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ABSTRACT

A spectrum analyzer based on Fast Fourier Transform (FFT) techniques was

implemented using the TMS320C6201 Digital Signal Processor device manufactured by

Texas Instruments. Portable C programs demonstrated optimization of the FFT algorithm

for maximum speed on a general-purpose processor. Previously published algorithms

were then adapted to the unique features of this Very-Long Instruction Word (VLIW) par-

allel processor and and performance requirements of this application, taking into account

fixed-point arithmetic, parallel operation of functional units, and a hierarchy of memory

capacities and speeds. The effectiveness of the VLIW C compiler, with automatic optimi-

zation, is compared with an explicitly-scheduled assembly-language program. The result-

ing program was then used to demonstrate the crucial need to keep program data in the

Internal Data Memory to preserve hard-won performance gains.
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 EXECUTIVE SUMMARY

The problem: Monitor the radio-frequency environment in a region of interest for unau-
thorized transmissions from unknown sources given constraints on system size and cost.

The approach: Design a spectrum analyzer based on the Fast Fourier Transform (FFT),
and implement the FFT as efficiently as possible. Compare general-purpose computers
(SGI R4000 and Intel Pentium-3) with a specialized Digital Signal Processor (DSP, the
Texas Instruments TMS320C6201), deriving efficient algorithms for this specific applica-
tion.

The major results:

1. 16-bit integer arithmetic was found to be adequate for implementation of the FFT in this
application, as long as partial results are appropriately scaled to prevent arithmetic over-
flow. (An integer FFT algorithm which includes scaling of partial results is original work.)

2. The VonHann window function, used in the Welch method of averaged periodograms
for spectrum estimation, provides adequate spectrum estimation accuracy (significantly
better than the popular Hamming window), and can be derived as needed from the tabu-
lated sine and cosine factors used in the FFT.

3. For FFT data sets which cannot fit in the cache of a general-purpose computer (or in the
Internal Data RAM of the DSP) relying on automatic memory management to provide
data to the FFT leads to a dramatic increase in the run time. When computing a 1048576-
point transform on the RISC processor, for example, the processor is idle waiting for
cache updates 80% of the time. An algorithm which factors 1048576 into 1024 transforms
of 1024 points each recovers most of this idle time, running in less than one third the time
of the original algorithm. While this algorithm has been published in Fortran, the ANSI-C
implementation (Appendix, part C) is original work. The comparison between actual run
times and run times extrapolated from small data sets sizes, to assess cache effectiveness,
is also original.

4. The algorithm which factors a large transform into a sequence of smaller transforms
suggests a scheme for computing a large transform on a massively parallel processor,
though this was not implemented. This scheme would be particularly useful when samples
are acquired at a rate which exceeds the input bandwidth of any single processor’s mem-
ory.
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5. The “factored FFT” algorithm relies on a matrix-transposition routine which also allows
efficient management of the processor cache. This ANSI-C program (Appendix, part B) is
original work.

6. Software development for the DSP environment was found to be more difficult than for
the general-purpose computing environment, as described below.

Starting with a published FFT algorithm, improvements to the ANSI-C source code
(Appendix, part A) reduced the run-time for a 4096-point FFT on the R4000 from 23 msec
to 11 msec . After converting from floating-point to integer arithmetic, the function ran in
12 msec on the DSP with all compiler optimizations disabled. Enabling all compiler opti-
mizations reduced the run time to 1.4 msec, yet the expert-optimized assembly language
version ran in just 0.40 msec. We interpret this to mean that approaching the advertised
performance on complex algorithms requires expert programming at the assembly lan-
guage level. (Such algorithms may be provided in off-the-shelf libraries, though.) Modifi-
cations to the optimized assembly language to perform intermediate result scaling is
original work. The use of a “financial spreadsheet” (e.g., Excel, Gnumeric) for scheduling
parallel processor operations is also original work.

On the Pentium-3, portable ANSI-C code ran in 0.79 msec, and Intel’s optimized library
code ran in 0.32 msec. We interpret this to mean that Intel’s C compiler comes closer to
achieving peak performance than the DSP compiler does. (Note that the 100 MHz R4000
processor is at least five years older than the 733 MHz Pentium-3; this is not “a fair race”
in absolute terms.)

7. Comparing general-purpose processors, we find that the Pentium-3 system is at least
twice as fast as the RISC R4000after compensating for the difference in clock rates,
which we attribute to architectural differences. The Pentium-3 is over four times as fast for
the 1048576-point transform, which reflects a faster memory system.

8. Comparing the Pentium-3 and the DSP, we find that the Pentium-3 was slightly faster in
completing a 4096-point floating-point transform than the DSP was in computing the inte-
ger transform. Though the Pentium-3 processor is more expensive than the DSP, the enor-
mous volume of systems which incorporate the Pentium-3 has driven the system price
(Compaq Proliant) to a fraction of the price of the DSP system (Pentek 4290). On the
other hand, specialized signal processing peripheral devices which are required to provide
sampled data to the processor (e.g., a radio receiver with an 8 MegSample/sec output path)
are simply unavailable for the Intel architecture.

Though the DSP has a clear advantage in high-volume markets for highly-integrated sys-
tems (e.g., modems), developers of unique systems for niche markets must carefully eval-
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uate the current state of commercial products in the context of their application to get the
best configuration.

Significance: The work described in this thesis has advanced our development of two
spectrum analysis instruments. This thesis may provide useful guidance to others, espe-
cially to those working with FFTs of more than 65536 data points.
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I. INTRODUCTION

The Fourier Transform is one of the fundamental tools of electrical engineering. Its

sampled-data version, the Discrete Fourier Transform (DFT), is crucial to several areas of

digital signal processing (DSP). It is used for digital filter design and implementation,

time-delay estimation, image compression coding, and spectrum analysis.

Spectrum analysis is the context of this thesis. Spectrum conflict management, sig-

nals intelligence, technical security, space probe telemetry, and the (thus far incomplete)

Search for ExtraTerrestrial Intelligence (SETI) all rely on detecting the presence of radio

signals of unknown frequency, power, and modulation.

Though the general topic of spectrum estimation is still an area of research, the

work described in this thesis considers only Welch’s method of averaged modified peri-

odograms using the Fast Fourier Transform (FFT) [Ref. 1: p.553]. Since the populariza-

tion of the FFT algorithm for computing the DFT by J. W. Cooley and J. W. Tukey in the

mid-1960s, numerous researchers have studied ways to compute it as quickly as possible

with the technology of the time. Innovations in computer architecture have enabled evolu-

tion of FFT algorithms.

Digital signal processing (DSP) can be done with general purpose computers, but

computer architectures optimized for digital signal processing have been implemented in

microprocessor form for almost two decades. Most DSP algorithms rely heavily on multi-

plication and addition, so early DSP devices dedicated a substantial fraction of their chip

area to single-cycle multiplication hardware. General-purpose microprocessors of that

time performed multiplication through shifting and adding (sometimes implemented in

microcode, but other times left as an exercise for the programmer). General purpose com-

puters (and microprocessors) almost always fetch both programs and data from a unified

memory subsystem (the Von Neumann architecture) [Ref. 2:p. 24].

The Harvard architecture, on the other hand, provides four separate buses: program

address, data address, instruction, and data [Ref. 2:p. 200]. This increases the rate at which

sampled signals can flow through the processor, at the expense of added complexity and
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lost flexibility (a small program which manipulates a large data set may not fit into a sys-

tem designed for a large program which manipulates a small data set).

Major manufacturers of DSP devices are Motorola (56800 family), Analog

Devices (SHARC family), and Texas Instruments (TMS320 family), among others. The

TMS320C6201 DSP device was selected for use in the development project supporting

this thesis since it was readily available. We shall focus on algorithm optimizations which

may be appropriate for this device.

In the development of a new signal detection system, we considered “how can DSP

devices be efficiently used for spectrum analysis?” This thesis explores a variety of design

issues in the development of an FFT-based spectrum analyzer. Initially, we describe varia-

tions on the theme of FFT algorithm implementation, and show how the run time of a

“textbook” algorithm can be reduced by a factor of eight while preserving the portability

of C language. Then we describe design choices for spectrum analysis window implemen-

tation and optimization of an FFT algorithm for the TMS320C6201 DSP device manufac-

tured by Texas Instruments Incorporated (TI). (This processor and related products from

TI are referred to below simply as the “C6x” where such usage does not cause confusion.)

Though FFT algorithms have been derived for data vectors of arbitrary length, the

FFT algorithms described in this thesis are restricted to those which process data vectors

of N elements, whereN=2k, with k an integer.

The notation “1K” refers to 1024 = 210, and “1K2” refers to 10242 = 220 =

1048576. Leti denote .1–
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II. THE FAST FOURIER TRANSFORM DESIGN SPACE

This chapter explores FFT algorithm design issues which apply to any implementation,

whether general-purpose computer, digital signal processor, or custom hardware. Such

issues include minimizing the number of arithmetic operations, trading fast addition for

slow multiplication, minimizing the memory space needed, opportunities to trade memory

space for execution speed, and optimizing cache memory efficiency.

A. ARITHMETIC

The DFT and Inverse DFT are defined by a pair of mathematical formulae [Ref.

3:p. 406, 407] which can be translated into arithmetic operations (multiplication and addi-

tion) in a straightforward way.

For the purposes of this paper,fj can be regarded as a complex-valued sampled

time series of lengthN, Fk as a complex output sample from thek-th bandpass filter,

as a rotation in the complex plane which is proportional to time (j) and frequency

(k). Equation 2.1a is the “Forward” DFT; equation 2.1b, the Inverse. Arfken notes that the

equations can be made symmetrical by distributing the “1/N” factor shown in 2.1b across

both equations as  [Ref. 4:p. 789].

Unfortunately, the straightforward algorithm suggested by equation 2.1a requires

N complex multiplications and additions for each of theN output values, so the number of

arithmetic operations is proportional toN2  for the complete transform. All “fast” algo-

rithms are roughly proportional toN*log2(N), eliminating approximately 99% of the work

for a 1K-point transform, and 99.998% of the work for a 1K2-point transform. However,

the constant of proportionality can vary significantly with implementation.

Fk f je
i2πjk N⁄

j 0=

N 1–

∑=      (2.1a)

f j
1
N
---- Fk e

i– 2πjk N⁄⋅
k 0=

N 1–

∑⋅= (2.1b)

e
i2πjk N⁄

1 N( )⁄
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1. Minimizing Complex Multiplications

The heart of the FFT is equation 2.2, which illustrates the radix-two algorithm

[Ref. 3:p. 408]. We compute two transforms of sizeN/2 (using even indexed samples for

one, odd indexed samples for the other), combined into one transform of sizeN. Computa-

tion of FevenandFoddcan be accomplished by computing four transforms of sizeN/4, and

so on, until the transform size is reduced to one (which is no transform at all). Each stage,

such as the one above, requiresN/2 complex multiplications and additions (one for each

odd value ofk), and there will be log2(N) such stages. Thus, the transform of sizeN is

computed with approximatelyN*log2(N)/2 complex multiplications. This is illustrated

below forN = 8. [Ref. 1:p. 300]. Each stage has four complex multiplications (the multi-

pliers being denoted as WN
k), and there are three stages.

Fk Feven k, e
i2πk N⁄

Fodd k,+= (2.2)

WN
0

WN
2WN

0

WN
0

WN
1

WN
3WN

2

WN
2

WN
0

WN
0

WN
0

WN
0

-1

-1

-1

-1-1

-1

-1

-1

-1

-1

-1

-1

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)
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 Figure 1. Eight-point FFT Flow Graph.
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2. Minimizing Real Multiplications

Whether or not the programming language used for an FFT algorithm supports

complex numbers, complex multiplication must eventually be implemented with real

arithmetic. The termei2πjk/N (WN
jk) becomes (Cos(2π j k / N) + i Sin(2π j k / N)); xn

becomes (Re{xn} + i Im{xn}) (the sums and multiplications byi being complex number

notation, of the form “a +i b”, rather than actual arithmetic).

a. Alternative Expressions for Complex Multiplication

The conventional way to calculate a complex product with real arithmetic

is shown in Equation 2.3.

However, when multiplication is more time consuming than addition, an

alternative form may be advantageous.[Ref. 5:p. 430].

The underlined common subexpression in Equation 2.4 reduces the number

of multiplications from four to three, at the cost of increasing the number of add/subtract

operations from two to five. This may a worthwhile change if multiplication takes more

than twice as long as addition. From a parallel pipelined processing perspective, the con-

ventional expression can complete in two stages (if four multiplication units are available),

while the alternate expression requires at least three stages, but only three multiplication

units. Thus, deciding which code will run more quickly requires a detailed knowledge of

the processor resources.

b. Radix-four Algorithms

WhenN = 4k, a radix-four algorithm will be slightly more efficient than the

radix-two algorithm sketched above. Instead of dividing the input vector into two sub-

sequences, it is divided into four sub-sequences, so only log4(N) stages of processing are

needed. This can reduce the amount of data traffic between the processor registers (or

cache) and data vector memory by half, assuming that the processor has enough registers

to keep intermediate results close at hand. Multiplication byi can be implemented by sim-

a ib+( ) c id+( )⋅ a c⋅ b d⋅–( ) i b c⋅ a d⋅+( )+= (2.3)

a ib+( ) c id+( )⋅ a b+( ) c⋅( ) b– d c+( )⋅( ) i a b+( ) c⋅( ) a d c–( )⋅+( )+=  (2.4)
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ply interchanging real and imaginary components, then negating the real component, and

WN
0 is always equal to one so the number of arithmetic multiplications is reduced. A

flow-graph for a radix-four calculation is shown below [Ref 1:p. 317].

3. Complex Exponential Constants

The “N complex roots of unity” constant factorse i 2 π j k / N, typically denoted as

WN
jk and refered to as “twiddle factors”, offer a variety of options to the algorithm

designer. To call a math library function each time a constant is needed is simple and accu-

rate, but slow. Ine i 2 π j k / N, 2, π, i, andN are constants, andj andk are integers less than

N, so the robust generality of a math library call is rarely needed.

One option is to note that all of these factors areWN raised to an integer power, and

can be used in ascending order. OnceWN is known (e.g., provided by a math library func-
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 Figure 2. Four-point, Radix-four FFT.
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tion), successive constants can be obtained iteratively, as in the following pseudo-code

fragment [Ref. 6:p. 24]:

Now only one library function call (or tabulated value) is needed for allM values.

However, the recursive formula allows numerical rounding error to accumulate propor-

tionally to the transform size (especially if fixed-point arithmetic is used).

If many transforms of some particular sizeN are to be computed (as they will be in

a spectrum analyzer), we can pre-compute the whole set of constants Cos(2π j k / N) and

Sin(2π j k / N) just once. This occurs when the algorithm is initialized, although the pro-

gram then requires additional memory for the table. If the algorithm is being designed for

a predetermined value ofN, the constant tabulation can be done when the program is com-

piled.

How many values need to be tabulated? One way to answer this question would be

to look at the entire algorithm to determine the maximum product ofj andk, but this

would give a pessimistic result. Since Sin(x) and Cos(x) are periodic functions, if we can

map all products ofj andk into the interval [0..N-1], we only need to tabulate Cos(2π k /

N) for k=0 toN-1. Since Cos(2π-x)=Cos(x), Sin(x+π/2) = Cos(x), and so on, we may be

able to minimize the use of memory by carefully indexing into a smaller table. On the

other hand, complicated indexing logic may impose an intolerable burden on the arith-

metic processor, especially if it involves time-consuming branches in the control flow.

With what precision do the values need to be tabulated (or calculated)? Floating-

point arithmetic typically provides 24 or 48 bits of precision. Integer arithmetic, as used

by many DSP devices, could plausibly use 8, 16, and 32 bits. Using the rough rule-of-

thumb that each bit of precision provides six decibels of dynamic range, 8-bit values

complex w_increment = exp(i 2 π / N);
complex w_jk = (1, 0);   /* w to the zeroth power is 1. */
for k = 0 to M

    (use w_jk for an FFT calculation)
    w_jk = w_jk * w_increment; /* recursively update w */

 Figure 3. Recursive Update of Complex Exponential Constants.
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would add quantization noise at the -48 dB (relative to full scale) level, 16-bit values pro-

vide -96 dB, and 32-bit values provide -192 dB. For our application, -48 dB would be

excessively noisy, but -96 dB is sufficient. Thus, either 16-bit integer (“short ” in ANSI-

C) or single-precision floating-point were acceptable.

As we will see in Chapter III, using 16-bit integer Cos() and Sin() constants allows

them to be interleaved in memory such that both can be loaded into a 32-bit register with a

single instruction, and makes efficient use of the DSP device’s 16x16 multiplication unit.

Tabulating one entire cycle (N values) for each function allows simple (fast) data indexing,

although it requires eight times as much memory as the more complex indexing scheme

described above.

4. Fixed-point vs.Floating-point Data Representation

The hardware for floating-point arithmetic is inherently more complicated than

that for integer arithmetic. To perform floating-point addition, the exponent terms of each

value must be made equal, the mantissa shifted as appropriate, the mantissas added, then

the result normalized. In multiplication, the mantissas are multiplied and the exponents

added, after which limited (one or two bits) re-normalization is needed [Ref. 2:p. 296].

Analysis of data representation parallels that of coefficient precision. Though sen-

sor data may be of only eight or twelve bits, 16-bit integers are efficiently processed and

provide adequate accuracy in our application.

We can contrast the arithmetic performance of two processors from TI’s C6x fam-

ily. The TMS320C6201 does only integer arithmetic, while the TMS320C6701 also does

floating point. These devices have otherwise identical architectures and process technolo-

gies. The 16x16 bit integer multiply completes in two clock cycles, while the 32x32 bit

floating-point multiply completes in four clock cycles. In each case, a new instruction can

start the multiplier pipeline on every clock cycle, but the added latency of the floating-

point operation increases the likelihood that algorithm dependencies will prevent continu-

ous utilization of the functional unit. Furthermore, the clock period (at introduction in

1997) of the ‘C6201 was five nanoseconds, while that of the ‘C6701 was six [Ref. 7: Mod.

1: p. 37]. (We’ll discuss the ‘C6x architecture in more detail in Chapter III.)
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5. Integer Result Scaling

The DFT algorithm in the formula above consists of a series of complex multipli-

cations and additions, which implies that the maximum magnitude of any output value

may be as large asN times the maximum allowable input value. (A typical worst-case

input vector has all values equal tomax + i max. F0 is then justN*(max + i max).) If a

fixed-point data representation is used, the output word may requirelog2(N) more bits than

the input word to contain the increased magnitude. To be specific, the 4K-sample trans-

form requires 12 more bits, the 1K2 transform 20 more bits, and the 4K2 point transform

22 more bits. Unfortunately, our ‘C6x processor can most efficiently multiply 16-bit oper-

ands, so overflow avoidance would seem to require scaling its input data to just four bits

for the smallest transform of interest and would make the larger sizes infeasible.

This problem can be addressed by modifying the DFT equation as follows:

or

We can compensate for these scaling constants when interpreting the spectrum

analyzer output, and they allow us to distribute the scaling of intermediate results across

the stages of the FFT. (If forward transforms were followed by inverse transforms, a com-

pensating change would be needed to the IDFT definition.) SinceN =2k, and we havek

stages of processing, we can implement the second equation above by dividing the result

of each stage of a radix-two FFT’s addition by two, which is simply a one-bit right shift.

Alternatively, the summands to the addition can be scaled. When the summands are

formed by an integer multiplication, the scaling that renormalizes the multiplication result

can be modified to incorporate summand scaling with no performance penalty.

With a radix-four algorithm, the designer has more flexibility. Four terms are

added together at each stage, which produces a potential word-length growth of two bits

Fk
1

N
-------- ei2πjk N⁄ f j⋅

j 0=

N 1–

∑= (2.5)

Fk
1
N
---- ei2πjk N⁄ f j⋅

j 0=

N 1–

∑= (2.6)
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per stage. Right-shifting by two at each stage prevents overflow (as in Eq. 2.6), while

right-shifting by one (as in Eq. 2.5) allows word-length growth of log4(N). If the input

data is acquired with eight-bit precision, the number of significant bits can be allowed to

grow to fifteen (not including the sign). Without intermediate term scaling, the maximum

FFT size without overflow would be 128. With single-bit intermediate scaling, the maxi-

mum size is 32K; with two-bit intermediate scaling, overflow is impossible.

Bear in mind, however, that the dynamic range of the output is still limited to at

most 16 bits. Consider the fate of an input data vector containing a single non-zero sam-

ple, at index 0. Without scaling, the non-zero value is duplicated to every element in the

output vector. With single-bit scaling, its value is reduced by half at each stage, so a value

of 128 vanishes after seven radix-four stages (16K-point FFT). With two-bit scaling, it dis-

appears in the fourth radix-four stage (256-point FFT).

Whether or not distributed scaling is appropriate will depend on the application. In

some cases, it might be feasible to examine the result of applying conservative two-bit

scaling; if no spectral lines are found which have sufficient magnitude to cause overflow,

apply a transform with one-bit scaling, or no scaling at all, to the same data set to achieve

greater accuracy. If the processor has an overflow flag which is updated with the status of

every addition (the ‘C60 does not), responding to an overflow condition would require

either time-consuming instructions to test the flag or a hardware interrupt to modify the

flow of the algorithm.

B. MEMORY

As arithmetic logic technology has increased in speed and complexity, the time

required to move data between memory and arithmetic units has become increasingly sig-

nificant. Regardless of advancing technology, relatively fast memory is relatively expen-

sive, and many algorithms (with the notable exception of large FFTs) have been found to

require access to a small fraction of the total memory for much of the total time. Thus,

most computer memory is organized in multiple levels. The processor’s register file mem-

ory provides the most rapid transfers to and from arithmetic logic. Frequently used data

which cannot reside in the register file resides in a small, fast cache memory which han-
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dles most of the accesses. It, in turn, is supported by a larger, slower “main memory,”

which may be supported by virtual memory on a local disk, a remote “file server,” and/or

archival magnetic tape [Ref. 2:p. 372]. In this section, we assess the impact of the memory

hierarchy on FFT performance.

1. In-place vs. Out-of-place Algorithms

The most commonly presented FFT algorithms minimize the use of memory by

operating “in place”; that is, out ofN complex elements in the input vector, arithmetic is

performed using two (or four, depending on the radix) of them, after which the modified

values are written back into the same memory locations. However, this has the disadvan-

tage of leaving the output vector “scrambled,” so most applications require an additional

pass through memory data, after the transform proper is complete, to unscramble the

result. Rearrangement of the FFT flow graph can produce an algorithm that returns the

output elements in the proper order, although the algorithm requires two memory buffers

of lengthN instead of one. Memory address calculations during the transform may require

slightly more time, but the total execution time is reduced, since the unscrambling opera-

tion is unnecessary [Ref. 6:p. 49].

2. Window Function Storage

Spectrum estimation with the Welch method of averaged periodograms requires

smoothing in the frequency domain, implemented by multiplying the input sequence by a

“window function.” In the time domain, a window function tapers the magnitude of data

elements near the ends of the array. One popular window function, the “periodic Hamming

window,” was invented by R.W. Hamming:h(k)= 0.54 - 0.46 Cos(2π k / N), and there are

a number of variations on this theme. For example, Oppenheim and Shafer [Ref. 1: p.242]

give the following formula:h(k)= 0.54 - 0.46 Cos(2π k / (N-1)). This is the “symmetric”

Hamming window, used for digital filter design, which gives subtly different spectrum

estimates. (As stated by the authors ofNumerical Recipes in C in a slightly different con-

text, “... if the difference betweenN andN-1 ever matters to you, then you are probably up

to no good anyway....” [Ref. 3:p. 473].) Selection of a window function involves balancing

the frequency-resolution of spectrum estimates, accuracy of power measurements, sup-
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pression of sidelobe power which can mask weak signals, and computational complexity

[Ref. 8:p.161].

For fastest processing performance, the window function should be tabulated, just

as the Sine and Cosine factors used within the FFT are. The simplest scheme for tabulating

the window function is to precompute allN values. The amount of memory needed,

though, can be cut in half by taking advantage of the symmetry of the function. Depending

on the balance between memory and arithmetic speed in the system, it may be possible to

eliminate window-function storage memory by re-using the Cos(2π k / N) function tabu-

lated for use within the FFT itself. If 16-bit integer arithmetic is used, the cosine table will

be scaled to fill the word:cos_table[k] = 32767 * Cos(2π k/N). The integer-scaled Hann

window can be easily derived from this table:h[k] = 16384 - (cos_table[k] >> 1), where

“>>” is the ANSI-C “right-shift” operator. The Hann window is also attractive because it

provides lower spectral leakage far from a strong spectral line than the Hamming

window does, at the expense of a slightly higher close-in sidelobe, as shown in Fig. 4. The

signal to be analyzed consists of three sinusoids, of randomly selected frequency and

unequal power. The weak signals are nearly hidden by the leakage of the Rectangular and

Hamming windows.
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If one of the more complex window functions was selected (Kaiser-Bessel or

Dolph-Chebyshev, for example [Ref. 8:p.194]), we could conserve memory by tabulating

a decimated window function, then interpolating it as needed. Since window functions are

relatively smooth, we need only tabulate the even-indexed elements, and “hold” each tabu-

lated value for the following odd data element (the simplest possible interpolation). If we

do this, we’ll find that spurious signals appear within the output spectrum estimate as

shown in Fig. 5, for the following reason. Consider the interpolated window function as

the sum of the true window function and an error function. The error function will be zero

for even elements, but will be non-zero and proportional to the first derivative of the win-

dow function for odd elements. Thus, the spectrum of the error function will contain a dis-

crete component at one half of the sample rate. Multiplication in the time domain

corresponding to convolution in the frequency domain, we find that the spectrum estimates

produced with decimated window functions are convolved with the spectra of both the true
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window function and the error function. Spurious spectral lines are the result, as shown at

the left side of Fig. 5. (The three-sinusoid input signal is the same as for the prior figure.)

Quantitatively, the relative power of the spurious signal depends on the size of the

FFT. As the size increases, the magnitude of the first derivative, and thus the amplitude of

the error function, decreases. The spurious signal is 38 dB below the true signal for

N=128, and it falls by 6 dB each timeN is doubled.

If we use linear interpolation, instead of holding the prior value, the error function

will be proportional to the second derivative of the window function. The spurious signal

is then 71 dB below the true signal forN=128, and falls by 12 dB each timeN is doubled.

Trading off window storage space, interpolation complexity, and spurious signal levels can

be done in the context of a specific application.
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 Figure 5. Decimated Window Functions Produce Spurious Spectra.



15

3.  Unscrambling the Output

An in-place, decimation-in-frequency algorithm produces a scrambled output vec-

tor. That is, the transformed elements are arranged in memory as if sorted by a key which

is the element index, reversed such that the most significant bit is in the least significant

position. For a 256-point radix-two algorithm, element 0 will be in memory location 0, but

element 1 (binary 0000 0001) will be in location 128 (1000 0000), element 2 (0000 0010)

will be in location 64 (0100 0000), element 3 (0000 0011) in location 192 (1100 0000),

and so on. Since we want to observe features of the signal spectrum which span more than

a single FFT output value, we need an efficient way to re-order the data by frequency

index.

Consider the data re-ordering algorithm for a radix-two algorithm. The entire vec-

tor can be re-ordered by incrementing the index through the vector, comparing the index

with its bit-reversed value, and swapping data elements when the reversed index is larger

than the original. (When the reversed value is smaller, the swap has already been done for

this pair.)

Gutman [Ref. 9] describes an elegant algorithm for reversing bits, which can be

coded in C for a 16-bit word (“k”) as follows:

In C, “&” is the bit-wise “and” operator, and “|” is bit-wise “or”. The first line

swaps the high byte with the low byte. The second swaps the four least significant bits

with the four most significant bits in each byte, and so on, until the last swaps individual

bits. Note that this algorithm is free of branch instructions and recursive assignments, and

so a pipeline is effective in speeding up its operation.

For a radix-four algorithm, the bits of the index are swapped as two-bit digits. If

we denote the eight-bit index as “b7b6b5b4b3b2b1b0,” the scrambled index is

 Figure 6. Reversing the Order of Bits in a Word.

  a = ((k & 0x00FF) << 8) | ((k >> 8) & 0x00FF);
  b = ((a & 0x0F0F) << 4) | ((a >> 4) & 0x0F0F);
  c = ((b & 0x3333) << 2) | ((b >> 2) & 0x3333);
  d = ((c & 0x5555) << 1) | ((c >> 1) & 0x5555);
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“b1b0b3b2b5b4b7b6” (not “b0b1b2b3b4b5b6b7,” as for radix-two). To reverse digits as

required for a radix-four algorithm, we can simply omit the last line of Fig. 6.

The algorithm is straightforward for index values which fill a power-of-two word

size (i.e., 8 bits:N=256, 16 bits:N=64K), and can be extended for arbitrary lengths. For a

N=2K FFT, the index will be 11 bits wide, and the following sequence can be used to

reverse the bits:

a = ((k & 0x001F) << 6) | (k & 0x0020) | ((k >> 6) & 0x001F);
b = ((a & 0x00C3) << 3) | (a & 0x0124) | ((a >> 3) & 0x00C3);
c = ((b & 0x0249) << 1) | (a & 0x0124) | ((b >> 1) & 0x0249);

 Figure 7. Reversing an 11-bit word.

Courtney, at Texas Instruments, has published a different algorithm for sorting

FFT result vectors [Ref. 10], which relies on a lookup table to determine the bit-reversed

index. When optimized in assembly language, it runs in approximately (N / 4) * 7 clock

cycles on their VLIW processor.

4. Locality of Reference (Improving Cache Effectiveness)

The basic FFTs access memory according to a pattern which may prevent effective

use of conventional computer cache memories. The signal flow graph for a 16-point, in-

place, radix-four FFT is shown below in Fig. 8. There are two stages in this decimation-in-

frequency algorithm, each consisting of four four-point FFTs. Each four-point FFT is

referred to as a “butterfly” calculation (though perhaps they look more like spiders in this

figure). The input vector is arranged sequentially in memory (mi=xi); the output vector is

scrambled.

Input values to the first stage are read from scattered locations. In this 16-point

transform, the first four samples to be processed come from locations 0, 4, 8, and 12; in a

4K-point transform, the first four samples would be 0, 1024, 2048, and 3072; for a 1K2-

point transform, 0, 262144, 524288, and 786432. The cache management [Ref. 2:p. 344]

assumption of “spatial locality,” that most memory accesses tend to occur near recently

used locations, is violated for all but the last few stages of a large transform. The second
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cache management assumption, “temporal locality” (that memory which has recently been

accessed is likely to be accessed again soon), is also violated. Oncex0, for example, has

been read once and written once in stage 1, it won’t be read again until all other elements

of the array have been read (once) and written (once) in stage 1. The impact of violating

these assumptions will be demonstrated experimentally below. If the entire FFT data vec-

tor (and any tabulated constant factors) fits within the primary cache memory, the scat-

tered access pattern does not affect the access time, but exceeding this size can have a

significant impact on performance.
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The solution to this problem is to decompose a large FFT into a series of smaller

transforms, each of which can fit within the cache, and each of which is self-contained

with respect to the rest of the data vector. To illustrate this idea, consider the 16-point data

vector shown in Fig. 9, arranging the 16 input points into a four by four grid.

The first stage of the 16-point FFT in Fig. 8 applies a four-point FFT to each col-

umn of the left grid shown in Fig. 9. Then each element is multiplied byWN
jk (wherej and

k represent the row and column indices), before a four-point FFT is applied to produce

each row of the right grid in Fig. 9. Unscrambling of the data can be accomplished by

reading down the columns of the right grid. This idea can be extended to much larger
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sizes; a 1K2-point FFT can be decomposed into twenty stages of radix-two FFTs, ten

stages of radix-four FFTs, or two stages of “radix-1K” FFTs.

Little would be gained if the small transforms operated on the widely-scattered

data elements of a single column in main memory, but it is simple to “gather” these ele-

ments into a small work buffer, perform the transform, and then “scatter” the transformed

elements back into their original positions (some vector processors have vector-gather and

vector-scatter instructions). When all data for a single radix-1K FFT can fit within the pri-

mary cache of the processor, the radix-1K FFT can then be decomposed into five radix-

four stages which run at the full processor speed.

Even greater efficiency can be achieved, however, if we transpose the entire data

set before performing the small transforms [Ref. 6:p.139], as shown in Fig. 10.

16-point
radix-four FFT
(without data
unscrambling)

x00 x 01 x 02 x 03

x04 x 05 x 06 x 07

x08 x 09 x 10 x 11

x12 x 13 x 14 x 15

X00 X 04 X 08 X 12

X01 X 05 X 09 X 13

X02 X 06 X 10 X 14

X03 X 07 X 11 X 15

{x 00 x01 x02 x03 x04 x05 x06 x07 x08 x09 x10 x11 x12 x13 x14 x15}

 Figure 9. Reshaping the Data Vector.
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 Figure 10. 16-point FFT Built from Four-point FFTs and Matrix Transposition.
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5. Distributed Parallel Implementation

The algorithm described above suggests an algorithm for distributing computation

on a multiprocessor architecture, since each of the row transforms can in principle be done

by a separate processor. Consider a system architecture which must acceptN input sam-

ples at a rate which may exceed the bandwidth of a single memory bus. High-speed logic

can distribute samples toB memory buses, which implicitly performs the first matrix

transpose operation. Once allN samples for a given observation interval are stored in

memory, each of theB processors simultaneously performs an FFT of sizeN/B. Then, an

interprocessor matrix transpose is followed by the twiddle-factor multiply andN/(B2)

transforms of sizeB on each of theB processors [Ref. 6:p.173]. The result can then be

read from theB memory systems in round-robin fashion to implicitly perform the final

transpose.

As an approach to increase the bandwidth of a spectrum analyzer, the fast-sam-

pling distributed FFT can be contrasted with a frequency-domain “divide and conquer”

approach. Rather than distributing samples from a single analog-to-digital converter

(ADC) across multiple processors, we can use a channelizing architecture to distribute

subranges of the input bandwidth to independent spectrum analyzers. Channelizing can be

performed with traditional analog electronics (oscillators, mixers, and filters) followed by

a relatively slow ADC, or with one or more relatively fast ADCs followed by digital oscil-

lators, mixers, and filters in hardware or software (as on the Pentek 6216 Dual Digital

Receiver Module [Ref. 11]).

The channelizing architecture allows each processor to operate independently,

without the synchronization and communication complexities of the distributed FFT

implementation. However, the fast-sampling distributed FFT architecture may be favored

if we also wish to analyze in the time domain those detected signals which may occupy a

large fraction of the searched bandwidth.
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6. Cache-efficient Transpose Operation

The algorithm described above transposes the full data set three times. The sim-

plest way to perform such a transpose is with the following code, in which the two-dimen-

sional character of the array is implicit in the read and write index calculations:

This algorithm allows the cache controller to load multiple elements from sequen-

tial memory locations, so the read miss rate is low. However, write operations are scattered

throughout the result array, so a new cache line must be read, updated, and written back

for almost every result. This inefficiency can be avoided by transposing blocks of elements

[Ref. 6:p. 129]. When a block transpose of 16 by 16 complex floating-point elements can

be done completely in the cache, each cache write operation will store 16 transposed ele-

ments (128 bytes), instead of one. Portable source code for this algorithm can be found in

the Appendix.

C. EXPERIMENTS WITH PORTABLE PROGRAMS ON RISC

In this section, we examine some portable implementation codes for the FFT

which employ some of the techniques described above.

1. Test Method and Conditions

To measure the execution time of a code, we used the UNIX “time” function,

which provided three figures: the total elapsed time for the program to run, the amount of

time that the processor was running the user program, and the amount of time that the pro-

cessor was handling operating system functions required by the program. The “user” CPU

time was used for measurements below.

for (read_row = 0; read_row < read_rows; read_row++) {
  for (read_col = 0; read_col < read_cols; read_col++) {

   write_col = read_row;
   write_row = read_col;
   y[write_row * read_rows + write_col] =

x[read_row * read_cols + read_col];
  }
}

 Figure 11. Simple Transpose Source Code.
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The computer used for testing was a Silicon Graphics Indigo, manufactured in the

mid 1990s, with a 100 MHz MIPS R4000 Reduced Instruction Set Computer (RISC) pro-

cessor with floating-point coprocessor. Main memory capacity is 64 Mbytes, with a single

1MB unified secondary cache, and dual 8KB primary caches (one for data, one for instruc-

tions). The Silicon Graphics C compiler was used to compile the test programs, using -O3

(the maximum) compiler optimization flag.

2. Test Results

The following table illustrates the variation in performance between various imple-

mentations. In most cases, a large number of transforms was done to get a measurable run-

time. When the run-time is given as a sum, the first part of the sum is the time needed for

initialization, while the second part is the execution time for “one more” FFT.

Table 1. Execution Times of Portable FFT Algorithms.

N
log4
N

four1 St St-T St-F Fact-T
FFTW

(estimate)
FFTW

(measure)
St-F

model
FFTW
model

64
3 0.17m 0.15m 0.10m 0.08m n/a

10m+
0.056m

2.25s+
0.048m 0.08m 0.045m

256
4 0.78m 0.65m 0.46m 0.36m 0.9m

10m+
0.25m

3.79s+
0.25m 0.44m 0.24m

1K
5 3.75m 5.1m 4.6m 2.2m 3.8m

0m+
1.6m

5.3s+
1.2m 2.2m 1.2m

4K
6 23m 20m 16m 11m 17m

20m+
8.5m

6.2s+
8.2m 10.6m 5.76m

16K
7 114m 88m 80m

20m+
60m

70m+
70m

90m+
42m

7.2s+
50m 49m 27m

64K
8 569m 540m

70m+
380m

80m+
280m

250m+
320m

230m+
230m

21s+
200m 225m 123m

256K
9 8.9 5.9

0.3+
5.7

0.3+
4.8

1.04+
1.68

0.6+
2.4

52.4+
2.0 1.01 0.55

1K2

10 54 55
3+
25

2+
24

3.9+
7.7

2.4+
12

192+
10 4.5 2.46
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Algorithm “four1” is taken fromNumerical Recipes in C [Ref. 3:p.411], slightly

modified to use only single-precision floating-point arithmetic. It is a “radix-two, decima-

tion-in-time, Cooley-Tukey” algorithm, and the time includes the bit-reversed index sort

process.

Algorithm “St” is a radix-four Stockham out-of-place transform [Ref. 6:p. 105],

with in-line calls to the math library for multiplier coefficients. In each stage, data is trans-

formed from the input/output buffer to a work buffer, then (when the stage is complete) the

contents of the work buffer are copied back to the input/output buffer in preparation for the

next stage. No data reordering is needed with this algorithm. It is slightly faster, in most

cases, than the “four1” algorithm.

Algorithm “St-T” improves on “St” by tabulating trig functions. (For small trans-

forms, the time required to initialize the tables is too small to measure meaningfully.)

Algorithm “St-F” improves on “St-T” by performing butterfly calculations on odd

stages from the data input buffer to a work buffer, and on even stages from the work buffer

back to the input buffer. For values of N which are an odd power of four, the result is

returned in the work buffer.

Algorithm “Fact-T” factors N into two sets of smaller FFTs. For example, the 1K2-

point transform is calculated by conceptually reshaping the data vector into an array of

4096 columns by 256 rows (both even powers of four, for the convenience of the St-F

algorithm used for in-cache transforms). The array is transposed to 256 columns of 4096

rows, so elements which were separated by 4096 are now adjacent in memory. The 256

“St-F” FFTs of size 4K are followed by an element-by-element multiply by the complex

constants, then another transpose. After 4096 FFTs of size 256 and another array trans-

pose, the complete transformed data is properly ordered in memory. Since the array trans-

pose operation is out-of-place, this algorithm requires a transpose work buffer of 1K2

elements. (An out-of-place transpose is faster than an in-place transpose, as well as being

simpler for non-square arrays.) The tabulated constants also occupy 1K2 elements, and the

St-F algorithm uses a work buffer of 4096 elements. Thus, the total memory demand for

this algorithm is roughly three times greater than for any of the others.
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Algorithm “Fact-B,” not listed in the table, reduces the memory demand of Fact-T

by eliminating the matrix transpose (and the transpose buffer). When, for example, a 256-

point FFT is to be done with elements scattered throughout the 1K2-point array, they are

first gathered into a 256-element buffer. For the million-point transform, this algorithm

takes 10 seconds. Fact-T is faster because it transposes multiple columns of the array at

the same time, while Fact-B only “transposes” the one that’s currently needed.

Algorithm “FFTW” was obtained via the Internet from “The Fastest Fourier Trans-

form in the West” project sponsored by the Massachusetts Institute of Technology [Ref.

12]. This program measures the performance of various FFT components to automatically

synthesize an FFT algorithm which is “nearly optimal” for the current processor, whatever

the FFT size and processor happen to be. Note that the time needed to analyze (either

through estimation or actual measurement) and synthesize is shown as the first part of the

sum in the FFTW column, and its units are always seconds. As we might expect, after

we’ve paid the start-up penalty (which is substantial), FFTW demonstrates excellent per-

formance for all but the largest transforms. For the 256K and 1K2 FFTs, though, it is much

slower than Fact-T. On the other hand, it does not demand as much memory as Fact-T.

Whether this was a conscious tradeoff or not is unknown, but memory is cheap and time is

priceless.

To help illustrate the impact of cache inefficiency, we compare actual processing

times with a simple model. Column “St-F model” assumes that memory access time is

irrelevant, and so execution time is estimated usingC*N* log4(N), whereC is a constant

of proportionality (C=4.297e-7) based on the “St-F” time forN=1024. The model seems to

be reasonably accurate asN increases from 64 to 16K, but the run time exceeds the time

predicted by the model as the cache miss rate increases. By the timeN reaches 1K2, St-F is

taking 5.3 times as long as predicted. Fact-T, however, only takes 1.7 times as long, indi-

cating that the transform factoring process is effective at masking cache limitations.

Column “FFTW-model” is analogous to St-F model, using the measured optimiza-

tion numbers. Again, we see that memory bandwidth limitations make FFTW take
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roughly four times as long as predicted by the model. Put another way, 75% of the CPU

performance is wasted just waiting for data.

Figure 12 illustrates the performance degradation imposed by memory bandwidth

limitations. The plot labeled “St-F / St-F model” is the ratio between actual St-F time and

the St-F model. The “FFTW / FFTW model” plot is analogous, while the “Fact-T /St-F

model” plot is the ratio between the Fact-T time and the St-F model (since the Fact-T

algorithm uses the St-F FFT internally). For small transforms, the transpose operations

uselessly rearrange elements already in the cache, so Fact-T takes longer than St-F.

The run time for the Fact-T algorithm can be modeled as Ttotal = Tinit + 3 * Ttrans-

pose + N1 * TFFTN2 + N2 * TFFTN1. For a 1K2 FFT, we can use N1=N2=1024, or N1=256

and N2=4096. We can get approximate values for TFFT from the upper half of Table 1.

Using values from Table 1, we expect a factoring algorithm which used FFTW, instead of
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 Figure 12. Cache Impact on FFT Performance.
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ST-F, for the small FFTs to cut another two seconds (% 26) from the time required for

Fact-T to transform 1K2 points.

D. PORTABLE PROGRAMS ON PENTIUM-III AND RISC.

This section compares the performance of a 733 MHz Pentium-III processor and a

100 MHz MIPS R4000, using the “St-F” program described above.

1. Test Conditions

The “St-F” program was recompiled and executed on a 733 MHz Pentium-III pro-

cessor with 1 GByte of main memory. The compilers (Microsoft Visual C++ V6.0 and

Intel C/C++ V4.5) were configured to optimize for maximum speed of execution. We also

measured the complex-float, not-in-place FFT routine found in the Intel Signal Processing

Library, with the Intel C compiler. To enable comparisons with the fixed-point arithmetic

implemented in the DSP device in the next chapter, the code was also modified to work

with short (16-bit) integers (with internal scaling to avoid overflow). Each routine was

called enough times to allow convenient measurement with a stopwatch, so each test ran

for 5-30 seconds. Since each ran at least ten iterations, table initialization time was insig-

nificant and is not listed below.
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2. Test Results

The run times are shown in the table below.

From Table 2, we see that Intel’s C compiler produces code which is slightly faster

than Microsoft’s.

The FFT routine in Intel’s Signal Processing Library is much faster, for small FFT

sizes, than our portable C code. This is probably due to Intel’s expert optimization of the

parallel “MMX” instruction set architecture.

For small transforms, FFTs which use short integer arithmetic are slower than

those which use floating-point arithmetic. Given that floating-point arithmetic is more

complicated than integer, this may come as a surprise, but Intel has invested in good float-

ing-point performance in the Pentium-III. In the floating-point version, data calculations

can be executed (in floating-point hardware) while address calculations take place in inte-

ger hardware; in the integer version, the integer hardware must perform both tasks.

Table 2. Pentium-III Run Times (all millisec).

N
log4N

float
Microsoft

short
Microsoft

float
Intel C

short
Intel C

float
Intel library

64
3 0.0068 0.0078 0.0059 0.0070 0.0023

256
4 0.032 0.036 0.027 0.035 0.009

1024
5 0.16 0.17 0.14 0.16 0.053

4096
6 0.75 0.85 0.66 0.79 0.32

16K
7 4.7 3.9 3.3 3.7 2.1

64K
8 41 32 38 28 30

256K
9 193 153 178 135 153

1K2

10 840 730 740 630 730
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For large FFTs, the integer version runs faster than the floating-point version. This

is probably due to the reduced memory bandwidth required to update the cache, since each

ANSI-C float  value takes four bytes, while eachshort  integer value only takes two.

While the library routine slows down the most as the FFT size becomes large, it

remains slightly faster than the portable C code.
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 Figure 13. Library and Integer Performance, Relative to Portable Code.



30

We see in Table 3 that, even after compensating for the difference in clock speeds,

the Pentium-III system is at least twice as fast as the R4000 RISC system when running

the floating-point portable C program. The 1K and 4K sizes illustrate the in-cache perfor-

mance, while the 1K2 size shows that the full memory system is more efficient in the Pen-

tium-III system than that in the R4000.

Table 3. R4000 vs. Pentium-III Performance.

FFT size R4000 Pentium-III ratio
clock speed
comp. ratio

1K 2.2m 0.14m 15.7 2.14

4K 11m 0.66m 16.7 2.28

1K2 24s 0.74s 32 4.4
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This chapter illustrates several factors that affect the performance of FFT spectrum

analysis on general-purpose computers: algorithm design, compiler technology, expert

optimization (in the Intel Signal Processing Library), and CPU architecture. Bear in mind,

though, that the R4000 predates the Pentium-III by roughly five years, so it must not be

taken to represent the current state of RISC technology.

In the development of a signal processing system, the flexibility of portable pro-

grams on general-purpose computing hardware is of little importance, since the system

will be dedicated to a specific process. If special-purpose hardware can accelerate this pro-

cess, without imposing excessive development costs or delays, it should be included in the

design. Since the FFT is a well known and important component of digital signal process-

ing, we expect that specialized digital signal processing devices can provide such acceler-

ation. One such device, the TMS320C6201 (by Texas Instruments), is examined in

Chapter III.
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III. DIGITAL SIGNAL PROCESSOR APPLICATION

A. OVERVIEW OF DIGITAL SIGNAL PROCESSING

Digital signal processing generally involves the algorithmic transformation of a

sequence of measurements into some structure that is more useful. For example, the pro-

cessor in a modem transforms a sequence of binary digits from a data terminal into a

sequence of numbers representing a waveform that can pass through some communica-

tions medium, and vice versa. The processor in a digital cellular telephone transforms

numbers representing the speech waveform from a microphone into bursts of numbers

which satisfy the multiple-access communication protocol of the system, and reconstructs

conversation from received bursts.

Though we often think of the input to a signal processing algorithm as a time-

series from a single sensor, acoustic beamforming (used in SONAR) and radio direction-

finding involve combining the outputs of an array of sensors.

In commercial signal processing applications, a single program may be developed

to execute on thousands or even millions of processors, such as those found in cellular

telephone handsets. Accordingly, economic forces tend to favor minimizing the unit hard-

ware cost (with adequate performance) over ease of programming, since the cost of devel-

opment will be shared by all buyers. Once integrated into a product, most DSP

applications will execute without change for the life of the product. Both of these forces

push toward a “translate slowly; run quickly” characteristic which is more tolerant of

architectural innovation than the general-purpose computing market. The developer of a

new DSP device need not be concerned with maintaining compatibility with past genera-

tions of application or operating system programs.
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B. DESIGN FEATURES OF THE TMS320C6x FAMILY

Recent advances in computer architecture (apart from multiprocessor parallelism)

have moved toward performing micro-operations in parallel. A simple pipeline can fetch

instruction(k) while decoding instruction(k-1), loading operands for instruction(k-2), per-

forming arithmetic for instruction(k-3), and storing the result from instruction(k-4) to

memory. However, this assumes that there are no dependencies between these instructions.

If an operand for instruction(k-3) is stored at the same memory location as the result of

instruction(k-4), and instruction(k-3) loads the value before instruction(k-4) has stored it,

then the result of instruction(k-3) may be incorrect. “Superscalar” processors, such as the

Intel Pentium family, contain logic which detects dependencies as the program is exe-

cuted, re-ordering instructions or stalling the pipeline (for example) until dependencies are

satisfied. Thus, the widely used Intel x86 instruction-set legacy can be executed with

increasing speed, at the expense of complex hardware and variable timing.

Programmers of Very Long Instruction Word (VLIW) and RISC architectures

address the dependency problem during development (design and compilation), rather

than execution, of the program. This allows the logic which is dedicated to dependency

analysis to be eliminated. Additional registers, cache memory, and/or arithmetic units can

be put in its place, or the overall size of the device can be reduced (lowering its cost).

Instead of automatically detecting the opportunities for parallel processing implicit in a

sequence of simple, short instructions (typically 32 bits long), VLIW machines employ an

instruction word which has enough bits to explicitly schedule parallel operations. In the

C6x series, the instruction word (“execute packet”) can be as long as 256 bits, specifying

up to eight simultaneous independent arithmetic and/or memory access operations. Addi-

tional parallelism can be achieved by the use of reduced-precision arithmetic instructions,

which allow, for example, two 16-bit integer additions to be performed with a 32-bit adder

by blocking the carry propagation from the low half to the high half. Multiply instructions

which take as operands either the high or low halves of 32-bit registers also facilitate the

packing of 16-bit values into 32-bit registers. On the other hand, effective utilization of
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parallel hardware assets depends on the inherent parallelism of the algorithm, its transla-

tion into instructions, and the memory access required.

Major components of the C6x processor are sketched in Fig. 15. Note that a set of

four functional units is associated with each register file, with two “cross-paths” to allow

one functional unit from each set access to the opposite register file. Devices in the C6x

family also include various configurations of on-chip memory, serial ports, timers, direct-

memory access controllers, etc., but they are of no concern here.
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Figure 16 shows the assembly-language source code for a sample execute packet,

taken from an FFT benchmark program published by Texas Instruments in C6x assembly

language.

mem. addr 1

store data 1
load data 1

.L1: add, sub, and, or

.S1: add, sub, and, or,
branch, shift

.M1: multiplication

.D1: address-related
calculations

Register file A
(A0-A15)

Functional Units Registers

mem. addr 2

load data 2

.L2: add, sub, and, or

.S2: add, sub, and, or,
branch, shift

.M2: multiplication

.D2: address-related
calculations

Register file B
(B0-B15)

store data 2

cross-paths

control regs.

 Figure 15. Simplified C6x Processor Block Diagram.
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The “|| ” symbol indicates that the instruction which follows should be performed

in the same clock cycle as the instruction on the preceding line, so all six of the instruc-

tions above execute in the same clock cycle.

The VLIW architecture simplifies the instruction processing pipeline by making

parallelism explicit during execution of linear sequences of instructions. Very few pro-

grams, however, run for very long without requiring a deviation from sequential instruc-

tion fetching which invalidates the partially processed instructions in the pipeline.

Conventional assembly-language programs perform a comparison, and “conditionally

branch,” depending on the result of the comparison. To minimize the number of branches

; comments...
sub .L1 a1, a2, a4 ; a4 = a1 - a2, using functional

; unit “.L1”
|| shr .S1 a4, 1, a7 ; a7 = a4 >> 1 (shift right, / 2)
|| shr .S2x a4, 1, b9 ; b9 = a4 >> 1 (but on the B-side)
|| mv .L2 b6, b0 ; b0 = b6
|| stw .D1 a12, *+a0[5] ; store word A12 to memory at the

; address five words above the
; location in A0.

|| stw .D2 b12, *+b1[6]

 Figure 16. Parallelism Explicitly Coded Into an Execute Packet.



38

in a program, the C6x processors makeall instructions conditional, not just branches. For

example, the integer “absolute-value” function can be coded as shown in Fig. 17.

The Intel code implicitly fetches the value ofx  from memory to set a condition

flag based on the comparison, but doesn’t retain the value in a register. Then, it (condition-

ally) jumps to the label L1, which may disrupt the instruction processing pipeline. If the

jump is not taken,x  is again implicitly loaded from memory, negated, and rewritten.

(Whether or not the processor actually performs this exact sequence of operations depends

on how clever the processor is at interpreting the instruction stream.)

The C6x code, on the other hand, does not interrupt the sequential pipeline flow of

instructions; register B0 is used as a condition flag and simply prevents storage of the

negated value ofx (in B4). The negation is always calculated, in parallel with the compar-

ison, but the result may be ignored. (The “nop 4” instruction explicitly stalls the processor

while it waits for the memory to respond. In other algorithms, it may be feasible to execute

the “ldw” instruction earlier in the instruction stream, so the delay cycles can be occupied

by useful instructions.)

ANSI C
    if (x < 0) x = -x;
    (next statement)

Gnu C/assembler for Intel Pentium
  cmpl $0,-4(%ebp) # compare x (in memory) < 0

jge .L1           # if x >= 0, jump (branch) to label L1
  negl -4(%ebp)    # negate x (in memory)

.L1:  (next statement)

TI C6x assembler
ldw .d2 *+SP[0x3], B4; initiate load of x into reg.
nop 4              ; wait for load to complete
cmpgt .l2 0x0, B4, B0   ; if 0 > B4, B0 = True

|| sub .s2 0x0, B4, B4  ; (parallel) B4 = 0 - B4
[B0] stw .d2 B4, *+SP[0x3]; if B0 true, store updated x

  (next statement)

 Figure 17. C6x Branch Avoidance with Conditional Store Instruction.
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The impact of branches is also reduced in the C6x by allowing the programmer to

insert instructions into the “delay slots” which follow a branch instruction (not shown

above).

Efficient use of fast arithmetic logic demands a ready supply of operands. At the

top of the memory hierarchy are the processor’s thirty-two 32-bit registers, which provide

all arithmetic operands to the arithmetic units. Register addresses are encoded in each

instruction and access is immediate. A register can serve as both source and destination in

the same instruction cycle, and a register can be read by as many as four simultaneous

instructions.

The next level of memory hierarchy is the on-chip Internal Data Memory (IDM),

storing 64K bytes (16K 32-bit words). To read from the IDM into a register requires five

clock cycles, from the time the address is sent (from a register) until the data is written to a

register. Such data reads are pipelined, though, so two data accesses can be started on

every clock cycle. Writing to IDM has similar timing. Note that memory read/write

latency can be an important factor to consider when scheduling an algorithm. If the read

operation can be initiated five cycles before the value is needed, the latency is invisible.

Otherwise, the program must be coded to execute “no-op” instructions before continuing.

In addition to data accesses, the processor must also be supplied with program

instructions. At peak performance, it will be executing 32 bytes (not 32 bits) of instruction

code with every 5 nanosecond clock cycle, or 6400 Megabytes per second. Practical algo-

rithms may demand this bandwidth a substantial fraction of the time. The Internal Pro-

gram Memory (IPM), containing 16384 instructions, provides this bandwidth through a

256-bit wide path to the processor.

Access to external (off-chip) memory is also supported. From the program’s point-

of-view, internal and external memory both have a five clock latency. However, external

memory actually takes longer to respond, so execution of all instructions is suspended as

long as necessary for any data. The impact of this is shown in section E.
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C. SOFTWARE TOOLS AND TECHNIQUES

Development of an application for the C6x requires translation of the algorithm

into a sequence of arithmetic operations, allocation of the arithmetic to the parallel func-

tional units of the processor, allocation of variables to registers, and allocation of data

structures to the memory hierarchy. A collection of tools is needed to perform these tasks.

1. TI’s Tool Set: Code Composer Suite

Implementation of the algorithm in “ANSI C” is typically the first stage of devel-

opment. Though the programmer has the least amount of control over exploitation of par-

allelism, a C program can be portable across many different machines and operating

systems. Development in C can prove, in a workstation environment, that the algorithm is

theoretically sound and worthy of integration into the DSP environment, with less effort

than starting development on the DSP. In TI’s “Code Composer Suite” development envi-

ronment includes several options for optimization of the executable program.

Compiler “pragma” directives also allow the programmer more control over the

compiling process than the standard C language provides. Data structures can be assigned

to specific memory sections, and the programmer can exercise fine-grained control over

some of the optimization efforts of the compiler.

The C compiler for the C6x sold by TI can be used to compile ANSI C, but also

supports processor-specific hardware features using “intrinsic functions.” An example is

shown in Fig. 18.

int sum_hl = 0, sum, index;
short b[100];

for (index = 0; index < 100; index += 2) {
  sum_hl = _add2 ( sum_hl, *(int *)b[index]);
}
sum = (sum_hl & 0xffff) + (sum_hl>>16);

 Figure 18. Calculation Using Parallel Partial-Word Arithmetic.
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This code fragment computes the sum of theshort  (16-bit) values in the array

“b” by reading pairs from memory asint  (32-bit integer) values, accumulating the even

elements in the high 16 bits of “sum_hl ,” accumulating the odd elements in the low 16

bits of “sum_hl ,” and finally combining the high and low partial sums into a total. Only

50 loop iterations are needed to sum the 100 elements. Similarly, the “_mpyhl() ” and

“_mpylh() ” intrinsics allow the high half of one register to be multiplied by the low half

of another, without disturbing the other half of either register. (This is especially handy for

the complex arithmetic used in signal processing.)

Intrinsic functions allow the C programmer access to specialized instructions of

the C6x, but not to the allocation of variables to processor registers. If this additional level

of control is needed to improve algorithm performance, the programmer can use “linear

assembly language.” Each linear assembly statement specifies the operation of and argu-

ments to one functional unit, and the assembly optimizer tool combines statements into

parallel “execution packets.” Programming in linear assembly code requires the program-

mer to manage the assignment of variables to registers (bearing in mind that only five spe-

cific registers can be used as condition flags, and only eight can be used for certain

addressing modes), the assignment of functions to functional units (e.g., though multipli-

cation can be done only in the “.M” units, AND can be done in both .L and .S, and ADD

can be done in .L, .S, and .D), and access to variables from functional units (A-side func-

tional units can only write results to A-side registers). Linear assembly language allows

the programmer to “misuse” processor control registers as scratchpad storage. Control

registers cannot supply operands to arithmetic units, but can be more quickly accessed

than even on-chip memory. Of course, the programmer must ensure that this does not pre-

vent normal operation of the processor; any function which uses the Interrupt Return

Pointer control register for data must never attempt to return from an interrupt service rou-

tine without somehow restoring that value!

For maximum control, the programmer can writescheduled assembly language,

manually combining statements into parallel execution packets. Developing scheduled

assembly language can be a challenging task. In addition to the complexities of linear
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assembler, the developer must also be aware of constraints on operation parallelism, such

as the fact that, of the eight operands which could be needed by the four A-side functional

units, only one operand can be read from any of the sixteen B-side registers, and vice

versa. The developer must also be aware of operation latencies. When loading a word from

memory, the destination register can be used for other purposes for four more instruction

cycles before the loaded word actually arrives. The internal latency of the multiply unit

means that the result can’t be read from the destination register until two cycles after the

multiply is issued. (This means, though, that a multiply unit can be used to simply store a

value that would otherwise overflow the register set. Multiplication of the value by one in

cyclek allows use of cyclek+1 to save the contents of the register which will be overwrit-

ten by the multiplier result in cyclek+2. This saved substantial time in our FFT function.)

Regardless of the language used to express the algorithm, the resulting executable

program and data structures must be allocated to specific memory addresses. Embedded

processors are typically surrounded by customized memory configurations and rely on

physical hardware addresses (both for memory of various types, and memory-mapped

input/output device registers). The program linker performs this function.

Allocating data to a relatively slow memory can have a dramatic effect on perfor-

mance. For example, our FFT code (with intermediate stage scaling) computed a 4K-point

transform in 402µsec when the data vector and constant table were stored in Internal Data

RAM. The same code, with constants in Synchronous Burst Static RAM, took 671µsec.

After moving the data vector to SBSRAM, the algorithm took 3571µsec (see details

below).

2. Auxiliary Tools

a. “Financial” Spreadsheet

Optimization of an algorithm in scheduled assembly language (as defined

above) can begin with scheduled assembly language code generated by a compiler, based

on a portable description of the algorithm. Modifying the assembly language code can

then incorporate the programmer’s understanding of the precise problem to be solved. (For

example, the programmer may know that a certain variable can only take on one of three
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different values, which cannot be expressed to the compiler but may simplify the prob-

lem.)  Or the programmer may be presented with a completely scheduled assembly-lan-

guage program which needs only a slight change to perform the current application. In

either case, the trick is to make an incremental change (add new behavior) without disrupt-

ing the existing program.

One way for the programmer to track the total processor state during con-

current operations is with a spreadsheet program (e.g., Gnumeric or Excel). Though none

of the calculation features of the program are used, the flexible tabular format is a valuable

aid. For the effort described in this Thesis, a table was created with one row for each clock

cycle of the program and one column for each of the eight functional units (and the two

cross paths). If a functional unit executes an instruction during the clock cycle, its box is

marked as shown below. This table is most useful to identify free functional units to which

inserted instructions can be allocated. For example, if we need to multiply a value by four,

we could use a multiply unit (if we have a register containing the value “4” and we can

wait an extra clock cycle), or we could add it to itself (in L, S, or D units) twice, or shift it

left two posititions (in an S unit). The table shows which (if any) are free to use. Also,

when we need to insert a new execution packet, we can quickly scan down the M unit col-

umns to see where multiplier latency will complicate the problem.
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The spreadsheet also tabulates usage of the thirty-two general-purpose reg-

isters, which is essential for minimizing the number of data transfers to and from memory.

The following table illustrates the same instructions (and more) as in Fig. 19.

; execution packet 22.5
mv .s2x a10, b10

|| mv .s1x b3, a9
||[!b2] addaw .d1 a5, 1, a5

; 23
shr .s2 b3, 16, b3

|| shr .s1 a10, 16, a10
|| mv .l1 a6, a1
|| addaw .d1 a5, a7, a5

; 24
add .l2 b3, b10, b11

|| sub .l1 a9, a10, a12
|| sub2 .s2x b1, a8, b1
|| add2 .s1x b1, a8, a8
|| addaw .d1 a5, a7, a5

; 25
ext .s1 a8, 16, 18, a8

|| shr .s2x a8, 18, b10
|| sub .l2 b3, b10, b12
|| add .l1 a9, a10, a9
|| mpylh .m1x a12, b15, a10
|| mpy .m2 b11, b15, b10
|| ldw .d2 *b5++[b6],b10

Arithmetic unit use summarized for
23 clock cycles (including the four at
left).

Scheduled assembly-language source
code for four clock cycles.

 Figure 19. Spreadsheet Summary of Arithmetic Unit Usage.
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Each instruction cycle occupies one row of the sheet. The text in each cell

was added according to the following rules:

1. All cells are initially blank; when the analysis is complete, no cells should be

blank.

2. If a register receives a value (loaded from memory or the result of an arithmetic

operation) during the prior cycle (such that it can be used as an operand in the current

cycle), put the name of the variable into the associated cell. If the 32-bit register contains a

pair of 16-bit values, separate their names with a slash (“/”). In cycle 28, a pair of 16-bit

values labeled “x/yi0” appears in register B10, the result of the “LDW” instruction that is

shown in Fig. 19 (cycle 25).

3. If the operation is iterative (e.g., i++), put in the expression. In the top row of

Fig. 20, register B5 is incremented in cycle 22.5. In cycles 25.5 through 27.5, register B5

is incremented by four times the value in register B6.

4. If the value in a register is an instruction operand (including memory write) dur-

ing the current cycle, put an asterisk in the cell. Register B6 is used to auto-increment B5

in cycles 25 through 27. If this value will not be used again, underline the cell.

 Figure 20. Spreadsheet Summary of Register Usage.
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5. If a register must preserve its value through the cycle, put a period in the cell.

Register B11 receives a new value in cycle 27.5, preserves it through 28, and it is read in

cycle 29.

6. Between the time a cell is underlined (as in rule 4), and it receives a new value

(rule 3), put a dash into the cell. This cell is free to be used for a new instruction. B10,

B11, and B12 are free in cycle 25.5.

7. If the status of a register is dependent on a condition flag, prefix the cell text

with a question mark. Register B15 is conditionally loaded with a pair of sixteen-bit val-

ues for cycle 29.

It is also useful to have columns in the table to indicate load/store opera-

tions, as shown at the right side of Fig. 20.

Once the spreadsheet is completed for a baseline algorithm (e.g., as pro-

duced by the compiler), the impact of changes during manual optimization can be

assessed. For this project, we needed to make two changes to the FFT routine provided by

TI: first, TI developed for a “little-endian” memory access configuration, while our pro-

cessor board is configured for “big-endian” memory access, and secondly, we wanted to

prevent arithmetic overflow by implementing distributed scaling as described in section

II.A.5.

Applying the rules above to the ten-cycle inner loop of the algorithm

showed that there were 22 register cells (out of 320) free to receive new values, and 17

(out of 80) free functional unit cells. Each instruction inserted into the loop creates eight

more free functional unit cells, and from none to six more free register cells (depending on

where in the loop it is inserted). Inserting an instruction cycle creates a free register cell

only when it is inserted below a row with one or more cells underlined according to rule 4,

above, or already free according to rule 6.

 In the end, accomplishing the required two changes resulted in an inner

loop that takes 15 more nanoseconds (clock cycles designated 22.5, 25.5, and 27.5) than

the original code.
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b. Programs which Write Programs

Once we have decided to use tabulated values in one or more parts of a pro-

gram, we are faced with the potentially tedious and error-prone task of creating the table.

Our solution is to write a portable C program which generates, as its output, another C

source-code file which can be compiled by the DSP development tools.

D. DESIGN FEATURES OF THE PENTEK 4290A

A processor chip by itself is useless. Pentek, Inc. integrates four C6x processors

with several types of memory and input/output devices into the model 4290A VME-bus

single-board computer [Ref. 13]. Each C6x on the board has exclusive access to 128k 32-

bit words of Synchronous Burst Static RAM (SBSRAM). During block transfers, a new

data word can be transferred on every CPU clock cycle (800 MB/sec), which is half the

rate of the on-chip IDRAM. [Ref. 13: p.13]. Access latency, however, can cause a signifi-

cant performance penalty, as shown in the performance measurements table below.

Each C6x also has exclusive access to 4M 32-bit words of Synchronous Dynamic

RAM (SDRAM). At best, SDRAM has half the transfer rate (400 MB/sec) of SBSRAM,

but data transfers stall for 60 nsec (12 clock cycles) whenever a page boundary is crossed

[Ref. 13: p.14]. Again, access latency effects can be dramatic.

The 4290A also has FIFO, dual-port, and global memories for interprocessor com-

munication, but they are irrelevant to this discussion.

E. EXPERIMENTAL RESULTS FROM DSP PROGRAMS

1. Test Method and Conditions

In this test, we observe the impact of memory latency, for each of the three types of

memory (IDRAM, SBSRAM, and SDRAM) on the Pentek 4290A, for two algorithms:

application of the window function and the 4K FFT. Three data structures are involved:

fifo_buf contains complex short-integer sampled data to be processed;fft_buf is the work-

ing memory of the FFT;w contains the tabulated FFT coefficients.

As the first stage in spectrum estimation, we multiply each component of each

complex element of the input data vector (infifo_buf) by the corresponding element of the
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tabulated window function (in the odd-indexed elements ofw). To save space, we derive

the VonHann window function “on the fly” from the tabulated FFT constants, as shown in

Fig. 21.

Then the 4K FFT algorithm (not including the data unscrambling phase) is applied

to data infft_buf. (Since Welch’s method for spectrum analysis involves the sum of peri-

odograms, we unscramble the final result, rather than each raw FFT output, so the

unscrambling algorithm is not included in these measurements.)

2. Test Results

The execution time of the window and FFT functions were measured using TI’s

Code Composer Suite performance profiling timer, with results as shown in Table 4.

  fifo_ptr = &fifo_buf[0]; /* Point to first input value (from A/D).*/
  win_ptr = &w[1];    /* Point to first cos() value. */
  fft_ptr = &fft_buf[0];   /* Point to first output value (to FFT). */
  for (ii=0; ii < 4096; ii++) {
    tmp = 16384 - (*win_ptr >> 1); /* Scale to avoid overflow. */
    win_ptr += 2; /* Skip over sin() value to next cos(). */
    *fft_ptr++ = (*fifo_ptr++ * tmp) >> 16; /* Scale to restore ...*/
    *fft_ptr++ = (*fifo_ptr++ * tmp) >> 16; /* ..fixed-point format.*/
  }

 Figure 21. ANSI C Source Code for Window Function Algorithm.
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.

This table clearly shows the importance of putting frequently used data into the

Internal Data RAM of the processor. Though the SBSRAM is described as “zero wait-

state” memory, since a new value can be read on every clock cycle, attempting to use it for

the FFT’s data vector wastes over 88% of the processor’s performance due to access-time

latency. With all three data structures in SDRAM, the processor spends 95% of its time

waiting.

The fastest configuration applied the window to 4096 complex data elements in

only 10,514 cycles, or about 2.5 clock cycles per complex element. (Remember, reading

from IDRAM takes five clock cycles, multiplication takes two, and branching back to the

top of a loop takes six.) The C compiler exploits the parallelism of the window algorithm

Table 4. Pentek DSP Memory Performance.

function
clock

cycles
time

(µsec)
ratio to

best time
conditions

win
fft

10,514
83,737

53
420

1.00
1.04

all (fifo_buf, fft_buf, and w) in
IDRAM

win
fft

117,079
80,659

585
403

11.13
1.00

fifo_buf in SBSRAM

win
fft

165,268
80,658

826
403

15.72
1.00

fifo_buf in SDRAM

win
fft

63,768
134,218

319
671

6.07
1.66

w in SBSRAM

win
fft

87,335
245,585

437
1228

8.31
3.04

w in SDRAM

win
fft

61,795
714,198

309
3571

5.88
8.86

fft_buf in SBSRAM

win
fft

78,633
1,434,998

393
7175

7.48
17.80

fft_buf in SDRAM

win
fft

253,007
1,619,164

1265
8096

24.06
20.09

fft_buf and w in SDRAM

win
fft

657,522
1,622,313

3288
8112

62.54
20.13

all in SDRAM
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(every data element is independent), but how does it perform against the complexity of a

portable FFT routine?

The “Stockham algorithm, radix-four, with tabulated constants, alternating work

buffers, and integer arithmetic” (algorithm St-F of Chapter II, converted to integer arith-

metic with internal scaling) was evaluated with Code Composer Suite’s simulator over a

set of compiler-optimization switches. The portability of the function was not impaired by

using intrinsic functions or pragmas. Execution times for 4K transforms are listed in Table

5.

Comparing the best compiler-optimized portable routine (1350µsec) against the

best hand-optimized routine (403µsec), we see that the compiled routine takes more than

three times as long. Inspection of the scheduled assembly language produced by the com-

piler shows that at most six of the eight functional units are coded into a single execution

cycle (and then, in only one of the 182 cycles in the function), and two cycles use five

units. For the rest of the program, at least half of the functional units are idle. In the inner

loop, 94 instructions will execute in 49 cycles, so we average less than two instructions per

cycle. There is, therefore, a strong incentive to manually optimize time-critical portions of

an application or incorporate a well-optimized library routine.

Table 5. TI DSP Compiler Performance.

optimization cycles time optimization features

none 2380975 11.9 msec most easily debugged, due to the clear association of source
and executable code, memory is up-to-date after each C
source line has completed.

-o0: register 1390231 6.95 msec simplifies control flow, assigns variables to registers, sim-
plifies expressions and statements, etc.

-o1: local 960201 4.80 msec adds local copy propagation, eliminates local common
expressions, etc.

-o2: function 270106 1.35 msec adds conversion of array references to incrementing point-
ers, loop unrolling, loop optimizations, software pipelin-
ing., etc.

-o3: file 270106 1.35 msec makes short functions in-line, propagates argument into
function when function argument always has the same
value, etc.
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F. COMPARING PENTIUM-III AND C6X

In Chapter II-D we saw that the Pentium-III could compute a floating-point 4K

FFT (with properly sorted output) in 320µsec, while in section III-E, the C6201 took 403

µsec to do an integer calculation (without sorting the output). The Pentium-III was faster

and easier to program. So why should we consider DSP devices?

CPU cost: the TI DSP chip currently sells for about $40 (in 1000-unit quantities)

[Ref. 13], while 1 GHz Pentium-compatible AMD Athlon 4 processors cost $425 (in

1000-unit quantities) [Ref. 14].

System cost: The cost of the DSP device includes on-chip serial ports, DMA con-

trollers, and memory controllers, which would be external to the Pentium. On the other

hand, the volume of Pentium-system sales provides economies of scale which are lacking

in the DSP-on-VMEbus market.

Physical size: Our DSP system puts four processors on each VME card, while our

Pentium system packages just one CPUs per card.

State of the art: the clock speed of C6x family devices has increased by a factor of

three since the C6201 was introduced, while Pentium speeds approach 1500 MHz, so a

current DSP chip may outperform a current Pentium. However, Pentium-class processors

reach the commercial marketplace much more quickly than DSP devices do (Pentek’s

Model 4290 C6x board is still plagued with functional and/or documentation faults), so

low-volume DSP developers may always lag behind.

G. LARGE TRANSFORMS ON DSP

The Internal Data RAM of the C6201 will not be large enough to store the coeffi-

cient tables and data vectors for transforms of greater than 4K elements. To avoid the

severe performance penalty of fetching data elements one at a time from external memory

(as illustrated in Table 4), the C6201’s internal Direct Memory Access (DMA) controllers

can be used to swap work-vectors in and out of IDRAM, much as the cache controllers

described in Chapter II do for general-purpose processors. The DMA controllers, however,

can be programmed with arbitrary “stride” values for reading and writing, which allows

them to perform the transpose operations without burdening the processor. It may be pos-
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sible for DMA transfers to take place concurrently with FFT calculations, without slowing

the FFTs, but the actual effectiveness of this technique remains to be determined.
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IV. CONCLUSION

This thesis has explored a variety of issues involved in developing an FFT-based

spectrum analyzer. We’ve shown how a popular “textbook” algorithm for the FFT can be

modified to run faster on a general-purpose computer, and how main-memory access can

become a bottleneck which limits the performance of the processor on large (greater than

64K) FFTs. An algorithm (program “Fact-T” of the appendix) was presented which recov-

ers much of the lost performance by improving the effectiveness of the cache manage-

ment. For a 4K transform, the modified routine runs in half the time of the original; for a

1K2 transform, one seventh.

Several options for spectrum analysis window function design and storage were

assessed with results that must be considered in an application context. The Von Hann

window was found to provide acceptable spectrum estimates for our application, while

allowing reuse of trigonometric factors previously tabulated for the FFT itself. Decimation

and interpolation of window function data was found to produce spurious features in the

spectrum which diminish for large tables and higher-order interpolation algorithms.

We implemented the FFT on a fixed-point digital signal processor, the

TMS320C6201, taking advantage of assembly language software development tools

which allow parallel functional units to be optimally exploited. An algorithm for sorting

FFT results into natural order was developed which is more memory efficient than an

algorithm described in TI application notes.

Implementation of manually scheduled assembly language programs was shown to

be facilitated by describing the resources and dependencies of the program in a general-

purpose spreadsheet tool.

Run-time measurements on an MIPS R4000 RISC processor, Intel Pentium-3, and

TI TMS320C6201 illustrate the advances in architecture which allow the Pentium-3 and

‘C6201 to provide performance which goes beyond that which would be predicted based

solely on their shortened clock cycles. For a portable C 4K FFT, the Pentium requires less

than half as many clock cycles as the R4000; for a 1K2 FFT, superior cache management
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gives it a four to one advantage per clock cycle. The 200 MHz C6201 running TI-opti-

mized code is essentially equal in performance to the 733 MHz Pentium-3 running Intel-

optimized code (at the 4K size), having a 3.5 to one advantage per clock cycle but a 3.7 to

one handicap in clock speed. Intel has recently announced that the Pentium clock speed

may double, while TI is promising 600 MHz versions of its product line, so the perfor-

mance race may remain close for the foreseeable future. Considerations other than arith-

metic performance, such as size, cost, power consumption, arithmetic precision, and

designer familiarity outweigh their relative performance on generic benchmark programs.

Determining whether or not a DSP device can satisfy a challenging performance require-

ment is likely to require substantial investment to implement a realistic test, and coordina-

tion with the manufacturer to determine component availability.

A 4K FFT can run without reference to off-chip memory, which is demonstrated to

be essential for efficient operation. For larger transforms (e.g., 1K2, 4K2), the C6201 must

rely on DMA transfer of intermediate results between internal and external memories to

maintain performance anywhere close to small transform performance. The large-FFT

portable program “Fact-T” illustrates the sequence of block data movements and arith-

metic.
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APPENDIX: PORTABLE SOURCE CODE

A. Str4flip: An out-of-place radix-four small FFT algorithm

/*
  Stockham Radix-four FFT (unit-stride, not in-place)
  based on Algorithm 2.4.2, Stockham Radix-four Algorithm, in
  Computational Frameworks for the Fast Fourier Transform, SIAM,
  by Charles Van Loan.

  This version uses tabulated twiddle factors, for speed optimization.
  It also flip-flops samples between buff and data, to avoid copying.
  If the base-4 log of the FFT size is odd,
    then the result is returned in the workspace “buff,”
    else the result is returned in the input array “data.”

  */
#include <stdio.h>
#include <math.h>
/* M_PI is defined in math.h */
#define MAIN 1
/*
  The Stockham version has unit (complex) stride for each pass; data is
  in order before and after transform, but the computation is not
  “in-place.”
  “buff” is a workspace equal in size to “data.”
*/
/*

Initialize the trig-factor table. As usual, nn is the number of complex
  samples in the FFT, so the table has nn/4 complex (= nn/2 float) val-
ues. */
void init_table( float w_tab[], const int nn )
{
  int jj;
  double temp;
  for (jj=0; jj < nn / 4; jj++) {
    temp = 2.0 * M_PI * (double) jj / (double) nn;
    w_tab[2*jj    ] = (float)  cos( temp );
    w_tab[2*jj + 1] = (float) -sin( temp );
  }
}

void str4flip( float data[], float buff[], float w_tab[],
   const int nn, const int log4n)

{
  int j, k, q, r, r_star, ell, ell_star;
  float wr, wi, w2r, w2i, w3r, w3i;
  float ar, ai, br, bi, cr, ci, dr, di;
  float t0r, t0i, t1r, t1i, t2r, t2i, t3r, t3i;
  float *d_ptr, *b_ptr, *swap_ptr;
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  int index;
  int w_index;

  d_ptr = data; /* Pre-swap the pointers. */
  b_ptr = buff;
  for (q = 1; q <= log4n; q++) { /* For each pass through the data */
    ell = (int) pow( 4.0, (double) q );
    r = nn / ell;
    ell_star = ell / 4;
    r_star = 4 * r;
    /* Swap data/buff pointers; effectively swapping the input and
       output buffers used below. */
    swap_ptr = d_ptr;
    d_ptr = b_ptr;
    b_ptr = swap_ptr;

    for (j=0; j < ell_star; j++) {
      w_index = 2 * j * r;
      wr = w_tab[ w_index++ ];
      wi = w_tab[ w_index   ];
      w2r = wr * wr  - wi * wi;       w2i = wr * wi  + wi * wr;
      w3r = wr * w2r - wi * w2i;      w3i = wr * w2i + wi * w2r;
      for (k=0; k < r; k++) {
        index = 2*(j * r_star + k);

ar = *(b_ptr + index );
ai = *(b_ptr + index + 1);
index += 2 * r;
br = wr * *(b_ptr + index ) - wi * *( b_ptr + index + 1 );
bi = wi * *(b_ptr + index ) + wr * *( b_ptr + index + 1 );
index += 2 * r;
cr = w2r * *(b_ptr + inde x ) - w2i * *( b_ptr + inde x + 1 );
ci = w2i * *(b_ptr + inde x ) + w2r * *( b_ptr + inde x + 1 );
index += 2 * r;
dr = w3r * *(b_ptr + inde x ) - w3i * *( b_ptr + inde x + 1 );
di = w3i * *(b_ptr + inde x ) + w3r * *( b_ptr + inde x + 1 );
t0r = ar + cr;t0i = ai + ci;
t1r = ar - cr;t1i = ai - ci;
t2r = br + dr;t2i = bi + di;
t3r = br - dr;t3i = bi - di;
index = 2 * (j * r + k);
*(d_ptr + index )=t0r + t2r;*(d_ptr + index+1) = t0i + t2i;
index += 2 * r * ell_star;
*(d_ptr + index )=t1r + t3i;*(d_ptr + index+1) = t1i - t3r;
index += 2 * r * ell_star;
*(d_ptr + index )=t0r - t2r;*(d_ptr + index+1) = t0i - t2i;
index += 2 * r * ell_star;
*(d_ptr + index )=t1r - t3i;*(d_ptr + index+1) = t1i + t3r;

      }
    }
  }
}
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#if (MAIN)  /* turn on for stand-alone testing. */
#define LEN (1024*16)
/* Note that the base-4 log is half of the base-2 log. */
#define LOGLEN (5+2)
#define TESTLOOPS 1

void main( void )
{
  float data[ LEN * 2 ], work[ LEN * 2 ], w_tab[ LEN / 2 ];
  int j, k;

/* Synthesize some input data. */
  for (j = 0; j < LEN; j++) {
    data[2*j]   = 0.0; /* cos( j * M_PI / 2.0 ); */
    data[2*j+1] = 0.0; /* sin( j * M_PI / 2.0 ); */
  }
  data[3] = 1.0f;
  init_table( w_tab, LEN );
  for (k = 0; k < TESTLOOPS; k++) {

/* Since str4flip does not scale its result, recursive application of
       str4flip to a buffer quickly leads to numeric overflow processor
       exceptions. Re-create the data vector to test with many loops.
       Make sure loops are not identical, or optimizer may prevent
       looping! */
    data[2] = k;
    str4flip( data, work, w_tab, LEN, LOGLEN );
    /* Examine results (not shown). */
   }
 }
#endif /* MAIN switch, for stand-alone testing. */
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B. Cxtranspose: Efficiently transpose an array of complex elements

/*  Implements an out-of-place transpose of a rectangular complex data
array. The dimensions of the array must be integer multiples of
BLOCK_DIM, below. For a 1024x1024 array, the time required to perform the
transpose is 0.6 sec (with 32x32 block size). A straightforward algorithm
took 2.1 sec.*/

#include <stdio.h>
/*  This version transposes square blocks, to improve cache performance.
    BLOCK_DIM of 16 and 32 are about equal, but 64 is worse. */
#define BLOCK_DIM 16
void cxtranspose( float in_data[], float out_data[],

   const int rows, const int cols )
{
  int ii, jj, kk, mm;/* General loop counters. */
  float *in_ptr[BLOCK_DIM];/* Array of input pointers. */
  float *out_ptr[BLOCK_DIM];/* Array of output pointers. */

/* In_ptrs point to the first columns of the first N rows. */
  for (kk = 0; kk < BLOCK_DIM; kk++)
    in_ptr[ kk ] = &in_data[ 2 * cols * kk ];

/* For each block-row... */
  for (jj = 0; jj < (rows / BLOCK_DIM); jj++ ) {

/* Out_ptrs point to left edge of current block-column.*/
    out_ptr[0] = &out_data[2 * BLOCK_DIM * jj];
    for (mm = 1; mm < BLOCK_DIM; mm++)
      out_ptr[ mm ] = out_ptr[ mm-1 ] + 2 * rows;

/* For each block in the block-row... */
    for (ii=0; ii < (cols / BLOCK_DIM); ii++) {

/* For each row in the block... */
     for (kk=0; kk < BLOCK_DIM; kk++) {

/* For each column in the block... */
        for (mm=0; mm < BLOCK_DIM; mm++ ) {

/* Copy data from one row pointer to each column pointer. */
         *out_ptr[mm]++ = *in_ptr[kk]++; /* Real part. */
         *out_ptr[mm]++ = *in_ptr[kk]++; /* Imag part. */
      }

      }
/* Done with a block; move the out_ptrs down to the next block in

           the block-column. (The in_ptrs just increment into the next
 block in the block-row.) */

      out_ptr[0] += 2 * BLOCK_DIM * (rows - 1);
      for (mm = 1; mm < BLOCK_DIM; mm++)
        out_ptr[ mm ] = out_ptr[ mm-1 ] + 2 * rows;
    }

/* Done with a block-row; move in_ptrs to next block-row. */
    for (kk = 0; kk < BLOCK_DIM; kk++)
      in_ptr[ kk ] += 2 * cols * (BLOCK_DIM - 1);
  }
}
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C. Fact-T: A large FFT algorithm

/*
  This program builds on the str4flip Stockham radix-four algorithm to
  build a large FFT, using the ideas in Section 3.3 of Van Loan.

  Note that Van Loan’s terminology assumes Fortran’s array organization,
  where successive rows within a column are adjacent in memory. In this

ANSI-C program, successive elements are assumed to lie in the same row.
  */
#include <stdio.h>
#include <math.h>
/* M_PI is defined in math.h */

/* Declare the FFT and complex-transpose external routines. */
extern void str4flip( float * data, float * work,

const int length, const int log4_length );
extern void cxtranspose( float * in_data, float * out_data,

const int rows, const int cols );
#define LEN1 256
#define LEN2 4096
#define LEN (LEN1 * LEN2)
#define MAXLEN LEN2 /* whichever is bigger */
#define LOGLEN1 4
#define LOGLEN2 6
#define TESTLOOPS 2
/*
  Initialize the block-multiply twiddle-factor array. Note that the sign
  on the “sin” term is negative, consistent with Van Loan’s text.
  */
void init_twiddle( float tw[], const int len1, const int len2 )
{
  int ii, jj, index;
  double temp;

  temp = 2.0 * M_PI / ((double) (len1 * len2));
  for (ii = 0; ii < len1; ii++ ) {
    for (jj = 0; jj < len2; jj++ ) {
      index = ii * len2 + jj;
      tw[ 2 * index    ] = +cos( temp * ii * jj );
      tw[ 2 * index + 1] = -sin( temp * ii * jj );
    }
  }
}
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/* Apply the block-multiply constants. */
void use_twiddle( float data[], float tw[], const int len1, const int
len2 )
{
  int ii, jj, index;
  float temp;
  for (ii = 0; ii < len1; ii++ ) {
    for (jj = 0; jj < len2; jj++ ) {
      index = 2 * (ii * len2 + jj);
      temp             = data[ index     ] * tw[ index ] -

      data[ index + 1 ] * tw[ index + 1 ];
      data[ index + 1] = data[ index + 1 ] * tw[ index ] +

      data[ index     ] * tw[ index + 1 ];
      data[ index ] = temp;
    }
  }
}

void main( void )
{
  float data[    LEN * 2 ]; /* two floats per complex */
  float data2[   LEN * 2 ]; /* transposed */
  float twiddle[ LEN * 2 ];
  float work[ MAXLEN * 2 ]; /* The greater of LEN1 and LEN2. */
  int j, k;
  init_twiddle( twiddle, LEN1, LEN2 ); /* operates on transpose */
  for (k = 0; k < TESTLOOPS; k++) {

/* Read (or synthesize) test data (deleted) */
/* Now, compute the transform. */

    cxtranspose( data, data2, LEN2, LEN1 );
    for (j = 0; j < LEN1; j++) {
      str4flip( &data2[ j * 2 * LEN2 ], work, LEN2, LOGLEN2 );
    }
    use_twiddle( data2, twiddle, LEN1, LEN2 );
    cxtranspose( data2, data, LEN1, LEN2 );
    for (j = 0; j < LEN2; j++) {
      str4flip( &data[j * 2 * LEN1], work, LEN1, LOGLEN1 );
    }
    cxtranspose( data, data2, LEN2, LEN1 );
    /* Output (or check) result (deleted). */
  }
}
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