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ABSTRACT 
 
 
 

 Light Detection and Ranging (LIDAR) was used in a Geographic 

Information System (GIS) to quantify coastal changes to beaches and dunes in the 

Southern Monterey Bay region and to qualitatively assess the erosional impact of large 

storms on coastal dune areas.  LIDAR provides a rapid and accurate survey technique to 

measure topographic elevation.  A LIDAR survey was performed in October 1997 and 

then a second survey in April 1998 to measure the erosion occurring during the 1997-

1998 El Niño winter storm.  Maximum dune erosion occurred in the vicinity of Fort Ord 

(13 m) and Marina (15 m), along with significant dune recession in Monterey and Sand 

City.  Beach erosion was prevalent from Moss Landing to Monterey showing the 

seasonal beach loss.  There was a large spatial variability all along the shoreline, with 

many numerous erosional “hot spots”.  From the profile data, the calculated volume loss 

from Monterey to Moss Landing (~22 km) was 880,800 3m , which was calculated by 

multiplying the dune top recession between the two surveys by the height of the dune 

from the toe to the dune top.  From the cut fill calculation within ArcView total volume 

loss was calculated to be 2,470,000 3m , which included both dune and beach erosion.  

LIDAR data provide a high-quality representation of the episodic erosion process in 

Southern Monterey Bay, and also offers useful environmental information to the 

warfighter in terms of detailed beach or landing zone characterizations.   
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EXECUTIVE SUMMARY 
 

Widespread coastal beach and dune changes occurred during winter storms of the 

1997-1998 El Niño.  Three government agencies; US Geological Survey (USGS), 

National Aeronautics and Space Administration (NASA) and National Atmospheric and 

Oceanic Administration (NOAA) worked in partnership to quantify these coastal changes 

using Airborne Topographic Light Detection and Ranging (LIDAR).  The LIDAR 

technique offers rapid acquisition of elevation data along with a vertical accuracy of less 

than 20 cm and a horizontal pixel size of 2 m.   

The focus of this study is to calculate the erosion in the Southern Monterey Bay 

region utilizing LIDAR in a Geographic Information System (GIS).  ArcView was the 

tool that enabled one to map, model, query, and analyze the elevation data.  Then a. 

quantitative and qualitative assessment of the erosional impact of large storms on coastal 

dune areas could be done.  Recession, accretion, and volume losses or gains were 

calculated.   

The calculated dune top recessions ranged from 0 m to 17 m along the Southern 

Monterey Bay coastline.  The volume loss calculated from the dune top cross profiles 

was determined to be 1,260,300 3m .  The total beach and dune loss was calculated to be 

3,423,656 3m .  Highest recessions occurred along the Fort Ord and Marina shoreline.   

Additionally, military applications for LIDAR are abundant.  For example, with 

the assistance of LIDAR, this environmental information can improve the decision 

making process in amphibious operations and beach landings.  In particular, safe routes 

can be planned through beach characterization for U.S. military vehicle s.   
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I. INTRODUCTION  

US Geological Survey (USGS), National Aeronautics and Space Administration 

(NASA) and National Atmospheric and Oceanic Administration (NOAA) collaborated to 

measure coastal change using Airborne Topographic LIDAR with the intent to survey pre 

and post storm topography.  Rapid acquisition and high density data are key advantages 

LIDAR surveys have over the traditional survey methods.  Sallenger et. al. (2001b) 

discuss the Airborne Topographic Mapper (ATM) for coastal mapping and distinguishes 

the ability LIDAR to detect a variety of situations such as overwash areas, dune erosion 

and accretion, landslides, and longshore sediment transport (USGS 1999b).   

Erosion in Southern Monterey Bay was measured using LIDAR (Light Detection 

and Ranging) as the survey method.  There have been several traditional surveys within 

the Monterey region, but nothing as dense and detailed as the LIDAR technique.  Current 

research emphasis is placed on examining coastal change to determine the magnitude of 

this change with respect to sediment volume transport, recession and accretion rates.  

This chapter provides motivation for the study, research objectives, and background on 

previous erosion studies.   

LIDAR provides a rapid and accurate survey technique to measure topographic 

elevation and bathymetry in coastal waters.  LIDAR can be a valuable resource to the 

Navy’s operational oceanographer in providing environmental and intelligence 

information to operational units.  Beach and coastal regions can be characterized with a 

vertical accuracy of 20 cm, which could aid in planning for amphibious landings and 

special operations.  Beach characterization, detailed coastal bathymetry, underwater 

hazards, and bottom type are some of the operational products that LIDAR can provide to 

the warfighter.  LIDAR technology therefore can assist the Navy and Marine Corps in 

littoral operations by enhancing battle space information that provides near real time 

observations for unfamiliar surroundings or settings that may have changed over time.   

Commercial applications of LIDAR are numerous with respect to environmental 

monitoring and land use.  It can assist in providing a scientific understanding and 

foundation needed to develop and implement technically sound land use planning 
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solutions.  Furthermore, storms cost millions of dollars in damage to public park 

facilities, businesses, and homes, therefore applying LIDAR technology can aid in 

predicting high risk areas.  Sediment transport, seasonal and long term erosion, and 

mapping flood prone areas are just a few coastal LIDAR applications.   

The objective of this study is to quantify coastal changes to beaches and dunes in 

the southern Monterey Bay region utilizing LIDAR survey data during the 1997-1998 El 

Niño winter.  The aim is to apply LIDAR data in a Geographic Information System 

(GIS), which will enable to quantitatively assess the erosional impact of large storms on 

coastal dune areas through mapping, modeling, querying and analyzing the data.  

ArcView was the selected GIS software to use, developed by Environmental Systems 

Research Institute (ESRI 2002).   

A. BACKGROUND 

Southern Monterey Bay shoreline from Monterey to Moss Landing examined, 

which is characterized by extensive sand dunes rising up to a high as 46 m in the Fort Ord 

and Marina area.  The mechanisms for potential losses and sources of sand were depicted 

by Galliher (1932) for Southern Monterey Bay shown in Figure 1.  Probable mechanisms 

for loss of sand are Monterey Submarine Canyon, dunes formed by winds, damming of 

Salinas River, past sand mining, and seawalls/riprap.  Sources of sand to the beaches are 

the erosion of dunes and Salinas river discharge.  Erosion is defined here as a recession of 

the top of the dune as this is the seaward extent of functional land use and because of the 

prevailing onshore winds, there is no mechanism to build out the dune top.  Erosion 

events are episodic and occur when storm waves and high tides occur simultaneously 

resulting in the base of the sand dune being cutback and slumping causing permanent 

recession of the dune.   
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Figure 1.   Southern Monterey Bay Sand Sources and Losses (from Dorman 1968) 
 

1997-1998 was a strong El Niño winter.  Storlazzi and Griggs (1998) 

characterized the 1997-98 El Niño Southern Oscillation (ENSO) in terms of weak 

easterly trade wind, anomalously high sea surface temperatures, high sea level elevations, 

large rainfall, and large waves for the central California coast.  They found maximum 
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monthly mean significant wave height from 1987-1997 did not exceed 2 m in northern 

Monterey Bay.  However, the nearshore significant wave heights exceeded 2 m starting 

in late November 1997, with a peak in February 1998 that exceeded 4.2 m in the northern 

Monterey Bay.  Flick (2001) found the incident wave direction was more westerly wave 

directions during this period based on Coastal Data Information Program (CDIP).   Flick 

(2001) used cumulative precipitation in Monterey as a gauge to specify storminess.  The 

average annual rainfall is 50.8 cm (20 inches) per year.  During the 1997-98 winter, the 

most rainfall occurred for the past 50 years (Figure 2).   

 

  
Figure 2.   Monterey Monthly Precipitation (from Flick 2001). 

 

The potential for erosion to occur increases with tide level.  Flick (1998) 

hypothesized that anomalously high tides occur during El Niño events due to warm water 

along the coast.  He examined the tides at San Francisco to characterize the tides for 

central California.  A peak tide of 2.1 m occurred in December of the 1997-1998 El Niño  

with above average mean water levels in the fall of 1997.  He found record high mean sea 

levels (msl), .06 m to .37 m above normal (Figure 3).  Furthermore, the coast endured a 

large storm surge of 0.98 m in February 1998 (Figure 4).   
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Figure 3.   San Francisco Monthly Mean Sea Levels (from Flick 1998). 

 
 

Figure 4.   San Francisco Monthly Mean Sea Levels (from Flick 1998) 

Seymour (1998) examined the relationship between large wave events and El 

Niños utilizing wave data from the CDIP wave height archives along the west coast.  A 

storm was defined as occurring when the significant wave height exceeded 4 m for 9 

hours or more.  A correlation of storms occurrence with El Niño  was shown in the 

southern California region, but not in the Northwest coasts of Oregon and Washington.  

Southern California experienced large wave events in 1998.   
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A number of erosion studies have been conducted for Southern Monterey Bay 

using photogrammetric methods.  The studies by Sklavidis and Blanco (1985) and 

McGee (1986) performed stereo-photogrammetry on 5 sets of aerial photos from 1940 to 

1984 to measure cliff recession along the Southern Monterey Bay shoreline.  The studies 

showed general recession of the shoreline, with the exception of Moss Landing area 

where net accretion has occurred.  The measurements show the erosion rate is variable 

from year to year.   

The results of these studies along with descriptions provided by Griggs and Savoy 

(1985) based on historical photos are used to give a history of particular sites (Figure 5).  

Starting at the north and proceeding south, Moss Landing is observed to dominantly 

undergo beach accretion, with an average .6 m/yr accretion rate from 1937 to 1983 

(Griggs and Savoy 1985).  However, they did note a case of episodic erosion in 1982-

1983, coinciding with a strong El Niño winter with a 5.2 m dune recession near the 

Marine Lab.  McGee (1986) found similar average 0.45 m for the period 1944-1984 at 

the old Marine Lab.   
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Figure 5.   Southern Monterey Bay 

Mean recession at Rincon Beach was 0.84 m/yr (McGee 1986) with up to a 30 m 

cutback of dunes occurred between 1978-1983 in the Monterey Dunes Colonies next door 

(Griggs and Savoy 1985).  The mean recession rate at Marina State Beach was 0.4 m/yr 

(McGee 1986).  Increased recession of 2.1 m/yr, occurred 1980-1984, which included a 



8 

strong El Niño year and an extreme event in 1978 that took out 24 m of dune (Griggs and 

Savoy 1985).   

The highest erosion rate occurs in Fort Ord region with a specific site losing up to 

12 m erosion in 1983 (Griggs and Savoy 1985).  The average recession rate of 1.83 m per 

year was found by Sklavidis and Blanco (1985).  McGee (1986) calculated 1.12 m/yr 

recession rate from 1944-1984, as well as a 3.85 m/yr recession rate during 1980-1984.  

McGee (1986) states that the energy convergence from refractive wave focusing is one of 

the probable sources of high erosion rates occurring in the area.   

In Sand City, Sklavidis and Blanco (1985) reported a 1.5 m to 2.7 m per year at 

the Phillips Petroleum site.  McGee (1986) calculated give recession rates of 0.97 m/yr 

during 1940-1984 and 1.34 m/yr during 1980-1984 for Sand City.   

Griggs and Brown (1998) provide a descriptive assessment of the damage 

incurred during 1982-83 and 1997-98 ENSO winters along the central California 

coastline and compare the two events.  During the 1982-83 ENSO, extensive damage was 

shown in terms of substantial property and infrastructure damage.  The 1997-98 ENSO 

was noted with less damage, which was attributed to post 1982-83 ENSO seawall and 

revetments.  Of particular interest for this study, is the Monterey City beach was depicted 

in the article showing the temporary riprap that was placed in front of an apartment 

complex in 1982.  This riprap was later removed in 1992.  The apartments survived the 

1998 large waves, but there was significant erosion in the surrounding area, which is 

evident from photographs.   

Dingler and Reiss (2001) investigate changes to Monterey Bay shoreline from 

1982-1998 by way of traditional survey methods for nine beaches in Monterey Bay.  

They showed for a selected Fort Ord site that the there was a 21 m retreat in the 16 years 

and state most of the erosion occurred during the El Niño events of 1982-1983 and 1997-

1998.  Dingler et. al. (1985) showed beaches eroding then recovering, but noting each has 

its own unique rebuild pattern.   
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II. LIDAR MEASUREMENTS 

A. AIRBORNE TOPOGRAPHIC MAPPER (ATM) 

The objective is to analyze LIDAR data in conjunction with aerial oblique photos 

and digital orthophoto quadrangles to assess changes in the beaches and dunes 

qualitatively and quantitatively.  To help in the analysis ArcView Spatial analyst tools are 

utilized to create slope, aspect, difference, and volume loss or gain maps.   

ATM was flown along the shoreline of Monterey Bay in October 1997 and April 

1998.  The 1997 LIDAR data were collected during low tide on October 12 and 13 and 

the 1998 LIDAR data were collected on April 15,17, and 18 during low tide.  The 

LIDAR 1997 coverage is shown in Figure 6.  The scan width of the ATM’s is 

approximately 300 m with an aircraft elevation of 700 m (Figure 7).  A flowchart of how 

the elevation files are generated in the ATM System are shown in Figure 8 (NOAA 

2001).  The ATM system combined with the Global Positioning System (GPS) and 

inertial navigation to determine the range of the laser and trajectory of the aircraft.   
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Figure 6.   1997 LIDAR Data Coverage 



11 

 
 

Figure 7.   Airborne LIDAR Mapping (from NOAA 2001) 
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Figure 8.   Generation of Elevation files (from NOAA 2001). 
 

The ATM provides a vertical accuracy of 15 cm and a horizontal resolution of at 

least 2 m.  System spatial errors are collected using the GPS, calculated panoramic 

distortion and scan rate.  Brock et. al. (1999) state the spatial density of the elevation 

measurements occur every 2 2m .  To get this accuracy the aircraft’s GPS antenna must 

be known to approximately 5 cm (Krabill and Martin 1987) and the ATM must be 

calibrated.  Meridith et. al. (1998) discuss the calibration requirements of the ATM, 

which include a corrections for the laser range and angular mounting biases with respect 

to the aircraft attitude.  They state for a tenth of a degree mounting error a 32 /cm vertical 

error with a 131 /cm horizontal error would be introduced.  The aircrafts attitude and 

position use kinematic GPS techniques, therefore satellite availability along with a their 

associated geometry are sources of errors (Krabill et. al. 1995).  There is some variability 

in the altitude the plane is flying, along with variable swath overlap, which is typically 30 

percent (Meredith et. al. 1998).  The ATM has a 2.1 milliradian field of view and its scan 
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mirror rotates at 20 Hz along with a 15 degree off nadir angle.  Increasing scan distance 

(or scan angle) from nadir translates to a larger pixel dimension.  Overlapping the track 

can solve this panoramic problem.  We need small field of views to see detail.  Equation 

giving the distance of one side of a pixel and the swath distance is given below.   

Meridith et al. (1998) provided a comparison and a validation of the ATM with 

extensive ground surveys points on the North Carolina coast.  LIDAR measurements 

were compared with ground surveys on different days resulting in a mean difference of 

4.6 cm and a standard deviation of 8.7 cm of elevation differences.  The statistics from 

ATM to ground survey comparisons gave a mean difference of less than 10 cm except for 

one which was still less than 15 cm and the root mean square (RMS) was less than 20 cm.  

These measurements agree with Krabill et al. (1995), who found an RMS range of 9 cm 

to 14 cm when comparing LIDAR with ground survey data.  Therefore, the RMS error is 

taken to be less than 20 cm.   

The Digital Orthophoto Quadrangles (DOQ’s) were produced by the IntraSearch 

Company (2002) from black and white aerial photographs from 21 August 1998.  

Approximately 7 exposures were used to generate the digital imagery.  The photographs 

were scanned at 2000 dpi with a Vexcel HT-4000 photogrammeteric film scanner to yield 

a .5 m pixel resolution.  USGS 7.5 minute quadrangle data and USGS digital elevation 

model data were used as the control.  Approximately 9 control points were used per 

exposure in the orthoretification process.  The DOQ’s final output was projected in UTM 

coordinates, and the horizontal datum NAD-83.  Oblique aerial photographs were 

obtained from the USGS (1999).  The aerial photos were taken during the LIDAR flights 

on October 20, 1997 and April 20, 1998.   
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B. DATA PROCESSING 

The LIDAR data was converted to a convenient Cartesian coordinates for analysis 

with vertical data corresponding to a height close to mean sea level.  The LIDAR data 

datum is the World Geodetic System 1984 (WGS-84) and was retained.  However, the 

original geographic (geodetic) projection was changed utilizing a geographic translator 

(GEOTRANS) to convert geodetic coordinates to Universal Transverse Mercator (UTM) 

coordinates zone 11 (PAR Government Systems Corporation 1999).  UTM coordinates 

were selected so that all x, y, z data were in meters to facilitate distance and volume 

calculations within ArcView.  After processing data in GEOTRANS, the horizontal and 

vertical map accuracy achieved was 90% for circular and linear error respectively.  A 

90% Circular Map Accuracy means 90% of all well defined features fall within the circle 

size specified.  A 90% linear error means that all the contours will fall within a certain 

contour interval.  To project at a constant scale is not possible.  Therefore, the scale error 

that is introduced is actually a systematic distortion.  To preserve maximum data density 

ellipsoidal elevations were only tested for gross errors.  Elevations less than –35 m and 

greater than 130 m, were removed.  The data were then sorted by latitude and partitioned 

in to 20 regions.   

The G99SSS geoid model incorporating a one by one arc minute grid was used to 

convert the ellipsoidal height to a value close to mean sea level called the geoid surface 

(global geopotential surface) (NOAA 2000).  The accuracy with respect to GPS or 

benchmarks is 4.6 cm.  The source of error is in GPS heights along with geoid and 

leveling errors (NOAA 2000).  The relationship with respect to surfaces is shown in 

Figure 9.  The global geopotential surface is shown in large dashes and the International 

Terrestrial Reference Frame (ITRF 96) as a solid black line.   
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Figure 9.   Height Relationships: (from NOAA 2000). 

The LIDAR data were binned every .01° and an undulation was calculated for that 

region and applied to each ellipsoidal height.  The specific global geopotential surface 

elevations in meters that correspond to Southern Monterey Bay’s Northing that were used 

in this study are given in Figure 10 and Table 1.  The global geopotential surface 

represents elevation in meters through out this study.   
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Figure 10.   Global Geopotential Surface with respect to Northing 
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Bin File Northing Latitude  Global 
Geopotential 
Surface (m) 

bin1utm 4051084 36.600 -34.262 
bin2utm 4052215 36.610 -34.216 
bin3utm 4053335 36.620 -34.201 
bin4utm 4054455 36.630 -34.184 
bin5utm 4055564 36.640 -34.193 
bin6utm 4056684 36.650 -34.170 
bin8utm 4058914 36.670 -34.140 
bin9utm 4060023 36.680 -34.132 
bin10utm 4061144 36.690 -34.094 
bin11utm 4062253 36.700 -34.080 
bin12utm 4063362 36.710 -34.064 
bin13utm 4064472 36.720 -34.044 
bin14utm 4065581 36.730 -34.021 
bin15utm 4066690 36.740 -33.995 
bin16utm 4067811 36.750 -33.939 
bin17utm 4068920 36.760 -33.910 
bin18utm 4070030 36.770 -33.879 
bin19utm 4071139 36.780 -33.847 
bin20utm 4072260 36.790 -33.786 

Table 1.   Global Geopotential Surface values  
 

C. SYNTHETIC TESTS TO ASSESS ARCVIEW’S SPATIAL ANALYST 
TOOLS 

A synthetic data set was created to assess how effectively ArcView’s spatial 

analysis tools interpret the LIDAR data.  A 1000 m by 1000 m region was devised with 

elevation sampled every 1 m.  The spatial units are in Universal Transverse Mercatur 

(UTM) coordinates, easting and northing units.  For the years 1997 and 1998, simulated 

data sets were then created.  The simulated 1997 data set was developed with a beach 

shoreline along the 600740 easting.  From the shoreline, a 45° beach slope was extended 

inland 300 m then the elevation levels to 300 m.  Additionally, a building with an area of 

200 m by 200 m was placed at 400 m to 600 m inland with a height of 150 m.  The 

simulated 1997 data set is shown in Figure 11.  The data for 1998 were simulated for 2 

different cases.  The first case simulated a removed building.  The volume of the building 

is 6,000,000 3m .  The simulated data set for case 1 is shown in Figure 12.  The second 

case simulated a recessed beach with the building plunging (removed) into the water.  
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From the shoreline to 300 m inland, the beach is now submersed and the slope of the 

beach moves to 300 m inland.  The simulated data set for case 2 is shown in Figure 13.   

 
 

Figure 11.   Synthetic 1997 Data Elevation Model 
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Figure 12.   Synthetic 1998 Data Elevation Model:  Case 1 
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Figure 13.   Synthetic 1998 Data Elevation Model:  Case 2 

The first objective of the synthetic data tests was to assess Arcview surface linear 

interpolation methods that create Grids and TIN’s (Triangulated Irregular Networks).  

ArcView is geographic information system software developed by Environmental 

Systems Research Institute (ESRI 2002).  When creating a grid in ArcView, the elevation 

data points are weighted according to the nearest cell that is being analyzed referred to as 

inverse distance weighting (IDW).  The IDW estimation of G(x,y) is given by (Watson 

and Philip 1985).   
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The power parameter associated with this method controls the weight of the 

nearby points.  A higher power gives less influence to the more distant points.  The 
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assumption for this method is that each elevation data point has a local influence that 

reduces with distance.  The choice of the neighborhood search scheme is key to 

representing a surface correctly.  ArcView uses “kings rule”, meaning it looks at the cells 

above and below (ESRI 2002).  Philip and Watson (1982) point out IDW is not ridge 

preserving, but note improved results can be obtained if there is sufficient sampling.  The 

power parameter (p) of 2 and 12 nearest neighbors (i) were used for this study.   

TIN’s created in ArcView applies the Delaunay triangulation method.  The spatial 

interpolation on a TIN is linear that assumes a constant slope between two vertices.  A 

process to handle irregularly spaced and complex relief elevation data are the main 

advantages of TIN’s  (Burrough and McDonnel 1998, Yue-Hong Chou 1997).  

Triangulation is described as an accurate technique to represent a surface with no initial 

approximation of the data points (Philip and Watson 1982).  TINs are represented as 

plane triangular surfaces.  The orientation is determined by the elevation then fitted to 

each triangle.  The interpolation occurs down the edges of the triangle between the data 

points.  When the terrain is complex, interpolation can become ambiguous.  Therefore, to 

characterize the surface accurately, more data is required allowing areas of complex relief 

to be represented.   

Cross profile plots were used to assess the surface representation.  (See Figure 14) 

The ArcScript used for the cross profiling was written by Ianko Tchoukanski (2001).  

Both the TIN and grid provide a good depiction of the data; they both handle sloping 

surfaces and appear to handle abrupt changes in height.  When sampling elevation from 

the grid and TIN, the elevations values were highly accurate for the TIN and for the grid 

the average difference in elevation from the true was 0.0632 m.  To illustrate how each 

method represents the surface refer to Figures 14-18.  Additionally, a profile from the 

LIDAR data was performed over Stillwell Hall in Fort Ord to examine how it handles 

rapid height changes (Figure 19), ArcView was able to distinguish the irregular roof and 

chimney.  Some differences between the 1997 and 1998 profile are that they were 

possible offsets causing relatively large difference where steep gradients (vertical walls) 

occur.   
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Figure 14.   1997 Synthetic Data Elevation Model 
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Figure 15.   Cross profile Comparison of TIN vs. Grid surface. 
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Figure 16.   Cross profile Comparison of TIN vs. Grid surface. 
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Figure 17.   Cross profile Comparison of TIN vs. Grid surface. 
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Figure 18.   Cross profile Comparison of TIN vs. Grid surface. 
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Figure 19.   Fort Ord Cross Profile 4 

A second objective was to test different grid cell resolutions by comparing 1 m, 

1.5 m, and 2 m cell size.  Decreasing the cell size improves the data representation, as 

expected when the cell grid size approached the resolution of the data.  The third 

objective was to compare sampling interval.  The real LIDAR 1997-1998 data sampling 

ranges from 1 m up to 5 m sampling and is not evenly spaced.  There were more passes 

over the region in 1998 than in 1997, which for the most part the sampling distance is 1 

m to 2 m, but there are some areas up to 5 m.  Gaps were eliminated or minimized by 

using the edit mask as a control.  The synthetic data is evenly spaced every 1 m.  It was 

then sampled at 2.5 m and at 5 m.  As the sampling distance increases, the less smooth 

the representation becomes expected.  The 2.5 m and the 5 m sampling depicts the 

building, but because the sampled interval did not fall on the edge of the building.  The 

edge ended up being within 1 m from the true edge for the 2.5 sampling and within 2.5 m 

of the edge for the 5 m sampling.  Therefore, the closer the sampling interval is to the 

resolution, the more accurately a feature can be resolved.   
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Another objective was to test the Cut-Fill option within ArcView from a TIN 

surface.  This method involved a gridded linear interpolation.  From this technique the net 

volume losses and gains were calculated.  For the synthetic data set, the building volume 

loss was calculated and found to be within +/-0.99% of the actual volume loss.   

Results from the tests indicate if you choose the closest grid cell size and 

sampling interval with respect to the data resolution, the more precise and accurate will 

be the data representation.  The TIN’s provide an accurate spatial representation of the 

surface.  Therefore, for this study TIN’s were used for the surface cross profiles and 

volume calculations.  Overall the results are only as good as the resolution of the data.  A 

problem with this test was the bias in the evenly spaced data.   

D. METHOD 

Surface information is organized into a set of triangulated irregular networks 

(TIN’s) enabling the beach to be characterized and classified based on elevation.  Slope 

maps were created to assist in identifying dune tops and were derived directly from the 

TIN.  Grids were used in the elevation difference maps, because TIN’s cannot be used for 

difference calculations.  A 1 m sampling and 1 grid cell size were chosen for this paper’s 

analysis.  Therefore, an edit mask was created to limit the area of interpolation and to 

highlight a specific area of interest.  This method is essential so that ArcView does not 

interpolate beyond the bounds of the data.  The edit mask was derived by starting with 

NOAA nautical chart 186585 as the base layer in ArcView. 1997 data points were 

overlayed on the chart.  The borders of the edit mask were etched on the inside of MLLW 

and just inside of the 1997 data (See Figure 20).  Once the data were gridded, difference 

maps were created by subtracting 1997 LIDAR grid from the 1998 LIDAR grid.  These 

difference maps were used as a qualitative aid in identifying potential high loss and gain 

regions to run a surface TIN profile across.  To supplement the LIDAR data, aerial 

oblique photos and digital orthophoto quadrangles were used as visual aids to assess 

beach characteristics qualitatively.  Volume gains and losses were also calculated from 

TIN surfaces.   
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Figure 20.   Steps Used to Create Edit Mask 

 

Cross profiles were produced to quantitatively show beach and dune changes in 

selected regions.  The cross profiles were generated from a TIN surface that was sampled 

every 1 m.  Mean lower low water (MLLW) was chosen to start cross profile as the zero 

line.  The MLLW line depicted on the chart with a scale of 1:50000 together with a 

resultant horizontal ground accuracy of 25.4 m based on the chart scale of 1:50000 and 

the map accuracy standard.   
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III. DUNE EROSION ANALYSIS/RESULTS 

LIDAR surveys are used to measure erosion in Southern Monterey Bay.  From the 

LIDAR data, a cross shore profile was generated approximately every 100 m from 

Monterey to Moss Landing California.  Recession is measured as the difference in cross-

shore locations of the 1997 and 1998 dune top.  The result is a dune recession rate in 

meters that occurred during the El Niño  winter 1997-1998.  Negative difference elevation 

values in the figures below indicate recession, whereas positive values indicate accretion.  

The nearshore beach morphology is defined in Figure 21 defining off shore bars, berm 

and dune tops identifying features along the profile (Komar 1998).  Details are provided 

for 3 selected regions and then a summary is given for Southern Monterey Bay.   

 
Figure 21.   Beach Profile Terminology (from Komar 1998).   

 
A. SELECTED SITES/REGIONS 

1. Del Monte Beach 

Starting with Del Monte Beach (See Figure 22), a slight 0.5 m to 1 m beach 

accretion occurred at the south end of the region, which receives the mildest waves owing 

to the protection of Point Pinos.  Following to the north, generally 0.5 m to 1 m of 

erosion occurs with two “hot spots”.  The first is in the vicinity of the Navy Beach Lab, 

where there is an drainage outfall flowing onto the beach, apparently causing 2 m of 

beach loss.  Continuing on, a profile across the Ocean Harbor House reveals 4 m of 
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recession, which was the loss of sand piled in front of the apartments in the fall of 1997 

as a means of beach protection.  (Figures 23) 

########################################################################################################

500 0 500 1000 Meters

N
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-80 - -10
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-0.5 - 0

0-0.5

0.5 - 1

1 - 2

2 - 4

4 - 6

6 - 8

8 - 10

10 - 80

6 0 0 0 0 0

6 0 0 0 0 0

6 0 0 5 0 0

6 0 0 5 0 0

6 0 1 0 0 0

6 0 1 0 0 0

6 0 1 5 0 0

6 0 1 5 0 0

4 0 5 1 0 0 0 4 0 5 1 0 0 0

4 0 5 1 5 0 0 4 0 5 1 5 0 0

4 0 5 2 0 0 0 4 0 5 2 0 0 0

Profile#

 
Figure 22.   Del Monte Beach:  Elevation Difference 
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Figure 23.   Del Monte Beach:  Cross Profile 

 
2. Sand City 

Dune recession was highly variable along the Sand City shoreline ranging from 

no recession to more than 2 m (Figure 24).  Up to 4 m in elevation is lost along the beach.  

There is up to a 1 m increase in elevation in the back dunes (Figure 24).  This a location 

of little dune vegetation, and during high onshore winds, sand often has be removed from 

Highway 1 opposite profile 3 (Figure 25).  The dune is composed of variable material in 

this location, as the dune between profile 3 and where the road joins (Highway 1 and Del 

Monte) is the site of the old county dump until 1955.  The dune at profile 6 is a site of 

previous sand mining (Figure 26).  Dunes in this region reach up to 50 m.   
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###############################################################################################################################
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Elevation Difference (m)

Profile 3# Profile 6#

6 0 2 5 0 0
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6 0 3 0 0 0

6 0 3 0 0 0

6 0 3 5 0 0

6 0 3 5 0 0

4 0 5 3 5 0 0 4 0 5 3 5 0 0
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Figure 24.   Sand City:  Elevation Difference 
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Figure 25.   Sand City:  Cross Profile 3 
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Figure 26.   Sand City:  Cross Profile 6 
 
3. Fort Ord (Stillwell Hall) 

The largest waves impinge on the Fort Ord shoreline as it is more in the center of 

the bay open to ocean waves and because the predominant northwesterly swells converge 

here due to refraction over Monterey Bay Canyon (Thornton 2002).  The dunes at Fort 

Ord endure large recession (Thornton 2002).  Three profiles north, south and through the 

center of Stillwell Hall are shown in Figures 27-30.  A photo of Stillwell Hall (Figure 31) 

shows the revetment placed in front stops erosion, but with large recession to each side.  

The profiles to each side show up to 13 m of recession (Profiles 2 and 6).  No recession 

occurred in front of Stillwell Hall (Profile 4).  Dunes in this region extend in elevation up 

to 46 m.   
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#########################################################################################################################################################################################################################################

##########################################################################################################################################################################################################################################
######################################################################################################################################################################################################################
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Figure 27.   Fort Ord:  Elevation Difference 
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Figure 28.   Fort Ord:  Cross Profile 2 
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Figure 29.   Fort Ord:  Cross Profile 4 
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Figure 30.   Fort Ord:  Cross Profile 6 

 

 
Figure 31.   Fort Ord:  Aerial Oblique Photo (from USGS 1998)  
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B. SUMMARY OF THE SOUTHERN MONTERY BAY 

1. Large Variability in Dune Erosion 

Erosional patterns are apparent from elevation difference maps (Figure 32).  One 

of the striking observations from the difference maps is that erosion is not uniform, but 

varies considerably alongshore.  Along 23 km of coast, there were areas of accretion, 

dune erosion, river overwash, manmade losses, beach losses and gains, and indicators of 

alongshore and cross shore sediment transport.  

The measured recession is the difference in dune tops between the two surveys 

taken from profiles approximately every 100 m alongshore (Figure 33).  Recession is 

significant throughout Monterey, Sand City, Fort Ord and Marina.  Monterey losses were 

up to 4 m.  Sand City showed up to a 2 m recession.  Fort Ord and Marina had the highest 

cutbacks of up to 13 m.  Moss Landing and the Salinas National Wild Life Refuge 

showed seasonal beach loss up to a 4 m in elevation.  (See Figure 33)   

Dune top elevations were measured at each profile.  The dune top varies 

considerably alongshore with elevations up to 9 m in Monterey, 50 m in Sand City, 46 m 

in Fort Ord, 25 m in Marina, and 7 m in Moss Landing (Figure 34).   
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Figure 32.   Fort Ord Elevation Difference 
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Figure 33.   Recession Alongshore Southern Monterey Bay 
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Figure 34.   Dune Top / Vegetation Line Alongshore Southern Monterey Bay 

 

The dune erosion occurring between October 1997 and April 1998 can be 

estimated by multiplying the recession of the dune top by the height of the dune.  

Examinations of the profiles throughout Southern Monterey Bay (for example Figures 25, 

28 and 30) show the toe of the dune at approximately +5 m above MSL.  This suggests 

that dune erosion only occurs during extreme run-up by storm wave coincident with high 

tides cutting at the toe of the dune.  The profiles suggest that changes in profiles below +5 

m are associated with changes in the beach profile, which are seasonal.  Therefore, the 

dune erosion is calculated subtracting 5 m from the height of the dune.  The erosion 

(accretion) of the dune is alongshore is shown in Figure 35.  The total dune erosion is 

obtained in integrating the erosion alongshore and equals 880,000 cubic meters for this El 

Niño winter.   
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Figure 35.   Volume Loss/Gain Alongshore Southern Monterey Bay 
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IV. DISCUSSION 

A. EROSION RESULTS 

The total change in volume of the dunes and beaches using the cut- fill 

calculations within ArcView to measure the difference between the 1998 and 1997 

images for each 19 increments along the approximately 22 km of shoreline was 

3,423,700 3m .  This amount of sand is viewed as a contribution to the sand budget.  The 

erosion and accretion were measured separately.  Some accretion occurred on the beaches 

at various locations and on the dunes presumably due to sand blow shoreward by the 

prevailing wind.  The total erosion was 3,590,300 3m  compared with the total accretion 

of, 166,600 3m .  The accretion of sand on the dunes is viewed as a loss in the sand 

budget.  A previous study of cliff erosion using stereo-photogrammetric methods from 

photos from 1944 to 1987 found the average annual erosion for Southern Monterey Bay 

from Monterey to the Salinas River (18 km) was 350,000 cubic yards (267,600 3m ).  The 

total volume loss (total erosion minus total accretion) calculated for this study was 

3,423,700 3m .  Using MLLW line as the edge of area for these calculations provides for 

error is estimated to be 950,000 3m (sand area / volume routinely exposed to wave 

action).  When this error is subtracted, the volume loss becomes 2,470,000 3m .   

The measured cliff top erosion was obtained by multiplying the cliff top recession 

times the height from the toe to the top of the cliff, which gives a result of total volume 

loss of 880,800 3m cubic meters.  The difference between contributions to the sand 

budget by cliff erosion and the total erosion is a measure of seasonal change in the beach 

profile.  It is assumed the sand goes offshore to form a bar and eventually returns with the 

summer swell waves, but also with some permanent loss to the offshore.   

The scope was to identify dune top and quantify recession or accretion with 

emphasis on examining and comparing previous surveyed areas.  There were certain 

limitations regarding the 1997 data set.  The LIDAR 1997 coverage was much less than 

the 1998 data.  In particular, Sand City could not be thoroughly examined due to scarce 

coverage in 1997.  Also, some of the 1997 data did not extend far enough inland to attain 
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the dune top.  Sediment budget, long term erosion trends, wave data and cessation of 

Sand City’s mining were not assessed. 

B. RECOMMENDATIONS 

There are numerous additional avenues to pursue from this LIDAR research 

project.  Specifically one could examine a LIDAR storm year versus a LIDAR normal 

year.  Secondly, the possibility to develop a sediment budget using ArcView tools to 

calculate volume losses and gains is approachable.  Thirdly, it would be beneficial to 

correlate the erosion with physical parameters such as wave energy, tides, beach sediment 

grain size and other environmental parameters to better understand erosion processes.   
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V. CONCLUSIONS 

Erosion appears to be highly episodic.  The wave climate for Southern Monterey 

Bay during period 1987-1997 was relatively calm wave climate for Southern Monterey 

Bay with little to no erosion occurring.  The 1997-1998 El Niño winter was a time of high 

tides, storminess, and wave energy resulting in significant erosion.  Large cutbacks in 

Fort Ord and Marina occurred, as well as significant recession in Monterey and Sand 

City.  Starting from the south, recessions at Monterey ranged from 0 m to 4 m.  Sand City 

recession ranged from 0 m to 2 m.  It is noted that there was insufficient LIDAR coverage 

for approximately a kilometer of the shoreline in Sand City; therefore Sand City was not 

assessed entirely.  Fort Ord had large cuts ranging from 0.5 m to 13 m.  Drainage cuts 

were also present up to 17 m.  Marina had the largest dune recession of 15 m.  Marina’s 

recession range was 0 m to 15 m.  It was sometimes difficult to identify dune tops, 

particularly at Moss Landing where it became more subjective and concluded there was 

little recession, just beach loss ranging from 1 m to 3 m.  There was also some sediment 

accretion present.  In particular, deposition around the Salinas River was evident as well 

as the overwash that occurred.  The pattern of the beach profiles indicated seasonal 

change and indicated cross-shore sediment transport.  Manmade sand deposits were also 

obvious along Del Monte Beach and just north of Marina.   

Erosion did not occur uniformly showing large spatial variability all along the 

shoreline, with many observed erosion “hot spots”.  The scale of the alongshore 

variability varied between 100 m to 1 km.   

With respect to Navy applications, ATM LIDAR can provide significant 

environmental information to operational units in regards to beach characterization.  The 

elevation detail that LIDAR provides can be an invaluable aid in planning amphibious 

landings or Special Operations providing intelligence on landing zones, ingress/egress 

routes based on slope as well as dimension of man-made impediments.   
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