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ABSTRACT 
 
 
 
This thesis project modeled a microstrip ring-hybrid dipole that is capable of 

simultaneously producing a sum pattern and difference pattern using the method of 

moments (MoM) based on the Rao-Wilton-Glisson (RWG) edge elements.  The ring-

hybrid dipole is simply a ring-hybrid coupler driving a dipole antenna.  A two-feed point 

dipole model was developed and its antenna parameters were found to be a good 

representation of the ring-hybrid dipole actual values.  In the feed network modeling, the 

matrix solution combined the MoM equations on the antenna surfaces and a magic-tee 

scattering matrix by applying Kirchhoff’s voltage and current laws at the terminals of the 

antenna.  Once the excitation is specified, the complete system of equations was solved to 

yield the MoM current expansion coefficients and the signals in the feed network. 

 
The effect of mutual coupling in an array of three ring-hybrid dipoles was examined by 

extending the model.  In the receive mode, the direction and polarization of the incidence 

plane wave were varied.  The phases for both the sum port and difference port outputs 

were observed to change smoothly, except during situations of cross polarization and 

zero phase difference.  The array model will form the foundation for the design and 

analysis of a mutual coupling compensation network. 
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EXECUTIVE SUMMARY 
 
 
 

In the recent years, unmanned air vehicles (UAVs) have been used extensively in military 

operations to provide surveillance and targeting data.  The payload of a UAV is limited 

and, thus, onboard sensors must be lightweight yet capable of high performance in order 

to satisfy modern mission requirements.  Phased-array antenna systems can provide the 

beamforming and direction-finding capability required for multiple systems such as 

synthetic aperture radar (SAR) and moving target indication (MTI).  A high performance 

phased-array antenna has many elements and a complex feed network.  It is clear that 

weight and performance must be balanced in the design of phased-array antenna system 

for a UAV. 

 
For a large antenna array, elements at the edges are usually assumed to have the same 

active element pattern as the center element.  The rationale is that the number of edge 

elements in a large array is small compared to the number of non-edge elements, and, 

therefore, mutual coupling near the edge can be neglected.  However, the mutual 

coupling effect can be severe when there are only a few elements in the antenna.  This is 

because the active elements patterns are severely modified by the mutual coupling and 

thus differ significantly from one element to the next. 

 

In the design of high-performance direction-finding or scanning system for UAVs using a 

small antenna array, the effect of the mutual coupling must thus be taken into account.    

A microstrip ring-hybrid dipole antenna was fabricated and tested at the Naval 

Postgraduate Schoool, Monterey, California, in early 2003.  The ring-hybrid dipole is 

simply a ring-hybrid four-port network feeding a dipole antenna.  The dipole supports 

currents in both the sum mode (resonant) and the difference mode (anti-resonant).  The 

difference port is provided as a means to sense the interference caused by mutual 

coupling in an array of ring-hybrid dipoles. 
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A potential compensation network concept uses feedback circuits to connect from one 

dipole to the others.  The difference ports can be used as a feedback mechanism to adjust 

how much mutual coupling the dipoles receive.  With this information, the dipoles can 

adjust their voltage to reduce the phase error due to mutual coupling.  This is a type of 

cancellation; signals are coupled from each element and used to cancel the free space 

coupling. 

 
The design and analysis of the ring-hybrid dipole was carried out using Computer 

Simulation Technology’s Microwave Studio.  Although the application is powerful, it is 

not as suitable for the study of mutual coupling compensation methods in antenna array 

compared to the method of moments (MoM). 

 
The MoM reduces an integral-differential equation (the electric field integral equation) to 

a linear system of equations, VI =⋅Z ; where Z is the impedance matrix that completely 

simulates the antenna, V is the voltage excitation vector, and I is the unknown current 

coefficient vector.  Once the current vector is known, the current distribution on the 

antenna is defined and all other current-dependent quantities can be determined (for 

example, input impedance, radiation pattern and gain). 

 
This thesis project developed a suitable antenna model for the ring-hybrid dipole using 

the method of moments.  Next, the feed network was incorporated into the MoM 

equations to solve the complete system of equations simultaneously.  With that, the 

mutual coupling in an array of ring-hybrid dipoles was studied by extending the model.   

 
The receiving and transmitting algorithms are based on the use of the electric-field 

integral equation (EFIE) for non-closed structures such as wire strips and plates.  In a 

transmit problem, the antenna excitation is given by a voltage feed instead of an incident 

electromagnetic wave for the receive problem.  Matlab was used to generate the antenna 

mesh also solve the MoM equation. 
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A two-feed point dipole model was connected to a magic-tee four-port network to model 

the complete ring-hybrid dipole.  The feed network interaction with the antenna feed was 

modeled rigorously.  In the receive mode, difference power can only be extracted when 

there is a difference in the incident plane wave path length between the two arms of the 

dipole.  The power relationships (i.e., conservation of energy) between the total captured 

power, and the total output power in both the sum and difference ports were verified.    

 
The mutual coupling for an array of three center-fed dipoles in the presence of a λ2  

square plate was examined.  The dipoles were spaced 2/λ  apart along the x-axis and 

lined up with the z-axis.  The plate was spaced 4/λ from the antennas.  The input 

impedances were found to vary significantly with scan angle due to mutual coupling.  

The antennas were then connected to 75-Ω transmission lines.  The input impedances 

were further modified due to additional mutual coupling caused by reflections introduced 

by mismatched feed condition. 

 
An array of three two-feed point dipoles was connected to 50-Ω magic-tees.  The 

configuration is the same as that for the array of center-fed dipoles.  The characteristics 

for the transmit mode would be similar to those observed for the array of center-fed 

dipoles.  The receive mode was thus examined by varying the direction and the 

polarization of the incidence plane wave.  The phases for both the sum port and the 

difference port outputs were observed to change smoothly, except during situations of 

cross polarization and zero phase difference. 

 
 A valid antenna model combined with the feed network model has been successfully 

developed for the ring-hybrid dipole using the method of moments.  The effect of mutual 

coupling in an array of three ring-hybrid dipoles has been studied.  The stage is now 

ready for the design and analysis of compensation networks to reduce the interferences 

caused by mutual coupling. 

 
.  
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I. INTRODUCTION 
 
 
A. MOTIVATION 
 

In the recent years, unmanned air vehicles (UAVs) have been used extensively in 

military operations to provide surveillance and targeting data.  The payload of a UAV is 

limited and, thus, onboard sensors must be lightweight yet capable of high performance 

in order to satisfy modern mission requirements.  Phased-array antenna systems can 

provide the beamforming and direction-finding capability required for multiple systems 

such as synthetic aperture radar (SAR) and moving target indication (MTI).  A high 

performance phased-array antenna has many elements and a complex feed network.  It is 

clear that weight and performance must be balanced in the design of phased-array 

antenna system for a UAV. 

 
The existence of mutual coupling between elements in a phased-array antenna 

affects the final antenna pattern and it cannot be neglected in the design of high 

performance arrays.  It can be significant in applications that demand high accuracy for 

direction finding.  In a large phase array, the coupling effect is generally uniform for 

most of the elements except for the last few elements near the edge.  The variation in 

mutual coupling near the edges of the array is termed the “edge-effect.” 

 
For the majority of the elements in a large array, the active element pattern 

approach [1] has helped designers to overcome the complicated accountability of the 

mutual coupling.  Elements at the edges are usually assumed to have the same active 

element pattern as the center element.  The rationale is that the number of edge elements 

in a large array is small compared to the number of non-edge elements and, therefore, 

mutual coupling near the edge can be neglected.  However, the mutual coupling effect 

can be severe when there are only a few elements in the antenna.  This is because the 

active element patterns are severely modified by the mutual coupling and, thus, differ 

significantly from one element to the next. 
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Thus, in the design of high-performance direction-finding or scanning systems for 

UAVs using a small antenna array, the effect of the mutual coupling must be taken into 

account.  For a small array, it is found that the mutual coupling varies significantly with 

scan angle.  Consequently, a means of controlling or adjusting the mutual coupling as the 

beam scans is desired.  One possibility is to use a compensation or feedback network that 

allows cancellation of the free-space mutual coupling.  Such a network requires an 

auxiliary antenna or channel. 

 
The ring-hybrid dipole described in [2] and shown in Figure 1.1 is a two-port 

radiating structure that provides both a main (sum) channel and auxiliary (difference) 

channel.  The ring-hybrid dipole is simply a ring-hybrid coupler feeding a dipole antenna.  

The dipole supports currents in both the sum mode (resonant) and the difference mode 

(anti-resonant).  The difference port is provided as a means to sense the interference 

caused by mutual coupling in an array of ring-hybrid dipoles.  In [2], a microstrip ring-

hybrid dipole antenna was fabricated and tested.   

 

 
Figure 1.1. Microstrip ring-hybrid dipole antenna (From Ref. [2].). 

 

Port 4

Port 3

Port 2

Port 1
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The design and analysis of the ring-hybrid dipole was carried out using Computer 

Simulation Technology’s Microwave Studio.  The application is powerful, but in this 

case it is not as suitable for the study of mutual coupling compensation methods in an 

antenna array compared to the method of moments (MoM).  The MoM reduces an 

integral-differential equation (the electric-field integral equation) to a linear system of 

equations, VI =⋅Z ; where Z is the impedance matrix, V is the voltage excitation vector, 

and I is the unknown current coefficient vector.  Once the current vector is known, the 

current distribution on the antenna is defined and all other current-dependent quantities 

can be determined (for example, input impedance, radiation pattern and gain). 

 
In a practical antenna design, the array elements are connected by transmission 

lines in a beamforming network.  Reflections inside of the beamforming network affect 

the currents on the dipoles, which in turn affect the mutual coupling.  Therefore, a precise 

model of mutual coupling must include the feed network.  In this thesis, a scattering 

matrix representation of the feed network is combined with the MoM to provide a 

complete, rigorous model of the array and feed.  For an N-port network, the scattering 

matrix provides a complete description of the network as seen at its N ports (The 

scattering matrix relates the voltage waves incident on the ports to those reflected from 

the ports). 

 
 
B. OBJECTIVES 
 

A suitable antenna feed model is required for the ring-hybrid dipole for use with 

the method of moments.  Next, the feed network should be incorporated into the MoM 

equations to solve the complete system of equations simultaneously.  With that, the 

mutual coupling in an array of ring-hybrid dipoles can be studied by extending the model 

created.  The final objective is to find a suitable compensation network to reduce 

interference caused by mutual coupling.   
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C. OUTLINE OF CHAPTER  
 

Chapter II describes the use of the Rao-Wilton-Glisson basis functions to create 

the impedance matrix in the method of moments.  The scattering algorithm and the 

radiation algorithm used for antenna modeling with Matlab are also presented. 

 
Chapter III presents the results for the modeling of a center-fed dipole as a test 

case.  The results for a two-feed point dipole that is employed to model the operation of 

the ring-hybrid dipole are also presented. 

 
Chapter IV presents the basic theory used in the modeling of the feed network 

connection to the antenna feed.  The results for two test cases: (1) center-fed dipole 

connected to transmission line, and (2) two-feed point dipole connected to transmission 

lines, are presented.  It also presents the results for the two-feed point dipole connected to 

a magic-tee, which is the model for the complete ring-hybrid dipole. 

 
Chapter V describes the effect of mutual coupling in an array of three center-fed 

dipoles for the transmit mode.  The effect of mutual coupling in an array of three ring-

hybrid dipoles is presented for the receive mode.  

 
 Chapter VI presents the conclusions and recommendations for future work. 

 
 Appendix A contains the Matlab scripts that were modified and appended from [3] 

to implement the method of moments. 

 
 Appendix B contains the Matlab scripts that were developed for the simulations in 

Chapter IV-V. 
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II .    METHOD OF MOMENTS AND THE RWG BASIS FUNCTIONS 
 
 
A. CHAPTER OVERVIEW 
 

This chapter describes the use of the Rao-Wilton-Glisson (RWG) basis functions 

to create the impedance matrix for the method of moments (MoM).  The receiving and 

transmitting algorithms used for antenna modeling are presented.  The antenna modeling 

and visualization of antenna parameters are implemented using Matlab.  The materials 

here are summarized from [3]. 

 
 
B. RWG BASIS FUNCTIONS 
 

The MoM used in this thesis project incorporate the RWG edge elements.  First, 

the surface of a conducting antenna under study is divided into separate triangles as 

shown in Figure 2.1a.  Each pair of triangles having a common edge constitutes a RWG 

subdomain as shown in Figure 2.1b.  One of the triangles has a plus sign and the other a 

minus sign.  A basis function, ( ),rf  given by 
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is assigned to the edge elements.  Here A  is the edge length and ±A  is the area of triangle 

±T .  The vectors ±ρ  are shown in Figure 2.1b.  Vectors +ρ  and −ρ  connect the free 

vertex of the plus triangle +T  and the minus triangle −T  to the observation point given 

by the position vector r, respectively. 
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Figure 2.1. Schematic of a RWG edge element and dipole interaction (From Ref. [3].). 
 

The surface electric current on the antenna is a sum of the contributions (2.1) over 

all edge elements, with unknown coefficients.  These coefficients are found from the 

MoM equations discussed in Section C.  The MoM reduces the integral equation for the 

current to a linear system of equations that can be solved in matrix form.  The resulting 

matrix that characterizes the antenna physical properties is the impedance matrix Z. 

 
The basis function of the edge element approximately corresponds to a small but 

finite electric dipole of length || +− −= ccd rr  as shown in Figures 2.1b and 2.1c.  The 

index ±c  denotes the center of the triangle .±T   Thus the division of the antenna structure 

into RWG edge elements approximately corresponds to the division of the antenna 

current into small “elementary” electric dipoles as shown in Figure 2.1d.  In this sense, 

the impedance matrix Z describes the interaction between the different elementary 

dipoles that completely describe the antenna.  If the edge elements m and n are treated as 

small electric dipoles, then element mnZ  describes the effect of dipole n (through the 

radiated field) on the electric current of dipole m, and vice versa.  Consequently, the 

interaction between all currents on the body is modeled. 

−υ

+υ
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C. THE RECEIVING ALGORITHM 
 
 1. Introduction 
 

A receiving antenna may be viewed as a conducting object that collects power 

from an incident electromagnetic (EM) field.  In response to the incident electric field, an 

electric current appears on the antenna’s surface as shown in Figure 2.2a.  That current in 

turn creates a corresponding scattered electric field.  If a narrow gap is cut in the body of 

an antenna, as shown in Figure 2.2b, a voltage difference will appear across the gap.  The 

gap voltage constitutes the received signal.  From the viewpoint of energy transfer, an 

antenna in the receiving mode captures EM energy over a certain area.  It then delivers 

the captured power to the load connected across the gap.  Depending on the antenna, a 

considerable amount of energy may get reflected back to free space. 

 

 
 
Figure 2.2. (a) Schematic of a receiving antenna; the surface current density is shown 
by white arrows. (b) Antenna cut to create a voltage gap (From Ref. [3].).  



8 

The surface current distribution over the antenna surface is the most critical 

antenna characteristic.  If the current is known, then all other antenna parameters can be 

computed from it (for example, input impedance, radiation pattern and gain).  The 

receiving algorithm used to compute the current is based on existing Matlab software that 

uses the electric-field integral equation (EFIE) [4] for non-closed structures such as wire 

strips and plates.  Before discussing the mathematical aspects of the EFIE and its solution 

using the MoM, the solution procedure and the corresponding Matlab scripts will be 

outlined first. 

 
2. Matlab Code Sequence 

 
The steps involved in solving for the antenna current using the MoM are depicted 

in Figure 2.3.  Once the current is calculated, all other antenna parameters are easily 

determined.  The source codes in Appendix A include Matlab scripts rwg1.m to rwg5.m, 

and also efield1.m to efield3.m from [3].  The original software was capable of handling 

only simple structures such as strips and plates.  The codes were modified and appended 

to suit the needs of this thesis project.  Figure 2.3 also shows the flowchart for executing 

the complete code sequence. 

 
The scripts rwg1.m to rwg5.m implement successive steps of the moment method 

procedure.  The code sequence is applicable to different antenna geometries located in the 

subdirectory “mesh.”  To replace one antenna object by another, it is only necessary to 

replace the corresponding mesh file name in the starting script rwg1.m.  The frequency, 

electric permittivity, and magnetic permeability are specified in the script rwg3.m.  The 

same sequence of operations is not only valid for antenna reception but also for antenna 

radiation (discussed in Section D).  The only important difference is that the antenna 

excitation is given by a voltage feed in the latter case and not by the incident EM wave.  
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Figure 2.3. Flowchart of the receiving algorithm (From Ref. [3].). 
 

The scripts efield1.m to efield3.m calculate different parameters of the radiated 

field due to the surface current distribution on the antenna surface.  The script efield1.m 

calculates the electric field and the magnetic field at a point.  The script efield2.m 

calculates the radiation intensity distribution over a large spherical surface, as well as the 

antenna gain and the radiation resistance.  The script efield3.m calculates the radiation 

patterns in the azimulthal and polar planes.  The algorithms for these scripts can be found 

in [3]. 
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3. Creating the Antenna Structure 
 

The first step in the solution is to create the antenna structure.  Matlab provides 

several options for doing this.  One is to use the built-in mesh generator in the Matlab 

PDE toolbox.  This mesh generator creates planar structures of rectangles, polygons, and 

circles, using the convenient graphical user interface (GUI).  The Delaunay triangulation 

algorithm is used [5], along with adaptive triangle subdivision.  To extend the design to a 

three-dimensional (3-D) structure it is usually sufficient to write a short Matlab script 

involving the z-coordinate dependency. 

 
Another way to define the antenna is to identify the boundary of the antenna 

structure analytically.  For example, a dipole can be modeled by a thin strip with four 

edges.  The Delaunay triangulation is applied to that structure, using Matlab function 

delaunay.  For non-planar structures, the function delaunay3 may be used.  The 

advantage of this approach is that arbitrary 3-D antenna meshes can be created.  Other 

mesh generation software can also be used and their results imported into Matlab in 

ASCII format. 

 
4. RWG Edge Elements 

 
A subdomain consists of two triangles sharing a common edge.  One of them is 

labeled by a plus sign and the other by a minus sign.  Figure 2.4 shows three edge 

elements that contain the same triangle T.  Thus, there are more edges than triangles for a 

given structure. 

 
Prior to the calculation of the impedance matrix, the edge elements are created by 

the script rwg1.m.  The script counts all interior edges of the mesh.  For each interior 

edge m, the two triangles ±
mT  attached to it are found using a sweep over all triangles.  

The triangle area is calculated separately for every single patch using the vector cross-

product of two edge vectors. 
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Figure 2.4. Three RWG edge elements m, m+1, and m+2 (with two triangles each), all 
containing the same common triangle T (From Ref. [3].). 
 

Simple space averaging of the triangle’s vertex points yields the triangle’s 

midpoint.  Any required integration can be approximated at triangle midpoints only.  

Thus, a numerical integration over a triangle is used.  Figure 2.5 shows the so-called 

barycentric subdivision of an arbitrary triangle.  Any primary triangle can be divided into 

9 equal small subtriangles by the use of the “one-third” rule.  The integrand is assumed to 

be constant within each small triangle, so that the integral of a function g over the 

primary mT  is approximately equal to 

 

( ) ( )∑∫
=

=
9
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c
k

m
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gAdSg
m

rr ,    (2.2) 

 
where points c

kr , k = 1,…,9, are the midpoints of the nine subtriangles, shown in Figure 

2.5 by black dots, and mA  is the area of the primary triangle. 

 
The script rwg2.m outputs the subtriangle’s midpoints for each triangular patch.  

After execution of the scripts rwg1.m and rwg2.m, a binary file mesh2.mat is created, 

which contains all the necessary geometric data for the calculation of the impedance 

matrix. 
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Figure 2.5. Barycentric subdivision of the primary triangle.  The subtriangle 
midpoints are shown by black dots.  The primary triangle midpoint is shown by a white 
circle (From Ref. [3].). 
 

5. Impedance Matrix 
 

The MoM impedance matrix accounts for the electromagnetic interaction between 

edge elements.  If the edge elements m and n are treated as small electric dipoles, the 

matrix mnZ  describes the contribution of dipole n (through the radiated field) to the 

electric current of dipole m, and vice versa.  The size of the impedance matrix is equal to 

the number of the edge elements.  The impedance matrix does not depend on the type of 

excitation (receive or transmit); instead, it depends only on frequency, material 

composition and geometry. 

 
Frequency, as well as electric permittivity (dielectric constant)ε  and the magnetic 

permeability ,µ  are specified in the script rwg3.m.  The impedance matrix calculation is 

implemented in the form of a Matlab function impmet saved in the file impmet.m.  This 

function is called from the script rwg3.m.  The script outputs the frequency and the 

impedance matrix into the binary file impedance.mat. 

 



13 

Quantitatively, the impedance matrix of the electric-field integral equation [4] is 

given by 

 

,
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where indices m and n correspond to two edge elements.  The edge length of the elements 
m is mA ; ±c

mρ  are vectors between the free vertex point ,±
mυ  and the centroid point ,±c

mr  
of the two triangles ±

mT  of the edge element m, respectively.  +c
mρ  is directed away from 

the vertex of triangle ,+mT  whereas −c
mρ  is directed toward the vertex of triangle −

mT  (see 
Figure 2.1).  The vectors ±c

mρ  are expressed through the known quantities using two 
simple formulas 
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The expressions for the magnetic vector potential A and the scalar potential Φ  are 
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respectively, where 
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6. Moment Method Equations and Surface Currents 
 

The surface current density on the surface S of a perfectly electrically conducting 

(PEC) structure is given by an expansion in terms of the RWG basis functions over the M 

edge elements 
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If S is open, J is regarded as the vector sum of surface currents on opposite sides of S.  

The units of J are amperes/meter.  The expansion coefficients mI  form the vector I, 

which is the unique solution of the moment method matrix equation     

 
,VI =⋅Z      (2.7) 

 
where the M × M impedance matrix Z is computed in script rwg3.m.  The voltage 

excitation vector is V.  When a plane-wave scattering problem is being solved, the 

voltage vector is expressed by 
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where incE is the electric field of the incident EM wave.  The voltage excitation vector is 

similar to the circuit voltage but has units of volts-meter. 

 
The plane wave of amplitude 1 V/m shown in Figure 2.6 has only one E-field 

component in the x-direction, .x̂x
inc E=E   The phasor representation of this component 

(assuming ) exp( tjω  time dependence) is equal to )exp(1 jkzEx −=  V/m, where ck /ω=  

is the wave number.  If the plate is located at z = 0, then x̂=incE  V/m.  The vector x̂  

describes the polarization of the plane wave. 
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In a receive problem, the script rwg4.m first determines the excitation voltage 

vector using (2.8).  Next, the system of equations (2.7) is solved via Gaussian elimination.  

The script outputs the current coefficients ,mI  the vector V, and the corresponding 

frequency parameters, into the binary file current.mat.  The expansion coefficients mI  are 

not yet the surface current.  The surface current density ,kJ  for a given triangle k, is 

obtained from 
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rrfJ                                              (2.9) 

 
A maximum of three edge elements contribute to the current on triangle k.  The script 

rwg5.m calculates and plots the resulting surface current density everywhere on the PEC 

structure. 

 
 

Figure 2.6. Incident field geometry for a plate (From Ref. [3].). 
 

D. THE TRANSMITTING ALGORITHM 
 

1. Introduction 
 

The task of the transmitting algorithm is to find the surface current distribution 

due to an applied voltage at the antenna feed.  The receiving algorithm can easily be 

modified for antenna radiation.  The major challenge related to transmitting antennas is 

the antenna feed model, which is programmed in the script rwg4.m. 
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2. Strip Model of a Wire 
 

As far as the impedance and radiation pattern are concerned, an electrically thin 

cylindrical antenna with a noncircular cross-section behaves like a circular cylindrical 

antenna with an equivalent radius [6].  For a thin strip, the radius of the equivalent 

cylindrical wire is given by 

 
,25.0 waeq =                                                     (2.10) 

 
where w is the strip width.  A typical RWG boundary element assembly of a strip is 

shown in Figure 2.7.  If ,λ<<w  one edge across the width of the strip is sufficient.  Two 

adjoining RWG edge elements are able to support a uniform electric current J along the 

strip axis. 

 

 
 
Figure 2.7. Thin-strip discretization.  Two RWG elements form a current vector J 
directed exactly along the strip (From Ref. [3].). 

 

3. Feed Model 
 

To account for an applied voltage rather than an incident wave, a feed model is 

introduced into the antenna structure.  An antenna is usually fed by a conventional 

transmission line at a gap between the two dipole arms.  This means that an ideal voltage 

generator is connected across a gap with a small width along the antenna as shown in 

Figure 2.8.  The feed model that is ideally suited for RWG edge elements is the so-called 

delta-function generator or the feeding edge model shown in Figure 2.8. 
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Figure 2.8. Feeding edge model. Black arrows show the E-field direction in the 
antenna gap. White arrows show the direction of surface current on the antenna surface 
(From Ref. [3].). 

 

  In short, this model assumes a gap of negligible width, .∆   If the voltage across 

the gap is V (from the positive to the negative terminal), then the electric field within the 

gap becomes 

 

,y
V nE
∆

=−∇= Φ                                                 (2.11) 

 
where Φ  is the electric potential and yn is a unit vector directed across the gap.  When ∆  

tends to zero, (2.11) predicts infinite values within the gap.  For a small gap, the delta-

function approximation can be used 

 
( ) . yyV nE δ=                                                    (2.12) 

 
Equation (2.12) simply states that the integral of the electric filed over a gap is equal to 

the applied voltage, namely 

 
.∫ =VdyEy      (2.13) 
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It is convenient to associate the gap with an inner edge n of the boundary element 

structure.  That is, the structure is broken at edge n and a small gap of width ∆  inserted.  

There is only one RWG element corresponding to that edge.  Thus the applied electric 

field will be zero everywhere except for one RWG element, n.  Therefore, for the 

transmit problem, the excitation voltage elements are 
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Equation (2.14) uses the fact that a component of the RWG basis function nf  normal to 

the edge is always equal to one.  A feeding voltage of 1 V is a cosine function of time 

having phase of zero and an amplitude equal to 1 V.  In a transmit problem, only the 

script rwg4.m needs to be modified to account for (2.14).  Everything else is directly 

adopted from the receiving algorithm analysis. 

 
4. Input Impedance 

 
One major parameter of interest is the antenna input impedance.  Once the 

impedance is known, other antenna parameters such as return loss can easily be obtained.  

The input impedance is defined as the impedance presented by an antenna at its terminals, 

or the ratio of the voltage to current at a pair of terminals.  The feeding edge model 

determines the impedance to be the ratio of the feeding voltage to the total current normal 

to the feeding edge, n.  In the expansion of surface currents over RWG basis functions 
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only the basis function nm=f  will contribute to the impedance calculation, since no other 

basis functions have a component normal to the edge, n. 
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Moreover, since a component of the RWG basis function nf  normal to the edge is 

always equal to one, the total normal current across the edge is given by 

 
,nnIA                                                           (2.16) 

 
where wn =A  is the edge length.  The antenna impedance is simply 
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according to (2.14).  The input impedance is measured in ohm and is a complex quantity 

in general. 

 
 
E. CHAPTER SUMMARY 
 

The use of the Rao-Wilton-Glisson (RWG) basis function to create the impedance 

matrix in the method of moments (MoM) has been described.  The RWG basis function is 

basically an overlapping triangular function that provides continuity of the electric 

surface current on the antenna structure.  The antenna structure is first divided into small 

triangular patches.  Each pair of triangles, having a common edge, constitutes a RWG 

subdomain element.  The electric surface current is a sum of the contributions of the 

RWG basis functions over all edge elements.  The expansion coefficients can be found 

from the MoM matrix equations for either receive or transmit problem.   

 
The MoM equations are a linear system of equations, ;VI =⋅Z Z is the 

impedance matrix, V is the voltage excitation vector, and I is the unknown current 

coefficient vector.  The division of the antenna structure into RWG edge elements 

approximately corresponds to the division of the antenna current into small “elementary” 

electric dipoles.  In this sense, the impedance matrix Z describes the interaction between 

the elementary component dipoles.  If the edge elements m and n are treated as small 

electric dipoles, then element mnZ  describes the effect of dipole n (through the radiated 

field) on the electric current of dipole m, and vice versa.  The impedance matrix can be 

found by applying the MoM procedure to the electric field integral equation (EFIE). 
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Both the receiving and transmitting algorithms have been presented.  Both are 

based on the use of the EFIE equation for non-closed structures such as wire strips and 

plates.  The only important difference in a transmit problem is that the antenna excitation 

is given by an applied voltage and not by an incident EM wave as for the receive case.  

The antenna structure can be created using Matlab PDE toolbox or programmed manually 

using Matlab.  The MoM equations were also solved using Matlab.  The Matlab source 

codes were modified and appended from [3] to suit the needs of this thesis project.  

Specifically, the antenna modeling of the ring-hybrid dipole will be carried out using 

these codes.    
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III. ANTENNA MODELING 
 
 
A. CHAPTER OVERVIEW 
 

In this chapter, a convergence test based on a center-fed dipole is carried out to 

determine convergence, i.e., the amount of discretization required.  The antenna 

parameters are then extracted for the center-fed dipole to show that the results are 

consistent with theory.  A symmetrical structure must be employed for the modeling of 

the ring-hybrid dipole, and the problems encountered with the modeling of the ring-

hybrid dipole are discussed briefly.  The antenna parameters for a two-feed point dipole 

used to model the operation of the ring-hybrid dipole are finally extracted.  The Matlab 

codes used for the simulations in this chapter are in Appendix A. 

 
 
B. CONVERGENCE TEST 
 

A thin-wire strip shown in Figure 3.1 is used to model a dipole antenna.  The wire 

length is l = 2 m and the width is w = 2 cm (i.e., l  >> w).  The equivalent wire radius is 

aeq = 0.25w = 5 mm.  The feed point is located at the origin for a center-fed dipole.  The 

frequency used is f = 75 MHz (i.e., λ  = 4 m).  The antenna is therefore a half-wave 

center-fed dipole.  

 

 
 

Figure 3.1. Thin-wire strip. 
 

The input impedance, calculated by the simulations, for an increasing number of 

segments is shown in Table 3.1.  It is observed that the phase of the input impedance has 

stabilized from 80 segments onwards.  Thus, a discretization of 80 segments (a total of 

159 edges) is selected for the thin-wire strip. 

, m
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Number of 
Segments 

Dipole Input 
Impedance 

Remarks 

10 87.7988 + j34.4513 94.32∠ 21.42º 
20 87.5591 + j41.0831 96.72∠ 25.14º 
30 87.2588 + j43.2752 97.40∠ 26.38º 
40 87.1239 + j44.3880 97.78∠ 27.00º 
50 87.0759 + j45.0777 98.05∠ 27.37º 
60 87.0744 + j45.5464 98.27∠ 27.61º 
70 87.1006 + j45.8929 98.45∠ 27.78º 
80 87.1506 + j46.1642 98.62∠ 27.91º 
90 87.2054 + j46.3793 98.77∠ 28.00º 
100 87.2683 + j46.5563 98.91∠ 28.08º 

Length = λ /2 
 
Width = 0.005λ  
 
Non-symmetrical 
structure 

 
Table 3.1. Input impedance of 2/λ center-fed dipole with various discretization. 

 
 
C. ANTENNA PARAMETERS FOR THE CENTER-FED DIPOLE 
 
 In this section, the antenna parameters under a resonance condition are obtained 

for the center-fed dipole.  The parameters are the input impedance, radiation resistance, 

gain, feed power, radiated power, and received power.  The surface current distribution 

and radiation pattern are also plotted for both the transmit mode and the receive mode. 

 
1. Antenna Impedance and Gain 

 
The half-wave dipole is not exactly resonant.  When the wavelength is increased 

to λ  = 4.2114 m, resonance is achieved.  The wire length is now shorter than 2/λ  at       

l = 0.4749λ .  The input impedance becomes Zin = 72.0887 + j0000 Ω, which is purely 

resistive.  The surface current distribution and the radiation pattern for the transmitting 

dipole at resonance are plotted in Figure 3.2 and Figure 3.3, respectively.  Using the 

computed current distribution, the radiation resistance Rrad = 72.6381 Ω and the antenna 

gain G = 1.6232 or 2.1038 dB are obtained.  It is clear that Zin ≈ Rrad, allowing for 

numerical errors.  The computed values of the antenna parameters, the surface current 

distribution, and radiation pattern, agree very well with the theoretical values [6].   
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(a) 

 

 
(b) 

 

Figure 3.2. (a) Magnitude and (b) phase of the surface current distribution for a 
transmitting resonant center-fed dipole. 
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Figure 3.3. Radiation pattern for a transmitting resonant dipole. 

 

2. Transmitted and Received Power 
 

With a feed voltage of Vf  = 1 V,  the feed current If  = 13.9 mA is obtained for a 

transmitting resonant dipole.  Hence, the feed power is Pt = 0.5Re{Vf If*} = 6.935 mW.  

Using the current distribution, the radiated power of Prad = 6.9888 mW is obtained.  It is 

clear that Pt  ≈ Prad, allowing for numerical errors. 
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In the receive mode, a plane wave of 1 V/m is incident in the –z direction and the 

polarization is parallel to the dipole as shown in Figure 3.4.  At the origin, the short-

circuited current Isc = 18.384 – j1.43 mA is obtained and the calculated open-circuited 

voltage is Voc = IscZin = 1.3252 – j0.1031 V, where Zin  was obtained in the transmit mode.  

Under a resonance condition, the received power is calculated as Pr = 0.125| Voc |2/ Zin = 

3.0636 mW. 

 
 

Figure 3.4. Plane wave illuminating a dipole at TMz normal incidence.  
 

A lumped element of impedance ZL is connected at the origin (in this case edge 

number 80) for the receiving resonant dipole by reassigning the impedance matrix 

elements   Z80,80 = Z80,80 + 2
nl  ZL, according to [2].  The received power is calculated using 

the current obtained at the origin, which is flowing through the lumped element load.  

Under mismatched conditions, the power received when ZL = 50 Ω and ZL = 100 Ω is 

2.9633 mW and 2.9830 mW, respectively.  In a matched condition (i.e., ZL = 72.0887 + 

j0000 Ω), the maximum power received is Pr = 3.0636 mW.  The surface current 

distribution for the matched case is shown in Figure 3.5.  The reciprocity between the 

transmit and receive modes is observed.  In the receive mode, the magnitude of the 

surface current density is smaller, due to the property of the effective antenna length.  

The radiation pattern for the receive mode is the same as that for the transmit mode. 

x, m 

y, m 

z, m 
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(a) 

 

 
(b) 

 

Figure 3.5. (a) Magnitude and (b) phase of the surface current distribution for a 
receiving resonant dipole. 
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D. MODELING OF THE RING-HYBRID DIPOLE FEED 
 

A suitable antenna model used to approximate the operation of the ring-hybrid 

dipole must be capable of producing simultaneously a resonant pattern, or sum pattern, 

and an anti-resonant pattern, or difference pattern.  The antenna parameters (e.g., 

impedance) must also be able to represent those of the ring-hybrid dipole. 

 
One possible model is to use two wire strips that are separated by a small physical 

gap and fed at the edges near the gap, as shown in Figure 3.6.  Although the sum pattern 

and the difference pattern are obtained, the input impedances for both the sum and 

difference modes are highly capacitive for a λ /2 structure.  This is due to the absence of 

a common path between the two excitation sources.  This model is not adequate, and 

therefore was discarded. 

 
 

Figure 3.6. Feed model using two thin-wire strips separated by a small gap. 
 

Another possible approach is to use a patch antenna probe feed model [3], as 

shown in Figure 3.7, to incorporate the common path.  However, the feeding strip must 

extend to λ /4, in order to model the operation of the ring-hybrid dipole over the ground.  

The long feeding strip will introduce more mutual coupling as well as radiate.  Thus, this 

model was also discarded. 

 

 
 

Figure 3.7. Patch antenna probe feed model for the dipole feed. 

Ground Plane 

Feeding Strip

v2 v1 

Sum mode        v1 = -v2 
Difference mode  v1 =  v2 

v1 v2
Sum mode        v1 =  v2 
Difference mode  v1 = -v2 

, m
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 Finally, a simple and suitable feed model is a continuous wire strip (similar to that 

used for modeling the center-fed dipole) that incorporates two feed points equally offset 

from the origin.  The common path between the excitation sources is thus established.  It 

is found that a symmetrical structure, as shown in Figure 3.8, must be employed to 

achieve a correct and balanced operation in both the sum and difference modes.  In 

addition, a minimum offset distance of 12 edges is chosen to ensure that the current 

distribution is symmetrical about the origin and that the current at the origin is nearly 

zero, when operating in the difference mode.  Subsequently, this configuration will be 

referred to as a two-feed point dipole. 

 

 
 

Figure 3.8. Feed model using a symmetrical thin-wire strip. 
 
 
E. TWO-FEED POINT DIPOLE 
 
 In this section, the antenna parameters are obtained for the two-feed point dipole.  

The parameters are the input impedance, radiation resistance, antenna gain, feed power, 

and radiated power.  For the sum and difference modes, as shown in Figure 3.9, the 

excitation sources are applied in-phase and 180º out-of-phase, respectively.  The surface 

current distribution and the radiation pattern are also plotted for the transmit case. 

 

 
 

Figure 3.9. Sum mode and difference mode for the two-feed point dipole. 

+ -    + - + -    - + 
Sum 
Mode 

Difference
Mode

1 2 21

v2 v1 Sum mode        v1 =  v2 
Difference mode  v1 = -v2
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 1. Antenna Impedance and Gain 
 

Resonance for the sum mode is achieved when the wavelength is λ  = 4.2236 m, 

and hence the wire length is l = 0.47353 .λ   This is shorter than the resonant length           

l = 0.4749λ  for the center-fed dipole.  The input impedance, radiation resistance, and the 

antenna gain, for the sum mode and the difference mode are shown in Table 3.2.  The 

surface current distributions for the sum mode and the difference mode are shown in 

Figure 3.10 and Figure 3.11, respectively.  The radiation patterns are shown in Figures 

3.12 and 3.13.  Both the sum mode and the difference mode are balanced and the 

operating characteristics are a good representation of the actual ring-hybrid dipole values.  

 

Sum Mode Difference Mode Parameters 
feed 1 feed 2 feed 1 feed 2 

Remarks 

Input 
Impedance, 
Zin (Ω) 

37.5438 37.5438 1.0885 – 
j886.58 
 

1.0885 – 
j886.58 
 

balanced 

Radiation 
Resistance, 
Rrad (Ω) 

 
75.6541 

 
2.1942 

Gain, G 1.6223 or 2.1014 dB 1.8332 or 2.6320 dB 

using current 
distribution 

 
Table 3.2. Input impedance and radiation resistance for the sum mode and the 
difference mode. 
 

 2. Feed Power and Radiated Power 
 

The feed powers and the radiated powers in the sum and difference modes are 

shown in Table 3.3.   The power in the difference mode is very low due to an anti-

resonant antenna.  However, the difference mode is useful in the receiving case.   

 

Sum Mode Difference Mode Parameters 
feed 1 feed 2 feed 1 feed 2 

Remarks 

Feed Voltage + 0.5 V + 0.5 V + 0.5 V – 0.5 V  
Feed Power 3.3294 mW 3.3294 mW 173.11 nW 173.11 nW balanced 
Radiated Power 6.7091 mW 348.94 nW  
 

Table 3.3. Transmitted powers of the two-feed point dipole. 
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(a) 

 

 
(b) 

 

Figure 3.10. (a) Magnitude and (b) phase of the surface current distribution for the sum 
mode. 
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(a) 

 

 
(b) 

 

Figure 3.11. (a) Magnitude and (b) phase of the surface current distribution for the 
difference mode. 
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Figure 3.12. Radiation pattern for the sum mode. 

 
 

 
Figure 3.13. Radiation pattern for the difference mode. 
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F. CHAPTER SUMMARY 
 

A convergence test based on a center-fed dipole was performed to determine the 

discretization requirement.  The dipole was modeled as a thin-wire strip of length l that is 

very much greater than its width w.  The equivalent wire radius is one quarter of the 

width.  A discretization of 80 segments (or 159 RWG edges) ensured that the phase of the 

input impedance has stabilized.  The antenna parameters for the center-fed dipole in 

resonance were obtained for both the transmit and receive modes.  The surface current 

distribution, input impedance, antenna gain, and radiation pattern, all agreed very well 

with antenna theory. 

 
A two-feed point dipole was used to model the ring-hybrid dipole.  The two feed 

points were equally offset by 12 edges from the center of a symmetrical thin-wire strip.  

The sum mode (resonant) and the difference mode (anti-resonant) were produced by 

feeding the excitation voltages in-phase and 180º out-of-phase, respectively.  The correct 

radiation pattern for both the sum mode and the difference mode were obtained.  These 

arrangements ensured a correct and balanced operation in both the sum and difference 

modes.  In the sum mode, the input impedance is about 37.5 Ω in each feed.  In the 

difference mode, the input impedance is about 1.1 – j 887 Ω in each feed.  The difference 

mode is thus highly inefficient in the transmit mode but is useful in the receive mode.  

The antenna parameters obtained for the two-feed point dipole model were a good 

representation of the actual ring-hybrid dipole values.  Thus, this antenna model will be 

used to combine with a beamforming network model.  
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IV. ANTENNA BEAMFORMING NETWORK MODELING 
 
 
A. CHAPTER OVERVIEW 
 

The beamforming network generally consists of devices such as power dividers 

and phase shifters, which are used to achieve the desired amplitude and phase distribution 

at the array aperture.  In this chapter, the basic theory used in the modeling of the 

beamforming network connection to the antenna feed is presented.  The reflection 

coefficient and return loss for the center-fed dipole connected to a transmission line are 

then obtained.  The corresponding analysis is also carried out for the two-feed point 

dipole that is connected to two transmission lines.  Finally, the two-feed point dipole is 

connected to a magic-tee to model the ring-hybrid dipole.  The Matlab codes developed 

for the simulations (which are modifications of script rwg4.m) are in Appendix B. 

 
 
B. BASIC THEORY 
 

The matrix solution described in [7] uses the method of moments on the antenna 

surfaces and a scattering matrix formulation for the feed network.  The two sets of 

equations are related by continuity (or joining) relations based on an appropriate form of 

the conservation of energy.  In our case, the Kirchhoff’s voltage and current laws must be 

satisfied at the terminals of the dipole.  Once the excitation is specified, the antenna 

matrix equation is solved to yield the method of moments expansion current coefficients 

and the signals in the feed network. 

 
From [8], the scattering parameters of a N-port device relate the incident and 

reflected voltages (or currents) at all ports.  If Vn
+ and Vn

- are the incident and reflected 

waves at port n, respectively, then for a N-port network, 

 
,,,1,2211 NnVSVSVSV NNNnnn …" =+++= +++−                          (4.1) 

 
or in matrix form 
 

.+− ⋅= VV S                                                     (4.2) 
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The Snm are the scattering parameters which give the signal at port n due to an input at 

port m with all other ports terminated in matched load.  Thus, Snm is given by 

 

.
for  0 mkVV

VS
k

m

n
nm

≠=
=

+
+

−

                                            (4.3) 

 
Hence, Snn is the reflection coefficient seen looking into port n when all other ports are 

terminated in matched loads, and Snm is the transmission coefficient from port m to port n 

when all other ports are terminated in matched loads. 

 
In our case, the scattering parameters are combined with the RWG impedance 

matrix through the joining equations.  The magnitude of the total voltage Vn and current 

In at port n must be equal to the magnitude of the voltage Va and the method of moment 

expansion current coefficient Ia at the dipole terminal, respectively.  Currents In and Ia 

must be in anti-phase based on the reference system defined in Figure 4.1.  The two 

joining equations are thus found to be 

 
, annn VVVV =+= −+                                                 (4.4) 

and 

. 
a

on

nn
n I

Z
VVI −=−=

−+

                                               (4.5) 

 
The reflection coefficient LΓ at the dipole terminal is then 

 

,
onin

onin

n

n
L ZZ

ZZ
V
V

+
−==Γ +

−

                                               (4.6) 

and the return loss RL is thus 

dB. log10 2
10 LRL Γ−=                                               (4.7) 
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Figure 4.1. Antenna feed point connection to the feed network.  

 

C. CENTER-FED DIPOLE CONNECTED TO A TRANSMISSION LINE 
 

The center-fed dipole is connected to a transmission line as shown in Figure 4.2.  

The unknown signals ,1c  ,2c  and ,3c  in the feed network are also to be solved.  The 

transmission line is a two-port device with a scattering matrix 

 

 .
2221

1211








=

SS
SS

S                                                    (4.8) 

 
Hence, there are two scattering equations 
 

,2

2221

1211
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



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






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


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







inV
c

SS
SS

c
c

                                             (4.9) 

 
or, rearranging 

in

in

VScSc
VScSc

222213

122111

=−
=−

.                                              (4.10) 

 
Using (4.4) and (4.5), the two joining equations are 
 

0212211 =−−+++ ccIZIZIZ MaMaa " ,                             (4-11) 
and 

021 =+−
oo

a Z
c

Z
cI .                                               (4.12) 

 
where a is the feeding edge number and oZ  is the characteristic impedance of the 

transmission line. 

Zin 

Port n, Zon

Vn - Vn +
In 

Ia
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Figure 4.2. Center-fed dipole connected to a transmission line and its circuit model. 
 

The scattering parameters are then combined with the RWG impedance matrix 

through the two joining equations to obtain one matrix that completely describes the 

entire antenna and feed network  
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The complete system of equations is solved using 
 

.1 VI ⋅= −Z                                                      (4.14) 
 

Zo 
 

2-Port 
Device 

Zin

Zo

c1 c2 

Vin c3 
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The reflection coefficient at the dipole terminal is computed from 

,
1

2

oin

oin
L ZZ

ZZ
c
c

+
−==Γ                                               (4.15) 

and the return loss from 
dB. log10 2

10 LRL Γ−=                                             (4.16) 
 

In the transmit mode, Vin is the applied voltage.  The results for the center-fed 

dipole driven through a transmission line with characteristic impedance Zo under matched 

and mismatched conditions are shown in Table 4.1.  The feed network interaction with 

the antenna is modeled rigorously.  An ideal transmission line is used here and its 

scattering matrix is 

.
01
10








=S                                                      (4.17) 

 

Mismatched  
Parameters 

Matched 
Zo = Zin = 
72.0887 Ω 

Zo = 50 Ω Zo = 75 Ω 
Remarks 

Reflection Coefficient – 1.8913e–7 –
j1.6262e–7 

0.1809 – 
j0.0000 

– 0.0198 – 
j0.0000 

Return Loss (dB) 132.0610 14.8501 34.0698 

resonant 
antenna 

 
Table 4.1. Results for a center-fed dipole driven through an ideal transmission line. 

 

In the receive mode, the source is a plane wave of amplitude 1 V/m and the 

applied feed voltage Vin is set to zero (i.e., the transmission line is connected to a load ZL 

matched to the line characteristic impedance).  The setup is the same as that shown in 

Figure 3.4.  In a mismatched condition, the power received when ZL = 50 Ω and ZL = 100 

Ω is 2.9633 mW and 2.9830 mW, respectively.  In a matched condition (i.e., ZL = Zin), 

the maximum power received is Pr = 0.5|c3|2 /ZL = 3.0636 mW.  Again, the feed network 

interaction with the antenna is modeled rigorously.  There is no approximation other than 

the numerical evaluation of the matrix elements.  
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D. TWO-FEED POINT DIPOLE CONNECTED TO TWO TRANSMISSION 
LINES 
 

The two-feed point dipole is connected to two transmission lines as shown in 

Figure 4.3.  The same procedure as in Section C is applied.  In this case, there are four 

scattering equations and four joining equations. 

 

 
 

Figure 4.3. Two-feed point dipole connected to transmission lines. 
 

The results for matched and mismatched conditions, when the sum and difference 

modes are transmitted using ideal transmission lines, are shown in Table 4.2.  The return 

loss for the difference mode is very low when standard 50-Ω transmission lines are used. 

 

Sum Mode Difference Mode  
 
Parameters 

Matched 
Zo = Zin = 
37.5438 Ω 

Mismatched 
Zo = 50 Ω 

Matched 
Zo = Zin = 
1.0885 – 
j886.58 Ω 

Mismatched 
Zo = 50 Ω 

 
 
Remarks 

Reflection 
Coefficient 

3.1412e–7 –
j1.4335e–7 

– 0.1423 – 
j0.0000 

– 1.5607e–6 
+ j1.7988e–6 

0.9935 – 
j0.1124 

Return 
Loss (dB) 

129.2364 16.9368 116.1332 0.0012 

Same for 
both feed 
points 

 
Figure 4.2. Results for a two-feed point dipole driven through ideal transmission lines. 
 

 
2-Port 
Device 

Zin1

Zo 

c1 c2

Vin1 c3

 
2-Port 
Device 

Zin2

Zo

c4 c5 

Vin2 c6 
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 In the receive mode, two incident directions for a plane wave of 1 V/m are 

investigated here.  The first setup is the same as that shown in Figure 3.4.  The second 

setup is a plane wave incident at 45º as shown in Figure 4.4.  The surface current 

distribution for the second setup is plotted in Figure 4.5.  

 

 
 

Figure 4.4. Plane wave illuminating a two-feed point dipole at TMz 45º incidence. 
 

The received powers for both setups are shown in Table 4.3.  The difference 

power can only be extracted when there is a difference in the plane wave path length 

between the two arms of the dipole.   

 

Plane Wave 
Incidence 

Power received 
at feed 1 

Power received 
at feed 2 

Remarks 

0º 1.5399 mW 1.5399 mW 
45º 0.6438 mW 0.5843 mW 

ZL = 37.5438 Ω 
for both setups 

 
Table 4.3. Received power for the two-feed point dipole at 0º and 45º incidence. 

1 2

z

y 

Ei 

incident
wave

45º
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(a) 

 

 
(b) 

 

Figure 4.5. (a) Magnitude and (b) phase of the surface current distribution for two-
feed point dipole at 45º incidence. 
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E. TWO-FEED POINT DIPOLE CONNECTED TO A MAGIC-TEE 
 

The two-feed point dipole is connected to a magic-tee as shown in Figure 4.6.  

The magic-tee is a four-port power splitting device with the scattering matrix 

 

,

0110
1001

1001
0110

 



















−
−

= AS                                            (4.18) 

 
where A = 1/ 2 for the lossless case. 
  

 
 

Figure 4.6. Two-feed point dipole connected to a magic-tee. 
 

Port 1 is the sum port and port 4 is the difference port.  Port 2 and port 3 are the 

output ports (referred to as side arms).  If a signal is injected into the sum port, equal in-

phase signals emerge from port 2 and port 3.  If a signal is injected into the difference 

port, equal 180º out-of-phase signals emerge from port 2 and port 3.  The power splits 

equally when A = 1/ 2 .  If A = 0.5 is used, one quarter of the power will be absorbed (or 

lost) in each output.      

Zin1 

Zo 

c1 c2

Sum 
Input 

c5

4-Port 
Device 

Zin2

Zo

c3 c4 

Diff 
Input

c6 
Σ ∆

1 

3

4
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The same procedure used in Section C is applied.  In this case, there are four 

scattering equations and four joining equations.  The receive mode is investigated here 

and the setup is as shown in Figure 4.4, except that the incident direction is – 45º.  The 

sum input and the difference input are both set to zero.  The results for case 1 (where ZL = 

37.5438 Ω with A = 0.5), and case 2 (where ZL = 50 Ω with A = 1/ 2 ), are shown in 

Table 4.4.  In case 1, a quarter of the power is lost in each output.  In case 2, the received 

power is transferred to the sum and difference ports with no loss.  The power 

relationships have been verified (i.e., energy is conserved). 

 

Parameters Case 1 
ZL = 37.5438 Ω 

A = 0.5 

Case 2 
ZL = 50 Ω 
A = 1/ 2  

Remarks 

Power Received 
at Feed 1 

0.5843 mW 0.5678 mW  

Power Received 
at Feed 2 

0.6438 mW 0.6357 mW  

Total Received 
Power 

1.2281 mW 1.2035 mW  

c2 – 0.0042 + 
 j0.0002 

– 0.0048 + 
 j0.0002 

 

c4 – 0.0044 + 
 j0.0002 

– 0.0050 + 
 j0.0002 

 

c5 – 0.0043 + 
 j0.0002 

– 0.0069 + 
 j0.0003 

c5 = A(c2 + c4) 

c6 1.0384e–4 – 
j5.0664e–6 

1.9528e–4 – 
j1.2273e–5   

c6 = A(c2 – c4) 

Power at 
Sum Port 

0.6137 mW 1.2025 mW 
 

 

Power at 
Diff Port 

359.84 nW 957.08 nW  

Total Power 
( Σ + ∆ ) 

0.6140 mW 1.2035 mW 
 

Quarter power lost in 
each output for Case 1 

 
Table 4.4. Results for a two-feed point dipole connected to a magic-tee in the receive 
mode for – 45º incidence. 
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F. CHAPTER SUMMARY 
 

The basic theory involved in the modeling of the beamforming network 

connection to the dipole antenna feed was derived.  The matrix solution combined the 

method of moments equations on the antenna surfaces and a scattering matrix 

formulation for the feed network.  The joining equations were formed by applying 

Kirchhoff’s voltage and current laws (conservation of energy) at the terminals of the 

dipole antenna.  Once the excitation is specified, the complete system of equations was 

solved to yield the MoM current expansion coefficients and the signals in the feed 

network. 

 
A test case for a center-fed dipole connected to a transmission line was performed.  

The feed network interaction with the antenna feed was modeled rigorously.  In the 

transmit mode, the reflection coefficients for both matched and mismatched conditions 

were computed accurately and in accordance with transmission line theory [8].  In the 

receive mode, maximum power is received in a matched load condition. 

 
The two-feed point dipole was connected to two 50-Ω transmission lines.  There 

were mismatches in both the sum and difference modes.  The return loss is about 17 dB 

and 0.0012 dB for the sum and difference modes, respectively.  In the receive mode, the 

difference power can only be extracted when there is a difference in the incident wave 

path length between the two dipole arms. 

 
The two-feed point dipole was connected to a magic-tee to model the complete 

ring-hybrid dipole.  The power relationships (i.e., conservation of energy) between the 

total captured power, and the total output power in sum port and the difference port were 

verified for two test cases.  The complete ring-hybrid dipole model will thus be extended 

to create an antenna array model.    
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V. MUTUAL COUPLING IN A SMALL ANTENNA ARRAY 
 
 
A. CHAPTER OVERVIEW 
 

In this chapter, the mutual coupling for a free-standing array of three center-fed 

dipoles matched at all scan angles is examined first.  A ground plane is then introduced 

and a convergence test is performed to determine the discretization requirement.  Next, 

the mutual coupling in the presence of the ground plane is evaluated.  The antenna array 

is then connected to the beamformer transmission lines, and the mutual coupling is 

observed.  Following that, an array of three two-feed point dipoles over a ground plane 

are connected to magic-tees simulating an array of three ring-hybrid dipoles.  The sum 

and difference port outputs for different incidence angles in the receive mode are then 

obtained.  The Matlab codes developed for the simulations (which are modifications of 

script rwg4.m) are in Appendix B. 

 
 
B. MUTUAL COUPLING FOR AN ARRAY OF THREE CENTER-FED 
DIPOLES 
 

An array of three free-standing dipoles is shown in Figure 5.1.  All of the dipoles 

are directly fed at their center with an ideal voltage source and thus a matched condition 

is simulated for all scan angles.  For the center-fed dipole, the wavelength is λ  = 4.2114 

m, and the antennas are spaced 2/λ  apart.  In order to steer the antenna beam, the phase 

for the ith element relative to the phase of the zeroth element is 

 
,cos  φγ kdii −=                                                    (5.1) 

  
where ,/2 λπ=k  d is the spacing between the elements, and φ  is the scan angle.  For 

broadside scan, the azimuth and zenith angles are φ  = 90º (or φ  = 270º) and ,90°=θ  

respectively. 
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Figure 5.1. An array of three dipoles. 
 

The surface current distribution and the antenna pattern for broadside scan are 

plotted in Figure 5.2.  The current distribution is symmetrical about the middle dipole.  

The input impedances obtained are Zin1 = 67.3465 – j26.5366 Ω, Zin2 = 40.7447                

– j30.1476 Ω, and Zin3 = 67.3451 – j26.5365 Ω.  The input impedances are symmetrical 

about the middle dipole as expected.  The input impedances are different from those of a 

single center-fed dipole due to mutual coupling.  Since there are only three antenna 

elements, the main beam is wide and the gain obtained is G = 5.6763 or 7.5407 dB. 

   
The surface current distribution and the antenna pattern for 30º off-broadside scan 

(i.e., φ = 60º, °= 90θ ) are plotted in Figure 5.3.  The current distribution is not 

symmetrical about the middle dipole when the scan is off-broadside.  The input 

impedances obtained are  Zin1 = 53.8125 – j3.9801 Ω, Zin2 = 80.1318 – j23.7998 Ω, and 

Zin3 = 74.5189 – j42.2701 Ω.  In accordance with the current distribution, the input 

impedances are also not symmetrical.  The gain obtained is G = 4.9520 or 6.9478 dB, 

which is reduced from the broadside case.   

 

 x, m

 z, m 

 y, m
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(a) 

 

 
(b) 

 
Figure 5.2. (a) Surface current distribution and (b) radiation pattern for an array of 
three free-standing center-fed dipoles spaced 2/λ  apart at broadside scan. 
 
  

Phi, degree 
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(a) 

 

 
(b) 

 
Figure 5.3. (a) Surface current distribution and (b) radiation pattern for an array of 
three free-standing center-fed dipoles spaced 2/λ  apart at 30º off-broadside scan. 
 

Phi, degree 
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C. MUTUAL COUPLING FOR AN ARRAY OF THREE CENTER-FED 
DIPOLES OVER A GROUND PLANE 
 

An array of three dipoles over a finite ground plane is shown in Figure 5.4.  The 

ground plane is a λ2  square plate.  The distance between the antennas and the plate 

is 4/λ .  All of the elements are the center-fed dipoles spaced 2/λ  apart. 

   

 
 

Figure 5.4. An array of three dipoles over a finite ground plane. 
 

The input impedance for broadside scan versus the number of triangles on the 

plate is shown in Table 5.1.  The input impedances have stabilized when the number of 

triangles is 1248.  There is actually a very small amount of difference between the input 

impedances of dipole 1 (Zin1 = 102.70 + j5.07 Ω) and   dipole 3 (Zin3 = 102.93 + j4.97 Ω) 

due to the use of a non-symmetrical plate mesh distribution, as shown in Figure 5.5.  The 

input impedances are modified from those in Section B due to the presence of the ground 

plane.  The input impedances obtained for 30º off-broadside scan are Zin1 = 72.64            

+ j20.19 Ω, Zin2 = 114.24 + j29.83 Ω, and Zin3 = 140.46 + j7.40 Ω.  The input impedance 

versus scan angle is plotted in Figure 5.6.  The input impedance varied significantly with 

the scan angle for all three dipoles. 

 x, m

 z, m

 y, m
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Number of 
Triangles 

Input Impedance of 
Dipole 1 (Ω) 

Input Impedance of 
Dipole 2 (Ω) 

128 102.79 + j7.82   103.09∠ 4.35 81.53 – j21.90 84.42∠ –15.04 
512 102.49 + j5.75 102.65∠ 3.21 80.44 – j24.21 84.00∠ –16.75 
1248 102.70 + j5.07 102.83∠ 2.83 80.32 – j24.87 84.08∠ –17.20 
2048 102.95 + j4.72 103.06∠ 2.63 80.33 – j25.26 84.21∠ –17.46 

 
Table 5.1. Input impedance for an array of three center-fed dipoles spaced 2/λ  apart, 
over a λ2  square plate with various discretization, at broadside scan. 

 
 

 
 

Figure 5.5. A λ2  square plate with 1248 triangles. 
 

The radiation pattern for broadside scan and 30º off-broadside scan are plotted in 

Figure 5.7.  The electromagnetic energy is mostly contained in the region ,1800 °≤≤° φ  

except for a small level of backlobe, due to the presence of the finite ground plane.  The 

gains obtained for broadside scan and 30º off-broadside scan are G = 13.7226 or 11.3744 

dB and G = 14.1262 or 11.5003 dB, respectively.  The gain for the latter case is slightly 

higher than the broadside case. 

 
 
 

 x, m

 z, m 

 y, m 
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(a) 

 

    
(b) 

 

    
(c) 

 
Figure 5.6. Input impedance versus scan angle for an array of three center-fed dipoles 
spaced  2/λ  apart over a λ2  square plate.  Resistance is on the left side and reactance on 
the right side for (a) dipole 1, (b) dipole 2, and (c) dipole 3. 
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(a) 

 

 
(b) 

 
Figure 5.7. Radiation pattern for an array of three center-fed dipoles spaced 2/λ apart 
over a λ2  square plate at (a) broadside scan and (b) 30º off-broadside scan.  
 
 

Phi, degree 

Phi, degree 
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D. MUTUAL COUPLING FOR AN ARRAY OF THREE CENTER-FED 
DIPOLES CONNECTED TO TRANSMISSION LINES OVER A GROUND 
PLANE 
 

The array of three center-fed dipoles is connected to ideal transmission lines with 

characteristic impedance Zo = 75 Ω.  Thus, there are six joining equations and six 

scattering equations, and the procedure in Section C of Chapter III is applied to combine 

them with MoM.  The ground plane is the λ2  square plate (with 1248 triangles) and the 

dipoles are at a height of 4/λ  over the ground.  The input impedances, reflection 

coefficient, and gain, for both broadside scan and 30º off-broadside scan, are shown in 

Table 5.2.  The input impedances are modified from those obtained in Section C due to 

additional mutual coupling from reflections introduced by the mismatched feed condition.  

The gains are also slightly higher than those in Section C.  The radiation pattern for 

broadside scan and 30º off-broadside scan are plotted in Figure 5.8.  It is observed that 

the “nulls” in the pattern are deeper than those in Figure 5.7. 

 
Scan Parameters Dipole 1 Dipole 2 Dipole 3 Remarks 

Input 
Impedances 
(Ω) 

96.7991 + 
j8.4687 

84.7904 – 
j34.4755 

97.0134 + 
j8.4075 

 

Reflection 
Coefficient 

0.1290 + 
j0.0429 
 

0.1030 – 
j0.1935 

0.1301 + 
j0.0425 

Symmetrical 
about the 
middle dipole 

Broadside 

Gain 14.1407 or 11.5047 dB  
Input 
Impedances 
(Ω) 

67.26 + 
j18.72   

102.41 + 
j33.44   

141.64 + 
j17.46 

 

Reflection 
Coefficient 

-0.0365 + 
j0.1364 
 

0.1835 + 
j0.1539 

0.3121 + 
j0.0554 

 

30º off-
broadside 

Gain 14.6414 or 11.6558 dB  
 
Table 5.2. Input impedances, return loss, and gain for an array of three center-fed 
dipoles spaced 2/λ  apart connected to 75-Ω transmission lines over a λ2  square plate. 
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(a) 

 

 
(b) 

 
Figure 5.8. Radiation pattern for an array of three center-fed dipoles spaced 2/λ  
connected to 75-Ω transmission lines over a λ2  square plate at (a) broadside scan and   
(b) 30º off-broadside scan. 
 
 

Phi, degree 

Phi, degree 



57 

E. MUTUAL COUPLING FOR AN ARRAY OF THREE TWO-FEED POINT 
DIPOLES CONNECTED TO MAGIC-TEES OVER A GROUND PLANE 
 

The array of three two-feed point dipoles is connected to magic-tees with 

characteristic impedance Zo = 50 Ω and A = 21 .  There are twelve joining equations 

and twelve scattering equations, and the procedure in Section C of Chapter III is applied.  

The ground plane is the λ2  square plate (with 1248 triangles) and the distance to the 

antennas is .4/λ  The wavelength λ  = 4.2236 m is used.  In the transmit problem, the 

operating characteristics of the sum mode will be similar to those observed in Section D.  

The difference mode is highly inefficient for transmission. 

 
The receive case is investigated here.  In the first setup, the plane-wave incidence 

direction is varied from broadside to end-fire in the xy-plane (i.e., 

).90 and 180  to90 °=°°= θφ   The wave polarization is parallel to the dipoles.  The 

outputs of all the three sum ports versus scan angle for this condition are shown in Figure 

5.9.  The phases for all the sum port outputs are changing smoothly.  With zero phase 

difference, there are no outputs at the difference ports. 

 
In the second setup, the plane-wave incidence direction is varied from 

.90 with 0  to90 °=°°= φθ   The scan angle is set to the incidence direction .θ   The 

outputs of all the three sum ports and all the three difference ports versus scan angle θ  

for this condition are shown in Figure 5.10 and Figure 5.11, respectively. 

 
It is clear that the sum port output for dipole 1 and dipole 3 are the same.  The 

phases of the sum port outputs are changing smoothly.  The phases of all the difference 

port outputs are also changing smoothly, except when θ  is close to 90º and 0º.  At 

,90°=θ  there is no difference in the plane wave path length between all the side arms.  

At ,0°=θ  the magnitudes of all the sum and difference port outputs drop to zero because 

the plane wave is illuminating the ends of the dipoles.  The phases of all the sum and 

difference port outputs thus change abruptly at θ  near zero. 
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(a) 
 

    
(b) 
 

      
(c) 

 
Figure 5.9. Sum port outputs for an array of three two-feed point dipoles spaced 2/λ  
apart connected to 50-Ω magic-tees over a λ2  square plate.  The scan angle ( )φ  is varied 
from .90 with 180  to90 °=°°= θφ   Magnitude of output is on the left side and phase on 
the right side for (a) dipole 1, (b) dipole 2, and (c) dipole 3. 
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(a) 

 

    
(b) 

 

    
(c) 

 
Figure 5.10. Sum port outputs for an array of three two-feed point dipoles spaced 2/λ  
apart connected to 50-Ω magic-tees over a λ2  square plate.  The scan angle ( )θ  is varied 
from .90 with 0  to90 °=°°= φθ   Magnitude of output is on the left side and phase on the 
right side for (a) dipole 1, (b) dipole 2, and (c) dipole 3. 
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(a) 

 

    
(b) 
 

    
(c) 

 
Figure 5.11. Difference port outputs for an array of three two-feed point dipoles spaced 

2/λ  apart connected to 50-Ω magic-tees over a λ2  square plate.  The scan angle ( )θ  is 
varied from .90 with 0  to90 °=°°= φθ   Magnitude of output is on the left side and phase 
on the right side for (a) dipole 1, (b) dipole 2, and (c) dipole 3. 
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F. CHAPTER SUMMARY 
 

The mutual coupling for an array of three center-fed dipoles was examined.  The 

dipoles were spaced 2/λ  apart along the x-axis and aligned parallel to the z-axis.  In 

order to scan the main beam, the appropriate phase shift was introduced to the three 

antenna feeds.  As a function of scan angle, the input impedances for an array of three 

center-fed dipoles were observed to be changing, and different from those of a single 

dipole, due to the effect of mutual coupling. 

 
  The array of three center-fed dipoles was then placed 4/λ over a λ2  square 

plate.  A convergence test using a broadside scan was performed to determine the 

discretization requirement for the plate.  A discretization of 1248 triangles on the plate 

ensured that the phase of the input impedances had stabilized.  The input impedances 

were modified due to mutual coupling introduced by the plate.  The input impedances 

were found to vary significantly with scan angle.  The radiation into the rear hemisphere 

behind the plate is largely eliminated due to the presence of the ground plane. 

 
The array of three center-fed dipoles was then connected to 75-Ω transmission 

lines.  The input impedances were further modified due to additional mutual coupling 

from reflections introduced by the mismatched feed condition.  A slight improvement in 

the radiation pattern was observed, which is probably not real and due to numerical error.  

If it is real, it is due to the fact that the ground plane is not infinite.  

 
An array of three two-feed point dipoles was connected to 50-Ω magic-tees and 

placed over the λ2  square plate.  The configuration is the same as that for the array of 

center-fed dipoles.  The characteristics for the transmit mode would be similar to those 

observed for the array of center-fed dipoles.  Hence, the receive mode was examined by 

varying the direction and the polarization of the incidence plane wave.  The phases for 

both the sum port and difference port outputs were observed to change smoothly, except 

during situations of cross polarization and zero phase difference.  The model for an array 

of three ring-hybrid dipoles has been verified.  The conclusions and recommendations for 

future work are presented in the next chapter.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 
 
A. CONCLUSIONS 
 

This thesis project modeled a microstrip ring-hybrid dipole that is capable of 

simultaneously producing a sum pattern (resonant) and a difference pattern (anti-resonant) 

using the method of moments (MoM) based on the Rao-Wilton-Glisson (RWG) edge 

elements.  Existing Matlab source codes were modified from [2] to suit the needs of this 

thesis project.  The ring-hybrid dipole is simply a ring-hybrid coupler driving a dipole 

antenna. 

 
A two-feed point dipole was successfully developed to model the operating 

characteristics of the ring-hybrid dipole.  Two feed points were equally offset by 12 

edges from the center of a symmetrical thin-wire strip with 80 segments.  The sum 

pattern and the difference pattern were correctly produced by feeding the excitation 

voltages in-phase and 180º out-of-phase, respectively. 

 
In the beamforming network modeling, the matrix solution combined the MoM 

equations on the antenna surfaces and a magic-tee scattering matrix.  The joining 

equations were formed by applying Kirchhoff’s voltage and current law at the terminals 

of the dipole antenna.  Once the excitation is specified, the complete system of equations 

was solved to yield the MoM expansion current coefficients and the signals in the feed 

network.  The feed network interaction with the antenna feed was modeled rigorously.    

 
The effect of mutual coupling for an array of three ring-hybrid dipoles was 

examined by extending the model.  In the receive mode, the direction and the polarization 

of the incident plane wave were varied.  The phases for both the sum port and difference 

port outputs were observed to be changing smoothly, except during situations of cross 

polarization and zero phase difference. 
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A valid antenna model combined with the feed network model has been 

successfully developed for the ring-hybrid dipole using the method of moments.  The 

effect of mutual coupling in an array of three ring-hybrid dipoles has been studied.  The 

stage is now ready for the design of compensation network to reduce the interferences 

caused by mutual coupling. 

 
 
B. RECOMMENDATIONS FOR FUTURE WORK 
 

A potential compensation network concept uses feedback circuits to connect from 

one dipole to the others.  The difference ports can be used as a feedback mechanism to 

adjust how much mutual coupling the dipoles receive.  With this information, the dipoles 

can adjust their voltage to reduce the phase error due to mutual coupling.  This is a type 

of cancellation; signals are coupled from each element and used to cancel the free space 

coupling.  A possible compensation network is shown in Figure 6.1.  This simple network 

derives a single cancellation signal that is a weighted sum of the difference port outputs.  

The cancellation signal is then used to adjust the beamforming signal.  The network will 

work over a narrow range of angle due to gross feedback.  Better performance can be 

achieved by incorporating multi-path feedback at the cost of increased complexity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1. An array of three elements with a compensation network (From Ref. [2].). 
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APPENDIX A:  MATLAB SCRIPTS RWG1.M TO RWG5.M AND 
EFIELD1.M TO EFIELD3.M 

 
 
script rwg1.m 
 
%RWG1 Geometry calculations - all Chapters 
%   Uses the structure mesh file, e.g. platefine.mat,  
%   as an input. 
% 
%   Creates the RWG edge element for every inner edge of  
%   the structure. The total number of elements is EdgesTotal. 
%   Outputs the following arrays: 
% 
%   Edge first node number          Edge_(1,1:EdgesTotal) 
%   Edge second node number         Edge_(2,1:EdgesTotal) 
%   Plus triangle number            TrianglePlus(1:EdgesTotal) 
%   Minus triangle number           TriangleMinus(1:EdgesTotal) 
%   Edge length                     EdgeLength(1:EdgesTotal) 
%   Edge element indicator          EdgeIndicator(1:EdgesTotal) 
% 
%   Also outputs areas and midpoints of separate triangles: 
%   Triangle area                   Area(1:TrianglesTotal) 
%   Triangle center                 Center(1:TrianglesTotal)       
%    
%   This script may handle surfaces with T-junctions  
%   including monopoles over various metal surfaces and  
%   certain metal meshes 
% 
%   The modification for Antenna Array passes the array  
%   Feed  
 
clear all 
tic; 
 
%load('mesh/strip80_sym'); %antenna structure 
%load('mesh/strip80syma3g_1248'); 
load('mesh/twofeed_a3g'); 
[s1 s2]=size(p); 
if(s1==2) 
    p(3,:)=0;   %to convert 2D to 3D 
end 
 
%Eliminate unnecessary triangles 
Remove=find(t(4,:)>1);    
t(:,Remove)=[];            
TrianglesTotal=length(t); 
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%Find areas of separate triangles 
 
for m=1:TrianglesTotal 
   N=t(1:3,m); 
   Vec1=p(:,N(1))-p(:,N(2)); 
   Vec2=p(:,N(3))-p(:,N(2)); 
   Area(m) =norm(cross(Vec1,Vec2))/2; 
   Center(:,m)=1/3*sum(p(:,N),2); 
end 
 
%Find all edge elements "Edge_" with at least two  
%adjacent triangles 
Edge_=[]; 
n=0; 
for m=1:TrianglesTotal 
    N=t(1:3,m); 
    for k=m+1:TrianglesTotal 
        M=t(1:3,k);       
        a=1-all([N-M(1) N-M(2) N-M(3)]); 
        if(sum(a)==2) %triangles m and k have common edge 
            n=n+1; 
            Edge_=[Edge_ M(find(a))];  
            TrianglePlus(n)=m; 
            TriangleMinus(n)=k;  
        end;  
    end 
end 
EdgesTotal=length(Edge_); 
 
%This block is only meaningful for T junctions 
%It leaves only two edge elements at a junction  
Edge__=[Edge_(2,:); Edge_(1,:)]; 
Remove=[]; 
for m=1:EdgesTotal 
    Edge_m=repmat(Edge_(:,m),[1 EdgesTotal]); 
    Ind1=any(Edge_  -Edge_m); 
    Ind2=any(Edge__ -Edge_m); 
    A=find(Ind1.*Ind2==0); 
    if(length(A)==3)    %three elements formally exist at a junction  
        Out=find(t(4,TrianglePlus(A))==t(4,TriangleMinus(A))); 
        Remove=[Remove A(Out)]; 
    end 
end 
Edge_(:,Remove)         =[]; 
TrianglePlus(Remove)    =[]; 
TriangleMinus(Remove)   =[]; 
EdgesTotal=length(Edge_) 
EdgeIndicator=t(4,TrianglePlus)+t(4,TriangleMinus); 
 
%Find edge length 
for m=1:EdgesTotal 
   EdgeLength(m)=norm(p(:,Edge_(1,m))-p(:,Edge_(2,m))); 
end 
toc 
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%Save result 
save mesh1  p ... 
            t ... 
            Edge_ ... 
            TrianglesTotal ... 
            EdgesTotal ... 
            TrianglePlus ... 
            TriangleMinus ... 
            EdgeLength ... 
            EdgeIndicator ... 
            Area ... 
            Center ... 
            %Feed %used only for array of antennas 

 
 
script rwg2.m 
 
%RWG2 Geometry calculations - all Chapters 
%   Uses the mesh file from RWG1, mesh1.mat,  
%   as an input. 
% 
%   Creates the following parameters of the RWG edge elements:  
% 
%   Position vector rho_c_plus from the free vertex of  
%   the "plus" triangle to its center 
%                                   RHO_Plus(1:3,1:EdgesTotal) 
%   Position vector rho_c_minus from the center of the "minus" 
%   triangle to its free vertex  
%                                   RHO_Minus(1:3,1:EdgesTotal) 
% 
%   In addition to these parameters creates the following 
%   arrays for nine subtriangles (barycentric subdivision): 
% 
%   Midpoints of nine subtriangles 
%                                   Center_(1:3,1:9,1:TrianglesTotal)    
%   Position vectors rho_c_plus from the free vertex of  
%   the "plus" triangle to nine subtriangle midpoints 
%                                   RHO__Plus(1:3,1:9,1:EdgesTotal) 
%   Position vectors rho_c_minus from nine subtriangle midpoints 
%   to the free vertex of the "minus" triangle 
%                                   RHO__Minus(1:3,1:9,1:EdgesTotal) 
% 
%   See Rao, Wilton, Glisson, IEEE Trans. Antennas and Propagation, 
%   vol. AP-30, No 3, pp. 409-418, 1982. 
% 
%   The modification for Array Antenna passes the array  
%   Feed  
 
clear all 
 
%load the data 
load('mesh1') 
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%Find nine sub-triangle midpoints  
IMT=[]; 
for m=1:TrianglesTotal 
    n1=t(1,m); 
    n2=t(2,m); 
    n3=t(3,m);  
    M=Center(:,m); 
    r1=    p(:,n1); 
    r2=    p(:,n2); 
    r3=    p(:,n3); 
    r12=r2-r1; 
    r23=r3-r2; 
    r13=r3-r1; 
    C1=r1+(1/3)*r12; 
    C2=r1+(2/3)*r12; 
    C3=r2+(1/3)*r23; 
    C4=r2+(2/3)*r23; 
    C5=r1+(1/3)*r13; 
    C6=r1+(2/3)*r13; 
    a1=1/3*(C1+C5+r1); 
    a2=1/3*(C1+C2+M); 
    a3=1/3*(C2+C3+r2); 
    a4=1/3*(C2+C3+M); 
    a5=1/3*(C3+C4+M); 
    a6=1/3*(C1+C5+M); 
    a7=1/3*(C5+C6+M); 
    a8=1/3*(C4+C6+M); 
    a9=1/3*(C4+C6+r3); 
    Center_(:,:,m)=... 
        [a1 a2 a3 a4 a5 a6 a7 a8 a9]; 
end 
%PLUS 
for m=1:EdgesTotal 
    NoPlus=TrianglePlus(m); 
    n1=t(1,NoPlus); 
    n2=t(2,NoPlus); 
    n3=t(3,NoPlus);  
    if((n1~=Edge_(1,m))&(n1~=Edge_(2,m))) NODE=n1; end; 
    if((n2~=Edge_(1,m))&(n2~=Edge_(2,m))) NODE=n2; end; 
    if((n3~=Edge_(1,m))&(n3~=Edge_(2,m))) NODE=n3; end; 
    FreeVertex=p(:,NODE); 
     
    RHO_Plus(:,m)   =+Center(:,NoPlus)-FreeVertex; 
    %Nine rho's of the "plus" triangle 
    RHO__Plus(:,:,m)  =... 
        +Center_(:,:,NoPlus)-repmat(FreeVertex,[1 9]); 
end 
%MINUS 
for m=1:EdgesTotal 
    NoMinus=TriangleMinus(m); 
    n1=t(1,NoMinus); 
    n2=t(2,NoMinus); 
    n3=t(3,NoMinus);  
    if((n1~=Edge_(1,m))&(n1~=Edge_(2,m))) NODE=n1; end; 
    if((n2~=Edge_(1,m))&(n2~=Edge_(2,m))) NODE=n2; end; 
    if((n3~=Edge_(1,m))&(n3~=Edge_(2,m))) NODE=n3; end; 
    FreeVertex=p(:,NODE); 
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    RHO_Minus(:,m)   =-Center(:,NoMinus) +FreeVertex; 
    %Nine rho's of the "minus" triangle 
    RHO__Minus(:,:,m)=... 
        -Center_(:,:,NoMinus)+repmat(FreeVertex,[1 9]); 
end 
 
%Save result 
save mesh2  p ... 
            t ...             
            TrianglesTotal ... 
            EdgesTotal ... 
            Edge_ ... 
            TrianglePlus ... 
            TriangleMinus ... 
            EdgeLength ... 
            EdgeIndicator ... 
            Area ... 
            RHO_Plus ... 
            RHO_Minus ... 
            RHO__Plus ... 
            RHO__Minus ... 
            Center ... 
            Center_ ... 
            %Feed %used only for array of antennas 

 
 
script rwg3.m 
 
%RWG3 Calculates the impedance matrix using function IMPMET 
%   Uses the mesh file from RWG2, mesh2.mat, as an input. 
% 
%   The following parameters need to be specified prior to  
%   calculations: 
%    
%   Frequency (Hz)                  f 
%   Dielectric constant (SI)        epsilon_ 
%   Magnetic permeability (SI)      mu_ 
 
clear all 
%Load the data 
load('mesh2'); 
 
%EM parameters (f=3e8 means that f=300 MHz)  
%f=70.98038e6%resonant freq offset 12 for strip80_sym  
f=71.18541e6%resonant freq center fed for strip80_sym 
 
epsilon_    =8.854187817e-012; 
mu_         =1.256637061e-006; 
 
%Speed of light 
c_=1/sqrt(epsilon_*mu_) 
c_/f 
%Free-space impedance  
eta_=sqrt(mu_/epsilon_); 
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%Contemporary variables - introduced to speed up  
%the impedance matrix calculation 
omega       =2*pi*f;                                             
k           =omega/c_; 
K           =j*k; 
Constant1   =mu_/(4*pi); 
Constant2   =1/(j*4*pi*omega*epsilon_); 
Factor      =1/9;     
 
FactorA     =Factor*(j*omega*EdgeLength/4)*Constant1; 
FactorFi    =Factor*EdgeLength*Constant2; 
 
for m=1:EdgesTotal 
    RHO_P(:,:,m)=repmat(RHO_Plus(:,m),[1 9]);   %[3 9 EdgesTotal] 
    RHO_M(:,:,m)=repmat(RHO_Minus(:,m),[1 9]);  %[3 9 EdgesTotal] 
end 
FactorA=FactorA.'; 
FactorFi=FactorFi.'; 
 
%Impedance matrix Z 
tic; %start timer 
 
Z=  impmet( EdgesTotal,TrianglesTotal,... 
            EdgeLength,K,... 
            Center,Center_,... 
            TrianglePlus,TriangleMinus,... 
            RHO_P,RHO_M,... 
            RHO__Plus,RHO__Minus,... 
            FactorA,FactorFi);    
 
toc %elapsed time 
 
%Save result 
FileName='impedance.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 'eta_','Z');             

 
 
script rwg4.m 
 
%RWG4 Solves MoM equations for the antenna radiation problem 
%   Uses the mesh file from RWG2, mesh2.mat, and 
%   the impedance file from RWG3, impedance.mat, 
%   as inputs. 
%    
%   Also calculates the "voltage" vector V (the right- 
%   hand side of moment equations)          
%                                           V(1:EdgesTotal) 
% 
%   The following parameters need to be specified: 
% 
%   The feed point position                 FeedPoint(1:3); 
%   Number of feeding edges (one for the dipole;  
%   two for the monopole)                   INDEX(1:2); 
 
%load the data 
load('mesh2'); 
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load('impedance'); 
 
rx=0;%assign 1 for rx otherwise tx 
 
nfeed=2;%assign 2 for two feedpoints (freq change for resonant), 
otherwise 1 feedpoint. 
 
sum_diff=-1;%assign 1 for sum and -1 for diff 
 
offset=12;%offset edge for two feedpoints 
 
ztl=72.0887;%assign Rrad to match TL to antenna 
 
%Find the feeding edge(s)(closest to the origin) 
FeedPoint=[0; 0; 0]; 
Index=[]; 
 
for m=1:EdgesTotal 
    V(m)=0; 
    Distance(m)=norm(0.5*sum(p(:,Edge_(:,m)),2)-FeedPoint); 
end 
 
 [Y,INDEX]=sort(Distance); 
Index=[Index INDEX(1)]; 
 
%Define the voltage vector 
 
if (nfeed==2) 
    V(Index-offset)=0.5*EdgeLength(Index-offset); 
    V(Index+offset)=sum_diff*0.5*EdgeLength(Index+offset); 
     
else 
    V(Index)=1.0*EdgeLength(Index); 
end 
 
%Dipole - normal incidence 
d      =[0 0 -1];      
Pol    =[0 1 0];%parallel 
 
k=omega/c_; 
kv=k*d; 
 
for m=1:EdgesTotal     
   ScalarProduct=sum(kv.*Center(:,TrianglePlus(m))'); 
   EmPlus =Pol.'*exp(-j*ScalarProduct);       
   ScalarProduct=sum(kv.*Center(:,TriangleMinus(m))'); 
   EmMinus=Pol.'*exp(-j*ScalarProduct);       
   ScalarPlus =sum(EmPlus.* RHO_Plus(:,m)); 
   ScalarMinus=sum(EmMinus.*RHO_Minus(:,m)); 
   Vr(m)=EdgeLength(m)*(ScalarPlus/2+ScalarMinus/2);%*1.063948;    
end 
 
%Solve system of MoM equations 
tic; 
 
VV=0;%transmit case 
source=1*EdgeLength(Index); 
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if (rx==1) 
    V=Vr; 
    VV=Vr;%receive case with network 
    source=0;%turn off Vin for receive case 
end 
 
D=[0 1;1 0];%two port device connected to dipole 
 
VV(EdgesTotal+1)=0; 
VV(EdgesTotal+2)=-source*D(1,2); 
VV(EdgesTotal+3)=-source*D(2,2); 
 
ZZ(1:EdgesTotal+3,1:EdgesTotal+3)=0; 
ZZ(1:EdgesTotal,1:EdgesTotal)=Z(1:EdgesTotal,1:EdgesTotal); 
       
ZZ(Index,EdgesTotal+1)=-1; 
ZZ(Index,EdgesTotal+2)=-1; 
Zo=EdgeLength(Index)^2*ztl;%TL impedance 
ZZ(EdgesTotal+1,Index)=+1; 
ZZ(EdgesTotal+1,EdgesTotal+1)=+1/Zo;% 
ZZ(EdgesTotal+1,EdgesTotal+2)=-1/Zo;% 
 
ZZ(EdgesTotal+2,EdgesTotal+1)=D(1,1); 
ZZ(EdgesTotal+2,EdgesTotal+2)=-1; 
 
ZZ(EdgesTotal+3,EdgesTotal+1)=D(2,1); 
ZZ(EdgesTotal+3,EdgesTotal+3)=-1; 
 
%Z(Index,Index)=Z(Index,Index)+ EdgeLength(Index)^2*72.0887; 
 
I=Z\V.'; %transmit 
 
II=ZZ\VV.'; %TL feeding Dipole 
 
toc %elapsed time 
 
%Find the antenna input impedance 
if (rx==1) 
    
pwr_rec_matched=.5*(II(EdgesTotal+1)*II(EdgesTotal+1)')/EdgeLength(Inde
x)^2/ztl*1000 
else 
    if(nfeed==1) 
    GapCurrent  =I(Index)*EdgeLength(Index) 
    GapVoltage  =V(Index)/EdgeLength(Index) 
    Impedance   =GapVoltage/GapCurrent 
    FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
     
    PortCurrent  =II(Index)*EdgeLength(Index) 
    PortVoltage  =(II(EdgesTotal+1)+II(EdgesTotal+2))/EdgeLength(Index) 
    Impedance   =PortVoltage/PortCurrent 
    TxPower   =1/2*real(PortCurrent*conj(PortVoltage))*1000 
    RC=II(EdgesTotal+1)/II(EdgesTotal+2) 
    RL=-10*log10(abs(RC)^2) 
    else 
    GapCurrent  =I(Index-offset)*EdgeLength(Index-offset) 
    GapVoltage  =V(Index-offset)/EdgeLength(Index-offset) 
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    Impedance   =GapVoltage/GapCurrent 
    FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
     
    GapCurrent  =I(Index+offset)*EdgeLength(Index+offset) 
    GapVoltage  =V(Index+offset)/EdgeLength(Index+offset) 
    Impedance   =GapVoltage/GapCurrent 
    FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
     
end 
end 
 
if (rx==1) 
   I(1:EdgesTotal)=II(1:EdgesTotal); 
end 
 
if (rx==1) 
     
FileName='current.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 
'eta_','I','V','d','Pol'); 
 
else 
 
FileName='current.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 'eta_',... 
    'I','V','GapCurrent','GapVoltage','Impedance','FeedPower'); 
 
end 

 
 
script rwg5.m 
 
%RWG5 or RWG6 Plots the surface current distribution along the dipole 
%   Increase the number of sampling points, K, to obtain more  
%   accurate results  
 
clear all 
 
%Load the data 
load('mesh2'); 
load('current'); 
 
Index=find(t(4,:)<=1); 
Triangles=length(Index); 
 
%Find the current density Jx for every triangle 
for k=1:Triangles 
    i=[0 0 0]'; 
    for m=1:EdgesTotal 
        IE=I(m)*EdgeLength(m); 
        if(TrianglePlus(m)==k) 
            i=i+IE*RHO_Plus(:,m)/(2*Area(TrianglePlus(m))); 
        end 
        if(TriangleMinus(m)==k) 
            i=i+IE*RHO_Minus(:,m)/(2*Area(TriangleMinus(m))); 
        end 
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    end 
    CurrentNorm(1:2,k)=abs(i(1:2)); %magnitude 
    %CurrentNorm(1:2,k)=angle(i(1:2))/pi*180; %phase 
end 
 
K=20; 
x0=min(p(1,:)); 
x1=max(p(1,:)); 
y0=min(p(2,:)); 
y1=max(p(2,:)); 
 
for n=1:K+1 
    y(n)=y0+(n-1)*(y1-y0)/K; 
    Dist=repmat([0 y(n) 0]',[1,TrianglesTotal])-Center; 
    [dummy,Index]=min( sum(Dist.*Dist)); 
    X(n)=CurrentNorm(1,Index);  
    Y(n)=CurrentNorm(2,Index);  
end 
yi=[y0:(y1-y0)/100:y1]; 
Xi = interp1(y,X,yi,'cubic'); 
Yi = interp1(y,Y,yi,'cubic'); 
%plot(yi,Xi,'*',yi,Yi,'.'); 
plot(yi,Yi,'.'); 
xlabel('Dipole length, m') 
ylabel('Surface current density, A/m') 
grid on 

 
 
function impmet.m 
 
function [Z]=       impmet( EdgesTotal,TrianglesTotal,... 
                            EdgeLength,K,... 
                            Center,Center_,... 
                            TrianglePlus,TriangleMinus,... 
                            RHO_P,RHO_M,... 
                            RHO__Plus,RHO__Minus,... 
                            FactorA,FactorFi);    
%IMPMET Standard impedance matrix (metal surface) 
% 
% Returns the complex impedance matrix [EdgesTotal x EdgesTotal] 
% Uses 9 integration points for every triangle  
%   (barycentric subdivision) 
% 
%   The impedance matrix is calculated as a sum of the contributions 
%   due to separate triangles (similar to the "face-pair" method).  
%   See Appendix B for a detailed algorithm. 
%  
%   A 9-point quadrature is used for all integrals, including  
%   the self-coupling terms. The alternative source code with  
%   the analytical approximation of the self-coupling terms  
%   is given in Appendix B. The difference between two methods  
%   is not significant.  
 
%Memory allocation 
Z   =zeros  (EdgesTotal,EdgesTotal)+j*zeros(EdgesTotal,EdgesTotal); 
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%Loop over integration triangles 
for p=1:TrianglesTotal 
     
    Plus     =find(TrianglePlus-p==0); 
    Minus    =find(TriangleMinus-p==0); 
     

D=Center_-repmat(Center(:,p),[1 9 TrianglesTotal]); 
%[3 9 TrianglesTotal]      

     
    R=sqrt(sum(D.*D));                       %[1 9 TrianglesTotal] 
    g=exp(-K*R)./R;                          %[1 9 TrianglesTotal] 
        
    gP=g(:,:,TrianglePlus);                         %[1 9 EdgesTotal] 
    gM=g(:,:,TriangleMinus);                        %[1 9 EdgesTotal] 
         
    Fi=sum(gP)-sum(gM);                             %[1 1 EdgesTotal] 
    ZF= FactorFi.*reshape(Fi,EdgesTotal,1);         %[EdgesTotal 1] 
         
    for k=1:length(Plus) 
        n=Plus(k); 
        RP=repmat(RHO__Plus(:,:,n),[1 1 EdgesTotal]);%[3 9 EdgesTotal] 
        A=sum(gP.*sum(RP.*RHO_P))+sum(gM.*sum(RP.*RHO_M)); 
        Z1= FactorA.*reshape(A,EdgesTotal,1);     
        Z(:,n)=Z(:,n)+EdgeLength(n)*(Z1+ZF); 
    end 
    for k=1:length(Minus) 
        n=Minus(k); 
        RP=repmat(RHO__Minus(:,:,n),[1 1 EdgesTotal]);%[3 9 EdgesTotal] 
        A=sum(gP.*sum(RP.*RHO_P))+sum(gM.*sum(RP.*RHO_M)); 
        Z1= FactorA.*reshape(A,EdgesTotal,1);     
        Z(:,n)=Z(:,n)+EdgeLength(n)*(Z1-ZF);  
    end 
end 
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script efield1 
 
%EFIELD1 Radiated/scattered field at a point 
%   The point is outside the metal surface 
%   Uses the mesh file from RWG2, mesh2.mat, and 
%   the file containing surface current coefficients, 
%   current.mat, from RWG4 as inputs. 
% 
%   The following parameters need to be specified: 
%    
%   Observation point           ObservationPoint[X; Y; Z] (m) 
 
clear all 
%Load the data 
load('mesh2'); 
load('current'); 
 
k=omega/c_; 
K=j*k; 
 
 
for m=1:EdgesTotal 
    Point1=Center(:,TrianglePlus(m)); 
    Point2=Center(:,TriangleMinus(m)); 
    DipoleCenter(:,m)=0.5*(Point1+Point2); 
    DipoleMoment(:,m)=EdgeLength(m)*I(m)*(-Point1+Point2);  
end 
 
ObservationPoint=[0; 0; 100]; 
[E,H]=point(ObservationPoint,eta_,K,DipoleMoment,DipoleCenter); 
 
%find the sum of all dipole contributions 
EField=sum(E,2); HField=sum(H,2); 
 
%Common 
EField                  %Radiated/scattered electric field  
                        %(complex vector at a point, V/m) 
 
HField                  %Radiated/scattered magnetic field  
                        %(complex vector at a point, A/m)             
 
Poynting=0.5*real(cross(EField,conj(HField)))            
                        %Poynting vector (W/m^2) for radiated/scattered 
field 
 
W=norm(Poynting)        %Radiation density (W/m^2) for 
radiated/scattered field 
    
U=norm(ObservationPoint)^2*W                             
                        %Radiation intensity (W/unit solid angle)                      
 
%Only scattering 
RCS=4*pi*(norm(ObservationPoint))^2*sum(EField.*conj(EField));      
                        %Backscattering radar cross-section (scattering) 
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script efield2 
 
%EFIELD2 Radiated/scattered field over a large sphere 
%   Uses the mesh file from RWG2, mesh2.mat, and 
%   the file containing surface current coefficients, 
%   current.mat, from RWG4 as inputs. 
% 
%   Uses the structure sphere.mat/sphere1.mat to display  
%   radiation intensity distribution over the sphere surface.  
%   The sphere doesn't intersect the radiating object. 
% 
%   The following parameters need to be specified: 
%    
%   Sphere radius (m) 
 
clear all 
%Load the data 
load('mesh2'); 
load('current'); 
load('sphere'); 
 
p=100*p;    %sphere radius is 100 m 
 
k=omega/c_; 
K=j*k; 
 
for m=1:EdgesTotal 
    Point1=Center(:,TrianglePlus(m)); 
    Point2=Center(:,TriangleMinus(m)); 
    DipoleCenter(:,m)=0.5*(Point1+Point2); 
    DipoleMoment(:,m)=EdgeLength(m)*I(m)*(-Point1+Point2);  
end 
 
TotalPower=0; 
%Sphere series 
M=length(t); 
for m=1:M 
    N=t(1:3,m); 
    ObservationPoint=1/3*sum(p(:,N),2); 
    [E,H]=point(ObservationPoint,eta_,K,DipoleMoment,DipoleCenter); 
    ET=sum(E,2); HT=sum(H,2); 
    Poynting(:,m)=0.5*real(cross(ET,conj(HT))); 
    U(m)=(norm(ObservationPoint))^2*norm(Poynting(:,m));     
    Vector1=p(:,N(1))-p(:,N(2)); 
    Vector2=p(:,N(3))-p(:,N(2)); 
    Area =0.5*norm(cross(Vector1,Vector2));  
    TotalPower=TotalPower+norm(Poynting(:,m))*Area; 
    %------------------------------ 
    X(1:3,m)=[p(1,N)]'; 
    Y(1:3,m)=[p(2,N)]'; 
    Z(1:3,m)=[p(3,N)]';       
end 
 
TotalPower*1000 
 
GainLogarithmic     =10*log10(4*pi*max(U)/TotalPower) 
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GainLinear          =4*pi*max(U)/TotalPower 
%RadiationResistance =2*TotalPower/abs(GapCurrent)^2 
 
FileName='gainpower.mat';  
save(FileName, 'TotalPower','GainLogarithmic','GainLinear'); 
 
U=U/norm(U); 
C=repmat(U,3,1); 
h=fill3(X,Y,Z,C); 
colormap gray; 
axis('equal') 
rotate3d on 

 
 
script efield3 
 
%EFIELD3 2D Radiation patterns 
%   Uses the mesh file from RWG2, mesh2.mat, and 
%   the file containing surface current coefficients, 
%   current.mat, from RWG4 as inputs. 
% 
%   Additionally uses the value of TotalPower saved  
%   in file gainpower.mat (script efield2.m) 
% 
%   The following parameters need to be specified: 
%    
%   Radius of the circle (m)            R 
%   Plane of the circle:                [x y 0] or  
%                                       [x 0 z] or  
%                                       [0 y z]  
%   Number of discretization points per  
%   pattern                             NumPoints 
 
clear all 
%Load the data 
load('mesh2'); 
load('current'); 
load('gainpower'); 
 
k=omega/c_; 
K=j*k; 
 
for m=1:EdgesTotal 
    Point1=Center(:,TrianglePlus(m)); 
    Point2=Center(:,TriangleMinus(m)); 
    DipoleCenter(:,m)=0.5*(Point1+Point2); 
    DipoleMoment(:,m)=EdgeLength(m)*I(m)*(-Point1+Point2);  
end 
 
NumPoints=200; 
R=1000; %pattern in m 
for ii=1:NumPoints+1 
   phi(ii)=(ii-1)*pi/(NumPoints/2); 
   y=R*cos(phi(ii));z=R*sin(phi(ii));    
   %x=R*cos(phi(ii));z=R*sin(phi(ii));%new    
   ObservationPoint=[0 y z]'; 
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   %ObservationPoint=[x 0 z]';%new 
   [E,H]=point(ObservationPoint,eta_,K,DipoleMoment,DipoleCenter); 
   ET=sum(E,2); HT=sum(H,2); 
   Poynting=0.5*real(cross(ET,conj(HT))); 
   W(ii)=norm(Poynting); 
   U(ii)=(norm(ObservationPoint))^2*W(ii); 
end 
Polar_=10*log10(4*pi*U/TotalPower); 
 
GainLogarithmic=max(Polar_) %gain for the particular pattern! 
 
%This is the standard Matlab polar plot 
OFFSET=40; polar(phi,max(Polar_+OFFSET,0)); grid on; 
Title=strcat('Offset= ', num2str(OFFSET), ' dB'); 
title(Title); 
 
%This is Balanis' relative power:  
%Polar=10*log10(U/max(U)); OFFSET=40; polar(phi,Polar+OFFSET); grid on; 
 
%This is Galenski's polar plot: 
%Use with care: outputs an error if Polar is a constant function 
%polarhg(phi',Polar','rlim',[min(Polar) 10],'rtick',[-30 -20 -10 0 
10],'tstep',90,'color','b'); 
 

 
function point.m 
 
function[EField, HField]=... 
    point1(Point,eta_,K,DipoleMoment,DipoleCenter) 
 
%POINT Radiated/scattered field at a point of a dipole array  
%   or a single dipole. Gives exact near- and far-fields. Outputs 
%   individual contribution of each dipole. 
% 
%   Observation point                   Point(1:3)          
%   Array of dipole moments             DipoleMoment(1:3,1:EdgesTotal)  
%   Array of dipole centers             DipoleCenter(1:3,1:EdgesTotal) 
%   E-field at the observation point    E(1;3,1:EdgesTotal) 
%   H-field at the observation point    H(1;3,1:EdgesTotal) 
 
C=4*pi; 
ConstantH=K/C; 
ConstantE=eta_/C; 
     
m=DipoleMoment; 
c=DipoleCenter; 
r       =repmat(Point,[1 length(c)])-c(1:3,:); 
PointRM =repmat(sqrt(sum(r.*r)),[3 1]); 
EXP     =exp(-K*PointRM); 
PointRM2=PointRM.^2; 
C=1./PointRM2.*(1+1./(K*PointRM)); 
D=repmat(sum(r.*m),[3 1])./PointRM2; 
M=D.*r; 
HField=ConstantH*cross(m,r).*C.*EXP; 
EField=ConstantE*((M-m).*(K./PointRM+C)+2*M.*C).*EXP; 
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APPENDIX B:  MATLAB SCRIPTS FOR THE SIMULATIONS OF 
CHAPTER IV-V 

 
 
Script rwg4tl_2.m (two-feed point dipole connected to two transmission lines) 
 
%load the data 
load('mesh2'); 
load('impedance'); 
 
rx=1; 
zt1=37.5438;%1.0885-8.8658e2i; 
zt2=37.5438;%1.0885-8.8658e2i; 
 
%Find the feeding edge(s)(closest to the origin) 
FeedPoint=[0; 0; 0]; 
Index=[]; 
 
for m=1:EdgesTotal 
    V(m)=0; 
    Distance(m)=norm(0.5*sum(p(:,Edge_(:,m)),2)-FeedPoint); 
end 
 
[Y,INDEX]=sort(Distance); 
Index=[Index INDEX(1)] 
 
%Define the voltage vector 
sum_diff=-1; 
offset=12; 
V(Index-offset)=0.5*EdgeLength(Index-offset); 
V(Index+offset)=sum_diff*0.5*EdgeLength(Index+offset); 
 
%Dipole - normal incidence 
angz_=-pi/4; 
angz=pi+angz_; 
angx=pi/2; 
d       =[sin(angz)*cos(angx) sin(angz)*sin(angx) cos(angz)]      
 
angz=angz-pi/2;%TEM 
Pol     =[sin(angz)*cos(angx) sin(angz)*sin(angx) cos(angz)] 
 
k=omega/c_; 
kv=k*d; 
 
for m=1:EdgesTotal     
   ScalarProduct=sum(kv.*Center(:,TrianglePlus(m))'); 
   EmPlus =Pol.'*exp(-j*ScalarProduct);       
   ScalarProduct=sum(kv.*Center(:,TriangleMinus(m))'); 
   EmMinus=Pol.'*exp(-j*ScalarProduct);       
   ScalarPlus =sum(EmPlus.* RHO_Plus(:,m)); 
   ScalarMinus=sum(EmMinus.*RHO_Minus(:,m)); 
   Vr(m)=EdgeLength(m)*(ScalarPlus/2+ScalarMinus/2);%1.0635    
end 
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%Solve system of MoM equations 
tic; 
 
VV=0;%transmit case 
if (rx==1) 
    VV=Vr;%receive case 
end 
 
D=[0 1;1 0]%two port device connected to dipole 
 
source1=0.5*EdgeLength(Index-offset);%turn off Vin for receive case 
source2=sum_diff*0.5*EdgeLength(Index+offset); 
if (rx==1) 
    source1=0; 
    source2=0; 
end 
 
VV(EdgesTotal+1)=0; 
VV(EdgesTotal+2)=-source1*D(1,2); 
VV(EdgesTotal+3)=-source1*D(2,2); 
VV(EdgesTotal+4)=0; 
VV(EdgesTotal+5)=-source2*D(1,2); 
VV(EdgesTotal+6)=-source2*D(2,2); 
 
ZZ(1:EdgesTotal+6,1:EdgesTotal+6)=0; 
ZZ(1:EdgesTotal,1:EdgesTotal)=Z(1:EdgesTotal,1:EdgesTotal); 
       
ZZ(Index-offset,EdgesTotal+1)=-1; 
ZZ(Index-offset,EdgesTotal+2)=-1; 
 
ZZ(Index+offset,EdgesTotal+4)=-1; 
ZZ(Index+offset,EdgesTotal+5)=-1; 
 
Zo1=EdgeLength(Index-offset)^2*zt1;%TL impedance 
ZZ(EdgesTotal+1,Index-offset)=+1; 
ZZ(EdgesTotal+1,EdgesTotal+1)=+1/Zo1; 
ZZ(EdgesTotal+1,EdgesTotal+2)=-1/Zo1; 
 
Zo2=EdgeLength(Index+offset)^2*zt2;%TL impedance 
ZZ(EdgesTotal+4,Index+offset)=+1; 
ZZ(EdgesTotal+4,EdgesTotal+4)=+1/Zo2; 
ZZ(EdgesTotal+4,EdgesTotal+5)=-1/Zo2; 
 
ZZ(EdgesTotal+2,EdgesTotal+1)=D(1,1); 
ZZ(EdgesTotal+2,EdgesTotal+2)=-1; 
 
ZZ(EdgesTotal+3,EdgesTotal+1)=D(2,1); 
ZZ(EdgesTotal+3,EdgesTotal+3)=-1; 
 
ZZ(EdgesTotal+5,EdgesTotal+4)=D(1,1); 
ZZ(EdgesTotal+5,EdgesTotal+5)=-1; 
 
ZZ(EdgesTotal+6,EdgesTotal+4)=D(2,1); 
ZZ(EdgesTotal+6,EdgesTotal+6)=-1; 
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if (rx==1) 
    V=Vr; 
End 
 
 
I=Z\V.'; %transmit 
 
II=ZZ\VV.'; %TL feeding Dipole 
 
toc %elapsed time 
 
%Find the antenna input impedance 
 
if (rx==1) 
    
pwr_rec1=.5*(II(EdgesTotal+1)*II(EdgesTotal+1)')/EdgeLength(Index)^2/zt
1*1000 
    
pwr_rec2=.5*(II(EdgesTotal+4)*II(EdgesTotal+4)')/EdgeLength(Index)^2/zt
2*1000 
else 
    GapCurrent  =sum(II(Index-offset).*EdgeLength(Index-offset)') 
    GapVoltage  
=mean((II(EdgesTotal+1)+II(EdgesTotal+2))./EdgeLength(Index-offset)) 
    Impedance   =GapVoltage/GapCurrent 
    FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
    RC1=II(EdgesTotal+1)/II(EdgesTotal+2) 
    RL1=-10*log10(abs(RC1)^2) 
         
    GapCurrent  =sum(II(Index+offset).*EdgeLength(Index+offset)') 
    GapVoltage  
=mean((II(EdgesTotal+4)+II(EdgesTotal+5))./EdgeLength(Index+offset)) 
    Impedance   =GapVoltage/GapCurrent 
    FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
    RC2=II(EdgesTotal+4)/II(EdgesTotal+5) 
    RL2=-10*log10(abs(RC2)^2) 
end 
     
     
if (rx==1) 
    I(1:EdgesTotal)=II(1:EdgesTotal); 
end 
 
if (rx==1) 
     
FileName='current.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 
'eta_','I','V','d','Pol'); 
 
else 
 
FileName='current.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 'eta_',... 
    'I','V','GapCurrent','GapVoltage','Impedance','FeedPower'); 
 
end 
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Script rwg4tl_hr.m (two-feed point dipole connected to a magic-tee) 
 
%load the data 
load('mesh2'); 
load('impedance'); 
 
%Find the feeding edge(s)(closest to the origin) 
FeedPoint=[0; 0; 0]; 
Index=[]; 
 
for m=1:EdgesTotal 
    V(m)=0; 
    Distance(m)=norm(0.5*sum(p(:,Edge_(:,m)),2)-FeedPoint); 
end 
 
[Y,INDEX]=sort(Distance); 
Index=[Index INDEX(1)]         %Center feed - dipole 
 
rx=1; 
sum_diff=1; 
offset=12; 
 
%Define the voltage vector 
V(Index-offset)=+0.5*EdgeLength(Index-offset); 
V(Index+offset)=+0.5*EdgeLength(Index+offset)*sum_diff; 
 
angz_=-pi/4; 
angz=pi+angz_; 
angx=pi/2; 
d       =[sin(angz)*cos(angx) sin(angz)*sin(angx) cos(angz)]      
 
angz=angz-pi/2;%TEM 
Pol     =[sin(angz)*cos(angx) sin(angz)*sin(angx) cos(angz)] 
 
k=omega/c_; 
kv=k*d; 
 
for m=1:EdgesTotal     
   ScalarProduct=sum(kv.*Center(:,TrianglePlus(m))'); 
   EmPlus =Pol.'*exp(-j*ScalarProduct);       
   ScalarProduct=sum(kv.*Center(:,TriangleMinus(m))'); 
   EmMinus=Pol.'*exp(-j*ScalarProduct);       
   ScalarPlus =sum(EmPlus.* RHO_Plus(:,m)); 
   ScalarMinus=sum(EmMinus.*RHO_Minus(:,m)); 
   Vr(m)=EdgeLength(m)*(ScalarPlus/2+ScalarMinus/2);%1.0635    
end 
 
%Solve system of MoM equations 
tic; 
 
%hydrid ring input 
 
S_hr=1/sqrt(2)*[0 1 1 0;1 0 0 1;1 0 0 -1;0 1 -1 0]%hybrid ring 
connected to dipole 
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hr_a1=1;%sum port incidence 
hr_a4=0;%difference port incidence 
 
if (rx==1) 
    hr_a1=0; 
    hr_a4=0; 
end 
 
EL=EdgeLength(Index-offset);%symmetrical structure !!! 
EL2=EL^2; 
 
VV=0; 
if (rx==1) 
    VV=Vr; 
End 
 
 
VV(EdgesTotal+1)=0; 
VV(EdgesTotal+2)=0; 
VV(EdgesTotal+3)=(S_hr(1,1)*hr_a1 + S_hr(1,4)*hr_a4)*EL; 
VV(EdgesTotal+4)=(S_hr(2,1)*hr_a1 + S_hr(2,4)*hr_a4)*EL; 
VV(EdgesTotal+5)=(S_hr(3,1)*hr_a1 + S_hr(3,4)*hr_a4)*EL; 
VV(EdgesTotal+6)=(S_hr(4,1)*hr_a1 + S_hr(4,4)*hr_a4)*EL; 
 
ZZ(1:EdgesTotal+6,1:EdgesTotal+6)=0; 
ZZ(1:EdgesTotal,1:EdgesTotal)=Z(1:EdgesTotal,1:EdgesTotal); 
           
%Vn = Vn+ + Vn- 
ZZ(Index-offset,EdgesTotal+1)=-1; 
ZZ(Index-offset,EdgesTotal+2)=-1; 
 
ZZ(Index+offset,EdgesTotal+3)=-1; 
ZZ(Index+offset,EdgesTotal+4)=-1; 
 
%-In = (Vn+ - Vn-)/Zon 
Zt1=50;%37.5438;%1.0885-8.8658e2i; 
Zt2=50;%37.5438;%1.0885-8.8658e2i; 
 
Zo1=EL2*Zt1; 
ZZ(EdgesTotal+1,Index-offset)=1; 
ZZ(EdgesTotal+1,EdgesTotal+1)=+1/Zo1; 
ZZ(EdgesTotal+1,EdgesTotal+2)=-1/Zo1; 
 
Zo2=EL2*Zt2; 
ZZ(EdgesTotal+2,Index+offset)=1; 
ZZ(EdgesTotal+2,EdgesTotal+3)=+1/Zo2; 
ZZ(EdgesTotal+2,EdgesTotal+4)=-1/Zo2; 
 
ZZ(EdgesTotal+3,EdgesTotal+1)=-S_hr(1,2); 
ZZ(EdgesTotal+3,EdgesTotal+2)=0; 
ZZ(EdgesTotal+3,EdgesTotal+3)=-S_hr(1,3); 
ZZ(EdgesTotal+3,EdgesTotal+4)=0; 
ZZ(EdgesTotal+3,EdgesTotal+5)=1; 
ZZ(EdgesTotal+3,EdgesTotal+6)=0; 
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ZZ(EdgesTotal+4,EdgesTotal+1)=-S_hr(2,2); 
ZZ(EdgesTotal+4,EdgesTotal+2)=1; 
ZZ(EdgesTotal+4,EdgesTotal+3)=-S_hr(2,3); 
ZZ(EdgesTotal+4,EdgesTotal+4)=0; 
ZZ(EdgesTotal+4,EdgesTotal+5)=0; 
ZZ(EdgesTotal+4,EdgesTotal+6)=0; 
 
ZZ(EdgesTotal+5,EdgesTotal+1)=-S_hr(3,2); 
ZZ(EdgesTotal+5,EdgesTotal+2)=0; 
ZZ(EdgesTotal+5,EdgesTotal+3)=-S_hr(3,3); 
ZZ(EdgesTotal+5,EdgesTotal+4)=1; 
ZZ(EdgesTotal+5,EdgesTotal+5)=0; 
ZZ(EdgesTotal+5,EdgesTotal+6)=0; 
 
ZZ(EdgesTotal+6,EdgesTotal+1)=-S_hr(4,2); 
ZZ(EdgesTotal+6,EdgesTotal+2)=0; 
ZZ(EdgesTotal+6,EdgesTotal+3)=-S_hr(4,3); 
ZZ(EdgesTotal+6,EdgesTotal+4)=0; 
ZZ(EdgesTotal+6,EdgesTotal+5)=0; 
ZZ(EdgesTotal+6,EdgesTotal+6)=1; 
 
if (rx==1) 
    V=Vr; 
end 
 
I=Z\V.'; 
 
II=ZZ\VV.'; 
 
%I(1:EdgesTotal)=II(1:EdgesTotal); 
 
toc %elapsed time 
 
%Find the antenna input impedance 
 
GapCurrent  =sum(II(Index-offset).*EdgeLength(Index-offset)') 
GapVoltage  
=mean((II(EdgesTotal+1)+II(EdgesTotal+2))./EdgeLength(Index-offset)) 
Impedance   =GapVoltage/GapCurrent 
FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
 
GapCurrent  =sum(II(Index+offset).*EdgeLength(Index+offset)') 
GapVoltage  
=mean((II(EdgesTotal+3)+II(EdgesTotal+4))./EdgeLength(Index+offset)) 
Impedance   =GapVoltage/GapCurrent 
FeedPower   =1/2*real(GapCurrent*conj(GapVoltage))*1000 
 
sum_out=II(EdgesTotal+5) 
diff_out=II(EdgesTotal+6) 
sum_out_pwr=0.5*II(EdgesTotal+5)*II(EdgesTotal+5)'/EL2/Zt1*1000 
diff_out_pwr=0.5*II(EdgesTotal+6)*II(EdgesTotal+6)'/EL2/Zt2*1000 
total_pwr=sum_out_pwr+diff_out_pwr 
I(1:EdgesTotal)=II(1:EdgesTotal); 
 
FileName='current.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 'eta_',... 
    'I','V','GapCurrent','GapVoltage','Impedance','FeedPower'); 
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Script rwg4_Zin_a3.m (array of three dipoles) 
 
clear all 
%Load the data 
load('mesh2'); 
load('impedance'); 
 
V(1:EdgesTotal)=0; 
 
%Find feeding edges closest to the array Feed  
N=length(Feed(1,:)); 
Index=[]; 
for k=1:N 
    for m=1:EdgesTotal     
        Distance(m)=norm(0.5*sum(p(:,Edge_(:,m)),2)-Feed(:,k)); 
    end 
    [Y,INDEX]=sort(Distance); 
    Index=[Index INDEX(1)];      %Center feed - dipole 
end 
Index 
N=length(Index); 
 
%Identify phase shift  
%The progressive phase shift is 90 for the broadside array: 
scan_index=0; 
for scan = pi/2:-pi/72:0  
 
    scan_index=scan_index+1; 
    phase=-pi*cos(-scan); 
    display(scan/pi*180); 
     
%Identify feeding voltages-linear array (dipole array only!) 
for n=1:N 
    nn=Index(n); 
    V(nn)=1.0*EdgeLength(nn)*exp(j*phase*(n-1)); 
end         
 
%Solve system of MoM equations 
tic; 
I=Z\V.'; 
toc %elapsed time 
 
%Terminal impedance (dipole array only!) 
for n=1:N 
    nn=Index(n); 
    GapCurrent(n)=I(nn)*EdgeLength(nn); 
    GapVoltage(n)=V(nn)/EdgeLength(nn); 
    Impedance(scan_index,n)=GapVoltage(n)/GapCurrent(n); %this is the 
terminal impedance 
end 
display(Impedance(scan_index,:)); 
end 
 
save ('zin1','Impedance'); 
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Script rwg4tl_ary3.m (array of three dipoles connected to transmission lines) 
 
clear all 
%Load the data 
load('mesh2'); 
load('impedance'); 
 
V(1:EdgesTotal)=0; 
 
%Find feeding edges closest to the array Feed  
N=length(Feed(1,:)); 
Index=[]; 
for k=1:N 
    for m=1:EdgesTotal     
        Distance(m)=norm(0.5*sum(p(:,Edge_(:,m)),2)-Feed(:,k)); 
    end 
    [Y,INDEX]=sort(Distance); 
    Index=[Index INDEX(1)];      %Center feed - dipole 
end 
Index 
V(Index)=1.0*EdgeLength(Index); 
N=length(Index); 
 
%Identify phase shift  
%The progressive phase shift is 90 for the broadside array: 
phase=-pi*cos(0);%reference to horizontal 
 
%Identify feeding voltages-linear array (dipole array only!) 
for n=1:N 
    nn=Index(n); 
    V(nn)=V(nn)*exp(j*phase*(n-1)); 
end         
 
%Solve system of MoM equations 
tic; 
 
VV=0; 
 
D=[0 1;1 0]%two port device connected to dipole 
source=V(Index) 
 
VV(EdgesTotal+2)=source(1)*D(1,2); 
VV(EdgesTotal+3)=source(1)*D(2,2); 
 
VV(EdgesTotal+5)=source(2)*D(1,2); 
VV(EdgesTotal+6)=source(2)*D(2,2); 
 
VV(EdgesTotal+8)=source(3)*D(1,2); 
VV(EdgesTotal+9)=source(3)*D(2,2); 
 
ZZ(1:EdgesTotal+9,1:EdgesTotal+9)=0; 
ZZ(1:EdgesTotal,1:EdgesTotal)=Z(1:EdgesTotal,1:EdgesTotal); 
 
ZZ(Index(1),EdgesTotal+1)=-1; 
ZZ(Index(1),EdgesTotal+2)=-1; 
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ZZ(Index(2),EdgesTotal+4)=-1; 
ZZ(Index(2),EdgesTotal+5)=-1; 
 
ZZ(Index(3),EdgesTotal+7)=-1; 
ZZ(Index(3),EdgesTotal+8)=-1; 
 
%Zo=1e2*[1.0270+0.0507i 0.8032-0.2487i 1.0293+0.0497i];%broadside scan 
Zo=[75 75 75]; 
 
Zo1=EdgeLength(Index(1))^2*Zo(1); 
ZZ(EdgesTotal+1,Index(1))=+1; 
ZZ(EdgesTotal+1,EdgesTotal+1)=-1/Zo1; 
ZZ(EdgesTotal+1,EdgesTotal+2)=+1/Zo1; 
 
ZZ(EdgesTotal+2,EdgesTotal+1)=+1; 
ZZ(EdgesTotal+2,EdgesTotal+2)=-D(1,1); 
 
ZZ(EdgesTotal+3,EdgesTotal+2)=-D(2,1); 
ZZ(EdgesTotal+3,EdgesTotal+3)=+1; 
 
Zo2=EdgeLength(Index(2))^2*Zo(2); 
ZZ(EdgesTotal+4,Index(2))=+1; 
ZZ(EdgesTotal+4,EdgesTotal+4)=-1/Zo2; 
ZZ(EdgesTotal+4,EdgesTotal+5)=+1/Zo2; 
 
ZZ(EdgesTotal+5,EdgesTotal+4)=+1; 
ZZ(EdgesTotal+5,EdgesTotal+5)=-D(1,1); 
 
ZZ(EdgesTotal+6,EdgesTotal+5)=-D(2,1); 
ZZ(EdgesTotal+6,EdgesTotal+6)=+1; 
 
Zo3=EdgeLength(Index(3))^2*Zo(3); 
ZZ(EdgesTotal+7,Index(3))=1; 
ZZ(EdgesTotal+7,EdgesTotal+7)=-1/Zo3; 
ZZ(EdgesTotal+7,EdgesTotal+8)=+1/Zo3; 
 
ZZ(EdgesTotal+8,EdgesTotal+7)=+1; 
ZZ(EdgesTotal+8,EdgesTotal+8)=-D(1,1); 
 
ZZ(EdgesTotal+9,EdgesTotal+8)=-D(2,1); 
ZZ(EdgesTotal+9,EdgesTotal+9)=+1; 
 
II=ZZ\VV.'; 
 
toc %elapsed time 
 
RL1=(II(EdgesTotal+2)/II(EdgesTotal+1)) 
Za1=(II(EdgesTotal+2)+II(EdgesTotal+1))/(EdgeLength(Index(1))^2*II(Inde
x(1))); 
 
RL2=(II(EdgesTotal+5)/II(EdgesTotal+4)) 
Za2=(II(EdgesTotal+5)+II(EdgesTotal+4))/(EdgeLength(Index(2))^2*II(Inde
x(2))); 
 
RL3=(II(EdgesTotal+8)/II(EdgesTotal+7)) 
Za3=(II(EdgesTotal+8)+II(EdgesTotal+7))/(EdgeLength(Index(3))^2*II(Inde
x(3))); 



90 

Impedance=[Za1 Za2 Za3] 
 
I(1:EdgesTotal)=II(1:EdgesTotal); 
 
FileName='current.mat';  
save(FileName, 'f','omega','mu_','epsilon_','c_', 'eta_',... 
    'I','V');%,'GapCurrent','GapVoltage','Impedance','FeedPower'); 
 
 
 

Script rwg4hr_ary3_rx_loop1.m (array of three two-feed point dipoles connected to 
magic-tees) 
 
clear all 
%Load the data 
load('mesh2'); 
load('impedance'); 
 
V(1:EdgesTotal)=0; 
 
%Find feeding edges closest to the array Feed  
N=length(Feed(1,:)); 
Index=[]; 
for k=1:N 
    for m=1:EdgesTotal     
        Distance(m)=norm(0.5*sum(p(:,Edge_(:,m)),2)-Feed(:,k)); 
    end 
    [Y,INDEX]=sort(Distance); 
    Index=[Index INDEX(1)];      %Center feed - dipole 
end 
Index 
N=length(Index); 
 
count=0; 
%parallel pol scan from 0-90 deg 
for angz_ = pi/2:-pi/72:0 
angx=pi/2; 
angz=angz_; 
d       =[sin(angz)*cos(angx) sin(angz)*sin(angx) cos(angz)];      
 
angz=-pi/2+angz_;%TEM 
Pol     =[sin(angz)*cos(angx) sin(angz)*sin(angx) cos(angz)];       
 
k=omega/c_; 
kv=k*d; 
 
for m=1:EdgesTotal     
   ScalarProduct=sum(kv.*Center(:,TrianglePlus(m))'); 
   EmPlus =Pol.'*exp(-j*ScalarProduct);       
   ScalarProduct=sum(kv.*Center(:,TriangleMinus(m))'); 
   EmMinus=Pol.'*exp(-j*ScalarProduct);       
   ScalarPlus =sum(EmPlus.* RHO_Plus(:,m)); 
   ScalarMinus=sum(EmMinus.*RHO_Minus(:,m)); 
   V(m)=EdgeLength(m)*(ScalarPlus/2+ScalarMinus/2);    
end 
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%Solve system of MoM equations 
tic; 
 
S_hr=1/sqrt(2)*[0 1 1 0;1 0 0 1;1 0 0 -1;0 1 -1 0]%hybrid ring 
connected to dipole 
 
hr1_a1=0;%sum input 
hr2_a1=0;%sum input 
hr3_a1=0;%sum input 
hr_a4=0;%diff input 
 
 
%voltage vector - scattering parameters on right hand side 
VV=V; 
 
VV(EdgesTotal+1)=0; 
VV(EdgesTotal+2)=0; 
VV(EdgesTotal+3)=S_hr(1,1)*hr1_a1 + S_hr(1,4)*hr_a4; 
VV(EdgesTotal+4)=S_hr(2,1)*hr1_a1 + S_hr(2,4)*hr_a4; 
VV(EdgesTotal+5)=S_hr(3,1)*hr1_a1 + S_hr(3,4)*hr_a4; 
VV(EdgesTotal+6)=S_hr(4,1)*hr1_a1 + S_hr(4,4)*hr_a4; 
 
VV(EdgesTotal+7)=0; 
VV(EdgesTotal+8)=0; 
VV(EdgesTotal+9)=S_hr(1,1)*hr2_a1 + S_hr(1,4)*hr_a4; 
VV(EdgesTotal+10)=S_hr(2,1)*hr2_a1 + S_hr(2,4)*hr_a4; 
VV(EdgesTotal+11)=S_hr(3,1)*hr2_a1 + S_hr(3,4)*hr_a4; 
VV(EdgesTotal+12)=S_hr(4,1)*hr2_a1 + S_hr(4,4)*hr_a4; 
 
VV(EdgesTotal+13)=0; 
VV(EdgesTotal+14)=0; 
VV(EdgesTotal+15)=S_hr(1,1)*hr3_a1 + S_hr(1,4)*hr_a4; 
VV(EdgesTotal+16)=S_hr(2,1)*hr3_a1 + S_hr(2,4)*hr_a4; 
VV(EdgesTotal+17)=S_hr(3,1)*hr3_a1 + S_hr(3,4)*hr_a4; 
VV(EdgesTotal+18)=S_hr(4,1)*hr3_a1 + S_hr(4,4)*hr_a4; 
 
ZZ(1:EdgesTotal+18,1:EdgesTotal+18)=0; 
ZZ(1:EdgesTotal,1:EdgesTotal)=Z(1:EdgesTotal,1:EdgesTotal); 
 
os=12; 
%%a+b 
ZZ(Index(1)-os,EdgesTotal+1)=-1; 
ZZ(Index(1)-os,EdgesTotal+2)=-1; 
 
ZZ(Index(1)+os,EdgesTotal+3)=-1; 
ZZ(Index(1)+os,EdgesTotal+4)=-1; 
 
ZZ(Index(2)-os,EdgesTotal+7)=-1; 
ZZ(Index(2)-os,EdgesTotal+8)=-1; 
 
ZZ(Index(2)+os,EdgesTotal+9)=-1; 
ZZ(Index(2)+os,EdgesTotal+10)=-1; 
 
ZZ(Index(3)-os,EdgesTotal+13)=-1; 
ZZ(Index(3)-os,EdgesTotal+14)=-1; 
 
ZZ(Index(3)+os,EdgesTotal+15)=-1; 
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ZZ(Index(3)+os,EdgesTotal+16)=-1; 
 
%%a-b 
 
Ztl=[50 50 50] 
Zo=EdgeLength(Index(1)-os)^2*Ztl;%symmetry 
 
ZZ(EdgesTotal+1,Index(1)-os)=1; 
ZZ(EdgesTotal+1,EdgesTotal+1)=+1/Zo(1); 
ZZ(EdgesTotal+1,EdgesTotal+2)=-1/Zo(1); 
 
ZZ(EdgesTotal+2,Index(1)+os)=1; 
ZZ(EdgesTotal+2,EdgesTotal+3)=+1/Zo(1); 
ZZ(EdgesTotal+2,EdgesTotal+4)=-1/Zo(1); 
 
ZZ(EdgesTotal+7,Index(2)-os)=1; 
ZZ(EdgesTotal+7,EdgesTotal+7)=+1/Zo(2); 
ZZ(EdgesTotal+7,EdgesTotal+8)=-1/Zo(2); 
 
ZZ(EdgesTotal+8,Index(2)+os)=1; 
ZZ(EdgesTotal+8,EdgesTotal+9)=+1/Zo(2); 
ZZ(EdgesTotal+8,EdgesTotal+10)=-1/Zo(2); 
 
ZZ(EdgesTotal+13,Index(3)-os)=1; 
ZZ(EdgesTotal+13,EdgesTotal+13)=+1/Zo(3); 
ZZ(EdgesTotal+13,EdgesTotal+14)=-1/Zo(3); 
 
ZZ(EdgesTotal+14,Index(3)+os)=1; 
ZZ(EdgesTotal+14,EdgesTotal+15)=+1/Zo(3); 
ZZ(EdgesTotal+14,EdgesTotal+16)=-1/Zo(3); 
 
%%scattering parameters on left hand side 
 
%% 
ZZ(EdgesTotal+3,EdgesTotal+1)=-S_hr(1,2); 
ZZ(EdgesTotal+3,EdgesTotal+2)=0; 
ZZ(EdgesTotal+3,EdgesTotal+3)=-S_hr(1,3); 
ZZ(EdgesTotal+3,EdgesTotal+4)=0; 
ZZ(EdgesTotal+3,EdgesTotal+5)=1; 
ZZ(EdgesTotal+3,EdgesTotal+6)=0; 
 
ZZ(EdgesTotal+4,EdgesTotal+1)=-S_hr(2,2); 
ZZ(EdgesTotal+4,EdgesTotal+2)=1; 
ZZ(EdgesTotal+4,EdgesTotal+3)=-S_hr(2,3); 
ZZ(EdgesTotal+4,EdgesTotal+4)=0; 
ZZ(EdgesTotal+4,EdgesTotal+5)=0; 
ZZ(EdgesTotal+4,EdgesTotal+6)=0; 
 
ZZ(EdgesTotal+5,EdgesTotal+1)=-S_hr(3,2); 
ZZ(EdgesTotal+5,EdgesTotal+2)=0; 
ZZ(EdgesTotal+5,EdgesTotal+3)=-S_hr(3,3); 
ZZ(EdgesTotal+5,EdgesTotal+4)=1; 
ZZ(EdgesTotal+5,EdgesTotal+5)=0; 
ZZ(EdgesTotal+5,EdgesTotal+6)=0; 
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ZZ(EdgesTotal+6,EdgesTotal+1)=-S_hr(4,2); 
ZZ(EdgesTotal+6,EdgesTotal+2)=0; 
ZZ(EdgesTotal+6,EdgesTotal+3)=-S_hr(4,3); 
ZZ(EdgesTotal+6,EdgesTotal+4)=0; 
ZZ(EdgesTotal+6,EdgesTotal+5)=0; 
ZZ(EdgesTotal+6,EdgesTotal+6)=1; 
 
%% 
ZZ(EdgesTotal+9,EdgesTotal+7)=-S_hr(1,2); 
ZZ(EdgesTotal+9,EdgesTotal+8)=0; 
ZZ(EdgesTotal+9,EdgesTotal+9)=-S_hr(1,3); 
ZZ(EdgesTotal+9,EdgesTotal+10)=0; 
ZZ(EdgesTotal+9,EdgesTotal+11)=1; 
ZZ(EdgesTotal+9,EdgesTotal+12)=0; 
 
ZZ(EdgesTotal+10,EdgesTotal+7)=-S_hr(2,2); 
ZZ(EdgesTotal+10,EdgesTotal+8)=1; 
ZZ(EdgesTotal+10,EdgesTotal+9)=-S_hr(2,3); 
ZZ(EdgesTotal+10,EdgesTotal+10)=0; 
ZZ(EdgesTotal+10,EdgesTotal+11)=0; 
ZZ(EdgesTotal+10,EdgesTotal+12)=0; 
 
ZZ(EdgesTotal+11,EdgesTotal+7)=-S_hr(3,2); 
ZZ(EdgesTotal+11,EdgesTotal+8)=0; 
ZZ(EdgesTotal+11,EdgesTotal+9)=-S_hr(3,3); 
ZZ(EdgesTotal+11,EdgesTotal+10)=1; 
ZZ(EdgesTotal+11,EdgesTotal+11)=0; 
ZZ(EdgesTotal+11,EdgesTotal+12)=0; 
 
ZZ(EdgesTotal+12,EdgesTotal+7)=-S_hr(4,2); 
ZZ(EdgesTotal+12,EdgesTotal+8)=0; 
ZZ(EdgesTotal+12,EdgesTotal+9)=-S_hr(4,3); 
ZZ(EdgesTotal+12,EdgesTotal+10)=0; 
ZZ(EdgesTotal+12,EdgesTotal+11)=0; 
ZZ(EdgesTotal+12,EdgesTotal+12)=1; 
 
%% 
ZZ(EdgesTotal+15,EdgesTotal+13)=-S_hr(1,2); 
ZZ(EdgesTotal+15,EdgesTotal+14)=0; 
ZZ(EdgesTotal+15,EdgesTotal+15)=-S_hr(1,3); 
ZZ(EdgesTotal+15,EdgesTotal+16)=0; 
ZZ(EdgesTotal+15,EdgesTotal+17)=1; 
ZZ(EdgesTotal+15,EdgesTotal+18)=0; 
 
ZZ(EdgesTotal+16,EdgesTotal+13)=-S_hr(2,2); 
ZZ(EdgesTotal+16,EdgesTotal+14)=1; 
ZZ(EdgesTotal+16,EdgesTotal+15)=-S_hr(2,3); 
ZZ(EdgesTotal+16,EdgesTotal+16)=0; 
ZZ(EdgesTotal+16,EdgesTotal+17)=0; 
ZZ(EdgesTotal+16,EdgesTotal+18)=0; 
 
ZZ(EdgesTotal+17,EdgesTotal+13)=-S_hr(3,2); 
ZZ(EdgesTotal+17,EdgesTotal+14)=0; 
ZZ(EdgesTotal+17,EdgesTotal+15)=-S_hr(3,3); 
ZZ(EdgesTotal+17,EdgesTotal+16)=1; 
ZZ(EdgesTotal+17,EdgesTotal+17)=0; 
ZZ(EdgesTotal+17,EdgesTotal+18)=0; 
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ZZ(EdgesTotal+18,EdgesTotal+13)=-S_hr(4,2); 
ZZ(EdgesTotal+18,EdgesTotal+14)=0; 
ZZ(EdgesTotal+18,EdgesTotal+15)=-S_hr(4,3); 
ZZ(EdgesTotal+18,EdgesTotal+16)=0; 
ZZ(EdgesTotal+18,EdgesTotal+17)=0; 
ZZ(EdgesTotal+18,EdgesTotal+18)=1; 
%% 
 
II=ZZ\VV.'; 
 
toc %elapsed time 
 
count=count+1 
sum_out(count,1)=II(EdgesTotal+5); 
sum_out(count,2)=II(EdgesTotal+11); 
sum_out(count,3)=II(EdgesTotal+17); 
 
diff_out(count,1)=II(EdgesTotal+6); 
diff_out(count,2)=II(EdgesTotal+12); 
diff_out(count,3)=II(EdgesTotal+18); 
 
save (‘sumdiff’,‘sum_out’,‘diff_out’); 
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