates of interest.  The response of such a point is the 

linear combination of its IRF convolved with each isolator force that couples the system. 

4. Recursive Block-by-Block Algorithm 
The recursive block-by-block (RBB) algorithm [Ref. 14] further reduces 

processing time by dividing the total simulation time into several blocks of equal lengths. 

This method divides the simulation time and the impulse response function solutions into 

equally sized blocks.  The blocks are individually solved by convolution and retained.  

The solutions to the proceeding blocks are dependent on the retained solutions of 

previously processed blocks.  This method does not degrade the solution’s accuracy when 

compared with non-blocked solutions. 

D. OPTIMIZATION – NONLINEAR PROGRAMMING 

Optimization problems can be divided into either linear programming (LP) or 

nonlinear programming (NLP) – most engineering problems are nonlinear in nature.  

NLP algorithms start at any point within the feasible solution region of the NLP problem.  

It then attempts to move from the starting point in a direction through the feasible region 

that results in an improved objective function.  If the algorithm determines there is a 

better direction, it will adjust its step size and move in that direction to a better feasible 

solution.  The process continues until the algorithm determines that movement in any 

direction will degrade the solution. The algorithm terminates when it has found a local 

Yes 

No 

* *

0

( )
t

x x h t fτ= − −∫  

x* = x?

Stop

Isolator 
function 

Initial guess of 
fiso 
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optimal solution. – a solution that is better than any other feasible solution in its 

immediate area within the feasible region.  However, a given local optimal solution might 

not be the best possible solution.  It is common practice with NLP problems to use 

different starting points in search of the best feasible solution [Ref. 10].  

 
Figure 12.   Multiple Solutions to a NLP Problem (From Ref. 10) 

 

NLP problems have three combinations of objectives with constraints: linear 

objective with nonlinear constraints, nonlinear objective with linear constraints and 

nonlinear objective with nonlinear constraints.  The Decision Support System (DSS) tool 

written for this thesis uses a linear objective function of either displacements, 

accelerations, or both, with nonlinear constraints.  These combinations are graphically 

described in Figure 13. 
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Figure 13.   Different Combinations of Objectives with Constraints (From Ref. 10) 

 

1. One-Variable Optimization Problems 

For multivariable functions, a one-dimensional minimization routine may be 

called numerous times to find a local minimum. Interval bounding and Golden Section 

interval refinement algorithms are useful in searching for the minimum of one-variable 

functions. 

The interval bounding function starts at a point on a curve and “marches” at a 

fixed space step in a descending direction.  When the function encounters an ascending 
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direction, it stops and saves the current and last two points for the interval refinement 

function.  This function should be run several times at different starting points to find the 

interval that may yield an optimal solution. 

 The interval refinement function uses the Golden Section algorithm to isolate the 

contained minimum point to a predetermined tolerance.  This algorithm uses the Golden 

Ratio (0.618034) to refine an interval.  It first determines the interval length and then 

adds a fraction of the interval length (the length multiplied by the Golden Ratio) to the 

lower bound of the interval. It subtracts the same length fraction from the upper bound.  

Depending on the magnitude of the two new points within the interval, the algorithm 

eliminates the portion of the interval that is no longer needed – Figure 14 clarifies this 

methodology [Ref. 11]. 

 
Figure 14.   Golden Section Interval Refinement (From Ref. 11) 

 

2. Multi-Variable Optimization Problems 

Common methods for multi-variable unconstrained optimization include Steepest 

Descent, Newton’s Method, Marquardt’s Compromise, and Modified Newton’s Methods.  

The Steepest Descent and Modified Newton methods incorporate the bounding phase and 

Golden Section algorithms.  The MATLAB Optimization Toolbox used for this thesis 

automatically chooses a method; however, a user can easily change the method and 

optimization parameters by changing the optimset values within MATLAB.  The 

advantages and disadvantages of each method are summarized in Table 1. 
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Method Advantages Disadvantages 

Steepest Descent -Maintains a descent property 
-Only uses the gradient 

information 
-Converges from any starting point 
-Reliable and stable 

-Requires a line search 
-Slows down near a minimum 
-Very slow convergence 

Newton -Can exhibit quadratic 
convergence 

-No line search 
-Very fast convergence 

-Requires the Hessian and its inverse 
(will fail if singular) 

-Needs to solve a linear system of 
equations 

-Only converges near optimal 
function values 

-May diverge for non-quadratic 
functions or with poor starting 
points 

Marquardt -Maintains a descent property 
-No line search 
-Excellent convergence rate 
-Uses Newton when it gives good 

descent results and Steepest 
Descent where it doesn't 

-Requires the Hessian 
-Needs to solve a linear system of 

equations 

Modified Newton -Maintains a descent property 
-Avoids divergence 

-Requires a line search 

 
Table 1. Methods of Multi-Variable Unconstrained Optimization 

 

3. Constrained Optimization 
Constrained optimization is the minimization of an objective function subject to 

the constraints of the possible values of the independent variables. Constraints can be 

linear or nonlinear with either equality or inequality constraints.  

The typical equality constrained optimization problem has the form: 

minimize  f(x) 

subject to  h(x) = 0 

where f(x) is the scalar valued function and h(x) is the vector valued constraint 

function.  Because of the constraint, stationary points (minimum, maximum, or saddle 

points) of f(x) may not be valid solutions since they may not satisfy the constraints.  The 

common approach to solving constrained optimization problems is with the method of 
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Lagrange multipliers.  This method converts the constrained optimization problem into an 

unconstrained one, which is then solved with one of the methods listed on Table 1.  The 

stationary points of the Lagrangian are potential solutions of the constrained optimization 

problem [Ref. 12]. 

 
1

l

j j
j

L f hλ
=

= +∑  (9) 

The typical inequality constrained optimization problem has the form: 

minimize  f(x) 

subject to  g(x) ≤  0 

where f(x) is the scalar valued function and g(x) is the vector valued constraint 

function.  The discussion of inequality constraints is lengthy and thoroughly discussed in 

[Ref. 11] and [Ref. 12]. 

E. DECISION SUPPORT SYSTEMS 
Decision Support Systems (DSS) are a specific class of computerized information 

systems that support the decision makers. DSS are typically interactive computer-based 

systems intended to aide decision makers by using communications technologies, data, 

documents, knowledge and/or models to identify, solve problems, and make decisions. 

The type of DSS developed for this thesis is a model-driven DSS.  The model-driven 

DSS emphasizes access and manipulation of optimization and simulation models. It uses 

data and parameters provided by the designer, are not usually data intensive, and do not 

use large databases. 
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III. INVESTIGATION AND ENHANCEMENTS 

A. CORRECTIONS TO EXISTING NUMERICAL ISOLATOR MODELS 
The Bilinear, Maxwell, and Wen models were adopted from [Ref. 8].  In this 

reference, the author presents their use with TSS and RBB to solve the base isolation and 

structural response for three structural models.  The MATLAB programs inherited from 

this research failed to duplicate the results presented in [Ref. 8].  The isolator model 

programs were thoroughly investigated for model theory, accuracy, program flow, and 

compatibility with RBB.  The results of this investigation are presented in Table 2.  Other 

errors of minor importance include: 

• The El Centro time history plot on [Ref. 8, Page 53] is incorrectly presented in 

inches.  The maximum and minimum displacement points are consistent with the 

measurements in centimeters.  The data presented in this reference contains unit 

dimension errors. 

• The starting vector of isolator forces used for TSS was a vector of zeros.  A better 

vector of starting values is a vector of ones, as recommended in [Ref.14]. 

If a simulation is performed with only one block, RBB is not used.  Any isolator 

model not written to “remember” forces and displacements from previous blocks will 

function correctly.  Once the number of blocks exceeded one, RBB is employed and 

isolator models that don’t “remember” will report a zero force value at the beginning of 

each block.  Examples of these force discontinuities are show in Figures 15 – 17.  The 

program-logic flowchart for processing RBB blocks is presented in Figure 18.  It is 

imperative that MATLAB’s persistent variables, those that retain the final force and 

displacement values for the previously processed block, be clear from memory.  

Otherwise the persistent variables will remain in memory until the user terminates the 

MATLAB session.  Any further processing without first clearing these variables will 

result in incorrect results. 
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Table 2. Problems Discovered with Numerical Isolator Models 

Isolator Model Problems Corrections 

Bilinear • No functionality with RBB. 

• Force discontinuities for more 
than one block. 

• Poor program flow. 

• Poorly documented. 

• Model re-written to function 
properly with RBB. 

• Logic and program flow 
improved – properly documented 

• Wrote a separate model that does 
not account for strain hardening 
since LRB are self annealing at 
standard temperature. 

Maxwell • No functionality with RBB. 

• Force discontinuities for more 
than one block. 

• Runge-Kutta 4th order method 
solved incorrectly for range of 
time steps. 

• Poor program flow. 

• Poorly documented. 

• Model re-written to function 
properly with RBB. 

• Logic and program flow 
improved 

• Runge-Kutta 4th order method 
solves correctly for any user-
defined time step. 

• Logic and program flow 
improved – properly documented 

Wen • Incorrect Wen equation 

• No functionality with RBB. 

• Force discontinuities for more 
than one block. 

• Runge-Kutta 4th order method 
solved incorrectly for range of 
time steps. 

• Poor program flow. 

• Poorly documented. 

• Model re-written with correct 
equations [Ref. 13] and to 
function properly with RBB. 

• Logic and program flow 
improved 

• Runge-Kutta 4th order method 
solves correctly for any user-
defined time step. 

• Logic and program flow 
improved – properly documented 
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Figure 15.   Force Discontinuities in with the Bilinear Model (Force vs. Disp) 

 

 
Figure 16.   Force Discontinuities with the Maxwell Model (Force vs. Time) 
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Figure 17.   Force Discontinuities with the Maxwell Model (Force vs. Disp) 

 

 
Figure 18.   Blocked Data Flow for an Isolator Model that Requires Retained Values 
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1. Wen Model Validation 

The Wen isolator model is of particular interest due to its ability to represent all 

varieties of hysteretic behavior by the proper selection of parameters for its governing 

equation. [Ref. 13]  The restoring force for this hysteretic damper is: 

 ( , ) (1 )y
y

F
Q x x x F Zα α= + −

ϒ
�  (10) 

Here, Z is the dimensionless hysteretic component, which satisfies the following 

nonlinear first order differential equation: 

 1Z x Z Z x Z Axη ηγ β−ϒ = − − +� � � �  (11) 

The Wen numerical model program developed for this thesis accurately 

reproduced the results presented by Constantinou and Tadjbakhsh [Ref. 13].  The 

following figure shows the duplicated results for the base displacement of 5.5 inches with 

a frequency of 0.9 Hz used for their study. 

   

   
Figure 19.   Hysteresis Loops for Different Wen Parameters 
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Figure 20.   Hysteresis of: (a) Torsional Device; (b) LRB from Ref [13] 
 

 For a detailed review of the dimensionless parameters α, β, γ, A, and η, please 

refer to [Ref. 13]. 

B. SLIDING NUMERICAL ISOLATOR MODELS 
Sliding bearings will limit the transmission of lateral forces to the isolated 

structure.  The three sliding models presented here were adopted from [Ref. 7].  This 

reference is maintained by the Federal Emergency Management Agency (FEMA) and 

sets guidelines the analysis and design of passive seismic isolation and energy dissipation 

systems.  These models do not take into account the effects of slipping and sticking, 

which can transform low-frequency base vibrations into high-frequency structural 

vibrations [Ref. 2]. 

1. Flat Sliding Surface with Restoring Device 

This friction model resembles a linear spring in parallel with a linear damper.  

The governing equation for this model is stated in Equation (10) and does not require 

retained values from previous blocks to function correctly with RBB.   

 sgn( )sF kx N xµ= + �  (12) 
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This equation uses the coefficient of static friction, µs, since the isolator is at rest 

before a disturbance.  Also, the dynamic friction coefficients for materials commonly 

used with sliding bearings differs very little from the static friction coefficient [Ref. 2].  

This model accepts the base displacement, base velocity, normal force (the distributed 

force of the structure on each isolator), and a friction coefficient in order to process and 

return the isolator restoring force.  Flat sliding bearings with restoring capabilities are 

usually the combination of a sliding and elastomeric bearing.   

2. Spherical Sliding Surface 
In this model the spherical sliding surface acts as the restoring device.  Notice that 

as the sphere’s radius of curvature, R, increases, the restoring force part of Equation (11) 

becomes irrelevant and degrades to a flat sliding bearing with out a restoring force.  This 

model does not require retained values from previous blocks to function correctly with 

RBB. 

 sgn( )s
NF x N x
R

µ= + �  (13) 

 

3. Conical Sliding Surface 
The conical sliding surface model does require the last force value from the 

previous block in order to function correctly with RBB.  This is due to the transition 

between the cone’s spherical surface and the inclined surface.  Note that the force vs. 

displacement plot from Figure 9 shows two possible force values for the same 

displacement.  Retention of the previous force is needed to determine if the displacement 

is causing an increase in force (top line) or a decrease (bottom line).  The program uses 

Equation (14), which was derived from plane geometry, to determine the transition 

between the spherical surface and the inclined surface. 

 
2

1 1
tan( )

o
transition

rs

φ

=
+

 (14) 

If the criteria of -stransition ≤ x ≤ stransition is met, then the program uses Equation 

(14) calculate the resulting force.  Outside of the transition boundaries, the program uses 
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Equation (15) to calculate the restoring force.  Note that the value of stransition decreases as 

the incline angle decreases, which makes Equation (13) the dominating one.   

 2 tan( )previous sF F Nµ φ= ±  (15) 

 
Figure 21.   Conical Sliding Surface Numerical Model (Force vs. Disp) 

 

C. CONVOLUTION-DRIVEN NUMERICAL INTEGRATION 
The programs that run TSS and RBB exploit MATLAB’s conv command for 

numerical integration.  The convolution theorem states that the convolution of two 

vectors is the same as multiplying their Fourier transforms.  MATLAB's Signal 

Processing Toolbox is optimized for speed and can perform convolutions very efficiently.  

The following convolution example should help the reader understand and appreciate 

convolution-driven numerical integration. 

To integrate the line y = x, let x= [0 1 2 3 4 5] and v = [1 1 1 1 1 1]T.  Before 

convolving these two vectors, we apply a filter matrix to x and discard the last four 

columns. 
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0 1 2 3 4 5 0 0 0 0 0
0 0 1 2 3 4 5 0 0 0 0
0 0 0 1 2 3 4 5 0 0 0
0 0 0 0 1 2 3 4 5 0 0
0 0 0 0 0 1 2 3 4 5 0
0 0 0 0 0 0 1 2 3 4 5

convmtxx

 
 
 
 

=  
 
 
  
 

 (16) 

The transpose of xconvmtx is now multiplied by v, 

 

0 0 0 0 0 0 1
1 0 0 0 0 0 1
2 1 0 0 0 0 1
3 2 1 0 0 0 1
4 3 2 1 0 0 1
5 4 3 2 1 0 1

T
convmtxx

   
   
   
   

= ×   
   
   
      
   

 (17) 

The answer is yr = [0 1 3 6 10 15]T, which is the rectangular rule integration of 

y=x.  The analytical answer is ya = [0 1 4 9 16 25]T.  In order to improve the convolution 

accuracy, we weight v with the Composite Trapezoid Rule, therefore v = [1 2 2 2 2 1]T.  

After a matrix multiplication as in Equation (15), the new solution is yt = [0 1 4 9 16 25]T, 

which for this case happens to be the exact answer.  This method allows the easy 

application of any integration rule by using a vector of weightings characteristic to the 

integration rule desired.  The only requirement for this method to work correctly is that 

the square matrix must be lower triangular and the diagonal must be zero.  This is not a 

problem with TSS since the diagonal of the Impulse Response Function (IRF) matrix is 

always zero at t = 0.  The following is a list of integration rules with their respective 

characteristic weighting vector. 

1. Trapezoid Rule – Error Oh3 

 0 1 3( ) [ ( ) 2 ( ) ( )]
2

b

a

hf x dx f x f x f x= + +∫  (18) 

 ( )1 1 2 2 2 2 1
2

Tv = …  (19) 
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2. Simpson's Rule – Error Oh5 

 0 1 2 3 4( ) [ ( ) 4 ( ) 2 ( ) 4 ( ) ( )]
3

b

a

hf x dx f x f x f x f x f x= + + + +∫  (20) 

 ( )1 1 4 2 4 2 2 4 2 4 1
3

Tv = …  (21) 

3. Weddle’s Rule – Error Oh9 

 0 1 2 3 4 5 6( ) [41 ( ) 216 ( ) 27 ( ) 272 ( ) 27 ( ) 216 ( ) 41 ( )]
140

b

a

h
f x dx f x f x f x f x f x f x f x= + + + + + +∫  (22) 

 ( )1 41 216 27 272 27 216 216 27 272 27 216 41
140

Tv = …  (23) 

 When using these integration weightings with TSS, the length of v must be the 

same length as the vector of isolator synthesized forces.  The following example will 

demonstrate how RBB works and how to incorporate the vector of integration 

weightings.  Figure 22 presents a process in its fourth iteration with the following 

conditions: 

• This data was divided into four equally-sized blocks and manipulated as in 
Equation (17). 

• The initial guess was f = [1 1 1 1 1 1 1 1 1 1 1]T . 

• First three blocks have converged and f was updated.  
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0 0 0 0 0 0 0 0 0 0 0 0 11
1 0 0 0 0 0 0 0 0 0 0 0 8
2 1 0 0 0 0 0 0 0 0 0 0 5
3 2 1 0 0 0 0 0 0 0 0 0 3
4 3 2 1 0 0 0 0 0 0 0 0 1
5 4 3 2 1 0 0 0 0 0 0 0 7
6 5 4 3 2 1 0 0 0 0 0 0 9
7 6 5 4 3 2 1 0 0 0 0 0 21
8 7 6 5 4 3 2 1 0 0 0 0 6
9 8 7 6 5 4 3 2 1 0 0 0 1

10 9 8 7 6 5 4 3 2 1 0 0 1
11 10 9 8 7 6 5 4 3 2 1 0 1

 
 
 
 
 
 
 
 
 × 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 22.   Example of a Recursive Block-by-Block Process 

 

 Each successive block will solve faster since it relies on the synthesized answers 

from prior blocks.  Before the fourth block can be synthesized, the following pre-process 

must take place. 

 

9 8 7 11
10 9 8 8 (10 :12)
11 10 9 5

6 5 4 3
7 6 5 1 (10 :12)
8 7 6 7

3 2 1 9
4 3 2 21 (10 :12)
5 4 3 6

update x

update x

update x

   
   × →   
   
   
   
   × →   
   
   
   
   × →   
   
   

 (24) 

The fourth f block and the updated fourth x block are then processed by the TSS 

algorithm.  To improve the accuracy of RBB, apply the blocked vector of integration 

weightings, IW, as shown in Figure 23 – pad with zeros to match the length of f.   

} BLOCK 1 

} BLOCK 2 

} BLOCK 3

} BLOCK 4

} BLOCK 1 

} BLOCK 2 

} BLOCK 3

} BLOCK 4
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0 0 0 0 0 0 0 0 0 0 0 0 11
1 0 0 0 0 0 0 0 0 0 0 0 8
2 1 0 0 0 0 0 0 0 0 0 0 5
3 2 1 0 0 0 0 0 0 0 0 0 3
4 3 2 1 0 0 0 0 0 0 0 0 1
5 4 3 2 1 0 0 0 0 0 0 0 7
6 5 4 3 2 1 0 0 0 0 0 0 9
7 6 5 4 3 2 1 0 0 0 0 0 21
8 7 6 5 4 3 2 1 0 0 0 0 6
9 8 7 6 5 4 3 2 1 0 0 0 1

10 9 8 7 6 5 4 3 2 1 0 0 1
11 10 9 8 7 6 5 4 3 2 1 0 1
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Figure 23.   Example of a Recursive Block-by-Block Process with Simpson’s Rule 
 

The vector of integration weightings is element-wise multiplied with the vector of 

forces.  Note that the padded zero has no effect on the answer since the matrix diagonal is 

already zero.  Figure 24 shows the accuracy improvements for a 2-DOF spring-mass-

damper system solved with TSS / RBB (8 blocks) and Simpson’s Rule integration.  The 

results were compared to a Working Model 2-D simulation with the same parameters. 
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Figure 24.   Accuracy Improvement for a 2-DOF SMD System 

} BLOCK 1 

} BLOCK 2 

} BLOCK 3

} BLOCK 4

} BLOCK 1 

} BLOCK 2 

} BLOCK 3

} BLOCK 4
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Deviation from Working Model Results
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Figure 25.   Differential Integration Error for 2-DOF SMD System 
 

D. PROGRAM OPTIMIZATION FOR SPEED 

The MATLAB programs presented here were thoroughly investigated, modified, 

and/or re-written to remove process redundancies and improve program flow and inter-

compatibility.  Heavy use was made of MATLAB’s vectorization and convolution 

capabilities, which are optimized for speed and commonly used for signal processing.  

The Wen and Maxwell isolator models employ a Runge-Kutta 4th order method to solve 

the governing differential equations (GDE).  The GDEs could have been solved faster 

with MATLAB’s ODE 45 solver, but it was decided that the present method, which uses 

FOR: NEXT loops, would suffice.  The compiled version of this program, like other 

programs, will execute faster than in its native programming environment. 



 

34 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
THIS PAGE INTENTIONALLY LEFT BLANK 



 

35 

E. OASIS (GUI) 

Optimization and Analysis of Structural Isolation Systems (OASIS) is the DSS 

tool developed to bring together and automate the optimization and analysis process. The 

following figures show screen shots of the GUI modules. 

 

 

 

 

 

 

 

 

 

Figure 26.   Main GUI Module 
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Figure 27.   Transient Structural Synthesis Module 

 
 
 
 
 

 
Figure 28.   Isolator Options and Constraints 
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Figure 29.   Optimization Module with Advanced FMINCON Options 



 

38 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
THIS PAGE INTENTIONALLY LEFT BLANK 



 

39 

IV. PROGRAM VERIFICATION 

A. WORKING MODEL 2-D 
Working Model 2-D is a conceptual design tool that allows users to create and 

analyze real-life mechanical systems.  It was extensively used to verify the accuracy of 

the results generated with OASIS.  Presented in the following tables and figures are the 

validation results for 2-DOF and 7-DOF models with parallel spring-dampers 

respectively.  Cset is a vector with the index value of the coupling node(s). For example, 

the following 2DOF system is coupled at m1 (node #1), therefore Cset = [1]. 

1. 2DOF System 
Problem: Determine the response of m2. 
Model:  m1 = 1 slug 

m2 = .5 slug 
k = 50 lbf / ft 
c =0 lbf-s / ft 

Isolator: Spring – Damper in parallel 
k = 10 lbf / ft 
c = 0.5 lbf-s / ft 

Cset:  [1] 
Base Motion: Sinusoidal 

A = 0.0833 in 
f = 10 Hz 

Duration: 2 sec. 
 

Results: Baseline results from WM2D. 
Max Disp: 0.0037 ft 
 
Statistics: Synthesis deviation from WM2D. 
Average:  9.6100 x 10-6  
Standard Deviation: 2.7574 x 10-5  
Maximum Error: 6.3873 x 10-5  
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2DOF - Response for Mass #2
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Figure 30.   2DOF Validation Model – Response for Mass #2 
 
2. 7DOF System 
Problem: Determine the response of m2. 
Model:  m1 = 3.5 slug 

m2 = 3 slug 
m3 = 2.5 slug  
m4 = 2 slug 
m5 = 1.5 slug 
m6 = 1 slug 
m7 = 0.5 slug 
k1 = k2= k3= k4= k5= k6= 50 lbf / ft 
c1 = c2= c3= c4= c5= c6 = 0 lbf-s / ft 

 
Isolator: Spring – Damper in parallel: 

k = 200 lbf / ft 
c = 2.5 lbf-s / ft 

 
Cset:  [1  7] 
 
Base Motion: Sinusoidal 

A = 0.08333 ft 
f = 10 Hz 

Duration: 2 sec 
 
Results: Baseline results from WM2D. 
Max Disp: 0.0054 ft 
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Statistics: Synthesis deviation from WM2D. 
Average:  8.9500 x 10-5  
Standard Deviation: 3.6670 x 10-4  
Maximum Error: 9.6700 x 10-4  

 

7DOF - Response for Mass #2
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Figure 31.   7DOF Validation Model – Response for Mass #2 

 

B. SINGLE BAY – FOUR STORY BUILDING FRAME 
Presented here is a validation of a four story building isolated with Maxwell 

elements. The force vs. displacement plot of the Maxwell isolator, [Ref. 8, Page 59], is 

presented correctly, but was most likely processed in one block since no force 

discontinuities are present.  The following validation was preformed to reproduce the 

results from [Ref. 8] with the RBB algorithm.  

1. Four Story Building Frame 
Problem: Determine a corner lateral displacement 
Model:  bldg4storyfree_hor.mat 
Isolator: Maxwell Isolator 

k = 300 lbf / in 
c = 51 lbf-s / in 

Cset:  [1  2  3  4] 
Base Motion: ElCentro1940NS.mat 
Duration: 50 sec. 
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Figure 32.   Lateral Hysteresis of Corner Node , 16 blocks 

 

 

Figure 33.   Hysteresis of Corner Node (From Ref. 8) 
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V. SAMPLE OPTIMIZATION PROBLEMS 

A. SINGLE BAY FOUR-STORY BULDING 
The four-story building used for [Ref. 8] is revisited here with a variety of 

isolators.  This structure is assembled with 50 ksi steel structural members with the 

following specifications:  

• Columns:  W36x486 

• First floor beams: W36x170 

• Second floor beams: W36x170 

• Third floor beams: W36x160 

• Fourth floor beams: W36x150 

• Roof beams:  W36x135 

The following objective functions use the absolute values of the design variables 

to ensure the minimum values are not interpreted as large negative values. 

1. Parallel Spring and Damper 

Base Motion Sine, 1in, 10 Hz, 7 sec 

Coupling Nodes (cset) [1  2  3  4] 

Analysis Node (rset) [20] – 5th floor node 

Starting Isolator Values k = 15 lb/in ; c = 0.5 lb-s/in 

Objective Minimize 5th floor lateral displacement (node 15) 

Optimal Isolator Values k = 15 lb/in ; c = 0.05 lb-s/in 

Max Displacement Max 5th floor lateral disp = 0.0032 in 

Process Time 00:09:42 

 
Table 3. Optimization Results for 4-Story Building with Parallel Spring – Damper 

Isolators 
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Objective Function: 

MIN: x20 (5th floor lateral displacement) 
 
Subject to: k - 30  ≤ 0 (Isolator constraints) 
 -k + 10 ≤ 0 
 c – 0.7 ≤ 0 
 -c + 0.01 ≤ 0 

 -x20  ≤ 0 (Nonnegativity) 
 

 
 

Figure 34.   Parallel Spring – Damper: Force vs. Displacement – Starting Values 
 

     
 

Figure 35.   Parallel Spring – Damper: Force vs. Displacement – Optimal Values 
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Figure 36.   Parallel Spring – Damper: Displacement of node #20– Before Optimization 
 

 
 

Figure 37.   Parallel Spring – Damper: Displacement of node #20– After Optimization 
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2. Flat Slider with Restoring Spring 

Base Motion Sine, 1in, 10 Hz, 7 sec 

Coupling Nodes (cset) [1  2  3  4] 

Analysis Node (rset) [20] – 5th floor node 

Starting Isolator Values k = 10 lb/in ; µ = 0.5 ;  N = 2183 lb 

Objective Minimize 5th floor lateral acceleration 

Optimal Isolator Values k = 23.3 lb/in ; µ = 0.1 

Max Displacement Max 5th floor lateral accel = 13.0446 in/sec2 

Process Time 00:03:50 

 
Table 4. Optimization Results for 4-Story Building with Flat-Slider Restoring Spring 

Isolators 
 

Objective Function: 

MIN: 20x��  (5th floor lateral acceleration) 
 
Subject to: k - 30  ≤ 0 (Isolator constraints) 
 -k + 5 ≤ 0 
 µ – 0.7 ≤ 0 
 -µ + 0.1 ≤ 0 

 - 20x��   ≤ 0 (Nonnegativity) 
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Figure 38.   Flat Slider with Restoring Spring: – Before Optimization 
 

   
 

Figure 39.   Flat Slider with Restoring Spring: – After Optimization 
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Figure 40.   Flat Slider with Restoring Spring:  Lateral Acceleration of node #20 – Before 
Optimization 

 

 
 

Figure 41.   Flat Slider with Restoring Spring:  Lateral Displacement of node #20 – After 
Optimization 
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3. Spherical Slider 

Base Motion Sine, 1in, 10 Hz, 7 sec 

Coupling Nodes (cset) [1  2  3  4] 

Analysis Node (rset) [20] – 5th floor node 

Starting Isolator Values µ = 0.5 ;  r = 60 in; N = 2183 lb 

Objective Minimize 5th floor lateral displacement 

Optimal Isolator Values µ = 0.1; r = 120 in 

Max Displacement Max 5th floor lateral disp = 0.0021 in 

Process Time 00:04:06 

 
Table 5. Optimization Results for 4-Story Building with Spherical-Slider Isolators 
 

Objective Function: 

MIN: x20 (5th floor lateral displacement) 
 
Subject to: µ - 30  ≤ 0 (Isolator constraints) 
 -µ + 5 ≤ 0 
 r – 0.7 ≤ 0 
 -r + 0.1 ≤ 0 

 -x20  ≤ 0 (Nonnegativity) 
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Figure 42.   Spherical Slider: Force vs. Displacement – Before Optimization 
 

 

   
 

Figure 43.   Spherical Slider: Force vs. Displacement – After Optimization 
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Figure 44.   Spherical Slider:  Lateral Displacement of node #20– Before Optimization 

 
 

 
 

Figure 45.   Spherical Slider:  Lateral Displacement of node #20– After Optimization 
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4. Bilinear – No Strain Hardening 

Base Motion Sine, 1in, 10 Hz, 10 sec 

Coupling Nodes (cset) [1  2  3  4] 

Analysis Node (rset) [20]– 5h floor node 

Starting Isolator Values k1= 4937 lb/in;  yp = 0.4; Fyt = 1997 lb 

Fyc = -1993 lb 

Objective Minimize 5h floor lateral displacement 

Maximum relative isolator displacement = 2 in 

Optimal Isolator Values k1= 4933 lb/in;  yp = 0.25; Fyt = 2100 lb 

Fyc = -1900 lb 

Max Displacement Max 5h floor lateral disp = 0.041 in 

Process Time 00:07:12 

Bearing Data High-Damping Natural Rubber 

Dia: 19.68 in 

Length: 19.68 in 

Shear Mod: 79.77 Psi 

Stiffness: 4933.21 lb / in 

 
Table 6. Optimization Results for 4-Story Building with Bilinear NSH Isolators 
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Objective Function: 

MIN: x20 (5th floor lateral displacement) 
 
Subject to: k1 -5200  ≤ 0 (Isolator constraints) 
 -k1 + 4800 ≤ 0 
 yp – 0.5 ≤ 0 
 -yp + 0.1 ≤ 0 
 Fyt – 2200 ≤ 0 
 -Fyt + 1800 ≤ 0 
 Fyc – 2200 ≤ 0 
 -Fyc + 1800 ≤ 0 
 

 -x20  ≤ 0 (Nonnegativity) 
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Figure 46.   Bilinear NSH: Hysteresis Plot – Before Optimization 
 
 

  
 

Figure 47.   Bilinear NSH: Hysteresis Plot – After Optimization 
 



 

55 

 

 
 

Figure 48.   Bilinear NSH: Lateral Displacement of node #20 – Before Optimization 
 
 

 
 

Figure 49.   Bilinear NSH: Lateral Displacement of node #20 – After Optimization 
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5. Maxwell 

Base Motion Sine, 12in, 5 Hz, 10 sec 

Coupling Nodes (cset) [1  2  3  4] 

Analysis Node (rset) [1  2  3  4] – Isolator Node 

Starting Isolator Values k = 3000 lb/in; c = 50 lb-s/in 

Objective Minimize isolator node absolute displacement 

Optimal Isolator Values k = 3000 lb/in; c = 40 lb-s/in 

Max Displacement Max isolator ode absolute disp = 0.08 in 

Process Time 00:01:55 

 
Table 7. Optimization Results for 4-Story Building with Maxwell Isolators 

 
 

Objective Function: 

MIN: x1 + x2 + x3 + x4  (Isolator lateral displacements) 
 
Subject to: k -3000  = 0 (Isolator constraints) 
 c – 60 ≤ 0 
 -c + 40 ≤ 0 
 

 x1, x2, x3, x4 ≥ 0 (Nonnegativity) 
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Figure 50.   Maxwell: Force vs. Displacement Plot – Before Optimization 
 
 

   
 

Figure 51.   Maxwell: Force vs. Displacement Plot – After Optimization 
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Figure 52.   Maxwell: Lateral Displacement – Before Optimization 
 
 

   
 

Figure 53.   Maxwell: Lateral Displacement – After Optimization 
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6. Wen – Sine Base Motion 

Base Motion Sine, 12in, 5 Hz, 10 sec 

Coupling Nodes (cset) [1  2  3  4] 

Analysis Node (rset) [1  2  3  4] – Isolator Nodes 

Starting Isolator Values Yield Force = 3000 lb 

Yield Displacement(Υ) =  3 in 

Yield to Post (α) = 0.1 

β = 5 

Γ = 5 

Α = 3 

η = 3 

Objective Minimize isolator node absolute displacement 

Optimal Isolator Values Yield Force = 2970 lb 

Yield Displacement(Υ) =  10.8 in 

Yield to Post (α) = 0.1 

β = 100 

Γ = 313.4 

Α = 2 

η = 3 

Max Displacement Max isolator node absolute disp = 0.1350 in 

Process Time 02:01:53 

 
Table 8. Optimization Results for 4-Story Building with Wen Isolators – Sine 

Displacement 
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Objective Function: 

MIN: x1 + x2 + x3 + x4  (Isolator lateral displacements) 
 
Subject to: Fy -3500  ≤ 0 (Isolator constraints) 
 - Fy + 2500 ≤ 0 
 Υ – 100 ≤ 0 
 - Υ + 2.7 ≤ 0 
 α – 0.5 ≤ 0 
 - α + 0.05 ≤ 0 
 β – 1000 ≤ 0 
 -β + 3 ≤ 0 
 Γ – 1000 ≤ 0 
 - Γ + 3.5 ≤ 0 
 A – 5 ≤ 0 
 -A + 1 ≤ 0 
 η – 5 ≤ 0 
 -η + 1 ≤ 0 

 
 x1, x2, x3, x4 ≥ 0 (Nonnegativity) 
 η, A = Integer 
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Figure 54.   Wen: Hysteresis Plot – Before Optimization 
 
 

   
 

Figure 55.   Wen: Hysteresis Plot – After Optimization 
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Figure 56.   Wen: Lateral Displacement of node #1– Before Optimization 
 
 

   
  

Figure 57.   Wen: Lateral Displacement of node #1 – After Optimization 
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7. Wen – Kobe Japan 1995 NS 

Base Motion KobeJapan1995NS_US.mat 20 sec 

Coupling Nodes (cset) [1 2 3 4] 

Analysis Node (rset) [20] – 5th floor node 

Starting Isolator Values Yield Force = 3000 lb 

Yield Displacement(Υ) =  3 in 

Yield to Post (α) = 0.1 

β = 5 

Γ = 5 

Α = 3 

η = 3 

Objective Minimize 5th floor lateral displacement. 

Isolator displacement relative to ground motion  

cannot exceed 10 in. 

Optimal Isolator Values Yield Force = 2968 lb 

Yield Displacement(Υ) =  5.9 in 

Yield to Post (α) = 0.5 

β = 98.1 

Γ = 313.4 

Α = 2 

η = 3 

Max Displacement Max 5th floor node lateral disp. = 3.193 in 

Max isolator node relative disp = 9.1371 in 

Process Time 02:05:44 

 
Table 9. Optimization Results for 4-Story Building with Wen Isolators – 

KobeJapan1995NS_US.mat 
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Objective Function: 

MIN: x20   (5th floor lateral displacements) 
 
Subject to: Fy -3500  ≤ 0  (Isolator constraints) 
 - Fy + 2500 ≤ 0 
 Υ – 100 ≤ 0 
 - Υ + 2.7 ≤ 0 
 α – 0.5 ≤ 0 
 - α + 0.05 ≤ 0 
 β – 1000 ≤ 0 
 -β + 3 ≤ 0 
 Γ – 1000 ≤ 0 
 - Γ + 3.5 ≤ 0 
 A – 5 ≤ 0 
 -A + 1 ≤ 0 
 η – 5 ≤ 0 
 -η + 1 ≤ 0 
 z1, z2, z3, z4 ≤ 10 in (Isolator relative displacements) 

 
 x20 ≥ 0 (Nonnegativity) 
 η, A =  Integer 
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Figure 58.   Wen: Hysteresis Plot – Before Optimization 
 
 

    
 

Figure 59.   Wen: Hysteresis Plot – After Optimization 
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Figure 60.   Wen: Relative Lateral Displacement of node #1 – Before Optimization 
 
 

 
 

Figure 61.   Wen: Relative Lateral Displacement of node #1– After Optimization 
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Figure 62.   Wen: Lateral Displacement of node #20 – Before Optimization 
 
 

 
 

Figure 63.   Wen: Lateral Displacement of node #20– After Optimization 
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Figure 64.   Wen: Lateral Acceleration – Before Optimization 
 
 

 
 

Figure 65.   Wen Lateral Acceleration – After Optimization 
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Figure 66.   No Isolation: Lateral Displacement of node #20 
 
 

 
 

Figure 67.   No Isolation: Lateral Acceleration of node #20 
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B. FIFTEEN BAY THIRTY-STORY BULDING 

The thirty-story building used for [Ref. 8] is revisited here with Wen isolation.  

This structure is coupled with 81 isolators and exposed to both sinusoidal and Kobe 

earthquake base motions.  This model was processed to demonstrate OASIS's ability to 

quickly process large-complex structural systems. 

 

1. Wen – Sine Base Motion 

Base Motion Sine, 12in, 5 Hz, 10 sec 

Coupling Nodes (cset) [1  2  3  4 … 77  78  79  80  81]  (81 nodes) 

Analysis Node (rset) [1215 2511] – 15th and 31st floors 

Isolator Values Yield Force = 2970 lb 

Yield Displacement(Υ) =  10.8 in 

Yield to Post (α) = 0.1 

β = 100 

Γ = 313.4 

Α = 2 

η = 3 

Objective Determine the response of the 15th and 31st floor 

nodes. 

Max Displacement Max Lateral Disp 15th Floor: 0.0246 in 

Max Lateral Disp: 31st Floor: 0.0251 in 

Process Time 03:37:43 

 
Table 10. Synthesis Results for30-Story Building with Wen Isolators – Sine Displacement 
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Figure 68.   Thirty-Story Building Wire Frame (From Ref. 8) 
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Figure 69.   30-Story Building: Isolator #1 Lateral Displacement 

 

 
Figure 70.   30-Story Building: Isolator #1 Hysteresis Plot  
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Figure 71.   30-Story Building: 15th Floor Lateral Displacement 

 

 
Figure 72.   30-Story Building: 31st Floor Lateral Displacement 
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Figure 73.   30-Story Building: 31st Floor Acceleration 
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2. Wen – Kobe Japan 1995 US Base Motion 

Base Motion KobeJapan1995NS_US.mat 20 sec 

Coupling Nodes (cset) [1  2  3  4 … 77  78  79  80  81]  (81 nodes) 

Analysis Node (rset) [1215 2511] – 15th and 31st floors 

Isolator Values Yield Force = 2970 lb 

Yield Displacement(Υ) =  10.8 in 

Yield to Post (α) = 0.1 

β = 100 

Γ = 313.4 

Α = 2 

η = 3 

Objective Determine the response of the 15th and 31st floor 

nodes. 

Max Displacement Max Lateral Disp 15th Floor: 3.6817 in 

Max Lateral Disp: 31st Floor: 3.6841 in 

Process Time 06:27:36 

 
Table 11. Synthesis Results for 30-Story Building with Wen Isolators – 

KobeJapan1995NS_US.mat 
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Figure 74.   30-Story Building: Isolator #1 Lateral Displacement 
 

 

 
 

Figure 75.   30-Story Building: Isolator #1 Hysteresis Plot  
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Figure 76.   30-Story Building: 15th Floor Lateral Displacement 
 

 
 

Figure 77.   30-Story Building: 31st Floor Lateral Displacement 
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Figure 78.   30-Story Building: 31st Floor Acceleration 
 (Time (sec) vs. Acceleration (in/sec2) 
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Figure 79.   No Isolation:  31st Floor Lateral Displacement 
 

 
 

Figure 80.   No Isolation: 31st Floor Lateral Acceleration 
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VI. CONCLUSION 

MATLAB programs for Transient Structural Synthesis (TSS), Recursive Block-

by-Block (RBB), and nonlinear numerical isolator models from [Ref. 8] were thoroughly 

investigated.  As a result, numerous discrepancies in the isolator models were corrected, 

program logic was optimized, and a method that transforms MATLAB’s rectangular-rule 

convolution into any integration rule with higher-order error was developed.  This 

research also led to the development of three numerical models for sliding-friction 

isolators and a user-friendly Decision Support System (DSS) tool for transient response 

and analysis.  OASIS (Optimization and Analysis of Structural Isolation Systems) is a 

DSS tool that gives a user the ability to quickly change isolator parameters for TSS / 

RBB, change types of base motions, optimize the isolator parameters, and post-synthesis 

/ optimization analysis tools. 

The program results were carefully validated with 2-DOF and 7-DOF systems in 

Working Model 2-D (WM2D).  The results from OASIS and Working Model 2-D 

compared very well for short simulation times.  For longer simulation times (t > 15 sec), 

small deviations in response were noted.  This is due to Working Model's attempt to 

solve a "real world" system of blocks, springs, and dampers, instead of a lumped mass 

system.  OASIS uses mass-normalized mode shapes in its calculation, which result in 

better solutions when compared to WM2D. 

Several optimization scenarios were presented for comparison.  Each example 

used different isolators with initial, lower-bound, and upper-bound parameters.  The user 

also has the option to "fix" certain parameters with the use of nonlinear equality 

constraints.  The objective function is the linear sum of either displacements, 

accelerations, or both. However, a future version will allow the optimization of nonlinear 

objective functions.  

OASIS can also be used to analyze and optimize models of smaller scale.  The 

program only needs the mode shapes and natural frequencies for the coupling nodes and 

the analysis nodes.  TSS makes it possible to reduce a large DOF system into a small one 

that can be solved quickly.  For example, the four story structure used in the optimization 
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examples has 20 nodes, each with six degrees of freedom.  Only five nodes with lateral 

degrees of freedom are needed to find the lateral response of a node on the fifth floor – 

four coupling nodes and one fifth floor node.  OASIS's ability to accept any size model, 

couple it with an isolator, and apply any base motion greatly extends its use for optimal 

engineering design. 
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VII. RECOMMENDATIONS 

OASIS does not account for the uplift effects created by a structure's rocking 

during a base-motion event.  To consider uplift in the structure's response, the vertical 

degrees of freedom need to be included for the impulse response function formulation.  

Reference [8] presents results of programs developed to account for uplift by modeling a 

linear spring.  More information on past and current research on the effects of uplift and 

base isolation can be found in [Ref. 17]. 
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