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ABSTRACT 
 

 

 

The objective of this thesis was to examine the feasibility of 

implementation and the performance of a Software Defined Radio datalink, using 

a common PC type host computer and a high level programming language. 

Dedicated transceivers were used, plugged on the PCI bus of host PCs running 

Windows 2000. Most of the functionality was programmed using the Microsoft 

Visual C++ language. The tasks to be performed included the channels 

configuration (number of active channels, center frequencies, sampling and data 

rates, choice of the appropriate up and down conversion filters), the management 

of the data transfer between the host computer and the transceiver, the 

baseband data modulation and demodulation, and the data organization into 

packets with appropriate headers in order to achieve phase and time 

synchronization solely by software. A part of the transceivers’ configuration was 

achieved using a configuration utility running in Excel, provided by the 

manufacturer. Several combinations of M-PSK modulation schemes, channel 

numbers and datarates were tested in order to measure the performance limits of 

the system and its ability to perform the required tasks in real-time. The received 

data streams were further analyzed with the use of Matlab, in order to verify the 

proper functionality of the communication scheme. 
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I: INTRODUCTION 

A. THE NEED FOR SOFTWARE DEFINED RADIO 
 

Since early 1980 an exponential increase of cellular mobile systems has 

been observed, which has produced, all over the world, the definition of a 

plethora of analog and digital standards.  In the current years the industrial 

competition between Asia, Europe, and America promises a very difficult path 

towards the definition of a unique standard for future mobile systems, although 

market analyses underline the trading benefits of a common worldwide standard. 

 

Existing technologies for voice, video, and data use different packet 

structures, data types, and signal processing techniques.  Integrated services 

can be obtained with either a single device capable of delivering various services 

or with a radio that can communicate with devices providing complementary 

services.  The supporting technologies and networks that the radio might have to 

use can vary with the physical location of the user.  To successfully communicate 

with different systems, the radio has to communicate and decode the signals of 

devices using different air-interfaces.  Furthermore, to manage changes in 

networking protocols, services, and environments, mobile devices supporting 

reconfigurable hardware also need to seamlessly support multiple protocols, 

such as IP (Internet Protocol) and MExE (Mobile Execution Environment).  Such 

radios can be implemented efficiently using software radio architectures in which 

the radio reconfigures itself based on the system it will be interfacing with, and 

the functionalities it will be supporting.  

 

Most radio receivers and transmitters today are similar to those used 

decades ago.  They consist of dedicated analog circuits for filtering, tuning and 

demodulating/modulating a specific type of waveform.  To make radio systems 

more flexible, a software-defined radio is currently being developed for both 

communication and broadcast applications. A software - defined radio is a device 
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which accommodates a variety of receiver/transmitter programs all on a single 

hardware platform.  The programs on the receiver side perform band pass 

filtering, automatic gain control, frequency translation, low-pass filtering, and 

demodulation of the desired signal, and similarly on a transmitter side.  

Maximizing the number of functions handled digitally, allows the radio to take 

advantage of the flexibility of the digital signal processing circuit. 

 

 

B.  DEFINITION - CHARACTERISTICS OF THE SOFTWARE DEFINED 
RADIO 
 

The term Software Defined Radio (SDR) was coined by Joe Mitola in 

1991 (Ref. 4) to refer to the class of reprogrammable or reconfigurable radios.  In 

other words, the same piece of hardware can perform different functions at 

different times.  The SDR Forum defines the ultimate software radio (USR) as a 

radio that accepts fully programmable traffic and control information and supports 

a broad range of frequencies, air-interfaces, and applications software.  The user 

can switch from one air-interface format to another in milliseconds, use the 

Global Positioning System (GPS) for location, store money using smart card 

technology, or watch a local broadcast station or receive a satellite transmission.  

Although the exact definition of software radio is a bit controversial, however, a 

good working definition is: a radio that is substantially defined in software and 

whose physical layer behavior can be significantly altered through changes to its 

software. 

 

A typical software defined radio architecture is shown in Figure 1-1. 

Although a thorough description of the several modules of the platform will be 

given later on, for the time being let us emphasize the fact of the early signal 

digitization just after the RF frontend and its subsequent treatment in the discrete 

domain. 
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Figure 1-1. A typical Software Defined Radio model (From Ref. 4). 

 

Software radios are emerging in commercial and military infrastructure.  

This growth is motivated by the numerous advantages of software radios such 

as: 

 
Ease of design – It is possible to design many different radio products 

using a common RF front-end with the desired frequency and bandwidth in 

conjunction with different signal processing software.  Thus, it frees the engineer 

from much of the iteration associated with analog hardware design.   

 

Ease of manufacture – Given the same input in two digital processors 

and running the same software, they will produce identical outputs.  Thus, the 

move to digital hardware reduces the costs associated with manufacturing and 

testing the radios. 

 

Multimode operation – A software radio can change modes by simply 

loading appropriate software into the memory. 

 

Use of advanced signal processing techniques – The availability of 

high speed signal processing on board the radio allows implementation of new 

receiver structures and signal processing techniques. 
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Fewer discrete components – A single high-speed processor may be 

able to implement many traditional radio functions reducing the number of 

required components and decreasing the size and cost of radio. 

 

Flexibility to incorporate additional functionality – Software radios 

may be modified in the field to correct unforeseen problems or upgrade the radio. 

The factors that are expected to push a much wider acceptance of 

software radio are the following five: 

 

Multifunctionality – Software radio reconfiguration capability can support 

an almost infinite variety of service capabilities in a system. 

 

Global mobility – The ability of the software radio to operate with all the 

communication standards in different geographical regions of the world. 

 

Compactness and power efficiency – The software radio approach 

results in a compact and, in some cases, a power-efficient design as the number 

of systems increases.  

 

Ease of manufacture – In general, digitization of the signal early in the 

receiver chain can result in a design that incorporates significantly fewer parts, 

meaning a reduced inventory for the manufacturer. 

 

Ease of upgrades – As new devices are integrated into existing 

infrastructures, software radio allows the new devices to interface seamlessly, 

from the air-interface all the way to the application, with the legacy network. 

 

Software radios derive their benefits from their flexibility, complete and 

easy reconfigurability, and scalability. It is important to ensure that these 

characteristics are present in the final product. A generic design procedure for 

software radios follows and demonstrates the interaction between the various 
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subsystems of the radio design.  The following steps focus on the details of these 

design procedures. 

 

Step 1:  Systems engineering – Understanding the constraints and 

requirements of the communication link and the network protocol allows the 

allocation of sufficient resources to establish the service given the system’s 

constraints and requirements.  In an ideal software radio with the ability to 

change a number of system parameters in real-time, optimizing an active 

communications session is a major challenge. 

 

Step 2:  RF chain planning – The ideal RF chain for the software radio 

should incorporate simultaneous flexibility in selection of power gain, bandwidth, 

center frequency, sensitivity, and dynamic range.  However, achieving strict 

flexibility is impractical and trade-offs must be made. 

 

Step 3:  Analog-to-digital and digital-to-analog conversion selection 

– Analog-to-digital and digital-to-analog conversion for the ideal software radio is 

difficult to achieve and, in practice, the selection requires trading power 

consumption, dynamic range, and bandwidth (sample rate).  Analog-to-digital 

conversion selection and vice versa is closely tied to the RF requirements for 

dynamic range and frequency translation. 

 

Step 4:  Software architecture selection - The software architecture is 

an important consideration to ensure maintainability, expandability, compatibility, 

and scalability for the software radio.  Ideally, the architecture should allow for 

the hardware independence through the appropriate use of middleware, which 

serves as an interface between applications-oriented software and the hardware 

layer.  The software needs to be aware of the capabilities of the hardware (both 

DSP and RF hardware) at both ends of the communications link to ensure 

compatibility and to make maximum use of the hardware resources.   
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Step 5:  Digital signal processing hardware architecture selection - 

The core digital signal processing hardware can be implemented through 

microprocessors, FP-Gas, and/or ASICs.  The selection of the core computing 

elements depends on the algorithms and their computational and throughput 

requirements.  In practice, a software radio will use all three core computing 

elements, yet the dividing line between the implementation choices for a specific 

function depends on the particular application being supported. 

 

Step 6:  Radio validation - This step is perhaps the most difficult.  It is 

essential to ensure not only that the communicating units operate correctly, but 

also that a glitch does not cause system-level failures.  Interference caused by a 

software radio mobile unit to adjacent bands is an example of how a software 

radio could cause a system-level failure, and this is of great concern to 

government regulators.  Given the many variable parameters for the software 

radio and the desire for an open and varied source of software modules, it is very 

difficult to ensure a fail-proof system. 

 

C.  ABOUT THIS THESIS 
 

The objective of this thesis is to exploit the potential (and the performance) 

of implementing a software defined radio using standard PC-type computers. 

Lately, the advances in semiconductor technology have boosted the performance 

of computers, increasing the processors clock rates to the order of several GHz, 

while all the critical links needed in order to achieve fast and reliable data 

transfers (memory, hard disks, I/O buses etc) are now much more optimized and 

faster than some years ago. Moreover, the internal architecture of the newest 

generation of processors (like Pentium 4 at 3.06 GHz) make them ideal for multi 

threaded applications, which is a key fact in designing multi-channel applications 

for the SDR platform. 
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The above facts have made us consider quite feasible the implementation 

of a SDR datalink using dedicated hardware hosted in a commercial PC, with all 

its functionality programmed in a high level programming language. In order to 

achieve the above goal, we used two WaveRunner 253 SDR transceivers, 

produced by Red-River Inc, Richardson TX. The main characteristics of the 

above cards are: 

• Total transmission/reception bandwidth: 3 – 40 MHz. 

• Up to 8 fully configurable and programmable transmission/reception 

channels of up to 3.5 Mbps data rate. 

• Possibility to combine individual channels in polyphase filters 

implementations 

• Standard PCI form factor, supporting 32- and 64-bit PCI buses 

 

All the programming was done using Microsoft Visual C++ V.7, which is a 

part of the Microsoft Visual Studio NET programming suite. The channels were 

configured using a dedicated configuration tool, provided by the manufacturer. 

 

It is the implementation of this effort that this thesis will try to depict. In 

order to introduce the reader to the theory behind the implementation and make 

him understand the steps of our effort, the next chapters of this thesis cover the 

following material: 

 

Chapter II covers briefly all the theory required to understand the 

functionality of a SDR transceiver. The subjects that are covered include digital 

signal synthesis, multirate digital signal processing, analog-to-digital and digital-

to-analog conversion features and software requirements and specifications. 

Other subjects such as smart antenna design for SDR, the role of a SDR as an 

integral part of a radio network and the systems engineering approach to the 

SDR design, are far beyond the scope of this thesis and will not be covered. 
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Chapter III presents the architecture of the hardware that was used. The 

data paths of the transmitter and the receiver are briefly described. More 

attention is given to the Digital Up Conversion (DUC) and the Digital Down 

Conversion (DDC) chips which are the “heart” of the devices and their operation 

ensures the correct functionality of the transceivers. Also, the method of data 

exchange between the host computer and the card buffer memory is explained. 

This operation is quite significant, since it was the main focus of our 

programming efforts described in the next chapter.  

 

Chapter IV is divided in 2 parts: The first part will portray the configuration 

of the individual channels, using the dedicated configuration tool. The second 

part explains the structure of our program, the main entities, the methods of 

achieving specific results on the cards and the methods of interaction between 

the several threads of the application, depending on the number of active 

transmission – reception channels. The programming of hardware is a very 

elaborate process, with hidden dangers in every step of it, which sometimes 

cannot be easily identified. Also, a thorough knowledge of the hardware 

functionality is required, since sometimes the most unpredictable things can 

happen by setting even one inappropriate value in a register. 

 

Chapter V outlines the results of our effort. Although the nature of this 

thesis is not inherently theoretical, we dare say that according to our knowledge it 

is the first time that a radio link has been implemented on campus using standard 

commercial “office” computers and a high level commercial language. So, it will 

be quite interesting to discover the potential of this system. 

 

The sixth and final chapter presents the conclusions and the areas for 

further research. The potential and capabilities of the hardware we used are 

indeed very large. Given the time restrictions of this thesis, only a small part of 

these capabilities has been exploited. We just proved that this system can be 

built and that it has an acceptable performance. The real magic of this platform 
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lies on the flexible and adaptive use of its resources: optimum usage of the 

available spectrum and automatic reconfigurability are only some of its potentials.  

 

Last but not least, it is the author’ s opinion that the control of hardware 

functionality through software is one of the most interesting things that an 

electrical engineer can do today. It requires a lot of skills and knowledge in many 

different areas such as software design, communications and signal processing. 

It is only the successful “marriage” of these skills that will lead to successful 

results. The effort of the last months and the pleasure of looking at the results of 

the several trials have given the author the kind of pleasure that only those who 

face electrical engineering in general and communications more specifically, not 

only as a profession, but also as a hobby, can understand. 
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II: THEORY REVIEW 

A.  INTRODUCTION 
 

The architecture of the software radio receiver is quite different from the 

classical receiver architectures, with the heterodyne receiver being the most 

dominant one. 

 

The thorough understanding of the principles of operation of a software 

radio platform requires good knowledge of several technical fields. A 

representative but not exhausting list of these fields is:  

• The conversion of the signal from the analog to the digital domain has 

moved just before (for the transmitter), or just after (for the receiver) 

the RF frontend, creating new requirements for faster digital-to-analog 

or analog-to-digital converters, operating at higher frequencies with 

acceptable resolution. 

• All the treatment of the signal, such as channelization or up and down 

conversion, is done in the digital domain using the principles of 

multirate signal processing. However, some or all of the filters used 

must also satisfy requirements from the communications field (such as 

the Nyquist property). 

• The signals required to feed digital mixers in order to generate useful 

waveforms are generated entirely in the digital domain as well. There 

are several methods to do that, each with its advantages and 

disadvantages. 

• Finally, the software that is used to program the functionality of the 

platform, must posses certain properties in terms of robustness, 

performance and ability to control the hardware. 

 



12 

The purpose of this chapter is not to analyze exhaustively but rather to 

highlight the above aspects and provide a brief description of the underlying 

principles.  

 

B. RADIO RECEIVER TOPOLOGIES 
 
The Tuned Radio Frequency (TRF) receiver, shown in Figure 2-1, 

consists of an antenna connected to an RF bandpass filter (BPF).  The BPF 

selects the signal and the low-noise amplifier (LNA) with the automatic gain 

control (AGC) raises the signal level for compatibility with the analog-to-digital 

converter (ADC). This BPF bandwidth relative to the carrier frequency can be 

quite narrow, while in absolute bandwidth, it may be quite broad. 

 
Figure 2-1. TRF Digital Signal Processing Receiver (From Ref. 4). 

 

 The primary difficulty in creating a practical TRF receiver is the limitation 

of the ADC, which must handle high-frequency signals. In addition, given the 

bandwidth and roll-off limitations of the RF filter, the sampling rate of the ADC 

must be very high to avoid significant aliasing. High power consumption is 

inevitable with high sampling rate conversion. Achieving this sampling 

characteristic is difficult, expensive, and power-intensive, and extreme demands 

are made of the tunable RF filter to remove interference signals that consume the 

dynamic range of the ADC.  Non-idealities of the ADC, such as jitter and finite 

aperture size, lead to distortion of the signal. The AGC must adjust its gain to 

accommodate varying signal levels to utilize the full range of the ADC without 
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overloading it. However, the especially high gain required for a single-stage AGC 

in this application may be difficult to control.  Nevertheless, the advantage of this 

approach is the minimal number of analog parts required.  

 

A very popular topology for low-power applications is the single 

conversion receiver (also known as homodyne, direct conversion, or zero IF 

receiver). This receiver architecture is shown in Figure 2-2. After signal filtering, 

amplification and gain control, a single mixing stage converts the signal to 

baseband or near baseband coherently (Figure 2-2a) or incoherently (Figure 2-

2b).  

 
Figure 2-2.  Single Conversion Homodyne Receiver for (a) coherent and (b) non 

coherent reception (From Ref. 4). 
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In the case of a phase or frequency modulated signal, I and Q 

downconversion is required since the upper and lower sidebands of these signals 

contain different information and the sidebands would overlap for a real 

downconversion.  Mixers tend to have high power consumption and, since only 

one mixer stage (possibly I and Q) is used in the single conversion receiver, the 

receiver potentially offers good power consumption characteristics.  Typically, 

improved power consumption at the mixer can be traded for dynamic range. 

 

In some cases, rather than directly downconverting the signal to 

baseband, it may be more convenient to downconvert to some low intermediate 

frequency at which the signal may be digitized and downconverted by 

subsequent digital signal processing operations.  A more complex LPF with 

better roll-off characteristics can help reduce out-of-band interference and thus 

lessen the dynamic range requirement of the ADC, but it could also allow more 

noise to enter the system (less sensitivity), resulting in non-linear distortion 

products from the filter. 

 

The most common RF front-end for radios is the heterodyne receiver.  

This receiver, shown in Figure 2-3, is commonly used in analog radios. A 

heterodyne receiver works by frequency translating the incoming signal to an IF 

that is fixed and independent of the desired signal’s center frequency.  When this 

IF frequency is lower than the center frequency of the received signal’s carrier 

frequency and higher than the bandwidth of the desired signal, the receiver is 

called a superheterodyne receiver. The desired signal is now frequency- 

translated to a fixed IF can be more easily filtered, amplified, and demodulated.  

Plenty of good quality RF components are available for standard IF frequencies.  

Often a superheterodyne receiver involves using two stages of downconversion.  

Such a dual-conversion receiver has the advantage of relaxed filtering 

requirements.  Because the filtering occurs in stages, the filtering requirements at 

each stage can be more relaxed than in a single-conversion receiver.  That is, by 

lowering the center frequency of the signal using the first stage of 
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downconversion, the filter quality factor can also be relaxed because the ratio of 

center frequency to filter bandwidth is reduced. 

 
Figure 2-3.  (a) Heterodyne Receiver. (b) Dual conversion Superheterodyne 

Receiver. (From Ref. 4). 

   

At each mixer stage, not only is the signal downconverted, but also a 

portion of the band at ωI, the image frequency, is upconverted, which places it on 

top of the frequency translated desired signal. This problem is illustrated in 

Figure 2-4. For instance, a 68-MHz LO (ωLO) will downconvert the desired signal 

by 68 MHz , but the adjacent band, located 136 MHz below the desire signal, will 

be upconverted to the same frequency range (ωIF, the intermediate frequency) in 

which the desired signal now lies. To mitigate this self-induced interference, an 

image filter precedes the mixer to suppress the low-frequency band that might 

interfere with the desired signal after the mixing operation.  Designing the image 

filter becomes especially challenging if the band of potential interference is 

heavily occupied with high-power signals. In general, trade-offs exist in the 

selection of the IF frequency, the image filter, and the post-mixer filter. 
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Figure 2-4. The heterodyne receivers image frequency problem (From Ref. 4). 

 

The TRF receiver is better suited for a software radio that supports 

multiple air-interface modes and multiple bands than the single conversion 

receiver and particularly better than the heterodyne receiver because the filter 

requirements for the IF stages make it difficult to support the multiple bandwidths 

that might be required of a multimode receiver.  Retuning a receiver can result in 

a complex interaction of multiple components comprising the RF chain. The 

simpler the RF chain, the more predictable its response will be after retuning.  

The choice of a single or double conversion receiver depends on a number of 

factors including channel spacing, frequency plan, spurious response, and total 

gain.  In general, the smaller the channel spacing, the more attractive the double 

conversion receiver becomes because of its ability to narrowly filter the desired 

signal. 
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C. MULTIRATE SIGNAL PROCESSING 
 

 The conversion of a data stream’s sample rate is an important part 

of digital signal processing. A data stream can be downsampled to a lower 

sampling rate or upsampled to a higher sampling rate, with the processes known 

as decimation and interpolation. Often, a non-integer data rate conversion is 

required and this conversion must be performed in one or multiple stages. These 

processes are the subject of the following paragraphs. 

 

1. Decimation  
 

Decimation is the process by which high-frequency information is 

eliminated from a signal to reduce the sampling frequency without resulting in 

aliasing.  A sampled signal repeats its spectrum every 2π radians/sec.  If 

decimation without filtering were performed, aliasing would occur (Figure 2-5). 

 
Figure 2-5. Aliased spectrum of an improperly decimated signal. (From Ref. 4). 

 
A block diagram of the decimation process is shown in Figure 2-6, where 

the operation is composed of lowpass filtering followed by downsampling.  The 

downsampler picks a subset of the samples that are passed through the lowpass 
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filter (LPF).  The LPF used is designed to avoid aliasing and has a cutoff of π D , 

the point that allows the non-aliased part of the signal to pass. The end result of 

the decimation procedure is the content of the original signal below π D , but it is 

sampled at a lower rate. Figure 2-7 shows the expected spectrum of the 

decimated signal. 

 

 
Figure 2-6. Signal decimation by a factor of D. (From Ref. 4). 

 
Figure 2-7. Expected spectrum of a decimated signal (From Ref. 4). 

 

The frequency domain representation of the decimated signal is given by 

the following equation: 

   ( )  =  
 

1 y
y

ωωY X
D D

  ≤yω π .     (2.1) 

Decimation filters out the information in the original signal above π D  

(with respect to the original sample rate).   A lowpass direct mapping is possible 

from yω  to χω  and vice versa; this relationship is best described as the spectrum 

spanned by ( ) ≤ ≤,0χ χωX ω π D , is also spanned by ( )yωY , ≤ ≤0 yω π . 
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2. Zero-Insertion Interpolation 
 
Upsampling is the process to increase the number of points per unit time 

used to describe a signal.  When upsampling is employed, no new information is 

added to the signal.  The process of upsampling decreases the time between 

samples of a signal.  This process can be used for matching sampling rates 

between two systems or as the last step before the digital-to-analog converter 

(DAC)  to help relax the requirements for the reconstruction filter. 

 

In zero – insertion interpolation, zeros are inserted between samples of a 

signal, generating a new one.  This new one, is then lowpass filtered, yielding an 

upsampled version of the original (Figure 2-8). 

 
Figure 2-8. Signal interpolation by a factor of 5. (From Ref. 4). 

 
The equation that describes the above procedure is the following: 

( )( )
1

yω yV X ω I
I

=  .       (2.2) 

Note that the 1 I  factor is included to model the reduction in power (in the 

normalized scale) resulting from inserting 1I −  zeros. The above equation shows 

a contraction of the spectrum; a copy of the spectrum of the original signal is 

generated every 2π I  radians/sec instead of every 2π . 
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3. Zero-Insertion and Raised-Cosine 
 
To minimize inter-symbol interference (ISI), pulse shaping is important. In 

order to achieve this, a Nyquist filter, such as a raised-cosine pulse shaping filter, 

can be used. For example, if the upsampling of a pulse code modulation (PCM) 

signal is to be performed at the transmitter, the upsampling and raised-cosine 

filtering can be combined to simplify the overall design. 

 

This implementation is performed by using the zero-insertion interpolation 

method described earlier but with a raised-cosine filter combined with the 

lowpass interpolation filter as shown in Figure 2-9.  

 
Figure 2-9. Combined upsampling and Raised-Cosine filtering. (From Ref. 4). 

 
4. Non-Integer-Rate Conversion 
 
Non-integer-rate conversions are achievable through the use of cascaded 

interpolations/decimations such that a total rate change of I D  is achieved.  

 
Figure 2-10 shows a block diagram of the implementation of a non-

integer-rate conversion. After interpolation by a factor of I, the signal is filtered by 

a LPF having a cutoff frequency of π D  and subsequently it is decimated by a 

factor of D. So, the overall rate conversion is I/D. 
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Figure 2-10. Non-integer datarate conversion (From Ref. 3). 

 

The following equation describes the above procedure mathematically: 

 

  ( )y y
I IY ω X ω
D D

  =   
  

  min ,y
π πω
I D

 ≤  
 

 .     (2.3) 

 

5. Sampling Rate Conversion by Stages 
 
The decimator and interpolator discussed so far are of a single-stage 

structure.  When large changes in sampling rate are required, multiple stages of 

sample rate conversion are found to be more computationally efficient. Most 

practical systems employ a multi-stage structure, resulting in a considerable 

relaxation in the specifications of anti-aliasing (decimation) or anti-imaging  

(interpolation) filters in each stage compared to a single stage realization. 

 

The decimation in Figure 2-11 can be realized in three stages if the decimation 

factor D  can be expressed as a product of three integers: 1D , 2D  and 3D .  

Referring to Figure 2-11, in the first stage, the signal ( )x n  is decimated by a 

factor of 1 15D = .  The output is further decimated by 2 3D =  in the second stage 

and the output of the second stage is decimated by a factor 3 2D =  in the third 

stage, resulting in an overall decimation of ( )x n  by ( )1 2 3D D D D= =  

15 3 2 90× × = .  The filters ( )1H z  and ( )2H z  are so designed that the aliasing in 

the band of interest is below a prescribed level and that the overall passband and 



22 

stopband tolerances are met. The filter of the final stage ( )3H z  may be quite 

sharp, but its sampling rate is much lower than the original one, reducing 

significantly the overall computational burden. This multi-stage sampling rate 

conversion system requires less computation and offers more flexibility in filter 

design. 

 
Figure 2-11. Decimation realized in 3 stages (From Ref. 3). 

 

6. Cascaded Integrator Comb Filters 
 
In software radio systems, sample rate changes can be very large, with 

changes from many tens to MHz to around 100 kHz being common. Of course, 

such a requirement leads to large order and high-rate digital filters, which can 

easily become a bottleneck in the overall system design.  A cascaded integrator 

comb (CIC) filter can be used to reduce the computational demands.  A CIC filter 

is what the name indicates: a cascade of simple integrators (accumulators) and a 

cascade of comb filters (delay and subtract from current sample).  The CIC filter 

can implement an interpolation or decimation filter that uses only delay and add 

operations and thus is well-suited for FPGA and ASIC implementation.  

Furthermore, the same basic filter structure can be used to handle variable 

sample rate conversion. 

 

The CIC implementation of a decimation filter is the cascade of an integrator 

stage, a decimation procedure, and a comb stage as shown in Figure 2-12.  To 

analyze the CIC filter’s response, combining the integrator and comb stages into 

a single transfer function is important to reduce the complexity of the analysis.  

However, to reduce the computational expense of the operation, the 
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implementation of the filter is performed in two separate sections, before and 

after the decimation. 

 
Figure 2-12. A CIC decimation filter (From Ref. 4). 

 

The frequency response (with respect to the higher input sample rate) is: 

   ( )

Ν

sin
2

sin
2

ωRM

H ω
ω

  
    =
  
    

 ,       (2.4) 

where: 

 

N is the number integrator and comb stages, 

M is the differential delay of each comb stage, 

R is the decimation rate and 

ω is the higher input frequency. 

 

By letting ω ω R′ = , the frequency response with respect to the 

decimated sample rate is found to be: 

   ( )

Ν
/ 2sin

2

sin
2

πMω

H ω
πω

R

′ 
 
 ′ =

′ 
 
 

 .       (2.5) 

 

As an example, the frequency response of that equation is plotted in 

Figure 2-13 for 4N = , 1M = , 7R =  for a cutoff frequency 1 8cf = .  The input 

sample rate is 7 and the output sample rate is 1. 
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Note that above a normalized frequency of 1, the transfer function will fold 

and we will have aliasing, but its magnitude will be less than 50 dB down from its 

maximum value. Moreover, since the CIC filter will most probably be followed by 

a decimation stage with a FIR filter with a cutoff frequency of π D  (where D is 

the decimation rate), the aliasing in the useful portion of the spectrum will be 

even less. 

 
Figure 2-13. Frequency response of a CIC filter. 

 

7. Polyphase Decimation and interpolation 
 
The decimation and interpolation procedures can be also implemented by 

the polyphase filters (Figures 2-14 and 2-15). In this implementation, the 

decimation or interpolation procedure is decomposed into a sum of D (or I) 

parallel filtering stages. In the decimation process the filters pk(m) are formed by 

decimating x(m+k) by a factor of D. In the interpolation process, each of the I 

stages contributes a sample at the output. 
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Figure 2.14. General structure of a Polyphase Decimator (From Ref. 4). 

 
Figure 2.15. General structure of a polyphase interpolator (From Ref. 4). 
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With the use of the polyphase filters, the filtering occurs always at the 

lowest frequency, thus reducing the computation burden significantly. 

 

Polyphase implementation of the decimation process of the reception 

channels constitutes a characteristic of the hardware we are going to use. 

However, since we will not deal with it extensively, we mention it here just for 

reference. 

 

D. DIGITAL GENERATION OF SIGNALS 
 

The synthesis of waveforms, especially sinusoidal signals, is an important 

part of a communication system.  Sinusoidal signals are typically used in many of 

the processing steps, such as modulation, pulse-shaping, and filtering.   

 

Analog techniques have long dominated frequency synthesis. Analog 

frequency techniques are based on bulky analog devices such as quartz crystals, 

inductors, capacitors, and mechanical resonators. Digital techniques began to 

gain prominence in communication systems because of their superior accuracy 

and immunity to noise and because they are easy to manufacture with very large 

scale integration (VLSI). Direct digital synthesis (DDS) techniques generate 

signals directly in discrete time. Any arbitrary waveform can be generated for 

digital communication systems, as the amplitude, frequency, and phase can be 

varied to create a modulated signal. 

 

Direct digital synthesizers allow the implementation of digital modulation 

techniques, after which the signals can be converted to analog signals for 

transmission. Amplitude modulation (AM) can be created by multiplying the 

sinusoidal output of the ROM with the modulating signal before passing it through 

the DAC. Phase modulation (PM) is created by changing the instantaneous 

phase angle, i.e., by using the modulating signal to alter the input to the ROM 

(phase). Frequency modulation (FM) is created by varying the instantaneous 
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frequency, and this is accomplished by using the modulating signal to increment 

the phase. 

 

1. Comparison of Direct Digital Synthesis with Analog Signal 
Synthesis 

 
The digital nature of DDS makes it possible to set the frequency of the 

output wave-form more precisely than analog techniques.  In analog systems, the 

frequency is controlled with analog components, resulting in poor stability due to 

drift in the components, poor frequency resolution due to limitation in analog 

dials, and difficulty with digitally controlled tuning. Furthermore, analog signal 

generators stray in frequency over time. Changes in temperature, humidity, and 

other variables can affect the output of the analog oscillator. The instrument’s 

overall accuracy varies with time and from one unit to the next. Precise 

generation of signals leads to the feasibility of very close channel spacing, which 

is very significant for narrowband modulation formats. Analog systems are 

generally limited to less demanding applications in which tight frequency control 

and accuracy are not crucial.  Fine frequency steps are achieved easily with a 

DDS because relatively small increases in circuit complexity can add a decade of 

additional resolution. Most of today’s DDS designs provide step sizes finer than 1 

Hz and many can achieve 1 mHz or smaller. 

 

A summary of the advantages and disadvantages of the DDS is presented 

in the table 2-1. 

 

2. Approaches to Direct Digital Synthesis 
 

There are two basic approaches for generating signals directly from digital 

hardware. The first is commonly referred to as the ROM Look Up Table 

approach, which can also be used to generate sinusoidal signals.  The sampled 

values of the sine waveform are stored in ROM and are output periodically 
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through a DAC to generate the output waveform. The second approach, pulse 

output DDS, uses a phase accumulator to obtain a series of periodic pulses (or a 

rectangular or sawtooth waveform) from which other waveforms can be created. 

Table 2-1. Comparison of Direct Digital Synthesis with Analog Signal Synthesis 

 

3. Pulse Output Direct Digital Synthesis 
 
 One of the simplest forms of a DDS system is a pulse output DDS (PO 

DDS) system.  This DDS approach generates pulse, sawtooth, or rectangular 

waveforms.  Other waveforms can be created from these basic waveforms.  The 

Property Advantages Disadvantages 
Precision • Possible to set frequency 

accurately 
• Can achieve very high 

resolutions (<1mHz) 

 

Flexibility • Very easy to change the 
parameters 

 

Ease of 
Implementation 

• VLSI implementations are 
inexpensive and readily 
available 

 

Switching 
Frequency 

• Possible to have very high 
switching speeds, within 1µs 

• Output is smooth and transient 
free during frequency change 

• Possible to have continuous 
phase during frequency 
switching 

 

Size of the 
Equipment 

• Can be implemented at a 
fraction of the size of a similar 
analog synthesizer 

• Techniques for reducing 
spurious signals, e.g., hybrid 
DDS-PLLs, can increase the 
size of the system 

Bandwidth • Can be varied by changing the 
clock speed 

• Bandwidth can be increased by 
using a DDS-driven PLL 

• Output frequency limited by 
the Nyquist frequency to half 
the DDS clock rate (Fclk/2) 

• In practice, limited to Fclk/4 
Spectral Purity • Possible to get very high quality 

of signals when the size of the 
accumulator is an integral 
multiple of the step size and 
there is no phase truncation 

• Lots of spurious signals 
when there is phase 
truncation or other jitter 

• Need to use special 
techniques to reduce 
spurious responses, e.g., 
ROM compression, hybrid 
DDS-PLL, or randomization 
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idea is to create the rectangular waveform by cycling through an accumulator as 

a way to create an adjustable pulse frequency from a stable high-frequency 

driving clock. PO DDS consists of an N bit adder and register to form an 

accumulator.  A frequency word ∆r, is added to the accumulator once every clock 

period, clkT .  Figure 2-16 shows a PO DDS.   

 
Figure 2-16. Pulse Output Direct Digital Synthesis (From Ref. 4). 

 

The output of the accumulator, ( )S n  at time n , is given by 

( ) ( )( )1 ∆ mod2N
rS n S n= − +  and is performed in modulo 2N  arithmetic.  The 

accumulator will overflow, and the counter resets on average once every 

2 /∆N
r clock periods.  The average frequency for which the counter is reset is  

∆
2

r
out clkNF F= .        (2.6) 

The output of this synthesizer could be the carry output of the accumulator 

for a pulse output or the most significant bit (MSB) of the accumulator to 

represent the approximate square wave output, or ( )S n , for a sawtooth 

waveform. 
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4. Rom Look-Up Table Approach 
 
The ROM LUT approach uses sampled values of a periodic function 

stored in a ROM.  Every clock cycle, a value of the periodic function stored in the 

ROM is output through a DAC to generate the synthesized signal.  The output 

from the DAC, however, is a distorted analog signal due to the sample and hold 

nature of the waveform.  Therefore, the signal obtained at the output of the DAC 

is passed through LPFs and amplifiers to obtain the final analog waveform.  

Sometimes it is advantageous to perform digital filtering before the digital-to-

analog conversion to compensate for the distortion of the non-ideal analog filters. 

 

DDS-based function generators are based on a single crystal oscillator, 

which generates a reference clock frequency.  The structure of a DDS system 

using a ROM LUT is shown in Figure 2-17.  Τhe adder and register function as 

an accumulator and increment the output value by ∆r  at each clock cycle. For 

example, if the first adder output is zero and the phase increment ∆r  is 17, then 

the second output would be 17, the third would be 34, the fourth 51, etc. 

 
Figure 2-17. ROM LUT Direct Digital Synthesis (From Ref. 4). 

 

The output of the accumulator takes the form of an address used by a 

ROM LUT that contains the waveform samples. The number of clock cycles 

needed to step through the entire ROM LUT defines the time period of the 
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waveform.  The waveform period is determined by ∆r . The LUT holds the digital 

representation of the desired waveform, which is made up of digital words that 

define the amplitude of the waveform as a function of phase. The address 

generated by the adder represents the phase value of the waveform. 

 

The address generator sequentially reads the table of digital values out of 

the memory and passes them to a DAC to generate the output waveform. The 

DAC changes each of these digital words into an analog voltage, which is fed 

through filters to reduce the distortion and amplifiers to produce an analog signal.  

The period of the output waveform is based on the phase increment value ∆r  

and the frequency of the clock signal clkF . 

 

5.  Performance Assessment of the DDS Systems 
 

The major drawbacks of a DDS system are spectral purity and sideband 

noise. The sources of spurious signals are amplitude and phase truncation due 

to the limited number of bits used for their representation, as well as DAC non-

linearities. Several methods are used to mitigate these problems, such as the 

randomization (Ref. 4). A block diagram of the Wheatley’s procedure is shown in 

Figure 2-18. 

 
Figure 2-18. Wheatley’s procedure (From Ref. 4). 
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 The method consists of adding a sequence of random numbers to the 

contents of the accumulator in a prescribed manner, in order to convert the 

discrete harmonic signals into a continuous noise floor, whose level is much 

lower than that of the harmonic signal. Figure 2-19 shows the spectrum of a 

DDS, before and after the Whealtey method has been applied. 

  

Figure 2-19.  DDS spectrum before and after the application of Wheatley’s 

method (From Ref. 4). 

 

E. ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION 
 
The digital-to-qnalog converters (DAC) and the analog-to-digital 

converters (ADC) constitute in many instances the determining factor for the 

performance of the software radio, since they impact the power consumption, 

dynamic range, bandwidth and total cost. 

 

Ideally, the data conversion should take place immediately after the 

antenna in the receiver chain. The RF signal should be sampled and all the 

downconversion procedure should be carried out entirely in the digital domain. 
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However, this process would place some extreme constrains on the data 

converter. It would need: 

 

• Very high sampling rate, in order to support wide signal bandwidths 

• A large number of quantization bits, in order to support a high dynamic 

range. 

• A large operating bandwidth (in the order of hundreds of MHz or even 

some GHz) to accommodate a greatly varying range of signal frequencies. 

• A large spurious-free dynamic range to allow the recovery of small-scale 

signals in the presence of strong interferers. 

• Small power consumption, while simultaneously meeting all the above 

criteria. 

 

Unfortunately, the current capabilities of the available technology do not 

make it possible to fabricate converters meeting the above specifications. So, an 

RF frontend is included after the antenna, at which the signal is downconverted 

to an appropriate IF frequency and data conversion takes place at that frequency 

 
 

F. CHOICE OF THE APPROPRIATE HARDWARE 
 

The choice of the hardware composition of a software radio is a key step 

in its design. This choice is dictated by the requirements in four main areas: 

flexibility, modularity, scalability and performance. 

 

There are three main categories of digital hardware available: Digital 

Signal Processors (DSP), Field Programmable Gate Arrays (FPGA) and 

Application Specific Integrated Circuits (ASIC). Each of them exhibits a certain 

level of reprogrammability, that is, an ability to change the device software. 
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1. Digital Signal Processors (DSP) 
 

A DSP is designed to support high-performance, repetitive, numerically, 

intensive tasks and very high I/O performance. DSPs are designed to include 

special functional units in the hardware as well as special instructions in the 

microcode.  Some DSPs provide for several accesses to memory in a single 

cycle.  Program flow control features speed up the execution of common DSP 

tasks like FFT or Viterbi decoding.  Large accumulators in DSPs help reduce 

precison problems.  Certain DSPs are also optimized for specific applications like 

wireline communications, wireless communications, or general control 

applications. 

 

2. Field Programmable Gate Arrays (FPGA) 
 

The FPGA was introduced in the mid-1980s as a device to process digital 

logic. FPGAs were designed for multilevel circuits, which means they could 

handle complex circuits on a single chip. Since FPGAs were prefabricated, they 

were quicker to use and less expensive. The volatility of SRAM makes the FPGA 

attractive for digital systems. FPGAs are now used in various configurations, as 

in multimode and reconfigurable systems, and are very useful in meeting the 

needs of a software radio system. 

 

Like programmable logic devices (PLDs), FPGAs are also completely 

prefabricated, but they are optimized for multilevel circuits rather than two-level 

logic and contain special features for customization. These properties allow them 

to handle much more complex circuits on a single chip but often sacrifice the 

predictable delays of a PLD. Several kinds of FPGAs exist, such as SRAM cells, 

erasable programmable read-only memory (EPROM), electrically-erasable 

programmable read-only memory (EEPROM), or anti-fuses.   
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3. Implementing DSP Functions in FPGAs 
 

There are two ways of implementing DSP functions on an FPGA, bit serial 

and bit parallel distributed arithmetic. Both methods are scalable, which allows 

the designer to optimize the design for performance and density. Bit serial 

distributed arithmetic is an implementation technique that processes parallel data 

flow structures bit sequentially, thereby allowing multiple functions to performed 

simultaneously.  For example, when implementing a sixteen–tap FIR filter, all 

sixteen data samples are multiplied in parallel in a bit serial process.  Bit parallel 

distributed arithmetic is a similar technique but with multiple bits being processed 

in parallel, allowing the overall performance of the design implementation to 

scale proportionately to required resources. At high-performance levels, e.g., 

thirty to seventy million samples per second (MSPS), the FPGAs can be 

partitioned to perform all operations in parallel, minimizing the number of clock 

cycles required to perform a function.  At lower-performance levels, e.g., one to 

ten MSPS, bit-sequential operations allow more efficient resource use. 

 

To better understand the performance and cost benefits using FPGA 

devices, consider the design of an eight-bit, sixteen-tap FIR filter.  Most 

programmable DSPs can perform a memory access control (MAC) function in 

one clock cycle.  Therefore, implementing the FIR filter in a 66-MHz DSP would 

yield a theoretical maximum saple rate of 66 MHz/16 taps = 4.125 MSPS, 

excluding memory overhead operations. In contrast with a FPGA-based 

implementation, the designer could use bit-serial distributed arithmetic where all 

sixteen taps are processed in parallel.  Using the same 66-MHz clock rate, this 

implementation can process the data at 15 ns per bit; for eight-bit data this 

equates to 8.33 MSPS, twice the sample rate of 66-MHz programmable DSP 

device.  
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4. Using a Combination of DSPs, FPGAs, and ASICs 
 

When system performance demands exceed existing processor capability, 

a number of approaches are used to solve the problem, including custom 

integrated circuits (ASICs), function specific DSP cores, multi-processor 

architectures and reconfigurable architectures. A popular trend is the use of 

DSPs as cores inside ASICs to provide some degree of flexibility to the ASIC. 

Another popular method of boosting the performance of a DSP places multiple 

DSPs in parallel along with a high-speed memory. FPGAs can also be used to 

enhance a given DSP. The parallel paths of an algorithm can be implemented on 

the FPGA while the DSP handles the sequential and other general sections of 

the algorithm. The FPGA can be programmed to perform any number of parallel 

paths. These operational data paths can consist of any combination of simple 

and complex functions, such as adders, barrel shifters, counters comparators, 

correlators and so forth. 

 

G. OBJECT ORIENTED PROGRAMMING (OOP) AND THE SDR 
 

The main principle of the OOP is the existence of objects. Objects are 

autonomous entities with their own functionality and data, which constitute 

distinct instantiations of classes. Classes are prototype entities which define what 

the functionality and data will be. Objects and classes have useful properties 

such as: 

• Inheritance: a derived - or child - class can inherit all the attributes 

and functionality of the parent class and add its own functionality. 

• Polymorphism: the functionality of the parent class can be modified, 

or take alternate forms, in order to serve the specific needs of the 

derived class. 

• Encapsulation: The access to the functionality and data of the class 

can be controlled by the class creator. In this way, enough information 
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can be accessible by the outside programmer in order to take 

advantage of the class functionality, but not adequate enough to 

disturb the normal behavior of the class. 

• Overloading: This feature allows the class to create multiple 

behaviors according to the situation and thus adapt to a variety of 

conditions. 

 
A radio platform can be broken up into discrete objects, each of which 

interacts with other objects in the system. This object oriented way of looking at 

the world can be translated into software and the several programs that control 

the functionality of the platform can be based on discrete objects, each of which 

interacts with other objects and the system through well defined interfaces. 

 

The use of objects will allow the software to mimic, at least in form, the 

layout of a real system. The object-oriented approach, through the use of 

abstract classes, can be used to create a framework from which development 

can be structured and system integration can be simplified. 

 

There are several possible candidate languages which can serve as the 

development platforms for writing the software. Each one has advantages and 

disadvantages. In the following two paragraphs, we will examine two of them, 

C++ and Java. This is due to the wide acceptance of the above languages from 

the programming community, as well as to the extensive features that they offer. 

 

1. C++ 
 

So far, C++ seems as the most suitable language for the development of 

the SDR applications. This is due to several reasons: 

• It is an inherently object oriented programming language. 



38 

• Since it is derived from the classical C language, it has been in use for 

many decades and is widely accepted. 

• It offers the possibility for detailed access and control into the lowest 

level of hardware, thus ensuring fast execution and good 

performance, when the application is time critical (high data rates, 

etc). 

 

A drawback of the language stems from its inherent advantages: In order 

to ensure the fastest possible performance, the overhead and the self control of 

the code is minimal, resulting in errors, many of which appear at run time and are 

quite difficult to debug. Moreover, the freedom that it gives to the programmer, 

has as a counterbalance a relatively complex syntax and complicated rules and 

dependencies between the objects of the application, which sometimes require 

extensive experience from the software developer in order to build large 

comprehensive and easily maintainable applications. 

 

2. Java 
 

Java was created out of an effort of the software community to overcome 

the inherent difficulties of the C++. Although it is a fully object oriented language 

(actually more object oriented than C++; nothing can exist outside a class, unlike 

C++ where global variables and functions are allowed), it has several unique 

features such as: 

• Simplified dependency rules between the different entities of the 

application, which result to much easier software development and 

maintenance. 

• More overhead and checking rules, which avoid common problems of 

the C++ language, such as bounds checking, memory overflows and 

proper objects use. 
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• Platform interoperability. The Java applications are not written with a 

specific platform in mind. The output of the code compilation is a 

binary code which communicates with the specific hardware on which 

it is supposed to run, via Hardware Abstract Layers. The Java 

program is actually interpreted during runtime. 

 

The main disadvantages of the language stem from its features. The 

extensive overhead, procedures such as the garbage collector, which run at 

unpredicted times and for unpredicted time lengths, as well as the slow execution 

rates due to the runtime interpretation of the binary code, raise serious doubts 

about the ability of the language to support the core functions of the platform, 

which are time-critical and require a minimum acceptable performance. 

 

However, although rather inappropriate for the physical and data layers, 

Java could be a good candidate for the application layer. This layer will need to 

deal with constantly changing QoS settings, making the development of the 

applications using a less dynamic language such as C++ very difficult. 

Furthermore, since Java was developed with the Internet in mind, it is designed 

to allow easy adaptation between platforms with different capabilities. 

 

H. MULTITHREADED PROGRAMMING 
 

A typical software radio application will most probably involve multiple 

transmission and reception channels operating simultaneously. The best and 

most reasonable way to achieve the parallel execution of the routines serving 

each one of the channels, especially in a multitasking environment such as 

Windows where precise timing control of the execution of the code is impossible, 

is to use multithreaded programming. 

 

A thread as the word implies, is an autonomous path of code execution. 

Every application is a large thread. Within this master thread, multiple other 
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threads can be launched, all of them running simultaneously (technically 

speaking they run in turns, consuming a bit of the processor time, but to the user 

they seem to run simultaneously) and – most important – sharing the same data 

segment with the launching application. 

 

The 32 bit versions of the Windows operating system support 

multithreaded operation. Moreover, the last generation of the Intel Pentium 4 

processors is specially designed for multithreaded applications. 

 

The problem that multithreaded programming has to solve is how the 

several threads communicate and how they signal events to one another. As we 

shall see in Chapter 4, every time the communication gets active, a master 

thread is launched, which in turn launches one thread per active channel. 

However, how will the master thread know when the channel threads are done 

with their work, in order to proceed further? 

 

The above problem has two solutions: 

a) Through a global variable: The thread that wants to signal the change 

of state, modifies the value of a global variable. The monitoring thread constantly 

reads the value of the variable and when it changes, the thread takes appropriate 

action. Perfect you will say. Well, not exactly. This method has some drawbacks, 

the most important of which is that as the monitoring thread continuously 

monitors the value of the global variable, it consumes unnecessary processor 

cycles, thus slowing the execution of other threads. This bottleneck may limit the 

performance of the application in the case of high data rates. So, in order to 

overcome the problem, inevitably we pass to the second solution which is … 

b) Through events. A window event is a flag which has two states: set and 

reset. When the monitoring procedure has to wait for a signal, it executes the 

order ::WaitForSingleEvent(). By executing this command, it falls in an idle state, 

where it stays in a suspended mode and does not consume any processor time. 

When the signaling event needs to signal a change of state, it sets the 
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appropriate event. This action wakes the monitoring thread, which continues the 

execution of its code. 

 

I.  FROM HERE … 
 

This chapter has outlined several of the technologies used in the design 

and implementation of a software defined radio platform. By now the user has 

acquired a pretty good idea, although not detailed admittedly, about the 

principles of operation of the equipment we are using in this thesis. 

 

Now, it is time to see the actual equipment, have an inside look at its 

capabilities, the aforementioned principles that it incorporates and how we can 

take advantage of them in order to control the hardware for our purposes of 

communication. This is the objective of the next chapter. 
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III: DESCRIPTION OF THE HARDWARE 

A. INTRODUCTION 
 

In the previous chapter we set all the necessary theoretical background 

required to understand the principles of operation of a software radio transceiver. 

Now it is time to see how these principles are applied in practice. In the current 

chapter we will describe the architecture and the characteristics of the hardware 

we are going to use. We will follow the signal flow from the host computer 

memory to the transmitter output and from the receiver input to the host 

computer memory.  We will see how the signal is processed at the several 

stages of the transceiver and how we can intervene and program the desired 

output of this processing. 

 

At the end of this chapter, the reader will be ready to proceed to the next 

chapter, which is actually the description of all the work that has been done 

during this thesis. 

 

B. HARDWARE CHARACTERISTICS 
 

The hardware used for this thesis is the WaveRunner 253 Plus PCI high 

performance programmable transceiver, manufactured by Red River, Richardson 

TX. Its main characteristics are: 

• Industry Standard PCI Form Factor 

• 40 MHz Analog I/O Bandwidth (0 to 40 MHz) 

• 8.6 MHz Maximum Signal Bandwidth 

• Up to 8 Transmit and Receive Channels 

• Up to 90 dB Linear Dynamic Range 

• PCI Bus Master With Auto DMA Feature 
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• 32/64-bit and 33/66 MHz PCI Support 

• Windows / Linux Drivers 

 

A picture of the transceiver is shown in Figure 3-1. A detailed block 

diagram of the device is shown in Figure 3-2. 

 
Figure 3-1. WaveRunner 253 PCI programmable SDR transceiver (From Ref. 7). 

 
Figure 3-2. WaveRunner 253 Plus detailed block diagram (From Ref. 7). 
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The device consists primarily of 3 sections: 

• The transmitter section 

• The receiver section 

• The memory controller section 

 

The function of each one of the above sections will be described 

analytically in the following sections. 

 

 

C. TRANSMITTER DATAPATH 
 

The transmitter is comprised of four elements:  

• The Transmitter Data Buffer  

• Two Dual Quad Programmable Digital Upconverters (QPUC)  

• One D/A Converter  

• The Transmitter Front-End  

 

A diagram of the transmitter datapath is shown in Figure 3-3. Detailed 

description of the above elements follows. 

 
Figure 3-3. WaveRunner 253 Plus Transmitter datapath (From Ref. 7). 
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1. Transmitter Data Buffer  
 

The transmitter has a dedicated 256-kbyte buffer capable of storing 64 

ksamples of complex data (16-bit I, 16-bit Q). The buffer acts as a first-in, first-out 

(FIFO) to perform data rate translation between the PCI bus and the QPUC 

inputs. The buffer operates as a multi-queue FIFO that can be organized into a 

variety of configurations from a single large queue occupying all 256 kbytes to 

eight smaller queues of varying size. This flexibility provides the user ultimate 

control over data flow and can be used to tailor the memory to different channel 

rates and bandwidths.  

 

2. Dual Quad Programmable Upconverter (QPUC)  
 

Two Intersil ISL5217 QPUC chips are used to convert digital baseband 

data into modulated or frequency translated digital samples. The QPUC can be 

configured to create any quadrature amplitude shift-keyed (QASK) data 

modulated signal, including QPSK, BPSK, and M-ary QAM. The QPUC can also 

be configured to create both shaped and unfiltered FM signals. The QPUC 

performs the compute intensive tasks of tuning, filtering, resampling, interpolation 

and gain control. 

 

As shown in Figure 3-4, two QPUCs in cascade provide up to eight 

independent data channels. The final output of the cascaded pair interfaces 

directly with the D/A converter to create a multi-channel analog waveform. 

 

The key performance parameters of the QPUCs are: 
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Parameter  Value  

Input Sample Rate Resolution  330x10-9 Hz  

Interpolation Rate Range  16 to >65536  

Max Individual Channel Bandwidth  3.5 MHz (60 dB stopband)  

Max Individual Channel Data Rate  5.8 Msps (complex)  

Max Poly-channel Bandwidth  8.6 MHz (60 dB stopband)  

Max Poly-channel Data Rate  17.2Msps (complex)  

Resampler Type  Non-integer  

Filter Bandwidth Range  <1 kHz to 8.6 MHz  

Maximum User FIR Taps  256  

Gain (Attenuation) Range  144 dB  

Carrier Tuning Accuracy (93 Msps) 0.02 Hz  

Output Sample Rate  93 Msps  

Table 3-1. Key performance parameters of the QPUCs 

 

 
Figure 3-4. QPUC implementation (From Ref. 7). 

 

A functional block diagram of the QUPCs is shown in Figure 3.5. 

 
Figure 3-5. QPUC channel functional diagram (From Ref. 7). 
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The function of the several stages is described below: 

 

Input Data. The QPUC operates on a 32-bit (16-bit I and 16-bit Q) 

complex input sample stream. Data is transferred form the transmitter data buffer 

at a rate determined by the timing NCO. In FM mode, the QPUC uses the I data 

path to process frequency samples.  

 

Timing NCO. The QPUC features a 48-bit timing NCO driven interpolator. 

This high precision interpolator enables either an integer or non-integer 

relationship to be established between the input and output sample rates. This 

feature provides for the selection of almost any input sample rate, even with a 

fixed 93-MHz output.  

 

Shaping Filter. The shaping filter tailors the complex symbol shape via a 

user configured FIR filter of up to 256 taps in length. The number of user taps 

available is dependent on the ratio of output to input rates, the higher the ratio 

the more taps available. The shaping filter must be a lowpass implementation 

and provide sufficient rejection to suppress images generated by subsequent 

interpolation stages.  

 

FM Modulator. Each QPUC channel contains an FM modulator that can 

be configured to operate before the shaping filter to bandlimit the FM output, or 

after the shaping filter to provide shaped symbols into the FM modulator. In 

bandlimited FM mode the I channel is used to directly modulate the channel 

carrier, in shaped pulse mode the output of the shaping filter is used to frequency 

modulate the carrier.  

 

Gain Profiler. The gain profile function is currently unavailable for use by 

the transmitter.  
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Halfband and Interpolation Filter. The QPUC provides a fixed 11-tap 

halfband filter and a timing NCO driven interpolator for data resampling and rate 

conversion up to the final output sample rate.  

 

Carrier NCO/Quadrature Tuner. The carrier NCO provides sub-Hertz 

tuning resolution for each channel output using a 32-bit phase accumulator. It 

features a pre-set phase offset and synchronization capability. The carrier NCO 

is modulated with the digital input data using a quadrature mixer. The real 

component of the quadrature mixer with the form ( ) ( )θ θ+cos sinI Q  is fed 

through the gain control section to the D/A converter.  

 

Gain Controller. Each channel contains a gain control section that 

provides for attenuation of the transmitted output over a range from 0.0026 to 

144 dB. A user-commanded scaling multiplier implements the gain control 

function using a 12-bit gain value and 3-bit shift code.  

 

Channel Summer. The four QPUC channel outputs are combined in the 

Channel Summer along with the cascaded QPUC output to create a real eight-

channel composite data stream for the D/A converter.  

 

The two Intersil ISL5217 QPUC chips are labeled QPUC-A and QPUC-B 

for reference in the memory map. The user has access to all control and data 

functions through the "QPUC-A" Command/Status Interface and "QPUC-B" 

Command/Status Interface registers. Access to the coefficient and gain 

memories in the QPUC are performed using the indirect addressing method 

described in Ref. 8. 

 

3.  Digital-To-Analog Converter 
 

The QPUC digital output drives a 14-bit D/A converter to generate an 

analog signal. The D/A converter is operated at a fixed rate of 93 MHz. The 
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primary D/A performance parameters are listed in the following table: 

 

 

 

 

 

 

Table 3-2. DAC performance parameters 

 
4. Transmitter Front-End 
 

The D/A output passes through a 9-pole Chebyshev 40 MHz lowpass 

reconstruction filter prior to a final buffer amplifier. The functional diagram of the 

front-end is given in Figure 3-6: 

 
Figure 3-6. WaveRunner transmitter front-end (From Ref. 7). 

 

The main parameters of the transmitter are described in the table below: 

 

 

 

 

 

 

 

Table 3-3. Transmitter main parameters 

Parameter  Value (typical)

Resolution  14 bits  

Sample Rate  93 Msps  

SFDR  63 dBc  

SFDR (4 MHz window) 80 dBc  

SNR  70 dB  

Parameter  Value  

Sample Clock Rate  93 MHz  

Phase Noise (Internal Sample Clock) –80 dBc/Hz @ 10 kHz offset  

Internal Reference Clock Stability  +/– 2.5 ppm (@10 MHz, –20 to +70 C)  

Spur Free Dynamic Range  75 dB  

Frequency Range (3 dB)  0.1 to 40 MHz  

Full-scale Output Power (50 Ohms)  –12 dBm  
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D. RECEIVER DATAPATH 
 

The receiver is comprised of four primary elements:  

• The Receiver Front-End  

• One A/D Converter  

• Two Dual Quad Programmable Digital Downconverter (QPDC)  

• The Receiver Data Buffer  

 

A diagram of the receiver datapath is shown in Figure 3-7. An explanation 

of the operation of each stage of the receiver, is given in the following 

paragraphs. 

 

 
Figure 3-7. WaveRunner 253 Receiver Block Diagram (From Ref. 7). 

 

1. Receiver Front-End 
 

The receiver front-end amplifies and filters the analog input signal in 

preparation for A/D conversion. The front-end is made up of a digitally controlled 

attenuator, low-noise amplifier (LNA), and a filter element. 

 

The attenuator is commanded over the PCI bus using the Attenuator 

Power Control register. The 8-bit control value can be varied from decimal 255 

(no relative attenuation) to 0 (>70 dB relative attenuation). The attenuator can be 

used as part of software automatic gain control (AGC) circuit to control the input 
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level to the A/D converter. the attenuator provides precise amplitude control over 

the first 20 dB of operating range. The attenuator curve begins to drop steeply 

after the 20 dB point. 

 

The LNA is used to set the noise figure of the receiver and help drive the 

input to the A/D converter. The added amplification eases the signal power 

requirements for systems interfacing to the receiver. 

 

The filter is implemented as a 7-pole Chebyshev lowpass filter with a 

cutoff frequency of 40 MHz. The lower frequency limit of 3 MHz is dictated by the 

RF transformer used to couple the signal into the A/D converter. 

 

The key parameters of the RF front-end are: 

Table 3-4. RF-Front-end key parameters 

 

2. Analog-To-Digital Converter 
 

The receiver signal is sampled using a 14-bit A/D converter that can be 

used in either bandpass or baseband operating mode. The A/D operates at a 

fixed rate of 93 MHz with a resolution of 14 bits. 

Parameter  Value  

Analog Attenuation Range  20 dB (precision) 70 dB total  

Maximum Input No damage  +15 dBm (minimum attenuation)  

Sample Clock Rate  93 MHz  

Phase Noise (Internal Sample Clock)  –82 dBc/Hz @ 10 kHz offset  

Internal Reference Clock Stability  +/– 1.5 ppm (@10 MHz, –20 to +70 C)  

Linear Dynamic Range (1 MHz bandwidth) 90 dB  

IMD Rejection  75 dB (typical)  

Frequency Range (3 dB)  0.1 to 40 MHz  

Full-scale Input Power (50 Ohms)  –14dBm (minimum attenuation)  

Noise Figure  7.9 dB  

Input Third Order Intercept (IIP3)  +6.2 dBm (minimum attenuation)  

IMD Rejection  80 dB (typical)  
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3. Dual Quad Programmable Digital Downconverter (QPDC) 
 

Two Intersil ISL5216 QPDC chips perform the digital receiver tuning and 

filtering functions. The digital downconverter is one of the key receiver signal 

conditioning components in a software radio system. It can be configured directly 

from user application code to form carrier and symbol recovery loops as well as 

other critical demodulation functions as part of software defined radio. 

 

The dual QPDCs provide up to eight independent data channels as shown 

in Figure 3-8. The QPDC accepts raw sample data directly from the A/D 

converter and performs the compute intensive tasks of tuning, filtering, 

decimation, gain control, and re-sampling. 

 
Figure 3-8. WaveRunner 253 QPDC configuration (From Ref. 7). 

 

Some of the key performance parameters of the QPDC are listed in the 

following table: 
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Parameter  Value  

Input Sample Rate  93 Msps  

Carrier Tuning Accuracy (93Msps) 0.02 Hz  

Decimation Rate Range  4 to more than 65536  

Max Individual Channel Bandwidth 3.5 MHz (60dB stopband)  

Max Individual Channel Data Rate 5.8 Msps (complex)  

Max Poly-channel Bandwidth  8.6 MHz (60dB stopband)  

Max Poly-channel Data Rate  23.2 Msps (complex)  

Filter Bandwidth Range  <1 kHz to 8.6 MHz  

Maximum User FIR Taps  256 typical, 384 max  

Maximum FIR Filter Rejection  110 dB  

AGC Range  96 dB  

Output Sample Rate Resolution  
1.29x10

-9 
Hz  

Resampler Type  Integer and Non-integer  

Output Formats  I, Q, Mag, Phase, Frequency  

Table 3-5. Key performance parameters of the QPDCs 

 

A functional block diagram of a single QPDC channel is shown in Figure 

3-9. Each channel implements a sub-band tuning architecture by tuning a narrow 

filter to a selected point in the A/D converter passband.  

 
Figure 3-9. QPDC Block diagram (From Ref. 7). 

 

The major elements of the QPDC channel are:  

• Input Level Detector (not shown) 

• Carrier Numerically Controlled Oscillator (NCO)/Quadrature Tuner 

• Cascaded Integrator Comb (CIC) Filter 
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• Filter Compute Engine/Resampler 

• Timing (symbol) NCO 

• AGC 

• Cartesian-to-Polar Converter (Magnitude, Phase, Frequency) 

 

The following paragraphs provide a brief overview of QPDC functionality: 
 

Input Level Detector. The input level detector monitors data as it enters 

the QPDC and provides three averaging modes for determining the input signal 

magnitude in the A/D converter. The three modes supported are integration, 

leaky integration, and peak detection. The information from the level detector can 

be used to adjust the analog gain as part of a software AGC loop. 

 

Carrier NCO/Quadrature Tuner. The tuning function is implemented 

using an NCO and quadrature mixer. The NCO phase accumulator is 32 bits 

wide, allowing for sub-Hertz tuning accuracy and very low (–115 dB) spurious 

response.  

 

CIC Filter. The CIC filter is the first signal conditioning element in the 

QPDC processing chain. The overall shape of the processing band is determined 

through a combination of the CIC section and components of the filter compute 

engine: half band, FIR, and resampler.  

 

The CIC filter has a sin( ) /x x  characteristic as shown in Figure 3-10. It is 

an extremely efficient filter and is used to extract a band of interest and drop the 

sample rate prior to precision filtering in the Filter Compute Engine section. 

 

Filter Compute Engine (FCE). The purpose of the FCE section is to fine 

tune the processed signal spectrum created by the CIC filter. The FCE provides 

a variety of user-configurable filters including a series of fixed half-band filters 
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and a user-programmable finite impulse response (FIR) filter. The frequency 

response of the built-in halfband filters is shown in Figure 3-11. The FCE also 

provides for non-integer resampling using a polyphase filter in concert with a 

precision timing NCO. The FCE has a built-in controller used to chain together 

filter and decimation stages to create a precisely conditioned signal with an exact 

shape, bandwidth, and sample rate. An example of a composite filter created 

from the CIC and FCE combination is shown in Figure 3-12. 

 

Figure 3-10. CIC characteristics. (a) Passband rolloff (N = Number of stages, 

R =decimation factor, sf =sampling frequency). (b) 5th order 

( 5N = ) CIC filter response (From Ref. 8). 

Figure 3-11. Frequency response of the built-in halfband filters (From Ref. 8). 
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Timing (symbol) NCO. The QPDC features a high resolution (56-bit) 

timing NCO that, when used with the resampler, provides the user with the 

capability to generate precise output sample rates independent of the QPDC 

input sample rate.  

 
Figure 3-12. Composite filter example (CIC + FIR) (From Ref. 7). 

 
AGC. A full featured AGC loop is built into the QPDC for high performance 

signal level control. The AGC loop can be used to extract small signals from 

noise after large signals and out-of-band noise have been filtered by the CIC and 

FIR filter sections. The AGC loop operates on 24-bit data emanating from the 

FCE to provide up to 96 dB of dynamic range. 

 

 Cartesian-to-Polar Converter (Magnitude, Phase, Frequency). The 

last section of the QPDC contains a Cartesian-to-Polar (CTP) converter. The 

CTP converts data from complex I and Q format to a polar form made up of 

magnitude and phase. Both data formats are available to the user to save 

software overhead in converting between the two systems. The QPDC also 
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contains a frequency discriminator that can be used to directly output frequency 

measurements.  

 

QPDC Command/Status. The two Intersil ISL5216 QPDC chips are 

labeled QPDC-A and QPDC-B for reference in the memory map. All the QPDC 

configuration registers are user accessible through the QPDC-A 

Command/Status Interface and QPDC-B Command/Status Interface registers 

(Ref. 8). 

 

4. Receiver Data Buffer  
 

The receiver has a dedicated 256 kbytes buffer capable of storing 64 

ksamples of complex data (16-bit I, 16-bit Q). The buffer acts as a FIFO to 

perform data rate translation between the QPDC outputs and the PCI bus. The 

buffer operates as a multi-queue FIFO that can be organized into a variety of 

configurations from a single large queue occupying all 256 kbytes to eight 

smaller queues of varying size. This flexibility provides the user ultimate control 

over data flow and can be used to tailor the memory to different channel rates 

and bandwidths. 

E. CONTROLLER  
 

The controller performs all local command and control functions while also 

acting as an interface to the host computer. It communicates with the host over 

an interface compliant with the PCI Local Bus Specification (66 MHz). The 

interface supports both 32- and 64-bit transactions operating at either 33 or 66 

MHz. 

 

The controller occupies 2 Mbytes of memory space accessed from a 

single base address register and is connected to PCI Interrupt A on the bus. The 

PCI bus serves as the primary control and data interface to the card. The local 
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controller can operate as a master or target, with the ability to automatically 

initiate DMA transfers of data between the transceiver buffers and host memory. 

 

Interrupt Control / Status. A comprehensive set of interrupt enable and 

status registers are available to support data movement and alert the host to 

error conditions. Interrupt conditions are reported through the Interrupt Status 

and Rx/Tx FIFO Interrupt Status registers. All interrupt flags are "trapped" and 

held until an interrupt status read occurs which clears the flags in the respective 

register. 

 

Buffer Configuration. Separate 256-kbytes (64-bit by 32k) buffers are 

dedicated to the receive and transmit datapaths. The buffers can be accessed 

directly through 32- or 64-bit single or burst transfers over the PCI bus.  

 

Memory Area Definition. Both the receive and transmit buffers can be 

partitioned as one to eight distinct memory areas that are assigned to a 

corresponding number of QPDC and QPUC channels. Each Memory Area looks 

like an independent FIFO to the PCI bus interface. The Memory Areas can be 

arbitrarily sized on 8-byte boundaries to load balance channels with different data 

rates. The controller maintains read and write pointers to keep track of the next 

address to be accessed. 

 

Channel Assignment. The QPDCs and QPUCs can be configured to 

process eight channels separately or to polyphase multiple (≥2) channels 

together. If they are configured as eight independent channels, the controller 

transfers data between each channel and the uniquely assigned Memory Area. 

When they are configured to polyphase multiple channels together, data from 

groups of channels need to access the same Memory Area. 

 

DMA Transfers. The controller can transfer data to/from the host memory 

using manual or automatic direct memory access (DMA). Manual DMA transfers 
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require the user to initiate the DMA transfer by writing to several registers. 

Manual DMAs are typically initiated when a Memory Area FIFO generates an 

over threshold interrupt. When Automatic DMA is used, the controller monitors 

the status of the memory FIFO thresholds. When a threshold is exceeded, the 

controller automatically initiates a DMA transfer to/from a user specified memory 

location. Automatic DMA also has a provision for notifying the host process via 

an interrupt that the previously specified number of DMA transfers have been 

completed. 

 

DMA Chaining. The Automatic DMA function is supplemented by a DMA 

chaining feature that allows the controller to transfer data to/from a circular buffer 

in host memory without processor intervention. The Auto DMA Block Count and 

Auto DMA Address registers remain static when this feature is enabled. An 

interrupt is still issued when transfer of the final data block completes, but the 

controller will continue to transfer data to/from the next sequential address in host 

memory instead of loading a new address. 

 

More extensive description of the the channel configuration will follow at 

the next chapter, because the details of these characteristics are the main area 

of interest for the implementation of our software. 

 

F. FROM HERE … 
 

The current chapter has outlined a brief description of the characteristics 

of the hardware we are using. Indeed the capabilities of the hardware are vast. 

Here we have described only a part of them, only those that are going to be 

useful to our work. 

 

Now, we are ready to proceed to the next chapter which constitutes the 

actual work that has been performed: the description of the software developed 

by the author. 
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IV: DESCRIPTION OF THE SOFTWARE 

A. INTRODUCTION 
 

In the previous chapters we examined some aspects of the theoretical 

background of the Software Defined Radio technology, as well as the specific 

architecture of the hardware we used in our effort to implement the SDR datalink. 

 

Now it is time to describe the actual work that was done during this thesis. 

This work actually consisted of two parts: 

• Configuration and manipulation of the hardware 

• Data organization in order to achieve successful and meaningful 

communication. 

 

The first one of the above two parts was actually the most rigorous one. It 

can be analyzed in the following tasks: 

• Channel configuration 

• Hardware initialization – configuration 

• Data exchange administration  

 

In order to implement the above described functionality, significant amount 

of code was written in C++, using the Microsoft Visual C++ language, which 

constitutes a part of the Visual Studio .NET programming suite. The channel 

configuration was performed using a dedicated configuration tool provided by the 

manufacturer. 

 

The following paragraphs describe in detail all the work that has been 

carried out. 
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B. HARDWARE LIBRARY AND DATA TRANSFER MODE 

  

The hardware we used was accompanied by a driver for the Windows 

operating system and a library of functions, through which the application could 

access and program the card. These functions covered a variety of tasks: 

opening and closing the card, allocating memory, configuring the PCI address 

space, reading from and writing to specific card registers. The library was 

incorporated into the application code. 

 

After the card has been configured, data transfer between the host 

computer allocated memory and the card buffers takes place automatically 

without user intervention, taking advantage of the DMA chaining mode. During 

this mode the user defines the parameters of the transfers (groups per channel, 

blocks per group, symbols per block, memory areas-limits-starting and ending 

offsets) and the DMA address is incremented automatically every time a symbol 

is transferred, until it reaches the end of the memory segment allocated to a 

specific channel. At that point, the DMA address is reset to its original value. In 

this way, the channel memory is used as a circular buffer containing two or more 

groups. When the card is accessing one of the groups, the host computer is 

accessing another one. It is obvious that the data transfer rate between the host 

computer memory and the storage medium (for example the hard disk) must be 

at least as fast as the transfer rate between the card and the host memory. This 

is the critical factor for the performance of the system. When a group of data has 

to be transferred to or from the host computer memory, the card notifies the host 

computer by raising the appropriate interrupt. The application responds to the 

interrupt and takes the appropriate action via an Interrupt Service Routine. A 

dummy routine is provided in the card library, which does practically nothing. One 

of the tasks of the user application is to override this function with a more 

meaningful one. 
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C. CHANNELS CONFIGURATION 
 

The configuration of the WaveRunner channels actually consists of two 

parts: 

• Configuration of the Upconverter (DUC) and Downconverter (DDC) 

integrated circuits with all the parameters of the channels: center 

frequencies, datarates, upconversion and downconversion rates, 

programming of the shaping filter of the transmitter and the FIR filters 

of the receiver, data exchange between the converters and the card 

memory, possible combinations of the DDC circuits in the case of 

polyphase channel organization e.t.c. 

• Configuration of the main memory of the card in respect to the number 

of reception and transmission channels selected by the user. 

 

Both the above tasks can be performed using the WaveFormer II 

configuration utility. This utility consists of a series of Excel spreadsheets 

organized in a hierarchical manner, giving to the user access to all the registers 

of the hardware. After the user has chosen all the desirable values, three C 

header files are produced, which can be uploaded to the hardware by the user 

application. 

 

However, the drawback of the above procedure is that each time one 

parameter needs to be modified, the user must open and re-run the utility, 

compile and reload the files. Since the author’s belief was that the true value of 

the software radio resides on its adaptability, the user should have a maximum 

degree of flexibility and should be able to change some parameters “on the fly”. 

The flexibility that was decided to be available through the application that would 

be developed, was the arbitrary choice of the number of active reception and 

transmission channels, center frequencies, datarates and modulation types. All of 

the above tasks would be administered solely by software. 
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In order to implement the above, only the DUC and DDC configuration 

was decided to be performed with the use of the configuration tool, because it 

was fairly complicated and the time restrictions of this thesis prohibited the 

implementation of the above functionality in C++. On the other hand, the 

organization of the card memory, which would depend on the number of active 

channels selected by the user, as well as the administration of the data exchange 

between the card and the host computer, would be implemented by the C++ 

application. 

 

Figures 4-1 to 4-4 show several snapshots of the configuration utility. It 

can be clearly seen that a multitude of parameters can be set with this utility. 

After all parameters are set, the user returns to the main screen and creates the 

header files. 

 

 
Figure 4-1. Main screen of the WaveFormer configuration Tool. 
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Figure 4-2. Reception channel configuration screen. 

 

 
Figure 4-3. Configuration of one of the filters of the DDC FIR engine. 
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Figure 4-4. Memory organization for the transmission channels. 

 

 

D. APPLICATION GUI 
 

 As we have already mentioned, an application was created by the author 

using the Microsoft Visual C++ language. On the top of this application lies a 

Graphical User Interface (GUI) which, through a series of screens, lets the user 

input all the desired parameters of the communications: number of active 

channels, center frequencies, modulation types and datarates. 

 

 Figures 4-5 to 4-7 show the basic screens of the application GUI. It 

actually consists of three pages: 

• Main page: In this page the user chooses the number of active 

channels and the location of the configuration file (which has already 

been produced by the WaveFormer configuration tool). After 

configuring all the features of the active Rx and Tx channels in the 

following two pages, the user presses the Start Rx/Tx button and the 

card is activated starting the communication. The user can be 
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informed on the status and progress of each active channel, by the 

progress bars and text boxes at the lower half of the page. 

• Rx channels configuration page. From this page, the user can 

define the following parameters for each active Rx channel: center 

frequency, modulation type, number of samples per symbol (more 

about this later) and location of the file to store the demodulated data. 

• Tx channels configuration page.  In the same manner as in the 

previous page, the user can define the following parameters for each 

active Tx channel: center frequency, modulation type, datarate, 

location of the file to retrieve the data to be transmitted and 

attenuation of the transmitted signal (in terms of its maximum possible 

power). 

 

 

 
Figure 4-5. Communications Control Panel main page. 
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Figure 4-6. Communications Control Panel Rx channels configuration space. 

 
Figure 4-7. Communications Control Panel Tx channels configuration space. 
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E. APPLICATION ARCHITECTURE 
 

 In the previous paragraphs we described the user interface of our 

application: what the user sees and how he interacts with the application. 

However, the quintessence of the code lies on what takes place after the user 

has pressed the Start Rx/Tx button: the procedures that were developed in order 

to achieve successful communication and data exchange between the 

transceiver and the host computer. These procedures are described extensively 

in the following paragraphs. 

 

1. Objects 
 

 Since the application is purely object oriented, a series of classes were 

created, each of them containing all the necessary functionality in order to 

achieve specific tasks. The main classes of the application are described in the 

following paragraphs. For each object, a table summarizes its main variables and 

functions.  

 

 WaveRunner. This class encapsulates the functionality of the card. Only 

one instance of this class can be created in the application using the Singleton 

pattern (Ref. 6). The class also incorporates the objects encapsulating the 

functionality of the channels (they will be described later in this paragraph). 

Class WaveRunner 
Main Variables 
Const 
   maxChannels 
   rxClockFrequency 
   txClockFrequency 
   blockSize 
rxBlocksPerGroup; 
rxGroupsPerChannel; 
rxThresholdGroups; 
rxChannelSize; 
txBlocksPerGroup; 
txGroupsPerChannel; 

  
Number of maximum available channels 
Frequency of the receiver circuit 
Frequency of the transmitter circuit 
Size in 4-byte words of a block of data 
 
      Reception organization parameters 
     
 
      Transmission organization parameters 
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txThresholdGroups; 
txChannelSize; 
memorySize; 
 
lDMAvAddress; 
lDMApAddress; 
rxChannel[maxChannels] 
txChannel[maxChannels] 
rxThredsRunning 
txThreadsRunning    
txChannelsCount; 
rxChannelsCount; 
rxChannelsConfigured; 
txChannelsConfigured; 
rxTxEnable 
 

      Transmission organization parameters 
 
Size of host computer memory allocated to the 
device 
Virtual starting address of the allocated memory 
Physical starting address of the allocated memory 
Array of RxChannel pointers 
Array of TxChannel pointers 
Number of active reception threads 
Number of active transmission threads 
Number of selected active transmission channels 
Number of selected active reception channels 
Number of configured active reception channels 
Number of configured active transmission channels 
Boolean variable reflecting the status of the card 

Main functions 
getInstance() 
 
Open() 
Close() 
Configure() 
EnableRx() 
DisableRx() 
Enable(Tx) 
DisableTx() 
EnableRxTx() 
DisableRxTx() 

Creation of one and only new WaveRunner object 
using the Singleton pattern 
Initial opening of the device 
Closing of the device 
Configuration of the device 
Reception enable (requires configuration first) 
Reception disable 
Transmission enable (requires configuration first) 
Transmission disable 
Reception and transmission enable 
Reception and transmission disable 

Table 4-1. WaveRunner class description. 

 

 The details of the functionality of the WaveRunner class functions will be 

described later in this chapter. 

 

 WaveRunnerChannel. This is an abstract class. It contains the main 

common parameters of the transmission and reception channels. It is the parent 

class which will be inherited to the Tx and Rx channel classes. 
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Class WaveRunnerChannel 
Main Variables 
channelNumber; 
channelOffset; 
 
frequency; 
k;  
dataFileName; 
dataRate; 
 
offsetAddress; 
dataBuffer; 
groupsTransfered; 
 
groupCount; 
 
terminateProcess; 
threadRunning; 
threadReady; 

Number of channel (0-7) 
Channel offset (used for programming the DUC and 
DDC registers) 
Channel center frequency 
Number of bits per symbol (for M-PSK modulations) 
Name of the file to store or retrieve data 
Channel datarate (for the Tx channels) or samples 
per symbol (for the Rx channels) 
Offset address of the DDC or DUC registers. 
Pointer to the allocated memory of the channel 
Number of transferred groups of data to/from the 
transceiver 
Counter of the starting position on the channel 
memory to transfer data. 
Orders the channel thread to be terminated 
Indicates if the channel thread is running 
Indicates if the channel thread is ready 

Main functions 
WaveRunnerChannel() Dummy class constructor. No useful action is 

performed. 
Table 4-2. WaveRunnerChannel class description. 

 

 RxChannel. It stores the functionality of a reception channel. It inherits all 

the parameters of the WaveRunnerChannel class. 

Class RxChannel 
Main variables 
groupsSaved Number of groups saved to the destination file 
Main functions 
RxChannel() 
 
setFrequency() 

Class constructor. Initializes all the class parameters. Calls 
setFrequency(). 
Sets the channel center frequency by writing to the 
appropriate DDC register. 

Table 4-3. RxChannel class description. 

 

 TxChannel. It incorporates the functionality of a Tx channel. It also 

inherits all the parameters of the WaveRunnerChannel class. 
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Class TxChannel 
Main variables 
groupsLoaded 
attenuation 

Number of groups loaded from the Tx file. 
Attenuation in dB of the transmitted data 

Main functions 
TxChannel() 
setFrequency() 
 
setDataRate() 

Class constructor. Initializes all the class parameters. 
Sets the center frequency of the channel by writing to the 
appropriate DUC register 
Sets the datarate of the channel by writing to the 
appropriate DUC register. 
Table 4-4. TxChannel class description. 

 

 Apart from the above classes, the application uses four other classes in 

order to implement the GUI. The first one of them is the CommsCtrlDlg class. It 

is a CPropertySheet class and serves as the nesting class for the three classes, 

CommsTab1, CommsTab2 and CommsTab3. These three classes are of the 

CPropertyPage type, each one of them incorporating the functionality of the 

corresponding page of the communication control panel. Through a series of text 

boxes, combo boxes, property sheets, buttons and message boxes, the above 

classes ensure that the user has entered the correct parameters. Also, while the 

card is active, the user is informed on the process and status of all the active 

channels.  

 

 The implementation of these classes constitutes a significant portion of the 

application code. However, since their functionality is common C++ functionality 

and not directly connected to the subject of this thesis, it was considered better 

not to describe them analytically in this text. Their code is included in the listing of 

the application code at the appendix of this thesis. 

 

2. Procedures 
 

 Hardware initialization (Figure 4-8a). When the application starts, an 

object of the WaveRunner class is created. As a part of its initialization code, the 

object checks to see if the card is present, by executing the OpenWaveRunner() 
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command from the library. If this is the situation, the hardware initialization takes 

place, by executing the WaveRunner::Open() function. The routine initializes the 

channel objects, allocates host computer memory and distributes it to the 

channel objects, resets the card interrupt register and DMA Transfer register, 

resets the DUCs and the DDCs and exits. 

 

After that the application waits for the user to enter the appropriate 

parameters and hit the Start Rx/Tx button. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a)      (b) 

Figure 4-8. (a) Hardware initialization procedure. (b) Hardware configuration 

procedure. 

 

Hardware configuration (Figure 4-8b). The click of the Start Rx/Tx 

button changes its caption to Stop Rx/Tx and invokes the master thread 

mainRxTxThread(). The first thing that this thread does, is configure the 
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hardware by invoking the WaveRunner::Configure() function. The sequence of 

configuration tasks is the following: 

• The C header files that have been created using the WaveFormer 

configuration tool, are uploaded to the card using the 

ConfigureWaveRunner() command of the library. 

• The PCI configuration space is configured with the number of 4-byte 

words per data block, using the WriteWRConfigSpace() command 

from the library. 

• For every active transmission and reception channel the following 

parameters are defined by writing specific values to the appropriate 

registers: 

• Starting address of the channel memory. 

• Number of data blocks per group of data transfer. 

• Number of groups per channel memory area. 

• Channel memory area size, starting offset, ending offset and 

threshold to raise an interrupt. 

• The interrupt mask register is updated in order to permit 

interrupts from the specific channel. 

• The receive or transmit control register is updated in order to 

service the specific channel 

• The Auto DMA Transfer Register is updated in order to perform data 

transfers in the active channel memory spaces. 

• The card buffers are flushed in order to delete any random data.  

 

Interrupt Service Routine (Figure 4-9a). The application provides useful 

behavior to the interrupt service routine by overriding the PMCRadioIsr0() routine 

of the WaveRunner library. When an interrupt occurs, this function is called with 

the contents of the Interrupt Status Register passed as a parameter. The routine 
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checks to see if the interrupt is due to the transceiver. If this is the situation, it 

checks to see if the interrupt is due to a buffer abnormal condition (overflow or 

underflow). In this case, it updates the corresponding channel status. Otherwise, 

the interrupt is due to a completed data transfer. So, the appropriate channel 

event is set (more about this later). As a last step, the routine re-enables the 

interrupts and exits.  

 

At this point we need to say that the interrupt service routine must be as 

fast as possible, since it is invoked hundreds or even thousands of times per 

second. As long as the routine is invoked, additional interrupts are disabled. That 

means that data corruption may occur. That is the reason why the routine only 

signals the channel servicing routines that they have to take appropriate action. It 

is the responsibility of the channel threads to take whatever action they deem 

necessary.  
 
Main communication thread (Figure 4-9b). As we have already said, this 

thread is launched when the Start Rx/Tx button is pressed. The tasks that this 

thread performs are the following: 

• It calls the WaveRunner::Configure() function, which performs the 

hardware configuration. 

• For each active channel, it transfers the parameters chosen by the 

user, into the WaveRunner and the channel class variables. 

• For every active channel, it launches a corresponding rxThread() or 

txThread(). 

• It waits until all the active channels are ready to transmit or receive. 

• It enables the transmission and reception circuitry of the card. More 

specifically: 

• It enables interrupts by writing a one to the Global Interrupt 

Register. 
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• It sets the appropriate bits of the Transmit Control and 

Receive Control register. 

• It enables the DMA data transfer, by setting the appropriate 

bit of the Auto DMA Register. 

• It waits until all the channels are done transmitting or receiving. 

• It disables transmission and reception. 

• It notifies the application that the card is no longer transmitting or 

receiving. 

  (a)     (b) 

Figure 4-9. (a) Interrupt Service Routine. (b) Main communications thread. 
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We need to say that, at the two occasions when the master thread waits 

for the channel threads to signal an event, the signaling is accomplished via the 

setting of two events, the allChannelsReady event, in order to signal that all 

channels are ready for transmission and reception and the allChannelsDone 

event, which signals that all channels are done. 

 

Just before the routine exits, if the user has not disabled reception or 

transmission in the meantime, the thread posts a WM_PROCESS_FINISHED 

user defined message to the application GUI, in order for the Start Rx/Tx button 

caption to return to its original state. 

 

Tx thread (Figure 4-10a). This thread is launched by the master Rx/Tx 

thread, once for every active transmission channel.  

 

The first task of the thread is to create the baseband I and Q symbols to 

be transmitted, from the data file. It must be noted that the modulation of the data 

takes place before and not during the actual transmission. This choice was 

dictated by the fact that simultaneous modulation and transmission might slow 

the performance of the system. The modulation process will be described 

analytically later. 

 

When the modulation is over, the thread fills the channel memory buffer 

with the first set of data. Subsequently, it increases the WaveRunner:: 

threadsReady variable. If it is the last active channel to do so, it notifies the 

master thread by setting the allChannelsReady event.  

 

After the above actions, the thread enters a loop, the first stage of which is 

a suspension of the thread until the appropriate txBufferEmpty event has been 

signaled by the interrupt service routine. The thread wakes up and checks to see 

if the event was caused by a buffer underflow error. In this case it simply updates 
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its status with the error and exits. Otherwise, it fills again the appropriate memory 

area with data and re-enters the suspended state. 

 

The above loop continues as long as there is more data to transmit and 

the user has not cancelled transmission. When either of the two conditions 

occurs, the thread clears the memory buffer by writing zeroes to all the memory 

range. In this way, the data retrieved by the card until transmission is disabled, 

are simply zeroes and nothing is actually transmitted. Subsequently it updates 

the channel status, decreases the WaveRunner::threadsRunning variable and 

exits. If it is the last channel thread running, just before exiting, it notifies the 

master thread by setting the allChannelsDone event. 

 

Rx thread (Figure 4-10b). This thread is launched by the master thread 

once for every active reception channel. Its functionality is similar to the 

functionality of the transmission thread. 

 

After having created the file to save the received symbols, the thread  

increases the WaveRunner::threadsReady variable and, if it is the last active 

thread to do so, it notifies the master thread by setting the allThreadsReady 

event. 

 

Subsequently, it enters the reception loop. It remains suspended until 

notified by the appropriate rxBufferFull event by the interrupt service routine. 

When awakened, if the user has not cancelled reception and no buffer overflow 

error has occurred, it stores the received symbols from the buffer memory to the 

appropriate file and re-enters the suspended state. 

 

When the user stops reception, an rxBufferFull event is set as well. The 

loop exits and the stored symbols are demodulated into meaningful data. The 

demodulation process will be described analytically later in this chapter. 
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Finally, the thread decreases the WaveRunner::threadsRunning variable, 

sets the allChannelsDone event if it is the last active channel thread and exits. 

   (a)      (b) 

Figure 4-10. (a) Tx thread.  (b) Rx thread. 
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More specifically, there are two problems which we must deal with, in 

order to achieve meaningful communication, phase synchronization and time 

synchronization. 

 

It is extremely unlikely that the numerical oscillators of the transmitter and 

the receiver will be in phase. Almost certainly, they will have a random phase 

difference. Since the communication scheme we have chosen (M-PSK) is 

inherently phase coherent, this phase difference must be determined and 

corrected. Otherwise, in the decoding of the symbols we shall always be off by 

this difference. 

 

Even after we have achieved phase synchronization, we have one more 

problem to solve: since in the received signal multiple samples correspond to 

each symbol, which is the appropriate time instance or, in other words, which of 

the received samples per symbol is the most appropriate one to use for the 

signal decoding? Here it must be noted that unlike the conventional receivers 

which include an integrator, our receiver consists of successive downsampling 

filters. Filters inherently have memory. That means that the first samples of each 

symbol depend not only on the current symbol but also on the previous one. So, 

we cannot simply average the samples. But even if we could, we should find a 

way to know where to start the integration, that is, at which sample each symbol 

starts. So, we need time synchronization. 

 

In conventional communication systems, the above tasks are performed 

by dedicated carrier and clock recovery circuits, which are most of the times 

sophisticated and contribute to the overall complexity of the system. Moreover, 

most of the times they are efficient only for one communication scheme and 

completely inefficient for all the others. In our case, we shall try to perform the 

above two tasks solely by software. Here lies one of the greatest beauties of the 

software radio platform, which illustrates in the most profound way how this 

architecture contributes to the decrease of hardware complexity. 



81 

1. Transmitted Data Organization - Modulation 
 

The symbols to be transmitted are organized in packets of 1024 symbols. 

Of these 1024 symbols, the first 32 are the header of the packet, while the 992 

remaining symbols constitute the actual data. Of course, when transmitting the 

data from a file, the last packet will most likely have less than 992 symbols. This 

is a fact we have to take into consideration. 

 

The composition of an individual data packet is shown at the table 4-5. 

 

 

 

 

 

 

 

 

Table 4-5. Composition of a transmitted symbols packet. 

 

Initially we transmit 11 samples with zero phase. This can be achieved 

very easily by feeding the card with maximum I and zero Q samples. In doing so, 

we are hoping that the receiver will detect the constant phase and then correct all 

the subsequent packet samples phases accordingly. 

 

After the constant phase samples, we transmit a Barker sequence of 13 

symbols. The sequence is transmitted in the I channel, while the Q channel 

remains zero. This sequence has excellent autocorrelation properties as shown 

in Figure 4-11. In the receiver we are hoping that a correlator will sense the 

maximum of the cross correlation of the received signal with the Barker 

sequence and thus we shall achieve time synchronization. 

 

Packet Synthesis 

Symbol Position Significance 

1-11 Zero phase  
(maximum I, zero Q) 

12-24 Barker Code 
[1 1 1 1 1 -1 -1 1 1 -1 1 -1 1] 

25-32 Number of symbols in the packet 
33-1024 Actual data symbols 
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The following 8 symbols after the Barker sequence denote the number of 

symbols per packet. As we have already stated, the number of symbols per 

packet may vary. So we need this information, in order to demodulate only the 

necessary symbols and not more. Since this piece of information is one of the 

most critical parts of the packet, we modulate it always in QPSK regardless of 

how complicated the actual data modulation may be. 

 

 
Figure 4-11. Autocorrelation properties of the 13 bit Barker code. 

 

Finally, the actual data symbols follow, modulated by the scheme chosen 

by the user. In our application we restricted the possible modulation schemes to 

QPSK, 8-PSK and 16-PSK. It is worth mentioning that for 992 symbols per 

packet we need an integer number of bytes for all three schemes (more 

specifically, 248 bytes for the QPSK, 372 bytes for the 8-PSK and 496 bytes for 

the 16-PSK scheme). 

 

We do not claim that the above packet organization was the most efficient 

that we could devise. It was just a simple reasonable scheme that we thought 

that would perform reasonably well. Of course our signal would not be 

transmitted in extremely noisy or distorting environments and the signal-to-noise 
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ratio would be very large. However, what interested us for this thesis was not to 

elaborate on the details but rather to simply prove that the approach works and 

that we could achieve with software what conventional systems need dedicated 

hardware to achieve. 

 

3. Data Demodulation 
 

The demodulation process is shown in Figure 4-12. 

Figure 4-12. Signal demodulation process. 
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The procedure starts by measuring the power of every symbol and 

comparing it to a threshold. As long as the actual data transmission has not 

started yet, the power will be well below the threshold and the samples will be 

considered as noise and will be ignored. 

 

As soon as the symbol power exceeds the threshold, the phase 

synchronization loop is started. The phase difference of successive symbols is 

compared against a threshold and as long as it is below the threshold, a phase 

hit is declared. When a predefined number of hits are achieved (six in our 

demonstration) at a power level above the threshold, we consider that we have 

detected the transmitted segment with the constant phase. The phase difference 

between the transmitter and the receiver numerical oscillators is simply the 

phase that we are measuring. All we have to do is to subtract this phase from the 

phase of the subsequent symbols and we are done. We have achieved phase 

synchronization. 

 

Following the successful synchronization in phase, we slide the received 

symbols in a software-implemented correlator, which computes the cross 

correlation between the received signal and the Barker code. The moment the 

cross correlation exceeds a threshold (12 in our case), we consider that we are 

positioned in the beginning of the Barker code in the received signal. So, we 

have achieved time synchronization. 

 

When time synchronization has been achieved, we simply advance by 13 

symbols and read the next 8 symbols, demodulate them using a QPSK 

demodulation scheme and calculate the number of symbols per packet. 

 

What remains to be done, is to successively read and demodulate the 

actual data symbols of the packet. After this task has been completed, the whole 

procedure is repeated from the beginning for each packet, until the data file runs 

out of data. 
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In the above effort to synchronize, we have used several thresholds: a 

power threshold, a maximum phase difference threshold, a phase hits threshold 

and a cross correlation threshold. The choices of the values of these thresholds 

were not based on any sophisticated algorithms; we simply chose values that 

seemed reasonable to us. However, it is well understood that in a real 

environment where a large signal-to-noise ratio may not be achievable, the 

setting of the proper values for these thresholds may become much more 

complicated. There may even exist instances that our procedure may not work at 

all.  However, as we have already mentioned, at this stage we were not so much 

interested in elaborating the details but rather in proving that our approach works. 

So we kept the detection algorithm relatively simple. 

 

G.  CHOICE OF THE PROPER FILTERS 
 

Although the choice of the appropriate filters for the transmitter 

interpolation and the receiver decimation stages may seem a trivial task to 

perform, it is actually one of the most critical factors for the overall performance 

of the system. If the filters are chosen inappropriately, intersymbol interference 

may cause errors in the symbol detection even under large signal-to-noise ratios. 

 

For the needs of our application, we chose a square root raised cosine 

filter for the transmitter with a cutoff frequency of π/4, an interpolation factor of 4 

and a roll-off factor varying from 0.25 to 0.10. The frequency response of the filter 

for a roll-off factor of 0.15 is shown in Figure 4-13. As we can see, the filter does 

not cancel signal aliasing completely (its stopband does not start exactly at π D ), 

but rather permits it in a controllable way, so that it will be canceled by the filters 

of the receiver. 

 

In the receiver, we used a decimation of 16, performed in two stages of 4. 

At each stage the signal was filtered by a low pass filter, whose frequency 

response is shown in Figure 4-14.  
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Figure 4-13. Frequency response of the transmitter shaping filter. 

 

 
Figure 4-14. Frequency response of the receiver decimation filters. 
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H.  FROM HERE … 
 

In the current chapter we outlined the main aspects of our work and the 

functionality of the code we wrote. Now it is time to see the results of the tests we 

ran with this code. Did it really work and what results did we get? This is the 

subject of the next chapter. 
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V: RESULTS - CONCLUSIONS 

A. INTRODUCTION 
 

In the previous chapter we described analytically the application that we 

developed and the procedures that are involved in the implementation of the 

communication link, both at the hardware management level as well as at the 

organization of data in a meaningful protocol. 

 

Now it is the time to see the results of this effort. This chapter will not 

present any diagrams and curves, because this was not the nature of our work. 

Our result analysis will consist mainly of the presentation of some oscilloscope 

snapshots in order to let the reader witness what we saw at the lab and an 

insight into the streams of transmitted and received data, in order to prove and 

explain that our algorithm worked successfully. 

 

B.  TEST BENCH 
 

In order to test and run our application, we set up a test bench in the 

microwave lab of the Spanagel building, as shown in Figure 5-1. The 

transceivers were hosted into two PC-type personal computers having the 

following features: 

• Intel Pentium 4 processors at 3.05 GHz with multithreaded technlology 

• 512 Mbytes of RAM at 1024 MHz (So that the RAM speed could 

closely follow the speed of the processor bus and would cause no less 

bottlenecks). 

• Two SCSI hard disks with 18 GBytes capacity each (The choice of the 

SCSI protocol was imperative, because we wanted to ensure that data 

transfers between the computer memory and the hard disks would 
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occur as fast as possible – certainly at a rate compared to the rate of 

data transfer between the transceiver and the host computer). 

 
Figure 5-1. Test bench used for the tests of the code. 

 

For each host computer we set up a line of measuring instruments, 

consisting of: 

• A Tektronix 475 Signal Oscilloscope 

• A Tektronix 492 Spectrum Analyzer 

• A HP 436A Power meter. 

• A Wavetek 148 signal generator. 

 

By the end of our experiments, we used the Tektronix TDS 3012B Digital 

Oscilloscope – Spectrum Analyzer, in order to capture the oscilloscope images 

shown at the next paragraph. 
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C.  OSCILLOSCOPE IMAGES 
 

Figures 5-2 to 5-7 show some snapshots of the images of the 

oscilloscope. Th upper part of each figure (blue curve) is the signal in the time 

domain, while the lower part (red curve) is the signal in the frequency domain. 

 

Initially we generated some simple tones (signal without modulation). This 

type of signal can be presented very easily at the oscilloscope screen, because it 

is very easy to synchronize. Especially in Figure 5-4, we demonstrate the ease of 

creating eight tones (one per transmission channel). At the same time eight 

recepton channels may be active in order to receive the signal. 

 

Figures 5-5 to 5-7 show some actual QPSK modulated channels. With a 

careful observation of the images, the different phases of the signal can be easily 

distinguished. A more thorough analysis of the received waveforms will follow in 

the next paragraph. 

 
Figure 5-2. One tone at 4 MHz. 
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Figure 5-3. Four tones at 4, 8, 12 and 16 MHz. 

 

 
Figure 5-4. Eight tones at 4,8,12,16,20,24,28,32 and 36 MHz. 
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Figure 5-5. One QPSK channel at 5 MHz. 

 

 
Figure 5-6. Two QPSK channels at 10 and 15 MHz. 



94 

 
Figure 5-7. Four QPSK channels at 10, 15, 20 and 25 MHz. 

 

D.  DATA WAVEFORMS ANALYSIS 
 

Figure 5-8 shows the first 100 symbols of a transmitted data packet. A 

careful observation of the figure reveals the structure of the packet. As we can 

see, the symbols have a constant envelope, since they are BPSK (the Barker 

code) or QPSK (the number of symbols per packet) modulated. Also, from the 

signal phase diagram, the segments intended for the phase synchronization and 

the Barker code segment are very easily distinguishable. 

 

Figure 5-9 shows the received waveform before phase synchronization. 

As we can easily see, the segment with the steady phase is very easily 

recognized. After our code senses this phase and compensates for it, the 

waveform that results is shown in Figure 5-10. We can easily see two things, the 

phase of the steady-phase segment is now zero and the Barker code is very 
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easily distinguishable. The received waveform now is clearly our transmitted 

waveform shaped by the shaping filters. 

 
Figure 5-8. Transmitted baseband waveform. 

 

Figure 5-11 shows the cross correlation between the waveform of Figure 

5-10 and the Barker code. As we can see, at the point of synchronization the 

normalized cross-correlation value (cross correlation divided by the signal power) 

is very close to its theoretical maximum of 13 (in our case it is 12.5). Also, 

nowhere near this value does the cross correlation even approach this peak. It is 
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very easy for the code to sense this peak and declare time synchronization at 

this point. Of course, as the Figure 5-11 demonstrates, there may exist large 

cross correlation values before the beginning of reception of the actual signal, 

due to the random phase of the received signal. However, at that segment the 

received power is well below the threshold. So we simply ignore these values. 

 
Figure 5-9.  Received Baseband Signal Waveform, before phase difference 

compensation. 
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E.  TESTS RESULTS 
 

Using the set up described in section B of this chapter, we tried all the 

possible modulation schemes for which the code was developed, from simple 

test tones to 16-PSK schemes. 

 
Figure 5-10. Received Baseband Signal Waveform, after phase difference 

compensation. 
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At the transmitter the signal was fed to the card at a datarate of 58,125 

symbols per second. There it was shaped by the square root raised-cosine filter 

described at the previous chapter, interpolated by a factor of 4, transformed into 

analog format and transmitted. 

 
Figure 5-11. Cross correlation between the received baseband waveform after 

phase correction, and the Barker code. 

 

At the receiver, the signal was initially decimated by the CIC filter by a 

factor of 25. This decimation rendered a data throughput of the CIC filter of 3.72 

Mbps. Subsequently, the signal was fed into the FIR engine of the DDC and was 
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further decimated by 16 in two stages of 4, using the shaping LPF described also 

at the previous chapter.  

 

This procedure gave us a final output rate of 232.5 ksps, which means 4 

samples per transmitted symbol. Taking into account the fact that the null-to-null 

bandwidth of an M-PSK signal is twice the symbol rate, the bandwidth of our 

received signal included the main lobe and the first sidelobe of the transmitted 

signal, that is roughly 95% of the transmitted signal power. We might even be 

able to reduce the output rate to two samples per symbol by further decimating 

the received signal by a factor of 2, but that would need more carefully designed 

shaping filters and we might not be able to mitigate the intersymbol interference 

completely. So we chose the rate of 4 samples per symbol. 

 

All the simulations gave very good results! Phase and time 

synchronization was achieved without problems. The received signal was 

demodulated and the transmitted waveform was restored successfully. Even the 

last packet of the file, where the number of symbols was less than 992 and we 

could not evade rounding effects, was demodulated without problem. So, the 

above results confirmed the correctness of our code. 

 

The last issue we have to mention concerns the maximum achievable 

datarate of the system. In order to measure it, we activated several channel 

combinations from one Tx channel only to all 8 channel pairs working. (Of 

course, in this case we were not interested in the correct demodulation of the 

received signal, since we had not configured the channel filters properly. We only 

wanted to see what would be the maximum datarates that we could achieve).  

 

In every case, we achieved a total datarate between 4.2 Msps and 5.5 

Msps before a buffer overflow or underflow occurred. This speed was achieved 

using the 32-bit PCI bus of our host computers. The transceivers can also 

accommodate 64-bit transfers. The manufacturer claims that the maximum 
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datarate can reach easily 8 Msps. It is quite possible that had we used more 

dedicated hosts with 64-bit PCI buses, we would have achieved these rates. 
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VI: FIELDS FOR FURTHER STUDY 

Our thesis demonstrated in a profound way some of the benefits and the 

potentials of the Software Defined Radio technology. Complicated functionality, 

that until recently required dedicated hardware to be implemented, can now be 

very easily implemented solely by software. The communications transceiver has 

become more lightweight and generic, while the software has given it the ability 

to adapt to a variety of standards and schemes.  But perhaps the most important 

of all its benefits is the fact the cost of the hardware has been reduced 

dramatically. This fact combined with the progress in computer hardware, have 

rendered it possible to set up and implement communication systems at a 

fraction of the cost we would need until recently. 

 

We do not claim that with this thesis we have exhausted the subject. The 

technology is so new and its capabilities are so enormous that we only scratched 

the tip of the iceberg. The possibilities for further development using the 

hardware we used in our thesis are endless. Just to name some: 

• Connection of the hardware to a wireless RF frontend, in order to 

achieve wireless communication. 

• Addition of a programmable RF frequency upconverter in order to be 

able to sweep several frequency bands. 

• Addition of error coding to our signal in order to reduce further the 

probability of error. 

• Study of the system performance in a variety of noise environments 

and signal-to-noise ratios. 

• Effort to implement a known communications protocol using the 

hardware. 

• Frequency spectrum measurement and analysis. 
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• Adaptive use of the available spectrum. 

 

The last one of the above fields of study is probably one of the most 

interesting application areas of the software radio technology. Since the system 

can be used easily for both communication and spectrum measurements, the 

communicating parts could implement a protocol in order to analyze the noise 

profile of the available spectrum and use it optimally (in other words direct their 

power to the least occupied portions of the spectrum). In fact, in another thesis 

developed in parallel with this one (Ref. 10), Captain Nikos Apostolou has 

established a theoretical background on how this could be achieved. We were 

hoping to be able to implement this theory in practice using the hardware, but 

unfortunately, due to time restrictions, we did not manage to do so. This would be 

probably the most interesting field of study for another student to continue our 

work. 

 

As a closing statement of this text, the author like to state once more how 

exciting the work on this thesis was. Despite the endless hours of frustration in 

the lab, when nothing seemed to be working properly, when the good results 

finally showed up, our satisfaction was unparalleled. The ability to control a 

sophisticated piece of hardware using a common programming language was 

something that has always fascinated the author. Finally, this thesis gave the 

author the opportunity to apply in practice a lot of the theory he had learnt in 

previous classes, which was a very valuable experience as well. 
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APPENDIX A: CODE LISTING 

Table A-1 shows the files of the WaveRadio project and their description. 

The listing of the code of these files follows in the next pages. 

 

File Name Description 
WaveRadio.h 
WaveRadio.cpp 

Main application classes and the application 
initialization code. 

MainFrm.h 
MainFrm.cpp 
ChildFrm.h 
ChildFrm.cpp 
ChildView.h 
ChildView.cpp 

Main and child windows classes and manipulating 
functions. 

CommsCtrlDlg.h 
CommsCtrlDlg.cpp 

The communications panel main class, hosting the 
three panel pages. 

CommsTab1.h 
CommsTab1.cpp 
CommsTab2.h 
CommsTab2.cpp 
CommsTab3.h 
CommsTab3.cpp 

Classes encapsulating the functionality of the 
communication panel pages. 

GlobalVars.h Header file containing global variables that need to 
be accessed by all the files of the application. 

WaveRunner.h 
WaveRunner.cpp 

Class containing the functionality of the one and 
only WaveRunner object of the application. 

WaveRunnerChannel.h 
WaveRunnerChannel.cpp 

Abstract class, used as a building block for the 
transmission and reception channels. 

RxChannel.h 
RxChannel.cpp 

Class containing the functionality of the reception 
channels. 

TxChannel.h 
TxChannel.cpp 

Class containing the functionality of the 
transmission channels. 

WaveRunnerIsr.cpp It contains the Interrupt Service Routine, the 
master Rx/Tx thread and the individual Rx and Tx 
threads. 

Modemod.cpp Contains the modulation and demodulation 
routines. 

Memory_map.h Maps the WaveRunner registers addresses to 
constants, for easier use by the application files. 

Pmcradioi.h Contains the function prototypes of the 
WaveRunner library. 

Table A-1: WaveRadio project files description. 
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The above listing does not include the resource files of the project, as well 

as the library file pmcradio.lib which contains the actual code of the 

WaveRunner library functions and must be included in the project, in order for the 

code to compile successfully. 

 

WAVERADIO.H 
// WaveRadio.h : main header file for the WaveRadio application 
// 
#pragma once 
 
#ifndef __AFXWIN_H__ 
 #error include 'stdafx.h' before including this file for PCH 
#endif 
 
#include "resource.h"       // main symbols 
 
// CWaveRadioApp: 
// See WaveRadio.cpp for the implementation of this class 
// 
 
class CWaveRadioApp : public CWinApp 
{ 
public: 
 CWaveRadioApp(); 
 
 
// Overrides 
public: 
 virtual BOOL InitInstance(); 
 virtual int ExitInstance(); 
 
// Implementation 
protected: 
 HMENU m_hMDIMenu; 
 HACCEL m_hMDIAccel; 
 
public: 
 afx_msg void OnAppAbout(); 
 afx_msg void OnFileNew(); 
 DECLARE_MESSAGE_MAP() 
 afx_msg void OnApplicationsCommspanel(); 
}; 
 
extern CWaveRadioApp theApp; 
 

WAVERADIO.CPP 
// WaveRadio.cpp : Defines the class behaviors for the application. 
// 
 
#include "stdafx.h" 
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#include "WaveRadio.h" 
#include "MainFrm.h" 
 
#include "ChildFrm.h" 
#include "CommsCtrlDlg.h" 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
#include "WaveRunner.h" 
 
// CWaveRadioApp 
 
BEGIN_MESSAGE_MAP(CWaveRadioApp, CWinApp) 
 ON_COMMAND(ID_HELP_ABOUT, OnAppAbout) 
 ON_COMMAND(ID_FILE_NEW, OnFileNew) 
 ON_COMMAND(ID_APPLICATIONS_COMMSPANEL, OnApplicationsCommspanel) 
END_MESSAGE_MAP() 
 
 
// CWaveRadioApp construction 
 
CWaveRadioApp::CWaveRadioApp() 
{ 
 // TODO: add construction code here, 
 // Place all significant initialization in InitInstance 
} 
 
 
// The one and only CWaveRadioApp object 
 
CWaveRadioApp theApp; 
WaveRunner* wr=WaveRunner::getNewWaveRunner(); 
 
// CWaveRadioApp initialization 
 
BOOL CWaveRadioApp::InitInstance() 
{ 
 int error=wr->Open(); 
 if (error) 
 { 
  CString disp; 
  disp.Format("Error: %2d\nWaveRunner card could not be 
opened.\n Process will abort.",error); 
  AfxMessageBox(disp,MB_OK,0); 
  //return FALSE; 
 } 
 // InitCommonControls() is required on Windows XP if an 
application 
 // manifest specifies use of ComCtl32.dll version 6 or later to 
enable 
 // visual styles.  Otherwise, any window creation will fail. 
 InitCommonControls(); 
 
 CWinApp::InitInstance(); 
 
 // Initialize OLE libraries 
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 if (!AfxOleInit()) 
 { 
  AfxMessageBox(IDP_OLE_INIT_FAILED); 
  return FALSE; 
 } 
 AfxEnableControlContainer(); 
 // Standard initialization 
 // If you are not using these features and wish to reduce the 
size 
 // of your final executable, you should remove from the following 
 // the specific initialization routines you do not need 
 // Change the registry key under which our settings are stored 
 // TODO: You should modify this string to be something 
appropriate 
 // such as the name of your company or organization 
 SetRegistryKey(_T("Local AppWizard-Generated Applications")); 
 // To create the main window, this code creates a new frame 
window 
 // object and then sets it as the application's main window 
object 
 CMDIFrameWnd* pFrame = new CMainFrame; 
 m_pMainWnd = pFrame; 
 // create main MDI frame window 
 if (!pFrame->LoadFrame(IDR_MAINFRAME)) 
  return FALSE; 
 // try to load shared MDI menus and accelerator table 
 //TODO: add additional member variables and load calls for 
 // additional menu types your application may need 
 HINSTANCE hInst = AfxGetResourceHandle(); 
 m_hMDIMenu  = ::LoadMenu(hInst, 
MAKEINTRESOURCE(IDR_WaveRadioTYPE)); 
 m_hMDIAccel = ::LoadAccelerators(hInst, 
MAKEINTRESOURCE(IDR_WaveRadioTYPE)); 
 // The main window has been initialized, so show and update it 
 pFrame->ShowWindow(m_nCmdShow); 
 pFrame->UpdateWindow(); 
 return TRUE; 
} 
 
 
// CWaveRadioApp message handlers 
 
int CWaveRadioApp::ExitInstance()  
{ 
 //TODO: handle additional resources you may have added 
 if(wr->cardStatus==0)  
 { 
  int error=wr->Close(); 
  if (error) 
  { 
   CString disp; 
   disp.Format("Error: %2d\nWaveRunner card could not be 
closed.",error); 
   AfxMessageBox(disp,MB_OK,0); 
  } 
 } 
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 delete wr; 
 if (m_hMDIMenu != NULL) 
  FreeResource(m_hMDIMenu); 
 if (m_hMDIAccel != NULL) 
  FreeResource(m_hMDIAccel); 
 
 return CWinApp::ExitInstance(); 
} 
 
 
void CWaveRadioApp::OnFileNew()  
{ 
 CMainFrame* pFrame = STATIC_DOWNCAST(CMainFrame, m_pMainWnd); 
 // create a new MDI child window 
 pFrame->CreateNewChild( 
  RUNTIME_CLASS(CChildFrame), IDR_WaveRadioTYPE, m_hMDIMenu, 
m_hMDIAccel); 
} 
 
 
// CAboutDlg dialog used for App About 
 
class CAboutDlg : public CDialog 
{ 
public: 
 CAboutDlg(); 
 
// Dialog Data 
 enum { IDD = IDD_ABOUTBOX }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
// Implementation 
protected: 
 DECLARE_MESSAGE_MAP() 
}; 
 
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 
{ 
} 
 
void CAboutDlg::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
} 
 
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 
END_MESSAGE_MAP() 
 
// App command to run the dialog 
void CWaveRadioApp::OnAppAbout() 
{ 
 CAboutDlg aboutDlg; 
 aboutDlg.DoModal(); 
} 



108

 
 
// CWaveRadioApp message handlers 
 
 
void CWaveRadioApp::OnApplicationsCommspanel() 
{ 
 // TODO: Add your command handler code here 
 CCommsCtrlDlg commsCtrlDlg("Main Comms Control Panel"); 
 commsCtrlDlg.DoModal(); 
} 
 

MAINFRM.H 
// MainFrm.h : interface of the CMainFrame class 
// 
 
 
#pragma once 
class CMainFrame : public CMDIFrameWnd 
{ 
 DECLARE_DYNAMIC(CMainFrame) 
public: 
 CMainFrame(); 
 
// Attributes 
public: 
 
// Operations 
public: 
 
// Overrides 
public: 
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
 
// Implementation 
public: 
 virtual ~CMainFrame(); 
#ifdef _DEBUG 
 virtual void AssertValid() const; 
 virtual void Dump(CDumpContext& dc) const; 
#endif 
 
protected:  // control bar embedded members 
 CStatusBar  m_wndStatusBar; 
 CToolBar    m_wndToolBar; 
 
// Generated message map functions 
protected: 
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 
 DECLARE_MESSAGE_MAP() 
}; 
 
MAINFRM.CPP 
// MainFrm.cpp : implementation of the CMainFrame class 
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// 
 
#include "stdafx.h" 
#include "WaveRadio.h" 
 
#include "MainFrm.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 
// CMainFrame 
 
IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd) 
 
BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd) 
 ON_WM_CREATE() 
END_MESSAGE_MAP() 
 
static UINT indicators[] = 
{ 
 ID_SEPARATOR,           // status line indicator 
 ID_INDICATOR_CAPS, 
 ID_INDICATOR_NUM, 
 ID_INDICATOR_SCRL, 
}; 
 
 
// CMainFrame construction/destruction 
 
CMainFrame::CMainFrame() 
{ 
 // TODO: add member initialization code here 
} 
 
CMainFrame::~CMainFrame() 
{ 
} 
 
 
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct) 
{ 
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1) 
  return -1; 
  
 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | 
WS_VISIBLE | CBRS_TOP 
  | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | 
CBRS_SIZE_DYNAMIC) || 
  !m_wndToolBar.LoadToolBar(IDR_MAINFRAME)) 
 { 
  TRACE0("Failed to create toolbar\n"); 
  return -1;      // fail to create 
 } 
 
 if (!m_wndStatusBar.Create(this) || 
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  !m_wndStatusBar.SetIndicators(indicators, 
    sizeof(indicators)/sizeof(UINT))) 
 { 
  TRACE0("Failed to create status bar\n"); 
  return -1;      // fail to create 
 } 
 // TODO: Delete these three lines if you don't want the toolbar 
to be dockable 
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY); 
 EnableDocking(CBRS_ALIGN_ANY); 
 DockControlBar(&m_wndToolBar); 
 
 return 0; 
} 
 
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs) 
{ 
 if( !CMDIFrameWnd::PreCreateWindow(cs) ) 
  return FALSE; 
 // TODO: Modify the Window class or styles here by modifying 
 //  the CREATESTRUCT cs 
 
 return TRUE; 
} 
 
 
// CMainFrame diagnostics 
 
#ifdef _DEBUG 
void CMainFrame::AssertValid() const 
{ 
 CMDIFrameWnd::AssertValid(); 
} 
 
void CMainFrame::Dump(CDumpContext& dc) const 
{ 
 CMDIFrameWnd::Dump(dc); 
} 
 
#endif //_DEBUG 
 
 
// CMainFrame message handlers 
 
CHILDFRM.H 
// ChildFrm.h : interface of the CChildFrame class 
// 
 
 
#pragma once 
 
#include "ChildView.h" 
 
class CChildFrame : public CMDIChildWnd 
{ 
 DECLARE_DYNCREATE(CChildFrame) 
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public: 
 CChildFrame(); 
 
// Attributes 
public: 
 
// Operations 
public: 
 
// Overrides 
 public: 
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
 virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra, 
AFX_CMDHANDLERINFO* pHandlerInfo); 
 
// Implementation 
public: 
 // view for the client area of the frame. 
 CChildView m_wndView; 
 virtual ~CChildFrame(); 
#ifdef _DEBUG 
 virtual void AssertValid() const; 
 virtual void Dump(CDumpContext& dc) const; 
#endif 
 
// Generated message map functions 
protected: 
 afx_msg void OnFileClose(); 
 afx_msg void OnSetFocus(CWnd* pOldWnd); 
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 
 DECLARE_MESSAGE_MAP() 
}; 
 
CHILDFRM.CPP 
// ChildFrm.cpp : implementation of the CChildFrame class 
// 
#include "stdafx.h" 
#include "WaveRadio.h" 
 
#include "ChildFrm.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 
// CChildFrame 
 
IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd) 
 
BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd) 
 ON_COMMAND(ID_FILE_CLOSE, OnFileClose) 
 ON_WM_SETFOCUS() 
 ON_WM_CREATE() 
END_MESSAGE_MAP() 
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// CChildFrame construction/destruction 
 
CChildFrame::CChildFrame() 
{ 
 // TODO: add member initialization code here 
} 
 
CChildFrame::~CChildFrame() 
{ 
} 
 
 
BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs) 
{ 
 // TODO: Modify the Window class or styles here by modifying the 
CREATESTRUCT cs 
 if( !CMDIChildWnd::PreCreateWindow(cs) ) 
  return FALSE; 
 
 cs.dwExStyle &= ~WS_EX_CLIENTEDGE; 
 cs.lpszClass = AfxRegisterWndClass(0); 
 return TRUE; 
} 
 
 
// CChildFrame diagnostics 
 
#ifdef _DEBUG 
void CChildFrame::AssertValid() const 
{ 
 CMDIChildWnd::AssertValid(); 
} 
 
void CChildFrame::Dump(CDumpContext& dc) const 
{ 
 CMDIChildWnd::Dump(dc); 
} 
 
#endif //_DEBUG 
 
 
// CChildFrame message handlers 
void CChildFrame::OnFileClose()  
{ 
 // To close the frame, just send a WM_CLOSE, which is the 
equivalent 
 // choosing close from the system menu. 
 SendMessage(WM_CLOSE); 
} 
 
int CChildFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)  
{ 
 if (CMDIChildWnd::OnCreate(lpCreateStruct) == -1) 
  return -1; 
  
 // create a view to occupy the client area of the frame 
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 if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,  
  CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL)) 
 { 
  TRACE0("Failed to create view window\n"); 
  return -1; 
 } 
 
 return 0; 
} 
 
void CChildFrame::OnSetFocus(CWnd* pOldWnd)  
{ 
 CMDIChildWnd::OnSetFocus(pOldWnd); 
 
 m_wndView.SetFocus(); 
} 
 
BOOL CChildFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra, 
AFX_CMDHANDLERINFO* pHandlerInfo)  
{ 
 // let the view have first crack at the command 
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo)) 
  return TRUE; 
  
 // otherwise, do default handling 
 return CMDIChildWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo); 
} 
 
CHILDVIEW.H 
// ChildView.h : interface of the CChildView class 
// 
 
 
#pragma once 
 
 
// CChildView window 
 
class CChildView : public CWnd 
{ 
// Construction 
public: 
 CChildView(); 
 
// Attributes 
public: 
 
// Operations 
public: 
 
// Overrides 
 protected: 
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
 
// Implementation 
public: 
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 virtual ~CChildView(); 
 
 // Generated message map functions 
protected: 
 afx_msg void OnPaint(); 
 DECLARE_MESSAGE_MAP() 
}; 
 
CHILDVIEW.CPP 
// ChildView.cpp : implementation of the CChildView class 
// 
 
#include "stdafx.h" 
#include "WaveRadio.h" 
#include "ChildView.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#endif 
 
 
// CChildView 
 
CChildView::CChildView() 
{ 
} 
 
CChildView::~CChildView() 
{ 
} 
 
 
BEGIN_MESSAGE_MAP(CChildView, CWnd) 
 ON_WM_PAINT() 
END_MESSAGE_MAP() 
 
 
 
// CChildView message handlers 
 
BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)  
{ 
 if (!CWnd::PreCreateWindow(cs)) 
  return FALSE; 
 
 cs.dwExStyle |= WS_EX_CLIENTEDGE; 
 cs.style &= ~WS_BORDER; 
 cs.lpszClass = 
AfxRegisterWndClass(CS_HREDRAW|CS_VREDRAW|CS_DBLCLKS,  
  ::LoadCursor(NULL, IDC_ARROW), 
reinterpret_cast<HBRUSH>(COLOR_WINDOW+1), NULL); 
 
 return TRUE; 
} 
 
void CChildView::OnPaint()  
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{ 
 CPaintDC dc(this); // device context for painting 
  
 // TODO: Add your message handler code here 
  
 // Do not call CWnd::OnPaint() for painting messages 
} 

 

COMMSCTRLDLG.H 
#pragma once 
#include "waverunner.h" 
#include "CommsTab1.h" 
#include "CommsTab2.h" 
#include "CommsTab3.h" 
 
// CCommsCtrlDlg 
 
class CCommsCtrlDlg : public CPropertySheet 
{ 
 DECLARE_DYNAMIC(CCommsCtrlDlg) 
 
public: 
 CCommsTab1 commsTab1; 
 CCommsTab2 commsTab2; 
 CCommsTab3 commsTab3; 
 
 
 CCommsCtrlDlg(UINT nIDCaption, CWnd* pParentWnd = NULL, UINT 
iSelectPage = 0); 
 CCommsCtrlDlg(LPCTSTR pszCaption, CWnd* pParentWnd = NULL, UINT 
iSelectPage = 0); 
 virtual ~CCommsCtrlDlg(); 
 afx_msg void OnClose(); 
 
protected: 
 DECLARE_MESSAGE_MAP() 
}; 

 

COMMSCTRLDLG.CPP 
// CommsCtrlDlg.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "CommsCtrlDlg.h" 
 
 
// CCommsCtrlDlg 
 
IMPLEMENT_DYNAMIC(CCommsCtrlDlg, CPropertySheet) 
CCommsCtrlDlg::CCommsCtrlDlg(UINT nIDCaption, CWnd* pParentWnd, UINT 
iSelectPage) 
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage) 
{ 
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} 
 
CCommsCtrlDlg::CCommsCtrlDlg(LPCTSTR pszCaption, CWnd* pParentWnd, UINT 
iSelectPage) 
 :CPropertySheet(pszCaption, pParentWnd, iSelectPage) 
{  
 AddPage(&commsTab1); 
 AddPage(&commsTab2); 
 AddPage(&commsTab3); 
 for (int channel=0; channel<8; channel++) 
 { 
  rxChannelInfo[channel].frequency=0; 
  rxChannelInfo[channel].k=0; 
  rxChannelInfo[channel].datarate=0; 
  rxChannelInfo[channel].fileName=""; 
  txChannelInfo[channel].frequency=0; 
  txChannelInfo[channel].k=0; 
  txChannelInfo[channel].datarate=0; 
  txChannelInfo[channel].fileName=""; 
 } 
} 
 
CCommsCtrlDlg::~CCommsCtrlDlg() 
{ 
} 
 
void CCommsCtrlDlg::OnClose() 
{ 
 if (wr->rxTxEnable) 
 { 
  CString disp; 
  disp="Cannot close panel while channels are active!"; 
  AfxMessageBox(disp,MB_OK,0); 
 } 
 else 
 { 
  CPropertySheet::OnClose(); 
 } 
} 
 
BEGIN_MESSAGE_MAP(CCommsCtrlDlg, CPropertySheet) 
END_MESSAGE_MAP() 
 
 
// CCommsCtrlDlg message handlers 
 

 

COMMSTAB1.H 
#pragma once 
#include "Resource.h" 
 
 
// CCommsTab1 dialog 
class CCommsTab1 : public CPropertyPage 
{ 
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 DECLARE_DYNAMIC(CCommsTab1) 
 
public: 
 CCommsTab1(); 
 virtual ~CCommsTab1(); 
 
// Dialog Data 
 enum { IDD = IDD_COMMSTAB1 }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
public: 
 CEdit* configFile; 
 CComboBox* txCombo; 
 CComboBox* rxCombo; 
 CButton* rxButton; 
 CButton* txButton; 
 CButton* rxTxButton; 
 
 bool rxTxRunning; 
 
 virtual BOOL OnInitDialog(); 
 afx_msg void OnCbnSelchangeRxchannelscombo(); 
 afx_msg void OnCbnSelchangeTxchannelscombo(); 
 afx_msg void OnBnClickedDfgfilefind(); 
 virtual BOOL OnSetActive(); 
 afx_msg void OnBnClickedRxenablebutton(); 
 afx_msg void OnBnClickedTxenablebutton(); 
 virtual void OnOK(); 
 afx_msg void OnBnClickedRxtxenablebutton(); 
 LRESULT OnThreadsFinished(WPARAM wparam, LPARAM lparam); 
}; 
 

 

COMMSTAB1.CPP 
// CommsTab1.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "afxmt.h" 
#include "direct.h" 
#include "CommsCtrlDlg.h" 
#include "CommsTab1.h" 
#include "RxChannel.h" 
#include "TxChannel.h" 
 
// CCommsTab1 dialog 
 
IMPLEMENT_DYNAMIC(CCommsTab1, CPropertyPage) 
CCommsTab1::CCommsTab1() 
 : CPropertyPage(CCommsTab1::IDD) 
{ 
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} 
 
CCommsTab1::~CCommsTab1() 
{ 
} 
 
void CCommsTab1::DoDataExchange(CDataExchange* pDX) 
{ 
 CPropertyPage::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CCommsTab1, CPropertyPage) 
 ON_CBN_SELCHANGE(IDC_RXCHANNELSCOMBO, 
OnCbnSelchangeRxchannelscombo) 
 ON_CBN_SELCHANGE(IDC_TXCHANNELSCOMBO, 
OnCbnSelchangeTxchannelscombo) 
 ON_BN_CLICKED(IDC_CFGFILEFIND, OnBnClickedDfgfilefind) 
 ON_BN_CLICKED(IDC_RXTXENABLEBUTTON, OnBnClickedRxtxenablebutton) 
 ON_MESSAGE(WM_PROCESSES_FINISHED,   OnThreadsFinished) 
END_MESSAGE_MAP() 
 
 
// CCommsTab1 message handlers 
 
BOOL CCommsTab1::OnInitDialog() 
{ 
 CPropertyPage::OnInitDialog(); 
 rxTxRunning=false; 
 configFile = (CEdit*) GetDlgItem(IDC_CFGFILE); 
 configFile->SetWindowText("D:\\WaveRadio\\config.wcf"); 
 
 sprintf(wr->configFile, "config.wcf"); 
 sprintf(wr->configPath, "D:\\WaveRadio"); 
 
 rxCombo = (CComboBox*) GetDlgItem(IDC_RXCHANNELSCOMBO); 
 txCombo = (CComboBox*) GetDlgItem(IDC_TXCHANNELSCOMBO); 
 rxTxButton = (CButton*) GetDlgItem(IDC_RXTXENABLEBUTTON); 
 CString str; 
 for (int i=0; i<9; i++) 
 { 
  str.Format(_T("%d"),i); 
  rxCombo->AddString(str); 
  txCombo->AddString(str); 
 } 
 txChannelStatus[0].status=(CEdit*) GetDlgItem(IDC_TX1STATUS); 
 txChannelStatus[0].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX1PROGRESS); 
 txChannelStatus[1].status=(CEdit*) GetDlgItem(IDC_TX2STATUS); 
 txChannelStatus[1].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX2PROGRESS); 
 txChannelStatus[2].status=(CEdit*) GetDlgItem(IDC_TX3STATUS); 
 txChannelStatus[2].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX3PROGRESS); 
 txChannelStatus[3].status=(CEdit*) GetDlgItem(IDC_TX4STATUS); 
 txChannelStatus[3].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX4PROGRESS); 
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 txChannelStatus[4].status=(CEdit*) GetDlgItem(IDC_TX5STATUS); 
 txChannelStatus[4].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX5PROGRESS); 
 txChannelStatus[5].status=(CEdit*) GetDlgItem(IDC_TX6STATUS); 
 txChannelStatus[5].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX6PROGRESS); 
 txChannelStatus[6].status=(CEdit*) GetDlgItem(IDC_TX7STATUS); 
 txChannelStatus[6].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX7PROGRESS); 
 txChannelStatus[7].status=(CEdit*) GetDlgItem(IDC_TX8STATUS); 
 txChannelStatus[7].progress=(CProgressCtrl*) 
GetDlgItem(IDC_TX8PROGRESS); 
 rxChannelStatus[0].status=(CEdit*) GetDlgItem(IDC_RX1STATUS); 
 rxChannelStatus[0].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX1PROGRESS); 
 rxChannelStatus[1].status=(CEdit*) GetDlgItem(IDC_RX2STATUS); 
 rxChannelStatus[1].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX2PROGRESS); 
 rxChannelStatus[2].status=(CEdit*) GetDlgItem(IDC_RX3STATUS); 
 rxChannelStatus[2].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX3PROGRESS); 
 rxChannelStatus[3].status=(CEdit*) GetDlgItem(IDC_RX4STATUS); 
 rxChannelStatus[3].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX4PROGRESS); 
 rxChannelStatus[4].status=(CEdit*) GetDlgItem(IDC_RX5STATUS); 
 rxChannelStatus[4].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX5PROGRESS); 
 rxChannelStatus[5].status=(CEdit*) GetDlgItem(IDC_RX6STATUS); 
 rxChannelStatus[5].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX6PROGRESS); 
 rxChannelStatus[6].status=(CEdit*) GetDlgItem(IDC_RX7STATUS); 
 rxChannelStatus[6].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX7PROGRESS); 
 rxChannelStatus[7].status=(CEdit*) GetDlgItem(IDC_RX8STATUS); 
 rxChannelStatus[7].progress=(CProgressCtrl*) 
GetDlgItem(IDC_RX8PROGRESS); 
 for (int channel=0; channel<8;channel++) 
 { 
  txChannelStatus[channel].status->SetWindowText("Inactive"); 
  txChannelStatus[channel].progress->SetRange(0,100); 
  txChannelStatus[channel].progress->SetPos(0); 
  rxChannelStatus[channel].status->SetWindowText("Inactive"); 
  rxChannelStatus[channel].progress->SetRange(0,100); 
  rxChannelStatus[channel].progress->SetPos(0); 
 } 
 rxCombo->SetCurSel(0); 
 txCombo->SetCurSel(0); 
  
 // TODO:  Add extra initialization here 
 
 return TRUE;  // return TRUE unless you set the focus to a 
control 
 // EXCEPTION: OCX Property Pages should return FALSE 
} 
 
void CCommsTab1::OnCbnSelchangeRxchannelscombo() 
{ 
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 // TODO: Add your control notification handler code here 
 wr->rxChannelsCount=rxCombo->GetCurSel(); 
 if (wr->rxChannelsCount>0) 
 { 
  if(wr->rxChannelsCount>wr->rxChannelsConfigured) 
  { 
   CString disp; 
   disp.Format("Rx Channels %d - %d not configured.", 
            wr->rxChannelsConfigured+1,wr-
>rxChannelsCount); 
   AfxMessageBox(disp,MB_OK,0); 
  } 
 } 
 if ((wr->rxChannelsCount+wr->txChannelsCount>0)  
  & (wr->rxChannelsCount<=wr->rxChannelsConfigured) 
  & (wr->txChannelsCount<=wr->txChannelsConfigured)) 
 { 
  rxTxButton->EnableWindow(true); 
 } 
 else 
 { 
  rxTxButton->EnableWindow(false); 
 } 
} 
 
 
void CCommsTab1::OnCbnSelchangeTxchannelscombo() 
{ 
 // TODO: Add your control notification handler code here 
 wr->txChannelsCount=txCombo->GetCurSel(); 
 if (wr->txChannelsCount>0) 
 { 
  if(wr->txChannelsCount>wr->txChannelsConfigured) 
  { 
   CString disp; 
   disp.Format("Tx Channels %d - %d not configured.", 
            wr->txChannelsConfigured+1,wr-
>txChannelsCount); 
   AfxMessageBox(disp,MB_OK,0); 
  } 
 } 
 if ((wr->rxChannelsCount+wr->txChannelsCount>0)  
  & (wr->rxChannelsCount<=wr->rxChannelsConfigured) 
  & (wr->txChannelsCount<=wr->txChannelsConfigured)) 
 { 
  rxTxButton->EnableWindow(true); 
 } 
 else 
 { 
  rxTxButton->EnableWindow(false); 
 } 
} 
 
 
void CCommsTab1::OnBnClickedDfgfilefind() 
{ 
 // TODO: Add your control notification handler code here 
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 LPCSTR filefilter="WaveRunner Configuration files\0 *.WCF\0 All 
files\0 *.*\0"; 
 CFileDialog filefind(true); 
 filefind.m_ofn.lpstrTitle="Configuration file to retrieve"; 
 filefind.m_ofn.lpstrDefExt="WCF"; 
 filefind.m_ofn.lpstrFilter=filefilter; 
 if (filefind.DoModal()==IDOK) 
 { 
  configFile->SetWindowText(filefind.GetPathName()); 
  CString buffer=filefind.GetFileName(); 
  for (int letter=0; letter<buffer.GetLength(); letter++) 
  { 
   wr->configFile[letter]=buffer[letter]; 
  } 
  wr->configFile[letter]=0; 
  int fileLength=buffer.GetLength(); 
  buffer=filefind.GetPathName(); 
  int pathLength=buffer.GetLength()-fileLength-1; 
  int pos=0; 
  for (int letter=0; letter<pathLength; letter++) 
  { 
   wr->configPath[pos]=buffer[letter]; 
   pos++; 
   if (buffer[letter]==92) 
   { 
    wr->configPath[pos]=92; 
    pos++; 
   } 
  } 
  wr->configPath[pos]=0;   
 } 
} 
 
BOOL CCommsTab1::OnSetActive() 
{ 
 // TODO: Add your specialized code here and/or call the base 
class 
 int channelsCount, channelsConfigured; 
 channelsCount=wr->txChannelsCount+wr->rxChannelsCount; 
 channelsConfigured=wr->txChannelsConfigured+wr-
>rxChannelsConfigured; 
 if (channelsCount>0) 
 { 
  if (channelsCount>channelsConfigured) 
  { 
   CString disp; 
   disp.Format("Some Channels are not configured."); 
   AfxMessageBox(disp,MB_OK,0); 
   rxTxButton->EnableWindow(false); 
  } 
  else 
  { 
   rxTxButton->EnableWindow(true); 
  } 
 } 
 else 
 { 
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  rxTxButton->EnableWindow(false); 
 } 
 return CPropertyPage::OnSetActive(); 
} 
 
 
void CCommsTab1::OnBnClickedRxtxenablebutton() 
{ 
 // TODO: Add your control notification handler code here 
 if (!rxTxRunning) 
 { 
  rxTxButton->EnableWindow(false); 
  txCombo->EnableWindow(false); 
  rxCombo->EnableWindow(false); 
  wr->rxTxEnable=true; 
  rxTxRunning=true; 
  AfxBeginThread(mainRxTxThread,this); 
  rxTxButton->SetWindowText("Stop Rx/Tx"); 
  rxTxButton->EnableWindow(true); 
 } 
 else 
 { 
  rxTxButton->EnableWindow(false); 
  wr->rxTxEnable=false; 
  for (int channel=0; channel<wr->rxChannelsCount; channel++)  
  { 
   rxBufferFull[channel].SetEvent(); 
  } 
  for (int channel=0; channel<wr->txChannelsCount; channel++) 
  { 
   txBufferEmpty[channel].SetEvent(); 
  } 
  MSG message; 
  unsigned short threadsRunning=0; 
  while(threadsRunning>0) 
  { 
   if (::PeekMessage(&message,NULL,0,0,PM_REMOVE)) 
   { 
    ::TranslateMessage(&message); 
    ::DispatchMessage(&message); 
   } 
   threadsRunning=wr->rxThreadsRunning+wr-
>txThreadsRunning; 
  } 
  txCombo->EnableWindow(true); 
  rxCombo->EnableWindow(true); 
  rxTxButton->SetWindowText("Start Rx/Tx"); 
  rxTxButton->EnableWindow(true); 
  rxTxRunning=false; 
 } 
} 
 
 
void CCommsTab1::OnOK() 
{ 
 // TODO: Add your specialized code here and/or call the base 
class 
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 if (rxTxRunning) 
 { 
   CString disp; 
   disp.Format("Cannot close panel while channels are 
active !!!"); 
   AfxMessageBox(disp,MB_OK,0); 
 } 
 else 
 { 
        CPropertyPage::OnOK(); 
 } 
} 
 
 
LRESULT CCommsTab1::OnThreadsFinished(WPARAM wparam, LPARAM lparam) 
{ 
 OnBnClickedRxtxenablebutton(); 
 return 0; 
} 
 

 

COMMSTAB2.H 
#pragma once 
#include "Resource.h" 
 
// CCommsTab2 dialog 
 
class CCommsTab2 : public CPropertyPage 
{ 
 DECLARE_DYNAMIC(CCommsTab2) 
 
 CEdit* rxFrequency[8]; 
 CComboBox* rxModulation [8]; 
 CEdit* rxSymbolRate[8]; 
 CEdit* rxFile[8]; 
 CButton* findRxFile[8]; 
 
 void SetRxChannelFileName(short rxChanNum); 
 void GetControlPointers(); 
 void InitializeControls(); 
 void EnableControls(); 
 
public: 
 CCommsTab2(); 
 virtual ~CCommsTab2(); 
 
// Dialog Data 
 enum { IDD = IDD_COMMSTAB2 }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
public: 



124

 virtual BOOL OnInitDialog(); 
 virtual BOOL OnSetActive(); 
 afx_msg void OnBnClickedFindfile1(); 
 afx_msg void OnBnClickedFindfile2(); 
 afx_msg void OnBnClickedFindfile3(); 
 afx_msg void OnBnClickedFindfile4(); 
 afx_msg void OnBnClickedFindfile5(); 
 afx_msg void OnBnClickedFindfile6(); 
 afx_msg void OnBnClickedFindfile7(); 
 afx_msg void OnBnClickedFindfile8(); 
 virtual BOOL OnKillActive(); 
}; 
 

 

COMMSTAB2.CPP 
// CommsTab2.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "CommsTab2.h" 
 
 
// CCommsTab2 dialog 
 
IMPLEMENT_DYNAMIC(CCommsTab2, CPropertyPage) 
CCommsTab2::CCommsTab2() 
 : CPropertyPage(CCommsTab2::IDD) 
{ 
} 
 
CCommsTab2::~CCommsTab2() 
{ 
} 
 
void CCommsTab2::DoDataExchange(CDataExchange* pDX) 
{ 
 CPropertyPage::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CCommsTab2, CPropertyPage) 
 ON_BN_CLICKED(IDC_FINDFILE1, OnBnClickedFindfile1) 
 ON_BN_CLICKED(IDC_FINDFILE2, OnBnClickedFindfile2) 
 ON_BN_CLICKED(IDC_FINDFILE3, OnBnClickedFindfile3) 
 ON_BN_CLICKED(IDC_FINDFILE4, OnBnClickedFindfile4) 
 ON_BN_CLICKED(IDC_FINDFILE5, OnBnClickedFindfile5) 
 ON_BN_CLICKED(IDC_FINDFILE6, OnBnClickedFindfile6) 
 ON_BN_CLICKED(IDC_FINDFILE7, OnBnClickedFindfile7) 
 ON_BN_CLICKED(IDC_FINDFILE8, OnBnClickedFindfile8) 
END_MESSAGE_MAP() 
 
 
// CCommsTab2 message handlers 
 
BOOL CCommsTab2::OnInitDialog() 
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{ 
 CPropertyPage::OnInitDialog(); 
 
 // TODO:  Add extra initialization here 
 GetControlPointers(); 
 InitializeControls(); 
 EnableControls(); 
 return TRUE;  // return TRUE unless you set the focus to a 
control 
 // EXCEPTION: OCX Property Pages should return FALSE 
} 
 
 
BOOL CCommsTab2::OnSetActive() 
{ 
 // TODO: Add your specialized code here and/or call the base 
class 
 EnableControls(); 
 
 return CPropertyPage::OnSetActive(); 
} 
 
 
void CCommsTab2::GetControlPointers() 
{ 
 rxFrequency[0] = (CEdit*) GetDlgItem(IDC_FREQEDIT1); 
 rxFrequency[1] = (CEdit*) GetDlgItem(IDC_FREQEDIT2); 
 rxFrequency[2] = (CEdit*) GetDlgItem(IDC_FREQEDIT3); 
 rxFrequency[3] = (CEdit*) GetDlgItem(IDC_FREQEDIT4); 
 rxFrequency[4] = (CEdit*) GetDlgItem(IDC_FREQEDIT5); 
 rxFrequency[5] = (CEdit*) GetDlgItem(IDC_FREQEDIT6); 
 rxFrequency[6] = (CEdit*) GetDlgItem(IDC_FREQEDIT7); 
 rxFrequency[7] = (CEdit*) GetDlgItem(IDC_FREQEDIT8); 
 
 rxModulation[0] = (CComboBox*) GetDlgItem(IDC_MODULATION1); 
 rxModulation[1] = (CComboBox*) GetDlgItem(IDC_MODULATION2); 
 rxModulation[2] = (CComboBox*) GetDlgItem(IDC_MODULATION3); 
 rxModulation[3] = (CComboBox*) GetDlgItem(IDC_MODULATION4); 
 rxModulation[4] = (CComboBox*) GetDlgItem(IDC_MODULATION5); 
 rxModulation[5] = (CComboBox*) GetDlgItem(IDC_MODULATION6); 
 rxModulation[6] = (CComboBox*) GetDlgItem(IDC_MODULATION7); 
 rxModulation[7] = (CComboBox*) GetDlgItem(IDC_MODULATION8); 
 
 rxSymbolRate[0] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE1); 
 rxSymbolRate[1] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE2); 
 rxSymbolRate[2] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE3); 
 rxSymbolRate[3] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE4); 
 rxSymbolRate[4] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE5); 
 rxSymbolRate[5] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE6); 
 rxSymbolRate[6] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE7); 
 rxSymbolRate[7] = (CEdit*) GetDlgItem(IDC_SYMBOLRATE8); 
 
 rxFile[0] = (CEdit*) GetDlgItem(IDC_DESTFILE1); 
 rxFile[1] = (CEdit*) GetDlgItem(IDC_DESTFILE2); 
 rxFile[2] = (CEdit*) GetDlgItem(IDC_DESTFILE3); 
 rxFile[3] = (CEdit*) GetDlgItem(IDC_DESTFILE4); 
 rxFile[4] = (CEdit*) GetDlgItem(IDC_DESTFILE5); 
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 rxFile[5] = (CEdit*) GetDlgItem(IDC_DESTFILE6); 
 rxFile[6] = (CEdit*) GetDlgItem(IDC_DESTFILE7); 
 rxFile[7] = (CEdit*) GetDlgItem(IDC_DESTFILE8); 
  
 findRxFile[0] = (CButton*) GetDlgItem(IDC_FINDFILE1); 
 findRxFile[1] = (CButton*) GetDlgItem(IDC_FINDFILE2); 
 findRxFile[2] = (CButton*) GetDlgItem(IDC_FINDFILE3); 
 findRxFile[3] = (CButton*) GetDlgItem(IDC_FINDFILE4); 
 findRxFile[4] = (CButton*) GetDlgItem(IDC_FINDFILE5); 
 findRxFile[5] = (CButton*) GetDlgItem(IDC_FINDFILE6); 
 findRxFile[6] = (CButton*) GetDlgItem(IDC_FINDFILE7); 
 findRxFile[7] = (CButton*) GetDlgItem(IDC_FINDFILE8); 
 
} 
 
 
void CCommsTab2::InitializeControls() 
{ 
 CString fileName; 
 for (int i=0;i<8;i++) 
 { 
  fileName.Format("D:\\WaveRadio\\RxChannel #%1u.wdf",i+1); 
  rxFile[i]->SetWindowText(fileName); 
  rxFrequency[i]->SetWindowText("23500000"); 
  rxModulation[i]->AddString("Test Tone"); 
  rxModulation[i]->AddString("QPSK"); 
  rxModulation[i]->AddString("8-PSK"); 
  rxModulation[i]->AddString("16-PSK"); 
  rxModulation[i]->SetCurSel(1); 
  rxSymbolRate[i]->SetWindowText("4"); 
 } 
} 
 
 
void CCommsTab2::EnableControls() 
{ 
 for (int i=0; i<wr->rxChannelsCount; i++) 
 { 
  rxFrequency[i]->EnableWindow(true); 
  rxModulation[i]->EnableWindow(true); 
  rxSymbolRate[i]->EnableWindow(true); 
  rxFile[i]->EnableWindow(true); 
  findRxFile[i]->EnableWindow(true); 
 } 
 for (int i=wr->rxChannelsCount; i<8; i++) 
 { 
  rxFrequency[i]->EnableWindow(false); 
  rxModulation[i]->EnableWindow(false); 
  rxSymbolRate[i]->EnableWindow(false); 
  rxFile[i]->EnableWindow(false); 
  findRxFile[i]->EnableWindow(false); 
 } 
} 
 
 
void CCommsTab2::SetRxChannelFileName(short rxChanNum) 
{  



127

 LPCSTR filefilter="WaveRunner Data files\0 *.WDC\0 All files\0 
*.*\0"; 
 CFileDialog filefind(false); 
 filefind.m_ofn.lpstrTitle="File to save the received data"; 
 filefind.m_ofn.lpstrDefExt="WDC"; 
 filefind.m_ofn.lpstrFilter=filefilter; 
 if (filefind.DoModal()==IDOK) 
 { 
  rxFile[rxChanNum]->SetWindowText(filefind.GetPathName()); 
 } 
 else 
 { 
  rxFile[rxChanNum]->SetWindowText(""); 
 } 
} 
 
 
void CCommsTab2::OnBnClickedFindfile1() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(0); 
} 
 
void CCommsTab2::OnBnClickedFindfile2() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(1); 
} 
 
void CCommsTab2::OnBnClickedFindfile3() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(2); 
} 
 
void CCommsTab2::OnBnClickedFindfile4() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(3); 
} 
 
void CCommsTab2::OnBnClickedFindfile5() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(4); 
} 
 
void CCommsTab2::OnBnClickedFindfile6() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(5); 
} 
 
void CCommsTab2::OnBnClickedFindfile7() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(6); 
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} 
 
void CCommsTab2::OnBnClickedFindfile8() 
{ 
 // TODO: Add your control notification handler code here 
 SetRxChannelFileName(7); 
} 
 
BOOL CCommsTab2::OnKillActive() 
{ 
 // TODO: Add your specialized code here and/or call the base 
class 
 for (int rxCh=0; rxCh<wr->rxChannelsCount; rxCh++) 
 { 
  LPTSTR buffer=new char[80]; 
  rxFrequency[rxCh]->GetWindowText(buffer, 9); 
  rxChannelInfo[rxCh].frequency=atol(buffer); 
  rxChannelInfo[rxCh].k=rxModulation[rxCh]->GetCurSel()+1; 
  rxSymbolRate[rxCh]->GetWindowText(buffer, 9); 
  rxChannelInfo[rxCh].datarate=atol(buffer); 
  rxFile[rxCh]->GetWindowText(buffer,80); 
  rxChannelInfo[rxCh].fileName=buffer; 
  if (wr->rxChannelsConfigured<wr->rxChannelsCount) 
  { 
            wr->rxChannelsConfigured=wr->rxChannelsCount; 
  } 
 } 
 return CPropertyPage::OnKillActive(); 
} 
 

 

COMMSTAB3.H 
#pragma once 
#include "Resource.h" 
 
// CCommsTab3 dialog 
 
class CCommsTab3 : public CPropertyPage 
{ 
 DECLARE_DYNAMIC(CCommsTab3) 
 
 CEdit* txFrequency[8]; 
 CComboBox* txModulation[8]; 
 CEdit* txSymbolRate[8]; 
 CEdit* txFile[8]; 
 CButton* findTxFile[8]; 
 CComboBox* attenuation[8]; 
 
 void SetTxChannelFileName(short txChanNum); 
 void GetControlPointers(); 
 void InitializeControls(); 
 void EnableControls(); 
 
public: 
 CCommsTab3(); 
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 virtual ~CCommsTab3(); 
 
// Dialog Data 
 enum { IDD = IDD_COMMSTAB3 }; 
 
protected: 
 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 
support 
 
 DECLARE_MESSAGE_MAP() 
public: 
 virtual BOOL OnInitDialog(); 
 virtual BOOL OnSetActive(); 
 afx_msg void OnBnClickedFilefind1(); 
 afx_msg void OnBnClickedFilefind2(); 
 afx_msg void OnBnClickedFilefind3(); 
 afx_msg void OnBnClickedFilefind4(); 
 afx_msg void OnBnClickedFilefind5(); 
 afx_msg void OnBnClickedFilefind6(); 
 afx_msg void OnBnClickedFilefind7(); 
 afx_msg void OnBnClickedFilefind8(); 
 virtual BOOL OnKillActive(); 
}; 
 

 

COMMSTAB3.CPP 
// CommsTab3.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "CommsTab3.h" 
#include "math.h" 
 
 
// CCommsTab3 dialog 
 
IMPLEMENT_DYNAMIC(CCommsTab3, CPropertyPage) 
CCommsTab3::CCommsTab3() 
 : CPropertyPage(CCommsTab3::IDD) 
{ 
} 
 
CCommsTab3::~CCommsTab3() 
{ 
} 
 
void CCommsTab3::DoDataExchange(CDataExchange* pDX) 
{ 
 CPropertyPage::DoDataExchange(pDX); 
} 
 
 
BEGIN_MESSAGE_MAP(CCommsTab3, CPropertyPage) 
 ON_BN_CLICKED(IDC_FILEFIND1, OnBnClickedFilefind1) 
 ON_BN_CLICKED(IDC_FILEFIND2, OnBnClickedFilefind2) 
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 ON_BN_CLICKED(IDC_FILEFIND3, OnBnClickedFilefind3) 
 ON_BN_CLICKED(IDC_FILEFIND4, OnBnClickedFilefind4) 
 ON_BN_CLICKED(IDC_FILEFIND5, OnBnClickedFilefind5) 
 ON_BN_CLICKED(IDC_FILEFIND6, OnBnClickedFilefind6) 
 ON_BN_CLICKED(IDC_FILEFIND7, OnBnClickedFilefind7) 
 ON_BN_CLICKED(IDC_FILEFIND8, OnBnClickedFilefind8) 
END_MESSAGE_MAP() 
 
 
void CCommsTab3::GetControlPointers() 
{ 
 txFrequency[0] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY1); 
 txFrequency[1] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY2); 
 txFrequency[2] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY3); 
 txFrequency[3] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY4); 
 txFrequency[4] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY5); 
 txFrequency[5] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY6); 
 txFrequency[6] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY7); 
 txFrequency[7] = (CEdit*) GetDlgItem(IDC_TXFREQUENCY8); 
 
 txModulation[0] = (CComboBox*) GetDlgItem(IDC_TXMODULATION1); 
 txModulation[1] = (CComboBox*) GetDlgItem(IDC_TXMODULATION2); 
 txModulation[2] = (CComboBox*) GetDlgItem(IDC_TXMODULATION3); 
 txModulation[3] = (CComboBox*) GetDlgItem(IDC_TXMODULATION4); 
 txModulation[4] = (CComboBox*) GetDlgItem(IDC_TXMODULATION5); 
 txModulation[5] = (CComboBox*) GetDlgItem(IDC_TXMODULATION6); 
 txModulation[6] = (CComboBox*) GetDlgItem(IDC_TXMODULATION7); 
 txModulation[7] = (CComboBox*) GetDlgItem(IDC_TXMODULATION8); 
 
 txSymbolRate[0] = (CEdit*) GetDlgItem(IDC_TXDATARATE1); 
 txSymbolRate[1] = (CEdit*) GetDlgItem(IDC_TXDATARATE2); 
 txSymbolRate[2] = (CEdit*) GetDlgItem(IDC_TXDATARATE3); 
 txSymbolRate[3] = (CEdit*) GetDlgItem(IDC_TXDATARATE4); 
 txSymbolRate[4] = (CEdit*) GetDlgItem(IDC_TXDATARATE5); 
 txSymbolRate[5] = (CEdit*) GetDlgItem(IDC_TXDATARATE6); 
 txSymbolRate[6] = (CEdit*) GetDlgItem(IDC_TXDATARATE7); 
 txSymbolRate[7] = (CEdit*) GetDlgItem(IDC_TXDATARATE8); 
 
 txFile[0] = (CEdit*) GetDlgItem(IDC_TXFILE1); 
 txFile[1] = (CEdit*) GetDlgItem(IDC_TXFILE2); 
 txFile[2] = (CEdit*) GetDlgItem(IDC_TXFILE3); 
 txFile[3] = (CEdit*) GetDlgItem(IDC_TXFILE4); 
 txFile[4] = (CEdit*) GetDlgItem(IDC_TXFILE5); 
 txFile[5] = (CEdit*) GetDlgItem(IDC_TXFILE6); 
 txFile[6] = (CEdit*) GetDlgItem(IDC_TXFILE7); 
 txFile[7] = (CEdit*) GetDlgItem(IDC_TXFILE8); 
 
 findTxFile[0] = (CButton*) GetDlgItem(IDC_FILEFIND1); 
 findTxFile[1] = (CButton*) GetDlgItem(IDC_FILEFIND2); 
 findTxFile[2] = (CButton*) GetDlgItem(IDC_FILEFIND3); 
 findTxFile[3] = (CButton*) GetDlgItem(IDC_FILEFIND4); 
 findTxFile[4] = (CButton*) GetDlgItem(IDC_FILEFIND5); 
 findTxFile[5] = (CButton*) GetDlgItem(IDC_FILEFIND6); 
 findTxFile[6] = (CButton*) GetDlgItem(IDC_FILEFIND7); 
 findTxFile[7] = (CButton*) GetDlgItem(IDC_FILEFIND8); 
 
 attenuation[0] = (CComboBox*) GetDlgItem(IDC_ATTN1); 
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 attenuation[1] = (CComboBox*) GetDlgItem(IDC_ATTN2); 
 attenuation[2] = (CComboBox*) GetDlgItem(IDC_ATTN3); 
 attenuation[3] = (CComboBox*) GetDlgItem(IDC_ATTN4); 
 attenuation[4] = (CComboBox*) GetDlgItem(IDC_ATTN5); 
 attenuation[5] = (CComboBox*) GetDlgItem(IDC_ATTN6); 
 attenuation[6] = (CComboBox*) GetDlgItem(IDC_ATTN7); 
 attenuation[7] = (CComboBox*) GetDlgItem(IDC_ATTN8); 
} 
 
 
void CCommsTab3::InitializeControls() 
{ 
 CString fileName; 
 for (int i=0;i<8;i++) 
 { 
  fileName.Format("TxChannel #%1i.wdf",i+1); 
  txFile[i]->SetWindowText(fileName); 
  txFrequency[i]->SetWindowText("23500000"); 
  txModulation[i]->AddString("Test Tone"); 
  txModulation[i]->AddString("QPSK"); 
  txModulation[i]->AddString("8-PSK"); 
  txModulation[i]->AddString("16-PSK"); 
  txModulation[i]->SetCurSel(1); 
  txSymbolRate[i]->SetWindowText("58125"); 
  char attn[3]; 
  for (int j=0;j<93;j=j+6) 
  { 
   sprintf(attn,"%2u",j); 
   attenuation[i]->AddString(attn); 
  } 
  attenuation[i]->SetCurSel(2); 
 } 
} 
 
 
void CCommsTab3::EnableControls() 
{ 
 for (int i=0; i<wr->txChannelsCount; i++) 
 { 
  txFrequency[i]->EnableWindow(true); 
  txModulation[i]->EnableWindow(true); 
  txSymbolRate[i]->EnableWindow(true); 
  txFile[i]->EnableWindow(true); 
  findTxFile[i]->EnableWindow(true); 
  attenuation[i]->EnableWindow(true); 
 } 
 for (int i=wr->txChannelsCount; i<8; i++) 
 { 
  txFrequency[i]->EnableWindow(false); 
  txModulation[i]->EnableWindow(false); 
  txSymbolRate[i]->EnableWindow(false); 
  txFile[i]->EnableWindow(false); 
  findTxFile[i]->EnableWindow(false); 
  attenuation[i]->EnableWindow(false); 
 } 
} 
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void CCommsTab3::SetTxChannelFileName(short txChanNum) 
{  
 LPCSTR filefilter="WaveRunner Data files\0 *.WDF\0"; 
 CFileDialog filefind(true); 
 filefind.m_ofn.lpstrTitle="File to retrieve the transmission 
data"; 
 filefind.m_ofn.lpstrDefExt="WDF"; 
 filefind.m_ofn.lpstrFilter=filefilter; 
 if (filefind.DoModal()==IDOK) 
 { 
  txFile[txChanNum]->SetWindowText(filefind.GetPathName()); 
 } 
 else 
 { 
  txFile[txChanNum]->SetWindowText(""); 
 } 
} 
 
// CCommsTab3 message handlers 
 
BOOL CCommsTab3::OnInitDialog() 
{ 
 CPropertyPage::OnInitDialog(); 
 
 // TODO:  Add extra initialization here 
 GetControlPointers(); 
 InitializeControls(); 
 EnableControls(); 
 
 return TRUE;  // return TRUE unless you set the focus to a 
control 
 // EXCEPTION: OCX Property Pages should return FALSE 
} 
 
BOOL CCommsTab3::OnSetActive() 
{ 
 // TODO: Add your specialized code here and/or call the base 
class 
 EnableControls(); 
 
 return CPropertyPage::OnSetActive(); 
} 
 
 
void CCommsTab3::OnBnClickedFilefind1() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(0); 
} 
 
void CCommsTab3::OnBnClickedFilefind2() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(1); 
} 
 
void CCommsTab3::OnBnClickedFilefind3() 
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{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(2); 
} 
 
void CCommsTab3::OnBnClickedFilefind4() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(3); 
 
} 
 
void CCommsTab3::OnBnClickedFilefind5() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(4); 
 
} 
 
void CCommsTab3::OnBnClickedFilefind6() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(5); 
 
} 
 
void CCommsTab3::OnBnClickedFilefind7() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(6); 
 
} 
 
void CCommsTab3::OnBnClickedFilefind8() 
{ 
 // TODO: Add your control notification handler code here 
 SetTxChannelFileName(7); 
 
} 
 
BOOL CCommsTab3::OnKillActive() 
{ 
 // TODO: Add your specialized code here and/or call the base 
class 
 for (int txCh=0; txCh<wr->txChannelsCount; txCh++) 
 { 
  char* buffer=new char[80]; 
  txFrequency[txCh]->GetWindowText(buffer, 9); 
  txChannelInfo[txCh].frequency=atol(buffer); 
  txChannelInfo[txCh].k=txModulation[txCh]->GetCurSel()+1; 
  txSymbolRate[txCh]->GetWindowText(buffer, 9); 
  txChannelInfo[txCh].datarate=atol(buffer); 
  txFile[txCh]->GetWindowText(buffer,80); 
  txChannelInfo[txCh].fileName=buffer; 
  attenuation[txCh]->GetWindowText(buffer,9); 
  txChannelInfo[txCh].attenuation=pow(2, atol(buffer)/6); 
  if (wr->txChannelsConfigured<wr->txChannelsCount) 
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  { 
            wr->txChannelsConfigured=wr->txChannelsCount; 
  } 
 } 
 return CPropertyPage::OnKillActive(); 
} 
 

 

GLOBALVARS.H 
#include "afxmt.h" 
#include "WaveRunner.h" 
 #define USERISR0 
 //#define DEVICE_NUM 0 
 
 #include "pmcradioi.h" 
 //#include "pmcradio_memmap.h" 
 
#ifndef TYPES_DEFINED 
    #define TYPES_DEFINED 
 
    #define WM_PROCESSES_FINISHED WM_USER + 1 
  
    const float pi=3.1415926535; 
  
 struct ChannelStatus 
 { 
  CEdit* status; 
  CProgressCtrl* progress; 
 }; 
 
 struct ChannelInfo{ 
  unsigned long frequency; 
  unsigned short k; 
  unsigned int datarate; 
  CString fileName; 
  unsigned short attenuation; 
  bool FIFOInterruptMask; 
  unsigned short FIFOInterruptStatus; 
 }; 
#endif 
 
//The one and only object of the WaveRunner card 
extern WaveRunner* wr; 
 
//Global Arrays storing the channel data and status 
extern ChannelStatus txChannelStatus[8]; 
extern ChannelStatus rxChannelStatus[8]; 
extern ChannelInfo txChannelInfo[8]; 
extern ChannelInfo rxChannelInfo[8]; 
 
//The main and the Rx/Tx threads  
extern UINT mainRxTxThread(LPVOID pParam); 
extern UINT rxThread(LPVOID pParam); 
extern UINT txThread(LPVOID pParam); 
extern CString Modulate(int txChannelNumber); 
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extern void Demodulate(int rxChannelNumber, bool createLog); 
 
extern CEvent txBufferEmpty[WaveRunner::maxChannels]; 
extern CEvent rxBufferFull[WaveRunner::maxChannels]; 
 

 

WAVERUNNER.H 
#pragma once 
#include "RxChannel.h" 
#include "TxChannel.h" 
 
//Static variable defining if the WaveRunner  
//Singleton class has been initiated 
 
class WaveRunner 
{ 
private: 
 WaveRunner(void); 
 void InitVariables(void); 
 
public: 
 //The maximum number of channels 
 const static unsigned short maxChannels=8; 
 // The number of 32 bit samples per block 
 const static unsigned short blockSize=1024; 
 const static unsigned long rxClockFrequency=93000000; 
 const static unsigned long txClockFrequency=93000000; 
  
 unsigned long* firmwareRevisionDate; 
 char configPath[80]; 
 char configFile[80]; 
 int cardStatus; 
 bool configured; 
 
 // DMA addresses 
 unsigned long lDMAvAddress; 
 unsigned long* DMA_virtual_Address; 
 unsigned long lDMApAddress; 
 unsigned long* DMA_physical_Address; 
 unsigned long txControl; 
 unsigned long rxControl; 
 unsigned long interruptMask; 
 unsigned long autoDMACtrl; 
 unsigned long txFIFOmask; 
 unsigned long rxFIFOmask; 
  
 //Threads status 
 unsigned int threadsReady; 
 unsigned short rxThreadsRunning; 
 unsigned short txThreadsRunning; 
  
 // Status variables 
 bool rxTxEnable; 
 
 //Channel Pointers 
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 RxChannel* rxChannel[8]; 
 TxChannel* txChannel[8]; 
 
 //Channel Parameters 
 unsigned long rxBlocksPerGroup; 
 unsigned long rxGroupsPerChannel; 
 unsigned long rxThresholdGroups; 
 unsigned long rxChannelSize; 
 unsigned long txBlocksPerGroup; 
 unsigned long txGroupsPerChannel; 
 unsigned long txThresholdGroups; 
 unsigned long txChannelSize; 
 unsigned long memorySize; 
 
 unsigned long maxAmplitude; 
 
  
 //Channels status 
 unsigned short txChannelsCount; 
 unsigned short rxChannelsCount; 
 unsigned short rxChannelsConfigured; 
 unsigned short txChannelsConfigured; 
 
 static WaveRunner* getNewWaveRunner(); 
 int Open(); 
 int Close(); 
 int Configure(); 
 int enableTx(void); 
 int disableTx(void); 
 int enableRx(void); 
 int disableRx(void); 
 int enableRxTx(); 
 int disableRxTx(); 
 int enableInterrupts(); 
 int disableInterrupts(); 
 ~WaveRunner(void); 
}; 
 

 

WAVERUNNER.CPP 
#include "StdAfx.h" 
#include "direct.h" 
#include "math.h" 
#include "WaveRunner.h" 
#include "RxChannel.h" 
#include "TxChannel.h" 
#include "memory_map.h" 
 
 
//Variable declaring if a WaveRunner object  
//has already been created 
bool bWaveRunnerAlreadyCreated=false; 
 
 
//Class constructor 
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WaveRunner::WaveRunner(void) 
{ 
 configFile[0]=0; 
 configPath[0]=0; 
 cardStatus=-1; 
 configured=false; 
 
 rxTxEnable=false; 
 txChannelsCount=0; 
 rxChannelsCount=0; 
 txChannelsConfigured=0; 
 rxChannelsConfigured=0; 
 DMA_virtual_Address=&lDMAvAddress; 
 DMA_physical_Address=&lDMApAddress; 
 
 maxAmplitude=0x7FFF; 
 InitVariables(); 
} 
 
 
//Class destructor 
WaveRunner::~WaveRunner(void) 
{ 
} 
 
void WaveRunner::InitVariables() 
{ 
 threadsReady=0; 
 rxThreadsRunning=0; 
 txThreadsRunning=0; 
} 
 
 
//Singleton Class Instantiation 
WaveRunner* WaveRunner::getNewWaveRunner() 
{ 
 if (!bWaveRunnerAlreadyCreated) 
 { 
  bWaveRunnerAlreadyCreated=true; 
  return new WaveRunner(); 
 } 
 else 
 { 
  return NULL; 
 } 
} 
 
 
int WaveRunner::Open() 
{ 
 InitVariables(); 
 rxBlocksPerGroup=4; 
 rxGroupsPerChannel=2; 
 rxThresholdGroups=1; 
 rxChannelSize=blockSize*rxBlocksPerGroup*rxGroupsPerChannel; 
 txBlocksPerGroup=4; 
 txGroupsPerChannel=2; 
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 txThresholdGroups=1; 
 txChannelSize=blockSize*txBlocksPerGroup*txGroupsPerChannel; 
 
 //Reset the DUC 
 WriteWaveRunner(0x101FC, 0x2); 
 WriteWaveRunner(0x103FC, 0x2); 
 
 SetDMABufferSize(512); 
 cardStatus=OpenMultiWaveRunner(0); 
 if (!cardStatus) 
 { 
  //Disable Discrete output 
  WriteWaveRunner(_DISCRETE_OUTPUT_CONTROL, 0x0); 
  //Write 0 to DMA control register to make sure it's off 
  WriteWaveRunner(_AUTO_DMA_CONTROL, 0x0); 
  //Make sure all interrupts are disabled 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
  WriteWaveRunner(_INTERRUPT_MASK, 0x0); 
  //Get memory map pointers and set channels memory pointers 
  GetDMAPA(&lDMApAddress, &lDMAvAddress); 
  unsigned long totalMemory=GetMaxDMABufferSize(); 
  for (int channel=0; channel<maxChannels; channel++) 
  { 
   rxChannel[channel]=new RxChannel(channel); 
   rxBufferFull[channel].ResetEvent(); 
   rxChannel[channel]->dataBuffer= 
    (unsigned 
long*)(lDMAvAddress+4*rxChannelSize*channel); 
   for (int symbol=0; symbol<rxChannelSize; symbol++)  
    *(rxChannel[channel]->dataBuffer+symbol)=0; 
  } 
  for (int channel=0; channel<maxChannels; channel++) 
  { 
   txChannel[channel]=new TxChannel(channel); 
   txBufferEmpty[channel].ResetEvent(); 
   txChannel[channel]->dataBuffer= 
    (unsigned 
long*)(lDMAvAddress+4*rxChannelSize*maxChannels+ 
          
4*txChannelSize*channel); 
   for (int symbol=0; symbol<rxChannelSize; symbol++)  
    *(txChannel[channel]->dataBuffer+symbol)=0; 
  } 
  configured=false; 
 } 
 return cardStatus; 
} 
 
 
int WaveRunner::Close() 
{ 
 if (!cardStatus)  
 { 
  //Make sure all interrupts are disabled 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
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  //Make sure that Tx and Rx are disabled 
  disableRxTx(); 
  //Reset the DUC 
  WriteWaveRunner(0x101FC, 0x1); 
  for (int channel=0; channel<maxChannels; channel++) 
  { 
   delete txChannel[channel]; 
  } 
  for (int channel=0; channel<maxChannels; channel++) 
  { 
   delete rxChannel[channel]; 
  } 
  //Close card 
  configured=false; 
  cardStatus=-1; 
  return CloseMultiWaveRunner(0); 
 } 
 else 
 { 
  return -2; 
 } 
} 
 
 
//Configuration subroutine 
int WaveRunner::Configure() 
{ 
 unsigned long writeData=0x0; 
 if ((rxChannelsCount==0) & (txChannelsCount==0)) 
 { 
  AfxMessageBox("No Tx/Rx channels specified", MB_OK,0); 
  return -4; 
 } 
 if (configFile==NULL) 
 { 
  AfxMessageBox("No configuration file specified", MB_OK,0); 
  return -5; 
 } 
 //Configure the Up and Downconverters, using the files produced 
 //by the Configuration Tool 
 _chdir(configPath); 
 int ioError=ConfigWaveRunner(configFile); 
 if (ioError) 
 { 
  AfxMessageBox("Unable to configure WaveRunner", MB_OK,0); 
  return ioError; 
 } 
 //Read Tx and Rx status 
 ReadWaveRunner(_TRANSMIT_CONTROL, &txControl); 
 txControl=txControl & 0xFFFFFF8F; 
 ReadWaveRunner(_RECEIVE_CONTROL, &rxControl); 
 rxControl=rxControl & 0xFFFFFF8F; 
 ReadWaveRunner(_INTERRUPT_MASK, &interruptMask); 
 interruptMask=interruptMask & 0xFFF00000; 
 ReadWaveRunner(_AUTO_DMA_CONTROL, &autoDMACtrl); 
 autoDMACtrl=autoDMACtrl & 0xfffffc0f; 
 txFIFOmask=0; 
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 rxFIFOmask=0; 
 //Make sure that Tx and Rx are disabled 
 WriteWaveRunner(_TRANSMIT_CONTROL, 0x0); 
 WriteWaveRunner(_RECEIVE_CONTROL,0x0); 
 WriteWaveRunner(_INTERRUPT_MASK, 0x0); 
 
 
 //********* Receiver Configuration *************** 
  
 //Write the Rx DMA Control Register in the PCI configuration  
 //address space 
 char PCIConfig[4]; 
 PCIConfig[0]=0x7E; 
 PCIConfig[1]=char((blockSize/2) & 0xFF); 
 PCIConfig[2]=char(((blockSize/2) & 0xFF00)>>8); 
 PCIConfig[3]=char(((blockSize/2) & 0xFF0000)>>16); 
 WriteWRConfigSpace(0x4C, PCIConfig, 4); 
 //For every Rx channel 
 for (int rxCh=0; rxCh<maxChannels; rxCh++) 
 { 
  //Write the Auto DMA Address registers 
  unsigned long rxAddress=lDMApAddress+4*rxChannelSize*rxCh; 
  WriteWaveRunner(_RX_MEMORY_AREA_0_ADDRESS+0x10*rxCh, 
rxAddress); 
  //Write Auto DMA block count register 
  WriteWaveRunner(_RX_MEMORY_AREA_0_BLOCK_COUNT+0x10*rxCh, 
rxBlocksPerGroup); 
  //Write the Auto DMA Group Count Registers 
  WriteWaveRunner(_RX_MEMORY_AREA_0_GROUP_COUNT+0x10*rxCh, 
rxGroupsPerChannel); 
  //Write the memory area sizes 
 
 writeData=(rxChannelSize*rxThresholdGroups/(2*rxGroupsPerChannel)
) | 
     ((rxChannelSize/2)<<16); 
  WriteWaveRunner(_RX_MEMORY_AREA_0_LIMITS+0x10*rxCh, 
writeData); 
  //Write the memory area limits 
  unsigned long startOffset=rxCh*rxChannelSize/2; 
  unsigned long endOffset=(rxCh+1)*rxChannelSize/2-1; 
  writeData=startOffset|(endOffset<<16); 
  WriteWaveRunner(_RX_MEMORY_AREA_0_POINTER+0x10*rxCh, 
writeData);  
  //Write the memory organization control register 
  unsigned short channelMask=(1<<rxCh); 
  writeData=(rxCh<<12)|(rxCh<<8); 
  if (rxCh<rxChannelsCount) 
   writeData=writeData | channelMask; 
  WriteWaveRunner(_RX_MEMORY_AREA_0_ORGANIZATION+0x10*rxCh, 
writeData); 
  //Mofdify the Interrupt Mask 
  if (rxCh<rxChannelsCount) 
  { 
            interruptMask=interruptMask | (0x1 << (4+rxCh)); 
   rxFIFOmask=rxFIFOmask | (0xB << (4*rxCh)); 
  } 
 } 
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 //Write Rx FIFO Interrupt Mask 
 WriteWaveRunner(_RECEIVE_FIFO_INTERRUPT_MASK, rxFIFOmask); 
 //Flush Rx FIFOs 
 WriteWaveRunner(_RECEIVE_CONTROL, rxControl | _FIFO_FLUSH); 
 WriteWaveRunner(_RECEIVE_CONTROL, rxControl & _TX_FIFO_ENABLE); 
 //Configure Receiver to 8X1 channels 
 writeData=rxControl | _BIT_REGISTERS_ENABLE |  
         _RX_MASTER_ENABLE | _RX_CIRCUITRY_ENABLE; 
 if (rxChannelsCount>0) writeData=writeData | ((rxChannelsCount-
1)<<4); 
 WriteWaveRunner(_RECEIVE_CONTROL, writeData); 
 //Disable Timing Control 
 WriteWaveRunner(_RECEIVE_TIMING_CONTROL, 0x0); 
 //Set Receive clock frequency 
 //WriteWaveRunner(0x001128, clockFrequency-2); 
 
 //*************** Transmiter Configuration ********************* 
  
 //Write the Tx DMA Control Register in the PCI configuration 
address space 
 PCIConfig[0]=0x6E; 
 PCIConfig[1]=char((blockSize/2) & 0xFF); 
 PCIConfig[2]=char(((blockSize/2) & 0xFF00)>>8); 
 PCIConfig[3]=char(((blockSize/2) & 0xFF0000)>>16); 
 WriteWRConfigSpace(0x54, PCIConfig, 4); 
 for (int txCh=0; txCh<maxChannels; txCh++) 
 { 
  //Write the Auto DMA Address registers 
 
 writeData=lDMApAddress+4*(rxChannelSize*maxChannels+txChannelSize
*txCh); 
  WriteWaveRunner(_TX_MEMORY_AREA_0_ADDRESS+0x10*txCh, 
writeData); 
  //Write Auto DMA block count register 
  WriteWaveRunner(_TX_MEMORY_AREA_0_BLOCK_COUNT+0x10*txCh, 
txBlocksPerGroup); 
        //Write the Auto DMA Group Count Registers 
  WriteWaveRunner(_TX_MEMORY_AREA_0_GROUP_COUNT+0x10*txCh, 
txGroupsPerChannel); 
  //Write the memory area sizes 
  writeData=(blockSize*txBlocksPerGroup*txThresholdGroups/2) 
           | ((txChannelSize/2)<<16); 
  WriteWaveRunner(_TX_MEMORY_AREA_0_LIMITS+0x10*txCh, 
writeData); 
  //Write the memory area limits 
  unsigned long startOffset=txCh*txChannelSize/2; 
  unsigned long endOffset=(txCh+1)*txChannelSize/2-1; 
  writeData=startOffset | (endOffset<<16); 
  WriteWaveRunner(_TX_MEMORY_AREA_0_POINTER+0x10*txCh, 
writeData);  
     
  //Write the memory organization control register 
  writeData=(txCh<<12)|(txCh<<8); 
  if (txCh<txChannelsCount) 
   writeData=writeData | (1<<txCh); 
  WriteWaveRunner(_TX_MEMORY_AREA_0_ORGANIZATION+0x10*txCh, 
writeData); 
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  //Write the FIFO interrupt Mask 
  WriteWaveRunner(_TRANSMIT_FIFO_INTERRUPT_MASK, 0); 
  //Write the Interrupt Mask register 
  if (txCh<txChannelsCount) 
  { 
            interruptMask=interruptMask | (0x1 << (12+txCh)); 
   txFIFOmask=txFIFOmask | (0xB << (4*txCh)); 
  } 
 } 
 //Write Tx FIFO interrupt mask 
 WriteWaveRunner(_TRANSMIT_FIFO_INTERRUPT_MASK, txFIFOmask); 
 //Flush device FIFOs; 
 ReadWaveRunner(_TRANSMIT_CONTROL, &writeData); 
 WriteWaveRunner(_TRANSMIT_CONTROL, writeData | _TX_FIFO_FLUSH); 
 WriteWaveRunner(_TRANSMIT_CONTROL, writeData & _TX_FIFO_ENABLE); 
 //Configure Transmitter to 8X1 channels 
 writeData=txControl | _TX_BIT_REGISTERS_ENABLE |  
         _TX_MASTER_ENABLE | _TX_MASTER_SYNC_ENABLE | 
_TX_CIRCUITRY_ENABLE; 
 if (txChannelsCount>0) writeData=writeData | ((txChannelsCount-
1)<<4);  
 WriteWaveRunner(_TRANSMIT_CONTROL, writeData); 
 //Disable Timing Control 
 WriteWaveRunner(_TX_TIMING_CONTROL, 0x0); 
 //Set Transmit Clock Rate 
 //WriteWaveRunner(0x002128, clockFrequency-2); 
 //Disable the PRN function 
 //WriteWaveRunner(_PRN_CONTROL, 0x1A); 
 //WriteWaveRunner(_PRN_ZERO_IQ_VALUE, 0x0); 
 //WriteWaveRunner(_PRN_ONE_IQ_VALUE, 0x0); 
  
 //Write interrupt mask 
 WriteWaveRunner(_INTERRUPT_MASK, interruptMask); 
 //Write Auto DMA control 
 writeData=((blockSize/2)<<16); 
 if (txChannelsCount>0) writeData=writeData | ((txChannelsCount-
1)<<7); 
 if (rxChannelsCount>0) writeData=writeData | ((rxChannelsCount-
1)<<4); 
 writeData=writeData | _AUTO_COUNTERS_RELOAD; 
 WriteWaveRunner(_AUTO_DMA_CONTROL, writeData); 
 //Perform dummy reads in order to clear status 
 unsigned long Dummy; 
 ReadWaveRunner(_RECEIVE_FIFO_INTERRUPT_STATUS, &Dummy); 
 ReadWaveRunner(_TRANSMIT_FIFO_INTERRUPT_STATUS, &Dummy); 
 ReadWaveRunner(_INTERRUPT_MASK, &Dummy); 
 configured=true; 
 return 0;  
} 
 
 
int WaveRunner::enableTx(void) 
{ 
 if (configured) 
 { 
  unsigned long readData; 
  //Set Auto DMA Control Register 
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  ReadWaveRunner(_AUTO_DMA_CONTROL,&readData); 
  WriteWaveRunner(_AUTO_DMA_CONTROL, readData | 
_TX_AUTO_DMA_ENABLE); 
  //Set Interrupt Mask Register 
  ReadWaveRunner(_INTERRUPT_MASK, &readData); 
  readData=readData |  _DMA_ABORT_DETECTED_ENABLE | 
        _TX_DMA_COMPLETE_ENABLE | 
_TX_FIFO_INTERRUPT_ENABLE; 
  WriteWaveRunner(_INTERRUPT_MASK, readData); 
  //Enable Interrupts 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_ENABLE_INTERRUPTS); 
  //Set Tx Control Register 
  ReadWaveRunner(_TRANSMIT_CONTROL, &readData); 
  WriteWaveRunner(_TRANSMIT_CONTROL, readData | _TX_ENABLE); 
  //Send master sync to DUC 
  for (int i=0; i<500; i++); 
  WriteWaveRunner(0x2130,0x1); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
 
int WaveRunner::disableTx(void) 
{ 
 if (configured) 
 { 
  //Disable interrupts 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
  //WriteWaveRunner(_TRANSMIT_FIFO_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
  unsigned long readData; 
  ReadWaveRunner(_INTERRUPT_MASK, &readData); 
  WriteWaveRunner(_INTERRUPT_MASK, readData & 
_TX_INTERRUPTS_DISABLE); 
  //Disable DMA 
  ReadWaveRunner(_AUTO_DMA_CONTROL, &readData); 
  WriteWaveRunner(_AUTO_DMA_CONTROL, readData & 
_TX_AUTO_DMA_DISABLE); 
  //Disable Receiver circuitry 
  ReadWaveRunner(_TRANSMIT_CONTROL, &readData); 
  WriteWaveRunner(_TRANSMIT_CONTROL, readData & _TX_DISABLE); 
  //Reset the DUC 
  WriteWaveRunner(0x101FC, 0x2); 
  WriteWaveRunner(0x103FC, 0x2); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
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int WaveRunner::enableRx(void) 
{ 
 if (configured) 
 { 
  unsigned long readData; 
  //Set Auto DMA Control Register 
  ReadWaveRunner(_AUTO_DMA_CONTROL,&readData); 
  WriteWaveRunner(_AUTO_DMA_CONTROL, readData | 
_RX_AUTO_DMA_ENABLE); 
  //Set Interrupt Mask Register 
  ReadWaveRunner(_INTERRUPT_MASK, &readData); 
  WriteWaveRunner(_INTERRUPT_MASK, readData | 
_RX_DMA_COMPLETE_ENABLE); 
  //Enable Interrupts 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_ENABLE_INTERRUPTS); 
  //Set Receive Control register 
  ReadWaveRunner(_RECEIVE_CONTROL, &readData); 
  WriteWaveRunner(_RECEIVE_CONTROL, readData | _RX_ENABLE); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
 
 
int WaveRunner::disableRx(void) 
{ 
 if (configured) 
 { 
  //Disable interrupts 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
  //WriteWaveRunner(_RECEIVE_FIFO_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
  unsigned long readData; 
        ReadWaveRunner(_INTERRUPT_MASK, &readData); 
  WriteWaveRunner(_INTERRUPT_MASK, readData & 
_RX_INTERRUPTS_DISABLE); 
  //Disabe DMA 
  ReadWaveRunner(_AUTO_DMA_CONTROL, &readData); 
  WriteWaveRunner(_AUTO_DMA_CONTROL, readData & 
_RX_AUTO_DMA_DISABLE); 
  //Disable Receiver circuitr 
  ReadWaveRunner(_RECEIVE_CONTROL, &readData); 
  WriteWaveRunner(_RECEIVE_CONTROL, readData & _RX_DISABLE); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
 



145

 
int WaveRunner::enableRxTx() 
{ 
 if (configured) 
 { 
  if (rxChannelsCount>0) enableRx(); 
  for (int i=0; i<5000;i++); 
  if (txChannelsCount>0) enableTx(); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
 
 
int WaveRunner::disableRxTx() 
{ 
 if (configured) 
 { 
  disableInterrupts(); 
  if (rxChannelsCount>0) disableRx(); 
  if (txChannelsCount>0) disableTx(); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
 
 
int WaveRunner::enableInterrupts() 
{ 
 if (configured) 
 { 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_ENABLE_INTERRUPTS); 
  return 0; 
 } 
 else 
 { 
  return -4; 
 } 
} 
 
 
int WaveRunner::disableInterrupts() 
{ 
 if (configured) 
 { 
  WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 
_DISABLE_INTERRUPTS); 
  return 0; 
 } 
 else 
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 { 
  return -4; 
 } 
} 
 

 

WAVERUNNERCHANNEL.H 
#pragma once 
 
class WaveRunnerChannel 
{ 
public: 
 unsigned short channelNumber; 
 unsigned short channelOffset; 
 unsigned long frequency; 
 unsigned short k;  
  
 CString dataFileName; 
 
 unsigned long dataRate; 
 unsigned long offsetAddress; 
 unsigned long* dataBuffer; 
 unsigned int groupsTransfered; 
 unsigned short groupCount; 
 //bool bufferReady; 
 
 bool terminateProcess; 
 bool threadRunning; 
 bool threadReady; 
 
 WaveRunnerChannel(); 
 ~WaveRunnerChannel(void); 
}; 
 

 

WAVERUNNERCHANNEL.CPP 
#include "StdAfx.h" 
#include "waverunnerchannel.h" 
 
WaveRunnerChannel::WaveRunnerChannel(){}; 
 
WaveRunnerChannel::~WaveRunnerChannel(void) 
{ 
} 
 

 

RXCHANNEL.H 
#pragma once 
#include "waverunnerchannel.h" 
 
class RxChannel : 
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 public WaveRunnerChannel 
{ 
public: 
 unsigned int groupsSaved; 
 
 RxChannel(unsigned short chanNum=0,  
        unsigned long freq=23500000,  
     unsigned short k=2, 
     unsigned long dataRate=50000, 
     CString dfile=""); 
 ~RxChannel(void); 
 int setFrequency(unsigned long frequency); 
}; 
 

 

RXCHANNEL.CPP 
#include "StdAfx.h" 
#include "math.h" 
#include "rxchannel.h" 
#include "Memory_Map.h" 
 
 
RxChannel::RxChannel(unsigned short chanNum,  
      unsigned long freq,  
      unsigned short kmod, 
      unsigned long dRate, 
      CString dFile) 
{ 
 channelNumber=chanNum; 
 frequency=freq; 
 k=kmod; 
 dataRate=dRate; 
 dataFileName=dFile; 
 dataBuffer=NULL; 
 groupsTransfered=0; 
 threadRunning=false; 
 terminateProcess=true; 
 threadReady=false; 
 groupCount=0; 
 if (channelNumber<4) 
 { 
  offsetAddress=0x40000; 
  channelOffset=channelNumber; 
 } 
 else 
 { 
  offsetAddress=0x80000; 
  channelOffset=channelNumber-4; 
 } 
 setFrequency(freq); 
 groupsSaved=0; 
} 
 
 
RxChannel::~RxChannel(void) 
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{ 
} 
 
 
int RxChannel::setFrequency(unsigned long freq) 
{ 
 frequency=freq; 
  
 int ioError=-4; 
 if (wr->configured) 
 { 
  unsigned long 
freqAddress=offsetAddress+4*(0x1000*channelOffset+5); 
  unsigned long freqValue=unsigned 
long(freq*pow(2,32)/WaveRunner::rxClockFrequency); 
  ioError=WriteWaveRunner(freqAddress, freqValue); 
  if (!ioError) 
  { 
   ioError=WriteWaveRunner(freqAddress+4, freqValue & 
0x1); 
  } 
 } 
 return ioError; 
} 
 

 

TXCHANNEL.H 
#pragma once 
#include "waverunnerchannel.h" 
 
class TxChannel : 
 public WaveRunnerChannel 
{ 
public: 
 unsigned int groupsLoaded; 
 unsigned short attenuation; 
 
 ~TxChannel(void); 
 TxChannel(unsigned short chanNum=0,  
        unsigned long freq=23500000,  
     unsigned short k=2, 
     unsigned long dataRate=50000, 
     CString dfile=""); 
 int setFrequency(unsigned long frequency); 
 int setDataRate(unsigned long dataRate); 
}; 
 

 

TXCHANNEL.CPP 
#include "StdAfx.h" 
#include "math.h" 
#include "GlobalVars.h" 
#include "txchannel.h" 
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//#include "pmcradioi.h" 
 
 
TxChannel::TxChannel(unsigned short chanNum,  
        unsigned long freq,  
     unsigned short kmod, 
     unsigned long dRate, 
     CString dFile) 
{  
 channelNumber=chanNum; 
 k=kmod; 
 dataFileName=dFile; 
 dataBuffer=NULL; 
 groupsTransfered=0; 
 threadRunning=false; 
 terminateProcess=true; 
 threadReady=false; 
 groupCount=0; 
 attenuation=1; 
 if (channelNumber<4) 
 { 
  offsetAddress=0x10000; 
  channelOffset=channelNumber; 
 } 
 else 
 { 
  offsetAddress=0x10200; 
  channelOffset=channelNumber-4; 
 } 
 setFrequency(freq); 
 setDataRate(dRate); 
 groupsLoaded=0; 
} 
 
TxChannel::~TxChannel(void) 
{ 
} 
 
 
int TxChannel::setFrequency(unsigned long freq) 
{ 
 int ioError=-4; 
 frequency=freq; 
 if (wr->configured) 
 { 
  unsigned long 
freqAddress=offsetAddress+4*(0x20*channelOffset+0x8); 
  unsigned long freqValue=unsigned 
long(freq*pow(2,32)/WaveRunner::txClockFrequency); 
  unsigned long lfreq, ufreq; 
  ufreq=(freqValue & 0xFFFF0000)>>16; 
  lfreq=freqValue & 0xFFFF; 
  ioError=WriteWaveRunner(freqAddress, ufreq); 
  if (!ioError) 
  { 
   ioError=WriteWaveRunner(freqAddress+4, lfreq); 
  } 
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 } 
 return ioError; 
} 
 
 
int TxChannel::setDataRate(unsigned long dRate) 
{ 
 dataRate=dRate; 
 int ioError=-4; 
 if (wr->configured) 
 { 
  unsigned long 
freqAddress=offsetAddress+4*(0x20*channelOffset+0x4); 
  unsigned _int64 symbolRate=unsigned _int64(dataRate); 
  unsigned _int64 mult=unsigned _int64(pow(2,48)); 
  double 
divisor=double(pow(2,48))*dataRate/WaveRunner::txClockFrequency; 
  unsigned _int64 dataValue=unsigned _int64(divisor); 
  unsigned long lfreq, mfreq, ufreq; 
  lfreq=dataValue & 0xFFFF; 
  mfreq=(dataValue & 0xFFFF0000)>>16; 
  ufreq=(dataValue & 0xFFFF00000000)>>32; 
  ioError=WriteWaveRunner(freqAddress, ufreq); 
  if (!ioError) 
  { 
   ioError=WriteWaveRunner(freqAddress+4, mfreq); 
   if (!ioError) 
   { 
    ioError=WriteWaveRunner(freqAddress+8, lfreq); 
   } 
  } 
 } 
 return ioError; 
} 
 

 

WAVERUNNERISR.CPP 
#include "StdAfx.h" 
#include "afxmt.h" 
#include "Math.h" 
#include "direct.h" 
#include "RxChannel.h" 
#include "TxChannel.h" 
#include "Memory_map.h" 
#include "resource.h" 
 
//Define and initialize Global Structures and variables 
ChannelStatus txChannelStatus[8]; 
ChannelStatus rxChannelStatus[8]; 
ChannelInfo txChannelInfo[8]; 
ChannelInfo rxChannelInfo[8]; 
 
CCriticalSection cSection; 
CEvent allChannelsReady, allChannelsDone; 
CEvent txBufferEmpty[WaveRunner::maxChannels], 
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    rxBufferFull[WaveRunner::maxChannels]; 
 
 
//************************************************************* 
// Interrupt Service Routine. The contents of the Interrupt 
// Status Register are stored in the variable "Status". Also, 
// interrupts have been disabled, so we need to re-enable them  
// before exiting the routine. 
//************************************************************* 
 
void PMCRadioIsr0(unsigned long status) 
{ 
 //Determine if interrupt is due to the card  
 if ((status & _GLOBAL_INTERRUPT)!=0) 
 { 
  // If interrupt is due to a Rx FIFO interrupt 
  if ((status & 0x1)!=0) 
  { 
   unsigned long FIFOStatus; 
   unsigned short rxChFIFO; 
   //Read Rx FIFO Interrupt Status 
            ReadWaveRunner(_RECEIVE_FIFO_INTERRUPT_STATUS, 
&FIFOStatus); 
   //For each rx channel 
   for (int rxCh=0; rxCh<wr->rxChannelsCount; rxCh++) 
   { 
    //Check to see if the channel has caused the 
interrupt 
    rxChFIFO=(FIFOStatus & (0xF << (4*rxCh))) >> 
(4*rxCh); 
    if (rxChFIFO!=0) 
    { 
    
 rxChannelInfo[rxCh].FIFOInterruptStatus=true; 
    
 rxChannelInfo[rxCh].FIFOInterruptMask=rxChFIFO; 
    } 
   } 
  } 
  // If interrupt is due to a receive channel DMA complete 
  if ((status & 0x4)!=0) 
  { 
   //For every rxChannel  
   for (int rxCh=0; rxCh<wr->rxChannelsCount; rxCh++) 
   { 
    //If the channel was the cause of the interrupt 
    if((status & (0x1<< (4+rxCh)))!=0) 
    { 
     //increase the channel counter of 
transfered blocks 
     wr->rxChannel[rxCh]->groupsTransfered++; 
     unsigned long buffer; 
     if (rxCh<4) 
     { 
      ReadWaveRunner(0x10, &buffer); 
     } 
     else 
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     { 
      ReadWaveRunner(0x14, &buffer); 
     } 
     unsigned short ch=rxCh; 
     if (rxCh>3){ch=ch-4;} 
     wr->rxChannel[rxCh]->groupCount=((buffer 
& (0xFF << (8*ch))) >> (8*ch)); 
     //Set event to wake up channel thread 
     rxBufferFull[rxCh].SetEvent(); 
    } 
   } 
  } 
  // If interrupt is due to a Tx FIFO interrupt 
  if ((status & 0x2)!=0) 
  { 
   unsigned long FIFOStatus; 
   unsigned short txChFIFO; 
   //Read Rx FIFO Interrupt Status 
            ReadWaveRunner(_TRANSMIT_FIFO_INTERRUPT_STATUS, 
&FIFOStatus); 
   //For each rx channel 
   for (int txCh=0; txCh<wr->txChannelsCount; txCh++) 
   { 
    //Check to see if the channel has caused the 
interrupt 
    txChFIFO=(FIFOStatus & (0xF << (4*txCh))) >> 
(4*txCh); 
    if (txChFIFO!=0) 
    { 
    
 txChannelInfo[txCh].FIFOInterruptStatus=true; 
    
 txChannelInfo[txCh].FIFOInterruptMask=txChFIFO; 
    } 
   } 
  } 
  // If interrupt is due to a transmit channel DMA complete 
  if ((status & 0x8)!=0) 
  { 
   //For every txChannel  
   for (int txCh=0; txCh<wr->txChannelsCount; txCh++) 
   { 
    //If the channel was the cause of the interrupt 
    if((status & (0x1<< (12+txCh)))!=0) 
    { 
     //increase the channel counter of 
transfered blocks 
     wr->txChannel[txCh]->groupsTransfered++; 
     unsigned long buffer; 
     if (txCh<4) 
     { 
      ReadWaveRunner(0x18, &buffer); 
     } 
     else 
     { 
      ReadWaveRunner(0x1C, &buffer); 
     } 
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     unsigned short ch=txCh; 
     if (txCh>3){ch=ch-4;} 
     wr->txChannel[txCh]->groupCount=((buffer 
& (0xFF << (8*ch))) >> (8*ch)); 
     txBufferEmpty[txCh].SetEvent(); 
    } 
   } 
  } 
 } 
 //Enable interrupts 
 WriteWaveRunner(_GLOBAL_INTERRUPT_MASK, 0x1); 
} 
 
//************************************************ 
// This is the main "parent" thread which controls  
// the Rx and Tx channels threads. 
//************************************************ 
 
UINT mainRxTxThread(LPVOID pParam) 
{ 
 CWnd* parentWindow = (CWnd*) pParam; 
  
 //As a first step, allocate momory space for the channels 
 wr->threadsReady=0; 
 
 //Try to configure the card 
    int error=wr->Configure(); 
 if (error) 
 { 
  wr->Close(); 
  CString disp; 
  disp="WaveRunner not properly configured.\n Process will 
abort."; 
  return error; 
 } 
  
 // Configure channels by passing the parameters stored in the 
..info tables 
 // Then start channels threads 
 
 for (int channel=0;channel<wr->maxChannels;channel++) 
 { 
  if (channel<wr->txChannelsCount) 
  { 
   txChannelStatus[channel].status-
>SetWindowText("Initializing"); 
   wr->txChannel[channel]-
>setFrequency(txChannelInfo[channel].frequency); 
   wr->txChannel[channel]->k=txChannelInfo[channel].k; 
   wr->txChannel[channel]-
>setDataRate(txChannelInfo[channel].datarate); 
   wr->txChannel[channel]-
>attenuation=txChannelInfo[channel].attenuation; 
   txChannelInfo[channel].FIFOInterruptStatus=false; 
   txChannelInfo[channel].FIFOInterruptMask=0; 
   char fName[80]; 
   int pos=0; 
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   for (int letter=0; 
letter<txChannelInfo[channel].fileName.GetLength(); letter++) 
   { 
   
 fName[pos]=txChannelInfo[channel].fileName[letter]; 
    pos++; 
    if 
(txChannelInfo[channel].fileName[letter]==92) 
    { 
     fName[pos]=92; 
     pos++; 
    } 
   } 
   fName[pos]=0; 
   wr->txChannel[channel]->dataFileName=fName; 
   wr->txChannel[channel]->groupsLoaded=0; 
   wr->txChannel[channel]->groupsTransfered=0; 
   wr->txChannel[channel]->terminateProcess=false; 
   AfxBeginThread(txThread,LPVOID(channel));  
  } 
  else 
  { 
   wr->txChannel[channel]->setDataRate(0); 
  } 
 } 
 for (int channel=0;channel<wr->rxChannelsCount;channel++) 
 { 
  rxChannelStatus[channel].status-
>SetWindowText("Initializing"); 
  wr->rxChannel[channel]-
>setFrequency(rxChannelInfo[channel].frequency); 
  wr->rxChannel[channel]->k=rxChannelInfo[channel].k; 
  wr->rxChannel[channel]-
>dataRate=rxChannelInfo[channel].datarate; 
  rxChannelInfo[channel].FIFOInterruptStatus=false; 
  rxChannelInfo[channel].FIFOInterruptMask=0; 
  char fName[80]; 
  int pos=0; 
  for (int letter=0; 
letter<rxChannelInfo[channel].fileName.GetLength(); letter++) 
  { 
   fName[pos]=rxChannelInfo[channel].fileName[letter]; 
   pos++; 
   if (rxChannelInfo[channel].fileName[letter]==92) 
   { 
    fName[pos]=92; 
    pos++; 
   } 
  } 
  fName[pos]=0; 
  wr->rxChannel[channel]->dataFileName=fName; 
  wr->rxChannel[channel]->groupsTransfered=0; 
  wr->rxChannel[channel]->groupsSaved=0; 
  wr->rxChannel[channel]->terminateProcess=false; 
  AfxBeginThread(rxThread,LPVOID(channel));  
 } 
 //Wait until all threads are ready to transmit or receive 
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 unsigned long regBuffer; 
 allChannelsReady.ResetEvent(); 
 ::WaitForSingleObject(allChannelsReady, INFINITE); 
 //When all channels are ready, enable transmit and receive 
 if (wr->rxTxEnable) 
 { 
  wr->enableRxTx(); 
 } 
 //Loop that checks if there are still active channels 
 //or if a stop signal has been issued 
 ::WaitForSingleObject(allChannelsDone, INFINITE); 
 //while (rxTxEnable & (rxThreadsRunning+txThreadsRunning>0)); 
 //When activity must stop, as a first action stop the card 
activity 
 wr->disableRxTx(); 
 //If some channels are still running but a terminate signal has 
been issued 
 //take care that all channel activity stops 
 if(wr->rxThreadsRunning+wr->txThreadsRunning>0) 
 { 
  for (int channel=0;channel<wr->rxChannelsCount; channel++) 
  { 
   wr->rxChannel[channel]->terminateProcess=true; 
  } 
  for (int channel=0;channel<wr->txChannelsCount; channel++) 
  { 
   wr->txChannel[channel]->terminateProcess=true; 
  } 
 } 
 //Make sure that all channels have finished 
 CString displayMessage="Inactive"; 
 for (int channel=0;channel<wr->rxChannelsCount; channel++) 
 { 
  while(wr->rxChannel[channel]->threadRunning); 
  rxBufferFull[channel].ResetEvent(); 
 } 
 for (int channel=0;channel<wr->txChannelsCount; channel++) 
 { 
  while(wr->txChannel[channel]->threadRunning); 
  txBufferEmpty[channel].ResetEvent(); 
 } 
 //If all channel activity has been terminated but  
 //no stop signal has been issued, notify the parent window 
 if(wr->rxTxEnable) 
 { 
  parentWindow->PostMessage(WM_PROCESSES_FINISHED); 
 } 
 //} 
 return error; 
} 
//********************************************************** 
// This is the thread which runs for every RECEPTION channel 
//********************************************************** 
 
UINT rxThread(LPVOID pParam) 
{ 
 wr->rxThreadsRunning++; 
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 int channel=int(pParam); 
 RxChannel* rChannel=wr->rxChannel[channel]; 
 rChannel->threadRunning=true; 
 rChannel->groupsTransfered=0; 
 rChannel->groupsSaved=0; 
 rChannel->groupCount=1; 
 
 CFile targetFile; 
 CString tFile=rChannel->dataFileName.Left(rChannel-
>dataFileName.GetLength()-3)+"TMF"; 
 
 int fileOpenError=targetFile.Open(tFile, CFile::modeCreate | 
CFile::modeWrite); 
 if (fileOpenError==0) 
 { 
  CString message; 
  message.Format("Could not open target file for channel 
#%2i.\nChannel will abort.",channel); 
  AfxMessageBox(message); 
 } 
 cSection.Lock(); 
 wr->threadsReady++; 
 if (wr->threadsReady==wr->rxChannelsCount+wr->txChannelsCount) 
 { 
  allChannelsReady.SetEvent(); 
 } 
 cSection.Unlock(); 
 rxChannelStatus[channel].status->SetWindowText("Idle..."); 
 bool rxBufferOverFlow=false; 
 if (fileOpenError!=0) 
 { 
  unsigned short groupCount=1; 
  unsigned long rxGroupSize=wr->blockSize*wr-
>rxBlocksPerGroup; 
  bool alreadySetStatus=false; 
  //Loop to be executed while there is data to save 
        while ((wr->rxTxEnable) && (!rxBufferOverFlow)) 
  { 
  
 ::WaitForSingleObject(rxBufferFull[channel],INFINITE); 
   rxBufferFull[channel].ResetEvent(); 
   if (rChannel->groupsTransfered>rChannel-
>groupsSaved+wr->rxGroupsPerChannel-1) 
   { 
    rxBufferOverFlow=true; 
   } 
   if (rxChannelInfo[channel].FIFOInterruptStatus) 
   { 
    rxBufferOverFlow=true; 
           } 
   if ((wr->rxTxEnable) && (!rxBufferOverFlow)) 
   { 
    unsigned long* bufferPos=rChannel-
>dataBuffer+(groupCount-1)*rxGroupSize; 
    targetFile.Write(bufferPos,4*rxGroupSize); 
    rChannel->groupsSaved++; 
    groupCount++; 
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    if (groupCount>wr->rxGroupsPerChannel) 
groupCount=1; 
    if(!alreadySetStatus) 
    { 
     rxChannelStatus[channel].status-
>SetWindowText("Receiving..."); 
     alreadySetStatus=true; 
    } 
   } 
  } 
 } 
 targetFile.Close(); 
 if ((!rxBufferOverFlow) && (rChannel->k>1)) 
Demodulate(channel,true); 
 //CFile::Remove(tFile); 
 rChannel->threadRunning=false; 
 cSection.Lock(); 
 wr->rxThreadsRunning--; 
 if (wr->rxThreadsRunning+wr->txThreadsRunning==0) 
 { 
  allChannelsDone.SetEvent(); 
 } 
 cSection.Unlock(); 
  CString displayMessage="Inactive"; 
 if (rxChannelInfo[channel].FIFOInterruptMask) 
 { 
  switch (rxChannelInfo[channel].FIFOInterruptMask) 
  { 
   case 1:  
    displayMessage="FIFO Underflow"; 
    break; 
   case 8: 
    displayMessage="FIFO Overflow"; 
    break; 
   default: 
    displayMessage="Inactive"; 
  } 
 } 
   rxChannelStatus[channel].status->SetWindowText(displayMessage); 
 rxChannelStatus[channel].progress->SetPos(0); 
 return 0; 
} 
 
//************************************************************* 
// This is the thread which runs for every TRANSMISSION channel 
//************************************************************* 
 
UINT txThread(LPVOID pParam) 
{ 
 //Acquire parameters 
 int channel=int(pParam); 
 TxChannel* tChannel=wr->txChannel[channel]; 
 tChannel->threadRunning=true; 
 tChannel->groupsLoaded=0; 
 tChannel->groupsTransfered=0; 
 tChannel->groupCount=1; 
 cSection.Lock(); 
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 wr->txThreadsRunning++; 
 cSection.Unlock(); 
 //Update status box 
 txChannelStatus[channel].status->SetWindowText("Modulating..."); 
 //Modulate data into I and Q channels 
 CString txFileName=Modulate(channel); 
 txChannelStatus[channel].progress->SetPos(0); 
 bool bufferUnderFlow=false; 
 if (wr->rxTxEnable) 
 { 
  txChannelStatus[channel].status-
>SetWindowText("Transmitting ..."); 
  CFile txFile; 
  txFile.Open(txFileName,CFile::modeRead); 
  unsigned long totalGroups=ceil(txFile.GetLength()/(4*wr-
>blockSize*wr->txBlocksPerGroup)); 
   
  unsigned int symbolsRead=txFile.Read(tChannel-
>dataBuffer,4*wr->txChannelSize)/4; 
  //Initially fill all the channel buffer with data 
  if (symbolsRead<wr->txChannelSize) 
  { 
   for (int symbol=symbolsRead; symbol<wr-
>txChannelSize; symbol++) 
   { 
    *(tChannel->dataBuffer+symbol)=0; 
   } 
  } 
  cSection.Lock(); 
  wr->threadsReady++; 
  if (wr->threadsReady==wr->rxChannelsCount+wr-
>txChannelsCount) 
  { 
   allChannelsReady.SetEvent(); 
  } 
  cSection.Unlock(); 
  tChannel->groupsLoaded=wr->txGroupsPerChannel; 
  unsigned short groupCount=1; 
  unsigned short txGroupSize=wr->blockSize*wr-
>txBlocksPerGroup; 
  //Loop to be executed while there is data to add 
  while ((wr->rxTxEnable) && 
(txFile.GetPosition()<txFile.GetLength()) && (!bufferUnderFlow)) 
  { 
   ::WaitForSingleObject(txBufferEmpty[channel], 
INFINITE); 
   txBufferEmpty[channel].ResetEvent(); 
   if (tChannel->groupsTransfered>tChannel-
>groupsLoaded+wr->txGroupsPerChannel-1) 
   { 
    bufferUnderFlow=true; 
   } 
   if (txChannelInfo[channel].FIFOInterruptStatus) 
    if (tChannel->groupsTransfered<2) 
    { 
    
 txChannelInfo[channel].FIFOInterruptStatus=false; 
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 txChannelInfo[channel].FIFOInterruptMask=0; 
    } 
    else 
    { 
     bufferUnderFlow=true; 
            } 
   if ((wr->rxTxEnable) && (!bufferUnderFlow)) 
   { 
    unsigned long* bufferPos=tChannel-
>dataBuffer+(groupCount-1)*txGroupSize; 
    if (tChannel->k==1)txFile.SeekToBegin(); 
    unsigned long 
symbolsRead=txFile.Read(bufferPos,4*txGroupSize)/4; 
    if (symbolsRead<txGroupSize) 
    { 
     for (int symbol=symbolsRead; 
symbol<txGroupSize; symbol++) 
     { 
      *(tChannel->dataBuffer+(groupCount-
1)*txGroupSize+symbol)=0; 
     } 
    } 
    txChannelStatus[channel].progress-
>SetPos(100*tChannel->groupsLoaded/totalGroups); 
    groupCount++; 
    if (groupCount>wr->txGroupsPerChannel) 
groupCount=1; 
    tChannel->groupsLoaded++; 
   } 
  } 
  txFile.Close(); 
  //CFile::Remove(txFileName); 
  //Clearing buffers after all data has been transfered 
  for (int group=1; group<=wr->txGroupsPerChannel; group++) 
  { 
   if (wr->rxTxEnable) 
   { 
   
 ::WaitForSingleObject(txBufferEmpty[channel],INFINITE); 
    txBufferEmpty[channel].ResetEvent(); 
   } 
   for (int symbol=0; symbol<txGroupSize; symbol++) 
   { 
    *(tChannel->dataBuffer+(groupCount-
1)*txGroupSize+symbol)=0; 
   } 
   groupCount++; 
   if (groupCount>wr->txGroupsPerChannel) groupCount=1; 
  } 
  txChannelStatus[channel].progress->SetPos(100); 
 } 
 cSection.Lock(); 
 wr->txThreadsRunning--; 
 if (wr->rxThreadsRunning+wr->txThreadsRunning==0) 
 { 
  allChannelsDone.SetEvent(); 
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 } 
 cSection.Unlock(); 
 CString displayMessage="Inactive"; 
  if (txChannelInfo[channel].FIFOInterruptMask) 
 { 
  switch (txChannelInfo[channel].FIFOInterruptMask) 
  { 
   case 1:  
    displayMessage="FIFO Underflow"; 
    break; 
   case 8: 
    displayMessage="FIFO Overflow"; 
    break; 
   default: 
    displayMessage="Inactive"; 
  } 
 } 
    txChannelStatus[channel].status->SetWindowText(displayMessage); 
 txChannelStatus[channel].progress->SetPos(0); 
 tChannel->threadRunning=false; 
 return 0; 
} 
 
 
 

MODEMOD.CPP 
#include "StdAfx.h" 
#include "Math.h" 
#include "direct.h" 
 
//Actual Modulation - Demodulation routines declarations 
CString mPSK_Modulate(int); 
void mPSK_Demodulate(int, bool); 
 
// Modulation - Demodulation routines entry points 
// Use these entry points just to select the appropriate 
// routines of your code. 
 
CString Modulate(int txChannelNum) 
{ 
 return mPSK_Modulate(txChannelNum); 
} 
 
void Demodulate(int rxChannelNum, bool createLog) 
{ 
 mPSK_Demodulate(rxChannelNum, createLog); 
} 
 
// M-PSK MODULATION ROUTINE 
// This routine takes the data from the transmission file 
// and creates the file of symbols 
 
CString mPSK_Modulate(int txChannelNum) 
{ 
 unsigned short Amplitude=wr->maxAmplitude/wr-
>txChannel[txChannelNum]->attenuation; 
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 short header[24]={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,-
1,1,-1,1}; 
 short k=wr->txChannel[txChannelNum]->k; 
 char M=pow(2,k); 
 short symbolsPerPacket=wr->blockSize-32; 
 short bytesPerPacket=symbolsPerPacket*k/8; 
 char dataBufferIn[wr->blockSize/2]; 
 int dataBufferOut[wr->blockSize]; 
 UINT actualBytesRead, actualSymbolsToWrite; 
 CFile sourceFile, targetFile; 
    int I, Q; 
 char sampleBuffer; 
 float initialPhase; 
 unsigned long nBuffer; 
 unsigned short dataMask, bytesToRead, symbolsToWrite; 
 
 CString sFile=wr->txChannel[txChannelNum]->dataFileName; 
 CString tFile=sFile.Left(sFile.GetLength()-3)+"TMF"; 
 targetFile.Open(tFile, CFile::modeCreate | CFile::modeWrite); 
 
 // If test tone selected, simply write a series of I=1 and Q=0 
 // and exit 
 if (k==1) 
 { 
  int buffer[9000]; 
  for (int k=0; k<9000; k++) 
   buffer[k]=Amplitude; 
  targetFile.Write(buffer, 36000); 
  targetFile.Close(); 
  txChannelStatus[txChannelNum].progress->SetPos(100); 
  return tFile; 
 } 
  
 sourceFile.Open(sFile,CFile::modeRead); 
 
 switch (k) 
 { 
  case 2: 
   bytesToRead=1; 
   symbolsToWrite=4; 
   dataMask=0x3; 
   initialPhase=0; 
   break; 
  case 3: 
   bytesToRead=3; 
   symbolsToWrite=8; 
   dataMask=0x7; 
   initialPhase=0; 
   break; 
  case 4: 
   bytesToRead=1; 
   symbolsToWrite=2; 
   dataMask=0xF; 
   initialPhase=0; 
 } 
 
 //Find number of data packets in the file 
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 float 
packetNum=float(sourceFile.GetLength())/float(bytesPerPacket); 
 unsigned int totalPackets=ceil(packetNum); 
 int packet=0; 
 // While RxTx is enabled and packets remaining to be modulated 
 while ((wr->rxTxEnable) & (packet<totalPackets)) 
 { 
  // Update progress bar 
  txChannelStatus[txChannelNum].progress->SetPos( 
    100*(packet+1)/totalPackets); 
  // Fill data buffer 
  actualBytesRead=sourceFile.Read(dataBufferIn, 
bytesPerPacket); 
  actualSymbolsToWrite=ceil(actualBytesRead*8/k); 
  // Write packet header using BPSK modulation 
  for (int sample=0; sample<24; sample++) 
   dataBufferOut[sample]=Amplitude*header[sample]; 
  // Write number of samples per packet using QPSK modulation 
  for (sample=0; sample<8; sample++) 
  { 
   sampleBuffer= (actualSymbolsToWrite & (0x3 << 
(2*sample))) >> (2*sample); 
   I=Amplitude*cos(2*pi*sampleBuffer/4 + initialPhase); 
   Q=Amplitude*sin(2*pi*sampleBuffer/4 + initialPhase); 
   dataBufferOut[sample+24]=I|(Q<<16); 
  } 
  // Write actual data in M-PSK 
  unsigned int byteIndexIn=0, symbolIndexOut=0; 
  while (byteIndexIn<actualBytesRead) 
  { 
   //Form the integer 
   nBuffer=0; 
   for (short byte=0; byte<bytesToRead; byte++) 
   { 
    if (byteIndexIn<actualBytesRead) 
    { 
    
 nBuffer=nBuffer+(dataBufferIn[byteIndexIn] << (8*byte)); 
     byteIndexIn++; 
    } 
   } 
   //For each symbol in the buffer calculate and store 
the I and Q channels 
   for (unsigned short symbol=0; symbol<symbolsToWrite; 
symbol++) 
   { 
    sampleBuffer=(nBuffer & (dataMask << 
(k*symbol))) >> (k*symbol); 
    I=Amplitude*cos(2*pi*sampleBuffer/M + 
initialPhase); 
    Q=Amplitude*sin(2*pi*sampleBuffer/M + 
initialPhase); 
    dataBufferOut[32+symbolIndexOut]=I|(Q<<16); 
    symbolIndexOut++; 
   } 
  } 
  // Write buffer to target file 



163

  targetFile.Write(dataBufferOut, 
4*(32+actualSymbolsToWrite)); 
  packet++; 
 } 
 sourceFile.Close(); 
 targetFile.Close(); 
 txChannelStatus[txChannelNum].progress->SetPos(100); 
 return tFile; 
} 
 
// M-PSK DEMODULATION ROUTINE 
// This routine translates the previouly stored samples 
// into symbols and bits 
 
void mPSK_Demodulate(int rxChannelNum, bool createLog) 
{ 
   rxChannelStatus[rxChannelNum].status->SetWindowText("Demodulating 
..."); 
 rxChannelStatus[rxChannelNum].progress->SetPos(0); 
 RxChannel* rChannel=wr->rxChannel[rxChannelNum]; 
 char k=rChannel->k; 
 CString tFile=rChannel->dataFileName; 
 CString sFile=tFile.Left(tFile.GetLength()-3)+"TMF"; 
 
 CFile sourceFile, targetFile; 
 CStdioFile logFile; 
 
 sourceFile.Open(sFile, CFile::modeRead); 
 targetFile.Open(tFile, CFile::modeCreate | CFile::modeWrite); 
 if (createLog) 
 { 
  CString logFileName; 
  logFileName.Format("RxChannel #%1u 
log.txt",rxChannelNum+1); 
  logFile.Open(logFileName,CFile::modeWrite | 
CFile::modeCreate); 
  logFile.WriteString("   Packet ##    Found at Phase offset  
Synced at  ## symbols\n"); 
  logFile.WriteString("--------------------------------------
----------------------\n"); 
 } 
 unsigned int totalSamples=sourceFile.GetLength()/4; 
 
 // Set variables 
 float M=pow(2, k), 
    anglePerSymbol=2*pi/M, 
    powerThreshold=50, 
    ratioThreshold=11, 
    offsetThreshold=4*pi/180; 
 unsigned short samplingPoint=2, 
       symbolsPerPacket, 
       samplesPerSymbol=4;// S. O. S. rChannel-
>dataRate 
 unsigned int packetNum=0,foundAt=0, syncedAt=0; 
 short sampleBuffer[8192][2]; 
    char symbolBuffer[1024]; 
 char dataBuffer[1024]; 
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 int actualSamplesRead; 
 
 // Create Sync Sequence 
 short Barker[13]={1,1,1,1,1,-1,-1,1,1,-1,1,-1,1}; 
 short syncSequence[104]; 
 for (int i=0; i<13; i++) 
  for (int j=0; j<samplesPerSymbol; j++) 
   syncSequence[i*samplesPerSymbol+j]=Barker[i]; 
  
 unsigned short symbolsToRead, bytesToWrite; 
 char dataMask; 
 float initialPhase; 
 switch (k) 
 { 
  case 2: 
   symbolsToRead=4; 
   bytesToWrite=1; 
   dataMask=0x3; 
   initialPhase=0; 
   break; 
  case 3: 
   symbolsToRead=8; 
   bytesToWrite=3; 
   dataMask=0x7; 
   initialPhase=0; 
   break; 
  case 4: 
   symbolsToRead=2; 
   bytesToWrite=1; 
   dataMask=0xF; 
   initialPhase=0; 
 } 
 
 int currentSample=0; 
 // For every received packet 
 while (currentSample<totalSamples) 
 { 
  // Find where actual data starts being transmitted, 
  // by measuring the average power 
  int averagePower=0; 
  while  ((averagePower<powerThreshold) && 
(currentSample<totalSamples)) 
  { 
   actualSamplesRead=sourceFile.Read(sampleBuffer, 
4*samplesPerSymbol)/4; 
   if (actualSamplesRead==0) break; 
   averagePower=0;   
   for (int i=0;i<actualSamplesRead;i++) 
   { 
    unsigned int 
samplePower=sqrt(pow(sampleBuffer[i][0],2)+pow(sampleBuffer[i][1],2)); 
    averagePower=averagePower+samplePower; 
   } 
   averagePower=averagePower/actualSamplesRead; 
   currentSample=currentSample+actualSamplesRead; 
  } 
  if (actualSamplesRead==0) break; 



165

   
  // Advance by one symbol 
  actualSamplesRead=sourceFile.Read(sampleBuffer, 
4*samplesPerSymbol)/4; 
  if (actualSamplesRead==0) break; 
  currentSample=currentSample+actualSamplesRead; 
 
  //Synchronize in phase 
  short phaseHits=0; 
        float phaseOffset=0, previousOffset=0, totalOffset=0; 
  previousOffset=atan2(sampleBuffer[2*samplesPerSymbol-1][1],  
                    sampleBuffer[2*samplesPerSymbol-
1][0]); 
  while (phaseHits<6) 
  { 
            actualSamplesRead=sourceFile.Read(sampleBuffer, 
4*samplesPerSymbol)/4; 
   if (actualSamplesRead==0) break; 
   currentSample=currentSample+actualSamplesRead; 
   phaseOffset=0; 
   for (int i=0; i<actualSamplesRead; i++) 
   
 phaseOffset=phaseOffset+atan2(sampleBuffer[i][1], 
sampleBuffer[i][0]); 
   phaseOffset=phaseOffset/actualSamplesRead; 
   if (abs(phaseOffset-previousOffset)<offsetThreshold) 
   { 
    phaseHits++; 
    totalOffset=totalOffset+phaseOffset; 
   } 
   else 
   { 
    phaseHits=0; 
    totalOffset=0; 
   } 
   previousOffset=phaseOffset; 
  } 
  if (actualSamplesRead==0) break; 
  phaseOffset=totalOffset/6; 
  packetNum++; 
  foundAt=currentSample; 
 
  //Synchronize in time; 
  bool syncFound=false; 
  int syncPosition; 
  actualSamplesRead=sourceFile.Read(sampleBuffer, 
13*4*samplesPerSymbol)/4; 
  if (actualSamplesRead==0) break; 
  double prevCorr=0; 
  while ((!syncFound) && (actualSamplesRead>0)) 
  { 
   double power=0, normalizedCorr=0, corr=0; 
   for (int i=0; i<13*samplesPerSymbol; i++) 
   { 
    int 
mag=sqrt(pow(sampleBuffer[i][0],2)+pow(sampleBuffer[i][1],2)); 
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    double angle=atan2(sampleBuffer[i][1], 
sampleBuffer[i][0])-phaseOffset; 
    corr=corr+mag*cos(angle)*syncSequence[i]; 
    power=power+mag; 
   } 
   corr=abs(corr); 
   power=power/13; 
   normalizedCorr=corr/power; 
   if ((normalizedCorr<prevCorr) && 
(power>powerThreshold) && (prevCorr>ratioThreshold)) 
   { 
    syncFound=true; 
    syncPosition=currentSample-1; 
    currentSample=syncPosition+13*samplesPerSymbol; 
    sourceFile.Seek(-4,CFile::current); 
   } 
   else 
   { 
    prevCorr=normalizedCorr; 
    currentSample++; 
    for (int i=0; i<13*samplesPerSymbol-1;i++) 
    { 
     sampleBuffer[i][0]=sampleBuffer[i+1][0]; 
     sampleBuffer[i][1]=sampleBuffer[i+1][1]; 
    } 
    short tmpBuffer[2]; 
    actualSamplesRead=sourceFile.Read(tmpBuffer, 
4)/4; 
    if (actualSamplesRead==0) break; 
    sampleBuffer[13*samplesPerSymbol-
1][0]=tmpBuffer[0]; 
    sampleBuffer[13*samplesPerSymbol-
1][1]=tmpBuffer[1]; 
   } 
  } 
  if (actualSamplesRead==0) break; 
  syncedAt=syncPosition; 
 
  // Find the number of symbols per packet 
  // Always modulated at QPSK 
 
 actualSamplesRead=sourceFile.Read(sampleBuffer,32*samplesPerSymbo
l)/4; 
  if (actualSamplesRead<2*samplesPerSymbol) break; 
  currentSample=currentSample+actualSamplesRead; 
  symbolsPerPacket=0; 
  for (int i=0; i<8; i++) 
  { 
   double 
phase=atan2(sampleBuffer[i*samplesPerSymbol+samplingPoint][1], 
          
sampleBuffer[i*samplesPerSymbol+samplingPoint][0])-phaseOffset; 
   if (phase<0) phase=phase+2*pi; 
   if (phase>2*pi) phase=phase-2*pi; 
   float decision=2*phase/pi; 
   int iDecision; 
   if (ceil(decision)-decision<0.5) 
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    iDecision=ceil(decision); 
   else 
    iDecision=floor(decision); 
   if (iDecision==4) iDecision=0; 
   symbolsPerPacket=symbolsPerPacket | (iDecision << 
2*i); 
  } 
  if (createLog) 
  { 
   CString logBuffer; 
   logBuffer.Format("%12u%12u%12.2f%12u%12u\n", 
   
 packetNum,foundAt,phaseOffset,syncedAt,symbolsPerPacket); 
   logFile.WriteString(logBuffer); 
  } 
 
 
  // Demodulate the packet 
  actualSamplesRead=sourceFile.Read(sampleBuffer, 
4*symbolsPerPacket*samplesPerSymbol)/4; 
  if (actualSamplesRead<symbolsPerPacket*samplesPerSymbol) 
break; 
  currentSample=currentSample+actualSamplesRead; 
  // Find the symbols 
  for (int i=0; i<symbolsPerPacket; i++) 
  { 
   double 
phase=atan2(sampleBuffer[i*samplesPerSymbol+samplingPoint][1], 
          
sampleBuffer[i*samplesPerSymbol+samplingPoint][0]) 
          -phaseOffset; 
   if (phase<0) phase=phase+2*pi; 
   if (phase>2*pi) phase=phase-2*pi; 
   float decision=(phase-initialPhase)/anglePerSymbol; 
   int iDecision; 
   if (ceil(decision)-decision<0.5) 
    iDecision=ceil(decision); 
   else 
    iDecision=floor(decision); 
   if (iDecision==M) iDecision=0; 
   symbolBuffer[i]=iDecision; 
  } 
  // Construct the bytes 
  UINT byteCount=0, symbolsCount=0; 
  while (symbolsCount<symbolsPerPacket) 
  { 
   //Form the integer 
   int nBuffer=0; 
   for (short symbol=0; symbol<symbolsToRead; symbol++) 
   { 
    if (symbolsCount<symbolsPerPacket) 
    { 
     nBuffer=nBuffer | 
int(symbolBuffer[symbolsCount]<<(k*symbol)); 
     symbolsCount++; 
    } 
   } 
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   //Find and store the corresponding bytes 
   for (unsigned short byte=0; byte<bytesToWrite; 
byte++) 
   { 
    dataBuffer[byteCount]=(nBuffer & (0xFF << 
(8*byte))) >> (8*byte); 
    byteCount++; 
   } 
  } 
  targetFile.Write(dataBuffer, byteCount); 
 rxChannelStatus[rxChannelNum].progress-
>SetPos(100*currentSample/totalSamples); 
 } 
 if (createLog) logFile.Close(); 
 sourceFile.Close(); 
 targetFile.Close(); 
} 
 
 
 

MEMORY_MAP.H 
//************************************* 
//* PCI CONFIGURATION SPACE REGISTERS * 
//************************************* 
 
#define _RECEIVE_DESTINATION_ADDRESS 0x048 
 
#define _RECEIVE_DMA_CONTROL   0x04C 
#define _IO_WRITE      0x40 
#define _MEMORY_WRITE     0x70 // 
Recommended 
#define _CONFIGURATION_WRITE   0xb0 
#define _DMA_ADDRESS_INCREMENT   0x08 
#define _64_BIT_TRANSFER_ENABLE   0x04 // Must be always 
set 
#define _SMART_DMA      0x01 
 
#define _TRANSMIT_SOURCE_ADDRESS  0x050 
 
#define _TRANSMIT_DMA_CONTROL   0x054 
#define _IO_READ      0x020 
#define _MEMORY_READ     0x060 // 
Recommended 
#define _CONFIGURATION_READ    0x0A0 
//      _DMA_ADDRESS_INCREMENT   as above 
//      _64_BIT_TRANSFER_ENABLE   as above 
//      _SMART_DMA      as above 
 
//**************************** 
//* PCI MEMORY MAP REGISTERS * 
//**************************** 
 
#define _RCV_CHANNELS_3_0_GROUP_COUNT 0x000010 
#define _RCV_CHANNELS_7_4_GROUP_COUNT 0x000014 
#define _TRX_CHANNELS_3_0_GROUP_COUNT 0x000018 
#define _TRX_CHANNELS_7_4_GROUP_COUNT 0x00001C 
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#define _FIRMWARE_VERSION    0x000020 
 
#define _BOARD_STATUS     0x000024 
#define _TX_PLL_STATUS     0x010 
#define _DISCRETE_INPUT_3    0x008 
#define _DISCRETE_INPUT_2    0x004 
#define _DISCRETE_INPUT_1    0x002 
#define _DISCRETE_INPUT_0    0x001 
 
#define _INTERRUPT_STATUS    0x000028 
#define _GLOBAL_INTERRUPT    0x80000000 
#define _TX_PROCESSING_COMPLETE   0x04000000 
#define _RX_PROCESSING_COMPLETE   0x02000000 
#define _AUTO_DMA_ABORT_ID    0x01E00000 
#define _DMA_ABORT_DETECTED    0x00100000 
#define _TX_AREA_7_COMPLETE    0x00080000 
#define _TX_AREA_6_COMPLETE    0x00040000 
#define _TX_AREA_5_COMPLETE    0x00020000 
#define _TX_AREA_4_COMPLETE    0x00010000 
#define _TX_AREA_3_COMPLETE    0x00008000 
#define _TX_AREA_2_COMPLETE    0x00004000 
#define _TX_AREA_1_COMPLETE    0x00002000 
#define _TX_AREA_0_COMPLETE    0x00001000 
#define _RX_AREA_7_COMPLETE    0x00000800 
#define _RX_AREA_6_COMPLETE    0x00000400 
#define _RX_AREA_5_COMPLETE    0x00000200 
#define _RX_AREA_4_COMPLETE    0x00000100 
#define _RX_AREA_3_COMPLETE    0x00000080 
#define _RX_AREA_2_COMPLETE    0x00000040 
#define _RX_AREA_1_COMPLETE    0x00000020 
#define _RX_AREA_0_COMPLETE    0x00000010 
#define _TX_DMA_COMPLETE    0x00000008 
#define _RX_DMA_COMPLETE    0x00000004 
#define _TX_FIFO_INTERRUPT    0x00000002 
#define _RX_FIFO_INTERRUPT    0x00000001 
 
#define _RECEIVE_FIFO_INTERRUPT_STATUS 0x00002C 
#define _MEMORY_AREA_7     0xF0000000 
#define _MEMORY_AREA_6     0x0F000000 
#define _MEMORY_AREA_5     0x00F00000 
#define _MEMORY_AREA_4     0x000F0000 
#define _MEMORY_AREA_3     0x0000F000 
#define _MEMORY_AREA_2     0x00000F00 
#define _MEMORY_AREA_1     0x000000F0 
#define _MEMORY_AREA_0     0x0000000F 
#define _FIFO_UNDERFLOW     0b0001 
#define _FIFO_EMPTY      0b0010 
#define _FIFO_EXCEEDS_THRESHOLD   0b0100 
#define _FIFO_OVERFLOW     0b1000 
 
#define _TRANSMIT_FIFO_INTERRUPT_STATUS 0x000030 
//#define _MEMORY_AREA_7     0xF0000000 
//#define _MEMORY_AREA_6     0x0F000000 
//#define _MEMORY_AREA_5     0x00F00000 
//#define _MEMORY_AREA_4     0x000F0000 
//#define _MEMORY_AREA_3     0x0000F000 
//#define _MEMORY_AREA_2     0x00000F00 
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//#define _MEMORY_AREA_1     0x000000F0 
//#define _MEMORY_AREA_0     0x0000000F 
//#define _FIFO_UNDERFLOW     0b0001 
//#define _FIFO_EMPTY      0b0010 
//#define _FIFO_EXCEEDS_THRESHOLD   0b0100 
//#define _FIFO_OVERFLOW     0b1000 
 
#define _GLOBAL_INTERRUPT_MASK   0x000040 
#define _ENABLE_INTERRUPTS    0x1 
#define _DISABLE_INTERRUPTS    0x0 
 
#define _INTERRUPT_MASK     0x000044 
#define _DMA_ABORT_DETECTED_ENABLE  0x100000 
#define _TX_AREA_7_COMPLETE_ENABLE  0x080000 
#define _TX_AREA_6_COMPLETE_ENABLE  0x040000 
#define _TX_AREA_5_COMPLETE_ENABLE  0x020000 
#define _TX_AREA_4_COMPLETE_ENABLE  0x010000 
#define _TX_AREA_3_COMPLETE_ENABLE  0x008000 
#define _TX_AREA_2_COMPLETE_ENABLE  0x004000 
#define _TX_AREA_1_COMPLETE_ENABLE  0x002000 
#define _TX_AREA_0_COMPLETE_ENABLE  0x001000 
#define _RX_AREA_7_COMPLETE_ENABLE  0x000800 
#define _RX_AREA_6_COMPLETE_ENABLE  0x000400 
#define _RX_AREA_5_COMPLETE_ENABLE  0x000200 
#define _RX_AREA_4_COMPLETE_ENABLE  0x000100 
#define _RX_AREA_3_COMPLETE_ENABLE  0x000080 
#define _RX_AREA_2_COMPLETE_ENABLE  0x000040 
#define _RX_AREA_1_COMPLETE_ENABLE  0x000020 
#define _RX_AREA_0_COMPLETE_ENABLE  0x000010 
#define _TX_DMA_COMPLETE_ENABLE   0x000008 
#define _RX_DMA_COMPLETE_ENABLE   0x000004 
#define _TX_INTERRUPTS_DISABLE  0xFFFFFFF5 
#define _RX_INTERRUPTS_DISABLE  0xFFFFFFFA 
#define _TX_FIFO_INTERRUPT_ENABLE  0x000002 
#define _RX_FIFO_INTERRUPT_ENABLE  0x000001 
 
#define _RECEIVE_FIFO_INTERRUPT_MASK 0x000048 
//#define _MEMORY_AREA_7     0xF0000000 
//#define _MEMORY_AREA_6     0x0F000000 
//#define _MEMORY_AREA_5     0x00F00000 
//#define _MEMORY_AREA_4     0x000F0000 
//#define _MEMORY_AREA_3     0x0000F000 
//#define _MEMORY_AREA_2     0x00000F00 
//#define _MEMORY_AREA_1     0x000000F0 
//#define _MEMORY_AREA_0     0x0000000F 
#define _FIFO_UNDERFLOW_ENABLE   0b0001 
#define _FIFO_EMPTY_ENABLE    0b0010 
#define _FIFO_EXCEEDS_THRESHOLD_ENABLE 0b0100 
#define _FIFO_OVERFLOW_ENABLE   0b1000 
 
#define _TRANSMIT_FIFO_INTERRUPT_MASK 0x00004C 
//#define _MEMORY_AREA_7     0xF0000000 
//#define _MEMORY_AREA_6     0x0F000000 
//#define _MEMORY_AREA_5     0x00F00000 
//#define _MEMORY_AREA_4     0x000F0000 
//#define _MEMORY_AREA_3     0x0000F000 
//#define _MEMORY_AREA_2     0x00000F00 
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//#define _MEMORY_AREA_1     0x000000F0 
//#define _MEMORY_AREA_0     0x0000000F 
//#define _FIFO_UNDERFLOW_ENABLE   0b0001 
//#define _FIFO_EMPTY_ENABLE    0b0010 
//#define _FIFO_EXCEEDS_THRESHOLD_ENABLE 0b0100 
//#define _FIFO_OVERFLOW_ENABLE    0b1000 
 
#define _DISCRETE_OUTPUT_CONTROL  0x000050 
#define _8_BIT_OUTPUT_MODE_SELECT  0x100 
#define _DISCRETE_OUTPUT_7_SELECTED  0x080 
#define _DISCRETE_OUTPUT_6_SELECTED  0x040 
#define _DISCRETE_OUTPUT_5_SELECTED  0x020 
#define _DISCRETE_OUTPUT_4_SELECTED  0x010 
#define _DISCRETE_OUTPUT_3_SELECTED  0x008 
#define _DISCRETE_OUTPUT_2_SELECTED  0x004 
#define _DISCRETE_OUTPUT_1_SELECTED  0x002 
#define _DISCRETE_OUTPUT_0_SELECTED  0x001 
 
#define _AUTO_DMA_CONTROL    0x000094 
//31:16 Number of 64-bit words to be transfered 
#define _TX_MEMORY_AREA_0_TO_0   0x0 
#define _TX_MEMORY_AREA_0_TO_1   0x080 
#define _TX_MEMORY_AREA_0_TO_2   0x100 
#define _TX_MEMORY_AREA_0_TO_3   0x180 
#define _TX_MEMORY_AREA_0_TO_4   0x200 
#define _TX_MEMORY_AREA_0_TO_5   0x280 
#define _TX_MEMORY_AREA_0_TO_6   0x300 
#define _TX_MEMORY_AREA_0_TO_7   0x038 
#define _RX_MEMORY_AREA_0_TO_0   0x0 
#define _RX_MEMORY_AREA_0_TO_1   0x008 
#define _RX_MEMORY_AREA_0_TO_2   0x010 
#define _RX_MEMORY_AREA_0_TO_3   0x018 
#define _RX_MEMORY_AREA_0_TO_4   0x020 
#define _RX_MEMORY_AREA_0_TO_5   0x028 
#define _RX_MEMORY_AREA_0_TO_6   0x030 
#define _RX_MEMORY_AREA_0_TO_7   0x038 
#define _AUTO_COUNTERS_RELOAD   0x004 // Allows 
multiple transfers automatically 
#define _TX_AUTO_DMA_ENABLE    0x006 
#define _RX_AUTO_DMA_ENABLE    0x005 
#define _TX_AUTO_DMA_DISABLE   0xFFFFFFFD 
#define _RX_AUTO_DMA_DISABLE   0xFFFFFFFE 
 
// 0x00400:0x0004F0 AUTO DMA BLOCK COUNT 
#define _RX_MEMORY_AREA_0_BLOCK_COUNT 0x000400 
#define _RX_MEMORY_AREA_1_BLOCK_COUNT 0x000410 
#define _RX_MEMORY_AREA_2_BLOCK_COUNT 0x000420 
#define _RX_MEMORY_AREA_3_BLOCK_COUNT 0x000430 
#define _RX_MEMORY_AREA_4_BLOCK_COUNT 0x000440 
#define _RX_MEMORY_AREA_5_BLOCK_COUNT 0x000450 
#define _RX_MEMORY_AREA_6_BLOCK_COUNT 0x000460 
#define _RX_MEMORY_AREA_7_BLOCK_COUNT 0x000470 
#define _TX_MEMORY_AREA_0_BLOCK_COUNT 0x000480 
#define _TX_MEMORY_AREA_1_BLOCK_COUNT 0x000490 
#define _TX_MEMORY_AREA_2_BLOCK_COUNT 0x0004A0 
#define _TX_MEMORY_AREA_3_BLOCK_COUNT 0x0004B0 
#define _TX_MEMORY_AREA_4_BLOCK_COUNT 0x0004C0 
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#define _TX_MEMORY_AREA_5_BLOCK_COUNT 0x0004D0 
#define _TX_MEMORY_AREA_6_BLOCK_COUNT 0x0004E0 
#define _TX_MEMORY_AREA_7_BLOCK_COUNT 0x0004F0 
// 9:0 Block Count: Number of DMA blocks to be transfered before a DMA 
Block Complete int 
 
// 0X000500:0X0005F0 AUTO DMA GROUP COUNT 
#define _RX_MEMORY_AREA_0_GROUP_COUNT 0x000500 
#define _RX_MEMORY_AREA_1_GROUP_COUNT 0x000510 
#define _RX_MEMORY_AREA_2_GROUP_COUNT 0x000520 
#define _RX_MEMORY_AREA_3_GROUP_COUNT 0x000530 
#define _RX_MEMORY_AREA_4_GROUP_COUNT 0x000540 
#define _RX_MEMORY_AREA_5_GROUP_COUNT 0x000550 
#define _RX_MEMORY_AREA_6_GROUP_COUNT 0x000560 
#define _RX_MEMORY_AREA_7_GROUP_COUNT 0x000570 
#define _TX_MEMORY_AREA_0_GROUP_COUNT 0x000580 
#define _TX_MEMORY_AREA_1_GROUP_COUNT 0x000590 
#define _TX_MEMORY_AREA_2_GROUP_COUNT 0x0005A0 
#define _TX_MEMORY_AREA_3_GROUP_COUNT 0x0005B0 
#define _TX_MEMORY_AREA_4_GROUP_COUNT 0x0005C0 
#define _TX_MEMORY_AREA_5_GROUP_COUNT 0x0005D0 
#define _TX_MEMORY_AREA_6_GROUP_COUNT 0x0005E0 
#define _TX_MEMORY_AREA_7_GROUP_COUNT 0x0005F0 
// 4:0 Block Count: Number of DMA groups to be transfered before the 
initial 
//                  DMA address is reloaded 
 
 
// 0X000800:0X0008F0 AUTO DMA ADDRESS 
#define _RX_MEMORY_AREA_0_ADDRESS  0x000800 
#define _RX_MEMORY_AREA_1_ADDRESS  0x000810 
#define _RX_MEMORY_AREA_2_ADDRESS  0x000820 
#define _RX_MEMORY_AREA_3_ADDRESS  0x000830 
#define _RX_MEMORY_AREA_4_ADDRESS  0x000840 
#define _RX_MEMORY_AREA_5_ADDRESS  0x000850 
#define _RX_MEMORY_AREA_6_ADDRESS  0x000860 
#define _RX_MEMORY_AREA_7_ADDRESS  0x000870 
#define _TX_MEMORY_AREA_0_ADDRESS  0x000880 
#define _TX_MEMORY_AREA_1_ADDRESS  0x000890 
#define _TX_MEMORY_AREA_2_ADDRESS  0x0008A0 
#define _TX_MEMORY_AREA_3_ADDRESS  0x0008B0 
#define _TX_MEMORY_AREA_4_ADDRESS  0x0008C0 
#define _TX_MEMORY_AREA_5_ADDRESS  0x0008D0 
#define _TX_MEMORY_AREA_6_ADDRESS  0x0008E0 
#define _TX_MEMORY_AREA_7_ADDRESS  0x0008F0 
// 31:0 Starting address in memory to begin DMA transfer 
 
#define _RECEIVE_CONTROL    0x001100 
//     _RX_CHANNEL_ORGANIZATION   
#define _8_CHANNELS      0x0000 
#define _2_POLYPHASE_CHANNELS   0x4000 
#define _4_POLYPHASE_CHANNELS   0x8000 
#define _8_POLYPHASE_CHANNELS   0xC000 
#define _BIT_REGISTERS_ENABLE   0x2000 
#define _FIFO_FLUSH      0x1000 
#define _RX_HEADER_ENABLE    0x0400 
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#define _RX_MASTER_ENABLE    0x0200 // Must be 
selected 
#define _POLYPHSE_SEQUENCIAL_DATA  0x0100 // Usually 
not set 
#define _1_RX_MEMORY_AREA    0x0 
#define _2_RX_MEMORY_AREAS    0x0010 
#define _3_RX_MEMORY_AREAS    0x0020 
#define _4_RX_MEMORY_AREAS    0x0030 
#define _5_RX_MEMORY_AREAS    0x0040 
#define _6_RX_MEMORY_AREAS    0x0050 
#define _7_RX_MEMORY_AREAS    0x0060 
#define _8_RX_MEMORY_AREAS    0x0070 
#define _RX_CIRCUITRY_ENABLE   0x0002 // Enables 
receiver circuitry 
#define _RX_ENABLE      0x0001 // 
Should be enabled after initialization 
#define _RX_DISABLE      0xFFFFFFFE 
 
#define _MANUAL_DMA_RX_MEMORY_SELECT 0x001104 
#define _MANUAL_RX_MEMORY_SELECT  0x100 
#define _START_MANUAL_DMA_RX   0x010 
#define _RX_DIRECT_FIFO_ACCESS   0x008 
#define _RX_MEMORY_AREA_SELECT   0X007 
// Ox00X = Memory area to be used for transfer (0-7) 
 
#define _RECEIVE_TIMING_CONTROL   0x001108 
#define _TIMING_CONTROL_DISABLE   0x0 
 
#define _RECEIVE_CLOCK_RATE    0x001128 //For 
93MHz=92999998 
 
//Registers of pages 67-73 are not used. 
 
#define _RX_MEMORY_AREA_0_ORGANIZATION 0x001300 
#define _RX_MEMORY_AREA_1_ORGANIZATION 0x001310 
#define _RX_MEMORY_AREA_2_ORGANIZATION 0x001320 
#define _RX_MEMORY_AREA_3_ORGANIZATION 0x001330 
#define _RX_MEMORY_AREA_4_ORGANIZATION 0x001340 
#define _RX_MEMORY_AREA_5_ORGANIZATION 0x001350 
#define _RX_MEMORY_AREA_6_ORGANIZATION 0x001360 
#define _RX_MEMORY_AREA_7_ORGANIZATION 0x001370 
 
//For the above registers, the following fields are used 
#define _RX_END_CHANNEL_0    0x0 
#define _RX_END_CHANNEL_1    0x1000 
#define _RX_END_CHANNEL_2    0x2000 
#define _RX_END_CHANNEL_3    0x3000 
#define _RX_END_CHANNEL_4    0x4000 
#define _RX_END_CHANNEL_5    0x5000 
#define _RX_END_CHANNEL_6    0x6000 
#define _RX_END_CHANNEL_7    0x7000 
#define _RX_START_CHANNEL_0    0x0 
#define _RX_START_CHANNEL_1    0x0100 
#define _RX_START_CHANNEL_2    0x0200 
#define _RX_START_CHANNEL_3    0x0300 
#define _RX_START_CHANNEL_4    0x0400 
#define _RX_START_CHANNEL_5    0x0500 
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#define _RX_START_CHANNEL_6    0x0600 
#define _RX_START_CHANNEL_7    0x0700 
#define _RX_CHANNEL_0_DIRECTED   0x0001 
#define _RX_CHANNEL_1_DIRECTED   0x0002 
#define _RX_CHANNEL_2_DIRECTED   0x0004 
#define _RX_CHANNEL_3_DIRECTED   0x0008 
#define _RX_CHANNEL_4_DIRECTED   0x0010 
#define _RX_CHANNEL_5_DIRECTED   0x0020 
#define _RX_CHANNEL_6_DIRECTED   0x0040 
#define _RX_CHANNEL_7_DIRECTED   0x0080 
 
#define _RX_MEMORY_AREA_0_POINTER  0x001400 
#define _RX_MEMORY_AREA_1_POINTER  0x001410 
#define _RX_MEMORY_AREA_2_POINTER  0x001420 
#define _RX_MEMORY_AREA_3_POINTER  0x001430 
#define _RX_MEMORY_AREA_4_POINTER  0x001440 
#define _RX_MEMORY_AREA_5_POINTER  0x001450 
#define _RX_MEMORY_AREA_6_POINTER  0x001460 
#define _RX_MEMORY_AREA_7_POINTER  0x001470 
 
//For the above registers, the following values must be entered: 
// 30:16 Last address of the designated memory area in relation 
//          to the starting address of the Rx memory block (64-bit 
longwords) 
// 0:14  The first address of the designated memory area (as 
above) 
 
#define _RX_MEMORY_AREA_0_LIMITS  0x001500 
#define _RX_MEMORY_AREA_1_LIMITS  0x001510 
#define _RX_MEMORY_AREA_2_LIMITS  0x001520 
#define _RX_MEMORY_AREA_3_LIMITS  0x001530 
#define _RX_MEMORY_AREA_4_LIMITS  0x001540 
#define _RX_MEMORY_AREA_5_LIMITS  0x001550 
#define _RX_MEMORY_AREA_6_LIMITS  0x001560 
#define _RX_MEMORY_AREA_7_LIMITS  0x001570 
 
//For the above registers, the following values must be entered: 
// 30:16 Size of the designated memory area (64-bit longwords) 
// 0:14  Threshold at which interrupt will be generated 
 
#define _RX_MEMORY_AREA_0_PTR_STATUS  0x001800 
#define _RX_MEMORY_AREA_1_PTR_STATUS  0x001810 
#define _RX_MEMORY_AREA_2_PTR_STATUS  0x001820 
#define _RX_MEMORY_AREA_3_PTR_STATUS  0x001830 
#define _RX_MEMORY_AREA_4_PTR_STATUS  0x001840 
#define _RX_MEMORY_AREA_5_PTR_STATUS  0x001850 
#define _RX_MEMORY_AREA_6_PTR_STATUS  0x001860 
#define _RX_MEMORY_AREA_7_PTR_STATUS  0x001870 
 
//For the above registers, the following values must be entered: 
// 0:14  Next address to be read from the designated FIFO 
Memory area 
// PROVIDED FOR DEBUG PURPOSES 
 
#define _RECEIVE_FIFO__STATUS   0x001900 
//#define _MEMORY_AREA_7     0xF0000000 
//#define _MEMORY_AREA_6     0x0F000000 
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//#define _MEMORY_AREA_5     0x00F00000 
//#define _MEMORY_AREA_4     0x000F0000 
//#define _MEMORY_AREA_3     0x0000F000 
//#define _MEMORY_AREA_2     0x00000F00 
//#define _MEMORY_AREA_1     0x000000F0 
//#define _MEMORY_AREA_0     0x0000000F 
//#define _FIFO_UNDERFLOW     0b0001 
//#define _FIFO_EMPTY      0b0010 
//#define _FIFO_EXCEEDS_THRESHOLD   0b0100 
//#define _FIFO_OVERFLOW     0b1000 
 
#define _RX_MEMORY_AREA_0_WR_PTR_STATUS  0x001A00 
#define _RX_MEMORY_AREA_1_WR_PTR_STATUS  0x001A10 
#define _RX_MEMORY_AREA_2_WR_PTR_STATUS  0x001A20 
#define _RX_MEMORY_AREA_3_WR_PTR_STATUS  0x001A30 
#define _RX_MEMORY_AREA_4_WR_PTR_STATUS  0x001A40 
#define _RX_MEMORY_AREA_5_WR_PTR_STATUS  0x001A50 
#define _RX_MEMORY_AREA_6_WR_PTR_STATUS  0x001A60 
#define _RX_MEMORY_AREA_7_WR_PTR_STATUS  0x001A70 
 
//For the above registers, the following values must be entered: 
// 0:14  Next address of the RX Memory to be written. 
// PROVIDED FOR DEBUG PURPOSES 
 
#define _RX_MEMORY_AREA_0_FIFO_COUNT  0x001B00 
#define _RX_MEMORY_AREA_1_FIFO_COUNT  0x001B10 
#define _RX_MEMORY_AREA_2_FIFO_COUNT  0x001B20 
#define _RX_MEMORY_AREA_3_FIFO_COUNT  0x001B30 
#define _RX_MEMORY_AREA_4_FIFO_COUNT  0x001B40 
#define _RX_MEMORY_AREA_5_FIFO_COUNT  0x001B50 
#define _RX_MEMORY_AREA_6_FIFO_COUNT  0x001B60 
#define _RX_MEMORY_AREA_7_FIFO_COUNT  0x001B70 
 
//For the above registers, the following values must be entered: 
// 0:14  Amount of data remaining in the designated Memory 
Area FIFO 
 
#define _TRANSMIT_CONTROL    0x002100 
#define _TX_BIT_REGISTERS_ENABLE  0x2000 
#define _TX_FIFO_FLUSH     0x1000 
#define _TX_FIFO_ENABLE     0xFFFFEFFF 
#define _TX_MASTER_SYNC_ENABLE   0x0400 // Must be 
set??? 
#define _TX_MASTER_ENABLE    0x0200 // Must be 
selected 
#define _1_TX_MEMORY_AREA    0x0 
#define _2_TX_MEMORY_AREAS    0x0010 
#define _3_TX_MEMORY_AREAS    0x0020 
#define _4_TX_MEMORY_AREAS    0x0030 
#define _5_TX_MEMORY_AREAS    0x0040 
#define _6_TX_MEMORY_AREAS    0x0050 
#define _7_TX_MEMORY_AREAS    0x0060 
#define _8_TX_MEMORY_AREAS    0x0070 
#define _TX_CIRCUITRY_ENABLE   0x0002 // Enables 
transmitter circuitry 
#define _TX_ENABLE      0x0001 // 
Should be enabled after initialization 
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#define _TX_DISABLE      0xFFFFFFFE 
 
#define _MANUAL_DMA_TX_MEMORY_SELECT 0x002104 
#define _TX_ENDIAN_SELECT    0x100 
#define _DIRECT_TX_MEMORY_ACCESS  0x008 
#define _TX_MEMORY_AREA_SELECT   0x007 
// Ox00X = Memory area to be used for transfer (0-7) 
 
#define _TX_TIMING_CONTROL    0x002108 
#define _TX_TIMING_CONTROL_DISABLE  0x0 
 
#define _TX_CLOCK_RATE     0x002128 //For 
93MHz=92999998 
 
#define _PRN_CONTROL     0x00211C 
//18:4 PRN Seed value 
#define _4_SAMPLES_PER_SYMBOL   0x8 
#define _2_SAMPLES_PER_SYMBOL   0x4 
#define _1_SAMPLE_PER_SYMBOL   0x0 
#define _PRN_CODE_TX_ENABLE    0x1  
 //If 0 FIFO data is transmitted 
 
#define _PRN_ZERO_IQ_VALUE    0x002120 
//31:16 Q 
//00:15 I 
 
#define _PRN_ONE_IQ_VALUE    0x002124 
//31:16 Q 
//00:15 I 
 
//Registers of pages 84-88 are not used. 
 
#define _TX_MEMORY_AREA_0_ORGANIZATION 0x002300 
#define _TX_MEMORY_AREA_1_ORGANIZATION 0x002310 
#define _TX_MEMORY_AREA_2_ORGANIZATION 0x002320 
#define _TX_MEMORY_AREA_3_ORGANIZATION 0x002330 
#define _TX_MEMORY_AREA_4_ORGANIZATION 0x002340 
#define _TX_MEMORY_AREA_5_ORGANIZATION 0x002350 
#define _TX_MEMORY_AREA_6_ORGANIZATION 0x002360 
#define _TX_MEMORY_AREA_7_ORGANIZATION 0x002370 
 
//For the above registers, the following fields are used 
#define _TX_END_CHANNEL_0    0x0 
#define _TX_END_CHANNEL_1    0x1000 
#define _TX_END_CHANNEL_2    0x2000 
#define _TX_END_CHANNEL_3    0x3000 
#define _TX_END_CHANNEL_4    0x4000 
#define _TX_END_CHANNEL_5    0x5000 
#define _TX_END_CHANNEL_6    0x6000 
#define _TX_END_CHANNEL_7    0x7000 
#define _TX_START_CHANNEL_0    0x0 
#define _TX_START_CHANNEL_1    0x0100 
#define _TX_START_CHANNEL_2    0x0200 
#define _TX_START_CHANNEL_3    0x0300 
#define _TX_START_CHANNEL_4    0x0400 
#define _TX_START_CHANNEL_5    0x0500 
#define _TX_START_CHANNEL_6    0x0600 
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#define _TX_START_CHANNEL_7    0x0700 
//The values below can be ORed to allow multiple channels 
#define _TX_CHANNEL_0_DIRECTED   0x0001 
#define _TX_CHANNEL_1_DIRECTED   0x0002 
#define _TX_CHANNEL_2_DIRECTED   0x0004 
#define _TX_CHANNEL_3_DIRECTED   0x0008 
#define _TX_CHANNEL_4_DIRECTED   0x0010 
#define _TX_CHANNEL_5_DIRECTED   0x0020 
#define _TX_CHANNEL_6_DIRECTED   0x0040 
#define _TX_CHANNEL_7_DIRECTED   0x0080 
 
#define _TX_MEMORY_AREA_0_POINTER  0x002400 
#define _TX_MEMORY_AREA_1_POINTER  0x002410 
#define _TX_MEMORY_AREA_2_POINTER  0x002420 
#define _TX_MEMORY_AREA_3_POINTER  0x002430 
#define _TX_MEMORY_AREA_4_POINTER  0x002440 
#define _TX_MEMORY_AREA_5_POINTER  0x002450 
#define _TX_MEMORY_AREA_6_POINTER  0x002460 
#define _TX_MEMORY_AREA_7_POINTER  0x002470 
 
//For the above registers, the following values must be entered: 
// 30:16 Last address of the designated memory area in relation 
//          to the starting address of the Rx memory block (64-bit 
longwords) 
// 0:14  The first address of the designated memory area (as 
above) 
 
#define _TX_MEMORY_AREA_0_LIMITS  0x002500 
#define _TX_MEMORY_AREA_1_LIMITS  0x002510 
#define _TX_MEMORY_AREA_2_LIMITS  0x002520 
#define _TX_MEMORY_AREA_3_LIMITS  0x002530 
#define _TX_MEMORY_AREA_4_LIMITS  0x002540 
#define _TX_MEMORY_AREA_5_LIMITS  0x002550 
#define _TX_MEMORY_AREA_6_LIMITS  0x002560 
#define _TX_MEMORY_AREA_7_LIMITS  0x002570 
 
//For the above registers, the following values must be entered: 
// 30:16 Size of the designated memory area (64-bit longwords) 
// 0:14  Threshold at which interrupt will be generated 
 
#define _TX_MEMORY_AREA_0_PTR_STATUS 0x002800 
#define _TX_MEMORY_AREA_1_PTR_STATUS 0x002810 
#define _TX_MEMORY_AREA_2_PTR_STATUS 0x002820 
#define _TX_MEMORY_AREA_3_PTR_STATUS 0x002830 
#define _TX_MEMORY_AREA_4_PTR_STATUS 0x002840 
#define _TX_MEMORY_AREA_5_PTR_STATUS 0x002850 
#define _TX_MEMORY_AREA_6_PTR_STATUS 0x002860 
#define _TX_MEMORY_AREA_7_PTR_STATUS 0x002870 
 
//For the above registers, the following values must be entered: 
// 0:14  Next address to be read from the designated FIFO 
Memory area 
// PROVIDED FOR DEBUG PURPOSES 
 
#define _TRANSMIT_FIFO__STATUS   0x002900 
//#define _MEMORY_AREA_7     0xF0000000 
//#define _MEMORY_AREA_6     0x0F000000 
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//#define _MEMORY_AREA_5     0x00F00000 
//#define _MEMORY_AREA_4     0x000F0000 
//#define _MEMORY_AREA_3     0x0000F000 
//#define _MEMORY_AREA_2     0x00000F00 
//#define _MEMORY_AREA_1     0x000000F0 
//#define _MEMORY_AREA_0     0x0000000F 
//#define _FIFO_UNDERFLOW     0b0001 
//#define _FIFO_EMPTY      0b0010 
//#define _FIFO_EXCEEDS_THRESHOLD   0b0100 
//#define _FIFO_OVERFLOW     0b1000 
 
#define _TX_MEMORY_AREA_0_RD_PTR_STATUS  0x002A00 
#define _TX_MEMORY_AREA_1_RD_PTR_STATUS  0x002A10 
#define _TX_MEMORY_AREA_2_RD_PTR_STATUS  0x002A20 
#define _TX_MEMORY_AREA_3_RD_PTR_STATUS  0x002A30 
#define _TX_MEMORY_AREA_4_RD_PTR_STATUS  0x002A40 
#define _TX_MEMORY_AREA_5_RD_PTR_STATUS  0x002A50 
#define _TX_MEMORY_AREA_6_RD_PTR_STATUS  0x002A60 
#define _TX_MEMORY_AREA_7_RD_PTR_STATUS  0x002A70 
 
//For the above registers, the following values must be entered: 
// 0:14  Next address of the TX Memory to be READ. 
// PROVIDED FOR DEBUG PURPOSES 
 
#define _TX_MEMORY_AREA_0_FIFO_COUNT  0x002B00 
#define _TX_MEMORY_AREA_1_FIFO_COUNT  0x002B10 
#define _TX_MEMORY_AREA_2_FIFO_COUNT  0x002B20 
#define _TX_MEMORY_AREA_3_FIFO_COUNT  0x002B30 
#define _TX_MEMORY_AREA_4_FIFO_COUNT  0x002B40 
#define _TX_MEMORY_AREA_5_FIFO_COUNT  0x002B50 
#define _TX_MEMORY_AREA_6_FIFO_COUNT  0x002B60 
#define _TX_MEMORY_AREA_7_FIFO_COUNT  0x002B70 
 
//For the above registers, the following values must be entered: 
// 0:14  Amount of data remaining in the designated Memory 
Area FIFO 
 
#define _DITHER_NOISE_POWER_CONTROL   0x008000 
//7:0 Noise power from -90dBm (0x0) to -30 dBm (0xFF) 
 
#define _ATTENUATOR_POWER_CONTROL   0x008004 
 
//Registers of pages 95-100 are not used 
 
 
 

PMCRADIOI.H 
//Red River Engineering 
//Include file for use with WaveRunner Multi-Card Library 
// PN:  SRC-905-008-R00 (August 16, 2001) 
// Author - Patrick Jennings 
 
#ifndef PMCRADIOI__H 
#define PMCRADIOI__H 
 
#ifdef __cplusplus 
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extern "C" { 
#endif 
 
typedef struct { 
 int NumBuffers; 
 unsigned long BufSizeBytes; 
 unsigned long ErrStatus; 
 unsigned long v_dmap[32]; 
 unsigned long p_dmap[32]; 
} s_DMAConf; 
 
typedef struct { 
 int DevNum;  //Device Number of the Radio 
} s_PMCRadio; 
 
/* 
s_PMCRadio Radio0; 
Radio0.DevNum = 0; 
 
OpenPMCRadio(&Radio0); 
ClosePMCRadio(&Radio0); 
*/ 
 
///////////////////////////////////////////////////////////////////////
/////// 
//      PROTYPES 
///////////////////////////////////////////////////////////////////////
/////// 
/*=====================================================================
================= 
Prototype int OpenWaveRunner(void); 
 
Function  OpenWaveRunner instantiates a Wave Walker radio as a 
Windows device and  
memory maps its physical PCI space to a local memory image.  The local 
memory image is  
used to access the radio via the Wave Walker memory map described in 
the Wave Walker Hardware Reference Manual. 
OpenWaveRunner must be called before any of the Wave Walker library 
functions can be used. 
CloseWaveRunner must be called prior to exiting a program that has 
called OpenWaveRunner  
to prevent memory leaks.   
 
Return Values   
0 Successful open and memory mapping of Wave Walker Radio 
-1 Wave Walker device not accessible  
-2 OS unable to memory map device 
=======================================================================
===============*/ 
int OpenWaveRunner();      //Opens a 
WaveRunner and maps it 
int OpenMultiWaveRunner(int iDeviceNum); 
int OpenPMCRadio(s_PMCRadio * PMCRadio); 
 
/*=====================================================================
================= 
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Prototype int CloseWaveRunner(void); 
 
Function  Unmaps and deallocates system memory assigned to a 
Wave walker device.  
This function must be called prior to exiting any program that has 
issued an  
OpenWaveRunner command.  Wave Walker library functions can no longer be 
used after  
this function is executed unless a new OpenWaveRunner command is 
issued. 
 
Return Values   
0 Successful operation 
-1 Unable to deallocate memory (system fault) 
=======================================================================
===============*/ 
int CloseWaveRunner();      //Closes and 
deletes a WaveRunner 
int CloseMultiWaveRunner(int iDeviceNum); 
int ClosePMCRadio(s_PMCRadio * PMCRadio);     
 
/*=====================================================================
================= 
Prototype int GetMemPointer(unsigned long *Memptr); 
 
Function  GetMemPointer returns a pointer to the Wave Walker 
local memory image.  This pointer can be used to access any location in 
the Wave Walker memory map.  The user must pass the pointer by 
reference by calling as follows: 
 
unsigned long  *MyWaveRunnerptr;   //User defined pointer to 
Wave Walker  
 GetMemPointer((unsigned long *) &MyWaveRunnerptr);  //Call to 
initialize pointer  
 
Once initialized the pointer can be used to access Wave Walker as 
follows: 
 
Write to the transmitter real data FIFO: 
 
#define TX_REAL_OFFSET 0x1000 
*(MyWaveRunnerptr + TX_REAL_OFFSET/4) = 0x12345678; 
 
Read from Wave Walker status register: 
 
#define  STATUS_REG_OFFSET 0x058C 
 data = *(MyWaveRunnerptr + STATUS_REG_OFFSET/4); 
 
note: Wave Walker memory map addresses must be divided by 4 when using 
the pointer  
returned by GetMemPointer.  The division by 4 translates the byte 
offset memory map  
listings to 32-bit (4 byte) word pointer increments.  This is NOT 
required for the 
Write and Read Wave Walker functions found elsewhere in this library. 
 
Return Values   
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0 Successful operation 
-1 Unsuccessful operation 
=======================================================================
===============*/ 
int GetMemPointer(unsigned long* ptr);  //Provides a pointer to 
the virtual map of the radio  
int GetMultiMemPointer(int iDeviceNum, unsigned long* ptr);  
int GetPMCRadioMemPointer(s_PMCRadio * , unsigned long* ptr); 
 
/*=====================================================================
================= 
Prototype int WriteWaveRunner(unsigned long AddressOffset, unsigned 
long Data); 
 
Function  The WriteWaveRunner function writes the data value 
passed in  
variable Data to the Wave Walker device memory mapped register 
indicated by 
variable AddressOffset.  AddressOffset is any valid Wave Walker memory 
map address.   
Please see the Wave Walker Hardware Reference Manual for a listing of 
valid memory  
map offset addresses. 
 
Return Values 
0 Successful operation 
-1 Unsuccessful operation 
=======================================================================
===============*/ 
int WriteWaveRunner(unsigned long AddressOffset, unsigned long Data); 
//Writes 
int WriteMultiWaveRunner(int iDeviceNum, unsigned long AddressOffset, 
unsigned long Data); 
int WritePMCRadio(s_PMCRadio * PMCRadio, unsigned long AddressOffset, 
unsigned long Data); //Writes 
 
 
/*=====================================================================
================= 
Prototype int ReadWaveRunner(unsigned long AddressOffset, unsigned 
long *Data); 
 
Function  ReadWaveRunner returns the value located at 
AddressOffset to the variable Data passed by reference. AddressOffset 
is any valid Wave Walker memory map address.   
 
Calling form: 
 
  unsigned long  address, data;   // User defined 
variables  
  ReadWaveRunner(address, &data);  // Call to read 
data  
 
Data value returned by reference. 
 
Return Values 
0 Successful operation 
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-1 Unsuccessful operation 
 
=======================================================================
===============*/ 
int ReadWaveRunner(unsigned long AddressOffset, unsigned long *Data); 
//Reads by ref 
int ReadMultiWaveRunner(int iDeviceNum, unsigned long AddressOffset, 
unsigned long *Data);  
int ReadPMCRadio(s_PMCRadio * PMCRadio, unsigned long AddressOffset, 
unsigned long *Data); //Reads by ref 
 
 
 
 
 
/*=====================================================================
============= 
int ReadWRConfigSpace(unsigned long nOffset, char *PCIconfig, unsigned 
long nBytes); 
int ReadMultiWRConfigSpace(int iDeviceNum, unsigned long nOffset, char 
*PCIconfig, unsigned long nBytes) 
 
=======================================================================
===========*/ 
int ReadWRConfigSpace(unsigned long nOffset, char *PCIconfig, unsigned 
long nBytes); 
int ReadMultiWRConfigSpace(int iDeviceNum, unsigned long nOffset, char 
*PCIconfig, unsigned long nBytes); 
int ReadPMCRadioConfigSpace(s_PMCRadio * PMCRadio,unsigned long 
nOffset, char *PCIconfig, unsigned long nBytes); 
 
 
/*=====================================================================
============= 
int WriteWRConfigSpace(unsigned long nOffset, char *PCIconfig, unsigned 
long nBytes) 
int WriteMultiWRConfigSpace(int iDeviceNum, unsigned long nOffset, char 
*PCIconfig, unsigned long nBytes) 
 
=======================================================================
===========*/ 
int WriteWRConfigSpace(unsigned long nOffset, char *PCIconfig, unsigned 
long nBytes); 
int WriteMultiWRConfigSpace(int iDeviceNum, unsigned long nOffset, char 
*PCIconfig, unsigned long nBytes); 
int WritePMCRadioConfigSpace(s_PMCRadio * PMCRadio, unsigned long 
nOffset, char *PCIconfig, unsigned long nBytes); 
 
/*=====================================================================
================= 
Prototype int GetFirmRev(unsigned long *date); 
 
Function  GetFirmRev returns the contents of the Wave Walker 
firmware revision  
register.  A read of the firmware revision register can be used to 
quickly verify  
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the communication path to the Wave Walker radio.  The firmware revision 
date is a  
hexadecimal value passed by reference. 
 
Calling form: 
 
 unsigned long   date;  // User defined variable for 
the revision date  
 
 GetFirmRev(&date);  // Function call to write firmware 
revision date  
 
The variable date is updated with the contents of the Wave Walker 
firmware revision  
register (32 bit Hex constant, for example 0x09171999, note the date 
only makes sense  
when viewed as an unsigned long hexadecimal number)  A date of all 0's 
indicates an  
access problem. 
 
Return Values 
0 Successful operation 
-1 Unsuccessful operation 
 
=======================================================================
===============*/ 
 
int GetFirmRev(unsigned long * date);    //Shows the 
Firmware revison 
int GetMultiFirmRev(int iDeviceNum, unsigned long * date); 
int GetPMCRadioFirmRev(s_PMCRadio * PMCRadio, unsigned long * date); 
 
 
 
/*=====================================================================
================= 
Prototype int ConfigWaveRunner(char ConfigFname [80]); 
 
Function  This function is used to load Wave Walker 
configuration files created  
using the Waveformer configuration tool.  The Waveformer tool creates 
two sets of three  
configuration files.  One set has a ".h" extension, the other has a 
".txt" extension.  
The ConfigWaveRunner function indirectly uses the ".h" versions of 
these files.   
Indirectly means that the filename passed to the function as 
ConfigFname contains a list  
of the .h files to be uploaded.  For example consider a file named 
"ConfigExample.txt".  
 The file is a text file with three entries as follows: 
 
 bdinit.h 
 txinit.h 
 rxinit.h 
 
(note the User may modify the file names) 
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The calling sequence for ConfigWaveRunner using the example file is: 
 
 ConfigWaveRunner("ConfigExample.txt"); 
 
The function opens the pointer file "ConfigExample.txt" to find the 
three configuration  
file names it contains.  The contents of the three .h files are 
automatically uploaded  
to the Wave Walker radio. 
 
Note:  The configuration pointer file and its ".h" files must all be 
collocated in a  
working directory or path recognized by the User application program. 
 
Return Values  
0 Successful operation 
-1 Unable to find configuration pointer file 
-2 Unable to find one or more of the ".h" files 
-3 System unable to communicate with Radio 
 
=======================================================================
===============*/ 
int ConfigWaveRunner (char ConfigFname [80]); //Configs a WaveRunner 
from the Excel tool 
int ConfigMultiWaveRunner (int iDeviceNum, char ConfigFname [80]); 
int ConfigPMCRadio (s_PMCRadio * PMCRadio, char ConfigFname [80]); 
//Configs a WaveRunner from the Excel tool 
 
/*=====================================================================
===============*/ 
// void WaveRunnerIsr(unsigned long status) 
// WaveRunnerIsr is the entry point for any interrupt generated by a 
WaveRunner 
// device.  This function must always be included in any program that 
uses the  
// Wave Walker windows library.  Uncomment and move this function into 
your main code space  
// and replace the printf statement with your own ISR code if you are 
using interrupts. 
/*=====================================================================
===============*/ 
 
int GetDMAPA(unsigned long *wrdmapa, unsigned long *wrdmava); 
int GetMultiDMAPA(int iDeviceNum, unsigned long *wrdmapa, unsigned long 
*wrdmava); 
int GetPMCRadioDMAPA(s_PMCRadio * PMCRadio, unsigned long *wrdmapa, 
unsigned long *wrdmava); 
 
/*=====================================================================
===============*/ 
// unsigned long ReturnMaxDMABufferSize() 
//  
// Returns the size in bytes allocated for each M301 to do DMA 
transfers 
/*=====================================================================
===============*/ 
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unsigned long GetMaxDMABufferSize(); 
unsigned long GetMultiMaxDMABufferSize(int iDeviceNum); 
unsigned long GetPMCRadioMaxDMABufferSize(s_PMCRadio * PMCRadio); 
 
void SetupDMABuffers(int iDevNum, s_DMAConf * DMAConfig); 
void SetupPMCRadioDMABuffers(s_PMCRadio * PMCRadio, s_DMAConf * 
DMAConfig); 
 
void CloseDMABuffers(int iDevNum, s_DMAConf * DMAConfig); 
void ClosePMCRadioBuffers(s_PMCRadio * PMCRadio, s_DMAConf * 
DMAConfig); 
 
void SetDMABufferSize(int Pages); 
void SetMultiDMABufferSize(int iDeviceNum, int Pages); 
void SetPMCRadioDMABufferSize(s_PMCRadio * PMCRadio,int Pages); 
 
int Count301s(void); 
int CountPMCRadios(void); 
 
void PMCRadioIsr(unsigned long status); 
void PMCRadioIsr0(unsigned long status); 
void PMCRadioIsr1(unsigned long status); 
void PMCRadioIsr2(unsigned long status); 
void PMCRadioIsr3(unsigned long status); 
void PMCRadioIsr4(unsigned long status); 
void PMCRadioIsr5(unsigned long status); 
void PMCRadioIsr6(unsigned long status); 
void PMCRadioIsr7(unsigned long status); 
 
#ifndef NOISR 
/* 
Move the following lines to your program if you are going 
to use interrupts.  Replace the printf statement with your ISR code. 
*/ 
 
#ifndef USERISR 
void WaveRunnerIsr(unsigned long status) 
{ 
 PMCRadioIsr0(status); 
} 
#endif 
 
#ifndef USERISR0 
void PMCRadioIsr0(unsigned long status) 
{ 
} 
#endif 
 
#ifndef USERISR1 
void PMCRadioIsr1(unsigned long status) 
{ 
} 
#endif 
 
#ifndef USERISR2 
void PMCRadioIsr2(unsigned long status) 
{ 
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} 
#endif 
 
#ifndef USERISR3 
void PMCRadioIsr3(unsigned long status) 
{ 
} 
#endif 
 
#ifndef USERISR4 
void PMCRadioIsr4(unsigned long status) 
{ 
} 
#endif 
 
#ifndef USERISR5 
void PMCRadioIsr5(unsigned long status) 
{ 
} 
#endif 
 
#ifndef USERISR6 
void PMCRadioIsr6(unsigned long status) 
{ 
} 
#endif 
 
#ifndef USERISR7 
void PMCRadioIsr7(unsigned long status) 
{ 
} 
#endif 
 
#endif 
 
char * QueryRRProductID(void); 
char * QueryLibBuildDateString(void); 
unsigned long QueryDriverXLibVersion(void); 
unsigned long QueryLibBuildDate(void); 
 
/*   
start sync and end sync are used to coordinate global variable use  
outside the ISR routine, a start sync and end sync should frame 
any statement(s) that use(s) a global variable common to your ISR. 
*/ 
 
void startsync(void); 
void startmultisync(int iDeviceNum); 
void endsync(void); 
void endmultisync(int iDeviceNum); 
 
#ifdef __cplusplus 
} 
 
#endif 
 
#endif 
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